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Abstract. Temporal reasoning and strategic behaviour are important abilities of
Multi-Agent Systems. We introduce a method suitable for modelling agents which
can store and reason about the evolution of an environment, and which can reason
strategically, that is, make a rational and self-interested choice, in an environment
where all other agents will behave in the same way. We introduce a game-theoretic
formal framework, and provide with a computational characterisation of our solu-
tion concepts, which suggests that our method can easily be put into practice.

1 Introduction

Multiagent Systems (MAS) have long been a successful means for modelling the
interaction of software agents (or simply, programs) with themselves, other humans,
and a given environment. In this context, there is an ever increasing need for MAS:
(i) able to perform temporal inferences and (ii) capable of strategic reasoning.

In this paper, we equip MAS with memory and temporal inference capabilities,
by deploying a method for temporal reasoning previously described in [2, 3, 6, 5],
and we study the strategic behaviour of such systems. For the latter, we introduce
the game-theoretic concept of Nash Equilibrium, and show how it can be used for
enforcing MAS stability. We assume each agent has a particular goal, which is de-
pendent on the current and past state(s) of the system. Goals are expressed using
the temporal language LH , introduced and described in [5]. Each agent has some
available actions which are able to change the system state Also, each action has
associated a particular cost. We further assume that agents are rational and self-
interested, meaning they will choose to execute those actions which: (i) make the
goal satisfied, (ii) minimises the agent’s costs. We are interested in those situations
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where agents cannot individually satisfy their goals i.e. they may have (partially)
conflicting and/or (partially) overlapping goals. In such situations, agents may de-
viate, i.e. change their set of actions to another, if the latter is a possible means for
achieving a better outcome. The solution concept we use, the Nash Equilibrium, is
aimed at identifying the outcomes where no agent has an incentive to deviate. We
further study the computational complexity of related to the Nash Equilibrium, us-
ing the LH -model checking procedure described in [5] and provide with an upper
complexity bound. We conjecture that such a bound is tight.

Related Work: We consider Boolean Games [4] to be one of the first frameworks
which use logic for describing goal-based strategic interactions between agents.
However, instead of propositional logic, we use the more expressive language LH ,
which also allows expressing domain-dependent temporal properties.

The choice of LH over well-known temporal logics such as LTL [7] or CTL [1],
is motivated, on one hand, on the increased computational complexity of model
checking, in the case of LTL [7] and on the reduced expressive power of CTL, with
respect to LH [5].

The rest of the paper is structured as follows. In Section 2 we make a brief account
on the temporal knowledge representation and reasoning method which we use. In
Section 3 we introduce our formal framework, define the Nash Equilibrium solution
concept and describe our complexity results, and in Section 4 we conclude and
identify possible future work.

2 Temporal Representation and Reasoning

In what follows, we succinctly describe the approach for temporal representation
and reasoning which we adopt. For a more detailed presentation, see [5].

Temporal Graph. The history of a given MAS is stored using labelled temporal
graphs. A labelled temporal graph (or simply temporal graph) consists of: (i) hy-
pernodes which model discrete moments of time, (ii) labelled action nodes which
model instantaneous events that change the state of the current environment and (iii)
labelled quality edges which model time-dependent properties.

An example of a temporal graph is shown in Figure 1, where hi, i = 1,3 are hyper-
nodes designating three distinct moments of time, a,b,c,d,e, f and aend

are action nodes, each associated to a certain hypernode, (a,b), (c,d) and (e, f )
are quality edges denoting the time-dependent properties On(ac), On(h) and On(v),
respectively.

Formally, given a vocabulary σA ∪ σQ and σA ∪ σQ-structure I, over uni-
verse I (a set of individuals), a labelled temporal graph (or t-graph) is a structure
H = 〈A,H,T ,E,LA,LQ〉, where A is a set of action nodes, H is a set of hypernodes,
T : A→ H is a onto (or surjective) function which assigns for each action node a,
the hypernode T (a) when a occurs, E ⊆ A2 is a quality edge relation, the function
LQ : E→P(∪R∈σQRI) labels each quality edge with a set of relation instances from
I and the functionLA : A→P(∪R∈σARI) labels each action node with a set of action
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labels from I. Given the quality edge (a,b) ∈ E, we say that action nodes a or b are
the constructor or destructor nodes of (a,b), respectively.

The language LH . We use the language LH in order to express complex temporal
relations between time-dependent properties, such as has the air conditioner been
opened in the same time a window has been opened or find all properties On(ac)
which are destroyed precisely when a property Opened(x,y) is created.

Due to limited space, we provide with a simplified syntax and semantics of LH .
The original one(s) can be found in [5].

