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Abstract. In this paper we provide the distributed version of algorithm for creation
of model Generalized One-Sided Concept Lattices (GOSCL), special case for fuzzy
version of data analysis approach called Formal Concept Analysis (FCA), which
provide the conceptual model of input data based on the theory of one-sided con-
cept lattices and was successfully applied in several domains. GOSCL is able to
work with data tables containing the different attribute types processed as fuzzy
sets. One problem with the creation of FCA model is computational complexity. In
order to reduce the computation times, we have designed the distributed version of
the algorithm and showed its applicability on the generated data set. The algorithm
is able to work well especially for data where number of newly generated concepts
is reduced (like for sparse input data tables).
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1 Introduction

The large amount of available data and the needs for their analysis brings up the
challenges to the area of data mining. It is evident that methods for different analy-
sis should be more effective and understandable. One of the conceptual data mining
methods, called Formal Concept Analysis (FCA, [7]), is an exploratory data analyt-
ical approach which identifies conceptual structures (concept lattices) among data
sets. FCA has been found useful for analysis of data in many areas like knowl-
edge discovery, data/text mining, information retrieval, etc. The standard approach
to FCA provides the method for analysis of object-attribute models based on the bi-
nary relation (where object has/has-not particular attribute). The extension of classic
approach is based on some fuzzifications for which object-attribute models describe
relationship between objects and attributes as fuzzy relations. From the well-known
approaches for fuzzification we could mention an approach of Bělohlávek [2], an
approach of Krajči [12], the approach based on the multi-adjoint concept lattices
[13], and also work by one of the authors generalizing the other approaches [15].

In practical applications, so-called one-sided concept lattices are interesting,
where usually objects are considered as a crisp subsets (as in classical FCA) and
attributes are processed as fuzzy sets. In case of one-sided concept lattices, there
is strong connection with clustering (cf. [10]). As it is known, clustering methods
produce subsets of a given set of objects, which are closed under intersection, i.e.,
closure system on the set of objects. Since one-sided concept lattice approach pro-
duces also closure system on the set of objects, one can see one-sided concept lattice
approaches as a special case of hierarchical clustering. Several one-sided approaches
to FCA were already defined, we mention papers of Krajči [11] and Yahia & Jaoua
[1]. These approaches allow only one type of attribute (i.e., truth degrees structure)
to be used within the input data table. In our previous paper [3] we have introduced
the necessary details and incremental algorithm for model called GOSCL (Gener-
alized One-Sided Concept Lattice), which is able to work with the input data tables
with different types of attributes, e.g., binary, quantitative (values from interval of
reals), ordinal (scale-based), nominal, etc.

One of the problems of the FCA-based methods is computational complexity,
which generally can be (in worst case) exponential. We have analyzed several as-
pects of GOSCL complexity. In [4] we have shown that for fixed input data table
and attributes time complexity of GOSCL is asymptotically linear with the increas-
ing number of objects. This is based on the fact that after some time (which is
specific for the data set) new concepts are added linear to the increment of objects.
Moreover, in [5] we have analyzed the significant reduction of computation times of
the algorithm for sparse input data tables (i.e., input tables with many zeros). How-
ever, in order to achieve the objective to produce large-scale concept lattices on real
data, which can be then used in retrieval tasks or text-mining analysis, it is possible
to extend our approach and re-use distributed computing paradigm based on data
distribution [9]. Therefore, the main aim of this paper is to describe the possibility
to distribute the computation of GOSCL algorithm for larger context based on its
decomposition to several subtables with the separated (and disjoint) subsets of rows,
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i.e., data table is decomposed to several smaller tables, for which small lattices are
created and these are then iteratively combined (by defined merging procedure) to
one large concept lattice for the whole data table. The presented algorithm is also
analyzed according to the randomly generated data with different sparseness.

In the following section we provide necessary details for definition of generaliza-
tion of one-sided concept lattices and the algorithm for their creation. Section 3 is
devoted to the introduction of distributed approach for creation of model, also with
the detailed description of the algorithm. In next section, some basic experiments
are provided in order to show the potential of the algorithm for its future usage on
the real data.

