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Abstract. Bio-inspired algorithms have been widely used to solve problems in
areas like heuristic search, classical optimization, or optimum configuration in
complex systems. This paper studies how Genetic Algorithms (GA) and Ant Colony
Optimization (ACO) algorithms can be applied to automatically solve levels in the
well known Lemmings Game. The main goal of this work is to study the influence
that the environment exerts over these algorithms, specially when the goal of the
selected game is to save an individual (lemming) that should take into account their
environment to improve their possibilities of survival. The experimental evaluations
carried out reveals that the performance of the algorithm (i.e. number of paths
found) is improve when the algorithm uses a small quantity of information about
the environment.

1 Introduction

Bio-inspired algorithm research field has been widely used to solve problems or
to search for the optimum configuration of complex systems. Due to these type of
problems exhibit NP-complete or NP-hard complexity, the resolution process needs
a huge amount of resources (such as computational effort or time). Some examples
of such problems are scheduling problems, constrained satisfaction problems, or
routing problems.

A good strategy to reduce the time needed to solve NP-complete problems is
applying bio-inspired algorithms, such as evolutionary algorithm (EA) [Fogel, 1995,
Eiben and Smith, 2009] or swarm intelligence [Engelbrecht, 2007]. These types of
algorithms work with a population of possible solutions that navigates through the
solution space of the modelled problem.
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In the case of EA, each individual is evaluated by a fitness function that
allows their comparison. Then, individuals with better fitness value generates the
next population by the use of the crossover and mutation [Forrest, 1993]. These
operators allow the generation of new individuals taking into account their parents’
characteristic.

Swarm intelligence algorithms focus on the collective behaviour of
self-organizing systems [Farooq, 2008] where the iterations among individuals
generate collective knowledge based on social colonies [Karaboga, 2005]. In this
case, the initial population travels through the solution space in order to obtain the
best solution to the problem.

In this paper a classical Ant Colony Optimization [Dorigo, 1999] and a Genetic
Algorithm are applied to the well-known Lemmings Game to determine whether the
different levels can be solved using the given skills.

The Lemmings Game is a popular proven NP-hard puzzle game [Cormode,
2004]. In spite of the popularity that this game obtained in the 1990s, few research
has been applied to it. Computational intelligence has just been applied to video
games such as Mastermind, the Art of Zen, Ms Pac-Man, Tetris or Mario Bros.

This paper tries to determine the influence that environment (in this case, the
Lemmings level) exerts over the different algorithms. In order to do that the
performance of a Genetic Algorithm (GA), an Ant Colony Optimization (ACO)
and an heuristic for the ACO will be analysed.

2 The Lemmings Game

Lemmings are creatures that need to be saved. In each level, Lemmings start in a
specific point of the stage and must be guided to the exit point by the player. They
live in a two-dimensional space and are affected by gravity. They start walking in a
specific direction until they find an obstacle. In this case the Lemming will change
the direction and walk back. If the Lemming encounters a hole, it will fall down.
The only two ways, considered in this paper, by which a Lemming can die is by
falling beyond a certain distance or by falling from the bottom of the level.

In order to make Lemmings to reach the exit point, players have a set of “skills”
that must be given (not necessarily all of them) to the Lemmings. Using these
skills, Lemmings can modify the environment creating tunnels, or bridges, and thus
creating a new way to reach the exit. There are eight different skills that allow
Lemming to have an umbrella, to dig or to climb, amongst others. Each skill can
be used (i.e. assigned) a maximum number of times. It is not necessary to use all of
the skills in the levels.

In the Lemmings’ world, there are a huge number of materials, but all of them can
be grouped in two different classes: the ones that can be modified (e.g. can be dug)
and the ones that cannot be altered. In the case that a Lemming is digging and finds
a material that cannot be dug, the Lemming will stop digging and start walking.
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3 Description of the Studied Algorithms

In this paper GA and ACO algorithms are studied. The aim of the experimental
phase is to determine whether these algorithms can find the different paths that guide
Lemmings to the exit point of the level.

3.1 Genetic Algorithm

The GA applied in this work, initializes individuals with a random phenotype length.
The maximum length of the phenotype depends on the maximum time of the level
or the maximum genotype length allowed. The phenotype is a list of genes where
each gene (< T,S >) contains the skill (S ) that is going to be executed in the step
T . Both values (the step and the skill) are selected randomly depending on the
maximum time given to solve the level, and the total number of remaining skills.
The phenotype represents the different decisions that the player could make. This
phenotype is then evaluated against the level. The lemming starts its execution
applying the skills specified in the given steps.

The goal of the GA is to maximize the fitness function represented by Eq. 4 and
it is composed by Eq. 1, Eq. 2 and Eq. 3. Eq. 1 takes into account the time spent
by the Lemming to solve the level. Eq. 2 is used to favour those paths that use less
actions, or less skills. Finally, another key concept is the number of lemmings saved
in the level represented in Eq. 3.

T (Indi) = MaxTime−Time(Indi) (1)

A(Indi) = TotalActGiv−ActionUsed(Indi) (2)

S (Indi) = TotalLemm−BlockersUsed(Indi)−ExplodedLemmings(Indi) (3)

F(Indi) =
T (Indi)+A(Indi)+S (Indi)

MaxTime+TotalActGiv+TotalLemm
(4)

Although ACO will use the same function to evaluate the goodness of the paths,
only GA can produce negative fitness. This negative fitness value is obtained if the
individual produces an invalid path (i.e. in the evaluation, the lemming is not able
to reach the exit point or the lemming dies trying it). In this case the fitness value is
−1 ∗F(Indi).

