
Studies in Computational Intelligence 511

Intelligent Distributed 
Computing VII

Filip Zavoral
Jason J. Jung
Costin Bădică   Editors

Proceedings of the 7th International Symposium 
on Intelligent Distributed Computing – IDC 2013, 
Prague, Czech Republic, September 2013



Studies in Computational Intelligence

Volume 511

Series Editor

Janusz Kacprzyk, Warsaw, Poland

For further volumes:

http://www.springer.com/series/7092



Filip Zavoral · Jason J. Jung
Costin Bădică
Editors

Intelligent Distributed
Computing VII

Proceedings of the 7th International
Symposium on Intelligent Distributed
Computing – IDC 2013, Prague,
Czech Republic, September 2013

ABC



Editors
Filip Zavoral
Faculty of Mathematics and Physics
Charles University in Prague
Prague
Czech Republic

Jason J. Jung
Department of Computer Engineering
Yeungnam University
Gyeingsan
Korea
Republic of (South Korea)

Costin Bădică
Software Engineering Department
Faculty of Automatics, Computers

and Electronics
University of Craiova
Craiova
Romania

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-01570-5 ISBN 978-3-319-01571-2 (eBook)
DOI 10.1007/978-3-319-01571-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013944764

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The emergent field of Intelligent Distributed Computing brings together two well
established areas of Computer Science: Distributed Computing and Computational
Intelligence. Theoretical foundations and practical applications of Intelligent Dis-
tributed Computing set the premises for the new generation of intelligent distributed
information systems.

Intelligent Distributed Computing – IDC Symposium Series was started as an
initiative of research groups from: (i) Department of Software Engineering, Charles
University Prague, Czech Republic and (ii) Software Engineering Department of the
University of Craiova, Craiova, Romania. IDC aims at bringing together researchers
and practitioners involved in all aspects of Intelligent Distributed Computing. IDC
is interested in works that are relevant for both Distributed Computing and Compu-
tational Intelligence, with scientific contribution in at least one of these two areas.
IDC’2013 was the seventh event in the series and was hosted by Charles University
in Prague, Czech Republic during September 4–6, 2013. IDC’2013 was collocated
with:

• 5th International Workshop on Multi-Agent Systems Technology and Semantics,
MASTS’2013;

• 2nd International Workshop on Agents for Cloud, A4C’2013;
• 1st International Workshop on Intelligent Robots, iR’2013.

The material published in this book is divided into five main parts:

• 1 invited contribution;
• 25 contributions of IDC’2013 participants;
• 8 contributions of MASTS’2013 participants;
• 6 contributions of A4C’2013 participants; and
• 2 contributions of iR’2013 participants.

The response to IDC’2013 call for paper was generous. We received 54 submissions
from 19 countries. Each submission was carefully reviewed by at least 3 members of
the IDC’2013 Program Committee. Acceptance and publication were judged based
on the relevance to the symposium themes, clarity of presentation, originality and



VI Preface

accuracy of results and proposed solutions. Finally, 13 regular papers and 12 short
papers were selected for presentation and were included in this volume, resulting in
acceptance rates of 24 % for regular papers and 22 % for short papers.

Additionally, the co-located workshops (MASTS’2013, A4C’2013, and iR’2013)
received 28 submissions. After the careful review (each submission was reviewed by
at least 3 members of the Workshop Program Committee), 16 papers were selected
for presentation and were included in this book.

The 41 contributions published in this book address many topics related to the-
ory and applications of intelligent distributed computing and multi-agent systems,
including: agent-based data processing, ambient intelligence, bio-informatics, col-
laborative systems, cryptography and security, distributed algorithms, grid and cloud
computing, information extraction, intelligent robotics, knowledge management,
linked data, mobile agents, ontologies, pervasive computing, self-organizing sys-
tems, peer-to-peer computing, social networks and trust, and swarm intelligence.

The 5th edition of the Workshop on Multi-Agent Systems Technology and
Semantics (MASTS 2013), organized under the framework of the FP7 project
“ERRIC: Empowering Romanian Research on Intelligent Information Technolo-
gies”, aims to explore novel approaches to multi-agent systems development and
the use of multi-agent systems technology in building innovative applications. The
goal of the workshop was to present and discuss ideas and developments related to
two converging areas of research and applications, namely multi-agent systems and
semantic technology.

The 2nd edition of the Workshop on Agents for Clouds (A4C 2013) has been
organized under the framework of the FP7 project “mOAIC: Open Source API and
platform for multiple clouds”. It aims at promoting exchange and share of experi-
ences, new ideas, and research results about agents programming and technologies
applied to Cloud, Grid, and distributed systems.

We would like to thank to Prof. Janusz Kacprzyk, editor of Studies in Compu-
tational Intelligence series and member of the Steering Committee for their kind
support and encouragement in starting and continuing the IDC Symposium Series.
We would like to thank to the IDC’2013, MASTS’2013, A4C’2013, and iR’2013
Program Committee members for their work in promoting the event and referee-
ing submissions and also to all colleagues who submitted papers to IDC’2013,
MASTS’2013, A4C’2013, and iR’2013. We deeply appreciate the efforts of two
invited speakers Prof. Ngoc Thanh Nguyen and Prof. Michal Pechoucek, and
thank them for the interesting lectures. Special thanks also go to organizers of
MASTS’2013 (Adina Magda Florea, Amal El Fallah Seghrouchni, John Jules
Meyer), A4C’2013 (Salvatore Venticinque), and iR’2013 (Dorian Cojocaru). Fi-
nally, we appreciate the efforts of local organizers on behalf of Charles University
Prague for organizing and hosting IDC’2013 and the co-located workshops.

Prague, Gyeongsan, Craiova Filip Zavoral
June 2013 Jason J. Jung

Costin Bădică



Organization

Organizers

Department of Software Engineering, Faculty of Mathematics and Physics, Charles
University in Prague, Czech Republic
Software Engineering Department, University of Craiova, Romania

Conference Chair

Filip Zavoral Charles University Prague, Czech Republic

Steering Committee

Janusz Kacprzyk Polish Academy of Sciences, Poland
Costin Bădică University of Craiova, Romania
Frances Brazier Delft University of Technology,

The Netherlands
Mohammad Essaaidi Abdelmalek Essaadi University in Tetuan,

Morocco
Giancarlo Fortino University of Calabria, Italy
Michele Malgeri University of Catania, Italy
Kees Nieuwenhuis Thales Research & Technology,

The Netherlands
George A. Papadopoulos University of Cyprus, Cyprus
Marcin Paprzycki Polish Academy of Sciences, Poland

Invited Speakers

Ngoc Thanh Nguyen Wroclaw University of Technology, Poland
Michal Pěchouček Czech Technical University, Czech Republic



VIII Organization

Program Committee Chairs

Jason J. Jung Yeungnam University, Korea
Filip Zavoral Charles University Prague, Czech Republic

Program Committee

Salvador Abreu Universidade de Evora and CENTRIA
Razvan Andonie Central Washington University
Costin Bădică University of Craiova, Software Engineering

Department, Romania
Mert Bal Assistant Professor at the Miami University
Nick Bassiliades Aristotle University of Thessaloniki
Doina Bein The Pennsylvania State University
Nik Bessis University of Derby
Lars Braubach University of Hamburg
Dumitru Dan Burdescu University of Craiova
Giacomo Cabri Università di Modena e Reggio Emilia
David Camacho Universidad Autonoma de Madrid
Vincenza Carchiolo Universita di Catania
Phan Cong-Vinh NTT University
Alfredo Cuzzocrea ICAR-CNR and University of Calabria
Paul Davidsson Malmo University
Giuseppe Di Fatta University of Reading
Luminita Dumitriu Universitatea Dunarea de Jos din Galati
Barbara Dunin-Keplicz University of Warsaw
Amal El Fallah Seghrouchni LIP6 - University of Pierre and Marie Curie
George Eleftherakis The University of Sheffield International

Faculty, CITY College
Vadim Ermolayev Zaporozhye National Univ.
Mohammad Essaaidi IEEE Morocco Section
Mostafa Ezziyyani Faculty of Sciences and Technologies
Adina-Magda Florea University Politehnica of Bucharest
Giancarlo Fortino University of Calabria
Stefano Galzarano University of Calabria (UNICAL), Italy
Maria Ganzha University of Gdansk, Poland
Marie-Pierre Gleizes IRIT
Jorge Gomez-Sanz Universidad Complutense de Madrid
Nathan Griffiths University of Warwick
Marjan Gusev Univ. Sts Cyril and Methodius
Michael Hartung Interdisciplinary Centre for Bioinformatics,

University of Leipzig
Jen-Yao Chung IBM T. J. Watson Research Center
Barna Laszlo Iantovics Petru Maior University of Tg. Mures



Organization IX

Mirjana Ivanovic Faculty of Science, Department of Mathematics
and Informatics

Jason J. Jung Yeungnam University
Ioan Jurca Politehnica University of Timisoara
Igor Kotenko SPIIRAS
Dariusz Krol Wroclaw University of Technology, Institute of

Applied Informatics
Florin Leon Technical University ”Gheorghe Asachi" of Iasi
Antonio Liotta Eindhoven University of Technology
Alessandro Longheu DIEEI - University of Catania
Heitor Silverio Lopes UTFPR
Jose Machado Universidade Minho
Michele Malgeri Universita degli Studi di Catania
Giuseppe Mangioni University of Catania
Yannis Manolopoulos Aristotle University of Thessaloniki
Viviana Mascardi CS Department (DISI) - Universit degli Studi

di Genova
Amnon Meisels Ben Gurion University of the Negev
Grzegorz J. Nalepa AGH University of Science and Technology
Viorel Negru West University of Timisoara
Peter Noerr MuseGlobal, Inc.
David Obdržálek Charles University Prague
Eugenio Oliveira Faculdade de Engenharia Universidade do

Porto - LIACC
Andrea Omicini Universita di Bologna
Mihaela Oprea University Petroleum-Gas of Ploiesti, Dept. of

Informatics
Carlos Palau UPV
Marcin Paprzycki IBS PAN and WSM
Gregor Pavlin Thales Group
Juan Pavon Universidad Complutense Madrid
Stefan-Gheorghe Pentiuc University Stefan cel Mare Suceava
Dana Petcu West University of Timisoara
Florin Pop University Politehnica of Bucharest
Radu-Emil Precup Politehnica University of Timisoara
Shahram Rahimi Southern Illinois University
Domenico Rosaci DIMET Department, University Mediterranea

of Reggio Calabria
Ioan Salomie Technical University of Cluj-Napoca
Corrado Santoro University of Catania - Dipartimento di

Matematica e Informatica
Weiming Shen NRC, Canada
Safeeullah Soomro BIZTEK Institute of Business & Technology
Giandomenico Spezzano CNR-ICAR and University of Calabria
Stanimir Stoyanov University of Plovdiv
Jiao Tao Oracle



X Organization

Rainer Unland University of Duisburg-Essen, ICB
Salvatore Venticinque Seconda Università di Napoli
Lucian Vintan ”Lucian Blaga" University of Sibiu
Martijn Warnier Delft University of Technology
Niek Wijngaards D-CIS Lab / Thales Research & Technology
Jakub Yaghob Charles University Prague
Filip Zavoral Charles University Prague

Proceedings Chair

David Bednárek Charles University Prague, Czech Republic

Organizing Committee

David Bednárek Charles University Prague, Czech Republic
Zbyňěk Falt Charles University Prague, Czech Republic
Sorin Ilie University of Craiova, Romania
Martin Kruliš Charles University Prague, Czech Republic
Jakub Yaghob Charles University Prague, Czech Republic

iR 2013 Workshop Chair

Dorian Cojocaru University of Craiova, Romania

iR 2013 Workshop Program Committee

Atta Badii School of Systems Engineering University of
Reading, UK

Theodor Borangiu Politehnica University of Bucharest, Romania
Catalin Buiu Politehnica University of Bucharest, Romania
Gregory Chondrocoukis University of Piraeus, Greece
Dorian Cojocaru University of Craiova, Romania
Ioan Doroftei Gheorghe Asachi Technical University of Iasi,

Romania
Mircea Ivanescu University of Craiova, Romania
Peter Kovacs Holografika, Hungary
Gheorghe Lazea Tehnical University of Cluj, Romania
Inocentiu Maniu Politehnica University of Timisoara, Romania
Dan Marghitu Auburn University, USA
Gheorghe Mogan University Transilvania of Brasov, Romania
Florin Moldoveanu University Transilvania of Brasov, Romania
Sorin Moraru University Transilvania of Brasov, Romania
Zbigniew Nawrat Silesian University of Technology, Gliwice,

Poland



Organization XI

Doru Panescu Gheorghe Asachi Technical University of Iasi,
Romania

Gheorghe Pentiuc University ”Stefan cel Mare" of Suceava,
Romania

Krzysztof Tchon Wroclaw University of Technology, Poland
Virgil Tiponut Politehnica University of Timisoara, Romania
Doru Talaba University Transilvania of Brasov, Romania

A4C Workshop Chairs

Salvatore Venticinque Seconda Università di Napoli

A4C Workshop Program Committee

Alba Amato Seconda Università di Napoli, Italy
Rocco Aversa Seconda Università di Napoli, Italy
Pasquale Cantiello Seconda Università di Napoli, Italy
Giuseppina Cretella Seconda Università di Napoli, Italy
Massimo Ficco Seconda Università di Napoli, Italy
Beniamino Di Martino Seconda Università di Napoli, Italy
Francesco Moscato Seconda Università di Napoli, Italy
Massimiliano Rak Seconda Università di Napoli, Italy
Luca Tasquier Seconda Università di Napoli, Italy
Salvatore Venticinque Seconda Università di Napoli, Italy

MASTS Workshop Chairs

Adina Magda Florea University Politehnica of Bucharest, Romania
Amal El Fallah Seghrouchni Université Pierre & Marie Curie, France
John Jules Meyer Utrecht University, The Netherlands

MASTS Workshop Program Committee

Costin Bădică University of Craiova, Romania
Olivier Boissier ENS des Mines Saint-Etienne, France
Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni Université Pierre & Marie Curie, France
Adina Magda Florea University Politehnica of Bucharest, Romania
John Jules Meyer Utrecht University, The Netherlands
Andrei-Horia Mogos University Politehnica of Bucharest, Romania



XII Organization

Irina Mocanu University Politehnica of Bucharest, Romania
Viorel Negru West University of Timisoara, Romania
Andrei Olaru University Politehnica of Bucharest, Romania
Marcin Paprzycki Polish Academy of Science, Poland
Stefan Trausan-Matu University Politehnica of Bucharest, Romania
Laurent Vercouter INSA Rouen, France
Gerard Vreeswijk Utrecht University, The Netherlands
Antoine Zimmermann ENS des Mines Saint-Etienne, France



Contents

Invited Paper

Integration Computing and Collective Intelligence . . . . . . . . . . . . . . . . . . . 1
Ngoc Thanh Nguyen

Intelligent Data Processing

Evolution of a Relational Schema and Its Impact on SQL Queries . . . . . . 5
Martin Chytil, Marek Polák, Martin Nečaský, Irena Holubová

Context-Aware Regression from Distributed Sources . . . . . . . . . . . . . . . . . 17
Héctor Allende-Cid, Claudio Moraga, Héctor Allende, Raúl Monge

Incremental Patterns in Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Makoto Yamaguchi, Takao Miura

REBECCA: A Trust-Based Filtering to Improve Recommendations
for B2C e-Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Domenico Rosaci, Giuseppe M.L. Sarné

Exploration of Document Classification with Linked Data and
PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Martin Dostal, Michal Nykl, Karel Ježek

Matching Users with Groups in Social Networks . . . . . . . . . . . . . . . . . . . . 45
Domenico Rosaci, Giuseppe M.L. Sarné

Peer-to-Peer and Cloud Systems

Semantically Partitioned Peer to Peer Complex Event Processing . . . . . . 55
Filip Nguyen, Daniel Tovarňák, Tomáš Pitner



XIV Contents

A Heuristic to Explore Trust Networks Dynamics . . . . . . . . . . . . . . . . . . . 67
Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri,
Giuseppe Mangioni

Resource Scaling Performance for Cache Intensive Algorithms in
Windows Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Marjan Gusev, Sasko Ristov

Distributed Event-Driven Model for Intelligent Monitoring of Cloud
Datacenters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Daniel Tovarňák, Filip Nguyen, Tomáš Pitner

Programming Self-organizing Pervasive Applications with SAPERE . . . 93
Franco Zambonelli, Gabriella Castelli, Marco Mamei, Alberto Rosi

SOMEWHERE2 – A Robust Package for Collaborative Decentralized
Consequence-Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Philippe Chatalic, Andre de Amorim Fonseca

Distributed Systems and Algorithms

Heuristic Co-allocation Strategies in Distributed Computing with
Non-dedicated Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Victor Toporkov, Anna Toporkova, Alexey Tselishchev,
Dmitry Yemelyanov

Distributed Version of Algorithm for Generalized One-Sided Concept
Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Peter Butka, Jozef Pócs, Jana Pócsová

Scalable Spatio-temporal Analysis on Distributed Camera Networks . . . 131
Kirak Hong, Beate Ottenwälder, Umakishore Ramachandran

Service-Wide Adaptations in Distributed Embedded
Component-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Luís Nogueira, Jorge Coelho

Distributed/Parallel Genetic Algorithm for Road Traffic Network
Division for Distributed Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 151
Tomas Potuzak

Environmental Influence in Bio-inspired Game Level Solver
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Antonio Gonzalez-Pardo, David Camacho

The Impact of the “Nogood Processor" Technique in Scale-Free
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Ionel Muscalagiu, Horia Emil Popa, Viorel Negru



Contents XV

Agent-Based Systems

Knowledge-Based Agent for Efficient Allocation of Distributed
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Ebrahim Nageba, Mahmoud Barhamgi, Jocelyne Fayn

A New Proof System to Verify GDT Agents . . . . . . . . . . . . . . . . . . . . . . . . . 181
Bruno Mermet, Gaele Simon

Using Trusted Communities to Improve the Speedup of Agents in a
Desktop Grid System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Lukas Klejnowski, Sebastian Niemann, Yvonne Bernard,
Christian Müller-Schloer

High-Volume Data Streaming with Agents . . . . . . . . . . . . . . . . . . . . . . . . . 199
Lars Braubach, Kai Jander, Alexander Pokahr

Strategic Behaviour in Multi-Agent Systems Able to Perform
Temporal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Matei Popovici, Lorina Negreanu

Intelligent Robots, iR 2013

Control of a Mobile Robot by Human Gestures . . . . . . . . . . . . . . . . . . . . . 217
Stefan-Gheorghe Pentiuc, Oana Mihaela Vultur, Andrei Ciupu

Improving Noise Robustness of Speech Emotion Recognition System . . . 223
Łukasz Juszkiewicz

Developing an Avatar Model for Driving Simulators . . . . . . . . . . . . . . . . . 233
Razvan-Vlad Vasiu, Ligia Munteanu, Cornel Brisan

A4C 2013

Interconnection of Federated Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Massimo Ficco, Luca Tasquier, Beniamino Di Martino

Effective QoS Monitoring in Large Scale Social Networks . . . . . . . . . . . . 249
Luigi Coppolino, Salvatore D’Antonio, Luigi Romano, Fotis Aisopos,
Konstantinos Tserpes

Personalized Recommendation of Semantically Annotated Media
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Alba Amato, Beniamino Di Martino, Marco Scialdone,
Salvatore Venticinque

Supporting Cloud Governance through Technologies and Standards . . . 271
Victor Ion Munteanu, Teodor-Florin Fortiş, Adrian Copie



XVI Contents

Exploiting Cloud Technologies and Context Information for
Recommending Touristic Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Flora Amato, Antonino Mazzeo, Vincenzo Moscato,
Antonio Picariello

An FPGA-Based Smart Classifier for Decision Support Systems . . . . . . . 289
Flora Amato, Mario Barbareschi, Valentina Casola,
Antonino Mazzeo

MASTS 2013

Agents Modeling under Fairness Assumption in Event-B . . . . . . . . . . . . . 301
Irina Mocanu, Lorina Negreanu, Adina Magda Florea

A Survey of Adaptive Game AI: Considerations for Cloud
Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Gabriel Iuhasz, Victor Ion Munteanu, Viorel Negru

From Agent-Oriented Models to Profile Driven Military Training
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Inna Shvartsman, Kuldar Taveter

An Agent-Based Solution for the Problem of Designing Complex
Ambient Intelligence Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Marius-Tudor Benea

Agent-Based System for Affective Intelligent Environment . . . . . . . . . . . . 335
Mihaela-Alexanda Puică, Irina Mocanu, Adina-Magda Florea

An Argumentation Framework for BDI Agents . . . . . . . . . . . . . . . . . . . . . 343
Tudor Berariu

Using Emotion as Motivation in the Newtonian Emotion System . . . . . . . 355
Valentin Lungu, Andra Băltoiu, Şerban Radu

Distributed Reputation Mechanism Using Semantic Repositories . . . . . . 365
Andreea Urzica, Ileana Bobric

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371



Integration Computing and Collective
Intelligence

Ngoc Thanh Nguyen

1 Knowledge Integration

Integration is a process in which one of the following aspects should be realised:

• Several objects are merged to give a new element representing them
• Several objects create a union acting as a whole
• Several objects are connected with each other

The first two aspects are most important and most popular [1], [3]. In general, an
integration task most often refers to a set of elements (objects) with the same kind
of structures, the aim of which is based on determining an element best represent-
ing the given. The kinds of structures mean for example relational, hierarchical,
table etc. The words ”best representation” mentioned above mean the following
criteria [4]:

• All data included in the elements to be integrated should be in the result of in-
tegration. This criterion guarantees the completeness, that is all information in-
cluded in the component elements will appear in the integration result.

• All conflicts appearing among elements to be integrated should be solved. It often
happens that referring to the same subject different elements contain inconsistent
information. Such situation is called a conflict. The integration result should not
contain inconsistency, so the conflicts should be solved.

• The kind of structure of the integration result should be the same as of the given
elements.

2 Ontology Integration

Integration tasks are very often realised for database integration or knowledge inte-
gration. Ontology integration is one of these tasks, which is very often needed to be

Ngoc Thanh Nguyen
Wroclaw University of Technology, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 1
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_1, c© Springer International Publishing Switzerland 2014



2 N.T. Nguyen

done. Ontologies have well-defined structure and it is assumed that the result of on-
tology integration is also an ontology, therefore usually the first and second criteria
are used [5].

It seems that satisfying the first criterion is simple since one can make the sum of
all sets of concepts, relations and axioms from component ontologies in the integra-
tion process. However, it is not always possible because of the following reasons:

• Appearance of all elements in the integration result may contain inconsistency
in the sense that some of the component ontologies may be in conflict and this
conflict will be moved to the integration result.

• Summing all elements may cause lose of the ontology structure. Satisfying the
second criterion is based on solving conflicts, for example, by using consensus
methods. Conflicts between ontologies may be considered referring to the fol-
lowing levels:

– Conflicts on concept level: The same concept has different fuzzy structures in
different ontologies.

– Conflicts on relation level: The relations for the same concepts are different in
different ontologies.

Conflicts mentioned in the this way are very general and inaccurate. We have worked
out several methods for ontology conflict resolution regarding these levels.

3 Integration Computing for Building Collective Intelligence

Nowadays it happens very often that for making a decision we rely on collective
knowledge, that is knowledge originated from different and autonomous sources,
for example, from experts or Internet. Lets consider a situation when someone wants
to buy a new car, then he/she will seeks the opinions about the type, model of the
car in different forums, social networks, automotive portals, expert systems etc. and
on their integrated basis a decision about the purchase will be made. Taking into
account the fact that very often the amount of knowledge is very large and the gath-
ered pieces of knowledge are incomplete and inconsistent, one can state that the
integration process is a complex task. To make the process effective, a mechanism
for knowledge integration is needed to be worked out. For knowledge with complex
structures such as hierarchies or graphs the algorithms for integration proposed in
the world-wide literature are still not so advanced and need to be developed.

We have proposed a general framework for integration computing referring to
determining collective intelligence [4]. We have shown that in general the knowl-
edge of a collective is more proper than the knowledge of its members. This, in turn,
proves that a collective is often more intelligent than single units.

An application of integration computing methods in managing data warehouse
federations has been worked out and analyzed [2].



Integration Computing and Collective Intelligence 3

References

1. Danilowicz, C., Nguyen, N.T.: Consensus-Based Partitions in the Space of Ordered Parti-
tions. Pattern Recognition 21(3), 269–273 (1988)

2. Kern, R., Stolarczyk, T., Nguyen, N.T.: A Formal Framework for Query Decomposition
and Knowledge Integration in Data Warehouse Federations. Expert Systems with Appli-
cations 40(7), 2592–2606 (2013)

3. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer,
London (2008)

4. Nguyen, N.T.: Processing Inconsistency of Knowledge in Determining Knowledge of a
Collective. Cybernetics and Systems 40(8), 670–688 (2009)

5. Pietranik, M., Nguyen, N.T.: A Method for Ontology Alignment Based Attribute Seman-
tics. Cybernetics and Systems 43(4), 319–339 (2012)



Evolution of a Relational Schema and Its Impact
on SQL Queries�

Martin Chytil, Marek Polák, Martin Nečaský, and Irena Holubová

Abstract. Since the typical feature of a real-world application is evolution, i.e.
changes in user requirements, the problem of change propagation is an important
task. In this paper we study its specific part – evolution of a relational database
schema and its impact on related SQL queries. The proposed approach shows an
ability to model database queries together with a database schema. The feature then
provides a solution how to adapt database queries related to the evolved database
schema. The proposal was implemented within a complex evolution framework
called DaemonX and various experiments proving the concept were carried out.

1 Introduction

Since most of the current applications are dynamic, sooner or later the structure of
the data needs to be changed and so have to be changed also all related issues. We
speak about evolution and adaptability of applications. One of the aspects of this
problem is an adaptation of the respective storage of the data. The adaptation of the
storage covers many related issues, such as database schema evolution (i.e. retain-
ing system functionality despite schema changes), database schema integration (i.e.
cases when more database schemas have to be combined together), data migration
(i.e. a situation when data have to be moved from one system to another), or adap-
tation of respective queries (i.e. reformulation of queries with regard to changes in
data schemas).

In this paper we focus on the adaptation of SQL queries. In our case, a change of
the underlying database schema can cause that SQL queries over this schema may

Martin Chytil · Marek Polák · Martin Nečaský · Irena Holubová
XML and Web Engineering Research Group, Department of Software Engineering,
Charles University in Prague, Czech Republic
e-mail: chytil.martin@seznam.cz,

{polak,necasky,holubova}@ksi.mff.cuni.cz
� This work was supported by the grant SVV-2013-267312 and GAUK grant no. 1416213.

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 5
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_2, c© Springer International Publishing Switzerland 2014



6 M. Chytil et al.

become inconsistent with the new schema, e.g., a database table has a new name in
the new schema, a table column has a new name in the new schema, a database table
does not exist in the new schema, a table column does not exist in the new schema, a
new table column, which should be used in SQL query, appeared in the new schema,
etc. All these presented possibilities lead to incorrect SQL queries or queries that do
not return the original result. So they should be corrected. For example, suppose an
SQL view PendingOrders, which returns all information about the pending orders,
including all items of the given order. Now, when the name of the column itemName
is changed (for instance to productName), all SQL queries where this column is used
have to be checked by a designer and updated respectively.

The proposed approach shows an ability to model database queries together
with a database schema model. The feature then provides a solution how to adapt
database queries related to the evolved database schema. The proposal was imple-
mented within a complex evolution framework called DaemonX and various exper-
iments proving the concept were carried out.

The paper is structured as follows: In Section 2 we describe our database model
and in Section 3 we introduce a respective query model. In Section 4 we describe
the SQL query visualization model. In Section 5 we introduce the edit operations
and respective evolution algorithms. In Section 6 we provide a proof of the concept
and we conclude the paper in Section 7.

2 Database Model

The database model we consider is based on the relational database model. Such
database model is used as platform-specific according to the MDA approach [6]
which deals with the idea of separating the specification of the operation of a system
from details of the way that system uses the capabilities of its platform. MDA pro-
vides an approach for the following actions: Specifying a system independently of
the platform that supports, specifying platforms, choosing a particular platform for
the system, transforming the system specification into one for a particular platform.
Hence, we distinguish a platform-independent model (PIM) and platform-specific
model (PSM).

In this paper, the database model has two roles. Besides the classical PSM for
data, it is used as the PIM for a query model described in Section 3. The idea of
using the database model this way is simple. From the perspective of an arbitrary
query language (not only SQL), the database model creates a basic concept of a
database schema. Each query language then creates own platform-specific view of
the platform-independent database model.

The PSM database model diagram consists of: tables, columns which are in-
cluded in tables and relationships visualized as an arrow leading from the referenc-
ing table to the referenced table. The full description of the model can be found in
[3]. We omit the details and examples of space limitations and general popularity of
the model.



Evolution of a Relational Schema and Its Impact on SQL Queries 7

3 Query Model

For possibility of evolution of SQL queries related to a given database schema there
must exist a mapping between an SQL query and a database schema model. This
mapping helps to manage the evolution process to evolve the query related to the
evolved database schema. In this chapter we introduce a graph-based SQL query
model which is particularly designed for the evolution process. We describe its visu-
alization model, limitations and possibilities. The mapping between the SQL query
model and the database schema will be introduced as well. (The algorithm to gen-
erate the SQL query from the model can be found in [3].)

The full SQL language syntax was not used in the proposal and for this reason
there exist some limitations on the used subset of SQL language:

• Projection operator ‘∗’ is banned to use. It is always necessary to enumerate all
the columns used in the SELECT clause.

• In queries it is possible to use only simple column enumeration, other expressions
or functions other than aggregate functions are banned to use. This limitation
relates to the CASE construct as well.

• The model does not support UNION, INTERSECT and EXCEPT constructs.
• Each condition used in the SQL query is assumed to be in the conjunctive normal

form (CNF) [5].

The idea of the graph-based model results from papers [8] and [7]. However, in this
paper we use a graph-based model for query modeling, in contrast to the mentioned
papers, where graph-based model is implemented as a part of the database manage-
ment system (DBMS). The idea of a graph-based model from [8] and [7] is adjusted
and extended for the purposes of our approach.

First, each SQL query in the model is represented as a directed graph with par-
ticular properties.

Definition 1. (Query Graph). A query graph G of the SQL query Q is a directed
graph GQ = (V,E), where V is a set of query vertices and E is a set of query edges.

Definition 2. (Query Model). A query model M of the SQL query Q is a pen-
tad MQ = (GQ,TV ,TE ,τV ,τE), where GQ is a query graph GQ = (V,E), TV

is a set of vertex types {AggregateFunction, Alias, BooleanOperator, Combi-
neSource, ComparingOperator, ConstantOperand, DataSource, DataSourceItem,
From, FromItem, GroupBy, Having, OrderBy, OrderByType, QueryOperator, Se-
lect, SelectItem, Where}, TE is a set of edge types {Alias, Condition, Condi-
tionOperand, DataSource,DataSourceAlias, DataSourceItem, DataSourceParent,
FromItem, FromItemParent, FromItemSource, GroupBy, GroupByColumn, Having,
MapColumn, MapSource, OrderBy, OrderByColumn, SelectColumn, SelectQuery,
SourceTree, Where}, a function τV : V → TV assigns a type to each vertex of the
query graph GQ and a function τE : E → TE assigns a type to each edge of the query
graph GQ.

A query vertex represents a particular part of the SQL query, e.g. a database table, a
table column, a comparing operator in condition, a selected column in the SELECT



8 M. Chytil et al.

clause, etc. A query edge connects parts of the SQL query together and gives a par-
ticular semantics to this connection. For instance the edge connecting a From vertex
and a Where vertex means that the query contains a WHERE clause represented by
the Where vertex.

Each query graph can be logically divided into smaller subgraphs. These sub-
graphs are called essential components. Each essential component has a visual
equivalent in the query visualization model (described in Section 4). There exist the
following essential components: DataSource, From, Select, Condition, GroupBy,
OrderBy. For instance, the simplest SQL queries of the form ‘SELECT projection
FROM table’ require only DataSource, From and Select components. Fig. 1 illus-
trates a simple example of the modeled GROUP BY clause. The example is equiva-
lent to the following parts of the SQL query:

SELECT
Cus tomerId

as c id ,
COUNT( O r d e r I d )

as o r d e r C o u n t
. . .

GROUP BY
Cus tomerId

Fig. 1 An example of a simple model of the GROUP BY clause

(All of these components contain subcomponents. The full list of the subcompo-
nents with their descriptions can be found in [3].)

4 SQL Query Visualization Model

Although the graph-based query model can describe any SQL query, it is relatively
complex. Even the query model for a simple SQL query contains a lot of vertices
and edges (see Fig. 1). For this reason we proposed a visualization model, which
simplifies an underlaying query model for users and model creation.

4.1 Visualization Model Components

The visualization model is divided into so-called essential visual components.
Each essential component described in Section 3 has its visual equivalent by some
essential visual component, so each visual component represents a part of the SQL
query graph model. We distinguish the following visual components: DataSource,
QueryComponent and Component Connection.

DataSource Visual Component. A DataSource visual component visualizes a
DataSource essential component. Each DataSource has a name, which clearly
identifies the given data source. The content of the DataSource component is a list



Evolution of a Relational Schema and Its Impact on SQL Queries 9

of DataSourceItem visual components. The DataSource visual component itself
corresponds to the DataSource vertex. The DataSourceItem visual components
correspond to the DataSourceItem vertices. For example, the rectangle Customer in
Fig. 2 shows an example of DataSource visual component. The example represents
a database table Customer with columns: customerId, firstname, lastname, email
and phone.

QueryComponent Visual Component. A QueryComponent is a universal visual
essential component, which represents parts of the SQL query. A basic appearance
of all query components looks the same. We distinguish the following types of
query components according to the clause of the SQL query they represent: Select,
From, Where, GroupBy, Having, OrderBy. For example, the rectangle Where in
Fig. 2 illustrates an example of the QueryComponent visual component. The
example shows visualization of the WHERE clause.

Component Connection. A Component Connection does not correspond directly
to any essential component of the query graph. Instead, it covers a connection of two
essential components to finish the correct and complete query graph. We distinguish
the following types of connections: DataSource → From, Select → From, Where →
From, GroupBy → Select, Having → From, OrderBy → From. For example, Fig. 2
shows a visualization model of a more complex SQL query. The modelled SQL
query is the following one:

SELECT
c . f i r s t n a m e , c . l a s tname ,
a . s t r e e t , a . c i t y ,
a . p o s t c o d e

FROM
Customer as c JOIN
Addres s as a

ON c . c u s t o m e r I d = a . c u s t o m e r I d
WHERE

( c . f i r s t n a m e = ’ John ’ OR
c . f i r s t n a m e = ’ J ane ’ )

AND
( c . l a s t n a m e = ’Doe ’ )

ORDER BY
c . c u s t o m e r I d ASC ,
c . l a s t n a m e ASC , a . p o s t c o d e DESC

For comparison, the underlaying query graph model consists of 45 vertices con-
nected by 87 edges.

4.2 Mapping to the Database Model

Since the database model consists of tables and its columns which we can interpret
as a general source of data, we have a direct mapping from the database model to
the query model. We do not consider database relationships between database tables
in the database model. For the purpose of the query model they are not important.

The mapping between the database model and the query model is described as
follows:

• Database table → DataSource. The database table in the database model is
mapped to the DataSource visual component which corresponds to the Data-
Source vertex of the underlaying query graph.



10 M. Chytil et al.

Fig. 2 An example of a visual model of a more complex SQL query

• Table column → DataSourceItem. The table column in the database model is
mapped to the DataSourceItem visual component which corresponds to the Data-
SourceItem vertex of the underlaying query graph.

Note that the mapping does not preserve keys (primary keys, foreign keys) and any
other column attributes like NOT NULL or UNIQUE. For the purpose of the data
querying this property is insignificant.

4.3 Mapping of Operations

In this section we describe the mapping of the operations of database and query
models used in the evolution process.

Definition 3. (Operation). An operation is a general function f : (M,C) → M′,
where M is a particular model intended to change, C represents a context describing
a change of the model M and M′ is a modified model.

Definition 4. (Atomic Operation). An atomic operation is the minimal indivisible
operation. It can be used to create composite operations.

All changes in the database model are done via atomic operations. All atomic op-
erations in the database model which have an impact on the SQL query model are
translated by the evolution process into corresponding atomic operations in the SQL
query model.

4.3.1 Database Model Operations

Let us suppose a database model MD, which is a set of tables Ti, i ∈ [1,n]. Each table
Ti ∈ MD has a name TiN and a set TiC , which is a set of columns c j, i ∈ [1,ni]. Each
column c j has a name c jN .



Evolution of a Relational Schema and Its Impact on SQL Queries 11

• Renaming Database Table (αT : (Ti,m) → T ′
i ): The operation returns table T ′

i
where T ′

iN
= m and T ′

iC
= TiC .

• Removing Database Table (βT : (MD,Ti) → M′
D): The operation removes

database table Ti ∈ MD from the database model MD. It returns database model
M′

D where M′
D = MD\{Ti}.

• Creating Table Column (γC : (Ti,c j)→ T ′
i ): The operation adds the column c j

into table Ti. It returns table T ′
i where T ′

iN
= TiN and T ′

iC
= TiC ∪{c j}.

• Renaming Table Column (αC : (c j,m)→ c′j): The operation returns column c′j
where c′jN = m.

• Removing Table Column (βC : (Ti,c j) → T ′
i ): The operation removes column

c j ∈ Ti from the table Ti. It returns table T ′
i where T ′

iN
= TiN and T ′

iC
= TiC\{c j}.

4.3.2 SQL Query Model Operations

Let us suppose a query model MQ, whose query graph GQ consists of a set of Data-
Sources Di, i∈ [1,k] and other components, which are not important for our purpose.
Each DataSource Di ∈ MQ has a name DiN and a set DiI , which is a set of DataSour-
ceItems d j, j ∈ [1,ki]. Each DataSourceItem d j has a name d jN .

• Renaming DataSource (αD : (Di,m)→ D′
i): The operation returns DataSource

D′
i where D′

iN
= m and D′

iI
= DiI .

• Removing DataSource (βD : (MQ,Di) → M′
Q): The operation removes Data-

Source Di ∈ MQ from the query model MQ. It returns query model M′
Q where

M′
Q = MQ\{Di}.

• Creating DataSourceItem (γI : (Di,d j) → D′
i): The operation adds DataSour-

ceItem d j into DataSource Di. It returns the DataSource D′
i where D′

iN
= DiN and

D′
iI
= DiI ∪{d j}.

• Renaming DataSourceItem (αI : (d j,m) → d′
j): The operation returns Data-

SourceItem d′
j where d′

jN
= m.

• Removing DataSourceItem (βI : (Di,d j) → D′
i): The operation removes Data-

SourceItem d j ∈ Di from the DataSource Di. It returns DataSource D′
i where

D′
iN
= DiN and D′

iI
= DiI\{d j}.

4.3.3 Complex Operations

More complex operations like Split, Merge, Move done in the database model can
be propagated to the SQL query model as well. In the SQL query model these oper-
ations are simply composed of the mentioned atomic operations.

5 Change Propagation in the Graph

The database model operations described in Section 4.3.1 have an impact on the
queries in the SQL query model. During the evolution process, changes in the
database model have to be propagated to the SQL query model, where the mod-
eled queries are adapted to the current database model. However, sometimes a



12 M. Chytil et al.

simple direct propagation is not correct. For instance, if a new column is added
to the database table, we may not want to add a new column to the SELECT clause
of the query. For this reason we propose so-called propagation policies, which in-
fluence the behavior of the propagation. The policies are defined for the vertices of
the query graph, which participate in the change distribution process.

We distinguish the following propagation policies:

• Propagate: This policy allows to perform the change directly. Subsequently, the
propagation is passed on the following vertices in the change process.

• Block: This policy does not allow to perform the change. The subsequent propa-
gation is stopped and the following vertices in the change process are not visited.

• Prompt: The system asks a user which of the two above policies should be used
to continue.

5.1 Query Graph Operations

As mentioned before, the SQL query model operations described in Section 4.3.2
are atomic operations, i.e. they cannot be divided into smaller operations. In fact,
these atomic operations consist of many smaller steps called graph operations,
which modify the query graph of the SQL query model. In the following defini-
tions GQ represents a query graph GQ = (V,E). We distinguish the following graph
operations:

• CreateVertex (γv : (GQ,v) → G′
Q): The operation returns graph G′

Q = (V ∪
{v},E).

• CreateEdge (γe : (GQ,vsource,vtarget ,etype) → G′
Q): The operation creates edge

e = (vsource,vtarget ) such that EdgeType(e) = etype and returns graph G′
Q =

(V,E ∪{e}).
• RemoveVertex (βv : (GQ,v) → G′

Q): The operation returns graph G′
Q =

(V\{v},E⋂(V\{v}
2

)
).

• RemoveEdge (βe : (GQ,e) → G′
Q): The operation returns graph G′

Q =
(V,E\{e}).

• ChangeLabel (λ : (v, l)→ v′): The operation returns query vertex v′, where ver-
tex type v′type = vtype and label v′L = l. (For instance, it returns the DataSourceItem
vertex with a new name.)

• ChangeConnectionType (η : (C, t) → C′): This operation returns Combine-
Source vertex C′ with connection type C′

T = t.
• ResetContent (ρ(GQ,C)): Since the visualization model visualizes the query

graph, they have to be synchronized. This operation is used to signal the parent
visual component C that a change in the query graph GQ has been done and the
content of the visual component has to be updated.



Evolution of a Relational Schema and Its Impact on SQL Queries 13

These atomic functions are combined in the set of so-called composite operations
which are called in the evolution process. All these functions with theirs algorithms
are described in [3].

An Example of Creating a Table Column. First, Algorithm 1 creates a new
FromItem vertex in the corresponding From vertex and connects it with appro-
priate vertices. Subsequently it traverses to the Select vertex, where it creates
corresponding vertices and edges using algorithm DistributeCreatingDatasourceIt-
emSelect (see [3]). Finally, it traverses to the OrderBy vertex, where it creates
corresponding vertices and edges using algorithm DistributeCreatingDatasourceIt-
emOrderBy. Fig. 3 depicts adding of a new DataSourceItem OrderDate to the Data-
Source component using Algorithm DistributeCreatingDatasourceItem and to the
From component using Algorithm 1. In Fig. 3 the original elements are black and
the new elements of the query graph are highlighted with a red color.

Fig. 3 An example of adding new DataSourceItem to the DataSource and to the From
components

Algorithm 1. DistributeCreatingDatasourceItemOnAlias
Require: Alias vertex A, change context C
Ensure: Graph operations to create new DataSourceItem.
1: f romVertex ← A.GetNeighbour(DataSourceAlias)
2: newItem ← new FromItem(C.Name)
3: C.Plan ←CreateVertex(C.GQ,newItem)

4: C.Plan ←CreateEdge(C.GQ,C.Originator,newItem,FromItemSource)
5: C.Plan ←CreateEdge(C.GQ,newItem,A,Alias)
6: C.Plan ←CreateEdge(C.GQ, f romVertex,newItem,FromItem)
7: C.Plan ←CreateEdge(C.GQ,newItem, f romVertex,FromItemParent)
8: C.Originator ← newItem
9: selectVertex← f romVertex.GetNeighbour(SelectQuery)
10: if selectVertex != null then
11: DistributeCreatingDatasourceItemOnSelect(selectVertex,C)
12: end if
13: orderByVertex← f romVertex.GetNeighbour(OrderBy)
14: if orderByVertex != null then
15: DistributeCreatingDatasourceItemOnOrderBy(orderByVertex,C)
16: end if
17: C.Plan ← ResetContent(C.GQ, f romVertex)



14 M. Chytil et al.

Algorithm DistributeCreatingDatasourceItemSelect creates a new SelectItem
vertex in the SELECT clause. Then it checks, whether the GroupBy vertex exists.
If it does, it connects the GroupBy vertex with the new SelectItem vertex. Finally,
it traverses to all Alias vertices of dependant queries and applies already mentioned
Algorithm 1.

6 Proof of the Concept

The full experimental implementation of the presented approach was incorporated
into the DaemonX framework [4]. (In fact, Figs. 2, 4 and 5 are screen shots of the
application.) Our approach adds two new plug-ins into the framework. The first
plug-in is a plug-in for SQL query modeling described in Section 4 (a screen-shot
from this plug-in is depicted in Fig. 2). The second plug-in is used for evolution
propagation from the PSM database model to the SQL query model (as described in
Section 5).

Since there are no existing applications which provide similar abilities, to be able
to compare our approach we used an existing database project Adventure Works [2].
We modeled in the database model a set of tables of a given database schema (the
list of them can be found in [3]). From this database model we derived to the query
model tables as DataSources, which we used to model queries and views. Next, we
applied various operations over the database model to simulate propagation to the
query model. After the propagation the new queries were inspected if they corre-
spond to the expected results.

Due to space limitations we will use some simplification. We present an example
of adding new column to the table and its propagation to the related GroupBy query.
Suppose the following SQL query which model is depicted in Fig. 4:

SELECT
d . GroupName ,
COUNT( d . Name )

as NumberOfDepartments
FROM

HumanResources . Depa r tmen t as d

GROUP BY
d . GroupName

HAVING
COUNT( d . Name ) > 2

ORDER BY NumberOfDepartments DESC

A new column GroupID was added to the table HumanResources.Department.
This change was propagated into the complex GroupBy query. The new column
was added to all its components. The original query was transformed by algorithm
DistributeCreatingDatasourceItem (described in [3]) to the new query (its model is
depicted in Fig. 5):

SELECT
d . GroupName ,
COUNT( d . Name )

as NumberOfDepartments ,
d . GroupID

FROM
HumanResources . Depa r tmen t as d

GROUP BY
d . GroupName , d . GroupID

HAVING COUNT( d . Name ) > 2
ORDER BY

NumberOfDepartments DESC ,
d . GroupID ASC



Evolution of a Relational Schema and Its Impact on SQL Queries 15

Fig. 4 The model of the complex usage of
complex GroupBy query

Fig. 5 The updated model of the complex
GroupBy query

7 Conclusion

In this paper we have focussed on a specific part of the problem of change man-
agement of applications – evolution of a relational schema and its propagation to
SQL queries. The main contribution of our approach is the ability to model SQL
queries concurrently with the respective schema, to analyze changes performed in
the database model and to update the queries to preserve their compatibility and
correctness. Changes in the database schema model are propagated immediately to
the SQL query using mutual mapping.

Even though the approach is complex and robust, there exists a number of open
problems. A natural first extension is towards more complex constructs we have
omitted. Next, we can consider also other query languages, such as XQuery [9]
for XML data or SPARQL [1] for RDF data. And, last but not least, there is an
important aspect of semantics of the data and queries which may highly influence
the propagation mechanism.

References

1. SPARQL Query Language for RDF. W3C (2008),
http://www.w3.org/TR/rdf-sparql-query/

2. Adventure Works team. Adventure Works 2008R2 (November 2010),
http://msftdbprodsamples.codeplex.com

3. Chytil, M.: Adaptation of Relational Database Schema. Master’s thesis, Charles Univer-
sity in Prague (2012),
http://www.ksi.mff.cuni.cz/˜holubova/dp/Chytil.pdf

4. DaemonX-Team. DaemonX (June 2001), http://daemonx.codeplex.com
5. Korovin, K.: CNF and Clausal Form. In: Logic in Computer Science, Lecture Notes (2006)
6. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1 (2003),

http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
7. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Aggistalis, K., Pechlivani, F., Vassiliou, Y.:

Language Extensions for the Automation of Database Schema Evolution. In: Cordeiro, J.,
Filipe, J. (eds.) ICEIS (1), pp. 74–81 (2008)

8. Papastefanatos, G., Vassiliadis, P., Vassiliou, Y.: Adaptive Query Formulation to Handle
Database Evolution. In: Proceedings of the CAiSE Forum (2006)

9. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft (November
12, 2003), http://www.w3.org/TR/xquery/

http://www.w3.org/TR/rdf-sparql-query/
http://msftdbprodsamples.codeplex.com
http://www.ksi.mff.cuni.cz/~holubova/dp/Chytil.pdf
http://daemonx.codeplex.com
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.w3.org/TR/xquery/


Context-Aware Regression
from Distributed Sources

Héctor Allende-Cid, Claudio Moraga, Héctor Allende, and Raúl Monge

Abstract. In this paper we present a distributed regression framework to model data
with different contexts. Different context is defined as the change of the underlying
laws of probability in the distributed sources. Most state of the art methods do not
take into account the different context and assume that the data comes from the same
statistical distribution. We propose an aggregation scheme for models that are in the
same neighborhood in terms of statistical divergence. We conduct experiments with
synthetic data sets to validate our proposal. Our proposed algorithm outperforms
other models that follow a traditional approach.

Keywords: Distributed Regression, Context-aware Regression, Divergence
Measures.

1 Introduction

The field of Distributed Data Mining (DDM) has been very active and is enjoying a
growing amount of attention since it was first proposed. Most of the current DDM
techniques treat the distributed data sets as a single virtual table and assume that
there is a global model which could be generated if the data were combined or cen-
tralized, completly neglecting the different semantic contexts that this distributed
data sets may have [1]. If we see this as a statistical learning problem, we deal with
samples of data that follow different underlying laws of probability. Loosely speak-
ing Machine Learning models try to find a function which relates a given output

Héctor Allende-Cid · Héctor Allende · Raúl Monge
Departamento de Informática, Universidad Técnica Federico Santa Marı́a
Avenida España 1680, Valparaı́so, Chile
e-mail: vector@inf.utfsm.cl

Claudio Moraga
European Centre for Soft Computing, 33600, Mieres, Asturias, Spain

Claudio Moraga
TU Dortmund University, 44220 Dortmund, Germany

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 17
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_3, c© Springer International Publishing Switzerland 2014



18 H. Allende-Cid et al.

y with an input vector x. The classic Machine Learning approach is related with
the estimation of the joint probability distribution H(X,Y). The joint probability
distribution can be decomposed in the conditional probability distribution and the
marginal one (H(X,Y) = F(Y/X)G(X)). In this paper, context is defined as the joint
probability distribution that governs each data source. The main task addressed in
this proposal will be the one of Distributed Regression (DR). Approaches to deal
with problems of distributed regression are harder to find in the DDM literature
than problems of distributed classification. Even harder to find are algorithms that
deal with the problem when the data sources have different underlying laws of prob-
ability. This proposal could help a virtual organization, e.g. a temporary network of
companies/entities that come together quickly to exploit fast changing oportunities,
with each partner contributing what it is best at. The next section will present a brief
view of the state of the art related to this work. In section 3 we present the proposed
algorithm which will be able to address the problem presented above. In section 4
we show some experimental results. The last section is devoted to discuss the results
and to make some conclusions.