Let Vars be a set of variables, I be a σQ ∪σA-structure and HI be a labelled
t-graph. The syntax of a (Q-)formula is recursively defined with respect to I, as
follows. If R ∈ σQ with arity(R) = n and t ∈ (Vars∪ I)n, then R(t) is an atomic Q-
formula (or an atom). If φ is a (Q-)formula then (φ) is also a (Q-)formula. If φ, ψ
are (Q-)formulae then φ b ψ, φ ¬b ψ, φ m ψ, φ a ψ, φ ¬a ψ are also (Q-)formulae.
b stands for before and ¬b for not before. Similarly, m stand for meets and a for

after. The following are valid LH formulae: (i) On(x) (ii) On(ac) b Opened(x,y)
(iii) On(x) m Opened(John, x). Formula (i) refers to all properties On associated
to some individual x, which can occur at any time in the evolution of the do-
main. Formula (ii) refers to those properties On(ac) which occur before any re-
lation Opened, which may enrol arbitrary individuals x,y. Similarly, formula (iii)
refers to those properties On(ac) which end at the very moment when some relation
Opened(John,x) is created.

LH formulae are evaluated over paths from labelled temporal graphs. The eval-
uation is defined by the mapping ‖ · ‖QH : LH → 2E which assigns for each formula

φ ∈ LH , a set of quality edges ‖φ‖QH which satisfy it. In what follows, we omit
the formal definition of the LH semantics, and defer the interested reader to [5].
Finally, we note that, in the unrestricted case considered in [5], LH -formulae can
also express more general constraints, for instance between actions and properties
(and not just properties, as considered here). Returning to the temporal graph, we
have that: ‖On(x)‖QH = {(a1,a2)}, since (a1,a2) is labelled with On(ac), which uni-

fies with On(x). ‖On(ac) b Opened(John, x)‖QH = {(a1,a2)} since (a1,a2) also oc-
curs before quality edge (a3,a4), which is labelled with Opened(John,win). Finally,
‖On(x) m Opened(John, x)‖QH = ∅ since there is no individual i ∈ I, for which prop-
erties On(i) and Opened(John,i) exist in our labelled temporal graph.

Proposition 1 ([5]). Let H be a temporal graph where temporal nodes H are
equipped with a temporal order: 〈H,<〉. We designate by L<H the language LH de-
fined over such temporal graphs. Given a formula φ ∈ L<H and a property Q, the

decision problem Q ∈ ‖φ‖QH is NP-complete.

3 Formal Setting

In what follows, we formally introduce the concept of Nash Equilibrium adjusted to
our setting, as well as other supporting concepts.



214 M. Popovici and L. Negreanu

Definition 1 (t-frame). Let I be a structure over vocabulary σQ∪σA and with uni-
verse I,Aset = {Ri(i) : Ri ∈ σA, i ∈ RI

i }, and Qset = {Ri(i) : Ri ∈ σQ, i ∈ RI
i }.

A t-frame is given by F = (N,Own,Ont,c, (φn)n∈N , (vn)n∈N , 〈H,<〉), where N is
a finite set of agents, Own : N → 2Aset is a function that assigns to each agent a
subset of action types he can control. Own(n) models the types of changes agent
n can perform to the environment. The sets Own(1) . . .Own(|N|) are a partition of
Aset, Ont ⊆ Aset×Qset ×Aset indicates what are the labels of action nodes that
can create and destroy quality edges with a certain label. In this sense, Ont can be
interpreted as a (simple) ontology.Ont must take into account that each quality edge
(and hence quality label) must be created/destroyed by a unique action node (hence
action label), c :Aset→ R≥0 assigns a cost to each action label, (φn)n∈N is a set of
goals, one for each agent (φn ∈ LH for n ∈ N), (vn)n∈N a goal value for each agent,
measuring the amount of resources each agent is willing to spend for achieving his
goal, a finite and ordered set 〈H,<〉 of hypernodes.

Example 1 (t-frame). Let F be a three-agent frame where h(home cinema), ac(air
conditioner) and v(ventilation) are individuals and Aset = {turnOn(x) : x ∈ I} ∪
{turnOff(x) : x ∈ I} and Qset = {On(x) : x ∈ I}. Each agent 1,2,3 can turn on or
off device ac,h,v, respectively. The costs of each action are fixed to 1. The goals
of each agent are as follows: φ1 = On(ac) b On(h) (the air conditioner must be
started before the home cinema was started), φ2 = On(ac) (at some point in time,
the air conditioner should be started.), φ3 = On(v) m On(h) (the ventilation should
be stopped precisely when the home cinema starts). Finally, vn = 5 for n ∈ {1,2,3},
and 〈H,<〉 is given by: h1 < h2 < h3.

In what follows, we assume that F is a t-frame and hmax ∈ H is the most recent
hypernode, i.e., �h′ ∈ H such that hmax < h′: An action of a agent n is given by:
〈An,LAn ,Tn〉 where An is a set of action nodes, LAn : An → Aset is a labelling
function and Tn : An → H is a mapping of An on the set of hypernodes. We note
that, in this paper, we have restricted LAn , such that each action node receives a
unique label. This restriction is for convenience only.