2 Generalized One-Sided Concept Lattices

In this section we provide necessary details about the fuzzy generalization of clas-
sical concept lattices, so called generalized one-sided concept lattices, which was
introduced in [3].

The crucial role in the mathematical theory of fuzzy concept lattices play special
pairs of mappings between complete lattices, commonly known as Galois connec-
tions. Hence, we provide necessary details regarding Galois connections and related
topics.

Let (P,≤) and (Q,≤) be complete lattices and let ϕ : P→ Q and ψ : Q→ P be
maps between these lattices. Such a pair (ϕ,ψ) of mappings is called a Galois con-
nection if the following condition is fulfilled:

p ≤ ψ(q) if and only if ϕ(p) ≥ q.

Galois connections between complete lattices are closely related to the notion of clo-
sure operator and closure system. Let L be a complete lattice. By a closure operator
in L we understand a mapping c : L→ L satisfying:

(a) x ≤ c(x) for all x ∈ L,
(b) c(x1) ≤ c(x2) for x1 ≤ x2,
(c) c(c(x)) = c(x) for all x ∈ L (i.e., c is idempotent).

Next we describe mathematical framework for one-sided concept lattices. We start
with the definition of generalized formal context.

A 4-tuple
(
B,A,L,R

)
is said to be a one-sided formal context (or generalized one-

sided formal context) if the following conditions are fulfilled:

(1) B is a non-empty set of objects and A is a non-empty set of attributes.
(2) L : A→ CL is a mapping from the set of attributes to the class of all complete

lattices. Hence, for any attribute a, L(a) denotes the complete lattice, which
represents structure of truth values for attribute a.

(3) R is generalized incidence relation, i.e., R(b,a) ∈ L(a) for all b ∈ B and a ∈ A.
Thus, R(b,a) represents a degree from the structure L(a) in which the element
b ∈ B has the attribute a.
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Then the main aim is to introduce a Galois connection between classical subsets
of the set of all objects P(B) and the direct products of complete lattices

∏
a∈A L(a)

which represents a generalization of fuzzy subsets of the attribute universe A. Let us
remark that usually fuzzy subset are considered as function from the given universe
U into real unit interval [0,1] or more generally as a mappings from U into some
complete lattice L. In our case the generalization of fuzzy subsets is straightforward,
i.e., to the each element of the universe (in our case the attribute set A) there is
assigned the different structure of truth values represented by complete lattice L(a).

Now we provide a basic results about one-sided concept lattices.
Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then we define a pair

of mapping ⊥ : P(B)→∏a∈A L(a) and � :
∏

a∈A L(a)→ P(B) as follows:

X⊥(a) =
∧

b∈X

R(b,a), (1)

g� = {b ∈ B : ∀a ∈ A, g(a) ≤ R(b,a)}. (2)

Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then a pair (⊥,� ) forms a

Galois connection between P(B) and
∏

a∈A L(a).
Now we are able to define one-sided concept lattice. For formal context

(
B,A,L,R

)

denote C(B,A,L,R) the set of all pairs (X,g), where X ⊆ B, g ∈∏a∈A L(a), satisfying

X⊥ = g and g� = X.

Set X is usually referred as extent and g as intent of the concept (X,g).
Further we define partial order on C(B,A,L,R) as follows:

(X1,g1) ≤ (X2,g2) iff X1 ⊆ X2 iff g1 ≥ g2.

Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then C(B,A,L,R)with

the partial order defined above forms a complete lattice, where
∧

i∈I

(
Xi,gi
)
=
(⋂

i∈I

Xi,
((∨

i∈I

gi
)�)⊥)

and ∨

i∈I

(Xi,gi) =
(((⋃

i∈I

Xi
)⊥)�,

∧

i∈I

gi

)

for each family (Xi,gi)i∈I of elements from C(B,A,L,R).
At the end of this section we briefly describe an incremental algorithm for creat-

ing one-sided concept lattices. By the incremental algorithm we mean the algorithm
which builds the model from the input data incrementally row by row, where in ev-
ery moment current model from already processed inputs is correct concept lattice
for such subtable (and addition of new increment means to provide another row and
update the last model, i.e., concept lattice). Let

(
B,A,L,R

)
be a generalized one-

sided formal context. We will use the following notation. For b ∈ B we denote by
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R(b) an element of
∏

a∈A L(a) such that R(b)(a) = R(b,a), i.e., R(b) represents b-th
row in data table R. Further, let 1L denote the greatest element of L =

∏
a∈A L(a),

i.e., 1L(a) = 1L(a) for all a ∈ A.