2 State of the Art

There is a large number of works done in the last decade in the field of Distributed
Data Mining. A large fraction of DDM algorithms focuses on combining predic-
tive models. This approach has emerged from empirical experimentation due to
a requirement for higher prediction accuracy. Recently, several researchers treat
distributed learning systems as a centralized ensemble-based method [1]. Several
learning algorithms are applied at each local site, using separate training data to
mine local knowledge. A new data point is then classified/predicted from the predic-
tions of all local sites using ensemble methods such as stacking, boosting, majority
voting, simple average, or winner-takes-all methods. In general, DDM approaches
apply ensemble methods to minimize the communication costs and to increase the
performance of the system predictions.

Yan Xing et al. [1] have proposed a series of algorithms based on, what the au-
thors call, a meta-learning approach to deal with the regression problem addressing
the context heterogeneity case. The authors propose a meta-learning-based hierar-
chical model that is able to be successfully used in distributed scenarios with con-
text heterogeneity. The definition of context in this work is the variance that the
distributed sources have in their outputs, thus neglecting the context change in the
input space. The authors claim that this change of context between distributed sites
is random. For a more complete review on the state of the art of Distributed Data
Mining Algorithms, please refer to [1].

Like it was explained in the previous section the differences in context are the
differences among probability distributions. For this we are going to use the well-
known (h,φ)-divergence measures [1]. With this divergence measure we are going to
perform a hypothesis test, where the null hypothesis checks whether the probability



Context-Aware Regression from Distributed Sources 19

distributions of 2 samples have the same set of parameters versus the alternative hy-
pothesis that they have different set of parameters. (Mainly, mean and co-variance)

For further details please refer to [1].

3 Proposal

In this section we present the proposed algorithm. It can be broken down into the
following phases:

3.1 Learning

1. Phase 1 - Local Learning. Suppose that there are k distributed data sets. At each
node Ni, where i = 1, . . .k, we use an available learning algorithm to train a local
predictive model Li from data source Di of that node. This proposal is a meta-
model that could be used for classification or regression problems. The choice
of the learning algorithm is not restricted to any particular kind. Also we get the
mean vector and the variance-covariance matrix at each node. The local training
data consists in an n dimensional input vector ((xi1, xi2, . . . , xin)) and a response
variable yi.

2. Phase 2 - Model and information transmission. Each node Ni, where i = 1, . . . ,k
receives the model parameters, mean vector, variance-covariance matrix and
number of samples of the other nodes. A hypothesis test is performed based on
the (h,φ)-divergence for each pair of local data sets D of the nodes Ni and Nj,
where i � j. These hypotheses tests will check if the data of the current local
node follow the same underlying law of probability of the rest of the nodes. In
this proposal we focus only in the marginal statistical distribution of the input
space. The result is a binary vector (hi with k binary variables, which indicates
the nodes which follow the same underlying law of probability of Di. In other
terms we will refer to this vector as the Neighborhood vector based on diver-
gence measures. Also compute the Hamming weight mi for each node Ni. E.g.
If there are 5 distributed nodes D1,D2,D3, D4 and D5, and we are checking if
node D1 has the same distribution as the rest, and only the variables h1(1), h1(2)
and h1(4) are equal to 1, meaning that the data contained in the nodes N2 and N4

follow the same distribution as in node N1, then m1 = 3.
3. Phase 3 - Generation of second-stage learners. Since every node Ni has a copy

of the other local models, each local model Ll, l = 1, . . . ,k, contained in node Ni

is trained with the local data from that node (Dl). Each of the local models in
Ni outputs a response variable ŷi j with the local data Di, where j = 1, . . . ,k. Each
local node applies then a stacked learning algorithm Gi (second-stage model)
which is trained with the outputs of all the local models (ŷi1, ŷi2, . . . , ŷik) and the
real response variable yi, obtained from the training data of the node Di. This is
inspired in the stacking model of Wolpert [1].



20 H. Allende-Cid et al.

3.2 Predicting

1. Final output of the proposed model. The output of our model is the following:
Whenever a new example arrives at a node Ni, we compute all the outputs of the
local models that are stored in this node. We have an apriori information of which
of the other nodes have data following a close underlying law of probability of the
current node, which is reflected in the binary vector mentioned above (hr, where
r = 1, . . . ,k). Then the output of the local models in this node are transmitted to
only the other nodes which have a non-zero label in this vector. The final output
of the model is the sum of all the Gi model outputs that received the output of
all the local models in the current node divided by the Hamming weight mr. E.g.
in the example presented in Fig. 1 the final output of the model is the mean of
models G1, G3 and Gk, because only the variables h2(1), h3(3) and h3(k) are
distinct from zero. The Hamming weight mr in this case is equal to 3.

L
1
,.
..
,L

k

Nk

Summarization Node

Gk

ŷk

hk

L
1
,.
..
,L

k

N2

G2

ŷ2

h2

L
1
,.
..
,L

k

N4

G4

ŷ4

h4

L
1
,.
..
,L

k

N1

G1

ŷ1

h1

O =
∑

j=i,hr(i) �=0

ŷj/mr

L
1
,.
..
,L

k

N3

G3

ŷ3

h3

New Data Examples

h3 = [1, 0, 1, . . . , 1]

...

...

Fig. 1 Architecture of the proposed system

4 Experimentation

In this section we present the results obtained by our proposal with two synthetic
experiments. The reason why we did not test our proposal with real data sets is
because real data sets which have the characteristics that we are dealing in this
proposal are hard to find. But since we are trying to prove that our proposed al-
gorithm is able to detect different contexts, synthetic data sets are useful for this
purpose. The data sources created for the first synthetic experiment were generated
from a nonlinear function with an input dimension of 2 (Equation (1)). The second



Context-Aware Regression from Distributed Sources 21

experiment consisted in data coming from a nonlinear function with an input dimen-
sion of 3 (Equation (2)).

y =
sin(x1) sin(x2)

x1x2
(1)

y = (1+ x0.5+ y−1+ z−1.5)2 (2)

For the first experiment we tested 2 scenarios: Data coming from multivariate nor-
mal distributions with same variance-covariance matrix

∑
but different mean vec-

tor μ, and different variance-covariance matrix
∑

but the same mean vector μ. For
the second one we generated datasets with both differences, different mean vectors
and different variance-covariance matrices. The number of distributed sources were
5, 10 and 20. The distributed sources were generated with 2 different sets of pa-
rameters. The number of sources from set of parameters (μ1,

∑
1) and (μ2,

∑
2) was

generated randomly. The number of examples of each source was set to 1000. The
maximum likelihood estimator was used to estimate the parameters of the gaussian
distributions. As a local model a Feedforward neural network with one hidden layer,
and 3,5,10 neurons were tested. We chose the number of neurons which gave us the
best results in terms of mean squared error (MSE) in 10 experimental runs. For a
detailed description of the experimental configuration please refer to [1].

The divergence measures used in this proposal are the Kullback-Leibler and
Renyi divergence measures. The α-value used to perform the hypothesis test to es-
tablish the neighborhood for each of the distributed sources was 0.95.

To compare our proposal we tested 3 different algorithms:

• Local Gi models. Stacked models trained with the output of all local models with
the data of node Ni. (Single)

• Pseudo-Ensemble of all Gi models.(Ensemble)
• Aggregation of Gi models within the neighborhood of Ni. (Proposal)

As can be seen in Table 1 our proposal outperforms in every case, the other models.
Column Exp shows 4 different experimental configurations (Difference between the
sets of parameters was incremented in each configuration). Both divergences mea-
sures built the same neighborhood, so the results were the same for both. From the
results obtained in this first synthetic experiment we can see that it is very important
to take into account the statistical distributions that govern each data set to perform
a better estimation. If we do not take this into account the performance using all the
Gi models generated in each source can even worsen the results we could obtain
only using the single Gi models. The error reported in Table 1 are the mean of 10
experimental runs. The performance error used is the mean MSE of all distributed
data sets. The results of the second synthetic experiment show similar results as the
one obtained with the first synthetic experiment. For the results and further details
of the second experiment see [1].



22 H. Allende-Cid et al.

Table 1 Mean MSE of 10 experimental runs. Data sources with probability distributions with
different mean vectors (left) and data sources with probability distributions with different
variance-covariance matrices (right).

Exp NS Single Ensemble Proposal Single Ensemble Proposal
1 5 7,85e-04 7,82e-04 7,68e-04 5,6703e-04 5,617e-04 5,1278e-04

10 3,88e-04 3,72e-04 3,64e-04 3,1548e-04 3,0457e-04 2,8615e-04
20 0,0013 4,65e-04 4,30e-04 4,1741e-04 4,3338e-04 4,1529e-04

2 5 0,0015 0,0019 0,0013 0,0055 0,0084 0,0050
10 0,0014 0,0016 0,0013 0,0061 0,0137 0,0051
20 0,0031 0,0033 0,0029 0,0050 0,011 0,0043

3 5 0,0320 0,0532 0,0314 0,0103 0,0552 0,0097
10 0,0099 0,0281 0,0094 0,0113 0,0933 0,106
20 0,0149 0,0661 0,0143 0,0082 0,0551 0,0070

4 5 0,0197 0,0627 0,0154 0,0041 0,1024 0,0040
10 0,0114 0,0621 0,0105 0,0091 0,1465 0,0040
20 0,0122 0,0643 0,0109 0,0067 0,1067 0,0062

5 Conclusions

In this proposal we present a distributed regression approach that is able to detect
different contexts in the input space, thus improving the performance of local mod-
els in the task of regression from distributed sources. As the results show, it is very
important, not to neglect the different contexts that are present in the distributed
sources. Using classic ensemble-based approaches including all sites, that are avail-
able in the distributed data mining literature, we obtain worse results, than the ones
we obtain by using only local models in appropiate Neighborhoods. In future ap-
proaches we will additionally take advantange of the differences in the conditional
statistical distribution of the output space, thus improving even more the results ob-
tained here. Finally we will test our proposal with real data sets.

Acknowledgments. This work was supported by the following research grants: Fondecyt
1110854 and DGIP-UTFSM. The work of C. Moraga was partially supported by the Founda-
tion for the Advancement of Soft Computing, Mieres, Spain and by the CICYT Spain, under
project TIN 2011-29827-C02-01.

Reference

1. Allende-Cid, H., Moraga, C., Allende, H., Monge, R.: Regression from distributed sources
with different underlying laws of probability. Technical Report, European Centre for Soft
Computing, Mieres, Asturias, Spain (available upon request, 2013)



Incremental Patterns in Text Search

Makoto Yamaguchi and Takao Miura

Abstract. In this investigation, we propose a new kind of text retrieval, called dy-
namic KMP, where the pattern becomes longer incrementally. We introduce several
auxiliary information for efficient management and examine how well the approach
the works.

Keywords: Dynamic KMP, KMP algorithm, incremental patterns, text retrieval.

1 Motivation

In current internet world, there have been much amount of information in a vari-
ety of text strings such Blog and twitter messages. To extract useful information
correctly, timely and efficiently among them, it is not enough to utilize traditional
techniques of database nor information retrieval. In information retrieval, one of the
fundamental functions comes from pattern matching where, given query patterns,
we examine data in our database and and explore answers. To specify query intents,
we may introduce regular expression or approximate string matching as query pat-
terns by using special algorithms (such as KMP and BM methods) or sophisticated
data organization (such as suffix trees). In the latter case, suffix tree/array provides
us with compact data structures by analyzing information in advance so that we
may obtain efficient retrieval, but all the suffixes are stored into the tree/array. In
text retrieval, we often change query patterns dynamically depending upon the ex-
plosion of information. For example, whenever we obtain useful information from
huge amount of log information about stock market, we like to change our query
pattern immediately to obtain relevant information in more specific manner and we
come to suitable information soon. We may also navigate relevant DNA which are

Makoto Yamaguchi · Takao Miura
HOSEI University, Dept.of Elect.& Elect. Engr.
3-7-2 KajinoCho, Koganei, Tokyo, 184–8584 Japan
e-mail: makoto.yamaguchi.9y@stu.hosei.ac.jp,

miurat@hosei.ac.jp

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 23
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_4, c© Springer International Publishing Switzerland 2014



24 M. Yamaguchi and T. Miura

similar to previous query results. In these cases, we need new techniques for text
retrieval which provide us with incremental query patterns. Here in this work, we
extend KMP algorithm to change incremental patterns dynamically while keeping
same query costs.

This work is organized as follows. We review several algorithms for text retrieval
in section 2 while we examine some properties of Maximum Prefix (ML) in section
3. In section 4 we discuss how to manage incremental change of query patterns
based on KMP algorithm. We examine some experiments in section 5 to see how
well our model works. We conclude our work in section 6.

2 Text Matching

There have been many kinds of efficient algorithms proposed for pattern matching
from huge amount of text information (called text matching or text retrieval) where
we give text string as a pattern to be examined. Among others, we have two well-
known approaches, KMP method and BM method[1].

Knuth-Morris-Pratt (KMP) algorithm is an efficient algorithm for pattern match-
ing on text string. The basic idea comes from a fact that, by analyzing patterns in
advance, we may obtain a new position after matching-failure and skip intermediate
characters so that we recover some overhead for the analysis.

Let us show our running example in a table 1. Given a pattern “issis”, we ex-
amine a text information “missisissipissippi” to obtain positions of match-
ing. Whenever we get mismatching (marked by ”*”), we skip several characters
according to sliding information obtained from the pattern. For example, we have a
mismatching character “p” at line 4, and we skip 3 characters of the patterns to the
right and continue the process at that ”p”. KMP method allows us to examine text
information only once.

Table 1 Examining “issis”

Position 0 1 2 3 4 5 6 7 8 9 1011121314151617
Text m i s s i s i s s i p i s s i p p i
1) i*
2) i s s i s
3) i s s*
4) i s s i s*
5) i s*
6) i*
7) i s s i s*
8) i s*
9) i*
10) i*
11) i*

Table 2 MP and MPL of "ississii"

m MPL(m) MP(m)
"i" 0 -1 -
"is" 1 -1 -
"iss" 2 -1 -
"issi" 3 0 "i"
"issis" 4 1 "is"
"ississ" 5 2 "iss"
"ississi" 6 3 "issi"
"ississii" 7 0 "i"

Boyer-Moore (BM) algorithm also requires analysis of patterns in advance but
differs from KMP where patterns are examined in a backward manner so that we
may skip more. Compared to KMP algorithm, sometimes we get more much effi-
cient but not stable results.



Incremental Patterns in Text Search 25

In suffix trees, on the other hand, it takes O(N2) space to construct. Suffix array
improves this deficiency but needs O(N logN) or O(N2 logN) for the construction
with complicated algorthms[4]

3 Maximum Prefix for KMP Algorithm

Let us describe how KMP algorithm does work using Maximum Prefix (MP). Given
a pattern PATTERN[0..m+1] of length m + 2 which consists of elements in
V = {c1, ...,cV }, we examine text information for matching and assume the first
mismatch at PATTERN[m+1]. KMP method provides us with how many charac-
ters we skip to re-start matching, because all the PATTERN[0..m] are exactly
equal to the text information. We analyze the pattern to see the longest prefix of the
pattern, called Maximum Prefix(MP), that matches the suffix. We define Maximum
Prefix (MP) of a pattern PATTERN[0..m] (m > 0):

MPL(m) = max { k | PATTERN[0..k]=PATTERN[(m-k)..m], 0 ≤ k < m }
MPL(m) = -1 , if there exists no such prefix.
MP(m) = PATTERN[0..k], k = MPL(m) if MPL(m) ≥ 0, null otherwise.

Assume MPL(0) = -1. Note that we have MP of length k + 1 if k=MPL(m)
where MP(m) = PATTERN[0..MPL(m)] if tt MPL(m) ≥ 0.

Let us illustrate MP and MPL of a pattern PATTERN="ississii" in
table 2. We have MPL(0) = -1 by definition. We also have MPL(1)
= -1, MPL(2)=-1 since there is no prefix equal to the correspond-
ing suffix in "is","iss". In a case of "issi" (length 4), we see
the longest match of PATTERN[0..0]="i" and PATTERN[3-0..3]="i"
so that we have MP(3)="i" and MPL(3)=0. Similarly in "issis",
"ississ" and "ississi", we have MLP(4)=1, MP(4)="is", MLP(5)=2,
MP(5)="iss" and MLP(6)=3, MP(6)="issi" respectively. However, a case
of "ississii" (length 8) shows the longest match of PATTERN[0..0]="i"
and PATTERN[7-0..7]="i" so that we have MP(7)="i" and MPL(7)=0.

After getting mismatch of PATTERN at position 0 to text information at some
position w, we start matching again at w+ 1 with the full pattern of PATTERN.
When we find mismatching of PATTERN at position m+ 1 > 0 to text information
at some position w, we utilize MP(m) = PATTERN[0..m]. In fact, if MPL(m)
≥ 0, we know the prefix MP(m) is equal to the suffix (to the position m) so we
can skip this part, and we continue matching at MPL(m)+1 of PATTERN to the
position w of the text information. If MPL(m) < 0, no matching happens and we
start matching again from the beginning of PATTERN to the position w of the text
information.

We examine D = "missisissipissipp" and PATTERN = "issis" in
a table 1. At position 6 of D we see mismatch of PATTERN[2]="s" (see line
3). Since we have "is" matched with D[4..5] but MPL(1)=-1, we start again
with the beginning of PATTERN. As shown in line 4, we have PATTERN[4]="s"
mismatched with D[10]. Because MPL(3) = 0, we can skip 3 (=3-0) characters.



26 M. Yamaguchi and T. Miura

In line 5, we have mismatching of PATTERN[1]="s" at position 10 of D. Since
MPL(0) = -1, we can skip one character.

When we build MP of length k+1 where k = MPL(m), we assume the prefix has
never overlapped the suffix, then we must have (k+1)≤ (m+1)/2. If k = 0,m > 0,
it holds PATTERN[(m− i)..m] � PATTERN[0..i] for i = 1, ..,m. For example,
as in a table 2, given PATTERN[0..4]="issis" (m = 4), we have MP="is",
MPL(4)=k= 1 and (k+ 1)≤ (m+ 1)/2 because no overlap happens.

Conversely, if (k + 1) > (m + 1)/2, we must have the prefix and the suf-
fix with some overlap. Let αβ be MP of length k + 1 where β means the
overlap. Assume α is longer than β , then β appears in the beginning of
α , that is, β is the prefix of α . Assume otherwise. Then α appears in β
many times and β = α · · ·αα ′ where α appears at least one time and α ′
is the prefix of α . Thus we must have β = α · · ·αα ′ if we have if (k +
1) > (m + 1)/2 (the overlap happens). In a table 2, we have k=MPL(6)=3
with PATTERN[0..6]="ississi". In this case, the longest match prefix
PATTERN[0..3]="issi" has the overlap PATTERN[3..3]="i" with the
longest match suffix PATTERN[3..6]="issi". Then MP PATTERN[0..3]
consists of αβ where α = PATTERN[0..2]="iss" and β = α"i". Note β
("i") appears as a prefix part in α ("iss").

4 Constructing Patterns Incrementally

In KMP algorithm, we utilize MPL. That is, given 0≤m<M and PATERN[0..M],
In this section, we show MPL(m+ 1) ≤ MPL(m)+1. At the same time we show
how to constructMPL(m+1) (and MP(m)) using MPL(0),..,MPL(m). By def-
inition, we have MPL(0)= -1 and let us note the values MPL(m) increase by 1 or
decrease in a table 2.

Let X =PATTRN[m+ 1], k=MPL(m) and α = PATTERN[0..k] if k ≥ 0 and α
= ”” if k =−1. Also let Y = PATTRN[k+ 1], i.e., a character at k+ 1.

Assume X = Y. Then the suffix α X is equal to αY = PATTERN[0..(k+ 1)]
and we have MPL(m+ 1) ≥ MPL(m)+1. If k′ = MPL(m+ 1) > MPL(m)+1
= k+1, there exists a prefix β = MP(m+ 1) such that β = PATTERN[0..k′],
k’=MPL(m+ 1), PATTERN[k′] = X and β = PATTERN[(m+ 1 − k′)..(m +
1)]. Since X=PATTRN[m+ 1], PATTERN[0..(k′ − 1)] = PATTERN[(m+ 1−
k′)..m] is a prefix of length k’ in PATTERN[0..m]. Let us note k′ > k and this
contradicts the definition of k = MPL(m) at the position m.

For example, we construct MPL(m+ 1) where m = 4 and PATTERN[0..4]
= "issis". Let us add X="s" into the pattern at the position 5. Note
we have MP(4)="is" and MPL(4)=1 in a table 2. In the new pat-
tern PATTERN[0..5]="ississ", we see Y = PATTERN[MPL(4)+1] =
PATTERN[2] = "s" and thus MPL(5)=MPL(4)+1=2, MP(5)="iss".

Assume X � Y. Given a query pattern α = PATTERN[0..(m+ 1)], we must
have MPL(m+ 1) ≤ MPL(m). In fact, k = MPL(m) and assume k ≥ 0. Since
X � Y, the suffix PATTERN[(m+ 1 − k)..(m + 1)] can’t be equal to the prefix



Incremental Patterns in Text Search 27

PATTERN[0..k] of α . This means this prefix can’t be PATTERN[0..MPL(m+1)]
and we have MPL(m+ 1) < MPL(m)+1 (= k + 1). Assume k = MPL(m) =
-1. Then MPL(m+ 1)=MPL(m)= -1.

For instance, let m = 6 and PATTERN[0..6] = "ississi". To in-
sert X = "i" into the pattern, we like MPL(7). By definition and a ta-
ble 2, we have MPL(6)=3 and the longest match prefix at m = 6, MP(6),
is PATTERN[0..MPL(6)] = "issi". The character X = "i" doesn’t ap-
pear in the pattern at MPL(6)+1, in fact, we have PATTERN[MPL(6)+1] =
PATTERN[4] = "s". The longest match prefix at m = 7, MP(7), is "i" and
we have MPL(7)=0.

Now let us describe how to construct MPL(m + 1) incrementally using
PATTERN[0..M] and MPL(0),..,MPL(m). The approach is called dynamic
KMP algorithm. Here we assume a large memory for patterns, PATTERN[0..M],
M >>m≥ 0, and we insert X at PATTERN[m+1]. To construct MPL(m+1), it is
possible to giveMPL(m+1) = MPL(m)+1 if X = PATTERN[MPL(m)+1]. As-
sume X � PATTERN[MPL(m)+1]. When MPL(m)=-1, we must have MPL(m+
1)= -1 by definition. So we assume MPL(m) ≥ 0 in the following. We like
the longest match prefix of PATTERN[0..MPL(m)] but KMP method doesn’t
seem suitable because we explore the prefixes of PATTERN[0..m] shorter than
MPL(m)+1 but we can’t take advantages of MPL(0),..,MPL(m− 1). In dy-
namic KMP method, we introduce two kinds of auxiliary information, skip1 and
skip2 over a set of characters V = {c1, ..,cV} to reduce complexity of the pro-
cesses, where skip1 is an array of size M + 1 and skip2 of size V . We define
skip1(i) as a position prior i where a characterPATTERN[i] appears prior i, and
also define skip2(i) as a position where ci appears finally in PATTERN[0..m]:

skip2(i) = j, j = max j { j | ci = PATTERN[ j] }, and −1 if there is no ci in the
pattern.
skip1(i) = j, j = max j { j | PATTERN[i] = PATTERN[ j], j < i } and −1
if there is no such j in the pattern.

Let us illustrate how the algorithm goes with skip1/skip2 of the patterns of
"ississi" and "ississii" in a table 3. When we add "i" to "ississi",
we give skip2["i"] to skip1[7] and 7 to skip2["i"].

Table 3 Constructing skip1/skip2

01234567
PATTERN (m = 6) ississi

skip1 -1-110243
skip2
"i" 6
"s" 5

01234567
PATTERN (m = 7) ississii

skip1 -1-1102436
skip2
"i" 7
"s" 5



28 M. Yamaguchi and T. Miura

Initially we give −1 to all of skip1,skip2. Given a new pattern
PATTERN[0..(m+ 1)] with a new character at m+ 1, we examine all the pre-
fixes of PATTERN[0..k] using skip1, skip2 where k =MPL(m) to construct
MPL(m+ 1) as follows:

(1) If X = PATTRN[m+1], put j = skip2(X).
(2) Repeat j =skip1( j) until j < k while j �−1.

If j =−1, no prefix is found and return -1. Assume otherwise.
(3) If PATTERN[0.. j]= PATTERN[(m+1− j)..(m+1)], the answer is j. Other-
wise put j = skip1( j) and go back to the process 3.

Let us discuss the time complexity issues at each incremental pattern. It is possible
to obtain skip1,skip2 incrementally on O(1), It takes O(1) for the process 1 in
the above algorithm and O(m) for the process 2. In the process 4, it takes O( j) to
examine PATTERN[0.. j] to each repetition, and O(MPL2(m)) in total. Practically
MPL is small very often and few problem arises. It is possible to work efficiently by
using KMP/BM methods, but we need complicated process for the preparation and
it seems better to do that in a naive manner.

5 Experimental Results

5.1 Preliminaries

In this experiment, we assume incremental pattern and evaluate how well query
goes and how about the pattern construction and the management. When the pattern
grows (to the length m+1), we construct MPL(m+1) for PATTERN[0..(m+1)].

We examine Reuter-21578 corpus[3] because the text documents have been well-
formed, well-known and well-analyzed for a variety of evaluation purpose. The cor-
pus consists of 22 data files in SGML format including 21578 news articles over 1.3
million words distributed in 1987. Each article has been tagged and classified into
90 topics by hand. Every article has size of 1KB or 4KB. We have selected 2568 ar-
ticles randomly from the corpus, tag removed and combined into one of 3MB string.
We have also selected 4 articles from them and put them together with duplicates
into one as query patterns of size 160,092 bytes, Especially we take an article of
3090 bytes and put 5 times into the beginning of the query pattern for the purpose
of longer MPLs.

As shown in a table 4, the prefix of 12366 bytes is equal to the part of +3093,
which means some overlap. In fact, the first 3092 bytes are duplicated 4 times after
the article in the query. The situation is marked with ”A” in the table. Similarly
we put ”B” (once) and ”C” (twice) in the table. There are 26 times duplicates of
the article, as well as other 3 articles appear many times. Figure 1 outlines how
Maximum Prefix goes.

In this experiment, we assume incremental pattern and evaluate how well query
goes and how about the pattern construction and the management. When the pattern
grows (to the length m+1), we construct MPL(m+1) for PATTERN[0..(m+1)].



Incremental Patterns in Text Search 29

Table 4 Maximum Prefix of Pattern

Offset Length
3093 12366 A

19546 3090 B
29282 3096 B
36469 3096 B
43562 6186 C
53927 6180 C
62658 12360 A
80120 3090 B
89856 3096 B
97041 3090 B
102682 6180 C
128800 6180 C
137531 3096 B
144716 3090 B
157003 3090 B

Table 5 MPL construction

Offset Dynamic Additional Static
10000 9999 0 49995000
20000 10213 252 150029219
30000 10421 4 250131360
40000 10414 126 350228016
50000 10209 126 450316458
60000 10000 0 550394594
70000 10418 8 650441214
80000 10422 16 750473038
90000 10421 4 850556194
100000 10207 63 950653122
110000 10834 12 1050713526
120000 10010 0 1150802866
130000 10005 0 1250925191
140000 10418 8 1350991722
150000 10623 67 1451072620
160000 10005 0 1551162227

Whenever the pattern grows, we may have two kinds of approaches to adjust the
problem, static construction and dynamic construction of MPL. By static approach,
we mean we construct MPL(0),..,MPL(m+1) from scratch to each step. Once
we find mismatch at j in PATTERN[0..m+ 1], we skip checking the first MPL( j)
characters since we knowPATTERN[0.. j−1] appear in the text. To obtain MPL, we
examine all the possibilities (i.e., j = 0, ..,m+1) to see the maximum length where
the prefix and suffix are identical1. Since the suffix has been changed, the previous
values of MPL are not applicable now. Clearly it takes O(m) for each j, and O(m2) in
total. On the other hand, by dynamic approach, we apply dynamic KMP technique
to the construction of MPL. Especially we construct MPL incrementally but not from
scratch. Note that there can be no difference of query efficiency between the two
approaches because we apply same KMP algorithm for text query, but the difference
comes from only MPL construction.

5.2 Results and Discussion

Let us illustrate the results in table 5 which show how many characters are exam-
ined for MPL construction to every 10000 characters of the query word (160092
bytes), one for primary step and another for additional step through skip1. We
also show the static case for the comparison. The situation is outlined in a figure
2. We see, in dynamic approach, it keeps constant values about 10000 while static

1 We like the maximum value k where a pattern string from k to j − 1 is equal to the top
j−k characters. We put −1 if no matching found.



30 M. Yamaguchi and T. Miura

Fig. 1 MPL distribution (0,..,160092) Fig. 2 The number of Comparison

approach increases linearly. This means the numbers of references are O(M) and
O(M2) respectively for the length M of query pattern.

Figure 1 contains many short matching. During MPL grows, we examine few
long pattern as in table 5, and we examine characters incrementally. Since we have
−1,0,1 and 2 in MPL table except the article of 3090 bytes, we can obtain fast
examination for MPL construction once we get mismatch situation.

News corpus may be expected to contain many quotation but few happens prac-
tically. Also it seldom happens to go through skip links many times. In fact, “Ad-
ditional” comparison in table 5 arises at most 252 times to 10000 characters and
we have few overhead. That is the reason of O(M) in practice for dynamic MPL
construction.

6 Conclusion

In this investigation, we have proposed dynamic KMP algorithm for incremental
text search. Our experimental results say that it takes linear time to the length of
query pattern. Compared to naive (static) approach, we get dramatic improvement in
practice. Though we can improve additional step of MPL construction based on BM
method, the approach may cause complicated processing to each pattern increment
and it is not suitable for our case.

References

1. Ishihata, K.: Algorithm and Data Structure. Iwanami Publishing (1989) (in Japanese)
2. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM

Journal on Computing 22(5), 935–948 (1993)
3. Reuter Corpus,

http://www.daviddlewis.com/resources/
testcollections/reuters21578

4. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
5. Weiner, P.: Linear pattern matching algorithm. In: 14th Annual IEEE Symposium on

Switching and Automata Theory, pp. 1–11 (1973)

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://www.daviddlewis.com/resources/testcollections/reuters21578


REBECCA: A Trust-Based Filtering to Improve
Recommendations for B2C e-Commerce

Domenico Rosaci and Giuseppe M.L. Sarné

Abstract. Recommender systems usually support B2C e-Commerce activities with-
out to provide e-buyers with information about the reputation of both products and
interlocutors. To provide B2C traders with suggestions taking into account gossips,
in this paper we present REBECCA, a fully decentralized trust-based B2C recom-
mender system that also guarantees scalability and privacy. Some experiments show
the advantages introduced by REBECCA in generating more effective suggestions.

1 Introduction

Business-to-Consumer (B2C) activities play a relevant role in the e-Commerce (EC)
[2] and recommender systems (RS) [21] can support both customers and merchants
with suggestions about products and services. To perform such a task, a representa-
tion (profile) of customer’s interests and preferences needs and it can be exploited
to implement RSs by using a multi-agent system (MAS) [19] to suitably consider
users’ orientations [3, 10, 14]. However, MASs need to consider their “social” in-
teractions for allowing an agent to maximize (minimize) its income (outcome) by
selecting its interlocutors [7] also by using a trust-based approach [17, 18].

In this paper, we present REputation-Based E-Commerce Community of Agents
(REBECCA), to support the generic merchant M in generating suggestions for the
generic customer C, based on a collaboration between their associated agents. More
in detail, (i) a merchant agent works as a hybrid RS [21] while (ii) a customer agent
filters its suggestions based on the customers’ satisfaction (i.e. “reputation”) about
products provided by other agents, weighted in terms of reliability and reputation in
the MAS. Many RSs, as [1, 9], consider reliability (reputation) to generate sugges-
tions to present only relevant information according to the personal point of view
of other trusted users To this aim, several trust models consider user’s orientations

Domenico Rosaci · Giuseppe M.L. Sarné
University Mediterranea of Reggio Calabria, 89123 Reggio Calabria, Italy
e-mail: {domenico.rosaci,sarne}@unirc.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 31
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_5, c© Springer International Publishing Switzerland 2014



32 D. Rosaci and G.M.L. Sarné

[5, 8, 16] in computing reliability and/or reputation combining them in a single trust
measure [4, 6, 13, 15]. In [11] it is obtained by using a real parameter β ∈ [0,1],
where 1 (0) means all the relevance to reliability (reputation), while REBECCA also
considers both the satisfaction of C about a given product and those of the customers
for presenting to C only suggestions for high-reputed products. The decentralized
architecture makes REBECCA scalable with respect to the MAS size and preserves
the C’s privacy since (i) each merchant agent monitors the C’s behaviour in visiting
its site and (ii) each customer agent locally computes its trust measures.

Finally, the results of some experiments performed by using a JADE prototype
of REBECCA clearly show its advantages, in terms of suggestions effectiveness.

2 The REBECCA Framework

In REBECCA each customer C and each merchant M is associated with a personal
agent (resp., c and m) using a common Catalogue K storing each product category
(pc) and its product instances (pi). Agents monitors Cs’ site visits to each pi and pc
to build their profiles and measure the associated interests. To determine collabora-
tive filtering suggestions, each agent m computes the similarity among its visitors
by using the interest values shown in each offered pi. Finally, c stores an internal
trust model of the products that is based both on the direct past experiences and on
suggestions coming from each other customers. More in detail, each user U (either
customer or merchant) is associated with an agent a that manages a User Profile
(UP) consisting of the tuple 〈WD,BD,T D〉, where:

• WD contains the system parameters α , β and γ (see below), and the current K.
• BD describes the U’s past behaviour. Thus for C (M), BD stores, for each visited

(offered) pc: (i) the interest Cr in that pc and (ii) Lpc, a list of elements lpi associ-
ated with a pi ∈ pc, visited by C (offered by M). Each lpi stores some data about
the C’s behaviour (the behaviour of all the customers visiting the site)in visiting
pi and, in particular, Pr represents the interest in pi.

• TD is only in the C’profile and consists of 4 arrays of real values set in [0,1],
namely: (i) SAT stores the C’s global satisfaction for each pi based on the other
customers’ evaluations; (ii) RECC contains the suggestions of other customer
agents provided to c about the expertise of other customers agents on a pc; (iii)
REP stores customer agents reputation rates computed using suggestions; (iv)
REL contains the reliability values computed by c using its direct experiences;

Note that the meaning of Cr (Pr) for C is his interest rate in the linked pc (pi) but
for M it is that of all the visitors of his site.

2.1 Computing Customer Interests and Product Reliability

When C visits the M’s site then the C’s (M’s) agent c (m) monitors the C’s behaviour
to computes the interest rates Pr (Cr) for each visited pi ∈ pc (pc) based on both
the time spent in visiting the Web page containing pi (pc) and the time distance



REBECCA 33

between two consecutive visits. As a consequence, Pr = α ·δ ·Pr+(1−α) · t (resp.
Cr = α · δ ·Cr+(1−α) · t), where the past C’s interest for the involved pi (pr) is
weighted by α and δ (i.e., δ = (365−Δ)/365 and decreases based on the number
of days (Δ ) between two consecutive visits).

To evaluate the trust value of each pi which C is interested in, the C’s agent
requires some recommendations to a subset AS of agents in its MAS, considered as
experts in that pc which pi belongs to. For each agent d ∈ AS, each recommendation
about d, related to the category pc and coming from the generic agent e is stored in
RECC(e,d, pc). Basing on these recommendations, c computes the reputation of d
in pc, as REP(d, pc) = ∑e∈AS RECC(e,d, pc)/|AS|.

Moreover, the agent c computes the reliability degree of a customer agent d for
a pc, considering each opinion op(d, pi) provided by d about each pi belonging to
pc, and comparing such opinion with the feedback f eed(pi) that c provides about
pi. Formally:

REL(d, pc) = β ·REL(d, pc)+ (1−β ) · 1
qe · |AS| · ∑

e∈AS

qe

∑
j=1

|op(d, pi j)− f eed(pi j)|
op(d, pi j)

(1)

where β is a real value, belonging to [0,1], that represents the importance that c
gives to the past evaluations of the reliability with respect to the current evaluation.

Finally, the agent c can compute the product satisfaction of pi ∈ pc coming from
the other customer agents weighted by means of their reliability and reputation in-
tegrated in a unique trust measure using a coefficient γ to weight the importance of
the reliability vs the reputation. Formally:

SAT (pi) =
∑d∈AS(op(d, pi) · (γ ·REL(d, pc)+ (1− γ) ·REP(d, pc)))

|AS| (2)

3 The REBECCA Recommendation Algorithm

The recommendation algorithm of REBECCA (Figure 1) runs on merchants and
customers sides and exploits a content-based (CB) and collaborative filtering (CF)
approaches, using the trust measures described in the previous section.

More in detail, when a customer C visits a merchant site M, the function
Recommend, executed by the merchant agent m, receives the M’s profile and re-
turns the lists CB and CF of pi that m will recommend to c. To this purpose, m calls
the function extract pc receiving the BD section of the M’s profile for return-
ing the list L1 (with all the pc ∈ K offered by M) that is sent to c, which answer
with the list L2 including the v (an integer parameter set by C) pc contained in L1
that better meet the C’s interests, ordered by Cr values. When L2 is received by m,
contentbased pi is called by M and returns a list CB containing, for each of the



34 D. Rosaci and G.M.L. Sarné

v pc∈ L2, at most y (y is a parameter set by M) pi having the highest rates. To gener-
ate CF suggestions the array of lists PC is built by m; each element is a list associated
with a customer i, that visited the site, and stores the v most interesting pc. To this
aim, m calls the function customersInterests, receiving in input the BD data
of the m profile and v. Each array element PC[i] is a list built by (i) using the Cr val-
ues, (ii) ordering them in a decreasing order and (iii) selecting, for each user, the v pc
with the highest Cr values. Then the function collaborativefiltering pi
is called by m; it receives the list L2 (provided by c), the array of lists PC, the BD
section of the m profile and the two integers z and x (set by M). For selecting the z
agents most similar to c, this function exploits PC to compute the similarity degree
between c and each customer that interacted with M in the past. For each of the z
most similar customers, at most x pi having the highest Pr rates are inserted in the
list CF . The lists CB and CF are returned to m and sent to c.

The function categoriesOfInterest is executed by c when it receives
from m the list L1 and calls extract pc to obtain the list PCI with each pc of
interest for C. Then, intersection pc computes the intersection L1∩PCI that
is stored in PCI∗. Finally, select pc receives the list PCI∗ and v for returning
the first v product categories having the highest Cr values that are returned into the
list L2.

Finally, TBFiltering is executed on the c side, accepting as input the lists CB
and CF sent by m that computed them by exploiting Recommend. This function
joins CB and CF in the list P and by means of select pi provides to prune
such lists from each pi considered as not interesting based on its SAT(pi) value
(see Section 2.1). Then select pi returns each pi ∈ P having a SAT(pi) > η (a
parameter set by C). This product instances are inserted in a list FP returned to c.

void Recommend(merchantAgent m, ListOfProductInstancesCB, ListOfProductInstancesCF) {
ListOfProductCategories L1=extract pc(m.UP.BD);
void send(ListOfProductCategories L1, c.Address);
void receive(ListOfProductCategories L2, int v, int y);
ListOfProductInstances CB=contentbased pi(ListOfProductCategories L2, m.UP.BD, int y);
ListsOfCustomersInterests PC[ ]=customersInterests(m.UP.BD, int v);
ListOfProductInstances CF=collaborativefiltering pi(ListOfProductCategories L2,

ListsOfCustomersInterestsPC[ ], m.UP.BD, int z, int x); }

ListOfProductCategories categoriesOfInterest(ListofProductCategories L1) {
ListOfProductCategories PCI=extract pc(c.UP.BD);
ListOfProductCategories PCI∗=intersection pc(L1, PCI);
ListOfProductCategories L2=select pc(PCI∗,v);
return L2; }

ListOfProductInstances TBFiltering(ListofProductInstances CB,CF, real η) {
ListOfProductInstances P=union pi(CB,CF);
ListOfProductInstances FP=select pi(P, η);
return FP; }

Fig. 1 The REBECCA recommendation algorithm



REBECCA 35

4 Experiments and Conclusions

This section presents some experiments devoted to show the REBECCA
effectiveness in generating useful suggestions to support customers and merchants
in their B2C activities. These experiments have been realized by using a JADE
(jade.tlab.com) prototype involving 23 XML EC Web sites, a common Catalogue
(described by a XML Schema) 852 product instances belonging to 10 product cat-
egories and a set of 48 real users monitored in their REBECCA B2C activities. To
obtain an initial profile of the customers’ orientation, the first 10 sites has been used
without suggestion support and trusted customer agents. Profiles and trust informa-
tion are used by the merchant agents to generate suggestions for the other 10 sites.
Experiments involved REBECCA, the trust-based recommender system presented
in [9] (identified as RS-TB), and the recommender systems EC-XAMAS [3] and
TRES [12] that do not consider trust information.

To measure the effectiveness of the proposed suggestions, we have inserted in a
list, called A, each pi suggested by the merchant agent and in a list, called B, the cor-
responding customer’s choices, and we have compared the corresponding elements in
the two lists. We adopted the standard performance metrics precision and recall [20]
and set the customer and merchant parameters v, y, z and x to 2, 3, 2 and 3, respectively.

The results (see Table 1) show that REBECCA in terms of precision (resp. recall)
performs 19 (resp. 15) percent better than EC-XAMAS, 9 (resp. 10) percent better
than TRES and 20 (resp. 19) percent better than RS-TB. In conclusion, experiments
show as REBECCA leads to generate more effective recommendations with respect
the other systems mainly due to the use of trust information. Indeed, deactivating
the use of the trust-based filtering, represented by the function TBFiltering.
The result thus obtained, represented in Table 1, show that the performances of
REBECCA significantly decrease.

As conclusion, in an EC community can be present unreliable or misbehaving
interlocutors. To this aim, this paper has been presented REBECCA, a trust-based
recommender system acting as CB and CF recommender to support B2C traders by
considering customers’ orientations, products reputation and traders’ trustworthi-
ness. The distributed architecture makes efficient the computation of trust measures
and suggestions, gives high scalability and preserves customers’ privacy. Some in-
teresting experimental results have shown the advantages of REBECCA.

Table 1 Performances of REBECCA (with (A) and without (B) trust measures), RS-TB,
EC-XAMAS and T RES

REBECCA (A) REBECCA (B) RS−T B EC-XAMAS T RES

Pre 0.892 0.783 0.819 0.698 0.802
Rec 0,878 0.795 0.807 0.721 0.778

Acknowledgement. This work has been partially supported by the TENACE PRIN Project
(n. 20103 P34XC) funded by the Italian Ministry of Education, University and Research.



36 D. Rosaci and G.M.L. Sarné

References

1. Avesani, P., Massa, P., Tiella, R.: Moleskiing. It: a trust-aware recommender system for
ski mountaineering. Int. J. for Infonomics, 20 (2005)

2. Chesbrough, H.: Business Model Innovation: Opportunities and Barriers. Long Range
Planning 43(2-3), 354–363 (2010)

3. De Meo, P., Rosaci, D., Sarnè, G.M.L., Ursino, D., Terracina, G.: EC-XAMAS: Support-
ing e-Commerce Activities by an XML-Based Adaptive Multi-Agent System. Applied
Artificial Intelligence 21(6), 529–562 (2007)

4. Gómez, M., Carbó, J., Benac-Earle, C.: An Anticipatory Trust Model for Open Dis-
tributed Systems. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) ABiALS
2006. LNCS (LNAI), vol. 4520, pp. 307–324. Springer, Heidelberg (2007)

5. Griffiths, G.: Enhancing Peer-to-Peer Collaboration Using Trust. Expert Systems with
Applications 31(4), 849–858 (2006)

6. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An Integrated Trust and Reputation Model
for Open Multi-Agent System. Autonmous Agent and Multi Agent Sys. 13(2), 119–154
(2006)

7. Jösang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems 43(2), 618–644 (2007)

8. Kim, M., Ahn, J.H.: Management of Trust in the e-Marketplace: the Role of the Buyer’s
Experience in Building Trust. J. of Information Technology 22(2), 119–132 (2007)

9. O’Donovan, J., Smyth, V.: Trust in recommender systems. In: Proc. 10th Int. Conf. on
Intell. User Interfaces, pp. 167–174. ACM (2005)

10. Palopoli, L., Rosaci, D., Sarné, G.M.L.: A Multi-tiered Recommender System Archi-
tecture for Supporting E-Commerce. In: Fortino, G., Badica, C., Malgeri, M., Unland,
R. (eds.) Intelligent Distributed Computing VI. SCI, vol. 446, pp. 71–81. Springer,
Heidelberg (2013)

11. Rosaci, D.: Trust measures for competitive agents. Knowledge-Based Systems 28, 38–46
(2013)

12. Rosaci, D., Sarné, G.M.L.: TRES: A Decentralized Agent-Based Recommender System
to Support B2C Activities. In: Hkansson, A., Nguyen, N.T., Hartung, R.L., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 183–192. Springer,
Heidelberg (2009)

13. Rosaci, D., Sarnè, G.M.L.: Cloning Mechanisms to Improve Agent Performances. Jour-
nal of Network and Computer Applications 36(1), 402–408 (2013)

14. Rosaci, D., Sarnè, G.M.L.: Recommending Multimedia Web Services in a Multi-Device
Environment. Information Systems 38(2), 196–212 (2013)

15. Rosaci, D., Sarnè, G.M.L., Garruzzo, S.: Integrating Trust Measures in Multiagent Sys-
tems. International Journal of Intelligent Systems 27(1), 1–15 (2012)

16. Sabater, J., Sierra, C.: REGRET: Reputation in Gregarious Societies. In: Proc. 5th Int.
Conf. on Autonomous Agents, pp. 194–195. ACM (2001)

17. Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artificial
Intelligence Review 24(1), 33–60 (2005)

18. Sarvapali, D.H., Ramchurn, S.D., Jennings, N.R.: Trust in Multi-Agent Systems. The
Knowledge Engineering Review 19, 1–25 (2004)

19. Sierra, C., Dignum, F.: Agent-Mediated Electronic Commerce: Scientific and Technolog-
ical Roadmap. In: Dignum, F., Sierra, C. (eds.) Agent Mediated Elec. Commerce 2000.
LNCS (LNAI), vol. 1991, pp. 1–18. Springer, Heidelberg (2001)

20. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
21. Wei, K., Huang, J., Fu, S.: A Survey of E-Commerce Recommender Systems. In: Proc. of

the 13th Int. Conf. on Service Systems and Service Management, pp. 1–5. IEEE (2007)



Exploration of Document Classification
with Linked Data and PageRank

Martin Dostal, Michal Nykl, and Karel Ježek

Abstract. In this article, we would like to present a new approach to classification
using Linked Data and PageRank. Our research is focused on classification meth-
ods that are enhanced by semantic information. The semantic information can be
obtained from ontology or from Linked Data. DBpedia was used as a source of
Linked Data in our case. The feature selection method is semantically based so fea-
tures can be recognized by non-professional users as they are in a human readable
and understandable form. PageRank is used during the feature selection and gen-
eration phase for the expansion of basic features into more general representatives.
This means that feature selection and PageRank processing is based on network re-
lations obtained from Linked Data. The discovered features can be used by standard
classification algorithms. We will present promising results that show the simple
applicability of this approach to two different datasets.

1 Introduction

Document classification is an important part of document management systems and
other text processing services. Today‘s methods are usually statistically oriented,
which means a large amount of data is required for the training phase of these clas-
sification algorithms. The preparation of sufficient classification training sets and

Martin Dostal
NTIS - New Technologies for the Information Society,
Faculty of Applied Sciences,
University of West Bohemia, Pilsen, Czech Republic
e-mail: madostal@ntis.zcu.cz

Michal Nykl · Karel Ježek
Department of Computer Science and Engineering,
Faculty of Applied Sciences,
University of West Bohemia, Pilsen, Czech Republic
e-mail: {nyklm,jezek ka}@kiv.zcu.cz

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 37
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_6, c© Springer International Publishing Switzerland 2014



38 M. Dostal, M. Nykl, and K. Ježek

proper feature selection methods is a challenging task even for domain specialists.
So the common solution to this problem is based on relatively comprehensive cor-
puses that contain a lot of documents divided into different classification classes.
Statistical methods try to discover relations between terms and classification classes
during the training phase.

Our approach recognizes interesting keywords and expands them using semantic
information obtained from Linked Data. For example, based on a feature MySql
we can do the feature expansion into databases without the explicit occurrence of
this word in the document content. The classification phase can process these par-
ent concepts and use them for the correct pairing of documents and classification
classes.

Related work is discussed in Section 2. The basic principles of Linked Data are
described in Section 3 and our approach to feature selection is described in Sec-
tion 4. Evaluation of our method was performed with the 20 News Groups dataset
and our collection of call for papers emails. The results are presented in Section 5.