An action profile consists of a vector (〈An,LAn ,Tn〉)n∈N of actions, one for each
agent in N. An action profile induces a labelled temporal graph 〈A,H,T ,E,LA,LQ〉
where: A = (

⋃
n∈N An)∪ aend, for each pair a,b ∈ A, if there exists a label X ∈ Qset

such that (LA(a),X,LA(b)) ∈ Ont, then create (a,b) ∈ E, and for each such X, X ∈
LQ(a,b), and if there exists an action node a ∈ A and no action node b ∈ A such
that (LA(a),X,LA(b)), then create (a,aend) ∈ E, and for each such X, X ∈ LQ(a,b).
Finally, T (x) = Ti(x) if x ∈ Ai and T (x) = hmax if x = aend and LA(x) = {LAi(x)} if
x ∈ Ai, for i = 1 . . . |N|.

Proposition 2. Given a labelled temporal graphH , there is a unique action profile
a∗ ∈ ×n∈NActionsn such that a∗ inducesH .

Given a labelled t-graph H and a formula φk of agent k, we say φk is satisfied
in H iff ‖φk‖XH � ∅. Thus, a goal φk is satisfied in H if there exists at least one

quality edge inH that belongs to ‖φk‖QH . A labelled temporal graphH induces a cost
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Fig. 1 a) A temporal graph induced from an action profile (and a Nash Equilibrium) and b)
A temporal graph which is not a Nash Equilibrium

on a agent n, denoted Costn(H), which is: Costn(H) =
∑

a∈A

(∑
X∈Own(n)∩LA(a) c(X)

)

Cost(n) is the sum of costs of actions performed by agent n. The utility un(H) of
agent n in a labelled temporal graph H is defined as: un(H) = vn −Costn(H) if φn

is satisfied inH , and as un(H) = −Costn(H), otherwise. We say a agent n prefers a
labelled temporal graphH overH′ and writeH �nH′, if un(H)> un(H′). We also
extend the preference relation over action profiles. Given two action profiles a,a′

that induce temporal graphsH andH′, respectively, we write a �n a′ iffH �n H′.
LetH be the labelled temporal graph from Figure 1 a) andH′ be the temporal graph
from Figure 1 b). We have that u1(H)= 5− (1+1)= 3 and u1(H′) = 0− (1+1)= −2,
since agent 1’s goal is satisfied inH but not inH′. ThereforeH �1 H′.

A temporal game is defined as TG = (F , (Actionsn)n∈N , (�n)n∈N) where, for
each n ∈ N, Actionsn designates the set of actions available to agent n and �n

is the preference relation of agent n over temporal graphs. A Nash Equilibrium
(NE) of a temporal game is a labelled temporal graph induced by an action profile:
(a∗1, . . . ,a

∗
n, . . . ,a

∗
|N |) ∈ ×n∈NActionsn such that, for each agent n ∈ N and any action

an ∈ Actionsn: (a∗1, . . . ,a
∗
n, . . . ,a

∗
|N |) �n (a∗1, . . . ,an, . . . ,a∗|N |). Nash Equilibria capture

those situations in which each individual agent n cannot change his action (namely
a∗n) to one that ensures a higher utility. The t-graph in Figure 1 a) is a Nash Equilib-
rium. All three agents have their goals satisfied, and no individual agent can change
his action to achieve a higher utility. The temporal graph from Figure 1 b) is not a
Nash Equilibrium. The goal of agent 1 is not satisfied and there is no action that 1
can take in order to change this. Therefore, 1 would prefer not to execute any action
node(i.e., remain passive), and therefore achieve 0 utility (instead of −2). The same
is true with respect to agent 3.

Proposition 3 (Complexity Results). Checking whether a temporal graph H is a
Nash Equilibrium of a temporal game TG with goals formulated in the language
L<H , is a Π2-problem. Finding if there exists a temporal graph H such that H is a
Nash Equilibrium of a temporal game TG with goals formulated in the language
L<H , is a problem in Σ3.
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4 Conclusions and Future Work

While the scope of our paper is rather formal, we believe our results can be easily put
into practice. Our complexity results show that implementations are possible, even
if they require an increased computational effort. We consider this effort to be tolera-
ble. Also, by introducing limited memory, that is, by truncating temporal graphs to a
fixed number of hypernodes, the computational effort may be further controlled. As
suggested by all the examples above, our modelling method can be used for identi-
fying stable behaviour of agents in intelligent environments (i.e., buildings equipped
with programmable sensors and control devices). Such an approach is currently a
work-in-progress. However, we consider our method to be general enough for ap-
plication in a wide variety of scenarios that require modelling temporal reasoning
together with strategic behaviour.
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