Algorithm 1. Incremental algorithm for GOSCL
Require: generalized context

(
B,A,L,R

)

Ensure: set of all concepts C(B,A,L,R)
1: L←∏a∈A L(a) � Direct product of attribute lattices
2: I← {1L} � I ⊆ L will denote set of intents
3: C(B,A,L,R)← ∅
4: for all b ∈ B do
5: I∗ ← I � I∗ represents “old” set of intents
6: for all g ∈ I∗ do
7: I← I∪{R(b)∧g} � Generation of new intent
8: end for
9: end for

10: for all g ∈ I do
11: C(B,A,L,R)←C(B,A,L,R)∪{(g�,g)}
12: end for
13: return C(B,A,L,R) � Output of the algorithm

3 Distributed Algorithm for Generalized One-Sided Concept
Lattices

In this section we provide the theoretical details regarding the computation of
GOSCL model in distributed manner. It means that division to the partitions is de-
fined. The main theorem is proved, which shows that concept lattices created for
the partitions are equivalent to the concept lattice created for the whole input for-
mal context. Then the algorithm for our approach to distribution is provided. It is
based on the division of data table into binary-like tree of starting subsets (with their
smaller concept lattices), which are then combined in pairs (using specified merge
procedure) until the final concept lattice is available.

Let π = {Bi}i∈I be a partition of object set, i.e., B =
⋃

i∈I Bi and Bi ∩ B j = ∅
for all i � j. This partition indicates the division of objects in considered object-
attribute model, where Ri defines several sub-tables containing the objects from Bi

and which yields several formal contexts Ci = (Bi,A,L,Ri) for each i ∈ I. Conse-
quently we obtain the system of particular Galois connections (⊥i ,�i ), between P(Bi)
and
∏

a∈A L(a). Next we describe how to create Galois connection between P(B) and
∏

a∈A L(a). We use the method of creating Galois connections applicable for general
fuzzy contexts, described in [15]. Let X ⊆ B be any subset and g ∈∏a∈A L(a) be any
tuple of fuzzy attributes. We define

↑(X)(a) =
∧

i∈I

(X∩Bi)
⊥i and ↓(g) =

⋃

i∈I

g�i (3)



124 P. Butka, J. Pócs, and J. Pócsová

Theorem 1. Let π = {Bi}i∈I be a partition of object set. Then the pair of mappings
(↑,↓) defined by (3) and the pair (⊥,� ) defined by (1) represent the same Galois
connection between P(B) and

∏
a∈A L(a).

Proof. Let X ⊆ B be any subset of object set and a ∈ A be an arbitrary attribute.
Using (3) we obtain

↑(X)(a) =
∧

i∈I

(X∩Bi)⊥i =
∧

i∈I

( ∧

b∈X∩Bi

Ri(b,a)
)
=
∧

i∈I

( ∧

b∈X∩Bi

R(b,a)
)
.

Since π is the partition of the object set B, we have X =
⋃

i∈I(X∩Bi). Involving the
fact, that meet operation in lattices is associative and commutative, we obtain

X⊥(a) =
∧

b∈X

R(b,a) =
∧

b∈⋃i∈I (X∩Bi)

R(b,a) =
∧

i∈I

( ∧

b∈X∩Bi

R(b,a)
)
,

which yields ↑ (X) = X⊥ for each X ⊆ B.
Similarly, we have

↓(g) =
⋃

i∈I

g�i =
⋃

i∈I

{b ∈ Bi : ∀a ∈ A, g(a) ≤ Ri(b,a)}.

Easy computation shows that this expression is equal to

{b ∈ B : ∀a ∈ A, g(a) ≤ R(b,a)} = g�,

which gives ↓(g) = g� for all elements g ∈∏a∈A L(a).