2 Previous Work

There have been many supervised learning techniques for document classifica-
tion. Some of these techniques include Naive Bayes, k-nearest neighbor, vector
approaches e.g. Rochio, support vector machines, boosting [14], rule learning al-
gorithms [4], Maximum Entropy and Latent semantic analysis.

DBPedia was used as a source of the Linked Data presented in this article. We
use a local copy of Linked Data stored in our relation database for performance
purposes, but the SPARQL endpoint could also be used. DBPedia is a semantically
enriched Wikipedia that was successfully employed previously for computing the
semantic relatedness of documents. WikiRelate! [15] combines path-based mea-
sures, information content-based measures, and text overlap-based measures.
Explicit Semantic Analysis [7] uses machine-learning techniques to explicitly rep-
resent the meaning of a text as a weighted vector of Wikipedia-based concepts.

Another approach to document classification [16] proposed a term graph model
as an improved version of the vector space model [13]. The aim of this model is to
represent the content of the document using the relationship between keywords. This
model enables us to define similarity functions and a PageRank-style algorithm.
Vectors of the PageRank score values were created for each document. The rank
correlation and the term distance were used as similarity measures to assign a doc-
ument to a classification class. An alternative approach to document classification
uses hypernyms and other directly related concepts [2, 12]. Further improvements
included feature expansion with additional semantic information based on ontol-
ogy [6]. This approach [6] uses external knowledge for mapping terms to regions
of concepts. For an exploration of related concepts, the traversal graph algorithm is
used.



Exploration of Document Classification 39

3 Linked Data

The concept of Linked Data [1] was first introduced by Tim Berners-Lee. He set up
four rules for machine-readable content on the Web:

• Use URIs as names for things.
• Use HTTP URIs so that people can look up those names.
• When someone looks up a URI, provide useful information using the standards

(RDF*, SPARQL).
• Include links to other URIs so that they can discover more things.

There are two basic problems with duplicates resources: disambiguation and co-
reference resolution. These problems were discussed in [8]. DBLP and DBpedia [5]
are two common Linked Data resources often used for academic research.

Linked Data contains information about a resource and moreover links to other
related resources. The resources are applied as tags to documents. There are two
basic types of links that we can directly use:

• Hypernym-hyponym (parent-child relation),
• Sibling-sibling (links to synonyms).

These relations are bidirectional so a child can find his parent and a parent
can find his children. Relations are described by ontology predicates. Exam-
ple of predicates from Linked Data: dbpedia-owl:genre, skos:broader,
dcterms:subject. The meaning of these predicates differs slightly, but we can
use them in the same way. An example of these relations between resources is shown
in Fig. 1.

Fig. 1 Scheme of hierarchical relations between nodes in LD

Synonyms are designated by the ontology relation: owl:sameAs, which in-
dicates true synonyms, and the relation skos:related, which indicates related
concepts.



40 M. Dostal, M. Nykl, and K. Ježek

4 Feature Selection

Feature selection is the most important part of our work. Therefore, the learning
phase consists of two parts in our case:

1. Training − basic features are selected and used for training in each category;
2. Features processing with Linked Data and PageRank (Fig. 2);

Fig. 2 Graph expansion with Linked Data and PageRank

Now we will describe the method for feature selection and their processing with
Linked Data and PageRank. Basic features are selected from documents in a com-
mon way. We can use TFIDF, χ2 or any other method. These features are mapped to
nodes in Linked Data, so each feature can be identified with URI and has a clear po-
sition in a graph of Linked Data. Other features are discarded as insignificant waste.
The mapping is based on full or partial compliance between the feature (term) and
name of the node in the corresponding language. The nodes are usually labeled in
several languages with regard to the significance and popularity of a node (Fig. 2).

The next step consists of processing these nodes with PageRank and other related
nodes from Linked Data (Fig. 2). The objective of this effort is to gain related nodes
with high relevance to the document, even if they were not seen in the content of the
document explicitly. Graph expansion is illustrated in the Fig. 2. The original (basic)
nodes are marked as I and derived nodes are marked as II. We have investigated three
options for construction of the graph (see Fig. 3).

Fig. 3 Graph expansion with PageRank



Exploration of Document Classification 41

a) All edges have the same weight equal to 1.
b) The basic nodes are advantaged with self-loop.
c) The basic nodes are advantaged with self-loop. The edges to the derived nodes

are penalized (based on the distance of the derived node from the basic node).

As expected, our evaluation of the expanded graph in Fig. 4 shows, that the variant
c) achieves the best results (see Tab. 1) due to effective limitation in the expan-
sion of the nodes. The other versions requires explicit limiting criterion for graph
expansion.

Table 1 Dependency of PageRank score on nodes expansion and weights of the edges

step exp. node var a) var b) var c)
I + II I + II + III I + II + III + IV I + II I + II + III I + II

I 1 0.08 0.07 0.027 0.16 0.14 0.12
I 2 0.18 0.15 0.059 0.20 0.18 0.22
I 3 0.13 0.11 0.043 0.14 0.13 0.17
II 4 0.13 0.11 0.043 0.10 0.09 0.10
II 5 0.27 0.18 0.071 0.21 0.15 0.21
II 6 0.11 0.09 0.036 0.09 0.08 0.09
II 7 0.11 0.09 0.036 0.09 0.08 0.09
III 8 0.19 0.355 0.16
IV 9 0.329

Fig. 4 Graph expansion with PageRank

Generally expressed: we begin with the nodes marked I and II. New nodes are
added only if at least one of the previously added nodes got a higher the PageRank
score than an arbitrary from other nodes. The higher the PageRank score, the more
significant the feature is for the article. In the next section, variant c) was used for
the evaluation of our feature selection approach.



42 M. Dostal, M. Nykl, and K. Ježek

5 Evaluation

Two different data collections were used for evaluation purposes: Conferences and
20 News Groups dataset [9]. Our collection of conferences consists of 15 000 calls
for papers.

This collection was chosen as a basic evaluation tool. Conferences can be rela-
tively easily divided into single and multi-topic cases. Multi-topic conferences were
discarded so we were able to apply single label document classification. The remain-
ing conferences were assigned to the corresponding topics based on the lists found
on the Internet. Almost every document from this collection consists of a large num-
ber of keywords related to the category. Therefore, we were able to train categories
relatively quickly. Approximately 10 solid documents were enough to train 1 cate-
gory with almost constant macro-averaging F1(β =1)

.
= 0.9. This F1 measure was

almost constant from 10 to 100 solid training documents for 1 category. After 100
training documents or 2000 features, a problem with over-training was noticed.

The 20 News groups dataset was used for the simulation of a more com-
mon case but only a subset from this collection was used. The reason was that
our source of Linked Data was not sufficient to distinguish between similar cat-
egories in the 20 News groups collection like comp.os.ms-windows.misc
and comp.windows. Another problem was over-training that occurs with approx-
imately 100 training documents for 1 category.

For evaluation purposes we decided to compare our features selection method and
the standard statistical approach with the same vector space classification algorithm
(Rocchio). The comparison (see Fig. 5) is done with macro-averaging F1 measure.
The number of testing documents is determined as 20% of the training documents.

Fig. 5 Graph – F1 measure for Rocchio classification algorithm (the 20 News groups)

6 Conclusion and Future Work

Our method for document classification with Linked Data is promising especially in
those tasks with insufficient training sets or for quick filtering of existing documents.
In those cases, the training phase could be very expensive and a waste of time for



Exploration of Document Classification 43

the user. Our method allows the definition of assigning categories using only a small
number of training documents or a single node from Linked Data with automatic
expansion on both sites - category definition and feature selection. In common tasks
of document classification, the existence of keywords from interesting categories in
Linked Data is required. In the future, we would like to eliminate the over-training
problem and we plan to create a method for document classification directly based
on the graph analysis.

Acknowledgements. This work was supported by the grants GAČR P103/11/1489, ERDF
project NTIS CZ.1.05/1.1.00/02.0090 and SGS-2013-029 “Advanced computing and inf.
systems”.

References

1. Berners-Lee, T.: Linked Data - Design Issues. Online document (2006),
http://www.w3.org/DesignIssues/LinkedData.html/
(Cited January 12, 2013)

2. Bloehdorn, S., Hotho, A.: Boosting for Text Classification with Semantic Features. In:
Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS (LNAI),
vol. 3932, pp. 149–166. Springer, Heidelberg (2006)

3. Brine, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems 30(1-7), 107–117 (1998)

4. Cohen, W., Singer, Y.: Context-sensitive learning methods for text categorization. In:
Proceedings of the ACM SIGIR 1996 (1996)

5. DBPedia, http://dbpedia.org/ (Cited January 12, 2013)
6. de Melo, G., Siersdorfer, S.: Multilingual text classification using ontologies. In: Am-

ati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 541–548.
Springer, Heidelberg (2007)

7. Gabrilovich, E., et al.: Computing semantic relatedness using Wikipedia-based explicit
semantic analysis. In: Proceedings of the IJCAI 2007, Hyderabad, India, pp. 1606–1611
(2007)

8. Jaffri, A., Glaser, H., Millard, I.: URI Disambiguation in the Context of Linked Data. In:
Proceedings of the LDOW 2008, Beijing, China (2008)

9. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning, 20 News groups dataset, pp. 331–339 (1995)

10. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search
Engine Ranking. Princeton University Press, Princeton (2006)

11. Ma, N., et al.: Bringing PageRank to the citation analysis. Proceedings of the Information
Processing & Management 44(2), 800–810 (2008)

12. Ramakrishnanan, G., Bhattacharyya, P.: Text Representation with WordNet Synsets us-
ing Soft Sense Disambiguation. In: Proceedings of the 8th NLDB, Burg, Germany (2003)

13. Salton, G.: The SMART Retrieval System. Prentice-Hall, Englewood Cliffs (1971)
14. Schapire, R., Singer, Y.: BoosTexter: A boosting-based system for text categorization.

In: Machine Learning, pp. 135–168 (1999)
15. Strube, M., Ponzetto, S.P.: WikiRelate! Computing semantic relatedness using

Wikipedia. In: Proceedings of the AAAI 2006, Boston, USA, pp. 1419–1424 (2006)
16. Wang, W., Do, D.B., Lin, X.: Term Graph Model for Text Classification. In: Li, X.,

Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 19–30. Springer,
Heidelberg (2005)

http://www.w3.org/DesignIssues/LinkedData.html/
http://dbpedia.org/


Matching Users with Groups in Social Networks

Domenico Rosaci and Giuseppe M.L. Sarné

Abstract. Understanding structures and dynamics of social groups is a crucial issue
for Social Network analysis. In the past, several studies about the relationships ex-
isting between users and groups in On-line Social Networks have been proposed.
However, if the literature well covers the issue of computing individual recom-
mendations, at the best of our knowledge any approach has been proposed that
considers the evolution of on-line groups as a problem of matching the individual
users’ profiles with the profiles of the groups. In this paper we propose an algorithm
that addresses this issue, exploiting a multi-agent system to suitably distribute the
computation on all the user devices. Some preliminary results obtained on simu-
lated On-line Social Networks data show both a good effectiveness and a promising
efficiency of the approach.

1 Introduction

Nowadays, the Internet scenario has seen a significant growth in scale and rich-
ness of On-line Social Networks (OSNs), that are becoming very complex and in-
ternally structured realities, particularly in the largest communities as Facebook,
Flickr, MySpace, Google+ and Twitter. In these networks we observe an increasing
diffusion of social groups, that are sub-networks of users having similar interests
[3, 7] and sharing opinions and media contents. In the past, some studies about the
relationships existing between users and groups in OSNs have been proposed. For
instance, in [8], a quantitative study is presented about the influence of neighbours
on the probability of a particular node to join with a group, on four popular OSNs.
Moreover, the proposal presented in [1] deals with the problem of the overwhelming
number of groups, that causes difficulties for users to select a right group to join.
To solve this problem, the authors introduce, in the context of Facebook, the Group

Domenico Rosaci · Giuseppe M.L. Sarné
University Mediterranea of Reggio Calabria, 89123 Reggio Calabria, Italy
e-mail: {domenico.rosaci,sarne}@unirc.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 45
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_7, c© Springer International Publishing Switzerland 2014



46 D. Rosaci and G.M.L. Sarné

Recommendation System using combination of hierarchical clustering technique
and decision tree. Also the studies presented in [2, 10, 11] deal with the problem
of giving recommendations to a group of users, instead of a single user. This is a
key problem from the viewpoint of creating OSN groups that provide their users
with a sufficient satisfaction. The problem is not simply to suggest to a user the best
groups to join with, but also to suggest to a group the best candidates to be accepted
as new members. If the existing research in OSN well covers the issue of computing
individual recommendations, and the aforementioned issue begins to give attention
to the issue of computing group satisfaction, however at the best of our knowledge
any study has been proposed to consider the issue of managing the evolution of a
OSN group as a problem of matching the individual users’ profiles with the profiles
of the groups. The notion itself of group profile is already unusual in OSN analy-
sis, although the concept of social profile is not new in the research area of virtual
communities. For instance, in [9], following some theories originated in sociologi-
cal research on communities, a model of a virtual community is presented, defined
as a set of characteristics of the community.

In this paper, we provide the following contribution:

• we introduce the notion of group profile in the context of OSNs, giving to this
notion a particular meaning coherent with the concept of OSN group. In our per-
spective, an OSN group is not simply a set of categories of interests, but also a
set of common rules to respect, a preferred behaviour of its members, a commu-
nication style and a set of facilities for sharing media contents. Our definition
of group profile is coherent with the definition of a user profile, that contains
information comparable with those of a group profile.

• We exploit the above notion of group profile to provide each group of an OSN
with a group agent, capable of creating, managing and continuously updating the
group profile. Similarly, we associate a user agent with each user of the OSN.

• Likewise to other approaches we proposed in the past to build recommender
systems for virtual communities [12, 14, 15, 16], introducing efficiency via the
use of a distribute agent system, here we propose to exploit the agents above to
automatically and dynamically computing a matching between user profiles and
group profiles in a distributed fashion. We note that the idea of associating an
agent as a representative of a group is not completely new in a social network
scenario, having been introduced also in [4, 5, 6]. However, in these past works
this idea has been exploited to allow interoperability between different groups,
without facing the problem of matching users and groups. We propose to provide
the user agent with a matching algorithm able to determine the group profiles that
best match with the user profile. This matching algorithm, named User-to-Groups
(U2G) is based on the computation of a dissimilarity measure between user and
group profiles. As a result of the U2G computation, the user agent will submit on
behalf of its user some requests for joining with the best suitable groups. On the
other hand, the agent of each group will execute the U2G algorithm to accept,
among the users that requested to join with the group, only those users having
profiles that sufficiently match with the group profile. This way, the dynamic



Matching Users with Groups in Social Networks 47

evolution of the groups should reasonably lead to a more homogeneous intra-
group cohesion.

• Some experiments we have performed on a set of simulated users and groups
confirms this intuition, and also show promising efficiency a scalability of the
proposed algorithm.

The remaining of the paper is organized as follows. In Section 2 we introduce our
reference scenario. Section 3 present the proposed U2G matching algorithm, while
Section 4 describes the experiments we have performed to evaluate our approach.
Finally, in Section 5 we draw our conclusions.

2 The Social Network Scenario

In our scenario, we deal with a Social Network S, represented by a pair S = 〈U,G〉,
where U is a set of users, G is a set of groups of users and each group of users g ∈ G
is a subset of U (i.e, g ⊆U ∀g ∈ G).

We assume that a single user u (resp., a single group g), of S is characterized by
the following properties:

• He/she (resp., it) deals with some categories of interest in the social network (e.g.
music, sport, movie, etc.). We denote as C the set of all the possible categories
of interests, where each element c ∈ C is a string representing a given category.
We denote as INT ERESTSu (resp., INT ERESTSg) a mapping that, for each
category c ∈C, returns a real value INT ERESTSu(c) (resp., INT ERESTSg(c)),
ranging in [0..1], representing the level of interest of the user u (resp., of the users
of the group g) with respect to discussions and multimedia content dealing with
c. The values of this mapping are computed on the basis of the actual behavior
of u (resp., of the users of g).

• He/she has a preference with respect the access mode of the groups (resp., it has
adopted a particular access mode). The access mode is the policy regulating the
access to a group (e.g., open, closed, secret, etc.). We denote as ACCESSu (resp.,
ACCESSg) the access mode (represented by a string) associated with u (resp., g).

• He/she adopts or does not adopt (resp., it tolerates or does not tolerate) some
possible behaviour available in the social network. A behaviour is a type of ac-
tion that a user could perform, e.g. “publishing more than 2 posts per hour”,
or “publishing posts longer than 500 characters”. We suppose each possible
behaviour is represented by a boolean variable, that is equal to true if this
behaviour is adopted, f alse otherwise. We denote as BEHAVIOURSu (resp.,
BEHAVIOURSg) a set of behaviours, representing how u (resp., g) behaves with
respect to all the possible behaviours. For instance, if BEHAVIOURS= {b1,b2},
where b1 represents the behaviour of publishing more than 2 posts per hour, and
b2 represents the behaviour of publishing in most of the cases posts longer than
500 characters, then a property BEHAVIOURSu = {true, f alse} characterizes a
user u that publishes more than 2 posts per hour and that, in the most of cases,
does not publish posts longer than 500 characters.



48 D. Rosaci and G.M.L. Sarné

• He/she has (resp., its users have) a set of friends, that are users of the social
network. We denote as FRIENDSu (resp., FRIENDSg) the set of all the users
that are friends of u (resp., the set of all the users that are friends of at least a
member belonging to the group g).

Then, we define the profile pu (resp., pg) of a user u (resp., a group g) as a tuple
〈INT ERESTSu,ACCESSu,BEHAVIOURSu,FRIENDSu〉
(resp., 〈INT ERESTSg,ACCESSg,BEHAVIOURSg,FRIENDSg〉). Moreover, we as-
sume that a software agent au (resp., ag) is associated with each user u (resp., group
g). The agent au (resp., ag) automatically performs the following tasks:

• it updates the profile pu (resp., pg) of its user (resp., group) each way the user
u (resp., a user of the group g) performs an action involving some information
represented in pu (resp., pg). In particular, each time the user u publishes a post,
or comments an already published post, dealing with a category c, the new value
INT ERESTSu(c) is updated as follows:

INT ERESTSu(c) = α · INTERESTSu(c)+ (1−α) ·δ

that is a weighted mean between the previous interest value and the new value,
where α and δ are real values (ranging in [0..1]). More in detail, δ represents the
increment we want to give to the u’s interest in c consequently of the u’s action,
while α is the importance we want to assign to the past values of the interest
value with respect to the new contribution. The values α and δ are arbitrarily
assigned by the user itself. Similarly, the INT ERESTSg(c) value of a group g
is updated by the agent ag each time the INT ERESTSu(c) value of any user
u ∈ g changes. The new value of INT ERESTSg(c) is computed as the mean of
all the INT ERESTSu(c) values ∀c ∈ g. Moreover, each way the user u performs
an action in the social network (e.g. publishing a post, a comment, etc.) its agent
au analyses the action and consequently sets the appropriate boolean values for
all the variables contained in BEHAVIOURSu (e.g., if BEHAVIOURSu contains
a variable representing the fact of publishing more than 2 posts per hour, then au

checks if the action currently performed by u makes true or false this fact and,
consequently, sets the variable).

Analogously, the agent ag, associated with a group g, updates the variables
contained in BEHAVIOURSg each time the administrator of g decides to change
the correspondent rules (e.g., e.g. if BEHAVIOURSg contains a variable repre-
senting the fact of publishing more than 2 posts per hour, and the administrator of
g decides that this fact is not tolerated in the group, then ag sets the correspondent
variable to the value f alse).

Furthermore, if the user u (resp., the administrator of the group g) decides to
change his/her preference with respect to the access mode, the agent au (resp., ag)
consequently updates ACCESSu (resp., ACCESSg). Finally, if the user u (resp.,
a user of the group g) adds a new friend in his/her friends list, or deletes an
assisting friend from his/her friends list, the agent au (resp., ag) consequently



Matching Users with Groups in Social Networks 49

updates FRIENDSu (resp., FRIENDSg). Note that the agent ag computes the
property FRIENDSg as the union of the sets FRIENDSu of all the users u ∈ g.

• Periodically, the agent au (resp., ag) executes the user agent task (resp., group
agent task) described in Section 3, in order to contribute to the User-to-Group
(U2G) Matching global activity of the social network.

In order to perform the above tasks, each agent can interact with each other, sending
and receiving messages. This possibility is assured by the presence of a Directory
Facilitator agent (DF), associated with the whole social network, that provides a
service of Yellow Pages. More in particular, the names of all the users and groups
of the social network are listed in an internal repository of the DF, associating with
each user and group the corresponding agent name. A Communication Layer allows
an agent x to send a message to another agent y simply by using the name of y in
the receiver field of the message. Note that maintaining the DF naming repository
is the only centralized activity in our social network scenario, while the algorithm
computing the U2G matching is completely distributed on the whole agent network.

3 The U2G Matching Algorithm

In our scenario, the U2G matching is a global activity distributed on the user and
group agents belonging to the agent network. More in particular, each user agent
au (resp. group agent ag) periodically executes the following user agent task (resp.
group agent task), where we call epoch each time the task is executed, and we denote
as T the (constant) period between two consecutive epochs.

3.1 The User Agent Task

Let X be the set of the n groups the user u is joined with, where n ≤ nNMAX , being
NMAX the maximum number of groups which a user can join with. We suppose
that au: (i) records into an internal cache the profiles of the groups g ∈ X obtained in
the past by the associated group agents; (ii) associates with each profile pg the date
of acquisition, denoted as dateg. Let also m be the number of the group agents that
at each epoch must be contacted by au. In such a situation, au behaves as follows:

• In the DF repository, it randomly selects m groups that are not present in the set
X . Let Y be the set of these selected groups, and let Z = X

⋃
Y a set containing

all the groups present in X or in Y .
• For each group g ∈Y , and for each group g ∈ X , such that the date of acquisition

dateg is higher than a fixed threshold ψ , it sends a message to the group agent
ag, whose name has obtained by the DF, requesting it the profile pg associated
with the group.

• For each received pg, it computes a dissimilarity measure between the profile
of the user u and the profile of the group g, defined as a weighted mean of
four contributions cI , cA, cB and cF , associated with the properties INT ERESTS,
ACCESS, BEHAVIOURS and FRIENDS, respectively. More in particular, each



50 D. Rosaci and G.M.L. Sarné

of this contribution measures how much are different the values of the corre-
sponding property in pu and in pg. To this purpose:

– cI is computed as the average of the differences (in the absolute value) of the
interests values of u and g for all the categories present in the social network,
that is:

cI =
∑c∈C |INT ERESTSu(c)− INTERESTSg(c)|

|C|
– cA is set equal to 0 (resp.,1) if ACCESSu is equal (resp., not equal) to

ACCESSg.
– cB is computed as the average of all the differences between the boolean vari-

ables contained in BEHAVIOURSu and BEHAVIOURSg, respectively, where
this difference is equal to 0 (resp., 1) if the two corresponding variables are
equal (resp., different).

– cF is computed as the percentage of common friends of u and g, with respect
to the total numer of friends of u or g. That is:

cF =
FRIENDSu

⋂
FRIENDSg

|FRIENDSu
⋃

FRIENDSg|
Note that each contribution has been normalized in the interval [0..1], for mak-
ing comparable all the contributions. The dissimilarity dug of a group g with
respect to the user u is then computed as:

dug =
wI · cI +wA · cA +wB · cB +wF · cF

wI +wA +wB +wF

• Now, let τ a real value, ranging in [0..1], representing a threshold for the dis-
similarity, such that each group g ∈ Z is considered as a good candidate to join
if (ii) dug < τ and (ii) it is inserted by au in the set GOOD. Note that if there
exist more than NMAX groups satisfying this condition, the NMAX groups hav-
ing the smallest values of global difference are selected. For each selected group
g ∈ GOOD, when g � X , the agent au sends a join request to the agent ag, that
also contains the profile pu associated with u. Otherwise, for each group g ∈ X ,
when g � GOOD, the agent au leaves the group g.

3.2 The Group Agent Task

Let K be the set of the k users joined with the group g, where k ≤ nKMAX , being
KMAX the maximum number of members allowed by the group administrator. We
suppose that ag stores into an internal cache the profiles of the users u ∈ K obtained
in the past by the associated user agents, and also associates with each profile pu the
date of acquisition, denoted as dateu. Each time ag receives a join request by a user
agent r, that also contains the profile pr associated with r, it behaves as follows:



Matching Users with Groups in Social Networks 51

• For each user u ∈ K such that the date of acquisition dateu is higher than a fixed
threshold η , it sends a message to the user agent au, whose name has obtained
by the DF, requesting it the profile pu associated with the user.

• After the reception of the responses from the contacted user agents, it computes
the dissimilarity measure dug between the profile of each user u ∈ K

⋃{r} and
the profile of the group g, following the definitions given in Section 3.1.

• Now, let π a real value, ranging in [0..1], representing a threshold for the dissim-
ilarity, such that a user u is considered as acceptable to join if dug < π . Then, the
agent ag stores in a set GOOD those users u ∈ K

⋃{r} such that dug < π (if there
exist more than KMAX users satisfying this condition, the KMAX users having
the smallest values of global difference are selected). If r ∈ GOOD, ag accepts
its request to join with the group. Moreover, for any user u ∈ K, with u �GOOD,
ag deletes u from the group.

4 Experiments

In this section, we describe some preliminary experiments we performed to evalu-
ate the effectiveness of the U2G matching activity in making more homogeneous
the groups of an OSN. To this purpose, we have built an OSN simulator, written in
JAVA and based on the JADE platform, capable of simulating the users’ behaviours
and the activities of their associated agents, as well as the group administrators’ be-
haviour and the activities of the group agents, in a social network. In our simulation,
we considered an OSN with 150.000 users and 1200 groups. The simulator pro-
vided each user and each group with a user profile, having the structure described
in Section 2. More in detail, the profile pu of a user u is generated as follows:

• each values INT ERESTSu(c) is a random value from a uniform distribution of
values in [0..1];

• ACCESSu is assigned from three possible values, namely OPEN, CLOSED
and SECRET , such that the probability of assigning the value OPEN (resp.,
CLOSED, SECRET ) is set to 0.7 (resp., 0.2, 0.1). This distribution values ap-
pear reasonable in a realistic OSN scenario;

• BEHAVIOURSu contains six boolean variables, representing the user’s attitude
to: (i) publish more than 1 post per day; (ii) publish posts longer than 200 char-
acters in most of the cases; (iii) publish at least two comments per day to posts of
other users; (iv) respond to comments associated with its posts in most the cases;
(v) leave at least 2 rates “I like it ”per day; (vi) respond to a message of another
user in most the cases. The values of these variables are randomly generated from
a uniform distribution on the possible value-set {true, false};

• in FRIENDSu, the simulator inserts a set of other users, randomly choosing one
of the following distributions: (i) users that have a dissimilarity with u smaller
than 0.5 (the dissimilarity is computed in the same way of dug in Section 2);
(ii) users randomly chosen from the set of the OSN users; (iii) 50 percent of the
users generated as in (i) and the remaining 50 percent generated as in (ii). These
distributions represent three realistic types of users, namely those that select their



52 D. Rosaci and G.M.L. Sarné

Table 1 Values used for the U2G parameters

al pha δ ψ (days) τ η (days) π

Value 0.5 0.1 10 0.7 10 0.7

friends based on similar preferences and behaviour, those that randomly accept
any friendship and those that behaves in an intermediate fashion with respect to
the first two attitudes.

Users are then randomly assigned to the available groups, in such a way that
a user is joined at least with 2 groups and at most with 10 groups. The pro-
file pg of each group g is assigned generating completely random values for the
properties ACCESSg and BEHAVIOURSg, while the properties INT ERESTSg and
FRIENDSg are computed based on the corresponding members’ values, following
the formulas described in Section 2. The values of the parameters introduced in
Section 3 are shown in Table 1.

As a measure of the internal cohesion of a group, we use the concept of average
dissimilarity, commonly exploited in Clustering Analysis [13], defined as the aver-
age of the dissimilarities between each pair of objects in a cluster. In our scenario,
a group g is the equivalent of a cluster of users, and the average dissimilarity of g,

denoted as ADg is computed as ∑x,y∈g,x�y dxy

|g| .
In order to measure the global cohesion of the groups of the social network,

we compute the mean MAD and standard deviation DAD of all the ADg, by the

formulas: MAD =
∑g∈G ADg

|G| ; DAD =

√
∑g∈G(ADg−MAD)2

|G|
In our simulation, after the random generation of the profiles of users and groups,

the initial values for the above measures were MAD = 0.512 and DAD = 0.043,
indicating a population with a very low homogeneity, due to the completely random
generation of the groups. Starting from this initial configuration, we have applied
the U2G algorithm described in Section 3, simulating a number of 150 epochs of
execution per each user, where each epoch simulated a time period of a day. The
results of the simulation, in terms of MAD and DAD with respect to the epochs,
are shown in Figure 1-A and 1-B. The results clearly show that the U2G algorithm
introduces a significant increment of the cohesion in social network groups, that
after a period of about 110 epochs achieves a stable configuration represented by
MAD = 0.163 and DAD = 0.0095. Moreover, we repeated the experiments above,
changing the number of simulated users and groups. In particular, in Figure 1-(C)
we have plotted the stable MAD/DAD for different values of the users’ number,
having fixed to 1200 the number of the groups, while in Figure 1-(D) the stable
MAD/DAD values are reported for different values of the groups’ number, having
fixed to 150.000 the number of the users. The results show that the number of the
necessary epochs for achieving a stable configuration increases almost linearly with
respect to the number of the groups, confirming a good scalability of the approach.



Matching Users with Groups in Social Networks 53

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

epoch

M
A

D
A

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

epoch

D
A

D

B

0 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
0

20
40
60
80

100
120
140
160
180
200

number of users (x1000)

ep
oc

h

C

0 10 20 40 80 100 120 140 160 180 200 220 240 260 280 300
0

20
40
60
80

100
120
140
160
180
200

number of groups (x10)
ep

oc
h

D

Fig. 1 The variation of (A) MAD and (B) 10*DAD vs epochs and the variation of the epoch
corresponding to stable MAD/DAD for (C) different number of users and 1200 groups and
(D) different number of groups and 150.000 users

5 Conclusion

The problem of making possible a suitable evolution in OSN groups, dynamically
increasing the intra-group cohesion, is emerging as a key issue in the OSN research
field. If the notion of homogeneity is becoming already more complex with the intro-
duction of high-structured user profiles, leading to design sophisticated approaches
for computing similarity measures, on the other hand the large dimensions of cur-
rent OSNs, as well as the continuously increasing number of groups, introduce the
necessity of facing efficiency and scalability problems. In this paper, we present a
User-to-Group matching algorithm, that allows a set of software agents associated
with the OSN users to dynamically and autonomously manage the evolution of the
groups, detecting for each user the most suitable groups to join with based on a
dissimilarity measure. Moreover, the agents operate on behalf of the group admin-
istrators, such that a group agent accepts only those join requests that come from
users profile compatible with the profile of the group. Some preliminary experi-
ments clearly show that the execution of the matching algorithm increases in time
the internal cohesion of the groups composing the social network.

Acknowledgements. This work has been partially supported by the TENACE PRIN Project
(n. 20103 P34XC) funded by the Italian Ministry of Education, University and Research.



54 D. Rosaci and G.M.L. Sarné

References

1. Baatarjav, E.-A., Phithakkitnukoon, S., Dantu, R.: Group Recommendation System for
Facebook. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008 Workshops. LNCS,
vol. 5333, pp. 211–219. Springer, Heidelberg (2008)

2. Basu Roy, S., Amer-Yahia, S., Chawla, A., Das, G., Yu, C.: Space Efficiency in Group
Recommendation. The VLDB Journal 19(6), 877–900 (2010)

3. Buccafurri, F., Rosaci, D., Sarné, G.M.L., Palopoli, L.: Modeling Cooperation in Multi-
Agent Communities. Cognitive Systems Research 5(3), 171–190 (2004)

4. De Meo, P., Nocera, A., Quattrone, G., Rosaci, D., Ursino, D.: Finding Reliable Users
and Social Networks in a Social Internetworking System. In: Proc. of the 2009 Int.
Database Engineering & Applications Symp., pp. 173–181. ACM (2009)

5. De Meo, P., Nocera, A., Rosaci, D., Ursino, D.: Recommendation of Reliable Users,
Social Networks and High-Quality Resources in a Social Internetworking System. AI
Communications 24(1), 31–50 (2011)

6. De Meo, P., Quattrone, G., Rosaci, D., Ursino, D.: Dependable Recommendations in
Social Internetworking. In: Web Intelligence and Intelligent Agent Technologies, pp.
519–522. IET (2009)

7. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized
Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web.
LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

8. Hui, P., Buchegger, S.: Groupthink and Peer Pressure: Social Influence in Online Social
Network Groups. In: Int. Conf. on Advances in Social Network Analysis and Mining,
ASONAM 2009, pp. 53–59. IEEE (2009)

9. Hummel, J., Lechner, U.: Social Profiles of Virtual Communities. In: Proc. of the 35th
Annual Hawaii Int. Conf. on System Sciences, HICSS 2002, pp. 2245–2254. IEEE
(2002)

10. Kasavana, M.L., Nusair, K., Teodosic, K.: Online Social Networking: Redefining the
Human Web. Journal of Hospitality and Tourism Technology 1(1), 68–82 (2010)

11. Kim, J.K., Kim, H.K., Oh, H.Y., Ryu, Y.U.: A Group Recommendation System for On-
line Communities. Int. Journal of Inf. Management 30(3), 212–219 (2010)

12. Palopoli, L., Rosaci, D., Sarné, G.M.L.: A Multi-Tiered Recommender System Archi-
tecture for Supporting E-Commerce. In: Fortino, G., Badica, C., Malgeri, M., Unland, R.
(eds.) Intelligent Distributed Computing VI. SCI, vol. 446, pp. 71–81. Springer, Heidel-
berg (2013)

13. Pearson, R.K., Zylkin, T., Schwaber, J.S., Gonye, G.E.: Quantitative Evaluation of Clus-
tering Results Using Computational Negative Controls. In: Proc. 2004 SIAM Int. Conf.
on Data Mining, pp. 188–199 (2004)

14. Rosaci, D., Sarné, G.M.L.: Recommending Multimedia Web Services in a Multi-device
Environment. Information Systems 38(2), 198–212

15. Rosaci, D., Sarné, G.M.L.: Efficient Personalization of e-Learning Activities Using a
Multi-Device Decentralized Recommender System. Computational Intelligence 26(2),
121–141 (2010)

16. Rosaci, D., Sarné, G.M.L.: A multi-agent recommender system for supporting device
adaptivity in e-Commerce. Journal of Intelligent Information Systems 38(2), 393–418
(2012)



Semantically Partitioned Peer to Peer Complex
Event Processing

Filip Nguyen, Daniel Tovarňák, and Tomáš Pitner

Abstract. Scaling Complex Event Processing applications is inherently problem-
atic. Many state of the art techniques for scaling use filtering on producers, vertical
scaling, or stratification of an Event Processing Network. The solutions
usually aren’t distributed and require centralized coordination. In this paper, we
are introducing a technique for scaling Complex Event Processing in a distributed
fashion and by taking semantic information of events into account. We are introduc-
ing two CEP models for scaling CEP architectures, providing core algorithms, and
evaluating their performance.

1 Introduction

In this paper, we are concerned with a new way of scaling Complex Event Process-
ing (CEP) applications. This section introduces CEP, presents the motivation for our
work, and introduces our contribution.

1.1 Complex Event Processing

CEP is both a theoretical and a practical research area that studies events and event
processing in current computing systems and businesses. Examples of such events
may be:

• A payment using a credit card. This may be regarded as relatively infrequent
event.

• A barcode reading of a product code. This may be regarded as a frequent event.
• A motion sensor on electronic doors to a supermarket.

Filip Nguyen · Daniel Tovarňák · Tomáš Pitner
Faculty of Informatics, Masaryk University,
Brno, Czech Republic
e-mail: {xnguyen,xtovarn,tomp}@fi.muni.cz

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 55
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_8, c© Springer International Publishing Switzerland 2014



56 F. Nguyen, D. Tovarňák, and T. Pitner

All of these events may be correlated together and may thusly cross both techno-
logical and domain boundaries. The process of correlating is referred to as pattern
matching. Such a pattern might be: two payments made by the same credit card in
different supermarkets within a time frame of 1 hour.

Another possible view of Complex Event Processing is an upside down version
of standard data processing. Instead of data sitting in a database, waiting for queries
to be submitted, CEP may be viewed as queries sitting and waiting for data to be
submitted. That is why CEP is used as a monitoring tool ([4], [5]). An interesting
method of using CEP as a monitoring was introduced in [2], where it is usable even
for data mining.

Motivation for CEP nicely correlates with the current advent of Big Data, which
is a data centric approach to extracting meaningful data. The problem here is not to
store such data, but to retrieve it and to extract meaningful information [1]. CEP is
able to carry out extractions of data regarding time, a frequent component in data.
In CEP, data that is not processed is simply discarded.

CEP was motivated and introduced in a very comprehensive publication [3]. The
book provides a basic framework for many CEP usages, including dynamic complex
event processing. The book introduces the so called Event Processing Agent (EPA).
EPA is defined as an object that monitors events to detect certain patterns in them.
Another abstraction is then introduced in the form of an Event Processing Network
(EPN) which connects many EPAs into a network where each EPA sends events to
another EPA. EPNs are added to the model for flexibility and allow for the easy reuse
of EPAs and for the building of dynamic EPNs. In these dynamic EPNs, processing
agents may enter or leave the network at the time of processing.

1.2 Peer to Peer Complex Event Processing

We exploit the fact that events from certain producers are related to each other in
some way. We do this by breaking up the event space by identifying related produc-
ers using CEP itself. We then exploit this information and put processing only where
it is most needed. For example, knowing that two retail stores were visited by the
same customer in the last two days signifies some connection between the two re-
tail stores. With information that the producers are related, we are able to add event
processing between these two retail stores. This event processing between these two
stores may consider much more fine grained events. By using this approach we may
lose some information because fine grained analysis are not done everywhere. A
similar probabilistic view of CEP was also discussed in [6] using an example of a
hypothetical surveillance system that is monitored using CEP.

To show how we help scale CEP, we are introducing two graph oriented event
processing abstractions: peer model and centralized model. In both models, we view
a graph of CEP engines and producers as a basic building block for creating scalable
event processing architecture.



Semantically Partitioned Peer to Peer Complex Event Processing 57

To uncover possible correlations between producers, we use partitioning algo-
rithms. These two algorithms help to identify which producers should have the en-
gine among them (using the centralized model). We later also map this centralized
approach to the peer model.

We have developed two partitioning algorithms. Their properties are discussed
and they are studied on an experimental basis in a simulated CEP environment.

2 State of the Art

In this chapter we are introducing current models of Complex Event Processing that
relate to our research. The word ”distributed” is being attached to CEP in many
publications, but its meaning varies. In [3] the interpretation is: the processing of
heterogeneous events, generated from various sources in an enterprise environment.
In this environment, events are generated very often and they travel via various
channels (a private computer network, the Internet) to be processed.

There are several approaches to scaling CEP. A straightforward way is by analyz-
ing bottlenecks in current CEP systems. The authors of [9] did extensive profiling of
the Borealis CEP system and identified that communication is one of the biggest bot-
tlenecks. Another approach was introduced in [10] where traditional query planning
was applied to CEP and optimizations. Sliding window push downs were success-
fully applied. Scalability via hierarchy was introduced in [2].

Stratification is a particularly interesting way of scaling CEP. It was introduced
in [12]. Stratification significantly improves event processing capabilities by paral-
lelizing certain matching operations. The input for a stratification algorithm is EPN
with dependency information. Dependency information states which EPA depends
on the input of another EPA. Using a simple algorithm, the authors were able to
cleanly separate EPAs into sets called strata, which contain agents that can run in
parallel.

In this paper, we understand distributed CEP as distributed collection, distributed
processing and most importantly, distributed matching of events.

3 Peer to Peer Complex Event Processing

In this section we will introduce our CEP models. We will also discuss the event
space correlation problem as well as our approach to solve it.

Our notation has two parts: graphical representation and query language.
First we will look at graphical representation. Figure 1 shows the basic building

blocks of our model. The black node represents the centralized engine that accepts
events. The producers of the events are represented by red nodes with light rings.
The producers only produce events and do nothing else. Red nodes with bold rings



58 F. Nguyen, D. Tovarňák, and T. Pitner

B:5:P1AP1P1

Centralized Engine Producer Peer Event
Event with 
Time,Peer Information

Fig. 1 CEP Graph Model

represent peers. A peer is a CEP engine that is placed directly on a producer and
replaces the centralized engine in our model. Our notation further includes an event
which may be augmented with time information pertaining to its creation as well as
with the name of the producer.

In our model, we denote the set of producers, event engines, and peers using
capital P, e.g. P1,P2, ...,PN . Set of events is denoted E and discrete events may be
denoted by syntax name : time : producer. Events are described using two functions:
time : E → N for the time when the E originated and producer : E → P to get
the producer of the event. The producers may be connected in an undirected graph
and a producer may send some of his events to his neighbor. The function events :
P×P → 2E is used to retrieve a set of events that have traveled between the two
producers. The event engine is a node in our graph that, upon reception of an event
(E0 signifies incoming event), tries to use this event to match a pattern. Patterns MP
are represented by a simple SQL like syntax, e.g. WHERE E0=E1 WINDOW(10).
The WINDOW part of SQL syntax denotes the time frame in which the matching
takes place.

Function patterns : P → MP returns subset of patterns running on the peer.
Function matches : MP×N → 2E returns matched set of events matched by a

pattern since specified time.
There are two possible ways to model an event processing situation using these

building blocks: peer model and centralized model. Centralized model uses cen-
tralized engines and producers. In this case, events flow from the producers to the
engines. Figure 2a shows a simple CEP network where producers P1,P2,P3 send
their events to P4. The P4 in this example contains only one matching rule. This rule
fires only once when event B : 4 arrives to P4. The B : 10 doesn’t match the rule
because the sliding WINDOW is only 4 time units in this case.

The second possible way to model an event processing situation is peer model.
The basic building block is peer: both a producer and an event processing engine.
In this peer model, a graph is formed only by peers and it is possible to achieve the
same matching capabilities as with the centralized model. In Figure 2b, you can see
an example of peer model notation. P3 works both as the producer and the engine
that works instead of P4. Note that P3 also produces events back to itself.

Using the centralized model is better when explaining the concepts. On the
other hand, the peer model resembles our targeted implementation more as well as
introduces additional advantages.



Semantically Partitioned Peer to Peer Complex Event Processing 59

P1

P2
P3

B:10
C:1

P4

B:2
B:4

SELECT producer(E0) 
WHERE E0=E1 
WINDOW (4)

(a) Simple centralized CEP

P12

3B 32

3 :

P1B0
C1B

P14

SELECT producer(E0) 
WHERE E0=EB 
WINDOW (4)

(b) Simple Peer CEP

Fig. 2 CEP Models Comparison

3.1 Event Space Correlation Problem

Suppose we are building a CEP solution for 5 producers which are producing events.
Figure 3a shows such a situation. Suppose we want the engine to answer to the
following query: SELECT producer(E0), producer(E1) WHERE E0 = E1 WIN-
DOW(10).

P1
P2 P4

P5

P3

A

B

C

E

D

C

C

C
E

F

H E

F

G

(a) Centralized CEP

P1
P2 P4

P5

P3

P6

P7

(b) Dynamic CEP deployment

Fig. 3 CEP Models Comparison

Consider the technological implementation of P6. To be able to match the equal-
ity, the CEP engine needs to accumulate all of the events in the time frame and
continually analyze whether a new event is correlating with any of the other events
thus far accumulated. Because all of the events are related to each other, no strat-
ification is possible here. This problem is common among CEP engines and was
also discussed in [2], where the authors used rule allocation algorithms in their dis-
tributed CEP model. They considered a structure of rules to circumvent the problem.
A different approach to solving a special case of this problem is to design a special
data structure to hold shared events [8].

We have exploited the observation that producers are related. In the given exam-
ple on Figure 3a, we can see that producers P1,P2,P4 are correlating together more



60 F. Nguyen, D. Tovarňák, and T. Pitner

than the other producers. The fact that these 3 are related in some way can be ex-
ploited by placing a new P7 engine between them. This engine will have to consider
a lower number of events and thus its performance will also be better.

Methods for detecting some related producers are discussed further in this paper.
We call these methods partitioning algorithms.

In this section we discussed the dynamic placement of engines between pro-
ducers and we made use of a classic centralized CEP model. This facilitates easy
understanding, but it is important to note how this can be reinterpreted into our peer
model. In the peer model, we do not deploy additional engines, but we only con-
nect the appropriate engines and assign roles. Figure 4 shows an example of peer
model. The peer P5 in this situation assumes the role of P6 from the previous exam-
ple. When our algorithms decide that P1,P2,P3 are related, the three peers connect
(dashed line) and P3 takes responsibility of correlating events between them. Let us
portray the example in real world scenarios.

One example might be the detection of network attacks [13]. Computers and
network elements are the producers of network logging information. It is possible,
by monitoring coarse grained events in a network, to find out that some limited
set of computers is vulnerable to attack. Using this knowledge, we can deploy an
additional engine among the limited number of producers and process more fine
grained events.

Another example would be CEP engine used for monitoring public transporta-
tion [14]. Sensors in vehicles are producers. By detecting the coarse grained event
of ”user comfort by temperature”, we can detect that some vehicles are good candi-
dates to be closely analyzed and we can deploy an additional engine in the vehicle
computer itself and analyze more fine grained events (speed changes, vehicle tech-
nical data, time table precision of the driver).

P1

P3

P4

P2

P5

Fig. 4 Peer Model

The peer architecture of Complex Event Processing has some obvious down-
sides. In the real world, it may be challenging for a producer to be able to see every
other producer, e.g. every supermarket server may not have access to every other su-
permarket server. Some event patterns might not be detected when the partitioning
algorithm doesn’t connect the correct producers.

However, there are many advantages of this architecture. The previously men-
tioned scaling capabilities. It is easy to dynamically connect several nodes and



Semantically Partitioned Peer to Peer Complex Event Processing 61

thusly begin processing among them. Also, because producers feature an event pro-
cessing engine, it is possible to easily filter events. In addition to that each added
producer will improve the power of the whole system because of the addition of
another processing engine.

3.2 Partitioning Algorithms

We are introducing and comparing two partitioning algorithms: the CEP based al-
gorithm and the Monte Carlo Partitioning Algorithm. The algorithms dynamically
add/remove CEP engines among peers to conduct pattern matching.

The CEP based algorithm uses complex event processing of coarse grained events
(less frequent, not consuming too many resources) to later deploy more fine grained
events. The present matching patterns are configurable by the user and should be
prepared for a specific purpose. The algorithm uses centralized model.

We have used wait in the algorithms, which signifies waiting either for a spe-
cific guard or to wait for a specified time. While this wait is in progress, matching
continues in the CEP environment. This waiting happens only to the partitioning
algorithm.

The first algorithm has matching patterns as an input (MP1,MP2,MP3), together
with a graph representation of producers (P) and edges between them (channels).
The algorithm divides the producers into two subsets (Ple f t and Pright) and continu-
ally checks whether the division into these two subsets is valid. To do the check it
uses differ significantly - this check can be substituted to any configurable set dif-
ference algorithm. We use a simple set difference with threshold of 25% difference.

INPUT: COARSE GRAINED MP1 . FINE GRAINED MP2,MP3. CEP GRAPH G(P,channels)
2. channels := Pc ×P; patterns(Pc) = {MP1}; T:=0;
3. WAIT UNTIL |{p|∃e ∈ matches(MP1 ,T).p ∈ producer(e)}| >= |P|/2

X := {p|∃e ∈ matches(MP1 ,T).p ∈ producer(e)}
T:= CURRENT TIME

channels := channels∪{(x,Ple f t )|x ∈ P}∪{(x,Pright )|x ∈ P/X}
patterns(Ple f t ) := {MP2}
patterns(Pright ) := {MP3}

4. SAME WAIT AS IN (3)
IF {p|∃e ∈ matches(MP1 ,T).p ∈ producer(e)} DIFFER SIGNIFICANTLY FROM X

GOTO (2)
ELSE GOTO (4)

The Monte Carlo algorithm uses a centralized engine at the beginning. It derives the
interesting producers and correlates with the current set of matching rules. It then
divides the event space. A big advantage of this algorithm is that it doesn’t need any
input from the the CEP user. It works with matching patterns which have already
been provided for the centralized version of CEP. The algorithm divides producers
to two sets SH and SL based on the vector STAT .

INPUT: EXISTING MATCHING PATTERNS MP. T:=0. CEP GRAPH G(P,channels)
1. RANDOMLY SELECT MPsmall ⊂ MP;
2. channels := Pc ×P; patterns(Pc ) = MPsmall ; T:=0



62 F. Nguyen, D. Tovarňák, and T. Pitner

3. WAIT DEFINED TIME. THEN ∀x ∈ matches(MPsmall ,T )

STAT [producer(x)]+=1
LET SH, SL BE SET OF PRODUCERS. |SH|− |SL| < 1∧∀x ∈ SH,∀y ∈ SL.STAT [x] >= STAT [y]
channels := channels∪{(x,Ple f t)|x ∈ SH}∪{(x,Pright)|x ∈ SL}
patterns(Ple f t ) := MP; patterns(Pright ) := MP

4. T:= CURRENT TIME; CONSTRUCT STAT2 SAME WAY AS IN (2)
IF STAT2 FROM STAT DIFFERS SIGNIFICANTLY

GOTO (2)
ELSE GOTO (4)

3.3 Evaluation

We have implemented and measured these two algorithms in a simulated event pro-
cessing environment. This environment consisted of 100 event producers, each pro-
ducing up to 10 000 event types at random times from a non-uniform distribution.
The experiment was divided into two time periods.

In the first period, a random 20% of the producers were related. They produced
only 1 000 event types.