3.2 Ant Colony Optimization

In this work, the ants are the Lemmings of the game. So, they start in the entry point
of the level and at each position, each ant will decide whether to continue executing
the current action or to select another skill to execute. This decision depends on the
number of remaining skills and the pheromones deposited in the current location.
This means that skills with a higher pheromone value, and/or that can be applied
several times, have more chances to be selected. Once the ant decides to change its
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behaviour, it deposits a pheromone in the current location and continues with its
execution.

A pheromone is an object that represents a decision taken previously by any ant.
It means that some ant had taken a specific skill at this point. For that reason each
pheromone contains the name of the skill taken, the direction in which this skill had
been executed and a value representing the goodness for this decision (this value is
computed at the end of the ant execution).

In this work when any ant reaches the exit of the level, it will start again from
the entry point updating all the pheromones with the fitness value of the path. This
fitness is the same as the one used by the GA (Eq. 4). Finally, when all pheromones
have been updated and the ant arrives to the destination (for the second time), it will
forget the followed path and it will start again as a new ant, without any knowledge
about the location of the exit.

3.3 The Common-Sense Ant

The problem with the described ACO algorithm is that randomness may generate
strange situation like having an ant falling down and suddenly the ants start building
a bridge in the air. For this reason, a common-sense heuristic is defined.

With this heuristic, the current skill applied and the ants’ environment will
influence in the decision of the next skill to apply. This heuristic will avoid the
use of a skill when it cannot be executed, for example, it is not useful to apply the
Climber skill if the ant is not in front of a wall.

4 Experimental Phase

The aim of the experiments is to analyse the influence of the environment in the
behaviour of a GA and an ACO algorithms. Five different levels have been designed,
the easiest one and the hardest one are shown in Fig. 1(a) and Fig. 1(b), respectively.
This valuation is based on the size of the level, the different blocks contained into
each level, the distance from the entry point to the exit point, the number of skills
needed to solve the level, etc. It is important to take into account that all the terrains
used in the levels are editable terrain, i. e. ants can dig, climb and bash into it.

For each level, GA, ACO and ACO with common-sense ants are executed.
Each execution is repeated 50 times because all algorithms are stochastic. In order
to compare the results obtained among the different algorithms there are some
parameters that are common to all of them. Each experiment uses the Eq. 4 to
evaluate the different paths, the algorithms execute 100 ants (or individuals) during
200 iterations(or generations), and each experiment is repeated 50 times.

The GAs have, also, the following configuration: the maximum phenotype length
is 20, the probability of having One-point crossover is 90%, while the mutation rate
is fixed to 10%. There is not elitism and the goal is to maximize the results obtained
from the fitness function.
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(a) Level 1. The easiest level
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(b) Level 5. The hardest level

Fig. 1 Examples of the easiest and the hardest level modelled in this work

The goal of the experiments is to compare the number of different solutions that
each algorithm is able to build. This information is shown in Table 1. The values
correspond to the number of different paths found in 50 executions of the algorithms.

Table 1 Number of different solutions found by the algorithms described

Level
# Different Solutions # Different Solutions # Different Solutions
(Genetic Algorithm) (ACO Random Ant) (ACO Common-Sense)

1 3219 3868 2516
2 12629 4463 4042
3 370 1130 2487
4 2 15 32
5 0 3 7

5 Conclusions

This paper analyses the possibility of applying Genetic Algorithm and Ant Colony
Optimization to generate automatic game level solver tools. The application domain
of this work is the well-known Lemmings game, where Lemmings have to apply
different skills in order to reach the exit. Five different levels have been designed
with different complexity depending on the size of the level, the number of available
skills, or the distance between the start and the destination point, amongst others.

Experimental results reveal that both algorithms can successfully be applied to
solve the levels. Nevertheless, as it can be seen in Table 1 the Genetic Algorithms
provide less different paths when the levels are harder (i.e. levels 4 and 5). This is
produced because GA generates individuals without taking into account the level
landscape (i.e. it is a blind generation of individuals). On the other hand, ACO uses
the terrain information to apply different skills at specific steps and thus, it provides
better results.

One of the problem observed in this work is that GA does not guarantee the
goodness of the following generation of individuals. Parents are selected depending
on its fitness value (better fitness value implies more chances for being selected), but
crossover and mutation operations do no guarantee that the generated children have
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better fitness values. Ant Colony Optimization does not have this problem, because
ants are guided by the pheromone trails and then good decision (represented in
pheromones with high values) will have higher probabilities for being selected.

In order to determine whether the environment is important for generating
automatic level solvers, an heuristic for ACO has been designed. Although this
heuristic (called common-sense heuristic) provides less different paths in easiest
levels (level 1 and 2), it provides better results when it tries to solved the hardest
levels (levels 3, 4 and 5). This fact demonstrates that level information is very
important to make automatic level solvers.

Nevertheless, the design of domain based heuristics makes the platform very
dependent on the domain and thus the conclusions, and the approach, are not
applicable to other different domains.
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