Algorithm 2. Distributed algorithm for GOSCL

Require: generalized context (B,A,L,R), π = {Bi}2n

i=1 - partition of B with 2n parts
Ensure: merged concept lattice C(B,A,L,R)
1: for i = 1 to 2n do
2: C(n)

i ← GOSCL(Bi,A,L,Ri) � Application of Algorithm 1 on all subcontexts
3: end for
4: for k = n down to 1 do
5: for i = 1 to 2k−1 do
6: C(k−1)

i ←MERGE(C(k)
2i−1,C(k)

2i ) � Merging of adjacent concept lattices
7: end for
8: end for
9: return C(B,A,L,R)←C(0)

1 � Output of the algorithm

The presented theorem is the base for our distributed algorithm. The main aim
is effectively create closure system in

∏
a∈A L(a) which represents the set of all in-

tents. Of course, there are more options how to process the distribution itself, i.e.,
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Algorithm 3. Procedure MERGE for merging two concept lattices
Require: two concept lattices C1 and C2
Ensure: MERGE(C1,C2)
1: I1, I2←∅ � I1, I2 will denote list of intents for C1,C2
2: for all (X,g) ∈ C1 do
3: I1← I1 ∪{g} � Extraction of all intents from C1
4: end for
5: for all (X,g) ∈ C2 do
6: if g � I1 then � Check for duplications of intents in I1
7: I2← I2 ∪{g} � Extraction of all intents from C2
8: end if
9: end for

10: I← ∅ � Set of all newly created intents
11: for all g ∈ I2 do
12: for all f ∈ I1 do
13: I← I∪{ f ∧g} � Creation of new intent
14: end for
15: end for
16: MERGE(C1,C2)←C1
17: for all g ∈ I do
18: MERGE(C1,C2)←MERGE(C1,C2)∪{(g�,g)} � Addition of new concepts
19: end for
20: return MERGE(C1,C2) � Output of the merging procedure

how to merger sub-models during the process. We have designed the version of dis-
tribution which divides the starting set of the objects into 2n parts, for which local
models are created (in parallel) and then pairs of them are combined (in parallel)
into 2n−1, and then this process continues, until we have only one concept lattice at
the end. This output should be isomorphic to concept lattice created by the sequen-
tial run, because we have shown that previous theorem is valid and we only make
partitions accordingly to its assumptions and proof. It is easy to see that pair-based
merging leads to the binary tree of sub-lattices, with n representing the number of
merging levels. Now, we can provide the algorithm description. The Algorithm 2 is
distributed version (with the idea described here) and merge procedure is provided
separately in Algorithm 3.

4 Illustrative Experiments with the Generated Data Sets

For our illustrative experiments with the provided algorithm we have produced ran-
domly generated input formal contexts with specified sparseness index of the whole
input data table. The reason is simply the natural characteristic of FCA-based al-
gorithms in general (with its exponential complexity in worst cases), i.e., whenever
the number of concepts (intents) still grows fast with the number of inputs, this data
table has still too much different combinations of values of attributes in it (this is
problem especially for fuzzy attributes, which we have here) and merge procedure
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is not effective in order to get better times in comparison with incremental algo-
rithm. But in the cases with the set of intents for which number of concepts (intents)
is strongly reduced, the provided approach to distribution will lead to the reduction
of computation times (merge procedures will not need so much time to create their
new lattices). Fortunately, as we are very interested in the application of GOSCL
in text-mining domain, and sparse inputs generate much reduced concept lattices
(more zeros will produce more similar combinations of values), our distributed al-
gorithm seems to be efficient mainly for very sparse input matrices.

In order to simplify the data preparation (generation) process, we have used one
type of attribute in the table (scale-based, with 5 possible values {0,1,2,3,4}, where
0 is lowest value). The values are generated from this scale. The generation of sparse
data table is based on the sparse factor s ∈ [0,1]), which indicates the ratio of “ze-
ros” (as a real number between 0 and 1) in data table, i.e., s indicates the level of
sparseness of generated data table. For higher s, the number of zeros in input is also
higher. Simple mechanism for generation was used with random number generator
for decision on adding the zero or some non-zero value according to the selected
sparseness. The generated data are then very close to the selected sparseness (es-
pecially for larger inputs). We can add that in text-mining domains the sparseness
factor is very high (usually more than 0.99). The number of generated objects will
be (for all our examples) 8192 (just to simplify its division to partitions which can
be merged easily in particular levels, 213 is 8192).