In the second time period, a different 20% of producers were chosen to be related.
As we can see from Figure 5a, the Monte Carlo is even better than ideal pattern

matching at a point. This is due to the fact that the two engines operating in the
parallel display had an overall better performance than the one overloaded ideal
engine - from time to time.

Figure 6 shows that ideal CEP engine has significantly higher matching capa-
bilities over the CEP based solution. While disturbing, after deeper thought this is
understandable. The CEP Based solution relies on the user to define the rule for
dividing the producers. In a simulated environment this is hard to do, however we
believe that this performance will be improved in more realistic scenarios.

From Figure 7, we can see that both algorithms drop in matching performance
when different events become related. However, the Monte Carlo is better in overall
matching capabilities. On the other hand, the CEP based algorithm provides better

0 5 10 15 20

0

50

100

Time

M
at

ch
es

ideal
Monte Carlo

(a) Pattern Matches

0 5 10 15 20

0

500

1,000

Time

M
em

or
y

Ideal
Monte1
Monte2

(b) Memory Consumption

Fig. 5 Ideal Engine vs Monte Carlo



Semantically Partitioned Peer to Peer Complex Event Processing 63

0 5 10 15 20

0

50

100

Time

M
at

ch
es

Ideal
CEP Based

(a) Pattern Matches

0 5 10 15 20

0

500

1,000

Time

M
em

or
y

Ideal
CEP1
CEP2

(b) Memory Consumption

Fig. 6 Ideal Engine vs CEP based Partitioning Algorithm

0 5 10 15 20

0

50

100

Time

M
at

ch
es

Monte Carlo
CEP Based

(a) Pattern Matches

0 5 10 15 20

0

200

400

600

800

Time

M
em

or
y

CEP1
CEP2

Monte1
Monte2

(b) Memory Consumption

Fig. 7 Monte Carlo vs CEP based Partitioning Algorithm

overall memory characteristics because it selects smaller event spaces to consider,
and it also uses coarse grained events to decide where to put fine grained engines.
This operation doesn’t consume much memory. The Monte Carlo, on the other hand,
has to work as a centralized and memory overloaded engine.

4 Conclusion and Future Work

In this paper, we have introduced a simplified view of Complex Event Processing
called peer model. Peer model aims to simplify the way of looking at CEP to eas-
ily introduce conceptual scaling optimizations. With this model, it is easier to think
about distributed event collection and processing. We have also described practical
mappings of this model in real world situations. Further, we have identified the event
space correlation problem that stops current CEP models from scaling conceptually.
We have introduced two partitioning algorithms and evaluated their performances
in a simulated environment. The proposed partitioning has a semantic nature in a
sense, that algorithms consider inner relations among events to uncover possible



64 F. Nguyen, D. Tovarňák, and T. Pitner

relations between producers. Experimental results show that the Monte Carlo parti-
tioning algorithm performs better with regards to matching capabilities, but suffers
from memory consumption. The CEP based algorithm provides an overall better
memory performance and is easier to deploy into high volume environments, but
has significantly lower matching capabilities.

In the future, we plan to extend the peer model from a query semantics perspec-
tive. We will introduce distributed algorithms that will allow the deployment of CEP
rules into the peer model and also allow for the collection of matching results from
it. Additional studies of partitioning algorithms are also needed. We hope that the
CEP based algorithm may be improved to give better matching performance. All of
these efforts are aimed to create an Open Source platform Peer CEP that is writ-
ten in the Java Programming language. The simulator which was used to conduct
experiments for this paper will also be part of the suite - for testing and research
needs.

References

1. Jacobs, A.: The pathologies of big data. Communications of the ACM - A Blind Person’s
Interaction with Technology CACM Homepage Archive 52(8), 36–44 (2009)

2. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining. ACM Trans. Comput.
Syst. 21(2) (2003)

3. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems, 376 p. Addison-Wesley Professional, New York (2002)

4. Tovarňák, D.: Towards Multi-Tenant and Interoperable Monitoring of Virtual Machines
in Cloud. In: 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Timisoara, Romania (2012)

5. Nguyen, F., Pitner, T.: Information System Monitoring and Notifications Using Complex
Event Processing. In: Proceedings of the Fifth Balkan Conference in Informatics, Novi
Sad, pp. 211–216. ACM, Serbia (2012) ISBN 978-1-4503-1240-0

6. Artikis, A., Etzion, O., Feldman, Z., Fournier, F.: Event processing under uncertainty.
In: Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems (DEBS 2012), pp. 32–43. ACM, New York (2012)

7. Isoyama, K., Kobayashi, Y., Sato, T., Kida, K., Yoshida, M., Tagato, H.: A scalable com-
plex event processing system and evaluations of its performance. In: Proceedings of the
6th ACM International Conference on Distributed Event-Based Systems, DEBS 2012.
ACM, New York (2012)

8. Lee, S., Lee, Y., Kim, B., Candan, K.S., Rhee, Y., Song, J.: High-performance compos-
ite event monitoring system supporting large numbers of queries and sources. In: Pro-
ceedings of the 5th ACM International Conference on Distributed Event-based System,
DEBS 2011, pp. 137–148. ACM, New York (2011)

9. Akram, S., Marazakis, M., Bilas, A.: Understanding and improving the cost of scaling
distributed event processing. In: Proceedings of the 6th ACM International Conference
on Distributed Event-Based Systems, DEBS 2012, pp. 290–301. ACM, New York (2012)

10. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams.
In: Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2006, pp. 407–418. ACM, New York (2006)



Semantically Partitioned Peer to Peer Complex Event Processing 65

11. Randika, H.C., Martin, H.E., Sampath, D.M.R.R., Metihakwala, D.S., Sarveswaren, K.,
Wijekoon, M.: Scalable fault tolerant architecture for complex event processing sys-
tems. In: International Conference on Advances in ICT for Emerging Regions (ICTer),
Colombo, Sri Lanka (2010)

12. Biger, A., Etzion, O., Rabinovich, Y.: Stratified implementation of event processing net-
work. In: 2nd International Conference on Distributed Event-Based Systems. Fast Ab-
stract, Rome, Italy (2008)

13. Minařı́k, P., Vykopal, J., Krmı́ček, V.: Improving Host Profiling with Bidirectional
Flows. In: International Conference on Computational Science and Engineering, CSE
2009, August 29-31, vol. 3, pp. 231–237 (2009)

14. Kaarela, P., Varjola, M., Noldus, L.P.J.J., Artikis, A.: PRONTO: support for real-time de-
cision making. In: Proceedings of the 5th ACM International Conference on Distributed
Event-Based System, DEBS 2011, pp. 11–14. ACM, New York (2011)



A Heuristic to Explore Trust Networks
Dynamics

Vincenza Carchiolo, Alessandro Longheu,
Michele Malgeri, and Giuseppe Mangioni

Abstract. The shifting of computation and storage towards distributed, embed-
ded and mobile systems encompasses several advantages, as the increasing in per-
formance, scalability, and reduction of costs. A significant drawback though is the
potential lack in security and trust, due to a huge number of different, dispersed de-
vices. In such a context, trust-based networks allow to rank nodes (e.g. devices) so
that only the best are chosen to store and manipulate users personal data. However,
the study of rank assessment and how a node can improve its value may become a
hard task, expecially for large networks. Therefore, in this work we propose a heuris-
tic based on statistical considerations that allows a node to achieve a good rank via
a proper selection of trust links with other nodes, preserving both the effectiveness
and the efficiency.

1 Introduction

The shifting of computation and storage as well as of many social interactions to-
wards the world of distributed, embedded and mobile systems recently led to ne-
ologisms such as cloud computing, ubiquitous computing, everyware and many
others [1] [2] [3].

These phenomena encompass several advantages, as the improvement in users
interaction, performance, scalability, availability and the reduction of costs. A sig-
nificant drawback though is the potential lack in data security and confidentiality,
due to a huge number of different worldwide dispersed devices, so that end users
no longer perceive who/what and where their personal data are stored [4] [5] [6].
In such a context, trust-based networks can be effectively used to guarantee the

Vincenza Carchiolo · Alessandro Longheu ·
Michele Malgeri · Giuseppe Mangioni
Dip. Ingegneria Elettrica, Elettronica e Informatica,
Facoltà di Ingegneria, Università degli Studi di Catania, Italy
e-mail: car@diit.unict.it,

{alessandro.longheu,michele.malgeri,
gmangioni}@dieei.unict.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 67
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_9, c© Springer International Publishing Switzerland 2014



68 V. Carchiolo et al.

reliability of unknown actors (people, devices, resources, services, hardware infras-
tructures etc.), in particular trust values allow to rank actors (nodes of the network)
so that only the best are considered.

While the study of trust (and rank) assessment has been addressed even in large
networks [7] [8] [9], the dynamics of trust networks has been only partially con-
sidered within existing metrics; note that here the term dynamics is intended as the
changing in ranks classification caused by the process of joining to (or leaving)
the network (others adopt a different meaning, e.g. [10] considers the dynamics as
the evolution of trust over time due to the change in nodes behavior).

In this scenario, whenever a new node joins the network it establishes a certain
number of trust links with other existing nodes in order to get trusted, aiming at
improving its rank. Note however that in real systems each time an attachment to
a node occurs, this involves some cost for the new node, thus we should discover
which (and how many) trust links should be established to provide a good rank at a
low cost. Such a multi objectives optimization problem can be hard to solve, expe-
cially when large networks are considered (as frequently happens in real scenarios);
to get an answer without performing exhaustive experiments with all possible links
combinations, in this paper we propose a heuristic based on statistical considerations
aiming at exploiting just relevant links combinations, preserving both the effective-
ness (rank enhancement) and the efficiency (less expensive as possible).

The paper is organized as follows. In section 2 we outline the model of trust net-
work we are focusing on, together with all definitions needed to outline the scenario
whereas in section 3 we propose a heuristic to avoid the complexity of considering
exhaustive approach; in section 4 we show simulations used to validate the proposed
heuristic, finally providing concluding remarks and future works in section 5.

2 The Trust Network: Model and Definitions

As outlined in the introduction, our aim is to evaluate an efficient strategy in the
attachment process a new node is engaged with, addressing the goal of getting a
good rank while limiting the effort.

The scenario we consider is that of a trust network, modeled as a graph where
the nodes (N) are agents (persons, devices, resources etc) and the arcs (E) represent
trusting relationships, each labeled with a measure (L ) of the trust value according
to a given metric. This model is widely accepted in literature [11, 12, 13] and largely
inspired by the PageRank [14] algorithm that allows us to assess a steady global trust
value associated to each node.

Although the trustworthiness per se is important to study the evolution of the net-
work, the key role here is played by the rank, i.e. the placement each node achieves
with respect to others. We point out that a node’s rank is proportional to its trustwor-
thiness, i.e. the more trusted the node, the better its rank. Here we simply defined
the rank as the position a node gets when they are ordered in a descending way
according to their trust values; other analytical trust-vs-rank relationships could be
considered, however this is out of our scope.



A Heuristic to Explore Trust Networks Dynamics 69

Moreover, in the following we do not impose any specific metric for trust. Among
many proposals that exist in literature [7, 8, 9, 10, 15], we used EigenTrust [7] in our
experiments since it is one of the simplest yet efficient metric in evaluating global
trust; note however that any other metric can be adopted since our proposal does not
rely on specific metric features.

A further hypothesis is that the agent joining the trust network is supposed to
be honest, so it simply aims at gaining the best rank and has no other goals, as for
instance using its (good) trust to subvert others’ trust values; if so, a limit to the trust
achievable by a node must be established, though we are not addressing such cases
here.

To complete the scenario overview, we also have to formalize the attachment
effort cited in the introduction, indeed in real networks an existing node does not
trust new ones unless it assumes some responsibility and/or offers some service, for
instance in P2P networks a peer must guarantee a given bandwidth or a minimum
number of replica files, or in a social network a person must somehow sacrifice
his/her privacy to be known (hence, trusted) by others. We then define the effort as
the cost the agent X bears to persuade another agent Y to trust it; of course, if X
aims at being trusted by more nodes it has to spend more, therefore the effort of
X is:

e f f ortX = ∑
j

c jX (1)

where c jX are the normalized local trust values X receives from his neighbors j
according to the EigenTrust metric we chose.

Simply put, the effort measures how many trust links the new agent must col-
lect from others until it obtains a given trust; note that using values provided by
EigenTrust does not affect this definition, i.e. any other metric can be used as well.

Finally, for the sake of simplicity, before the new agent X joins the network, all
existing arcs are labeled with 1.0 as trust value. We choose this setting in order to
avoid the distribution of trust values affects our simulation results. Note that the 1.0
trust value just refers to each direct trust, the global trust of each agent is instead
evaluated with the EigenTrust metric and falls in the range [0,1];

As soon as X joins the network, some questions arise: (1) which (existing) nodes
should X connect to in order to get a good rank since the beginning? (2) should X
retains previously established links when adding new ones or a better rank could be
achieved by also replacing some of existing trust links? In a few words, which is the
best set of trust links that allows a node to achieve the best rank?

The idea to investigate on a non-random network attachment is also present in
other works, e.g. [16], where focusing on social networks leads to consider the as-
sortativity [17] and the clustering effect [18] as properties that determine a non-
random network’s dynamic behavior. The study we perform here is conducted on
both random and scale-free networks, and we do not assume any hypothesis on the
type of network (e.g. social, biological, etc.).

The simplest approach to study how trust values affect ranks evolution is a brute
force algorithm, where we attempts to consider all configurations and compare the
results [19]. However, this approach is too complex for (even not so) large size



70 V. Carchiolo et al.

networks: given a node X attempting to join a network with N nodes, assuming
that local trust-values are {0,1}, the available configurations to analyze are 2N − 1.
Being this a value that easily explodes even for little networks, we need a criterion
for discarding those configurations that will not lead to high rank. In the next section
we present our heuristic approach based on some statistical considerations.

3 The Heuristic for the Reduction of the Effort-Rank Space

In order to study a strategy that allows a joining node to gain the best rank, we
are interested in exploring the effort-rank space. For a network with N nodes this
means to compute the rank for all links combinations a joining node can have with
the N nodes of the network; since such number is 2N − 1, this makes practically
unfeasible the study of many real networks. For instance, the network used in our
experiments has N = 20 nodes meaning that a brute force algorithm has to take into
account 1 048 575 configurations. This approach permits to study networks whose
dimension is up to 25-30 nodes (a network with 30 nodes requires 1 073 741 823
configurations to be analyzed), but real networks can be even bigger. To solve this
problem, we want to reduce the configurations by discarding those not relevant via
the heuristic approach explained in the following.

The driving idea is based on the fact that both rank and effort can range over
a limited amount of values, therefore it is possible to collapse all configurations
achieving a given rank into just one.

Each node can assume a trust-based rank bounded to an upper limit that linearly
depends on the number N of nodes of a network: it ranges indeed from 1 to N (where
1 is the best and N the worst rank). Therefore, a node attempting to join a network
whose size is N can gain a rank in the range [1,N+1], so we can study no more than
N +1 configurations. Moreover, also the e f f ortX linearly depends on N and ranges
from 1 to N in the hypothesis that local trust-values are in {0,1}.

Thanks to the linear dependence of both rank and effort, we can simply find
the upper bound of the number of points in the effort-rank space that is N · (N + 1),
much lesser than 2N−1. This can be explained by the fact that several configurations
(corresponding to several trust-values) actually provide the same rank.

Since we are interested in the rank a node can assume, it would be interesting to
find a way to directly explore this space. This leads to a considerable decrease in
the number of configurations to compute. For instance, for a network with N = 20
nodes, a brute force algorithm has to take into account 1 048 575 configurations,
whilst the number of rank points are 421 (20 · (20+ 1)) at most, thanks to the fact
that many configurations map to one rank, for example e f f ortX = 10 leads to the
same rank 184 756 times.

Based on these considerations, the best approach (i.e. with less computational
time cost) to explore the effort-rank space is to compute at most N · (N + 1) points.
The problem is to select exactly N · (N + 1) attachment configurations among
the possible 2N − 1 that guarantee the maximum coverage. In other words, we
want to exclude those attachment configurations that produce the same points in the



A Heuristic to Explore Trust Networks Dynamics 71

effort-rank plane. To do this we need a heuristic that permits to select ideally just
one attachment configuration per point.

The heuristic we propose in this work is based on the analysis of the statistical
distributions of the attachment configurations in the effort-rank plane. To introduce
it we need some notations.

We call inX the in-set of a node X (i.e. the set of nodes for which an outgoing link
to the node X exists):

inX = { j : ( j,X) ∈ E} (2)

We also refer to this set as the attachment configuration of the node X . Note that the
cardinality of inX is equal to the e f f ortX just in the case the direct local trust values
are {0,1}.

A new node joining the network can be linked to several different nodes, thus
originating several different attachment configurations. Let us suppose to enumer-
ate such configurations by using a subscript index. So, let us consider for a given
effort two attachment configurations of the node X , say inX

p and inX
q ; we define their

distance as:
d(inX

p , in
X
q ) = |inX

p − inX
q | (3)

i.e. the cardinality of the difference between the two in-sets of the node X . Note that
the minimum distance d is 1, while the maximum value is given by:

maximum{d(inX
p , in

X
q )}= min{|inX

p |,N −|inX
p |} (4)

To find a good heuristic in exploring the effort-rank space, we examined the statis-
tical distribution of the distance, considering all the configurations having the same
effort. In table 1 we show some of the 2N − 1 probabilities that two configurations
with the maximum distance either belong (Pmaxd

in ) or not (Pmaxd
out ) to the same point

in the effort-rank space. In other terms, given an attachment configuration A, the
table reports the chance that another configuration B whose distance from A is the
maximum (as defined by eq. 4) leads to a different rank value (different point in
the space). The table 1 reports only the first points, i.e. with effort 1, 2 and 3.

Except for the case with effort 1 and rank 20 where only one point is present, the
table 1 highlights that the configurations whose distance is maximum have a high
probability to get a different point of the plane. This distribution suggest us a strat-
egy to generate attachment configuration: for a given effort, the configuration must
be chosen in such a way that the distance between any two of them is maximum.

In summary, the heuristic we propose is to start with a given configuration and,
for each value of the effort, generate a sequence of other attachment configurations
whose distance from the previous one is the maximum (as given by eq. 4). Then we
apply again the previous step by starting from a new attachment configuration just
in case we have not found all the N +1 points of the plane. This approach allows to
drastically decrease the number of attachment configurations to analyze as shown
in details in the next section.



72 V. Carchiolo et al.

Table 1 Probability to stay in / to escape from a given point of the effort/trust-rank plane

Effort Rank Pmaxd
in Pmaxd

out

1 20 1 0

2 20 0.3312 0.6688

2 19 0.5337 0.4663

2 18 0.0514 0.9486

3 19 0.0082 0.9918

3 18 0.0159 0.9841

3 17 0.1258 0.8742

3 16 0.2041 0.7959

3 15 0.1978 0.8022

3 14 0.1448 0.8552

3 13 0.1151 0.8849

3 12 0.0710 0.9290

3 11 0.0507 0.9493

3 10 0.0146 0.9854

3 9 0.0088 0.9912

3 8 0.0015 0.9985

... ... ... ...

4 Simulation Results

The heuristic discussed in the previous section facilitate the study of dynamics and
behavior of large networks, but we still have to validate our approach by comparing
the results provided by the brute force algorithm with those coming from the pro-
posed heuristic. Given the cited computational limit concerning the size of network,
we compare such results for networks with a size of 20 nodes.

To avoid the introduction of biasing we synthesized several networks with dif-
ferent distributions (random, scale-free) and created several ad-hoc topologies (we
call them regular) that preserve the generality of outcoming networks. Each group
of networks has been studied using both the proposed heuristic and brute force
algorithm.

The figure 1 reports the effort-rank graph for a network of 20 nodes analyzed
with the brute-force algorithm, therefore all the possible attachment configurations
are presents. Each point in the graph may represent several different configurations



A Heuristic to Explore Trust Networks Dynamics 73

Fig. 1 Regular Net - Brute force analysis

(some points result from more than 156 000 input configurations) raising the com-
plexity and time of the simulations. To qualitatively distinguish such points, differ-
ent colors are used to indicate the density, in particular the more input configurations
map to the same point, the darker that point is represented in figure.

The figure 2 reports the same graph of figure 1 applied to the same networks but
using the proposed heuristic. The figures highlight that results are a good approxi-
mation since almost all points (120 over 160) have been found, showing the same
pattern (dynamics) and limits; the points that have been discarded are not partic-
ularly meaningful for the attachment strategy and the rank distribution (being the
pattern preserved from fig. 1 to fig. 4). Also note that in columns where the heuristic
approach does not capture all points, e.g. that for e f f ort = 3, the most significant
points to define the correct range of rank are still detected. The outcome of captur-
ing the correct range is very important to define the correct attachment strategy, i.e.
the points to connect to obtain the best rank starting from current configuration. We
believe this is the most common case since in real world a node is not likely to drop
(possibly recent) connections established with other nodes.

Of course the density is not preserved by the heuristic approach due to heuristic
itself that tries to find as less configurations as possible for each point in the effort-
rank space.

We also compared the brute force algorithm with the heuristic on synthesized
random and scale-free networks, both with a dimension of 20 nodes. The figures 3
and 4 show the results, that are similar for all networks we analyzed, thus confirm-
ing that the heuristic approach captures both the general dynamics and most of the
significant points to define a step-by-step attachment strategy aiming at obtaining
that best rank with less effort.

The time complexity we obtained is about 90% of the computational time thanks
to the reduction of the configurations to consider: about 10 000 instead of the
1 048 575.



74 V. Carchiolo et al.

Fig. 2 Regular Net - Heuristic analysis

(a) Brute force (b) Heuristic

Fig. 3 Random networks simulations

5 Final Remarks

The use of ranking and trust networks is becoming more and more relevant in many
contexts. Real cases however exhibit large scale, i.e. networks with many nodes,
so a strategy for assessing nodes rank in an efficient and effective way is required.
Here we presented a heuristic to make it feasible the study of which nodes a new
one should attach to in order to increase its rank with a minimal effort. We com-
pared such heuristic versus a brute force algorithm for three network types: random,
scale free and a regular network. We showed both the effectiveness of the approach,



A Heuristic to Explore Trust Networks Dynamics 75

(a) Brute force (b) Heuristic

Fig. 4 Scale Free networks simulations

thanks to the dynamics and ranks range preservation, and the efficiency, being the
simulation time up to 90% shorter than brute force. Further works include:

• the simulation of the proposed heuristic on larger networks, for which the di-
rect comparison with brute force will be unfeasible, but results would be more
significant;

• the investigation on possibly more effective heuristics, in order to improve the
reduction of the effort-rank space, expecially for large networks, as well as the
comparison with a formal, analytical approach (i.e. multi-objective optimization)

• the analysis of other trust metrics and different nodes behavior (e.g. whitewash-
ing, group empowering etc.)

• the study of potential application of such heuristics in real cases.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

2. Hansmann, U., Nicklous, M.S., Stober, T.: Pervasive computing handbook. Springer-
Verlag New York, Inc., New York (2001)

3. Nieuwdorp, E.: The pervasive discourse: an analysis. Comput. Entertain. 5(2), 13 (2007)
4. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In: Pro-

ceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud 2009.
USENIX Association, Berkeley (2009)

5. Dietrich, K., Winter, J.: Implementation aspects of mobile and embedded trusted com-
puting. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471, pp.
29–44. Springer, Heidelberg (2009)



76 V. Carchiolo et al.

6. Wang, Y., Norice, G., Cranor, L.F.: Who is concerned about what? a study of american,
chinese and indian users’ privacy concerns on social network sites. In: McCune, J.M.,
Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS,
vol. 6740, pp. 146–153. Springer, Heidelberg (2011)

7. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputa-
tion management in P2P networks. In: Proceedings of the Twelfth International World
Wide Web Conference (2003)

8. Zhou, R., Hwang, K., Cai, M.: Gossiptrust for fast reputation aggregation in peer-to-peer
networks. IEEE Trans. on Knowl. and Data Eng. 20(9), 1282–1295 (2008)

9. Zhou, R., Hwang, K.: Powertrust: A robust and scalable reputation system for trusted
peer-to-peer computing. IEEE Trans. Parallel Distrib. Syst. 18(4), 460–473 (2007)

10. Walter, F.E., Battiston, S., Schweitzer, F.: Personalised and dynamic trust in social net-
works. In: Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., Schmidt-Thieme, L.
(eds.) RecSys, pp. 197–204. ACM (2009)

11. Marsh, S.: Formalising trust as a computational concept. Technical report, University of
Stirling. PhD thesis (1994)

12. Golbeck, J.A.: Computing and applying trust in web-based social networks. PhD thesis,
College Park, MD, USA, Chair-Hendler, James (2005)

13. Walter, F.E., Battiston, S., Schweitzer, F.: A model of a trust-based recommendation
system on a social network. Journal of Autonomous Agents and Multi-Agent Systems 16,
57 (2008)

14. Berkhin, P.: A survey on pagerank computing. Internet Mathematics 2(1), 73–120 (2005)
15. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer elec-

tronic communities. IEEE Trans. Knowl. Data Eng. 16(7), 843–857 (2004)
16. Allodi, L., Chiodi, L., Cremonini, M.: Modifying trust dynamics through cooperation

and defection in evolving social networks. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 131–145.
Springer, Heidelberg (2011)

17. Newman, M.E.: Assortative Mixing in Networks. Physical Review Letters 89(20),
208701 (2002)

18. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Social Networks 31(2), 155–
163 (2009)

19. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Gain the best reputation in trust
networks. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.)
Intelligent Distributed Computing V. SCI, vol. 382, pp. 213–218. Springer, Heidelberg
(2011)



Resource Scaling Performance for Cache
Intensive Algorithms in Windows Azure

Marjan Gusev and Sasko Ristov

Abstract. Customers usually expect linear performance increase for increased de-
mand for renting resources from cloud. However, it is not always the case, although
the cloud service provider offers the specified infrastructure. The real expectation is
limited due to memory access type, how data fits in available cache, nature of pro-
grams (if they are computation-intensive, memory or cache demanding and inten-
sive) etc. Cloud infrastructure in addition rises new challenges by offered resources
via virtual machines. The ongoing open question is choosing what is better - usage
of parallelization with more resources or spreading the job among several instances
of virtual machines with less resources. In this paper we analyze behavior of Mi-
crosoft Windows Azure Cloud on different loads. We find the best way to scale the
resources to speedup the calculations and obtain best performance for cache inten-
sive algorithms.

Keywords: Cloud Computing, HPC, Matrix Multiplication.

1 Introduction

Customers usually think about cloud computing as infinite pool of resources that of-
fers an availability to rent resources on-the-way as much as they like. Cloud service
providers (CSPs) offer computing and storage capacity by infrastructure organized
in virtual machine (VM) instances. Scientists can collaborate with each other shar-
ing the data in the cloud [1].

Amazon, Microsoft and Google offer on demand VM instances with 1, 2, 4 and
8 CPUs. The renting model is linear with constant price / performance ratio and the

Marjan Gusev · Sasko Ristov
Ss. Cyril and Methodious University,
Faculty of Information Sciences and Computer Engineering,
Rugjer Boshkovikj 16, 1000 Skoipje, Macedonia
e-mail: {marjan.gushev,sashko.ristov}@finki.ukim.mk

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 77
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_10, c© Springer International Publishing Switzerland 2014



78 M. Gusev and S. Ristov

price per hour doubles for doubled resources [2, 3, 11]. However, the performance
indicators mentioned by CSPs are not sufficient to determine the actual performance
of a virtual machine instance [9].

Speedup as performance measure expresses the relative ratio of time in the paral-
lel environment in comparison to the sequential execution. Gustafson specifies the
scaled speedup bounded to the linear speedup [6]. However, superlinear speedup
(greater than the number of processors) is achieved in a single-tenant multi-thread
environment in Windows Azure [5]. In this paper we continue the research about
superlinear speedup in a multi-tenant single-thread and multi-thread environments
on Windows Azure.

Cache intensive algorithms are those where the average number of accesses per
element (reuse of element) is greater than 1 [14]. We use matrix multiplication al-
gorithm (MMA) cache intensive algorithm with O(N) computational complexity.
Windows Azure is the platform where we make the experiments and make conclu-
sions how to achieve maximum performance for cache intensive algorithms using
the same number of CPU cores and paying the same price. The rest of the paper is
organized as follows: Section 2 presents related works on performance in different
cloud environments. The testing methodology along with description of environ-
ment and test cases is presented in Section 3. The results of the experiments about
performance are elaborated in Section 4. The infrastructure impact to MMA per-
formance is presented and analyzed in sections 5.1 and 5.2. Conclusion and future
work are discussed in Section 6.

2 Related Work

Several papers refer to different performance behavior when scaling the resources in
the cloud. Lu et al. discovered several pitfalls resulting in waste of active VMs (idle
usage) [10]. They examine several pitfalls in Windows Azure Cloud during several
days of performing the experiments: Instance physical failure, Storage exception,
System update. Another conclusion is that Windows Azure does not work well for
tightly-coupled applications [15].

Latest results show that the performance for a particular algorithm depends not
only on the available CPU and RAM memory, but also on I/O, storage capacity,
CPU cache architecture, communication latency runtime environment, platform en-
vironment etc [13].

Virtualization as a technique also impacts the performance. Less cache misses
for cache intensive algorithms are reported in [4] in both single-tenant and multi-
tenant resource allocation leading to better performance. Concurrent threads in ho-
mogeneous cloud multi-tenant environment do not finish simultaneously [13]. This
is emphasized when the number of concurrent VM instances increases. Koh et al.
determined a phenomenon, i.e., the same VM does not achieve the same perfor-
mance at different times among the other active VMs on the same hardware [8].
VM granularity significantly effects the workload’s performance for small network
workload [16]. Therefore, performance isolation is necessary in cloud multi-tenant



Resource Scaling Performance for Cache Intensive Algorithms in Windows Azure 79

environment [17]. Iakymchuk [7] determined that underutilization of resources by
adding more nodes can improve the performance implementing more parallelism,
i.e., the performance of the same resources on the same physical host provide worse
performance rather than the same amount of resources on several physical machines.

3 Testing Methodology

In this section we present the testing methodology to offer reliable results.

3.1 Testing Environment

Windows Azure [12] is used as a testing environment. For each test case we use the
same platform environment with different resource allocation. Runtime environment
consists of C# with .NET framework 4 and threads for parallelization.

Each VM uses AMD Opteron 4171 HE processor(s) with 6 cores, but maximum
4 of 6 cores are dedicated per VM instance. Each core possesses 64 KB L1 data and
instruction caches dedicated per core, 512KB L2 dedicated per core. L3 cache with
total 5 MB is shared per chip.

3.2 Test Cases

We use simplified version of dense MMA with square matrices of same sizes
CN·N = AN·N ·BN·N . Both sequential and parallel execution of MMA are performed
for all test cases. We realize the experiments in each test case by varying the ma-
trix size to analyze performance behavior upon different VM resources, overload
and variable cache storage requirements. Sequential test cases define one thread to
multiply the whole matrices AN·N and BN·N while parallel test cases specify each
thread to multiply a part of row matrix AN·N/c and the whole matrix BN·N where
c = 1,2,4,8 denotes the total number of parallel threads.

Different test cases are defined by scaling Windows Azure VMs from very large
scale using 1 Extra Large (XL) VM with 8 CPU cores; large scale with 2 Large (L)
VMs with 4 CPU cores per VM; medium scale using 4 Medium (M) VMs with 2
CPU cores per VM; small scale with 8 Small (S) VMs with 1 CPU core per VM.
The following paragraphs explains details for each test case.

Very Large scale (Test Case 1): Fig. 1 a) depicts the test case 1 activating one
XL VM with 8 cores. The MMA is executed as one process in VM with 8 parallel
threads which run on one core. Each thread multiplies a row of matrix AN·N/8 and
matrix BN·N .

Large Scale (Test Case 2): This test case specifies 2 concurrent L VMs. The MMA is
executed concurrently with 4 parallel threads per process (VM) and one process per
VM as shown in Fig. 1 b). Each thread is specifying quarter of operation scheduled
for each process that multiplies half of the matrix AN·N divided horizontally, i.e. a
row matrix AN·N/2 and the whole matrix BN·N .



80 M. Gusev and S. Ristov

Fig. 1 Test Cases 1 (a) and 2 (b)

Medium Scale (Test Case 3): The medium scale test case activates 4 concurrent M
VMs. One process with 2 threads is scheduled per VM to be executed on a different
core as depicted in Fig. 2 a). MMA specifies multiplication of matrix AN·N/4 and
the whole matrix BN·N per process and the two threads per process perform half of
these computations by multiplying AN·N/8 with matrix BN·N .

Fig. 2 Test Cases 3 (a) and 4 (b)

Small Scale (Test Case 4): In this test case there is straight forward programming
using 1 thread per process, and 1 process per VM activating eight concurrent S
VMs as shown in Fig. 2 b). Each process (and thread) executes MMA performing
multiplication of matrix AN·N/8 with matrix BN·N .

Sequential Execution on Only One Core (Test Cases 5-8): In order to make compar-
ison and analyze the speedup we define test cases 5-8 to execute MMA sequentially
on already defined testing environments in previous 4 test cases. Each process exe-
cuted per core performs all required multiplications of the whole matrices AN·N and
BN·N . Since only one core is used per test case the remaining 7 cores are unused.



Resource Scaling Performance for Cache Intensive Algorithms in Windows Azure 81

3.3 Testing Goal

The experiments are realized with the following two goals:

• To determine the performance of a particular infrastructure by measuring the
speedup in comparison to sequential execution; and

• To determine optimal hardware resource allocation in Windows Azure.

Computational Speed V is defined by (1) and Speedup S is calculated by (2), where
indexes Seq and Par denote sequential and parallel execution times. In evaluation
we use the average execution time AET per test case.

V = 2 ·N3/AET (1)

S = ExecutionTimeSeq/AETPar (2)

Additionally we measure relative speedup Ri for sequential and parallel test cases.
(3) defines the relative speedup of sequential execution in smaller VMs compared
to the XL, i.e. test cases 6, 7 and 8 compared to test case 5. Using the same principle
(4) defines the relative speedup of parallel execution in smaller VMs compared to
the XL, i.e. test cases 2, 3 and 4 compared to test case 1. The index i denotes the
corresponding test case.

RiSeq =Vi/V5 (3)

RiPar =Vi/V1 (4)

4 The Results of the Experiments

This section presents the results of the experiments that run test cases. A huge speed
discrepancy that appears when more concurrent processes are executed [13]. Here
we measure the average speed and speedup and analyze the dependencies obtained
by different hardware resource allocation by comparing the results of test cases 1
and 5, 2 and 6, 3 and 7, and 4 and 8 as described in Section 3.2. Explanations also
refer to regions L1, L2, L3 and L4 as regions where the complete data retired by the
algorithm will fit in corresponding cache level.

The speedup achieved by comparing the test cases 1 to 5 for different matrix
size N is presented in Fig. 3. We determine two main regions with different perfor-
mance. For N < 572 (L3 region) the whole matrices can be placed in L3 cache and
performance is much better than for N > 572 (L4 region) where L3 cache misses are
generated. A superlinear speedup is determined in certain points of the L4 region, a
phenomenon that happens due to doubled size L3 cache which is present for parallel
execution in comparison to the sequential. More details on how and why superlinear
speedup can be achieved in cloud virtual environment can be found in [14].



82 M. Gusev and S. Ristov

Fig. 3 Speedup comparing Test Cases 1 and 5

Fig. 4 Speedup comparing Test Cases 2 and 6

Fig. 4 depicts the speedup of test case 2 compared to test case 6 for different
matrix size N. The same cache regions with different performance are identified in
this test case also. We found that the whole L4 region is a superlinear region since
only half matrix A is stored in L3 cache for parallel execution rather than the whole
matrix A for sequential execution.

Fig. 5 shows speedup resulted by comparison of test cases 3 and 7 for differ-
ent matrix size N. We can conclude that the whole L4 region is superlinear. This
infrastructure provides even greater speedup than the test case 2.

Fig. 6 depicts the speedup comparing the test cases 4 to 8 for different matrix
size N. The important result is the superlinear speedup in L2 region since each VM
has only one core which has dedicated L1 and L2 cache per core and in this case
per VM. Entering the L3 and L4 region multi-tenancy provides more cache misses
replacing the blocks that other VMs need from shared L3 cache. Therefore speedup
in L4 region is almost linear although we found superlinear speedup for some N.



Resource Scaling Performance for Cache Intensive Algorithms in Windows Azure 83

Fig. 5 Speedup comparing Test Cases 3 and 7

Fig. 6 Speedup comparing Test Cases 4 and 8

5 Which Orchestration Is Optimal?

This section describes the results of testing the performance impact of hardware in-
frastructure orchestration. We analyze the results to understand if single-tenant with
multi-threading, or multi-tenant with multi-threading or multi-tenant with single-
threading is the optimal environment to achieve maximum performance for MMA,
expressed as faster execution and greater speedup.

5.1 Hardware Infrastructure Impact on Sequential Execution

Similar speed value is obtained in each test case and therefore we focus on rela-
tive speed depicted in Fig. 7. We can conclude that relative speeds are stable in L2



84 M. Gusev and S. Ristov

Fig. 7 Relative speedup RiSeq for sequential executions

and L4 regions rather than L3 region. MMA algorithm best performance for sequen-
tial execution is on XL VM in front of Large, M and S for the L2 region. However,
XL and S VMs lead in front of L and M in L4 region.

5.2 Hardware Infrastructure Impact on Parallel Execution

The performance of parallel execution is measured for test cases 1, 2, 3 and 4. The
results for the speed and the relative speed are presented in Figure 8 for test cases 2,
3 and 4 compared to test case 1. We also observe the same three regions L2, L3 and
L4 but with different results. The speed increases in L2 region for the test cases with
multi-threading, i.e. test cases 1, 2 and 3. The speed saturates in L3 region and also
in L4 region with decreased value for all test cases.

Fig. 8 Speed V (left) and Relative speedup RiPar (right) for parallel executions on different
environments



Resource Scaling Performance for Cache Intensive Algorithms in Windows Azure 85

We can conclude that the best performance for parallel MMA is achieved using
8 S instances ahead of 4 M instances, 2 L or 1 XL for both L2 and L3 regions.
The order is retained also in L4 region where for huge matrices all environments
provide similar performance and other algorithms should be used. Analyzing the
performance behavior in figures 3, 4, 5 and 6 we can conclude that the environment
defined by test case 4 is the leader in the speedup race in front of the test cases 3, 2
and 1 in L2 region, and the environment for test case 3 is the leader for the speedup
race in front of the test cases 2, 4 and 1 in regions L3 and L4.

6 Conclusion and Future Work

Dense MMA is computation-intensive, memory demanding and cache intensive
algorithm that can be easily scaled to fit any hardware granularity. Therefore it
is a good representative as test data algorithm for high performance computing.
In this paper we have analyzed the performance of MMA using Windows Azure
Cloud infrastructure. The experiments tested different cases using 1) single-tenant
with multi-threading, 2) multi-tenant with multi-threading and 3) multi-tenant with
single-threading environment hosted on the same hardware resources but with
different spread and schedule among VMs.

The results of the experiments explaining the performance behavior for sequen-
tial executions confirmed the expectations that XL VM achieves maximum speed in
front of Large, Medium and Small for L2 region where the problem size fits in the
L2 cache. However we obtained that S VM achieves similar speed as XL VM and
they lead in front of L and M VMs for the L4 region, where the problem size is huge
and needs extensive communication between cache and main memory.

This paper refers to unexpected (strange) results for parallel execution. MMA al-
gorithm achieves maximum speed when executed parallel on 8 S instances, in front
of 4 M, 2 L, and 1 XL for both the L2 and L3 regions, and almost all observed L4

region. This means that the best performance can be achieved if MMA is granu-
lated on 8 chunks and each chunk to be executed on 8 concurrent processes with
one thread in S Windows Azure VM. The same environment achieves maximum
speedup for the L2 region. In L3 and L4 region maximum speedup is achieved if
MMA is granulated on 4 chunks and each chunk to be executed on 4 concurrent
processes with two threads in M VM.

Superlinear speedup achieved in a single-tenant multi-thread environment in
Windows Azure is also present in a multi-tenant single-thread and other multi-thread
environments. Even more, the speedup is greater in multi-tenant environment rather
than single-tenant multi-thread environment. Greater speedup is achieved for gran-
ulated problem and executed using concurrent VMs instead of executing on one XL
VM using parallelization.

We will continue with research on other hardware architectures and different
clouds and exploit how MMA and other cache intensive algorithm executions de-
pend on CPU and cache memory in order to find the optimal resource scheduling
and scaling to obtain maximum performance.



86 M. Gusev and S. Ristov

References

1. Ahuja, S., Mani, S.: The State of High Performance Computing in the Cloud. Journal of
Emerging Trends in Computing and Information Sciences 3(2), 262–266 (2012)

2. Amazon: EC2 (2013), http://aws.amazon.com/ec2/
3. Google: Compute Engine (2013), http://cloud.google.com/pricing/
4. Gusev, M., Ristov, S.: The Optimal Resource Allocation Among Virtual Machines in

Cloud Computing. In: Proceedings of the 3rd International Conference on Cloud Com-
puting, GRIDs, and Virtualization (CLOUD COMPUTING 2012), pp. 36–42 (2012)

5. Gusev, M., Ristov, S.: Superlinear Speedup in Windows Azure Cloud. In: 2012 IEEE 1st
International Conference on Cloud Networking (CLOUDNET, IEEE CloudNet 2012),
Paris, France, pp. 173–175 (November 2012)

6. Gustafson, J., Montry, G., Benner, R.: Development of Parallel Methods for a 1024-
processor Hypercube. SIAM Journal on Scientific and Statistical Computing 9(4), 532–
533 (1988)

7. Iakymchuk, R., Napper, J., Bientinesi, P.: Improving High-performance Computations
on Clouds Through Resource Underutilization. In: Proceedings of the 2011 ACM Sym-
posium on Applied Computing, SAC 2011, pp. 119–126. ACM (2011)

8. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An Analysis of Perfor-
mance Interference Effects in Virtual Environments. In: IEEE International Symposium
on Performance Analysis of Systems Software, ISPASS 2007, pp. 200–209 (April 2007)

9. Lenk, A., Menzel, M., Lipsky, J., Tai, S., Offermann, P.: What Are You Paying For?
Performance Benchmarking for Infrastructure-as-a-service Offerings. In: Proceedings of
the 2011 IEEE 4th International Conference on Cloud Computing, CLOUD 2011, pp.
484–491. IEEE Computer Society, USA (2011)

10. Lu, W., Jackson, J., Ekanayake, J., Barga, R.S., Araujo, N.: Performing Large Science
Experiments on Azure: Pitfalls and Solutions. In: CloudCom 2010, pp. 209–217 (2010)

11. Microsoft: Windows Azure (2013),
http://www.windowsazure.com/pricing/

12. Padhy, R.P., Patra, M.R., Satapathy, S.C.: Windows Azure Paas Cloud: An Overview. Int.
J. of Comp. App. 1, 109–123 (2012)

13. Ristov, S., Gusev, M., Osmanovic, S., Rahmani, K.: Optimal Resource Scaling for HPC
in Windows Azure. In: Markovski, S., Gusev, M. (eds.) ICT Innovations 2012. Web
Proceedings, Macedonia, pp. 1–8 (2012) ISSN 1857-7288,
http://www.ictinnovations.org/2012/

14. Ristov, S., Kostoska, M., Gusev, M., Kiroski, K.: Virtualized Environments in Cloud can
have Superlinear Speedup. In: Proceedings of the 5th Balkan Conference in Informatics,
BCI 2012, pp. 8–13. ACM (2012)

15. Subramanian, V., Ma, H., Wang, L., Lee, E.J., Chen, P.: Rapid 3D Seismic Source In-
version Using Windows Azure and Amazon EC2. In: Proceedings of IEEE, SERVICES
2011, pp. 602–606. IEEE Computer Society (2011)

16. Wang, P., Huang, W., Varela, C.: Impact of Virtual Machine Granularity on Cloud Com-
puting Workloads Performance. In: 2010 11th IEEE/ACM International Conference on
Grid Computing, GRID, pp. 393–400 (October 2010)

17. Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., Zhong, H.: Application-Level CPU
Consumption Estimation: Towards Performance Isolation of Multi-tenancy Web Appli-
cations. In: 2012 IEEE 5th International Conference on Cloud Computing, CLOUD, pp.
439–446 (June 2012)

http://aws.amazon.com/ec2/
http://cloud.google.com/pricing/
http://www.windowsazure.com/pricing/
http://www.ictinnovations.org/2012/


Distributed Event-Driven Model for Intelligent
Monitoring of Cloud Datacenters

Daniel Tovarňák, Filip Nguyen, and Tomáš Pitner

Abstract. When monitoring cloud infrastructure, the monitoring data related to a
particular resource or entity are typically produced by multiple distributed produc-
ers spread across many individual computing nodes. In order to determine the state
and behavior of a particular resource all the relevant data must be collected, pro-
cessed, and evaluated without overloading the computing resources and flooding
the network. Such a task is becoming harder with the ever growing volume, veloc-
ity, and variability of monitoring data produced by modern cloud datacenters. In
this paper we propose a general distributed event-driven monitoring model enabling
multiple simultaneous consumers a real-time collection, processing, and analysis of
monitoring data related to the behavior and state of many distributed entities.

1 Introduction

With the emergence of distributed computing paradigms (e.g. grid) the importance
of monitoring steadily grew over the past two decades and with the advent of cloud
computing it rapidly continues to do so. When monitoring a distributed infrastruc-
ture such as grid or cloud, the monitoring data related to a particular entity/resource
(e.g. message queue, Hadoop job, and database) are typically produced by multiple
distributed producers spread across many individual computing nodes.

A two-thousand node Hadoop cluster (open-source implementation of MapRe-
duce) configured for normal operation generates around 20 gigabytes of application-
level monitoring data per hour [3]. However, there are reports of monitoring data
rates up to 1 megabyte per second per node [4]. In order to determine the state
and behavior of a resource all the relevant data must be collected, processed, and
evaluated without overloading the computing resources and flooding the network.

Daniel Tovarňák · Filip Nguyen · Tomáš Pitner
Masaryk University, Faculty of Informatics
Botanická 68a, 60200 Brno, Czech Republic
e-mail: {xtovarn,xnguyen,tomp}@fi.muni.cz

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 87
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_11, c© Springer International Publishing Switzerland 2014



88 D. Tovarňák, F. Nguyen, and T. Pitner

In our research we are particularly interested in behavior monitoring, i.e. collec-
tion and analysis of data related to the actions and changes of state of the monitored
resources (e.g. web service crash) as opposed to the monitoring of measurable state
(e.g. disk usage). The goal of state monitoring is to determine if the state of some
resource deviates from normal. Our goal, on the other hand, is to detect behavior
deviations and their patterns.

The volume, velocity, and variability of behavior-related monitoring data (e.g.
logs) produced by modern cloud datacenters multiply and there is a need for new
approaches and improvements in monitoring architectures that generate, collect, and
process the data. Also the lack of multi-tenant monitoring support and extremely lim-
ited access to provider-controlled monitoring information prohibits cloud customers
to adequately determine the status of resources of their interest [12]. As the portfolio
of monitoring applications widens the requirements for monitoring architecture ca-
pabilities grow accordingly. Many applications require huge amounts of monitoring
data to be delivered in real-time in order to be used for intelligent online processing
and evaluation.

The goal of this paper is to propose a novel distributed event-driven monitoring
model that will enable multiple simultaneous consumers to collect, process, and an-
alyze monitoring data related to the behavior and state of many distributed entities
in real-time. The rest of this paper is organized as follows. In Section 2 we present
basic terms and concepts used in this paper. Section 3 deals with the proposed dis-
tributed event-driven monitoring model. Section 4 concludes the paper.

2 Background

In this section we introduce basic terms, concepts, and principles that our model is
founded on. Based on these principles we incrementally design basic cloud monitor-
ing model that we build upon later.

We define monitoring as a continuous and systematic collection, analysis, and
evaluation of data related to the state and behavior of monitored entity. Note that in
the case of distributed computing environment (such as cloud) its state and behavior
is determined by the state and behavior of its respective constituents (components).
State of monitored entity is a measure of its behavior at a discrete point in time and
it is represented by a set of state variables contained within a state vector [6]. Be-
havior is an action or an internal state change of the monitored entity represented
by a corresponding event [6]. Computer logs (system logs, console logs, or simply
logs) are widely recognized as one of the few mechanisms available for gaining vis-
ibility into the behavior of monitored resource [9] regardless if its operating system,
web server or proprietary application. Therefore in our work we consider logs (log
events) to be the primary source of behavior-related information.

To properly describe the respective phases of monitoring process we adhere to its
revised definition originally introduced by Mansouri and Sloman in [7]. Terms used
to denote entities participating in the process are based on the terminology presented



Distributed Event-Driven Model for Intelligent Monitoring of Cloud Datacenters 89

in Grid Monitoring Architecture [11] and later revised by Zanikolas and Sakellariou
in [13]. The monitoring process is composed of the following stages: Generation of
raw monitoring data by sensors; Production, i.e. exposure of the data via predefined
interface; Distribution of the data from producer to consumer; its Consumption and
Processing.

The production, distribution, and consumption stages are inherently related – the
distribution depends on the fashion the monitoring data are produced, and conse-
quently, the consumption is dependent on the way the data are distributed. Therefore,
the three stages will be collectively referred to as monitoring data collection. Also,
there is a difference between online and offline monitoring data processing and anal-
ysis. An online algorithm processes each input in turn without detailed knowledge of
future inputs; in contrast an offline algorithm is given the entire sequence of inputs
in advance [1]. Note that the use of online algorithms for processing and analysis do
not necessarily (yet more likely) lead to real-time monitoring, and vice-versa, the
use of offline processing algorithms do not necessarily prohibit it.

In our work we consider physical and virtual machines to be the primary pro-
ducers of monitoring data via the means of their operating systems (without any
difference between host and guest OS). For simplicity’s sake we do not consider
virtualization using bare-metal hypervisor.

Meng [8] observed that in general, monitoring can be realized in different ways
in the terms of distribution of monitoring process across the participating com-
ponents.Centralized data collection and processing, i.e. there is only one single
consumer; Selective data collection and processing, i.e. the consumer wishes to
consume only a subset of the produced data; Distributed data collection and pro-
cessing, i.e. data are collected and processed in a fully decentralized manner.

In general, the communication and subsequent monitoring data transfer can be
initiated both by consumer (i.e. pull model) and producer (i.e. push model) [10]. In
the pull model the monitoring data are (usually periodically) requested by consumer
from the producer. On the other hand, in the push model the data are transferred
(pushed) to the consumer as soon as they are generated and ready to be sent (e.g.
pre-processed and stored).

3 Distributed Event-Driven Monitoring Model

In this section we further extend the basic cloud monitoring model with multi-
tenancy support whilst leveraging principles of Complex Event Processing to al-
low for real-time monitoring of large-scale cloud datacenters. The resulting model
allows multiple simultaneous consumers to collect, process, and analyze events re-
lated to the behavior of many distributed entities. State-related events are also sup-
ported to allow for state-behavior correlations.

To achieve data reduction the data collection is primarily based on publish-
subscribe interaction pattern for the consumers to specify which monitoring data
they are interested in. More importantly, the subscription model allows for definition



90 D. Tovarňák, F. Nguyen, and T. Pitner

of complex patterns and aggregations following a pattern-based publish-subscribe
schema. To reasonably process a tremendous amounts of monitoring data gener-
ated by cloud datacenters distributed collection and processing is primarily con-
sidered. From the data evaluation point of view the goal is to allow consumers to
collect events from many distributed sources, define complex subscriptions and con-
sequently analyze and evaluate the incoming highly-aggregated events in their own
way. The monitoring architecture following this model is intended to be the part of
provider’s cloud infrastructure.

Historically, traditional DBMSs (including active databases) oriented on data
sets were not designed for rapid and continuous updates of individual data items
required by online monitoring discussed in this paper and performed very poorly in
such scenarios. As pointed out by Babcock et al. [2], to overcome these limitations
a new class of data management applications emerged: Data Stream Management
Systems (DSMSs) oriented on evaluating continuous queries over data streams. Ac-
cording to Babcock, data streams differ from the conventional relational data model
in several ways: (1) the data elements in the stream arrive online; (2) the system has
no control over the order in which data elements arrive to be processed, either within
a data stream or across data streams; (3) data streams are potentially unbounded in
size; (4) once an element from a data stream has been processed it is discarded
or archived – it cannot be retrieved easily unless it is explicitly stored in memory,
which is typically small relative to the size of the data streams.

Full-fledged DSMSs typically allow for quite expressive queries supporting many
standard operations (e.g. averages, sums, counts) and also windows (e.g. sliding
window, and pane window) to specify the particular portion of the incoming data
stream. As pointed out in [5] whilst considerably capable, DSMSs are still focused
on the traditional relational data and produce continuously updated query results
(e.g. as output data stream). Detection of complex patterns of elements involving
sequences and ordering relations is usually out of the scope of DSMSs.

Complex Event Processing (CEP) in general follows the same goals and princi-
ples as DSMSs, yet as it is apparent from the term, it is focused on the processing
of a very specific type of data elements – events (event is an occurence within a
particular domain – computing infrastructure monitoring in our case).

In our previous work [12] we introduced the concept of event-driven producer
of monitoring data using extensible schema-based format. We argued that unified
representation of monitoring information in the form of events increases data corre-
lation capabilities, makes processing easier, and avoid the complexity of monitoring
architecture. Together with standard delivery channel it is an important step towards
extensible and interoperable multi-cloud (inter-cloud) monitoring.

In our model, CEP can be perceived as an extension of pattern-based publish-
subscribe schema enabling consumers to subscribe for complex (composite) events
based on expressive queries, e.g. using sequence patterns, temporal constraints, win-
dows, filters and aggregations. Typically, the complex events can be re-introduced
to the data stream for further processing (i.e. creating new complex events) which we



Distributed Event-Driven Model for Intelligent Monitoring of Cloud Datacenters 91

consider to be very powerful. Example 1 represents an example of simple monitor-
ing subscription in SQL-like declarative Event Processing Language used by Esper1

CEP engine. Subscription S1 subscribes for complex events that can indicate possi-
ble password cracking attack using dictionary approach.

se lec t hostname , username , success , count (∗ ) as attempts
from LoginEvent . win : t ime (30 sec )
where attempts > 1000 , success= f a l s e
group by hostname , username

Example 1. Subscription S1 using EPL

The flow of monitoring data (see Figure 1) in our model can be described as
follows: The sensors generate raw monitoring data related to a specific entity (e.g.
Hadoop job, SSH daemon, and CPU). Based on this data, producers register and
instantiate simple events (i.e. an occurrence related to one or more entities) with
clearly defined structure. Consumers then create subscriptions to instrument pro-
cessing agents to perform one or more processing functions. Such a function takes
stream of events as input and outputs a stream of complex events. When applicable, a
single subscription is partitioned into several simpler subscriptions and distributed
among several processing agents (and producers as well). The examples of com-
mon processing functions include: filtering, sequence detection, aggregation, and
anomaly detection. The consumers then receive the complex events they previously
subscribed for. In order to achieve multi-tenancy [12], consumers can be restricted
to subscribe for events related to a particular entity.

PA

PA

PA PA

C

C

C

C

P
1

3

P
2

2

P
3

2

PA

SUBSCRIBEPUBLISH

P
1

1

behavior & state 
events

complex 
events

complex 
subscriptions

simple 
subscriptions

1

1

2

3

1|2|3 – access permisions

pub

sub

Fig. 1 Overview of Distributed Event-driven Monitoring Model in (Multi-)Cloud scenario

1 http://esper.codehaus.org/

http://esper.codehaus.org/


92 D. Tovarňák, F. Nguyen, and T. Pitner

4 Conclusions and Future Work

In this paper we have presented a distributed event-driven model for intelligent cloud
monitoring. An architecture following this model will allow multiple simultaneous
consumers to collect, process, and analyze events related to the behavior of many
distributed entities in real-time. We expect improvements in many areas when com-
pared to traditional monitoring models based on offline algorithms. In future we
plan to implement prototype of monitoring architecture following proposed model
which will be then experimentally evaluated in the terms of intrusiveness, network
overhead, and throughput with respect to the number of producers, consumers, vol-
ume, velocity, the variability of monitoring events, and the complexity and number
of queries it is capable of dealing with. Multiple approaches for processing agents’
topology, routing, query rewriting, and event distribution will be considered and
evaluated.

References

1. Atallah, M.: Algorithms and Theory of Computation Handbook, 2 vol. set. CRC (1998)
2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data

stream systems. In: Principles of Database Systems. ACM, New York (2002)
3. Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., Yang, M.: Chukwa, a large-scale

monitoring system. In: Proceedings of CCA (2008)
4. Creţu-Ciocârlie, G.F., Budiu, M., Goldszmidt, M.: Hunting for problems with artemis.

In: Proceedings of the First USENIX Conference on Analysis of System Logs, WASL
2008, p. 2. USENIX Association, Berkeley (2008)

5. Cugola, G., Margara, A.: Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv. 44(3) (June 2012)

6. Mansouri-Samani, M.: Monitoring of distributed systems. PhD thesis, Imperial College
London (University of London) (1995)

7. Mansouri-Samani, M., Sloman, M.: Monitoring distributed systems. IEEE Network 7(6)
(November 1993)

8. Meng, S.: Monitoring-as-a-service in the cloud. PhD thesis, Georgia Institute of Technol-
ogy (2012)

9. Oliner, A., Stearley, J.: What supercomputers say: A study of five system logs. In:
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2007, pp. 575–584 (June 2007)

10. Rosenblum, D.S., Wolf, A.L.: A design framework for internet-scale event observation
and notification. SIGSOFT Softw. Eng. Notes 22(6), 344–360 (1997)

11. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M.: A grid monitoring architecture.
In: Global Grid Forum, pp. 1–13 (2002)

12. Tovarňák, D., Pitner, T.: Towards Multi-Tenant and Interoperable Monitoring of Virtual
Machines in Cloud. In: SYNASC 2012, MICAS Workshop (September 2012)

13. Zanikolas, S., Sakellariou, R.: A taxonomy of grid monitoring systems. Future Genera-
tion Computer Systems 21(1), 163–188 (2005)



Programming Self-organizing Pervasive
Applications with SAPERE

Franco Zambonelli, Gabriella Castelli, Marco Mamei, and Alberto Rosi

Abstract. SAPERE (“Self-aware Pervasive Service Ecosystems”) is a general
framework to support the decentralized execution of self-organizing pervasive com-
puting services. In this paper, we present the rationale underlying SAPERE and
its reference conceptual architecture. Following, we sketch the middleware infras-
tructure of SAPERE and detail the interaction model implemented by it, based on
a limited set of “eco-laws”. Finally, we show how in SAPERE one can express
general-purpose distributed self-organizing schemes.

1 Introduction

Pervasive computing technologies are notably changing the ICT landscape, letting
us envision the emergence of an integrated and dense infrastructure for the pro-
visioning of innovative general-purpose digital services. The infrastructure will be
used to ubiquitously access services for better interacting with the surrounding phys-
ical world and with the social activities occurring in it.

To support the vision, a great deal of research activity in pervasive computing has
been devoted to solve problems associated to the development of effective pervasive
service systems, including: supporting self-configuration and context-aware com-
position; enforcing self-adaptability and self-organization; and ensuring that ser-
vice frameworks can be highly-flexible and long-lasting [12]. Unfortunately, most
of the solutions so far proposed are in terms of “add-ons” to be integrated in existing
frameworks [1]. The result is often an increased complexity of current frameworks
and the emergence of contrasting trade-off between different solutions.

In our opinion, there is need for tackling the problem at the foundation, con-
ceiving a radically new way of modeling integrated pervasive services and their

Franco Zambonelli · Gabriella Castelli ·Marco Mamei · Alberto Rosi
Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia
e-mail: {franco.zambonelli,gabriella.castelli,marco.mamei,

alberto.rosi}@unimore.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 93
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_12, c© Springer International Publishing Switzerland 2014



94 F. Zambonelli et al.

execution environments, such that the apparently diverse issues of context-
awareness, dependability, openness, flexibility, can all be uniformly addressed once,
and for all, via a sound and programmable self-organization approach. This is
exactly the goal of SAPERE (www.sapere-project.eu), which proposes a novel
nature-inspired approach to support the design and development of adaptive and
self-organizing systems of pervasive computing services.

In this context, the contribution of this paper is twofold: (i) We present the overall
conceptual architecture of the SAPERE approach, and show how it has been realized
in the SAPERE middleware; (ii) We detail the specific approach to distributed self-
organizing coordination promoted by SAPERE and discuss how this supports the
effective development and execution of self-organizing pervasive applications.

2 The SAPERE Approach and Its Reference Architecture

SAPERE takes its primary inspiration from nature, and starts from the considera-
tion that the dynamics and decentralization of future pervasive networks will make
it suitable to model the overall world of services, data, and devices as a sort of
distributed computational ecosystem.

As from Figure 1, SAPERE conceptually architects a pervasive service environ-
ment as a non-layered spatial substrate, laid above the actual pervasive network
infrastructure. The substrate embeds the basic interaction laws (or eco-laws) that
rule the activities of the system, and it represents the ground on which components
of different species interact and combine with each other (in respect of the eco-laws
and typically based on their spatial relationships), so as to serve their own individ-
ual needs as well as the sustainability of the overall ecology. Users can access the
ecology in a decentralized way to use and consume data and services, and they can
also act as “prosumers” by injecting new data or service components (possibly also
for the sake of controlling the ecology behavior).

For the components living in the ecosystem, which we generically call “agents”,
SAPERE adopts a common modeling and a common treatment. All agents in the
ecosystem (and whether being sensors, actuators, services, users, data, or resources
in general) have an associated semantic representation (in the case of pure data
items, the entity and its representation will coincide), which is a basic ingredient
for enabling dynamic unsupervised interactions between components. To account
for the high dynamics of the scenario and for its need of continuous adaptation,
SAPERE defines such annotations as living, active entities, tightly associated to
the agent they describe, and capable of reflecting its current situation and context.
Such Live Semantic Annotations (LSAs) thus act as observable interfaces of re-
sources (similarly to service descriptions), but also as the basis for enforcing seman-
tic and context-aware interactions (both for service aggregation/composition and for
data/knowledge management).

The eco-laws define the basic interaction policies among the LSAs of the vari-
ous agents of the ecology. In particular the idea is to enforce on a spatial basis, and



Programming Self-organizing Pervasive Applications with SAPERE 95

possibly relying on diffusive mechanisms, dynamic networking and composition of
data and services. Data and services (as represented by their associated LSAs) will
be sort of chemical reagents, and interactions and compositions will occur via chem-
ical reactions, relying on semantic pattern-matching between LSAs. As it is detailed
later on, the set of eco-laws includes: Bonding, which is the basic mechanism for
local interactions between components, and acts as a sort of virtual chemical bond
between two LSAs (i.e., their associated agents); Spread, which diffuses LSAs on a
spatial basis, and is necessary to support propagation of information and interactions
among remote agents; Aggregate, which enforces a sort of catalysis among LSAs,
to support distributed data aggregation; Decay, which mimics chemical evaporation
and is necessary to garbage collect data.

Adaptivity in the SAPERE approach will not be in the capability of individual
components, but rather in the overall self-organizing dynamics of the ecosystem. In
particular, adaptivity will be ensured by the fact that any change in the system (as
well as any change in its components or in the context of the components, as re-
flected by dynamic changes in their LSAs) will reflect in the firing of new eco-laws,
thus possibly leading to the establishment of new bonds or aggregations, and/or in
the breaking of some existing bonds between components.

Fig. 1 The SAPERE Reference Architecture

3 The SAPERE Middleware and Its Programming Interface

In this section we overview how SAPERE applications can be programmed, by in-
troducing the API of the SAPERE middleware and exemplifying its usage. Without
having the ambition of fully detailing the SAPERE programming approach, we in-
tend to give readers a clue and enable them to better understand the overall SAPERE
development methodology.



96 F. Zambonelli et al.

3.1 The Middleware

The execution of SAPERE applications is supported by a middleware infrastruc-
ture [11] which reifies the SAPERE architecture in terms of a lightweight software
support, enabling a SAPERE node to be installed in tablets and smartphones. Op-
erationally, all SAPERE nodes (whether fixed at the infrastructure level or mobile)
are considered at the same level since the middleware code they run could support
the same services and provides the same set of functions.

Each SAPERE node hosts a local tuple space [2], that acts as a local repository of
LSAs for local agents, and a local eco-laws engine. The LSA-space of each node is
in network with a limited set of neighbor nodes based on spatial proximity relations.
Such relations consequently determine the spatial shape of the SAPERE substrate.
From the viewpoint of individual agents (that will constitute the basic execution
unit) the middleware provides an API to access the local LSA space, to advertise
themselves (via the injection of an LSA), and to support the agents’ need of con-
tinuously updating their LSAs. In addition, such API enables agents to detect local
events (as the modifications of some LSAs) or the enactment of some eco-laws on
available LSAs.

Eco-laws are realized as a set of rules embedded in SAPERE node. For each
node, the same set of eco-laws applies to rule the dynamics between local LSAs
(in the form of bonding, aggregation, and decay) and those between non-locally-
situated LSAs (via the spreading eco-law that can propagate LSAs from a node to
another to support distributed interactions). From the viewpoint of the underlying
network infrastructure, the middleware transparently absorbs dynamic changes at
the arrival/dismissing of the supporting devices, without affecting the perception of
the spatial environment by individuals.

3.2 The SAPERE API

In the SAPERE model, each agent executing on a node takes care of initializing at
least one LSA (representing the agent itself), of injecting it on the local LSA space,
and of keeping the values of such LSA (and of any additional LSA it decides to
inject) updated to reflect its current situation. Each agent can modify only its own
LSAs, and eventually read the LSAs to which it has been linked by a proper eco-
law. Moreover LSAs can be manipulated by eco-laws, as explained in the following
sections.

At the middleware level, a simple API is provided to let agents inject LSA –
injectLSA(LSA myLSA) – and to let agents atomically update some fields of an
LSA to keep it “alive” – updateLSA(field = new-value). In addition, it is pos-
sible for an agent to sense and handle whatever events occur on the LSAs of an
agent, e.g., some match that triggers some eco-laws. E.g., it is possible to handle the
event represented by the LSA being bound with another LSA via the onBond(LSA
mylsa)method.



Programming Self-organizing Pervasive Applications with SAPERE 97

The eco-laws assure self-adaptive and self-organizing activities in the ecosys-
tems. Eco-laws operate on a pattern-matching schema: they are triggered by the
presence of LSAs matching with each other, and manipulate such LSAs (and the
fields within) according to a sort of artificial chemistry [12].

3.3 LSAs

LSAs are realized as descriptive tuples made by a number of fields in the form of
“name-value” properties, and possibly organized in a hierarchical fashion: the value
of a property can be a property again (called SubDescriptions in SAPERE terms). A
detailed description of semantic representation of LSAs is in [9]. Here we emphasize
that, by building over tuple-based models and extending upon them [2], the values
in a LSA can be: actual, yet possibly dynamic and changing over time (which makes
LSAs live); formal not tied to any actual value unless bound to one and representing
a dangling connection (typically represented with a “?”).

Pattern matching between LSAs – which is at the basis of the triggering of eco-
laws – happens when all the properties of a description match, i.e, when for each
property whose names correspond (i.e., are semantically equivalent) then the asso-
ciated values match. As in classical tuple-based approaches, a formal value matches
with any corresponding actual value.

For instance, the following LSAa:(sensor-type = temperature; accuracy
= 0.1; temp = 45), that can express the LSA of a temperature sensor, can
match the following LSAb:(sensor-type = temperature; temp = ?), which
can express a request for acquiring the current temperature value. LSAa and LSAb
match with each other. The properties present in LSAa (e.g., accuracy) are not taken
into account by the matching function because it considers only inclusive match.

4 The Eco-laws Set

Let us now detail the SAPERE eco-laws and discuss their role in the SAPERE
ecosystem.

4.1 Bonding

Bonding is the primary form of interaction among co-located agents in SAPERE
(i.e., within the same LSA space). In particular, bonding can be used to locally
discover and access information, as well to get in touch and access local services.
All of which with a single and unique adaptive mechanism. Basically, the Bonding
eco-law realizes a sort of a virtual link between LSAs, whenever two LSAs (or some
SubDescriptions within) match.

The bonding eco-law is triggered by the presence of formal values in at least
one of the LSAs involved. Upon a successful pattern matching between the formal
values of an LSA and actual values of another LSA, the eco-law creates the bond



98 F. Zambonelli et al.

between the two. The link established by bonding in the presence of “?” formal
fields is bi-directional and symmetric. Once a bond is established the agents holding
the LSAs are notified of the new bond and can trigger actions accordingly. After
bond creation, the two agents holding the LSAs can read each other LSAs. This
implies that once a formal value of an LSA matches with an actual value in an LSA
it is bound to, the corresponding agent can access the actual values associated with
the formal ones. For instance, with reference to the LSAa and LSAb of the previous
subsection, the agent having injected LSAb, upon bonding with LSAa (which the
agent can detect with the onBondmethod) it can access the temperature measure by
the sensor represented by LSAb.

As bonding is automatically triggered upon match, debonding takes place auto-
matically whenever some changes in the actual “live” values of some LSAs make
the matching conditions no longer holding.

In addition to the ? formal field, which establishes a one-to-one bidirectional
bond between component, SAPERE also makes it possible to express a “*” formal
field, which leads to a one-to-many bond with multiple matchings LSAs. Moreover,
the ! formal field expresses a field that is formal unless the other ? field has been
bound. This makes it possible for an LSA to express a parameterized services, where
the ? formal field represents the parameter of the service, and the ! field represents
the answer that it is able to provide once it has been filled with the parameters.

We emphasize that the bonding eco-law mechanism can be used to enable two
agents to spontaneously get in touch with each other and exchange information,
all of which with a single operation and with both having injected an LSA in the
space. And, in the case of the ! field, automatically invoking a service. That is,
unlike in traditional discovery of data and services [3], bonding makes possible to
compose services without distinguishing between the roles of the involved agents
and subsuming the traditionally separated phases of discovery and invocation.

4.2 Aggregate Eco-law

The ability of aggregating information to produce high-level digests of some contex-
tual or situational facts is a fundamental requirement for adaptive and dynamic sys-
tems. In fact, in open and dynamic environments, one cannot know a priori which
actual information will be available (some information source may disappear, other
may appear, etc.) and the availability of ways to extract a summary of all available
information (without having to explicitly discover and access the individual infor-
mation sources) is very important.

The aggregation eco-law is intended to aggregate LSAs together so as to com-
pute summaries of the current system’s context. An agent can inject an LSA with
the aggregate and type properties. The aggregate property identifies a function
to base the aggregation upon. The type property identifies which LSAs to aggre-
gate. In particular it identifies a numerical property of LSAs to be aggregated. For
example LSAc:(aggregation op = max; property = temp) will trigger the
aggregation eco-law that selects all the LSAs having a temp numerical property,



Programming Self-organizing Pervasive Applications with SAPERE 99

computes the maximum value among them, and modifies the LSAs with the result.
In the current implementation, the aggregation eco-law is capable of performing
most common order and duplicate insensitive (ODI) aggregation functions [7].

The aggregation eco-law supports separation of concern and allows to re-use
previous aggregations. On the one hand, an agent can request an aggregation process
without dealing with the actual code to perform the aggregation. On the other hand,
the LSA resulting from an aggregation can be read (via a proper bond) by any other
agent that needs to get the pre-computed result.

4.3 Decay Eco-law

The Decay eco-law enables the vanishing of components from the SAPERE envi-
ronment. The Decay eco-law applies to all LSAs that specify a decay property to
update the remaining time to live according to the specific decay function, or actu-
ally removing LSAs that, based on their decay property, are expired. For instance in
LSAd: (sensor-type = temperature; temp = 10; DECAY=1000) it makes
that LSA to be automatically deleted after a second.

The Decay eco-law therefore is a kind of garbage collector capable of removing
LSAs that are no longer needed in the ecosystem or no longer maintained by a
component, for instance because they are the result of a propagation.

4.4 Spread Eco-law

The above presented eco-laws basically act on a local basis, i.e., on a single LSA
space. Since the SAPERE model is based on a set of networked interaction spaces,
it is of course fundamental to enable non-local interactions, and specifically by pro-
vide a mechanism to send information to remote LSA spaces and make it possible
to distribute information and results across a network of LSA spaces.

To this end, in SAPERE we designed a so called “spread” eco-law, capable of
diffusing LSAs to remote spaces. One of the primary usages of the spread eco-
law is to enable searches for components that are not available locally, and vice
versa to enable the remote advertisement of services. For an LSA to be subjected
to the spread eco-law, it has to include a diffusion field, whose value (along with
additional parameters) defines the specific type of propagation.

Two different types of propagation are implemented in the SAPERE frame-
work: (i) a direct propagation used to spread an LSA to a specified neighbor node,
e.g., LSAe:(...diffusion op=direct; destination=node x; ...); (ii) a
general diffusion capable of propagating an LSA to all neighboring SAPERE
nodes, e.g., LSAf:(...diffusion op=general; hop = 10; ...), where the
hop value can be specified to limit the distance of propagation of the LSA from
the source node.

General diffusion of an LSA via the spread eco-law to distances greater than
one is a sort of broadcast that induces a large number of replicas of the same LSA to



100 F. Zambonelli et al.

reach the same nodes multiple times from different paths. To prevent this, general
diffusion is typically coupled with the aggregation eco-law, so as to merge together
such multiple replicas.

5 From Eco-laws to Distributed Self-organization

The four above presented eco-laws form a necessary and complete set to support
self-organizing nature-inspired interactions.

The four eco-laws are necessary to support decentralized adaptive behaviors for
pervasive service systems. Bonding is the necessary mean to support adaptive local
service interactions, subsuming the necessary phases of discovery and invocation of
traditional service systems. Spreading is necessary in that there must be a mean to
diffuse information in a distributed environment to enable distributed interactions.
Aggregation and decay are necessary to support decentralized adaptive access to
information without being forced to dynamically deploy code on the nodes of the
system, which may not be possible in decentralized environments.

Further, and possibly of more software engineering relevance, the eco-law set is
sufficient to express a wide variety of distributed interaction schemes (or “patterns”),
there included self-organizing ones. Bonding and spreading can be trivially used to
realize local and distributed client-server scheme of interactions as well as asyn-
chronous models of interactions and information propagation. Coupling spreading
with aggregation and decay, however, it is possible to realize also those distributed
data structures necessary to support all patterns of nature-inspired adaptive and self-
organizing behaviors, i.e., virtual physical fields, digital pheromones, and virtual
chemical gradients [1].

In particular, aggregation applied to the multiple copies of diffused LSAs can re-
duce the number of redundant LSAs so as to form a distributed gradient structures,
also known as computational force fields. As detailed in [5], many different classes
of self-organized motion coordination schemes, self-assembly, and distributed nav-
igation can be expressed in terms of gradients. For instance, Figures 2 shows how it
is possible to define a“Guide” agent that builds, with its LSA, a distributed compu-
tational field and another agent “Search” that follows such field uphill.

In addition, spreading and aggregation can be used together to produce dis-
tributed self-organized aggregations, i.e., dynamically computing some distributed
property of the system and have the results of such computation available at each
and every node of the system, as from [7]. Distributed aggregation is a basic mech-
anism via which to realize forms of distributed consensus and distributed task allo-
cation and behavior differentiation. For instance, the code in Figure 3 shows how it
is possible to aggregate temperature information from multiple distributed sensors.

By bringing also the decay eco-law into play, and combining it with spreading and
aggregation, one can realize pheromone-based data structures, which makes possi-
ble to realize a variety of bio-inspired schemes for distributed self-organization [1].



Programming Self-organizing Pervasive Applications with SAPERE 101

Agent Guide {
init() { injectLSA(name = guide, diffusion_op = general,

hop = 1, aggregation_op = min, previous = local) } }

Agent Search {
init() { injectLSA(name = guide, hop = *) }

onBond(LSA b) { float d = computeDistanceFromHop(b.hop)
print("guide distance = "+d)
print("go toward "+b.previous) } }

Fig. 2 Generating and navigating distributed data structures. The agent Guide uses the spread
eco-law combined with aggregation to create field-like data structures, that agent Search can
then detect and follow downhill.

Agent X {
init() { injectLSA(aggregation_op = max, property = temp, diffusion = general,

hop = 1, previous = local) } }

Sensor 1....N {
init() { float t = sample()

injectLSA(temp = t) }

run() { while(true) { float t = sample()
updateLSA(temp = t) }}}

Fig. 3 Distributed aggregation. Many temperature sensors 1--N exist in the ecosystem. An
agent X can inject an LSA that, by combining spreading and aggregation, can adaptively
compute the maximum temperature of sensors.

In particular, while general diffusion and progressive decay can be used to realize
diffusible and evaporating pheromone-like data structures, direct propagation can be
used to navigate by following pheromone gradients.

6 Related Works and Conclusions

While exploiting a number of common features with situated pervasive approaches
based on tuple spaces [6, 5, 4], SAPERE proposes a different concept and manage-
ment of space. Indeed local spaces in SAPERE cannot merge – as the ones in Lime
[6] do. Differently from TOTA [5] the behaviors are embedded in the eco-laws rather
than in the tuples. Moreover components in a SAPERE environment do not need
to declare a personalized view of the context as in Ego-spaces [4], that is naturally
provided by injecting their own LSAs.

Some approaches, such as SwarmLinda [10], exploit the properties of adaptive
self-organizing natural systems to enforce adaptive behaviors transparently to ap-
plications. SAPERE has the more ambitious goal of promoting and easing the pro-
gramming of self-organizing distributed behaviors.

Summarizing, the innovative nature-inspired approach of SAPERE is effective
to easily enforce a variety of self-organizing schemes for pervasive computing ser-
vices. As the activities within the SAPERE European Project will proceed, we will



102 F. Zambonelli et al.

challenge the SAPERE findings and tools against innovative services in the area of
crowd management, by exploiting an ecosystem of pervasive displays as a technical
testbed [8].

Acknowledgements. Work supported by the EU FET Unit, under grant No. 256873.

References

1. Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM
Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006)

2. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

3. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles.
IEEE Internet Computing 9(1), 75–81 (2005)

4. Julien, C., Roman, G.-C.: Egospaces: Facilitating rapid development of context-aware
mobile applications. IEEE Trans. Software Eng., 281–298 (2006)

5. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications:
the tota approach. ACM Trans. Software Engineering and Methodology 18(4) (2009)

6. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination model and middleware
supporting mobility of hosts and agents. ACM Trans. Software Engineering and Method-
ology 15(3), 279–328 (2006)

7. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust ag-
gregation in sensor networks. In: Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, Baltimore, MD, USA, pp. 250–262 (2004)

8. Sippl, A., Holzmann, C., Zachhuber, D., Ferscha, A.: Real-time gaze tracking for pub-
lic displays. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N.,
Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp.
167–176. Springer, Heidelberg (2010)

9. Stevenson, G., Viroli, M., Ye, J., Montagna, S., Dobson, S.: Self-organising semantic
resource discovery for pervasive systems. In: 1st International Workshop on Adaptive
Service Ecosystems: Natural and Socially Inspired Solutions, Lyon, France, pp. 47–52
(2012)

10. Tolksdorf, R., Menezes, R.: Using swarm intelligence in linda systems. In: Omicini,
A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 49–65. Springer,
Heidelberg (2004)

11. Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Integrating pervasive middleware with
social networks in sapere. In: International Conference on Selected Topics in Mobile and
Wireless Networking, Shanghai, PRC, pp. 145–150 (2011)

12. Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive service
ecosystems. Journal of Pervasive Computing and Communications 7, 186–204 (2011)



SOMEWHERE2 – A Robust Package for
Collaborative Decentralized
Consequence-Finding

Philippe Chatalic and Andre de Amorim Fonseca

Abstract. This paper presents SOMEWHERE2, a new framework that may be used
for setting up peer-to-peer inference systems and for solving consequence finding
problems in a completely decentralized way. It is a complete redesign and reengi-
neering of an earlier platform. The new architecture has gained in genericity, modu-
larity and robustness. It is much easier to extend and/or to reuse as a building block
for advanced distributed applications, such as Peer Data Management Systems.

1 Introduction

The consequence finding problem [9, 10] amounts to finding formulas that are con-
sequences of a logical theory. Many applications involve reasoning tasks that aim
at discovering such consequences, not explicit in the original theory. Often, not all
consequences are sought, but only a subset of those, satisfying some syntactical
property, called a production field [12]. Consequence finding is more complex than
the proof finding problem, for which a user simply wants to verify whether a formula
is entailed or not by a theory. It has proved to be useful for wide range of problems
involving diagnosis, abductive reasoning, hypothetical and non-monotonic reason-
ing, query rewriting as well as knowledge compilation (see [10] for a survey).

There are several reasons to consider this problem in a distributed setting. For
large theories, the problem may rapidly become out of scope for a single computing
unit. Exploiting structural properties of the original theory in order to decompose it
into subparts is one possible approach. It has been explored in the context of theo-
rem proving by [2] and recently extended to the case of consequence finding in [3].

Philippe Chatalic
L.R.I. - Bat 650, Université Paris-Sud, Orsay, France
e-mail: chatalic@lri.fr

Andre de Amorim Fonseca
L.R.I. , Inria Saclay Ile-de-France, Orsay, France
e-mail: andre.amorimfonseca@gmail.fr

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 103
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_13, c© Springer International Publishing Switzerland 2014



104 P. Chatalic and A. de Amorim Fonseca

But the need for a distributed approach becomes essential when the knowledge is
intrinsically scattered at different places. This is the case in some multi agent archi-
tectures, where each agent is not necessarily willing (e.g. for some privacy reasons)
to share all of its knowledge, but has to collaborate with others in order to achieve
its goals. Similarly, semantic data management systems exploit the content of mul-
tiple sources of information, each of them beeing described using its own ontology.
Query answering over such networked data sources requires reasoning over dis-
tributed ontologies. It generally proceeds in two steps, the first of which is a query
rewriting step (that can be reformulated as a consequence finding problem), where
the original query is rewritten in terms of the languages of the different relevant
ontologies. Obtained rewritings are then evaluated on the appropriate sources.

Given the ever growing number of information sources available over the web,
peer-to-peer (P2P) architectures look particularly promising for that purpose. The
absence of any centralized control or hierarchical organization and the fact that each
peer plays the same role gives much flexibility to accommodate to the dynamic
nature of such networks. This also contributes to the scalability and the robustness of
such approaches. Such principles are at the core of Peer Data Management Systems
(PDMS) such as as EDUTELLA [11], PIAZZA [5] or SOMEWHERE [1].

SOMEWHERE is a framework based on a decentralized propositional P2P infer-
ence system (P2PIS) that can be used as a corner stone for designing elaborated
PDMS. Its scalability on fairly large networks of peers has been very encouraging.
It is however rather a proof of concept than a rock solid piece of code. Unstable, it
missed essential features, e.g. the ability to cope with the dynamicity of the network.
Moreover, costs for its maintenance and attempts to add new features turned out to
be extremely high. At some time, the best solution has appeared to start a complete
reengineering, in order to improve both its design, robustness and extensibility. The
main contribution of this paper is to present the core architecture of this new system.

2 Consequence Finding in P2P Inference Systems

SOMEWHERE is based on a decentralized consequence finder that consider P2PIS
P = {Pi}i=1..n such as the one of Fig. 1, where each peer has its own vocabulary Vi

(a set of propositional variables) and a local clausal theory Pi = Oi ∪Mi. Oi denotes
the set of local clauses, that are made exclusively of literals over Vi (here symbols
indiced by i), while Mi denotes mapping clauses, involving the vocabulary of at
least two different peers. Intuitively, local clauses describe the very own knowledge
of the peer Pi while mappings state logical constraints between different peer the-
ories. Variables appearing in several peers are said to be shared (edges labels on
fig. 1). They characterize possible interactions between peers and implicitly define
an acquaintance graph. We assume each peer to be aware of its acquaintances and
denote by ACQ(l,Pi) the set of peers with which Pi shares the variable of a literal l.
The global theory P=

⋃
i=1..n Pi is a set of clauses over the vocabulary V =∪i=1..nVi.

For such networks, we consider the classical semantics of propositional logic.
We use |= to denote the classical consequence relation. A clause c is an implicate of



SOMEWHERE2 105

Peer P1
O1: a1 ∨d1

¬ f1 ∨ c1
b1 ∨ e1 ∨d1

M1:

Peer P2
O2: a2

¬c2 ∨b2
¬a2 ∨ c2

M2: ¬a2 ∨b3 (m4)

Peer P3
O3: c3

¬e3 ∨¬c3

¬b3 ∨ e3 ∨¬a3
M3: ¬b3 ∨¬e1 (m2)

¬c4 ∨¬d3 (m5)

Peer P4
O4: ¬d4 ∨¬a4

a4 ∨¬b4 ∨ c4
M4: b4 ∨¬d1 (m3)

Peer P5
O5: ¬a5 ∨¬b5
M5: a5 ∨¬b2 (m1)

e1

d1

b2

b3

c4

Fig. 1 A P2PIS network

a theory Σ iff Σ |= c. An implicate c is
prime iff for any other implicate c” of
Σ , c” |= c implies c” ≡ c′. By extention
a clause c′ is said to be a (prime) impli-
cate of a clause c wrt Σ iff it is a (prime)
implicate of Σ ∪{c}. Furthermore, c′ is
said to be a proper (prime) implicate of
c wrt Σ if Σ ∪{c} |= c′, but P �|= c′.

Decentralized Consequence Finding

Given a P2PIS P , the problem we ad-
dress is to compute all the proper prime
implicates of a clause c with respect
the global theory P. The point is that
while c is stated using the language LVi

(clauses over Vi) of the queried peer, the proper prime implicates of c can be clauses
of LV

1. Moreover, none of the peer in the P2PIS has a global view of the network.
A peer only knows is its own theory Pi and the variables shared with its neighbours.

DECA [1] is the first sound and complete decentralized algorithm that has been
proposed to solve this problem. It proceeds using a split/recombination strategy.
When a peer Pi is asked to compute the proper prime implicates of a literal q, it first
computes the proper prime implicates of q w.r.t. the local theory Pi. Each implicate
c is then split in two subclauses L(c) and S(c), corresponding to the non-shared and
shared literals of c. If non empty, S(c) is then split in turn and for each shared literal
l of S(c) DECA asks its relevant neighbours ACQ(l,Pi) (which are running the very
same algorithm) to compute similarly the proper consequences of l wrt P. Answers
of respective calls on neighbours are then recombined incrementally with L(c).

Illustrative Example. The reader is referred to [1] for the full details on the algo-
rithm. But to get an intuition of the work performed by DECA, let us illustrate the
reasoning triggered by the query q0 = d4@P4 that asks P4 to compute the proper
prime implicates of d4 wrt P, on the P2PIS of Fig. 1. First, local consequents of d4

on P4 are computed, which gives : {d4,¬a4,¬b4∨c4,¬d1∨c4}. But c4 and d1 being
shared variables, this triggers two recursive queries, q1 = c4@P3 and q2 = ¬d1@P1.

q1: local consequents of c4 on P3 are {c4,¬d3}. Since d3 is not shared, the reasoning
halts. Both clauses are returned to P4, as answers for the query q1.
q2: local consequents of ¬d1 on P1 are {¬d1,a1,b1 ∨ e1}. But e1 being shared with
P3, this triggers a new query q3 = e1@P3.
q3: local consequents of e1 on P3 are {e1,¬b3}. But b3 being shared with P2, this
triggers a new query q4 = b2@P2.
q4: local consequents of ¬b3 on P2 are {�} (i.e. the empty clause, which sub-
sumes all other consequents). � is then returned to P3 as an answer for q4, where it

1 A variant problem is to focus on the proper prime implicates that belong to some pro-
duction field PF ⊆ LV , supposed to characterize interesting clauses for the application
domain.



106 P. Chatalic and A. de Amorim Fonseca

subsumes e1 and ¬b3. � is then returned to P1, as the only answer for the query q3.
On P1: � (which subsumes e1) is recombined with b1 and the set of consequents of
¬d1 is now {¬d1,a1,b1}. This set is returned to P4 as the answer for the query q2.
On P4: these clauses are recombined in place of d1 with the answers obtained for c4,
producing : {¬d1∨c4,a1∨c4,b1∨c4,¬d1∨¬d3,a1∨¬d3,b1∨¬d3}. These answers
are added to those previously obtained, namely {d4,¬a4,¬b4 ∨ c4,¬b4 ∨¬d3}.

While [1] assume the global theory to be consistent, [4] has adapted this ap-
proach to the case where the local theories Pi are consistent, but not necessarily the
whole theory P. Two algorithms are described : P2P-NG and WF-DECA, that can
respectively detect all causes of inconsistencies and ensure that only so-called well
founded consequents are produced. Algorithms DECA, P2P-NGand WF-DECA
have many similarities but also differences. Their respective codes have been devel-
oped by different persons, at different periods of time, with different coding prac-
tices and style. Moreover, the original code from which they evolved suffered from
many flaws, with lots of duplicated code and serious cross cutting concerns that
strongly affected its modularity. Prohibitive maintenance costs and difficulties to
add new functionalities have motivated a complete reengineering of the whole.

3 Architecture of SOMEWHERE2

SOMEWHERE2’s design has been driven by several goals, among which the ob-
tention of more robust an flexible code, developed according better software engi-
neering practices. Robustness has been improved through a careful analysis of the
different parts of the code in order to reduce dependencies as much as possible. This
has lead to the design of several components corresponding to central concepts.

Flexibility has been improved by structuring the code in terms of an abstract no-
tion of module. Each module addresses a specific concern. Some required modules
are always loaded by the application. Others may be included (or not) at build time,
according to the user’s needs. A module manager is responsible for loading the ap-
propriate modules. Essential functionalities of the various components are modeled
in abstract modules and implemented in concrete modules. This module based ap-
proach greatly facilitates alternative concrete implementations of functionalities, the
selection different sets of features and/or the creation of new extensions.

As seen in the illustrative example, DECA requires a local consequence finder,
some way to interact with other peers, to recombine the results obtained from dis-
tant peers, to interact with the user (for asking queries, updating/adding/removing
peers,..). P2P-NG and WF-DECA have similar needs, although declined in dif-
ferent ways. The current architecture of SOMEWHERE2 (Fig. 2) has 4 components
(Module Manager, User interface, Transport and Distributed Reasoning), each of
which with several modules. SOMEWHERE2’s default configuration also rely on the
component (IASI Libs), that offers reasoning services, but in centralized setting. As
it can be used independently of Somewhere2 it is seen as an external dependency.



SOMEWHERE2 107

Module Manager

swr.cli

swr.baseApp

swr.baseI

swr.ui

swr.cli.
swing

swr.cli.
console

User Interface

swr.
jxta

swr.
shoal

swr.
jgroups

Transport

swr.communication iasi.formalLogic

iasi.pLogic

Iasi Libs

swr.pLogic.distributed

swr.pLogic.distributed.inconsistency

Distributed Reasoning

SOMEWHERE2

External libraries
Concrete Modules
Abstract Modules
Required Modules

Module Loader

Fig. 2 SOMEWHERE2 Architectural Schema

Components have very few dependencies, represented by top-bottom adjacen-
cies, e.g. Distributed Reasoning only depends on Transport and IASI Libs. Each
component can contain required, abstract, concrete and/or external modules. Mod-
ule dependencies inside a component are reflected in the same way. The baseApp
module plays a central role and is responsible for the instantiation and configuration
of the other modules. Each module can have specific libraries and its own configura-
tion scheme. We briefly describes noticeable features of some of these components.

Transport. In [1], all communications were handled in an ad’hoc way, at socket
level. In contrast, the new architecture is designed to reuse an existing P2P frame-
work. The abstract module communication describes the concurrency model (based
on http-like sessions) and core concepts required by the application for exchanges
between peers (messages types, processors, ...) and the dynamicity of the network
(joining/leaving peers, lost connections,...). The clean separation of abstract and
concrete layers has greatly facilitated the comparison of alternative P2P frameworks
(jxta[13], shoal[6] and jgroups[7]), without affecting other parts of the code.

Distributed Reasoning. This component is responsible for all knowledge level
concepts relevant to the distributed aspects of consequent finding algorithms [1, 4]
(e.g. messages, handlers, network/peers modifications, anytime recombination,...).
One module handle all aspects related to inconsistency tolerance and the imple-
mentations of P2P-NG and WF-DECA. Both share as much code as possible with
DECA, which is implemented in the pLogic.distributed module.

IASI Libs. Although packaged as a independent project, this component has been
developed simultaneously to the other modules. It is the core library for local CF



108 P. Chatalic and A. de Amorim Fonseca

algorihms. In contrast, with the [1], that used a simple split/backward chaining strat-
egy, SOMEWHERE2 uses a corrected and optimized version of IPIA [8].

The increased robustness of this new framework also results from a permanent
effort to follow good software engineering practices, such as the systematic use of
unit tests, the intensive use of design patterns and of static code analyzers (Sonar).
A Jenkins server as also been configured to set up integration tests. In its current
state, the project represent around 13000 lines of Java code, with less than 5% code
redundancy, structured as a set of Maven projects, to ease the build process.

4 Conclusion

We have presented the architecture of SOMEWHERE2. It reunifies in a single and
coherent framework two variants, tolerant or not to inconsistent theories of decen-
tralized consequence finding algorithms. This new framework, the code of which
has been has been completely rewritten and reorganized, has gained in modularity,
flexibility and robustness. One noticeable improvement is the ability to deal safely
with dynamic networks, with peers joining and leaving the network anytime. We
expect SOMEWHERE2 to be much easier to use, to maintain and to extend. An ex-
tensive experimental study is underway and we plan to release its code under an
open source licence.

References

1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed reasoning
in a peer-to-peer setting: Application to the semantic web. JAIR, 25 (January 2006)

2. Amir, E., McIlraith, S.: Partition-based logical reasoning. In: KR, pp. 389–400 (2000)
3. Bourgne, G., Inoue, K.: Partition-based consequence finding. In: ICTAI, pp. 641–648

(2011)
4. Chatalic, P., Nguyen, G.H., Rousset, M.C.: Reasoning with Inconsistencies in Proposi-

tional Peer-to-Peer Inference Systems. In: ECAI, pp. 352–357 (August 2006)
5. Halevy, A.Y., Ives, Z., Tatarinov, I., Mork, P.: Piazza: data management infrastructure for

semantic web applications, pp. 556–567. ACM Press (2003)
6. Shoal – a dynamic clustering framework, http://shoal.java.net
7. Jgroups - a toolkit for reliable multicast communication,

http://www.jgroups.org
8. Kean, A., Tsiknis, G.K.: An incremental method for generating prime impli-

cants/impicates. J. Symb. Comput. 9(2), 185–206 (1990)
9. Lee, C.T.: A completeness theorem and a computer program for finding theorems deriv-

able from given axioms. PhD thesis, Univ. of California, Berkeley, CA (1967)
10. Marquis, P.: Consequence Finding Algorithms. In: Handbook on Defeasible Reasoning

and Uncertainty Management Systems, vol. 5, pp. 41–145. Kluwer Academic (2000)
11. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., et al.: Edutella: a p2p networking

infrastructure based on rdf, pp. 604–615. ACM (May 2002)
12. Siegel, P.: Représentation et utilisation de la connaissance en calcul propositionnel. PhD

thesis, Université d’Aix-Marseille II (1987)
13. Jxta: A language and platform independent protocol for p2p networking,

http://jxta.kenai.com

http://shoal.java.net
http://www.jgroups.org
http://jxta.kenai.com


Heuristic Co-allocation Strategies in Distributed
Computing with Non-dedicated Resources

Victor Toporkov, Anna Toporkova, Alexey Tselishchev, and Dmitry Yemelyanov

Abstract. In this work, we introduce heuristic slot selection and co-allocation strate-
gies for parallel jobs in distributed computing with non-dedicated and heteroge-
neous resources (clusters, CPU nodes equipped with multicore processors, networks
etc.). A single slot is a time span that can be assigned to a task, which is a part of a
job. The job launch requires a co-allocation of a specified number of slots starting
synchronously. The challenge is that slots associated with different resources of dis-
tributed computational environments may have arbitrary start and finish points that
do not match. Some existing algorithms assign a job to the first set of slots match-
ing the resource request without any optimization (the first fit type), while other ap-
proaches are based on an exhaustive search. In our approach, co-allocation strategies
formalized by given criteria are implemented by algorithms of linear complexity on
an available slots number. The novelty of the approach consists of allocating alterna-
tive sets of dynamically updated slots based on the information from local resource
managers in the node domains. It provides possibilities to optimize job scheduling
during resource selection.

Victor Toporkov · Dmitry Yemelyanov
National Research University “MPEI”,
ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia
e-mail: {ToporkovVV,YemelyanovDM}@mpei.ru
Anna Toporkova
National Research University Higher School of Economics,
Moscow State Institute of Electronics and Mathematics,
Bolshoy Trekhsvyatitelsky per., 1-3/12,
Moscow, 109028, Russia
e-mail: atoporkova@hse.ru

Alexey Tselishchev
European Organization for Nuclear Research (CERN),
Geneva, 23, 1211, Switzerland
e-mail: Alexey.Tselishchev@cern.ch

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 109
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_14, c© Springer International Publishing Switzerland 2014



110 V. Toporkov et al.

1 Introduction

Economic mechanisms are used to solve problems like resource management and
scheduling of jobs in a transparent and efficient way in distributed environments
such as cloud computing [8], utility Grid [6], and multi-agent systems [2]. A re-
source broker model [2, 5, 6, 8] is decentralized, well-scalable and application-
specific. It has two parties: node owners and brokers representing users. The
simultaneous satisfaction of various application optimization criteria submitted by
independent users is not possible due to several reasons and also can deteriorate
such quality of service rates as total execution time of a batch of jobs or overall re-
source utilization. Another model is related to virtual organizations (VO) [7, 14, 15]
with central schedulers providing job-flow level scheduling and optimization. VOs
naturally restrict the scalability, but uniform rules for allocation and consumption of
resources make it possible to improve the efficiency of resource usage and to find a
trade-off between contradictory interests of different participants.

In [14, 15], we have proposed a hierarchical scheduling model which is func-
tioning within a VO. The significant difference between the approach proposed in
[14, 15] and well-known scheduling solutions for distributed environments such as
Grids [3, 5, 6, 7, 16], e.g., gLite Workload Management System [3], is the fact that
the scheduling strategy is formed on a basis of efficiency criteria. They allow reflect-
ing economic principles of resource allocation by using relevant cost functions and
solving a load balancing problem for heterogeneous resources. The metascheduler
[14, 15] implements the economic policy of a VO based on local resource schedules.
The schedules are defined as sets of slots coming from resource managers or sched-
ulers in the resource domains. During each scheduling cycle the sets of available
slots are updated and two problems have to be solved: 1) selecting an alternative
set of slots (alternatives) that meet the requirements (resource, time, and cost); 2)
choosing a slot combination that would be the efficient or optimal in terms of the
whole job batch execution. To implement this scheduling scheme, first of all, one
needs an algorithm for finding and co-allocating slot sets. An optimization technique
for the second phase of this scheduling scheme was proposed in [14, 15].

First fit selection algorithms [1, 4] assign any job to the first set of slots matching
the resource request conditions, while other algorithms use an exhaustive search,
feature more than linear complexity, and may be inadequate for on-line use [10].
Moab scheduler [9] implements backfilling and during a slot window search does
not take into account any additive constraints such as the minimum required storage
volume or the maximum allowed total allocation cost. Moreover, backfilling does
not support environments with non-dedicated resources. NWIRE system [5] per-
forms a slot window allocation based on the user defined efficiency criterion under
the maximum total execution cost constraint. However, the optimization occurs only
on the stage of the best found offer selection.