First illustrative experiment shows that the efficiency is different for different
sparseness. Therefore, we have tried random contexts for 5 and 7 attributes and dif-
ferent sparseness (from 0.5 to 0.9). The results are shown in the left part of the Figure
1. As we can see, with the higher the sparseness of the data, the ratio of computa-
tion times between distributed version and sequential (reduction ratio Tdis/Tseq) is
lower (which means better reduction). Another experiment is based on the analysis
of fixed sparseness (0.9), where number of attributes is changing from 5 to 20 and
also N (the number of levels in merging) has three different settings (5, 8 and 10).
The result is shown on the right part of the Figure 1, where we can see that number
of merging levels (and therefore also number of starting partitions 2n) has not big
influence on the reduction ratio. On the other hand, with the increasing number of
attributes reduction ratio should increase due to higher number of intents produced
by the combination of values for more attributes.

One of our main interests is to analyze data from text-mining domains, which are
usually represented by very sparse input tables (e.g., sparseness 0.998 for Reuters
dataset with basic preprocessing settings). Therefore, we also add some experiments
with the very sparse inputs. First, we have analyzed the reduction ratio for fixed
sparseness 0.998 and number of merging levels 5, where number of attributes are
changing (from 100 to 500). As we can see on the left side of the Figure 2, reduction
ratio increased with the number of attributes, but is still quite significant even for 500
attributes. Moreover, this illustrative experiments were not realized with specialized
sparse-based implementation, which will probably keep the ratio under 1 for more
attributes. For reference see [6], where we have provided and analyzed specialized
sparse-based version of GOSCL with significant reduction of computation times.
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Fig. 1 Experiments with the distributed version of GOSCL - left side: analysis for different
sparseness; right side: analysis for different number of attributes and merging levels

Fig. 2 Experiments with the distributed version of GOSCL on very sparse inputs - left side:
analysis of reduction ration with changing number of attributes; right side: analysis of reduc-
tion ratio for different number of merging levels

If merge procedure will be implemented (in the future) in similar way, we will be
probably able to work with even more attributes with still good reduction ratio. In
last illustrative experiment, we have used same sparseness of data (0.998) with 100
attributes and analyze the reduction ratio for different merging levels (N). The result
is shown on the right side of the Figure 2, where we can see now more evidently that
higher number of levels can help in better times, but it seems that it is not needed to
make very small partitions (e.g., for N = 12, which leads to starting with two-object
sets, ratio is little higher than for previous values). The best number of merging
levels can be estimated on real datasets and then used for better results.

At the end of this section we should say that this merging distributed approach
seems to be applicable in sparse domains and can lead to computation times reduc-
tion, but there are several limitations which should be investigated more on the real
data sets. It is expected that also for real data, where randomness is not the way
how the table values are produced, the provided algorithm can be useful (but it will
depend on data), especially for cases which relatively do not produce too much in-
tents (e.g., very sparse inputs). The first experiments with the Reuters dataset proved
the same behavior of the algorithm. Moreover, the usage of specialized sparse-based
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implementations should be analyzed in our next experiments. This will show the
limits of our distributed GOSCL in creation of large-scale concept lattices from real
textual datasets or other sparse-based domains [14].

5 Conclusions

In the presented paper we have introduced the possible solution for distribution of
creating the FCA-based model known as Generalized One-Sided Concept Lattice.
As we have shown, it is possible to produce merged concept lattice from the smaller
ones produced individually for disjoint subsets of objects. For the merging we have
introduced simple merging procedure which is based on the partition similar to bi-
nary tree (lists are smallest concept lattices from the start of the distribution and root
is merged final lattice). The illustrative experiments on the randomly generated data
were added which shows its potential (especially for very sparse inputs) and limits.
The future work should be done in realization of more experiments (on very sparse
real data) and specialized sparse-based implementation of the merging procedure
(very first experiments with real dataset proved the results of the paper).
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2. Bělohlávek, R.: Lattices of Fixed Points of Fuzzy Galois Connections. Math. Log.
Quart. 47(1), 111–116 (2001)
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