In our previous works [11, 12, 13], two algorithms for slot selection AMP and
ALP that feature linear complexity O(m), where m is the number of available
time-slots, were proposed. Both algorithms perform the search of the first fitting
window without any optimization. AMP (Algorithm based on Maximal job Price),



Non-dedicated Resources Heuristic Co-allocation Strategies 111

performing slot selection based on the maximum slot window cost, proved the ad-
vantage over ALP (Algorithm based on Local Price of slots) when applied to the
above mentioned scheduling scheme. However, in order to accommodate an end
user’s job execution requirements, there is a need for more precise slot selection al-
gorithms to consider various user demands along with the VO resource management
policy. In this paper, we propose heuristic strategies for effective slot selection and
co-allocation based on users or VO administrators defined criteria. The novelty of
the proposed approach consists of allocating a number of alternative sets of slots. It
makes it possible to optimize job scheduling under specified criteria.

The paper is organized as follows. Sect. 2 introduces a general scheme for search-
ing alternative slot sets that are effective by given criteria. Then some strategies
based on this scheme are proposed and considered. Sect. 3 contains simulation re-
sults for comparison of proposed and known strategies. Sect. 4 summarizes the paper
and describes further research topics.

2 General Scheme and Slot Co-allocation Strategies

In this section we introduce a general scheme of an Algorithm searching for
Extreme Performance (AEP) and its implementations as diverse co-allocation strate-
gies formalized by given criteria.

2.1 AEP Scheme

The job is a set of n interrelated tasks. The launch of any job requires a co-allocation
of a specified number of slots, as well as in the classic backfilling variation [9]. The
target is to scan a list of available slots and to select a window W of n parallel
slots with a length of the required resource reservation time. The length of each slot
in the window is determined by the performance rate of the resource on which it
is allocated. The time length of an allocated window W is defined by the execution
time of the task that is using the slowest CPU node, and in the case of heterogeneous
resources, as a result one has a window with a “rough right edge”(Fig. 1). One can
define a criterion on which the best matching window alternative is chosen. This
can be a criterion crW for a minimum cost, a minimum execution runtime or, for
example, a minimum energy consumption.

Fig. 1 Window with a “rough right edge ”



112 V. Toporkov et al.

The scheme for an optimal window search by the specified criterion may be rep-
resented as follows:

/* Job - Batch job for which the search is performed ;

** windowSlots - a set (list) of slots representing the window;*/
slotList = orderSystemSlotsByStartTime();
for(i=0; i< slotList.size; i++){
nextSlot = slotList[i];
if(!properHardwareAndSoftware(nextSlot))

continue; // The slot does not meet the requirements
windowSlotList.add(nextSlot);
windowStart = nextSlot.startTime;
for(j=0; j<windowSlots.size; j++){

wSlot = windowSlots[j];
minLength = wSlot.Resource.getTime(Job);
if((wSlot.EndTime - windowStart) < minLength)

windowSlots.remove(wSlot);
}
if(windowSlots.size >= Job.m){

curWindow = getBestWindow(windowSlots);
crW = getCriterion(curWindow);
if(crW > maxCriterion){

maxCriterion = crW;
bestWindow = curWindow;

}
}

}

Finally, a variable bestWindow will contain an effective window by the given
criterion crW.

Consider as an example the problem of selecting a window of size n with a total
cost no more than S from the list of m> n slots (in the case, when m= n the selection
is trivial). The cost of using each of the slots according to their required time length
is: c1,c2, ...,cm. Each slot has a numeric characteristic zi in accordance to crW . The
total value of these characteristics should be minimized in the resulting window.
Then the problem is formulated as follows:

a1z1 + a2z2 + ...+ amzm → min,
a1c1 + a2c2 + ...+ amcm ≤ S, a1 + a2 + ...+ am = n, ar ∈ {0,1},r = 1, ...,m.

Finding the coefficients a1,a2, ...,am each of which takes integer values 0 or 1 (and
the total number of “1”values is equal to n because each job is the set of n interre-
lated tasks), determine the window with the specified criterion crW extreme value.
Additional restrictions can be added, for example, considering the specified value
of deadline.

By combining the optimization criteria, VO administrators and users can form
diverse slot selection and co-allocation strategies for every job in the batch. Users
may be interested in their jobs total execution cost minimizing or, for example,
in the earliest job finish time, and are able to affect the set of alternatives found
by specifying the job co-allocation criteria. VO administrators, in their turn, are



Non-dedicated Resources Heuristic Co-allocation Strategies 113

interested in finding extreme integral characteristics for job-flows execution (e.g.,
total cost, total CPU usage time) to form more flexible and, possibly, more effective
slot combinations representing batch execution schedules.

2.2 AEP-Based Heuristic Strategies

The need to choose alternative sets of slots for every batch job increases the com-
plexity of the whole scheduling scheme [14]. With a large number of available slots
the search algorithm execution time may become inadequate. Though it is possi-
ble to mention some typical optimization problems, based on the AEP scheme that
can be solved with a relatively decreased complexity. These include problems of
total job cost minimizing, total runtime minimizing, the window formation with the
minimal start/finish time.

For the proposed AEP efficiency analysis the following heuristic strategies and
their algorithmic implementations were added to the simulation model [14, 15].

1. AMP – searching for slot windows with the earliest start time. This scheme was
introduced in works [11, 12, 13].

2. MinRunTime – this strategy performs a search for a single alternative with the
minimum execution runtime. Given the nature of determining a window runtime,
which is equal to the length of the longest composing slot, the following scheme
may be proposed:

orderSlotsByCost(windowSlots);
resultWindow = getSubList(0,n, windowSlots);
extendWindow = getSubList(n+1,m, windowSlots);
while(extendWindow.size > 0){

longSlot = getLongestSlot(resultWindow);
shortSlot = getCheapestSlot(extendWindow);
extendWindow.remove(shortSlot);
if((shortSlot.size < longSlot.size)&&
(resultWindow.cost + shortSlot.cost < S)){
resultWindow.remove(longSlot);
resultWindow.add(shortSlot);

}
}

As a result, the suitable window of the minimum time length will be formed in
a variable resultWindow. The algorithm described consists of the consecutive
attempts to substitute the longest slot in the current window (the resultWindow
variable) with another shorter one that will not be too expensive. In case when it
is impossible to substitute the slots without violating the constraint on the maxi-
mum window allocation cost, the current resultWindow configuration is de-
clared to have the minimum runtime.

3. MinFinish – searching for alternatives with the earliest finish time. This strategy
may be implemented using the runtime minimizing procedure presented above.



114 V. Toporkov et al.

Indeed, the expanded window has a start time tStart equal to the start time of
the last added suitable slot. The minimum finish time for a window on this set
of slots is (tStart + minRuntime), whereminRuntime is the minimum
window length. The value of minRuntime can be calculated similar to the run-
time minimizing procedure described above. Thus, by selecting a window with
the earliest completion time at each step of the algorithm, the required window
will be allocated in the end of the slot list.

4. MinCost – searching for a single alternative with the minimum total allocation
cost on the scheduling interval. For this purpose in the AEP search scheme n slots
with the minimum sum cost should be chosen. If at each step of the algorithm a
window with the minimum sum cost is selected, at the end the window with the
best value of the criterion crW will be guaranteed to have overall minimum total
allocation cost at the given scheduling interval.

5. MinProcTime – this strategy performs a search for a single alternative with the
minimum total node execution time defined as a sum of the composing slots’
time lengths. It is worth mentioning that this implementation is simplified and
does not guarantee an optimal result and only partially matches the AEP scheme,
because a random window is selected.

6. Common Stats, AMP (further referred to as CSA) – the strategy for searching
multiple alternatives using AMP. Similar to the general searching scheme [11,
12, 13], a set of suitable alternatives, disjointed by the slots, is allocated for each
job. To compare the search results with the strategies 1-5, presented above, only
alternatives with the extreme value of the given criterion will be selected, so
the optimization will take place at the selection process. The criteria include the
start time, the finish time, the total execution cost, the minimum runtime and the
processor time used.

It is worth mentioning that all proposed AEP implementations have a linear com-
plexity O(m): algorithms “move”through the list of m available slots in the direction
of non-decreasing start time without turning back or reviewing previous steps.

3 Experimental Studies of Slot Co-allocation Strategies

The goal of the experiment is to examine AEP implementations: to analyze co-
allocation strategies with different efficiency criteria, to compare the results with
AMP and to estimate the possibility of using in real systems considering the algo-
rithm execution time for each strategy.

3.1 Simulation Environments

A simulation framework [14, 15] was configured in a special way in order to study
and to analyze the strategies presented.

In each experiment a generation of the distributed environment that consists of
100 CPU nodes was performed. The performance rate for each node was generated



Non-dedicated Resources Heuristic Co-allocation Strategies 115

as a random integer variable in the interval [2; 10] with a uniform distribution. The
resource usage cost was formed proportionally to their performance with an ele-
ment of normally distributed deviation in order to simulate a free market pricing
model [2, 5, 6, 8]. The level of the resource initial load with the local and high pri-
ority jobs at the scheduling interval [0; 600] was generated by the hyper-geometric
distribution in the range from 10% to 50% for each CPU node. Based on the gen-
erated environment the algorithms performed the search for a single initial job that
required an allocation of 5 parallel slots for 150 units of time. The maximum total
execution cost according to user requirements was set to 1500. This value generally
will not allow using the most expensive (and usually the most efficient) CPU nodes.
The relatively high number of the generated nodes has been chosen to allow CSA to
find more slot alternatives. Therefore more effective alternatives could be selected
for the searching results comparison based on the given criteria.

3.2 Experimental Results

The results of the 5000 simulated scheduling cycles are presented in Fig. 2. The
obtained values of the total job execution cost are as follows: AMP – 1445,2; min-
Finish – 1464,2; minCost – 1027,3; minRuntime – 1464,9; minProcTime – 1342,1;
CSA – 1352.

Each full AEP-based strategy was able to obtain the best result in accordance with
the given criterion: start time (Fig. 2 (a)); runtime (Fig. 2 (b)); finish time (Fig. 2 (c));
CPU usage time (Fig. 2 (d)). Besides, a single run of the AEP-like algorithm had
an advantage of 10%-50% over suitable alternatives found by AMP with a respect
to the specified criterion. According to the experimental results, on one hand, the
best scheme with top results in start time, finish time, runtime and CPU usage time
was minFinish. Though in order to obtain such results the algorithm spent almost all
user specified budget (1464 of 1500). On the other hand, the minCost strategy was
designed precisely to minimize execution expenses and provides 43% advantage
over minFinish (1027 of 1500), but the drawback is a more than modest results by
other criteria considered.

The important factor is a complexity and an actual working time of the algorithms
implementing heuristic strategies. Fig. 3 (a) shows the actual algorithms execution
time in milliseconds measured depending on the number of CPU nodes. The sim-
ulation was performed on a regular PC workstation with Intel Core i3 (2 cores @
2.93 GHz), 3GB RAM on JRE 1.6, and 1000 separate experiments were simulated
for each value of the processor nodes numbers {50, 100, 200, 300, 400}.

The CSA strategy has the longest working time that on the average almost reaches
3 seconds when 400 nodes are available. A curve “CSA per Alt”in Fig. 3 (a) rep-
resents an average working time for the CSA algorithm in recalculation for one al-
ternative. AEP-based algorithms feature a quadratic complexity. Fig. 3 (b) presents
the algorithms working time in milliseconds measured depending on the schedul-
ing interval length. Overall 1000 single experiments were conducted for each value
of the interval length {600, 1200, 1800, 2400, 3000, 3600} and for each considered



116 V. Toporkov et al.

(a) (b)

(c) (d)

Fig. 2 Average start time (a), runtime (b), finish time (c), and CPU usage time (d)

(a) (b)

Fig. 3 Average working time duration depending on the available CPU nodes number (a) and
the scheduling interval length (b)

algorithm an average working time was obtained. The experiment simulation param-
eters and assumptions were the same as described earlier in this section, apart from
the scheduling interval length. A number of CPU nodes was set to 100. Similarly
to the previous experiment, CSA had the longest working time (about 2.5 seconds
with the scheduling interval length equal to 3600 model time units), which is mainly
caused by the relatively large number of the formed execution alternatives (on the
average more than 400 alternatives on the 3600 interval length).

Analyzing the presented values it is easy to see that all proposed algorithms have
a linear complexity with the respect to the length of the scheduling interval and,
hence, to the number of the available slots.

The minProcTime strategy stands apart and represents a class of simplified AEP
implementations with a noticeably reduced working time. And though the scheme



Non-dedicated Resources Heuristic Co-allocation Strategies 117

compared to other considered algorithms, did not provide any remarkable results,
it was on the average only 2% less effective than the CSA scheme by the dedicated
CPU usage criterion (see Fig. 2 (d)). At the same time its reduced complexity and
actual working time (see Fig. 3(b)) allow to use it in a large wide scale distributed
systems when other optimization search algorithms prove to be too slow.

4 Conclusions and Future Work

In this work, we address the problem of slot selection and co-allocation for paral-
lel jobs in distributed computing with non-dedicated resources. For this purpose the
AEP scheme as a basis for diverse co-allocation strategies was proposed and consid-
ered. Specific AEP heuristic strategies with a reduced complexity were introduced.
They include total job cost minimizing, total runtime minimizing, the slot window
formation with the minimal start/finish time. Each of the co-allocation algorithms
possesses a linear complexity on a total available slots number and a quadratic com-
plexity on a CPU nodes number. The advantage of AEP-based strategies over the
general CSA scheme was shown for each of the considered criteria: start time, fin-
ish time, runtime, CPU usage time, and total cost. In our further work, we will
refine resource co-allocation algorithms in order to integrate them with scalable co-
scheduling strategies [14, 15].

Future research will be focused on AEP-based algorithms integration with the
whole batch scheduling approach, and mainly on its influence on job-flows execu-
tion efficiency.

Acknowledgements. This work was partially supported by the Council on Grants of the
President of the Russian Federation for State Support of Leading Scientific Schools (SS-
316.2012.9), the Russian Foundation for Basic Research (grant no. 12-07-00042), and by
the Federal Target Program “Research and scientific-pedagogical cadres of innovative Rus-
sia”(state contract no. 16.740.11.0516).

References

1. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance Reserva-
tions. In: HPDC 2008, pp. 65–74. IEEE CS Press, New York (2008)

2. Bredin, J., Kotz, D., Rus, D., Maheswaran, R.T., Imer, C., Basar, T.: Computational
Markets to Regulate Mobile-Agent Systems. Autonomous Agents and Multi-Agent Sys-
tems 6(3), 35–263 (2003)

3. Cecchi, M., Capannini, F., Dorigo, A., et al.: The gLite Workload Management System.
J. Phys.: Conf. Ser. 219(6), 062039 (2010)

4. Elmroth, E., Tordsson, J.: A Standards-based Grid Resource Brokering Service Support-
ing Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of Concur-
rency and Computation: Practice and Experience 25(18), 2298–2335 (2009)

5. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Comput-
ing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS,
vol. 2537, pp. 128–152. Springer, Heidelberg (2002)



118 V. Toporkov et al.

6. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling Parallel Applications on Utility Grids:
Time and Cost Trade-off Management. In: 32nd Australasian Computer Science Confer-
ence, pp. 151–159 (2009)

7. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-
source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the Art and Future Trends, pp. 271–293. Kluwer Acad. Publ.
(2003)

8. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud Ser-
vices with Data Access Awareness. J. of Parallel Distributed Computing 72(4), 591–602
(2012)

9. Moab Adaptive Computing Suite,
http://www.adaptivecomputing.com/products/

10. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based Co-
allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-
guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS,
vol. 6253, pp. 16–34. Springer, Heidelberg (2010)

11. Toporkov, V., Bobchenkov, A., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot
Selection and Co-allocation for Economic Scheduling in Distributed Computing. In:
Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 368–383. Springer, Heidelberg
(2011)

12. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection
Algorithms for Economic Scheduling in Distributed Systems. Procedia Computer Sci-
ence 4, 2267–2276 (2011)

13. Toporkov, V., Yemelyanov, D., Toporkova, A., Bobchenkov, A.: Resource Co-allocation
Algorithms for Job Batch Scheduling in Dependable Distributed Computing. In: Zamo-
jski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Dependable
Computer Systems. AISC, vol. 97, pp. 243–256. Springer, Heidelberg (2011)

14. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite Scheduling
Strategies in Distributed Computing with Non-dedicated Resources. Procedia Computer
Science 9, 176–185 (2012)

15. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Dependable Strategies
for Job-Flows Dispatching and Scheduling in Virtual Organizations of Distributed Com-
puting Environments. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) Complex Systems and Dependability. AISC, vol. 170, pp. 289–304.
Springer, Heidelberg (2012)

16. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow Scheduling Algorithms for Grid Com-
puting. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed
Computing Environments. SCI, vol. 146, pp. 173–214. Springer, Heidelberg (2008)

http://www.adaptivecomputing.com/products/


Distributed Version of Algorithm
for Generalized One-Sided Concept Lattices

Peter Butka, Jozef Pócs, and Jana Pócsová

Abstract. In this paper we provide the distributed version of algorithm for creation
of model Generalized One-Sided Concept Lattices (GOSCL), special case for fuzzy
version of data analysis approach called Formal Concept Analysis (FCA), which
provide the conceptual model of input data based on the theory of one-sided con-
cept lattices and was successfully applied in several domains. GOSCL is able to
work with data tables containing the different attribute types processed as fuzzy
sets. One problem with the creation of FCA model is computational complexity. In
order to reduce the computation times, we have designed the distributed version of
the algorithm and showed its applicability on the generated data set. The algorithm
is able to work well especially for data where number of newly generated concepts
is reduced (like for sparse input data tables).

Peter Butka
Technical University of Košice,
Faculty of Electrical Engineering and Informatics,
Department of Cybernetics and Artificial Intelligence,
Letná 9, 040 01 Košice, Slovakia
e-mail: peter.butka@tuke.sk

Jozef Pócs
Palacký University Olomouc, Faculty of Science,
Department of Algebra and Geometry,
17. listopadu 12, 771 46 Olomouc, Czech Republic, and
Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia
e-mail: pocs@saske.sk

Jana Pócsová
Technical University of Košice, BERG Faculty,
Institute of Control and Informatization of Production Processes,
Boženy Němcovej 3, 043 84 Košice, Slovakia
e-mail: jana.pocsova@tuke.sk

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 119
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_15, c© Springer International Publishing Switzerland 2014



120 P. Butka, J. Pócs, and J. Pócsová

1 Introduction

The large amount of available data and the needs for their analysis brings up the
challenges to the area of data mining. It is evident that methods for different analy-
sis should be more effective and understandable. One of the conceptual data mining
methods, called Formal Concept Analysis (FCA, [7]), is an exploratory data analyt-
ical approach which identifies conceptual structures (concept lattices) among data
sets. FCA has been found useful for analysis of data in many areas like knowl-
edge discovery, data/text mining, information retrieval, etc. The standard approach
to FCA provides the method for analysis of object-attribute models based on the bi-
nary relation (where object has/has-not particular attribute). The extension of classic
approach is based on some fuzzifications for which object-attribute models describe
relationship between objects and attributes as fuzzy relations. From the well-known
approaches for fuzzification we could mention an approach of Bělohlávek [2], an
approach of Krajči [12], the approach based on the multi-adjoint concept lattices
[13], and also work by one of the authors generalizing the other approaches [15].

In practical applications, so-called one-sided concept lattices are interesting,
where usually objects are considered as a crisp subsets (as in classical FCA) and
attributes are processed as fuzzy sets. In case of one-sided concept lattices, there
is strong connection with clustering (cf. [10]). As it is known, clustering methods
produce subsets of a given set of objects, which are closed under intersection, i.e.,
closure system on the set of objects. Since one-sided concept lattice approach pro-
duces also closure system on the set of objects, one can see one-sided concept lattice
approaches as a special case of hierarchical clustering. Several one-sided approaches
to FCA were already defined, we mention papers of Krajči [11] and Yahia & Jaoua
[1]. These approaches allow only one type of attribute (i.e., truth degrees structure)
to be used within the input data table. In our previous paper [3] we have introduced
the necessary details and incremental algorithm for model called GOSCL (Gener-
alized One-Sided Concept Lattice), which is able to work with the input data tables
with different types of attributes, e.g., binary, quantitative (values from interval of
reals), ordinal (scale-based), nominal, etc.

One of the problems of the FCA-based methods is computational complexity,
which generally can be (in worst case) exponential. We have analyzed several as-
pects of GOSCL complexity. In [4] we have shown that for fixed input data table
and attributes time complexity of GOSCL is asymptotically linear with the increas-
ing number of objects. This is based on the fact that after some time (which is
specific for the data set) new concepts are added linear to the increment of objects.
Moreover, in [5] we have analyzed the significant reduction of computation times of
the algorithm for sparse input data tables (i.e., input tables with many zeros). How-
ever, in order to achieve the objective to produce large-scale concept lattices on real
data, which can be then used in retrieval tasks or text-mining analysis, it is possible
to extend our approach and re-use distributed computing paradigm based on data
distribution [9]. Therefore, the main aim of this paper is to describe the possibility
to distribute the computation of GOSCL algorithm for larger context based on its
decomposition to several subtables with the separated (and disjoint) subsets of rows,



Distributed Version of Algorithm for Generalized One-Sided Concept Lattices 121

i.e., data table is decomposed to several smaller tables, for which small lattices are
created and these are then iteratively combined (by defined merging procedure) to
one large concept lattice for the whole data table. The presented algorithm is also
analyzed according to the randomly generated data with different sparseness.

In the following section we provide necessary details for definition of generaliza-
tion of one-sided concept lattices and the algorithm for their creation. Section 3 is
devoted to the introduction of distributed approach for creation of model, also with
the detailed description of the algorithm. In next section, some basic experiments
are provided in order to show the potential of the algorithm for its future usage on
the real data.

2 Generalized One-Sided Concept Lattices

In this section we provide necessary details about the fuzzy generalization of clas-
sical concept lattices, so called generalized one-sided concept lattices, which was
introduced in [3].

The crucial role in the mathematical theory of fuzzy concept lattices play special
pairs of mappings between complete lattices, commonly known as Galois connec-
tions. Hence, we provide necessary details regarding Galois connections and related
topics.

Let (P,≤) and (Q,≤) be complete lattices and let ϕ : P→ Q and ψ : Q→ P be
maps between these lattices. Such a pair (ϕ,ψ) of mappings is called a Galois con-
nection if the following condition is fulfilled:

p ≤ ψ(q) if and only if ϕ(p) ≥ q.

Galois connections between complete lattices are closely related to the notion of clo-
sure operator and closure system. Let L be a complete lattice. By a closure operator
in L we understand a mapping c : L→ L satisfying:

(a) x ≤ c(x) for all x ∈ L,
(b) c(x1) ≤ c(x2) for x1 ≤ x2,
(c) c(c(x)) = c(x) for all x ∈ L (i.e., c is idempotent).

Next we describe mathematical framework for one-sided concept lattices. We start
with the definition of generalized formal context.

A 4-tuple
(
B,A,L,R

)
is said to be a one-sided formal context (or generalized one-

sided formal context) if the following conditions are fulfilled:

(1) B is a non-empty set of objects and A is a non-empty set of attributes.
(2) L : A→ CL is a mapping from the set of attributes to the class of all complete

lattices. Hence, for any attribute a, L(a) denotes the complete lattice, which
represents structure of truth values for attribute a.

(3) R is generalized incidence relation, i.e., R(b,a) ∈ L(a) for all b ∈ B and a ∈ A.
Thus, R(b,a) represents a degree from the structure L(a) in which the element
b ∈ B has the attribute a.



122 P. Butka, J. Pócs, and J. Pócsová

Then the main aim is to introduce a Galois connection between classical subsets
of the set of all objects P(B) and the direct products of complete lattices

∏
a∈A L(a)

which represents a generalization of fuzzy subsets of the attribute universe A. Let us
remark that usually fuzzy subset are considered as function from the given universe
U into real unit interval [0,1] or more generally as a mappings from U into some
complete lattice L. In our case the generalization of fuzzy subsets is straightforward,
i.e., to the each element of the universe (in our case the attribute set A) there is
assigned the different structure of truth values represented by complete lattice L(a).

Now we provide a basic results about one-sided concept lattices.
Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then we define a pair

of mapping ⊥ : P(B)→
∏

a∈A L(a) and � :
∏

a∈A L(a)→ P(B) as follows:

X⊥(a) =
∧
b∈X

R(b,a), (1)

g� = {b ∈ B : ∀a ∈ A, g(a) ≤ R(b,a)}. (2)

Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then a pair (⊥,� ) forms a

Galois connection between P(B) and
∏

a∈A L(a).
Now we are able to define one-sided concept lattice. For formal context

(
B,A,L,R

)
denote C

(
B,A,L,R

)
the set of all pairs (X,g), where X ⊆ B, g ∈

∏
a∈A L(a), satisfying

X⊥ = g and g� = X.

Set X is usually referred as extent and g as intent of the concept (X,g).
Further we define partial order on C

(
B,A,L,R

)
as follows:

(X1,g1) ≤ (X2,g2) iff X1 ⊆ X2 iff g1 ≥ g2.

Let
(
B,A,L,R

)
be a generalized one-sided formal context. Then C

(
B,A,L,R

)
with

the partial order defined above forms a complete lattice, where
∧
i∈I

(
Xi,gi
)
=
(⋂

i∈I

Xi,
((∨

i∈I

gi
)�)⊥)

and ∨
i∈I

(Xi,gi) =
(((⋃

i∈I

Xi
)⊥)�,∧

i∈I

gi

)

for each family (Xi,gi)i∈I of elements from C
(
B,A,L,R

)
.

At the end of this section we briefly describe an incremental algorithm for creat-
ing one-sided concept lattices. By the incremental algorithm we mean the algorithm
which builds the model from the input data incrementally row by row, where in ev-
ery moment current model from already processed inputs is correct concept lattice
for such subtable (and addition of new increment means to provide another row and
update the last model, i.e., concept lattice). Let

(
B,A,L,R

)
be a generalized one-

sided formal context. We will use the following notation. For b ∈ B we denote by



Distributed Version of Algorithm for Generalized One-Sided Concept Lattices 123

R(b) an element of
∏

a∈A L(a) such that R(b)(a) = R(b,a), i.e., R(b) represents b-th
row in data table R. Further, let 1L denote the greatest element of L =

∏
a∈A L(a),

i.e., 1L(a) = 1L(a) for all a ∈ A.

Algorithm 1. Incremental algorithm for GOSCL
Require: generalized context

(
B,A,L,R

)
Ensure: set of all concepts C

(
B,A,L,R

)
1: L←

∏
a∈A L(a) � Direct product of attribute lattices

2: I← {1L} � I ⊆ L will denote set of intents
3: C
(
B,A,L,R

)
← ∅

4: for all b ∈ B do
5: I∗ ← I � I∗ represents “old” set of intents
6: for all g ∈ I∗ do
7: I← I∪{R(b)∧g} � Generation of new intent
8: end for
9: end for

10: for all g ∈ I do
11: C

(
B,A,L,R

)
←C
(
B,A,L,R

)
∪{(g�,g)}

12: end for
13: return C

(
B,A,L,R

)
� Output of the algorithm

3 Distributed Algorithm for Generalized One-Sided Concept
Lattices

In this section we provide the theoretical details regarding the computation of
GOSCL model in distributed manner. It means that division to the partitions is de-
fined. The main theorem is proved, which shows that concept lattices created for
the partitions are equivalent to the concept lattice created for the whole input for-
mal context. Then the algorithm for our approach to distribution is provided. It is
based on the division of data table into binary-like tree of starting subsets (with their
smaller concept lattices), which are then combined in pairs (using specified merge
procedure) until the final concept lattice is available.

Let π = {Bi}i∈I be a partition of object set, i.e., B =
⋃

i∈I Bi and Bi ∩ B j = ∅
for all i � j. This partition indicates the division of objects in considered object-
attribute model, where Ri defines several sub-tables containing the objects from Bi

and which yields several formal contexts Ci = (Bi,A,L,Ri) for each i ∈ I. Conse-
quently we obtain the system of particular Galois connections (⊥i ,�i ), between P(Bi)
and
∏

a∈A L(a). Next we describe how to create Galois connection between P(B) and∏
a∈A L(a). We use the method of creating Galois connections applicable for general

fuzzy contexts, described in [15]. Let X ⊆ B be any subset and g ∈
∏

a∈A L(a) be any
tuple of fuzzy attributes. We define

↑
(
X
)
(a) =

∧
i∈I

(X∩Bi)
⊥i and ↓(g) =

⋃
i∈I

g�i (3)



124 P. Butka, J. Pócs, and J. Pócsová

Theorem 1. Let π = {Bi}i∈I be a partition of object set. Then the pair of mappings
(↑,↓) defined by (3) and the pair (⊥,� ) defined by (1) represent the same Galois
connection between P(B) and

∏
a∈A L(a).

Proof. Let X ⊆ B be any subset of object set and a ∈ A be an arbitrary attribute.
Using (3) we obtain

↑
(
X
)
(a) =

∧
i∈I

(X∩Bi)⊥i =
∧
i∈I

( ∧
b∈X∩Bi

Ri(b,a)
)
=
∧
i∈I

( ∧
b∈X∩Bi

R(b,a)
)
.

Since π is the partition of the object set B, we have X =
⋃

i∈I(X∩Bi). Involving the
fact, that meet operation in lattices is associative and commutative, we obtain

X⊥(a) =
∧
b∈X

R(b,a) =
∧

b∈
⋃

i∈I (X∩Bi)

R(b,a) =
∧
i∈I

( ∧
b∈X∩Bi

R(b,a)
)
,

which yields ↑ (X) = X⊥ for each X ⊆ B.
Similarly, we have

↓(g) =
⋃
i∈I

g�i =
⋃
i∈I

{b ∈ Bi : ∀a ∈ A, g(a) ≤ Ri(b,a)}.

Easy computation shows that this expression is equal to

{b ∈ B : ∀a ∈ A, g(a) ≤ R(b,a)} = g�,

which gives ↓(g) = g� for all elements g ∈
∏

a∈A L(a).

Algorithm 2. Distributed algorithm for GOSCL

Require: generalized context (B,A,L,R), π = {Bi}2
n

i=1 - partition of B with 2n parts
Ensure: merged concept lattice C(B,A,L,R)
1: for i = 1 to 2n do
2: C(n)

i ← GOSCL(Bi,A,L,Ri) � Application of Algorithm 1 on all subcontexts
3: end for
4: for k = n down to 1 do
5: for i = 1 to 2k−1 do
6: C(k−1)

i ←MERGE(C(k)
2i−1,C

(k)
2i ) �Merging of adjacent concept lattices

7: end for
8: end for
9: return C

(
B,A,L,R

)
←C(0)

1 � Output of the algorithm

The presented theorem is the base for our distributed algorithm. The main aim
is effectively create closure system in

∏
a∈A L(a) which represents the set of all in-

tents. Of course, there are more options how to process the distribution itself, i.e.,



Distributed Version of Algorithm for Generalized One-Sided Concept Lattices 125

Algorithm 3. Procedure MERGE for merging two concept lattices
Require: two concept lattices C1 and C2
Ensure: MERGE(C1,C2)
1: I1, I2←∅ � I1, I2 will denote list of intents for C1,C2
2: for all (X,g) ∈ C1 do
3: I1← I1 ∪{g} � Extraction of all intents from C1
4: end for
5: for all (X,g) ∈ C2 do
6: if g � I1 then � Check for duplications of intents in I1
7: I2← I2 ∪{g} � Extraction of all intents from C2
8: end if
9: end for

10: I← ∅ � Set of all newly created intents
11: for all g ∈ I2 do
12: for all f ∈ I1 do
13: I← I∪{ f ∧g} � Creation of new intent
14: end for
15: end for
16: MERGE(C1,C2)←C1
17: for all g ∈ I do
18: MERGE(C1,C2)←MERGE(C1,C2)∪{(g�,g)} � Addition of new concepts
19: end for
20: return MERGE(C1,C2) � Output of the merging procedure

how to merger sub-models during the process. We have designed the version of dis-
tribution which divides the starting set of the objects into 2n parts, for which local
models are created (in parallel) and then pairs of them are combined (in parallel)
into 2n−1, and then this process continues, until we have only one concept lattice at
the end. This output should be isomorphic to concept lattice created by the sequen-
tial run, because we have shown that previous theorem is valid and we only make
partitions accordingly to its assumptions and proof. It is easy to see that pair-based
merging leads to the binary tree of sub-lattices, with n representing the number of
merging levels. Now, we can provide the algorithm description. The Algorithm 2 is
distributed version (with the idea described here) and merge procedure is provided
separately in Algorithm 3.

4 Illustrative Experiments with the Generated Data Sets

For our illustrative experiments with the provided algorithm we have produced ran-
domly generated input formal contexts with specified sparseness index of the whole
input data table. The reason is simply the natural characteristic of FCA-based al-
gorithms in general (with its exponential complexity in worst cases), i.e., whenever
the number of concepts (intents) still grows fast with the number of inputs, this data
table has still too much different combinations of values of attributes in it (this is
problem especially for fuzzy attributes, which we have here) and merge procedure



126 P. Butka, J. Pócs, and J. Pócsová

is not effective in order to get better times in comparison with incremental algo-
rithm. But in the cases with the set of intents for which number of concepts (intents)
is strongly reduced, the provided approach to distribution will lead to the reduction
of computation times (merge procedures will not need so much time to create their
new lattices). Fortunately, as we are very interested in the application of GOSCL
in text-mining domain, and sparse inputs generate much reduced concept lattices
(more zeros will produce more similar combinations of values), our distributed al-
gorithm seems to be efficient mainly for very sparse input matrices.

In order to simplify the data preparation (generation) process, we have used one
type of attribute in the table (scale-based, with 5 possible values {0,1,2,3,4}, where
0 is lowest value). The values are generated from this scale. The generation of sparse
data table is based on the sparse factor s ∈ [0,1]), which indicates the ratio of “ze-
ros” (as a real number between 0 and 1) in data table, i.e., s indicates the level of
sparseness of generated data table. For higher s, the number of zeros in input is also
higher. Simple mechanism for generation was used with random number generator
for decision on adding the zero or some non-zero value according to the selected
sparseness. The generated data are then very close to the selected sparseness (es-
pecially for larger inputs). We can add that in text-mining domains the sparseness
factor is very high (usually more than 0.99). The number of generated objects will
be (for all our examples) 8192 (just to simplify its division to partitions which can
be merged easily in particular levels, 213 is 8192).

First illustrative experiment shows that the efficiency is different for different
sparseness. Therefore, we have tried random contexts for 5 and 7 attributes and dif-
ferent sparseness (from 0.5 to 0.9). The results are shown in the left part of the Figure
1. As we can see, with the higher the sparseness of the data, the ratio of computa-
tion times between distributed version and sequential (reduction ratio Tdis/Tseq) is
lower (which means better reduction). Another experiment is based on the analysis
of fixed sparseness (0.9), where number of attributes is changing from 5 to 20 and
also N (the number of levels in merging) has three different settings (5, 8 and 10).
The result is shown on the right part of the Figure 1, where we can see that number
of merging levels (and therefore also number of starting partitions 2n) has not big
influence on the reduction ratio. On the other hand, with the increasing number of
attributes reduction ratio should increase due to higher number of intents produced
by the combination of values for more attributes.

One of our main interests is to analyze data from text-mining domains, which are
usually represented by very sparse input tables (e.g., sparseness 0.998 for Reuters
dataset with basic preprocessing settings). Therefore, we also add some experiments
with the very sparse inputs. First, we have analyzed the reduction ratio for fixed
sparseness 0.998 and number of merging levels 5, where number of attributes are
changing (from 100 to 500). As we can see on the left side of the Figure 2, reduction
ratio increased with the number of attributes, but is still quite significant even for 500
attributes. Moreover, this illustrative experiments were not realized with specialized
sparse-based implementation, which will probably keep the ratio under 1 for more
attributes. For reference see [6], where we have provided and analyzed specialized
sparse-based version of GOSCL with significant reduction of computation times.



Distributed Version of Algorithm for Generalized One-Sided Concept Lattices 127

Fig. 1 Experiments with the distributed version of GOSCL - left side: analysis for different
sparseness; right side: analysis for different number of attributes and merging levels

Fig. 2 Experiments with the distributed version of GOSCL on very sparse inputs - left side:
analysis of reduction ration with changing number of attributes; right side: analysis of reduc-
tion ratio for different number of merging levels

If merge procedure will be implemented (in the future) in similar way, we will be
probably able to work with even more attributes with still good reduction ratio. In
last illustrative experiment, we have used same sparseness of data (0.998) with 100
attributes and analyze the reduction ratio for different merging levels (N). The result
is shown on the right side of the Figure 2, where we can see now more evidently that
higher number of levels can help in better times, but it seems that it is not needed to
make very small partitions (e.g., for N = 12, which leads to starting with two-object
sets, ratio is little higher than for previous values). The best number of merging
levels can be estimated on real datasets and then used for better results.

At the end of this section we should say that this merging distributed approach
seems to be applicable in sparse domains and can lead to computation times reduc-
tion, but there are several limitations which should be investigated more on the real
data sets. It is expected that also for real data, where randomness is not the way
how the table values are produced, the provided algorithm can be useful (but it will
depend on data), especially for cases which relatively do not produce too much in-
tents (e.g., very sparse inputs). The first experiments with the Reuters dataset proved
the same behavior of the algorithm. Moreover, the usage of specialized sparse-based



128 P. Butka, J. Pócs, and J. Pócsová

implementations should be analyzed in our next experiments. This will show the
limits of our distributed GOSCL in creation of large-scale concept lattices from real
textual datasets or other sparse-based domains [14].

5 Conclusions

In the presented paper we have introduced the possible solution for distribution of
creating the FCA-based model known as Generalized One-Sided Concept Lattice.
As we have shown, it is possible to produce merged concept lattice from the smaller
ones produced individually for disjoint subsets of objects. For the merging we have
introduced simple merging procedure which is based on the partition similar to bi-
nary tree (lists are smallest concept lattices from the start of the distribution and root
is merged final lattice). The illustrative experiments on the randomly generated data
were added which shows its potential (especially for very sparse inputs) and limits.
The future work should be done in realization of more experiments (on very sparse
real data) and specialized sparse-based implementation of the merging procedure
(very first experiments with real dataset proved the results of the paper).

Acknowledgements. This work was supported by the Slovak Research and Development
Agency under contracts APVV-0035-10, APVV-0208-10 and APVV-0482-11; by the Slovak
VEGA Grants 1/1147/12, 1/0729/12, 1/0497/11; by the ESF Fund CZ.1.07/2.3.00/30.0041.

References

1. Ben Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel,
A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 167–190.
Physica-Verlag (2001)

2. Bělohlávek, R.: Lattices of Fixed Points of Fuzzy Galois Connections. Math. Log.
Quart. 47(1), 111–116 (2001)

3. Butka, P., Pócsová, J., Pócs, J.: Design and Implementation of Incremental Algorithm for
Creation of Generalized One-Sided Concept Lattices. In: 12th IEEE International Sym-
posium on Computational Intelligence and Informatics, Budapest, Hungary, pp. 373–378
(2011)

4. Butka, P., Pócsová, J., Pócs, J.: On Some Complexity Aspects of Generalized One-Sided
Concept Lattices Algorithm. In: 10th IEEE Jubilee International Symposium on Applied
Machine Intelligence and Informatics, Herlany, Slovakia, pp. 231–236 (2012)

5. Butka, P., Pócsová, J., Pócs, J.: Experimental Study on Time Complexity of GOSCL
Algorithm for Sparse Data Tables. In: 7th IEEE International Symposium on Applied
Computational Intelligence and Informatics, Timisoara, Romania, pp. 101–106 (2012)

6. Butka, P., Pócsová, J., Pócs, J.: Comparison of Standard and Sparse-based Implementa-
tion of GOSCL Algorithm. In: 13th IEEE International Symposium on Computational
Intelligence and Informatics, Budapest, Hungary, pp. 67–71 (2012)

7. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer,
Berlin (1999)

8. Grätzer, G.: Lattice Theory: Foundation. Springer, Basel (2011)



Distributed Version of Algorithm for Generalized One-Sided Concept Lattices 129

9. Janciak, I., Sarnovsky, M., Tjoa, A.M., Brezany, P.: Distributed classification of tex-
tual documents on the grid. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS,
vol. 4208, pp. 710–718. Springer, Heidelberg (2006)

10. Janowitz, M.F.: Ordinal and relational clustering. World Scientific Publishing Company,
Hackensack (2010)

11. Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Netw.
World 13(5), 521–530 (2003)

12. Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)
13. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-

adjoint concept lattices. Fuzzy Set. Syst. 160, 130–144 (2009)
14. Paralič, J., Richter, C., Babič, F., Wagner, J., Raček, M.: Mirroring of Knowledge Prac-

tices based on User-defined Patterns. J. Univers. Comput. Sci. 17(10), 1474–1491 (2011)
15. Pócs, J.: Note on generating fuzzy concept lattices via Galois connections. Inform.

Sci. 185(1), 128–136 (2012)



Scalable Spatio-temporal Analysis
on Distributed Camera Networks

Kirak Hong, Beate Ottenwälder, and Umakishore Ramachandran

Abstract. Technological advances and the low cost of cameras enable the deploy-
ment of large-scale camera networks in airports and metropolises. A well-known
technique, called spatio-temporal analysis, enables detecting anomalies on the large-
scale camera networks by automatically inferring locations of occupants in real-
time. However, spatio-temporal analysis requires a huge amount of system resources
to analyze a large number of video streams from distributed cameras. In particular,
state update becomes a bottleneck because of the computation and communication
overhead of updating a large application state. In this paper we propose a system
design and mechanisms for scalable spatio-temporal analysis on camera networks.
We present a distributed system architecture including smart cameras and distributed
worker nodes in the cloud to enable real-time spatio-temporal analysis on large-scale
camera networks. Furthermore we develop selective update mechanisms to improve
scalability of our system by reducing the communication cost for state update.

1 Introduction

As cameras are becoming more capable and widely deployed, new application sce-
narios arise, requiring an automated processing of the continuous video streams to
identify and track human beings in real-time. Airports, as an example, currently
have more than 1,000 cameras in place and plan to keep increasing the number [1].
In such an environment, a common requirement for situation awareness applica-
tions [6] is to detect security violations, such as an unauthorized personnel enter-
ing a restricted area, by automatically analyzing video streams from distributed

Kirak Hong · Umakishore Ramachandran
College of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
e-mail: {khong9,rama}@cc.gatech.edu
Beate Ottenwälder
Institute of Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: beate.ottenwaelder@ipvs.uni-stuttgart.de

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 131
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_16, c© Springer International Publishing Switzerland 2014



132 K. Hong, B. Ottenwälder, and U. Ramachandran

cameras in real-time. Situation awareness applications often rely on a technique
called spatio-temporal analysis to answer queries related to occupants and zones
such as “When did person O leave zone Z?”. Recently, Menon et al. [5] showed the
feasibility of spatio-temporal analysis using a global application state that is a state
transition table representing probabilistic locations of occupants over time.

However, a naive implementation of the spatio-temporal analysis causes poor
scalability because a centralized server keeping the global application state becomes
a significant performance bottleneck. In this work, we propose a scalable approach
to support spatio-temporal analysis on large-scale camera networks. Specifically,
our contributions are a) the distributed system design for spatio-temporal analysis,
b) identifying the performance bottleneck of spatio-temporal analysis on large-scale
camera networks, and c) scalable state update mechanisms to improve overall scal-
ability of spatio-temporal analysis.

Section 2 explains details of spatio-temporal analysis on camera networks and
identifies potential bottlenecks in large scale scenarios. Section 3 describes the key
problem in terms of system scalability. Section 4 provides our solution, namely,
scalable state update to overcome the performance bottleneck. Section 5 presents
our evaluation results. Section 6 presents related work and Section 7 presents
concluding remarks and future work.

2 Spatio-temporal Analysis

In this section, we discuss the common steps in spatio-temporal analysis and pro-
pose a distributed system model for large-scale spatio-temporal analysis. Spatio-
temporal analysis is an inference technique that generates probabilistic locations
of occupants at a given time using sensor streams. Figure 1 shows an example of
spatio-temporal analysis on a camera network. In the example, the face of a person
(signature) is captured by a camera, from which an event is generated. The event is a
vector of probabilities representing how closely this signature matches to other pre-
registered signatures of known identities in the system. The event causes a transition
of an application’s global state to represent up-to-date location of individual occu-
pants. Before making a transition, the previous state is recorded with a timestamp
to answer time-dependent queries in the future.

The probabilistic locations captured by a global state is a key to answering vari-
ous queries referring to location-, occupancy-, and time-dependent questions. Each
row in the global state, called an occupant state, represents probabilistic location of a
specific occupant that allows to answer a location query such as “where is occupant
O1?”. Each column is called a zone state, representing the probabilistic occupancy
of a zone that allows to answer occupancy query such as “who are presently in zone
z1?”. A sequence of global states tagged by timestamp allows temporal query such
as “When did person B leave zone X?”. By combining the location, occupancy, and
temporal queries, application can infer various situations:



Scalable Spatio-temporal Analysis on Distributed Camera Networks 133

Fig. 1 Example of spatio-temporal analysis on camera networks

“Where did person A and B meet for the last time?”
“How many times did person A move from zone X to zone Y?”
“How many people access zone X today?”

Maintaining the global state involves three steps of processing. The first step, sig-
nature detection, involves video analytics to detect signatures such as faces. For ex-
ample, when a person enters Zone 2 in Figure 1, a face detection algorithm reports
the person’s face by analyzing video frames from a camera observing the zone. The
second step, event generation, generates a vector of probabilistic estimates about
the identity of the detected signature, called an event. Depending on the application,
different algorithms can be used in this step to generate the vector. For example,
various face recognition algorithms [10] or human gait recognition [8] may be used
to generate an event, which includes similarities between the detected signature and
known signatures. The final step, state update, uses the generated event to update
the global state of an application. For example, Figure 1 shows that an occupant O2
was in zone Z2 with probability 0.05 before the state update, but the probability is
increased to 0.8 after making a transition based on an event from Z2 with a high
probability for O2 being in that zone.1

3 Problem Description

In large-scale spatio-temporal analysis, each processing step involves significant
amount of computation and communication, which require distributed computing
resources to provide real-time situation awareness. The workload of signature de-
tection and event generation are massively parallel, since each signature and the as-
sociated event can be independently computed on distributed nodes including smart
cameras and cloud computing resources. This makes the two steps linearly scalable

1 The concrete formulas to calculate the probability are presented in [5].



134 K. Hong, B. Ottenwälder, and U. Ramachandran

Fig. 2 Distributed state update: For each event, occupant states are updated in parallel at
distributed occupant state workers (Phase 1). Once all occupant states are updated, occupant
state workers transmit the elements of occupant states to zone state workers (Phase 2). Thin
gray lines indicates the communication path for naive state update while thick black lines
show communication path for selective update.

with the amount of distributed computing resources. However, unlike the previous
two steps, state update requires sequential processing of events due to the inher-
ent nature of maintaining a single global application state. Due to the probabilistic
nature of the global application state, an event update potentially affects the proba-
bilities of every occupant in all zones. To allow the temporal evolution of the global
application state, each event has to be applied sequentially in temporal order to the
current global state. In a large-scale situation awareness application, a centralized
approach that maintains the global state at a single node will become a performance
bottleneck due to the computation and communication overhead of state update. If
many events are generated at the same time, a single node cannot receive and pro-
cess all events in real-time and therefore the latency for situation awareness will
increase. In the following sections, we describe our scalable state update solution to
solve this performance bottleneck.

4 Scalable State Update

In order to ensure the scalability of spatio-temporal analysis, both computation and
communication overhead of state update must be addressed. To address computation
overhead, we propose a distributed state update using partitioned application state
across multiple state worker nodes where state update is performed on the partial
application states at each node. Figure 2 shows our distributed state update using
multiple occupant state workers (OW) and zone state workers (ZW). Each state
worker maintains a set of occupant states and zone states to answer queries regarding
specific occupants and zones. For example, occupant state worker OW1 maintains
the occupant state of O1 to answer location queries on the occupant, while a zone



Scalable Spatio-temporal Analysis on Distributed Camera Networks 135

state worker ZW1 maintains the zone state of Z1 to answer occupancy queries for
the zone.

When a new event is generated, each probability for different occupants in the
event are delivered to different occupant state workers commensurate with the oc-
cupant states that each is responsible for. Upon the arrival of each event element,
state update is performed on each occupant state at different occupant state workers
(phase 1). Once the occupant states are updated, each occupant state worker trans-
mits elements of occupant states to zone state workers (phase 2). As shown in the
figure, the real work of computing the new probabilities for each occupant in every
zone is carried out by the occupant state workers in phase 1. Phase 2 is a simple
data copy of the computed probabilities in phase 1 and involves no new computa-
tion. Since no computation happens at zone state workers, phase 2 may seem to be
optional. However, the zone state workers are crucial to handle occupancy queries
efficiently because a user has to broadcast a zone-related occupancy query to all
occupant state workers if there are no zone state workers.

Although computation overhead is distributed over multiple nodes, communica-
tion overhead of state update is still a significant bottleneck. As Figure 2 indicates,
each element of an event has to be transmitted to all occupant state workers, which
increases the number of messages when more occupant state workers are used. Fur-
thermore, each occupant state worker has to communicate to all zone state workers
to update the zone states in phase 2. The total communication cost in terms of bytes
transferred linearly depends on the number of occupants and zones in a system:

Costcomm = (Noccupants +Noccupants×Nzones)× sizeo f (double) (1)

For example, assuming thousand occupants and thousand zones, and 8 bytes double-
precision floating-point representation for event probabilities, each event represents
a communication payload of eight megabytes for state update. Assuming hundred
signatures are captured from distributed cameras every second, state update would
incur a communication cost of eight hundred megabytes per second.

To solve the communication overhead, we propose selective update mechanisms
for state update. In a realistic application scenario, the event generation algorithm
(e.g., face recognition) may generate an event that has only a few significant prob-
abilities. If an event generation algorithm is highly accurate, i.e., giving high prob-
ability for the ground truth identity and very small probability for other identities,
a threshold can be applied to use only meaningful event elements for updating spe-
cific occupant states. Similarly, another threshold can be applied to occupant states
to allow occupant state workers to transmit only significant changes in occupant
states to zone state workers. Highlighted elements and arrows in Figure 2 show an
example of selective state update. In the example, our system selects only one event
element for O2 with significant probability, which is used for state update. After
updating an occupant state of O2, only two significant changes for zone Z2 and Z3
are selected and transmitted to corresponding zone state workers. As shown in the
figure, the communication cost of state update depends on selected occupants in



136 K. Hong, B. Ottenwälder, and U. Ramachandran

 0

 10

 20

 30

 40

 50

 60

 100  200  300  400  500  600

A
v
er

ag
e 

L
at

en
cy

 (
m

s)

Number of Occupants

select-1
select-10

select-100
select-all

(a) Different number of occupants

 0

 10

 20

 30

 40

 50

 60

 400  800  1200  1600

A
v
er

ag
e 

L
at

en
cy

 (
m

s)

Number of Zones

select-1
select-10

select-100
select-all

(b) Different number of zones

Fig. 3 Average latency for state update with different number of occupants and zones. (a)
1000 zones are used where different number of occupants are selected (b) 425 occupants are
used where different number of zones are selected

each event and selected zones from each occupant state rather than the total number
of occupants and zones in the system.

To allow such selective state update, our system provides two parameters to users:
occupant selectivity and zone selectivity. Occupant selectivity allows a user to spec-
ify the number of occupants to be selected from each event, while zone selectivity
specifies the number of zones to be selected from each occupant state. When an
event is generated, our system finds occupants with top N probabilities pertaining
to the occupant selectivity. Similarly, when an occupant state is updated, our sys-
tem calculates the difference between the current state and previous state to selects
zones with top N changes. Our system supports automatic tuning of an occupant se-
lectivity or a zone selectivity, which makes sure that the total communication cost is
bounded by a user-provided threshold. To use the automatic tuning, a user specifies
one selectivity (either occupant or zone selectivity) and the maximum communi-
cation cost. Using Equation 1, our system automatically infers the right value for
an unspecified selectivity to make sure the total communication cost stays below
the given maximum communication cost. While event rate changes over time, our
system adaptively changes the unspecified selectivity to help system running in real-
time in the presence of highly varying event rates from the real world.

5 Evaluation

In this section, we conduct two experiments to show the impact of our approach on
scalability and application-level accuracy of spatio-temporal analysis.

5.1 Scalability of State Update

To measure the performance based on a realistic workload, we performed the state
update algorithm reported by Menon et al. [5] on eight distributed worker nodes



Scalable Spatio-temporal Analysis on Distributed Camera Networks 137

in Amazon Elastic Compute Cloud (EC2) where each node is an m1.medium class.
Figure 3(a) shows average latency of state update per event with different selec-
tivity of occupants, while varying the scale of the system in terms of the number
of occupants in the system. For example, select-1 indicates selecting only a single
occupant from each event while probabilities for all other occupants are ignored.
Similarly, select-all indicates that probabilities for all occupants are used for state
update. As shown in the figure, the naive state update selecting all event elements
(select-all) scales poorly, as the system is overloaded when there are more than 500
occupants in the system. Until 500 occupants, latency for state update increases de-
pends on the total number of occupants in the system. Other selective mechanisms
show good scalability, where the average latency depends on the number of selected
occupants rather than the total number of occupants in the system.

Similarly, Figure 3(b) shows the poor scalability of naive state update and im-
proved scalability and latencies with selective zones for state update. With more than
1200 zones, the naive state update becomes overloaded and cannot handle incoming
events in real-time. Other selective state update mechanisms scale well, while the
latency for state update depends on the number of zones selected from occupant
states. Because we used virtual machines in EC2, available bandwidth and commu-
nication latency between distributed state workers vary over time, which results in
slightly nonlinear latencies in figures.

5.2 Impact of Selective Update on Spatio-temporal Queries

In this experiment, we show the impact of selective state update on spatio-temporal
queries using simulated events that are generated from simulation of moving oc-
cupants in camera network2. Since selective update ignores small probabilities in
events and negligible changes in occupant states, resulting application state can dif-
fer from the application state computed by the naive state update. Although the
naive state update does not always guarantee correct answers due to its inherently
probabilistic nature, we use the naive state update as a baseline to compare with our
approximated application state resulting from selective state update.

In this experiment, we used two different types of queries. First type of query,
called location query, asks whereabouts of a particular occupant. For instance, an
application may ask top three most likely places for an occupant in order to select
potential video streams to track the occupant. Another type of query, called occu-
pancy query asks the occupants who are likely (with higher than 0.5 probability) to
be in a specific zone. Using the two types of queries, we compare an approximate
application state calculated by selective state update to an application state calcu-
lated by the naive state update. For each state update, we issue location queries and
occupancy queries for all occupants and zones on the original application state and
the approximate application state. If results for the same query differ between the

2 We simulated randomly moving occupants in a camera network with a grid topology while
events pertain higher probability for a ground truth occupant and lower random probabili-
ties for others.



138 K. Hong, B. Ottenwälder, and U. Ramachandran

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30  35  40  45  50
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000
L

o
ca

ti
o
n
 E

rr
o
r 

R
at

io

B
y
te

s 
T

ra
n
sf

er
re

d
 p

er
 E

v
en

t

N of Selected Occupants

top-1
top-5

top-10
top-20

cost

(a) Selective Occupants

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8  9  10
 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

O
cc

u
p
an

cy
 E

rr
o
r 

R
at

io

B
y
te

s 
T

ra
n
sf

er
re

d
 p

er
 E

v
en

t

N of Selected Zones

th-0.2
th-0.4
th-0.6
th-0.8

cost

(b) Selective Zones

Fig. 4 Accuracy of query results and communication cost when selective state update is used

original and approximate states, we count it as an error. Finally, we calculate the
ratio of errors over all the query results.

Figure 4(a) shows the impact of selective update on the result of location queries.
This experiment includes four different types of location queries asking different
number of probable locations, which can be used for different application scenarios.
For instance, top-1 asks the most likely location for an occupant while top-10 asks
ten probable locations for an occupant to increase the chance to find the occupant.
Over all types of location queries, the error ratio reduces when more occupants are
selected for state update. However, the communication cost also increases due to the
increased number of messages transmitted from an event queue to the occupant state
workers. When more probable locations are asked, the error ratio is higher since
there is a higher chance of disparity between query results from an approximate
state and the original state.

Figure 4(b) shows the error ratio for occupancy queries that ask probable oc-
cupants in a specific zone. For occupancy queries, we use a different threshold to
answer probable occupancy, ranging from 0.2 to 0.8. Similar to the previous exper-
iment, error ratio reduces when more number of zones are selected for state update
while communication cost linearly increases.

Our experimental results shown in Figure 4 indicate that using a small number of
occupants and zones for selective state update can significantly reduce the commu-
nication overhead without significantly affecting the accuracy as measured by the
error rates for the approximate state compared to the original state. For instance, if
an application is interested in only the most probable location for each occupant,
using only ten occupants for the selective update is sufficient to achieve the same
accuracy as compared to the naive state update

6 Related Work

Many distributed systems help developing large-scale situation awareness appli-
cations on camera networks. IBM S3 [2] provides a middleware for video-based
smart surveillance system including video analytics and storage modules. Target



Scalable Spatio-temporal Analysis on Distributed Camera Networks 139

Container [3] provides a parallel programming model and runtime system to help
domain experts to develop large-scale surveillance application on distributed smart
cameras. Above systems focused on processing raw video streams on distributed
nodes, which is complementary to our system since we focus on collective infer-
ence on events that are generated from video streams.

Moving object databases [9] allow for spatio-temporal analysis by keeping track
of mobile devices, like vehicles, and their location. Similar our system, they can
handle spatio-temporal queries based on data collected from location sensors [4, 7].
However, unlike events from video streams, the uncertainty of location sensor data
(e.g., GPS) are locally confined therefore does not require a global application state.

7 Conclusion

In this paper we addressed the scalability problems of spatio-temporal analysis on
large-scale camera networks. Because of the probabilistic nature of event generation
and state update, an application has to maintain a global application state to keep
track of known occupants in the observed area. We identified state update as the
real performance bottleneck of spatio-temporal analysis, and presented solutions
to solve the bottleneck. To address the computation overhead of state update, we
have presented a distributed state update with a partitioned application state over
distributed nodes. To reduce the communication overhead of state update, we have
proposed selective state update mechanisms. Our experimental results show that we
can effectively remove the performance bottleneck of spatio-temporal analysis by
applying selective state update while maintaining similar level of accuracy with the
original application states.

References

1. Schiphol Airport leverages technology to drive efficiency,
http://www.securitysystemsnewseurope.com/
?p=article&id=se200906VF2Isw

2. Feris, R., Hampapur, A., Zhai, Y., Bobbitt, R., Brown, L., Vaquero, D., Tian, Y., Liu,
H., Sun, M.T.: Case-Study: IBM smart surveillance system. In: Ma, Y., Qian, G. (eds.)
Intelligent Video Surveillance: Systems and Technologies. Taylor & Francis, CRC Press
(2009)

3. Hong, K., Smaldone, S., Shin, J., Lillethun, D., Iftode, L., Ramachandran, U.: Target
container: A target-centric parallel programming abstraction for video-based surveil-
lance. In: 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras
(ICDSC), pp. 1–8 (2011)

4. Kalashnikov, D.V., Ma, Y., Mehrotra, S., Hariharan, R.: Index for fast retrieval of uncer-
tain spatial point data. In: Proc. of Int’l Symposium on Advances in Geographic Infor-
mation Systems (ACM GIS 2006), Arlington, VA, USA (2006)

5. Menon, V., Jayaraman, B., Govindaraju, V.: The Three Rs of Cyberphysical Spaces.
Computer 44, 73–79 (2011)

http://www.securitysystemsnewseurope.com/?p=article&id=se200906VF2Isw
http://www.securitysystemsnewseurope.com/?p=article&id=se200906VF2Isw


140 K. Hong, B. Ottenwälder, and U. Ramachandran

6. Ramachandran, U., Hong, K., Iftode, L., Jain, R., Kumar, R., Rothermel, K., Shin, J.,
Sivakumar, R.: Large-scale situation awareness with camera networks and multimodal
sensing. Proceedings of the IEEE 100(4), 878–892 (2012)

7. Trajcevski, G., Ding, H., Scheuermann, P., Cruz, I.: Bora: Routing and aggregation for
distributed processing of spatio-temporal range queries. In: 2007 International Confer-
ence on Mobile Data Management, pp. 36–43 (2007)

8. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human
identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12),
1505–1518 (2003)

9. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: issues and
solutions. In: Proceedings of the Tenth International Conference on Scientific and Statis-
tical Database Management, pp. 111–122 (1998)

10. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature sur-
vey. ACM Comput. Surv. 35(4), 399–458 (2003)



Service-Wide Adaptations in Distributed
Embedded Component-Based Systems

Luı́s Nogueira and Jorge Coelho

Abstract. Self-adaptive mechanisms are crucial to the design of distributed
component-based systems that react to events in a timely and predictable manner
to guarantee Quality of Service (QoS) constraints imposed by users, the environ-
ment, or applications, despite the uncertain factors that trigger the occurrence of
changes in the environment. How these components should interact in order to col-
lectively adapt their behaviour and maintain system-wide properties in a dynamic
environment is the focus of this paper.

1 Introduction

The complexity of modern software systems is constantly increasing as new and
more complex functionality is added to existing software. An appealing way to re-
duce such complexity is to apply a component-based design methodology in which
the system can be seen as a set of interacting components, each providing a well-
defined subset of functionalities and whose integration produces the final system
behaviour.

However, the adoption of a component-based approach to embedded software
development has been significantly slower than to software development in general.
Embedded systems, unlike most general-purpose computing systems, often perform
computations subject to various constraints, such as processor speed, amount of
memory, power consumption, and reaction time [17]. The timing requirements are
often of special importance, particularly for safety-critical systems.

Luı́s Nogueira
ISEP/CISTER/INESC-TEC, Porto, Portugal
e-mail: lmn@isep.ipp.pt

Jorge Coelho
ISEP/LIACC, Porto, Portugal
e-mail: jmn@isep.ipp.pt

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 141
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_17, c© Springer International Publishing Switzerland 2014



142 L. Nogueira and J. Coelho

On the other hand, while the general-purpose computing community has begun
to embrace the importance and potential of runtime adaptation, the need to adapt
to the runtime environment has long been considered especially important in the
case of embedded systems. It is widely accepted that the constraints of embedded
systems can be significantly reduced by dynamically adapting the system according
to the currently required needs and changes in the execution environment.

However, a distributed system composed by self-adaptive components that
optimise their behaviour towards some individual goals may not necessarily be op-
timised at a global level [6]. Complex interdependencies may exist among com-
ponents such that the incorporation of one change can require the inclusion of
several others for the change to work correctly. Complex problems may result
from these chain reactions like infinite triggering of new adaptations or inconsis-
tent configurations in different components [16], interference between the different
self-management behaviours of components, conflicts over shared resources, sub-
optimal system performance and hysteresis effects [6].

Coordination is then a key concept for developing self-adaptive distributed
systems [7] and a wide spectrum of coordination strategies have been proposed.
However, the limited applicability of existing coordination models to heterogeneous
distributed real-time systems [5] provides the significant motivation for the devel-
opment of a decentralised coordination model that also reasons about the duration
and overhead of the coordination process. This paper builds upon the work pre-
sented in [12] and proposes an improved and more efficient algorithm to reduce
the time and complexity of the needed interactions among components until a col-
lective adaptation behaviour is determined. By exchanging feedback on the desired
self-adaptive actions, components converge towards a global solution, even if that
means not supplying their individually best solutions. As a result, each component,
although autonomous, is influenced by, and can influence, the behaviour of other
components in the system.

2 Coordinating Service-Wide Adaptations

Service-oriented applications increasingly consist of a set of interacting software
components S = {c1,c2, . . . ,cn} that jointly provide some service to end-users and
operate in open dynamic environments [8]. Components use results produced by
other components, that may be running on other nodes, to produce their own output
and hence are interdependent. Therefore, as components adapt and evolve, we face
the problem of preserving an accurate and consistent model of the service’s architec-
ture and its constituent parts. Even though the properties that have to be considered
for specifying a global adaptation depend on the particular application and system,
there are some general questions that often arise: (i) can a certain configuration be
reached?; (ii) are there dependencies between configurations of different compo-
nents?; (iii) how long will it take to complete an adaptation?; (iv) will it terminate
at all?



Service-Wide Adaptations in Distributed Embedded Component-Based Systems 143

Taking inspiration from natural self-organising systems is a successful strategy
to solve computational problems in distributed systems. In nature there is a well-
known, pervasive notion that satisfies these desirable properties of coordination
and can be successfully applied to decentralised software systems [3]: the notion
of feedback. Nature provides plenty of examples of cooperative self-adaptive and
self-organising systems, some of them are far more complex than distributed sys-
tems we design and build today [4]. These natural systems are often decentralised
in such a way that participants do not have a sense of the global goal, but rather it
is the interaction of their local behaviour that yields the global goal as an emergent
property. Typically, when feedback is interpreted as negative feedback, it will act
as a regulator on changes that deviate the system from some optimal state, whereas
feedback perceived as positive will usually trigger adaptation actions that serve to
increase changes in the same direction as the previous one.

These feedback loops can provide a generic mechanism for self-adaptation in
distributed embedded systems. The adjustment in the output QoS of an individual
component ci ∈ S is a reflexive action to changes in resource availability. Since the
need for coordination arises from conflict-causing interdependencies, the proposed
coordination algorithm uses these interdependencies to determine what, when, and
to whom to communicate changes in current commitments.

Interdependency relationships among components of a service S can be repre-
sented as a directed acyclic graph (DAG) GS = (VS ,ES ), where each vertex vi ∈VS

represents a component ci ∈ S and a directed edge ei ∈ ES from c j to ck indicates that
ck is functionally dependent on c j. Within GS = (VS ,ES ), we give particular names
to three types of components. A source component models an input device and is not
a consumer of the output produced by any other component in the service’s DAG.
A sink component represents a component that is not a producer of any output con-
sumed by other components in GS and models a unit to display the global service’s
output in the end-user’s device. Source and sink components mark the limit of a
set of components that must be managed in a coordinated manner. Finally, we call
cut-vertex to a component ci ∈ VS , if the removal of that component divides GS in
two separate connected graphs. Cut-vertexes may confine coordination operations
to a subset of GS . Within a feasible QoS region, it may be possible to maintain the
current output quality by compensating for a decrease in input quality by an increase
in the amount of used resources or vice versa [19].

Whenever a component’s context changes, it has to decide whether or not it needs
to adapt, which may prompt the need for coordination activities that ensure a new
globally acceptable solution for the entire distributed service. Therefore, whenever
Qi

val′ , the proposed change of the currently output QoS Qi
val for a component ci ∈ S ,

has an impact on the currently output QoS level of direct neighbours inGS , a request
for coordination in the adaptation process is sent to those affected components. Nat-
urally, the formulation of the corresponding positive or negative feedback depends
on the feasibility of the new requested QoS level as a function of the quality of the
new set of inputs Ic j for component c j and the amount of locally available resources.

Definition 1. Given a node n and a set of QoS levels σn to be provided for all the
components being locally executed at n, it is considered that admission control is



144 L. Nogueira and J. Coelho

performed, and that therefore a system specific feasibility function (e.g. [9, 1, 14])
determines if a set of QoS requirements can be met with available resources.

f easibility(σn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true if node n has sufficient resources

to supply the set of QoS levels σ
false otherwise

If there are insufficient resources to accommodate the change to the new requested
QoS level, a negative feedback is formulated and sent back in reply and the global
QoS adaptation fails. On the other hand, positive changes in interdependent com-
mitments are propagated along GS , until the next cut-vertex cc is reached. For that,
we define the paths and the f latten functions. For the sake of simplicity of presenta-
tion, we present all the functions in a declarative notation with the same operational
model as a pattern matching-based functional language. The reader should note that
although a node is only aware of its nearest neighbours in a coalition of cooperating
nodes for the collective execution of service S , we deal with the complete interde-
pendency graph only to prove that all the conducted actions are correctly propagated
until the final result is determined.

The paths function is a breadth first approach with cycle checking for deter-
mining components in paths. Visited components are added to the temporary set T
in order to avoid infinite loops. The function outputs all the components in all the
possible paths between two interdependent components ci and c j , or ⊥ if there is
no path between those two components. If there are more than one path between
them, the result is a set of sets, each of them corresponding to a distinct path. The
f latten function is then used to make the resulting set of sets flat, meaning that all
the components in these subsets will now belong to a simplified single set.

Definition 2. Given a DAG GS = (VS ,ES ) and two components ci,c j ∈ VS , all the
components in the possible paths between ci and c j are obtained as the result of the
function:

paths(ci,c j,GS ) = f latten(paths(ci,c j,GS ,∅))

paths(ci,c j,GS ,T ) = ∅, if ci = c j

paths(ci,c j,GS ,T ) = {{ci,ck1}∪ paths(ck1 ,c j,GS ,T ∪{ck1 }),
...
{ci,ckn}∪ paths(ckn ,c j,GS ,T ∪{ckn })},
∀ckm ∈ VS , such that (ci,ckm ) ∈ ES and ckm � T

paths(ci,c j,GS ,T ) = ⊥, otherwise

Definition 3. Given a set A containing other sets, the function flatten(A) is defined
as:

f latten(∅) = ∅
f latten(A) = {a}∪ f latten(A \ {a}), if a ∈ A

Affected components collect relevant data, both from the commitments of other
components and from local resource reservations, that reflect the current state of



Service-Wide Adaptations in Distributed Embedded Component-Based Systems 145

the system. Subsequently, each involved component analyses the collected data and
takes a decision on whether and how to adapt in order to reach a global desired state.
Finally, to implement the decision, the set of components acts in a coordinated man-
ner. A coordinated adaptive phase is initiated whenever a coordination phase is suc-
cessful, i.e whenever the component that initiated the coordination request receives
a positive feedback in reply. During the coordination phase, each node pre-reserves
the needed resources to achieve the new output QoS. Therefore, resource alloca-
tion is always possible at this stage [10]. Once resources are allocated, the node
commits to produce the announced output QoS either until the service terminates or
adaptation occurs.

Definition 4. Given a connected graph GS = (VS ,EW), such that component ci ∈
VS , and Ici = {(c j,Q

j
val), . . . , (ck,Qk

val)} as the current set of QoS inputs of ci, and
given T as the set of changed QoS inputs in response to the coordination request,
the function update(I,T ) updates I with the elements from T :

update(∅,T ) = ∅
update(I,T ) = {(ci,Qi

val′ )}∪update(I \ (ci,Qi
val),T ), if (ci,Qi

val) ∈ I
and (ci,Qi

val′ ) ∈ T
update(I,T ) = {(ci,Qi

val)}∪update(I \ (ci,Qi
val),T ), if (ci,Qi

val) ∈ I
and (ci,Qi

val′ ) � T

Definition 5. Given the connected graph GS = (VS ,ES ) with a set of ordered cut-
vertices CS and the subgraph that connects component ci to next cut-vertex cc ∈ CS ,
the function test change(ci,cc,GS ,Qi

val′ ) is defined by:

test change(ci,cc,GS ,Qi
val′ ) = T , if

T ′ = {(ci,Qi
val′ )},

P = paths(ci,cc,GS ),
IQoS = get input qos(ci),
test change component(IQoS ,P,T ′) = T ,
T � ⊥

test change(ci,cc,GS ,Qi
val′ ) = ⊥, otherwise.

test change component(IQoS ,∅,T ′) = ∅
test change component(IQoS ,P,T ′) = test change component(IQoS ,P\{c j},T ′)

∪{(c j,Q
j
val′ )}, i f

c j ∈ P,
S = update(IQoS ,P,T ′),
test f easibility(c j,Q

j
val′ ,S ) = TRUE,

test change component(IQoS ,P,T ′) = ⊥, otherwise

Furthermore, we use the following auxiliary functions which, for the sake of space
limitations, we do not define formally:



146 L. Nogueira and J. Coelho

ttteeesssttt fff eeeaaasssiiibbbiiillliiitttyyy(((ccciii,,,QQQ
iii
val′ ,,, IIIci))) ::: Given a node nx where a component ci ∈ S is

currently being executed, Qi
val′ as the new requested QoS level for ci, and

Ici = {(c j,Q
j
val), . . . , (ck,Qk

val)} as the new set of QoS levels given as input to ci,
test f easibility refers to the system’s specific feasibility function given by Defi-
nition 1 applied to node nx to determine if the new set of QoS requirements can
be met with available resources.

ssseeettt qqqooosss llleeevvveeelll(((QQQiii
val′ ,,,ccciii,,,SSS ))) ::: Sets the new QoS level Qi

val′ for component ci ∈ S
gggeeettt cccuuuttt vvveeerrrtttiiiccceeesss(((GS ))) ::: Returns an ordered set of all the cut-vertices in GS . This

function is based on the depth-first algorithm for finding cut-vertices which was
first presented in [21]. The cut-vertices are found and stored ordered through the
DAG from a source component until the sink component.

gggeeettt iiinnnpppuuuttt qqqooosss(((ccciii))) ::: Given a component ci ∈ S , returns the set of elements
(c j,Q

j
val), where each of these elements represents a component c j with an output

QoS level of Q j
val used as an input in component ci.

gggeeettt qqqooosss llleeevvveeelll(((ccciii))) ::: Returns the current QoS level output by component ci.
hhheeeaaaddd(((SSS ))) ::: Returns the first element of set S .

Having this background, given the connected graphGS = (VS ,ES ), an end-user sink
component cu, the set of components S and the set of cut-vertices CS computed by
function get cut vertices(GS ), whenever a component ci ∈ VS is able to change its
output QoS to a new QoS level Qi

val′ , subsequent components in GS respond to
the coordination request according to a decentralised feedback-based coordination
protocol, formally presented in Algorithm 1.

Algorithm 1. Service coordination

service coordination(ci ,cu,GS ,CS ), = change(F,S ), if
try coordination(ci ,CS ∪{cu}) = F and F � ⊥

try coordination(ci ,∅) = ∅
try coordination(ci ,CS ) = try coordination(cc ,C′S )∪T, i f

cc = head(CS \{ci}),
Qi

val′ = get qos level(ci),
test change(ci ,cc,GS ,Qi

val′ ) = T ,
T � ⊥

try coordination(ci ,CS ) = ⊥, otherwise.

change(∅,S ) = T RUE
change(F,S ) = change(F′ ,S ), where

(c j,Q
j
val′ ) ∈ F,

set qos level(Q j
val′ ,c j,S ),

F′ = F\{(c j,Q
j
val′ )}.



Service-Wide Adaptations in Distributed Embedded Component-Based Systems 147

By exchanging feedback on the performed self-adaptations, components converge
towards a global solution, overcoming the lack of a central coordination and global
knowledge. Negative feedback loops occur when a change in one service component
triggers an opposing response that counteracts that change at other interdependent
component along GS . On the other hand, positive feedback loops promote global
adaptations. The snowballing effect of positive feedback takes an initial change in
one component and reinforces that change in the same direction at all the affected
partners, requiring only one negotiation round between any pair of interdependent
components.

A fundamental advantage of the proposed coordination model is that both the
communication and adaptation overheads may depend on the size of a component
neighbourhood until a cut-vertex is reached, instead of the entire set of components,
if a cut-vertex is able to maintain its current output quality, despite the changes
on the quality of its inputs. This allows the proposed feedback-based coordination
model to scale effectively to large distributed systems.

3 Properties of the Coordination Model

Proposition 1. Given a node n and a set of QoS levels σ to be satisfied, the function
f easibility(σn) always terminates and returns true if σ is feasible in n or false
otherwise.

Proposition 2. Given a DAG GS = (VS ,ES ) and two components ci,c j ∈ VS ,
paths(ci,c j) terminates and returns all the components in the possible paths be-
tween ci and c j, ∅ in case ci = c j, or ⊥ in case there is no path between ci,c j ∈ VS .

Proposition 3. Given two sets I and T , both with elements of the form (ci,Qi
val), up-

date(I,T) terminates and returns a new set with the elements of I such that whenever
(ci,Qi

current) ∈ I and (ci,Qi
new) ∈ T the pair stored in the returned set is (ci,Qi

new).

Lemma 1. Given the connected graph GS = (VS ,ES ) with a set of cut-vertices CS

and the subgraph that connects component ci to next cut-vertex cc ∈ CS and a new
upgraded QoS level value Qi

val′ , the call to test change(ci,cc,GS ,Qi
val′ ) terminates

and succeeds if cc is able to output a new QoS level Qc
val′ or fails otherwise.

Theorem 1 (Correctness of Service Coordination). Given the connected graph
GS = (VS ,ES ) representing the QoS interdependencies of a service S being exe-
cuted by a group of components, such that cu ∈ V is the end-user sink component
receiving the service at a QoS level Qval, whenever a component ci announces an
upgrade to Qi

val′ , Algorithm 1 changes the set of SLAs at components in G such that
cu receives S changed to the QoS level Qu

val′ or does not change the set of local SLAs
at any node and cu continues to receive S at its current QoS level Qu

val.

Proof. Termination comes from the finite number of elements in CS ∪ cu and from
Lemma 1. Algorithm 1 applies the function test change iteratively to all nodes in
the subgraph starting with ci and finishing in cu. The base case is when there are no



148 L. Nogueira and J. Coelho

cut-vertices and there is only one call to test change. It is trivial to see that the result
of test change will consist in a set of components that will upgrade for the new QoS
level Q j

val′ or it will fail and, by Lemma 1, it is correct. The remaining cases happen
when there are one or more cut-vertices between ci and cu. Here, upgrade will be
applied to all subgraphs starting in ci and finishing in cu. Each of these subgraphs are
sequentially tested. Only if all of them can be upgraded will service S be delivered to
component cu at the new upgraded QoS level Qu

val′ . The result follows by induction
in the number of cut-vertices. ��

Definition 6. Given a directed graph GS = (VS ,ES ), the in-degree of a component
ci ∈V is the number of edges that have ci as their destination.

Definition 7. Given a directed graph GS = (VS ,ES ), the out-degree of a component
ci ∈V is the number of edges that have ci as their starting node.

Whenever a change to a new QoS level Qi
val′ is requested by a component ci, if

the next cut-vertex cc in G cannot supply the requested level, then all the prece-
dent components between ci and cc are kept in their currently supplied feasible QoS
level Q j

val. Thus, the number of needed messages is given by the in-degree and out-
degree of the nodes in the paths between ci and cc where it was determined that
the requested new QoS level was not possible. On the other hand, if the requested
change is possible, the number of needed messages is given by the number of edges
between ci and the end-user sink component cu. This is because a change is only
possible after all the involved components are queried and the conjunction of their
efforts results in a newer QoS level being delivered to cu. Thus, the maximum num-
ber of exchanged messages in a coordination operation is given by Formula 1.∑

c∈VS

(deg+(c)+deg−(c)) (1)

Applications with real-time requirements can benefit from decentralised coordina-
tion mechanisms, as long as those mechanisms support the timing and QoS require-
ments of applications. Therefore, coordination tasks need to be time dependent since
handling time is necessary to specify (and enforce) given levels of quality of service
[20, 10].

Access to the system’s resources can be modelled as a set of isolated constant-
bandwidth servers, either related to CPU [2, 11] or network [13, 15] scheduling. Fur-
thermore, feedback can be formulated as a result of a local anytime QoS adaptation
process that can trade off the needed computation time by the achieved solution’s
quality, within an useful and bounded time [9].

Based on these guarantees, it is possible to determine a time-bounded convergence
to a globally accepted solution. As such, the uncertain outcome of iterative decen-
tralised control models whose effect may not be observable until some unknowable
time in the future [18] is not present in the proposed regulated coordination model.

Proposition 4. Given the connected graph GS = (VS ,ES ) representing the QoS in-
terdependencies of a service S , such that cu ∈ V is the end-user sink component
receiving the service at a QoS level Qval, if a source component starts a service



Service-Wide Adaptations in Distributed Embedded Component-Based Systems 149

coordination process involving all the nodes in the graph, this means that for a
graph of n components we have to exchange the number of messages given by For-
mula 1. If the longest exchange of messages between two components takes tm time
units and the longest time for a node to compute its feedback is δ then the conver-
gence of the system for the worst case scenario is given by the formula:⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑
c∈VS

(deg+(c)+deg−(c))

⎞⎟⎟⎟⎟⎟⎟⎟⎠∗ tm ∗ δ (2)

4 Conclusions

Dynamic adaptation is frequently used in embedded systems to react to fundamental
changes in the environment. However, the adaptation behaviour of distributed em-
bedded systems significantly complicates their design and poses several challenges.
In particular, the adaptation of a single component can cause a chain reaction of
adaptations in other components that need to be coordinated to maintain desired
system-wide properties.

The proposed decentralised coordination approach is based on an effective feed-
back mechanism to reduce the time and complexity of the needed interactions
among components until a collective adaptation behaviour is determined. Feedback
is formulated at each affected component as a result of a local QoS adaptation pro-
cess that evaluates the feasibility of the new requested service solution. This way,
positive feedback is used to reinforce the selection of the new desired global ser-
vice solution, while negative feedback will act as a regulator on changes that devi-
ate the system from some near-optimal state. Therefore, although each individual
component has no global knowledge about the group of components cooperatively
executing the service and its interdependencies as a whole (only knows to which di-
rect neighbour(s) it sends its output), complex coordinated adaptations emerge from
local interactions.

Acknowledgements. This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and by the EU ARTEMIS JU funding,
within ENCOURAGE project, ref. ARTEMIS/0002/2010, JU grant nr. 269354. Jorge Coelho
was partially funded by LIACC through Programa de Financiamento Plurianual of FCT.

References

1. Abdelzaher, T.F., Atkins, E.M., Shin, K.G.: Qos negotiation in real-time systems and its
application to automated flight control. IEEE Transactions on Computers, Best of RTAS
1997 Special Issue 49(11), 1170–1183 (2000)

2. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time systems.
In: Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, p. 4
(1998)

3. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng,
B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)



150 L. Nogueira and J. Coelho

4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.:
Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton
University Press (2002)

5. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In: Proceedings of the 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp.
639–646 (2008)

6. Friday, A., Davies, N., Cheverst, K.: Utilising the event calculus for policy driven adap-
tation on mobile systems. In: Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks, p. 13. IEEE Computer Society, Washington, DC
(2002)

7. Gelernter, D., Carriero, N.: Coordination languages and their significance. Communica-
tions of the ACM 35(2), 96–107 (1992)

8. Jin, J., Nahrstedt, K.: Qos-aware service management for component-based distributed
applications. ACM Transactions on Internet Technology 8(3), 14:1–14:31 (2008)

9. Nogueira, L., Pinho, L.M.: Dynamic qos adaptation of inter-dependent task sets in co-
operative embedded systems. In: Proceedings of the 2nd ACM International Conference
on Autonomic Computing and Communication Systems, Turin, Italy, p. 97 (2008)

10. Nogueira, L., Pinho, L.M.: Time-bounded distributed qos-aware service configuration in
heterogeneous cooperative environments. Journal of Parallel and Distributed Comput-
ing 69(6), 491–507 (2009)

11. Nogueira, L., Pinho, L.M.: A capacity sharing and stealing strategy for open real-time
systems. Journal of Systems Architure 56(4-6), 163–179 (2010)

12. Nogueira, L., Pinho, L.M., Coelho, J.: A feedback-based decentralised coordination
model for distributed open real-time systems. Journal of Systems and Software 85(9),
2145–2159 (2012)

13. Nolte, T., Lin, K.J.: Distributed real-time system design using cbs-based end-to-end
scheduling. In: Proceedings of the 9th International Conference on Parallel and Dis-
tributed Systems, pp. 355–360 (2002)

14. Park, J., Ryu, M., Hong, S.: Deterministic and statistical admission control for qos-aware
embedded systems. Journal of Embedded Computing 1, 57–71 (2005)

15. Pedreiras, P., Gai, P., Almeida, L., Buttazzo, G.: Ftt-ethernet: a flexible real-time com-
munication protocol that supports dynamic qos management on ethernet-based systems.
IEEE Transactions on Industrial Informatics 1(3), 162–172 (2005)

16. Rajkumar, R., Lee, C., Lehoczky, J., Siewiorek, D.: A resource allocation model for qos
management. In: Proceedings of the 18th IEEE Real-Time Systems Symposium, p. 298.
IEEE Computer Society (1997)

17. Rasche, A., Poize, A.: Dynamic reconfiguration of component-based real-time software.
In: Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pp. 347–354 (2005)

18. Serugendo, G.D.M.: Handbook of Research on Nature Inspired Computing for Economy
and Management. In: Autonomous Systems with Emergent Behaviour, pp. 429–443. Idea
Group, Inc., Hershey (2006)

19. Shankar, M., de Miguel, M., Liu, J.W.S.: An end-to-end qos management architecture.
In: Proceedings of the 5th IEEE Real-Time Technology and Applications Symposium,
pp. 176–191. IEEE Computer Society, Washington, DC (1999)

20. Stankovic, J., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication and
coordination in embedded sensor networks. Proceedings of the IEEE 91(7), 1002–1022
(2003)

21. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–
160 (1972)



Distributed/Parallel Genetic Algorithm for Road
Traffic Network Division for Distributed Traffic
Simulation

Tomas Potuzak

Abstract. In this paper, a distributed/parallel method for division of road traffic net-
works for distributed road traffic simulation is described. The method is based on its
sequential version, which we developed during our previous research. This sequen-
tial version utilizes the weights of traffic lanes representing the numbers of vehicles
moving within them and a genetic algorithm for the division of the road traffic net-
work into the required number of load-balanced sub-networks interconnected with
minimal number of divided traffic lanes. The distributed/parallel version of the di-
vision method described in this paper uses a similar approach, but utilizes a dis-
tributed/parallel computing environment for a distributed/parallel execution of the
genetic algorithm and, consequently, for the speedup of the entire method.

1 Introduction

A utilization of a distributed computing environment where combined power of
multiple interconnected computers is utilized simultaneously is a commonly used
approach for the speedup of a detailed road traffic simulation [1]. An example of a
distributed computer can be a cluster of ordinary interconnected desktop computers
(e.g. in a classroom of a university). Today, these computers often incorporate multi-
core processors, which enable to perform several processes or threads concurrently
and, consequently, to achieve additional speedup of the simulation [2].

For the distributed simulation of a road traffic network, it is necessary to divide
this network into required number of sub-networks, which are then simulated on
particular nodes of the distributed computer as (possibly multithreaded) processes.
A convenient division is an important factor influencing the resulting performance

Tomas Potuzak
University of West Bohemia, Faculty of Applied Sciences,
Department of Computer Science and Engineering,
Univerzitni 8, 306 14 Plzen, Czech Republic
e-mail: tpotuzak@kiv.zcu.cz

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 151
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_18, c© Springer International Publishing Switzerland 2014



152 T. Potuzak

of the entire distributed simulation [3]. During our previous research, we developed
a method for road traffic network division, in which a genetic algorithm is employed
[4]. The method is sequential and shows good results. However, it is quite slow on
a standard desktop computer, especially for large road traffic networks [4].

In this paper, we describe the adaptation of our sequential division method for a
distributed/parallel environment in order to maximally utilize the computing power
of the environment for a faster division of road traffic networks.

2 Basic Notions

The distributed/parallel method for division of road traffic networks is intended for
distributed/parallel road traffic simulation. Such a simulation can be performed as a
set of singlethreaded processes on a distributed computer (i.e. without shared mem-
ory), a multithreaded process on a parallel computer (i.e. with shared memory), or
as a set of multithreaded processes on a distributed/parallel computer (i.e. shared
memory among threads of one process, but not among processes) [2].

2.1 Distributed/Parallel Road Traffic Simulation Description

The road traffic simulation is most often classified using its level of detail as macro-
scopic, mesoscopic, or microscopic. The macroscopic simulation deals only with
aggregate traffic flows in particular traffic lanes [5]. In the mesoscopic simulation,
there is some representation of vehicles (e.g. tasks in queuing networks), but mod-
eling of their interactions is limited [6]. The microscopic simulation considers all
vehicles as objects with their own parameters and interactions [7, 8], which makes
it very time-consuming and convenient for distributed computing environment [3].

In this case, it is necessary to divide the road traffic network into required number
of sub-networks, which are then simulated on particular nodes of the distributed
computer as processes. The processes utilize a communication protocol based on
message passing for the transfer of vehicles between the sub-networks and also
for the synchronization. If the simulation processes are multithreaded, each thread
computes part of the road traffic sub-network, which resides in shared memory of
the threads. The threads in one simulation process must be synchronized as well [2].

2.2 Road Traffic Network Division Description

The division of the road traffic network is necessary only among the simulation
processes (one sub-network per process), not among the simulation threads. The
simulation threads of one process can access the sub-network in its shared memory
and each of them can simulate a part of crossroads, traffic lanes, and so on [2].

Two issues should be considered during the division of road traffic network for
the performance reasons – the load-balancing of the resulting sub-networks and the
minimization of the inter-process communication. The load-balancing is necessary



Distributed/Parallel Genetic Algorithm for Road Traffic Network Division for DTS 153

in order to achieve similar speeds of the simulation processes and therefore to mini-
mize their mutual waiting [9]. The minimization of the inter-process communication
is necessary, since the communication is very slow [9]. The communication can be
reduced by minimization of the number of divided traffic lanes, which leads to lower
number of transferred vehicles (i.e. lower number of transferred messages, depend-
ing on the communication protocol) [3].

2.3 Genetic Algorithms Description

A genetic algorithm is an evolutionary algorithm [10] mimicking the natural ge-
netic evolution and selection in nature in order to solve a problem [11]. Today, the
genetic algorithms are widely used for solving of searching and (multi-objective)
optimization problems in many domains [12].

A general genetic algorithm works as follows. A representation of an individual
(usually a vector of binary or integer values) is selected based on the solved problem
[13] and a set of individuals – initial population – is most often randomly generated.
Then, a fitness value, representing an objective assessment in relation to the solved
problem, is calculated using a fitness function for each individual of this initial pop-
ulation [13]. The fitness function can be single- or multi-objective [12]. Once this
is completed, a number of individuals with highest fitness values are selected to be
“parents” of a new generation. The new generation is then created from these indi-
viduals using crossover and mutation operators. The crossover uses two individuals
to produce new individuals (descendants) incorporating information from both par-
ents, which can be then mutated (i.e. partially randomly changed) [10].

The created descendants form a new generation, whose size corresponds to the
number of individuals of the initial population. Then, the fitness value is calculated
for the individuals of this new generation and the entire process repeats until a preset
number of generations is created or a stop condition is fulfilled [14].

3 Road Traffic Network Division Method

The sequential method for road traffic network division, which we developed, is
described in [4] and [14] in detail. The method uses a less-detailed (macroscopic)
simulation for assigning of the weights to particular traffic lanes representing the
numbers of vehicles in these lanes during the simulation. The traffic network is then
considered as a weighted graph with crossroad acting as nodes and sets of lanes
connecting the neighboring crossroads acting as edges with weights corresponding
to the sum of weights of the particular lanes [4].

3.1 Sequential Dividing Genetic Algorithm Description

The weighted graph is the input for the dividing genetic algorithm (DGA) together
with the number of sub-networks, which shall be created. The DGA individual is



154 T. Potuzak

Fig. 1 Schema of the D/P-
DGA for two processes and
two threads per process. The
control process performs
the division of individuals
among working processes,
selection, crossover, and
mutation. The working
processes perform fitness
calculation using multiple
threads. Barriers are used
for synchronization of both
threads and processes.

then a vector of integers of length corresponding to the number of crossroads. Each
value represents assignment of one crossroad to one sub-network [14].

The initial population consists of 90 randomly generated individuals, for which
the fitness values are calculated. The fitness function prefers individuals represent-
ing assignment of the crossroads corresponding to load-balanced sub-networks with
minimal number of divided traffic lanes between them. So, it consists of two parts
– the equability representing the load-balancing and the compactness representing
the minimal number of divided traffic lanes. For more details, see [4] and [14].

Once all fitness values are calculated, ten individuals with highest values are
selected for the creation of a new generation using crossover. Each combination
of the selected individuals is used to produce two descendants. First descendant
receives all integers of even index of the first parent and of odd index of the second
parent. Second descendant receives the remainder. Both descendants can be mutated
(i.e. random change of several integers). This way a new generation of 90 individuals
is created and the entire process repeats for a preset number of generations [4].

3.2 Distributed/Parallel Dividing Genetic Algorithm Description

In order to speed up the DGA, we developed its distributed/parallel version (D/P-
DGA), which is the main contribution of this paper. The D/P-DGA is operational,
but is still under development. So far, only the fitness calculation is parallelized,
since it is the most time-consuming part of the DGA. Moreover, its parallelization
is straightforward, because it is an independent computation for each individual.

The implementation of the D/P-DGA is a part of the DUTS Editor, a system for
design and division of road traffic networks developed at Department of Computer
Science and Engineering of University of West Bohemia (DSCE UWB). The D/P-
DGA computation generally consists of multiple multithreaded working processes
and one control process, which communicate using message passing. The schema of
the D/P-DGA for two processes with two threads per process is depicted in Fig. 1.



Distributed/Parallel Genetic Algorithm for Road Traffic Network Division for DTS 155

4 Tests and Results

The D/P-DGA was thoroughly tested using three computers Intel i7 3.07 GH (4
processor cores with hyper-threading), 12 GB RAM, 1 TB HDD, and Windows 7
interconnected by 1 Gb Ethernet. Three road traffic networks were divided into 4
sub-networks. All three were regular square grids of 64, 256, and 1024 crossroads.
The sequential (1 process, 1 thread on 1 computer), the parallel (1 process, 2-4
threads on 1 computer), the distributed (1 control and 2 working processes, 1 thread
per working process on 3 computers), and the distributed/parallel (1 control process,
2 working processes, 2-4 threads per working process on 3 computers) executions
were tested. The results (averaged from ten attempts) are depicted in Table 1.

Table 1 Results of sequential, parallel, distributed, and distributed/parallel executions

Processes 1000 generations 10000 generations 100000 generations
/ threads 64 256 1024 64 256 1024 64 256 1024
count Computation time [ms]

1 / 1a 618 2443 12689 5601 22826 113632 55385 221702 1105034

1 / 2b 340 1301 6653 3149 12003 58195 30635 119415 576759
1 / 4b 219 741 3585 1945 6726 31787 19076 66767 311794

2 / 1c 713 1781 6669 7061 17167 63267 69934 169770 627977

2 / 2d 608 1253 3968 5842 12002 38812 58227 119026 379333
2 / 4d 539 942 2330 5147 8987 22191 49910 87985 207598

a Sequential execution b Parallel execution c Distributed execution d Distributed/parallel
execution.

The computation time decreases with increasing number of threads. Neverthe-
less, the results for the distributed/parallel execution are far worse than for the par-
allel execution, because the individuals and calculated fitness values are transferred
between the control and the working processes using the message passing. This sig-
nificantly degrades the overall performance. The results are better for the largest
road traffic network, because there is better computation-to-communication ratio.

5 Conclusion

In this paper, we presented a distributed/parallel dividing genetic algorithm (D/P-
DGA) for division of road traffic networks for distributed road traffic simulation.
Using the distributed/parallel computation of the fitness values, the total computa-
tion time is significantly reduced, which was shown during a thorough testing.

Also, it has been determined that the parallel execution offers better speedup
(up to 3.54 using 4 threads) than the distributed/parallel execution (up to 5.32, but
using 2 working processes with 4 threads - i.e. 8 threads in total) in comparison



156 T. Potuzak

to the sequential execution due to the lack of inter-process communication. Still,
the distributed/parallel execution offers good speedup for large road traffic networks
and has the advantage of better scalability, since it is possible to add more working
processes using larger number of computers.

In our future work, we will focus on better parallelization of the genetic algo-
rithm. So, the selection, crossover, and mutation will be performed in a parallel way
similar to the calculation of the fitness values. We will also explore the possibilities
of the inter-process communication reduction.

References

1. Nagel, K., Rickert, M.: Parallel Implementation of the TRANSIMS Micro-Simulation.
Parallel Computing 27(12), 1611–1639 (2001)

2. Potuzak, T.: Distributed-Parallel Road Traffic Simulator for Clusters of Multi-core Com-
puters. In: 2012 IEEE/ACM 16th International Symposium on Distributed Simulation
and Real Time Applications – DS-RT 2012, pp. 195–201 (2002)

3. Potuzak, T.: Methods for Reduction of Interprocess Communication in Distributed Sim-
ulation of Road Traffic. Doctoral thesis, University of West Bohemia, Pilsen (2009)

4. Potuzak, T.: Methods for Division of Road Traffic Networks Focused on Load-Balancing.
Advances in Computing 2(4), 42–53 (2012)

5. Lighill, M.H., Whitman, G.B.: On kinematic waves II: A theory of traffic flow on long
crowed roads. Proceedings of the Royal Society of London, S. A 229, 317–345 (1955)

6. Nizzard, L.: Combining Microscopic and Mesoscopic Traffic Simulators. Raport de stage
d’option scientifique Ecole Polytechnique, Paris (2002)

7. Gipps, P.G.: A behavioural car following model for computer simulation. Transp. Res.
Board 15-B(2), 403–414 (1981)

8. Nagel, K., Schreckenberg, M.: A Cellular Automaton Model for Freeway Traffic. Journal
de Physique I 2, 2221–2229 (1992)

9. Potuzak, T.: Utilization of a Genetic Algorithm in Division of Road Traffic Network
for Distributed Simulation. In: ECBS-EERC 2011 – 2011 Second Eastern European Re-
gional Conference on the Engineering of Computer Based Systems, pp. 151–152 (2011)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008),
Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (with contributions by J.R. Koza)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

12. Farshbaf, M., Feizi-Darakhshi, M.: Multi-objective Optimization of Graph Partitioning
using Genetic Algorithms. In: 2009 Third International Conference on Advanced Engi-
neering Computing and Applications in Sciences, pp. 1–6 (2009)

13. Menouar, B.: Genetic Algorithm Encoding Representations for Graph Partitioning Prob-
lems. In: 2010 International Conference on Machine and Web Intelligence (ICMWI), pp.
288–291 (2010)

14. Potuzak, T.: Suitability of a Genetic Algorithm for Road Traffic Network Division. In:
KDIR 2011 - Proceedings of the International Conference on Knowledge Discovery and
Information Retrieval, pp. 448–451 (2011)

http://lulu.com
http://www.gp-field-guide.org.uk


Environmental Influence in Bio-inspired Game
Level Solver Algorithms

Antonio Gonzalez-Pardo and David Camacho

Abstract. Bio-inspired algorithms have been widely used to solve problems in
areas like heuristic search, classical optimization, or optimum configuration in
complex systems. This paper studies how Genetic Algorithms (GA) and Ant Colony
Optimization (ACO) algorithms can be applied to automatically solve levels in the
well known Lemmings Game. The main goal of this work is to study the influence
that the environment exerts over these algorithms, specially when the goal of the
selected game is to save an individual (lemming) that should take into account their
environment to improve their possibilities of survival. The experimental evaluations
carried out reveals that the performance of the algorithm (i.e. number of paths
found) is improve when the algorithm uses a small quantity of information about
the environment.

1 Introduction

Bio-inspired algorithm research field has been widely used to solve problems or
to search for the optimum configuration of complex systems. Due to these type of
problems exhibit NP-complete or NP-hard complexity, the resolution process needs
a huge amount of resources (such as computational effort or time). Some examples
of such problems are scheduling problems, constrained satisfaction problems, or
routing problems.

A good strategy to reduce the time needed to solve NP-complete problems is
applying bio-inspired algorithms, such as evolutionary algorithm (EA) [Fogel, 1995,
Eiben and Smith, 2009] or swarm intelligence [Engelbrecht, 2007]. These types of
algorithms work with a population of possible solutions that navigates through the
solution space of the modelled problem.

Antonio Gonzalez-Pardo · David Camacho
Computer Science Department
Escuela Politécnica Superior
Universidad Autónoma de Madrid
e-mail: {antonio.gonzalez,david.camacho}@uam.es

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 157
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_19, c© Springer International Publishing Switzerland 2014



158 A. Gonzalez-Pardo and D. Camacho

In the case of EA, each individual is evaluated by a fitness function that
allows their comparison. Then, individuals with better fitness value generates the
next population by the use of the crossover and mutation [Forrest, 1993]. These
operators allow the generation of new individuals taking into account their parents’
characteristic.

Swarm intelligence algorithms focus on the collective behaviour of
self-organizing systems [Farooq, 2008] where the iterations among individuals
generate collective knowledge based on social colonies [Karaboga, 2005]. In this
case, the initial population travels through the solution space in order to obtain the
best solution to the problem.

In this paper a classical Ant Colony Optimization [Dorigo, 1999] and a Genetic
Algorithm are applied to the well-known Lemmings Game to determine whether the
different levels can be solved using the given skills.

The Lemmings Game is a popular proven NP-hard puzzle game [Cormode,
2004]. In spite of the popularity that this game obtained in the 1990s, few research
has been applied to it. Computational intelligence has just been applied to video
games such as Mastermind, the Art of Zen, Ms Pac-Man, Tetris or Mario Bros.

This paper tries to determine the influence that environment (in this case, the
Lemmings level) exerts over the different algorithms. In order to do that the
performance of a Genetic Algorithm (GA), an Ant Colony Optimization (ACO)
and an heuristic for the ACO will be analysed.

2 The Lemmings Game

Lemmings are creatures that need to be saved. In each level, Lemmings start in a
specific point of the stage and must be guided to the exit point by the player. They
live in a two-dimensional space and are affected by gravity. They start walking in a
specific direction until they find an obstacle. In this case the Lemming will change
the direction and walk back. If the Lemming encounters a hole, it will fall down.
The only two ways, considered in this paper, by which a Lemming can die is by
falling beyond a certain distance or by falling from the bottom of the level.

In order to make Lemmings to reach the exit point, players have a set of “skills”
that must be given (not necessarily all of them) to the Lemmings. Using these
skills, Lemmings can modify the environment creating tunnels, or bridges, and thus
creating a new way to reach the exit. There are eight different skills that allow
Lemming to have an umbrella, to dig or to climb, amongst others. Each skill can
be used (i.e. assigned) a maximum number of times. It is not necessary to use all of
the skills in the levels.

In the Lemmings’ world, there are a huge number of materials, but all of them can
be grouped in two different classes: the ones that can be modified (e.g. can be dug)
and the ones that cannot be altered. In the case that a Lemming is digging and finds
a material that cannot be dug, the Lemming will stop digging and start walking.



Environmental Influence in Bio-inspired Game Level Solver Algorithms 159

3 Description of the Studied Algorithms

In this paper GA and ACO algorithms are studied. The aim of the experimental
phase is to determine whether these algorithms can find the different paths that guide
Lemmings to the exit point of the level.

3.1 Genetic Algorithm

The GA applied in this work, initializes individuals with a random phenotype length.
The maximum length of the phenotype depends on the maximum time of the level
or the maximum genotype length allowed. The phenotype is a list of genes where
each gene (< T,S >) contains the skill (S ) that is going to be executed in the step
T . Both values (the step and the skill) are selected randomly depending on the
maximum time given to solve the level, and the total number of remaining skills.
The phenotype represents the different decisions that the player could make. This
phenotype is then evaluated against the level. The lemming starts its execution
applying the skills specified in the given steps.

The goal of the GA is to maximize the fitness function represented by Eq. 4 and
it is composed by Eq. 1, Eq. 2 and Eq. 3. Eq. 1 takes into account the time spent
by the Lemming to solve the level. Eq. 2 is used to favour those paths that use less
actions, or less skills. Finally, another key concept is the number of lemmings saved
in the level represented in Eq. 3.

T (Indi) = MaxTime−Time(Indi) (1)

A(Indi) = TotalActGiv−ActionUsed(Indi) (2)

S (Indi) = TotalLemm−BlockersUsed(Indi)−ExplodedLemmings(Indi) (3)

F(Indi) =
T (Indi)+A(Indi)+S (Indi)

MaxTime+TotalActGiv+TotalLemm
(4)

Although ACO will use the same function to evaluate the goodness of the paths,
only GA can produce negative fitness. This negative fitness value is obtained if the
individual produces an invalid path (i.e. in the evaluation, the lemming is not able
to reach the exit point or the lemming dies trying it). In this case the fitness value is
−1 ∗F(Indi).

3.2 Ant Colony Optimization

In this work, the ants are the Lemmings of the game. So, they start in the entry point
of the level and at each position, each ant will decide whether to continue executing
the current action or to select another skill to execute. This decision depends on the
number of remaining skills and the pheromones deposited in the current location.
This means that skills with a higher pheromone value, and/or that can be applied
several times, have more chances to be selected. Once the ant decides to change its



160 A. Gonzalez-Pardo and D. Camacho

behaviour, it deposits a pheromone in the current location and continues with its
execution.

A pheromone is an object that represents a decision taken previously by any ant.
It means that some ant had taken a specific skill at this point. For that reason each
pheromone contains the name of the skill taken, the direction in which this skill had
been executed and a value representing the goodness for this decision (this value is
computed at the end of the ant execution).

In this work when any ant reaches the exit of the level, it will start again from
the entry point updating all the pheromones with the fitness value of the path. This
fitness is the same as the one used by the GA (Eq. 4). Finally, when all pheromones
have been updated and the ant arrives to the destination (for the second time), it will
forget the followed path and it will start again as a new ant, without any knowledge
about the location of the exit.

3.3 The Common-Sense Ant

The problem with the described ACO algorithm is that randomness may generate
strange situation like having an ant falling down and suddenly the ants start building
a bridge in the air. For this reason, a common-sense heuristic is defined.

With this heuristic, the current skill applied and the ants’ environment will
influence in the decision of the next skill to apply. This heuristic will avoid the
use of a skill when it cannot be executed, for example, it is not useful to apply the
Climber skill if the ant is not in front of a wall.

4 Experimental Phase

The aim of the experiments is to analyse the influence of the environment in the
behaviour of a GA and an ACO algorithms. Five different levels have been designed,
the easiest one and the hardest one are shown in Fig. 1(a) and Fig. 1(b), respectively.
This valuation is based on the size of the level, the different blocks contained into
each level, the distance from the entry point to the exit point, the number of skills
needed to solve the level, etc. It is important to take into account that all the terrains
used in the levels are editable terrain, i. e. ants can dig, climb and bash into it.

For each level, GA, ACO and ACO with common-sense ants are executed.
Each execution is repeated 50 times because all algorithms are stochastic. In order
to compare the results obtained among the different algorithms there are some
parameters that are common to all of them. Each experiment uses the Eq. 4 to
evaluate the different paths, the algorithms execute 100 ants (or individuals) during
200 iterations(or generations), and each experiment is repeated 50 times.

The GAs have, also, the following configuration: the maximum phenotype length
is 20, the probability of having One-point crossover is 90%, while the mutation rate
is fixed to 10%. There is not elitism and the goal is to maximize the results obtained
from the fitness function.



Environmental Influence in Bio-inspired Game Level Solver Algorithms 161

s

G

(a) Level 1. The easiest level

s

G

(b) Level 5. The hardest level

Fig. 1 Examples of the easiest and the hardest level modelled in this work

The goal of the experiments is to compare the number of different solutions that
each algorithm is able to build. This information is shown in Table 1. The values
correspond to the number of different paths found in 50 executions of the algorithms.

Table 1 Number of different solutions found by the algorithms described

Level
# Different Solutions # Different Solutions # Different Solutions
(Genetic Algorithm) (ACO Random Ant) (ACO Common-Sense)

1 3219 3868 2516
2 12629 4463 4042
3 370 1130 2487
4 2 15 32
5 0 3 7

5 Conclusions

This paper analyses the possibility of applying Genetic Algorithm and Ant Colony
Optimization to generate automatic game level solver tools. The application domain
of this work is the well-known Lemmings game, where Lemmings have to apply
different skills in order to reach the exit. Five different levels have been designed
with different complexity depending on the size of the level, the number of available
skills, or the distance between the start and the destination point, amongst others.

Experimental results reveal that both algorithms can successfully be applied to
solve the levels. Nevertheless, as it can be seen in Table 1 the Genetic Algorithms
provide less different paths when the levels are harder (i.e. levels 4 and 5). This is
produced because GA generates individuals without taking into account the level
landscape (i.e. it is a blind generation of individuals). On the other hand, ACO uses
the terrain information to apply different skills at specific steps and thus, it provides
better results.

One of the problem observed in this work is that GA does not guarantee the
goodness of the following generation of individuals. Parents are selected depending
on its fitness value (better fitness value implies more chances for being selected), but
crossover and mutation operations do no guarantee that the generated children have



162 A. Gonzalez-Pardo and D. Camacho

better fitness values. Ant Colony Optimization does not have this problem, because
ants are guided by the pheromone trails and then good decision (represented in
pheromones with high values) will have higher probabilities for being selected.

In order to determine whether the environment is important for generating
automatic level solvers, an heuristic for ACO has been designed. Although this
heuristic (called common-sense heuristic) provides less different paths in easiest
levels (level 1 and 2), it provides better results when it tries to solved the hardest
levels (levels 3, 4 and 5). This fact demonstrates that level information is very
important to make automatic level solvers.

Nevertheless, the design of domain based heuristics makes the platform very
dependent on the domain and thus the conclusions, and the approach, are not
applicable to other different domains.

Acknowledgements. This work has been supported by the Spanish Ministry of Science and
Innovation under grant TIN2010-19872.

References

[Cormode, 2004] Cormode, G.: The hardness of the lemmings game, or oh no, more
npcompleteness proofs. In: Proceedings of Third International Conference on Fun
with Algorithms, pp. 65–76 (2004)

[Dorigo, 1999] Dorigo, M.: Ant colony optimization: A new meta-heuristic. In: Proceedings
of the Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press (1999)

[Eiben and Smith, 2009] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing.
Springer (2009)

[Engelbrecht, 2007] Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn.
Wiley Publishing (2007)

[Farooq, 2008] Farooq, M.: Bee-Inspired Protocol Engineering: From Nature to Networks.
Springer Publishing Company, Incorporated (2008)

[Fogel, 1995] Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine
intelligence. IEEE Press (1995)

[Forrest, 1993] Forrest, S.: Genetic algorithms: principles of natural selection applied to
computation. Science 261(5123), 872–878 (1993)

[Karaboga, 2005] Karaboga, D.: An idea based on honey bee swarm for numerical
optimization. Techn. Rep. TR06, vol. 129(2), p. 2865. Erciyes Univ. Press, Erciyes
(2005)



The Impact of the “Nogood Processor”
Technique in Scale-Free Networks

Ionel Muscalagiu, Horia Emil Popa, and Viorel Negru

Abstract. DisCSPs are composed of agents that manage variables which are con-
nected by constraints, various algorithms for solving DisCSPs are searching through
this network of constraints. The scale-free graphs have been proposed as a generic
and universal model of network topologies that exhibit power-law distributions in
the connectivity of network nodes. Little research was done concerning the network
structure for DisCSP and in particular for scale-free networks. The asynchronous
searching techniques are characterized by the occurrence of the nogood values dur-
ing the search for the solution. In this article we analyzed the distribution of nogood
values to agents and the way to use the information stored in the nogood, what we
will call the nogood processor technique. We examine the effect of nogood pro-
cessor for networks that have a scale-free structure. We develop a novel way for
the distribution of nogood values to agents, the experiments show that it is more
effective for several families of asynchronous techniques.

1 Introduction

Constraint programming is a programming approach used to describe and solve
large classes of problems such as searching, combinatorial and planning problems.
A Distributed Constraint Satisfaction Problem (DisCSP) is a constraint satisfaction
problem in which variables and constraints are distributed among multiple agents.
This type of distributed modelling appeared naturally for many problems for which
the information was distributed to many agents. The idea of sharing various parts

Ionel Muscalagiu
The “Politehnica” University of Timisoara,
The Faculty of Engineering of Hunedoara, Revolutiei, 5, Romania
e-mail: ionel.muscalagiu@fih.upt.ro

Horia Emil Popa · Viorel Negru
The University of the West,
The Faculty of Mathematics and Informatics, Timisoara, V. Parvan 4, Romania
e-mail: {hpopa,vnegru}@info.uvt.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 163
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_20, c© Springer International Publishing Switzerland 2014



164 I. Muscalagiu, H.E. Popa, and V. Negru

of the problem among agents that act independently and collaborate in order to
find a solution by using messages has led to the formal problem known as the Dis-
tributed Constraint Satisfaction Problem (DisCSP) [10], [6]. DisCSPs are composed
of agents, each owning its local constraint network. Variables in different agents are
connected by constraints forming a network of constraints. Agents must assign val-
ues to their variables so that all constraints between agents are satisfied. Distributed
networks of constraints have proven their success in modeling real problems.

There are complete asynchronous searching techniques for solving the DisCSP
in this constraints network, such as the ABT (Asynchronous Backtracking), AWCS
(AsynchronousWeak Commitment), ABTDO (Dynamic Ordering for Asynchronous
Backtracking) [6],[10].

In recent years various complex networks have been identified as having a scale-
free structure [3], [2]. Scale-free networks are abundant in nature and society, de-
scribing such diverse systems as the Internet, a network of routers connected by
various physical connections, the chemical network of a cell,etc. Little research was
done concerning the behaviour of the search techniques in networks of constraints
that have a structure of the scale-free networks type [9]. Thus, few things are known
about choosing the optimal search technique for topological structures of the scale-
free network type.The purpose of the article is to develop search algorithms special-
ized for scale-free networks of constraints, algorithms that require minimum costs
for obtaining the solution.

In the distributed constraint satisfaction area, the asynchronous weak-
commitment search algorithm (AWCS) [10], plays a fundamental and pioneer role
among algorithms for solving the distributed CSPs. The algorithm is characterized
by an explosion of the nogood values, but, by dynamically changing the agents’
order, an efficient algorithm is obtained.

The occurrence of nogood values has the effect of inducing new constraints. No-
good values show the cause of failure and their incorporation as a new constraint will
teach the agents not to repeat the same mistake. The non - restriction for recording
the nogood values could become, in certain cases, impracticable. The main reason
is that the storing of nogood values excessively consumes memory and could lead to
lowering the memory that has been left. Another unpleasant effect of storing a large
number of nogood values is related to the fact that the verification of the current
associations in the list of nogood values that are stored becomes very expensive, the
searching effort removing the benefits brought by the nogood values storing. These
elements are analyzed as targeting to see if this nogood processor technique brings
benefits in terms of efficiency.

In [1] is introduced for the first time the notion of nogood processor. In [8] we
try to adapt the nogood processor technique for the AWCS technique. This tech-
nique consists in storing the nogood values and further use the information given
by nogoods in the process of selecting a new value for the variables associated to
agents.

In this paper we examine the effect of nogood processor for constraints networks
of the scale-free type. We develop a novel way for the distribution of nogood val-
ues to agents, the experiments show that it is more effective for several families of



The Impact of the “Nogood Processor” Technique in Scale-Free Networks 165

asynchronous techniques. Starting with the results from [8], this study tries to adapt
the version of nogood processor with the learning techniques in the purpose of find-
ing a solution that increases the performances of the AWCS technique. The aim of
these studies is to develop search algorithms specialised for scale-free networks.

The evaluation of the performances of the AWCS technique is done using NetL-
ogo. NetLogo is a programming environment with agents that allows the implemen-
tation of the asynchronous techniques ([11], [12]). In order to make such estimation,
the AWCS technique with nogood processor are implemented in NetLogo, using the
models proposed in [7], model calling DisCSP-NetLogo. Implementation examples
for the AWCS family can be found on the website [12]. For the first time, the ex-
periments are done with a large number of agents (500 and 1000), using a NetLogo
model that runs on a cluster.

2 The Framework

This paragraph presents some notions related to the DisCSP modeling and AWCS
algorithm [10], [6].

Definition 1. The model based on constraints CSP - Constraint Satisfaction Prob-
lem, existing for centralized architectures, is defined by a triple (X, D, C), where:
X={x1,...,xn} is a set of n variables; whose values are taken from finite domains D=
{D1, D2,...,Dn}; C is a set of constraints declaring those combinations of values
which are acceptable for variables.

The solution of a CSP implies to find an association of values for all the variables
that satisfy all the constraints.

Definition 2. A problem of satisfying the distributed constraints (DisCSP) is a CSP,
in which the variables and constraints are distributed among autonomous agents that
communicate by exchanging messages. Formally, DisCSP is defined by a 5-tuple (X,
D, C, A, φ ), where X, D and C are as before, A = {A1,...,Ap} is a set of p agents, and
φ : X −→ A is a function that maps each variable to its agent.

In this article we will consider that each agent Ai has allocated a single variable xi,
thus p = n. Also, we assume the following communication model [10]:

• agents communicate by sending messages. An agent can send messages to other
agents iff the agent knows the addresses of the agents.

• the delay in delivering a message is finite, although random. For transmission
between any pair of agents, messages are received in the order in which they
were sent.

Asynchronous search algorithms are characterized by the agents using the messages
during the process of searching the solution. Typically, it uses two types of mes-
sages:

• the ok message, which contains an assignment variable-value and is sent by an
agent to the constraint-evaluating-agent in order to see if the value is right.



166 I. Muscalagiu, H.E. Popa, and V. Negru

• the nogood message, which contains a list (called nogood) with the assignments
wherefore a looseness was found, is sent in case the constraint-evaluating-agent
finds an unfulfilled constraint.

Definition 3. Two agents are connected if there is a constraint among the variables
associated to them. Agent Ai has a higher priority than agent A j if Ai appears be-
fore A j in the total ordering. Agent Ai is the value-sending agent and agent A j the
constraint-evaluating agent.

Definition 4. The agent − view list belonging to an agent Ai is the set of the newest
associations received by the agent for the variables of the agents to whom it’s con-
nected.

Definition 5. The nogood list is a set of associations for distinct variables for which
an inconsistency was found (an unsatisfied constraint). The agent − view list to-
gether with the stored nogood values constitutes the working context of each agent,
depending on them the agent makes decisions.

Definition 6. A nogood list received by agent Ai is consistent for that agent, if it
contains the same associations as agent − view for all the variables of the parent
agents Ak connected with Ai.

The AWCS algorithm [10] is a hybrid algorithm obtained by the combination of
ABT algorithm with WCS algorithm, which exists for CSP. It can be considered to
be an improved ABT variant, but not necessarily by reducing the nogood values,
but by changing the priority order. It deliberately follows to record all the nogood
values to ensure the completeness of the algorithm, but also to avoid some unstable
situations.

The authors show in [10] that this new algorithm can be built by a dynamical
change of the priority order. The AWCS algorithm uses, like ABT, the two types of
ok and nogood messages, with the same significance. There is a major difference
in the way it treats the ok message. In case of receiving the ok message, if the
agent can’t find a value to its variable that should be consistent with the values of
the variables that have a greater priority, the agent not only creates and sends the
nogood message, but also increases the priority in order to be maximum among the
neighbors.

3 Scale-Free Network

The study of complex network topologies across many fields of science and tech-
nology has become a rapidly advancing area of research in the last few years. One of
the key areas of research is understanding the network properties that are optimized
by specific network architectures. The last few years have led to a series of discov-
eries that uncovered statistical properties that are common to a variety of diverse
real-world social, information, biological, and technological networks



The Impact of the “Nogood Processor” Technique in Scale-Free Networks 167

In recent years various complex networks have been identified as having a scale-
free structure [3], [2]. Scale-free networks are abundant in nature and society, de-
scribing such diverse systems as the Internet, a network of routers connected by
various physical connections, SNS, the chemical network of a cell.

Not all nodes in a network have the same number of edges. The spread in the
node degrees is characterized by a distribution function P(k), which gives the prob-
ability that a randomly selected node has exactly k edges. Since in a random graph
the edges are placed randomly, the majority of nodes have approximately the same
degree. One of the most interesting developments in our understanding of complex
networks was the discovery that for most large networks the degree distribution sig-
nificantly deviates from a Poisson distribution. In particular, for a large number of
networks, including the World Wide Web, the Internet or metabolic networks the
degree distribution follows a power-law for a large number of nodes [3], [2]. Such
networks are called scale free [2].

A scale-free network is characterized by a power-law degree distribution as fol-
lows:

p(k) ∝ k−γ (1)

where k is the degree and γ is the exponent that depends on each network struc-
ture. Scale-free networks have no scale because there is no typical number of links
[2]. The random network models assume that the probability that two nodes are
connected is random and uniform. In contrast, most real networks exhibit some
preferential connectivity.

4 Nogood Processor in Scale-Free Network

A DisCSP can be represented by a constraint graph G = (X,E), whose nodes repre-
sent the variables and edges represent the constraints:

1. X={x1,...,xn} is a set of n nodes/varibles
2. E={(x1,x j)} is a set of edges for which we have a constraint between variables xi

and x j .

In the scale-free networks some nodes concentrate very much connections, the rest
of the nodes having very few connections. Starting from this observation we define
the notion of hub:

Definition 7. A node is called a hub if it has a larger number of connections than a
constant c ∈ N. Let H be set of hubs H = {xi| xi ∈ N, deg(xi) ≥ c }
where deg(xi) is the degree of node xi.

Let us show a simple example. A constraint network of a DisCSP having a scale-
free network structure, with 25 nodes and the minimal degree 2, is represented in
fig.1(a). If we consider the constant c = 8, we cam remark the existence of a number
of 4 hubs: H1= 2 (degree 12), H2=0 (degree 10), H3=1 (degree 9) and H4=3 (degree
8). For nodes H1,H2,H3,H4 we can remark that they have very many connections
compared with the rest, that have very few connections (see also fig.1(b)).



168 I. Muscalagiu, H.E. Popa, and V. Negru

(a) A scale-free networks with 25 nodes (b) A scale-free networks with 900 nodes

Fig. 1 Constraint network representing a DisCSP where have a scale-free networks

In the AWCS algorithm when a nogood message is received by the agent Ai,
the agent adds the nogood value to its nogood store and executes a verification of
the inconsistencies for nogood. If the new nogood has also an unknown variable, the
agent needs to receive from the corresponding agent the value of the variable that’s
been cared for. Unfortunately, the information from nogood is not completely used
in the case of attributing a new value for the variable associated to the agent. It is
possible that the nogood values contain a reference to this value, that implying the
attribution has appeared before as inconsistent. The use of this information will be
the basis of the nogood processor technique construction.

In this paper it is considered that some agents have access to the results of their
own nogood processor. More, each agent sends (stores) nogood values that it has
received to the associated nogood processor. The information stored by each nogood
processor will be used in searching a new value for each variable cared for by the
agent. For this, each nogood processor will verify (asked by an agent) through its
subroutine check-inconsistent-value-nogood-processor, if the value selected by the
agent had no previous existence associated with the higher priority agents values. In
fig. 2 we have the checking routine for the inconsistence of a new value [8].

Another question needing an answer was identifying how the nogood processors
are distributed. Practically, each agent, when receiving a nogood, sends this to a
associated nogood processor that stores it into a nogood-store list (nogood proces-
sor only saves those new nogood values, eliminating the copies). The information
will be used later when searching for a new value. Therefore the check-agent-view
procedure will select a new value consistent with the agent view list and with the
nogood list stored by the nogood processor (the value will be selected if, comple-
mentarily, the check-inconsistent-value-nogood-processor subroutine will return the
consistent value).

The check-inconsistent-value-nogood-processor routine is used just for the higher
priority agents, priority considered at the moment of nogood value storing. To put it



The Impact of the “Nogood Processor” Technique in Scale-Free Networks 169

function check-inconsistent-value-nogood-processor [Ai]
foreach Nogood ∈ nogoods-store do

foreach x ∈ Nogood with the current priority from current-view * bigger than the agent’s Ai

pos ←− position x in Nogood
if x != item pos current-value

return consistent
endif

end do
if curent-value != item Ai in nogood

return consistent
endif
end do

return inconsistent
end procedure

Fig. 2 The Procedure check-inconsistent-value-nogood-processor

differently, the identification of the agents with higher priority towards agent Ai, is
not made by using their actual priority (in current-view), but the priority stored by
the nogood processor.

5 Experimental Results

In this paragraph we will present our experimental results, obtained by implement-
ing and evaluating the asynchronous techniques AWCS. The families of AWCS
techniques are implemented in NetLogo [11], [12]. The implementation and eval-
uation is done using the two models proposed in [7]. The Netlogo implementations
were run on a cluster of computers using RedHat Linux. The cluster allowed running
instances of 500 and 1000 agents, with various difficulties.

In this paper, the Java program developed by Sun Microsystems Laboratories is
used as a scale-free network formation tool [4]. This program can generate scale-
free networks giving the number of nodes, the minimal degree of each agent md.
Scale-free networks are generated by the tool with the following parameters:

• nodes = 500, md = 4 and γ = 1.8
• nodes = 1000, md = 2 and γ = 2.1.

We examine the performance of AWCS in scale-free networks. Specifically, we im-
plemented and generated in NetLogo both solvable and unsolvable problems that
have a structure of scale-free networks. Implementation examples for the scale-free
network instance generator (using scale-free networks from [4]) can be found on the
website [12]. We set the domain size of each variable to ten, i.e., domain = 10 which
means |Di| = 10. For the evaluations, we generate five scale-free networks. For each
network, the constraint tightness is varied from 0.1 to 0.9 by 0.1. For each constraint
tightness, 200 random problem instances are generated. Thus, the results represent
the averages of these 1000 instances for each of the five networks. These problems
have a number of variables with a fixed domain. This creates problems that cover



170 I. Muscalagiu, H.E. Popa, and V. Negru

a wide range of difficulty, from easy problem instances to hard instances (for each
version we retaining the average of the measured values).

In order to evaluate the asynchronous search techniques, the message flow was
counted i.e. the quantity of ok and nogood messages exchanged by the agents, the
number of checked constraints i.e. the local effort made by each agent, and the num-
ber of nonconcurrent constraints checks (defined in [6], noted with ncccs) necessary
for obtaining the solution.

Asynchronous techniques use some message processing routines. In this paper
we analyze implementations of the AWCS family with complete processing of mes-
sages: each agent treats entirely the existing messages in its message queue. In fig.
3 shows the new handle-message procedure.

to handle-message [msize]
set nrm 0

1 while [not empty? message-queue and nrm <= msize] or
1’ while [not empty? message-queue] ***
[

set msg retrieve-message
...

set nrm nrm + 1
]
If (Nrm !=0 )

[Check-agent-view]
end

Fig. 3 The handle-message for the AWCS

Concerning the complete or partial processing of the messages, it can be done
by means of the msize variable or renouncing of the second condition of package
limitation. That has a role to decide the number of extracted and processed mes-
sages from the message queue. If msize is equal to the number of elements from the
message queue (msize=length(message-queue)) or if that condition is missing, the
procedure in fig. 3 allows the processing of all the messages. The first variant sup-
poses the insertion of line 1 instead of line 1’. In that case, each agent stops in the
moment in which either it has no more messages or msize messages were processed.
The second variant supposes the insertion of line 1’. Message processing supposes
an effort and thus the occurrence of a delay. It is possible that other messages ar-
rive beside those from the initial moment. In the case of the second variant if later
new messages appear, those are still treated thus surpassing the number msize of
messages allowed. In this paper we implement both variants.

In the AWCS family there are many variants that are based on building of efficient
nogoods (nogood learning [5]) or on storing and using those nogoods in the process
of selecting the values (nogood processor). Two families of AWCS techniques are
evaluated:



The Impact of the “Nogood Processor” Technique in Scale-Free Networks 171

• the basic variant proposed in [10] improved with the nogood learning technique
(noted with AWCS-nl).

• the basic variant proposed in [10] improved with the nogood learning technique
and the nogood processor technique (noted with AWCS-nlng).

Four implementations are done corresponding to the obtained models:

• the basic variant proposed in [10] improved with the nogood learning technique
(noted with AWCS-nl).

• variant based on the nogood processor distributed to each agent: AWCS-nlng1.
• variant based on the nogood processor distributed only to the hub type agents:

AWCS-nlng2. This variant used the first method of message processing
• variant based on the nogood processor distributed only to the agents of the hub

type: AWCS-nlng3. This variant used the second solution of message processing.

The number of concurrent constraint checks(ncccs) allows the evaluation of global
effort without considering that the agents work concurrently (informally, the num-
ber of concurrent constraint checks approximates the longest sequence of constraint
checks not performed concurrently). Analyzing the results from fig 4(a), one can
remark that the method that distributes the nogood processors to the hub type nodes
reduces the global effort made by the agents (AWCS-nlng2 and AWCS-nlng3). Ac-
cording to definition 7, the number of hubs depends on the constant c. For the prob-
lems of the scale-free network type evaluated in this article, we considered as hub
type nodes those having the degree over 60% of the maximum degree (approxima-
tively c=3 for nodes=500 and c=4 for nodes=1000).

(a) The number of nonconcurrent constraint
check

(b) Total number of messages messages

Fig. 4 Comparative study for the AWCS versions-(Scale-free Networks)

In case of instances with 1000 agents, the four implementation had the same
behaviour, the version AWCS-nlng3 requiring the least effort for obtaining the
solution.

In the case of the message flow (fig 4(b)), one can notice almost equal efforts
for obtaining the solution for all the 4 versions. Though, for problems with high
difficulty (constraint tightness = 0.6) the AWCS-nlng3 variant requires slightly less
messages.



172 I. Muscalagiu, H.E. Popa, and V. Negru

Regarding the complete processing of the messages, experimental analysis shows
that the first solution that processes completely the messages (AWCS-nlng2) is bet-
ter. It remains to experiment, in the future, for a higher number of agents (10000)
and for other instances of scale-free networks (md=16, md=32) if the behaviour of
the three techniques remains the same.

6 Conclusions

In this paper we examine the effect of nogood processor for constraints networks
of the scale-free type. We develop a novel way for the distribution of nogood val-
ues to agents, the experiments show that it is more effective for several families of
asynchronous techniques.

We analyzed more versions obtained by distributing the nogood values to more
nogood processors for each agent for constraints networks of the scale-free type.

The experimental analysis shows that the best way of distribution is that in which
the nogood processors are distributed to the nodes of the hub type (that have a very
high degree, compared to other nodes). That variant requires the lowest costs.

The most performant version was obtained by distributing the nogood values only
to the agent of the hub type in the case of treating all the messages from the queue,
including those that had appeared later.

We believe that the combination proposed in this article could bring important
benefits to the performances of the asynchronous techniques, leading to the reduc-
tion of the effort in finding the solution in the case of constraints networks of the
scale-free type.

References

1. Armstrong, A., Durfee, E.: Dynamic Prioritization of Complex Agents in Distributed
Constraint Satisfaction Problems. In: Proceedings of the 15th IJCAI, Nagoya, Japan, pp.
620–625 (1997)

2. Barabasi, A.L., Albert, A.L.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

4. Densmore, O.: An exploration of power-law networks (2009),
http://backspaces.net/sun/PLaw/index.html

5. Hirayama, K., Yokoo: The Effect of Nogood Learning in Distributed Constraint Satis-
faction. In: Proceedings of the 20th IEEE International Conference on Distributed Com-
puting Systems (ICDCS 2000), pp. 169–177 (2000)

6. Meisels, A.: Distributed Search by Constrained Agents: algorithms, performance, com-
munication, pp. 105–120. Springer, London (2008)

7. Muscalagiu, I., Jiang, H., Popa, H.E.: Implementation and evaluation model for the asyn-
chronous techniques: from a synchronously distributed system to a asynchronous dis-
tributed system. In: Proceedings of the 8th SYNASC Conference, Timisoara, pp. 209–
216 (2006)

http://backspaces.net/sun/PLaw/index.html


The Impact of the “Nogood Processor” Technique in Scale-Free Networks 173

8. Muscalagiu, I., Cretu, V.: Improving the Performances of Asynchronous Algorithms by
Combining the Nogood Processors with the Nogood Learning Techniques. Journal ”IN-
FORMATICA” 17(1) (2006)

9. Okimoto, T., Iwasaki, A., Yokoo, M.: Effect of DisCSP variable-ordering heuristics in
scale-free networks. Multiagent and Grid Systems 8, 127–141 (2012)

10. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfac-
tion problem: formalization and algorithms. IEEE Transactions on Knowledge and Data
Engineering 10(5), 673–685 (1998)

11. Wilensky, U.: NetLogo itself:NetLogo. Center for Connected Learning and Computer-
Based Modeling, Evanston (1999),
http://ccl.northwestern.edu/netlogo/

12. MAS NetLogo Models-a, http://discsp-netlogo.fih.upt.ro/

http://ccl.northwestern.edu/netlogo/
http://discsp-netlogo.fih.upt.ro/


Knowledge-Based Agent for Efficient Allocation
of Distributed Resources

Ebrahim Nageba, Mahmoud Barhamgi, and Jocelyne Fayn

Abstract. The mobilization of heterogeneous distributed resources and the alloca-
tion of resources to user-tasks are still challenges in distributed computing. In this
paper, we propose a knowledge-based agent to solve the problem of resources mo-
bilization and allocation taking into account the continuous changing of resources
conditions. The agent model we propose is mainly based on ontological models
representing basic collaborative environment entities, rules, inference engines, and
object oriented components for resources data processing. We suggest mechanisms
to handle the discovered resources in terms of updating, filtering, ranking, and
allocation.

Keywords: Ontology, Resources management, Task-based computing.

1 Introduction

In a collaborative environment, different actors participate in the realization of vari-
ous tasks in a specific domain. These actors belong to different organizations which
are involved in one or more business networks. Additionally, these actors have at
their disposal high-tech communication devices, e.g., Smartphones, Tablet PCs, etc,
to access information anytime, anywhere, and to exchange huge amounts of data.
Normally, users’ tasks achievement requires different types of resources which are
semantically heterogeneous and managed by numerous business partners or orga-
nizations. The aforementioned context enables powerful collaboration among the
different organizations being involved in business processes. The more the number

Ebrahim Nageba · Mahmoud Barhamgi
Université Lyon 1, 69622 Villeurbanne, France
e-mail: {ebrahim.nageba,mahmoud.barhamgi}@univ-lyon1.fr
Jocelyne Fayn
SFR Santé Lyon Est, Université Lyon 1, 69677 Bron, France
e-mail: jocelyne.fayn@insa-lyon.fr

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 175
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_21, c© Springer International Publishing Switzerland 2014



176 E. Nageba, M. Barhamgi, and J. Fayn

of organizations involved in business processes increases, the more the volume of
the used resources becomes huge and the more the conditions of the resources man-
aged by the involved organizations are subject to continuous changing. For example,
some services may be unavailable, data sources become inaccessible, devices are
momentarily broken down or not available, etc. In other words, intensive internet
based collaboration makes resources discovery, mobilization, and allocation a big
challenge due to the dynamic context of heterogeneous and distributed resources.
Resources availability, quantities, and accessibility, as well as other QoS parameters
can be considered as being resources meta-data. Unfortunately, organizations lack
well defined policies and tools to provide other business partners with meta-data of
their resources and do not pay enough attention to actualize resources meta-data. To
empower inter-organizational collaboration, resources meta-data must be up to date
and available in real time. Thus, one of the major challenges within collaborative
environments is the continuous changing of resources conditions which limits the
capabilities of information systems to react to resources demand and to achieve their
tasks in the attributed time. To overcome this challenge, we shall create a mechanism
permitting to automatically mobilize and allocate only the required resources meet-
ing some QoS criterions, i.e. availability, accessibility, execution time, etc. In this
paper, we suggest a Resource Mobilization Agent (RMA) based on: (i) ontological
models representing the different entities of collaborative environments, i.e. Actor,
Task, Object, Resource, Organization, Process, Service, Location, Parameter, . . . as
well as the associations among these entities; (ii) A model of rules including a set
of statements that specify how to link each task with the required resources, and an
inference engine to perform rule-based reasoning; (iii) Object oriented components
to handle heterogeneous resources data in terms of mapping, updating, filtering,
and ranking. The aim of our the proposed RMA is to automatically allocate to the
user-tasks the resources discovered in a dynamic context.

This paper is organized as follows. Section 2 presents the architecture model of
RMA and its main components. Section 3 applies our model on an example from
the Healthcare domain. Section 4 reports related research works. In section 5 we
conclude this paper.

2 RMA Architecture

We propose a hybrid architecture of RMA which enables the allocation of hetero-
geneous and distributed resources to each user-task, depending on the status of the
object treated by the user-task. Additionally, RMA architecture takes into account
the continuous changes of the resources conditions. Figure 1 shows a global view of
the RMA architecture which is mainly based on: (i) ontological models constituting
a knowledge layer of all types of resources, i.e. services, devices, equipments, etc.;
(iii) an inference engine executing a rule-based reasoning in order to deduce the
resources required by the user-tasks; (iv) object-oriented components for resources
data processing. The knowledge base is the key component of the RMA architec-
ture. It is based on a knowledge meta-model consisting of a collection of generic and



Knowledge-Based Agent for Efficient Allocation of Distributed Resources 177

domain-independent ontological models and of the associations which connect these
models. The objective of the ontological models is to represent, store, and structure
the knowledge of different entities of collaborative environments. The meta-model
structure is defined by combining different common physical and abstract entities
of the collaborative environments such as Actor, Task, Object, Process, Resource,
Organi-zation, Location, etc. (Figure 2). Each of these entities will be described by
an ontology including classes, subclasses, object type properties, data type proper-
ties, and restrictions. For instance, the Actor ontological model represents the enti-
ties that can interact with an information system and access the data. Generally, an
Actor belongs to an Organization and he can perform different tasks according to
his profile. It is necessary to specify for each actor profile the different tasks that he
is authorized to perform. We have therefore defined restrictions to decide if the task
is or is not accessible by an actor according to the type of class to which the actor
belongs.

RMA

Services
Registry

Resources Mobilization Agent
(RMA)

Organization 2

Organization 1 RMA

RMA

Organization 1

Organization n

Resources
Mapper

Resources
metadata updating

Resources
discovery

Ontological
Models

Metadata
services

pp p gy

Task

Models

Tasks
Manager

services
discovery

Invoke/execute

SPARQL
Engine

Filter

Actor

Object

Inferred Resources /
resources
metadata
servicesRule base

Knowledge
Resource

Inferred Resources

Base…. OWL

Inference Engine
SWRL
Rules

Fig. 1 Resources Mobilization Agent (RMA) architecture

3 Model Evaluation

A typical scenario can be, for example, a Patient Transfer from an accident site
to a hospital or from one hospital to another one having additional capabilities for
patient treatment. In fact, the Patient Transfer scenario becomes a complex one in
some particular contexts such as the accident location hostility, strong traffic density
in big cities, roads blocked due to bad weather, the need of an helicopter to evac-
uate the victims, etc. In a Patient Transfer scenario, the rescue team members or



178 E. Nageba, M. Barhamgi, and J. Fayn

ResourceResource

Physical
Resource

Logical
Resource

Logistical
Resource

Web
Resource

Equipment

Web

Web
Service

Resource

Video File
Web

Application
Document Audio FileImage FileWeb Page

Fig. 2 Graphical representation of our knowledge meta-model using UML notation. The
resource ontological model has been selected as example.

the persons who should provide a primary medical assistance to the victim need to
know where to transfer him. In addition to the above mentioned environment condi-
tions, we must also consider other factors related to the clinical status of the casualty
and also the nearest hospitals abilities, in terms of accommodation, competence and
availability of different required resources, to receive the patient. Thus, it is relevant
to use the proposed RMA to provide solutions to the healthcare professional accord-
ing to the requirements mentioned above where the RMA shall perform rule-based
reasoning on the facts related to the aforementioned contextual factors, i.e. patient
conditions, resources, and environment. The results of the reasoning process will be
contextual knowledge about the material resources, including logistics and medical
equipments, which are required by the task being performed. To mobilize and allo-
cate the heterogeneous distributed resources needed by the task ”Patient Transfer”,
we propose to instantiate the RMA knowledge meta-model in the eHealth domain.
To simulate the resources mobilization and allocation process, we have used Pro-
tege, a knowledge acquisition tool that facilitates ontology creation, editing, encod-
ing and management through a friendly graphical user interface. The DL extension
provides OWL with a rich set of primitives, i.e., intersection ?, union ?, complement,
etc. It allows the ontology designer to define restrictions and conditions on the on-
tology classes. It is therefore possible to automatically determine the classification
hierarchy and check for inconsistencies in any ontology that conforms to OWL-
DL. We have employed the Pellet Reasoner to test the ontology consistency and
class hierarchy. The inference engine JESS has been used to apply the SWRL rules
that we have defined to infer the resources required by the user-tasks. In a typical



Knowledge-Based Agent for Efficient Allocation of Distributed Resources 179

Patient Transfer scenario, 89 concepts and 29 axioms are exported in average to the
JESS inference engine, and the number of inferred axioms representing the number
of inferred resources required by the user task is 41. Typically, the inferred results
might include resources such as nuclear imaging, intensive care unit, surgery unit,
and other services (i.e. Distance To Emergency Ward, Time To Emergency Ward,
Patient EHR Access Service, Weather Forecast Service, Traffic Status Service). The
inferred facts are retrieved and filtered by using the SPARQL query language. In the
above scenario, the SPARQL queries are set up to retrieve the healthcare institutions
which have the material resources required by the task. The inferred solutions are
then classified and filtered out according to the context of the user such as location
or any other technical characteristics of the material resources needed by the patient
transfer task.

4 Related Works

Resource Discovery is the process of finding the resources that meet and satisfy the
user’s requests. It includes resources description, organization, lookup, and selec-
tion. The resources discovery has been the subject of many research works which
describe the possible approaches that can be employed for resources discovery. For
example, a survey of resource discovery approaches in distributed computing envi-
ronment has been presented by [1]. Additionally, an interesting comparative analysis
of Resource Discovery approaches in grid computing has been realized by [2]. Also,
a state of the art of semantic web service discovery has been provided by [3]. More
specifically, a P2P-based infrastructure that leverages semantic technologies to sup-
port a scalable and accurate services discovery process has been proposed by [4].
The key idea presented in the latter work is the creation of an overlay network or-
ganized in several semantic groups of peers, each specialized in answering queries
pertaining to specific application domains. Another approach, also based on P2P,
has been proposed by [5] where the proposed architecture is organized as a hierar-
chical super-peer structure. In our research work we focus on the issue of resources
mobilization and allocation after the discovery process. Thus, all the above cited
approaches can be easily integrated in the RMA we propose. However, the question
of how to adapt the resources mobilization process to the continuous changes of the
resources conditions has been neglected by the above cited works. We have deeply
considered this question in the RMA we present in this paper. In fact, the prob-
lem of the dynamic discovering of distributed, constantly changing, heterogeneous
resources has been early introduced by [6, 7]. Several research efforts have been
done to address the issue of automated resources allocation and to support decision
making, especially in healthcare context-aware computing [8]. A service-oriented
approach has been proposed by [9] for human tasks execution based on ontologies
and agent technology. But these approaches have poorly considered the changing
in resources metadata which is represented by two main aspects: (i) the continuous
changing of QoS parameters; (ii) the conditions of the access and use of the different



180 E. Nageba, M. Barhamgi, and J. Fayn

resources by the user-tasks. These issues have been treated by the proposed RMA
using a web-services based policy to update the inferred resources before filtering
and allocating them to the user-tasks.

5 Conclusion

In this paper we propose an architecture model of a Resources Mobilization Agent
(RMA) to solve the problem of continuous changing of the conditions of distributed
heterogeneous resources. RMA is mainly based on a generic knowledge meta-model
representing the basic entities of collaborative environments and their interrelations.
The proposed RMA applies rule-based reasoning for resources inferring and utilizes
multiple object oriented components for resources data processing including re-
sources updating, filtering, ranking, and allocation. The key feature of the proposed
Resources Mobilization Agent RMA resides in its capacity to automatically mobi-
lize and allocate accessible and available resources needed for various user-tasks,
taking into account the dynamic context of these resources. Thus, it contributes to
enhance the quality of the exchanged information in context dependent situations.

References

1. Murugan, B.S., Lopez, D.: A Survey of Resource Discovery Approaches in Distributed
Computing Environment. International Journal of Computer Applications 22, 44–46
(2011)

2. Sharma, A., Bawa, S.: Comparative Analysis of Resource Discovery Approaches in Grid
Computing. Journal of Computers 3, 60–64 (2008)

3. Ngan, L.D., Kanagasabai, R.: Semantic Web service discovery: state-of-the-art and re-
search challenges. Personal and Ubiquitous Computing, 1–12 (2012)

4. Di Modica, G., Tomarchio, O., Vita, L.: Resource and service discovery in SOAs: A P2P
oriented semantic approach. Int. J. Appl. Math. Comput. Sci. 21, 285–294 (2011)

5. Eftychiou, A., Vrusias, B.: A Knowledge-Driven Architecture for Efficient Resource Dis-
covery in P2P Networks. In: 2010 2nd International Conference on Intelligent Networking
and Collaborative Systems (INCOS), pp. 467–472 (2010)

6. Liu, J.: World Wide Wisdom Web (W4) and Autonomy Oriented Computing (AOC):
What, When, and How? In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005.
LNCS, vol. 3776, pp. 157–159. Springer, Heidelberg (2005)

7. Haeupler, B., Pandurangan, G., Peleg, D., Rajaraman, R., Sun, Z.: Discovery through
gossip. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 140–149. ACM Press (2012)

8. Anya, O., Tawfik, H., Amin, S., Nagar, A., Shaalan, K.: Context-aware knowledge mod-
elling for decision support in e-health. In: The 2010 International Joint Conference on
Neural Networks (IJCNN), pp. 1–7 (2010)

9. Sasa, A., Juric, M.B., Krisper, M.: Service-Oriented Framework for Human Task Support
and Automation. IEEE Transactions on Industrial Informatics 4, 292–302 (2008)



A New Proof System to Verify GDT Agents

Bruno Mermet and Gaele Simon

Abstract. The GDT4MAS model is dedicated to the formal specification of agents
and multiagents systems. It has been presented in previous articles [7, 6]. The proof
mechanism relies on proof schemas that generate proof obligations, that is to say
first-order formulae that can be proven (in most cases) by an automatic prover (such
as PVS). In this article, we present a new version of proof schemas that increase the
number of proofs that can be performed.

1 Introduction

The GDT model has been first presented five years ago [7]. This model consists in a
language to formally specify agents, a formal semantics, and a set of proof schemas
to guarantee the correctness of the behaviour specified. It has been extended a few
years later to specify and verify multiagent systems [6].

However, when applying the model and the proof system to concrete case studies,
it appeared that true properties were unverifiable because necessary hypotheses were
lacking. Thus, we propose here a new proof system that provides richer hypotheses.

In the next section, we briefly recall the main concepts of the GDT4MAS model.
In section 3, we present the old proof schema principles, and we illustrate its weak-
nesses. Section 4 is dedicated to the presentation of the new proof schemas. Finally,
section 6 concludes on this new proof mechanism.

2 The GDT4MAS Model

2.1 Main Concepts

In the GDT4MAS model, the MAS is described by an environment, mainly de-
scribed by variables, and a population of agents evolving in this environment. Each
agent is described as an instance of an agent type. As a consequence, in the rest
of this section, after a short description of the notations we used, we begin by

Bruno Mermet · Gaele Simon
GREYC-CNRS - Universit du Havre, Le Havre, France
e-mail: {Bruno.Mermet,gaele.simon}@univ-lehavre.fr

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 181
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_22, c© Springer International Publishing Switzerland 2014



182 B. Mermet and G. Simon

describing the notion of agent type, and of agent behaviour. We invite the reader
to refer to previous articles [7, 6] for more details on this model.

2.2 Properties Proven by the Method

The GDT4MAS method allows to prove several kinds of properties. We first prove
invariant and liveness properties, at the agent-type level and at the system-level. We
recall here that invariant properties are properties that must be always true, and that
liveness properties are properties that must eventually be true. Moreover, the proof-
system of the method verifies that goal decompositions are valid. In this article, we
focus on the proof of decompositions and of invariant properties. This is the topic
of the next section.

3 Previous Proof System

3.1 Principles

The main principles of the previous proof system consists in the following steps:

• A context is inferred for each node, in a top-down manner, and from left to right
when oriented operators are used (like SeqAnd and SeqOr);

• A gpf, Guaranteed property in case of failure, is inferred for each NNS goal, in a
bottom-up manner;

• A proof schema is used for each decomposition operator, in order to generate a
proof obligation, that is to say a first-order formula, whose proof can be attempted
by any first-order logic theorem prover.

3.2 Limits

3.2.1 Projections

The main limit of the approach defined above is that we use true projections,
that cannot be computed automatically. A simplified version can be computed, by
removing each term of the conjunctive normal form containing another variable
that those concerning the projection. For instance, if a projection of the formula
F ≡ (x = 2∧ y = 4∧ x = z+ 2∧ z > 3) on x is required, we obtain Fx ≡ (x = 2).
However, this formula is weaker that what we would like to obtain (In particular,
the fact that x is greater than 5 is lost).

3.2.2 Weak Contexts

The context inferred for a goal is quite weak: it only depends on the execution
of the previous goal: its satisfaction condition if the operator is a Seqand, or its
guaranted property in case of failure if the operator is a SeqOr. But more information



A New Proof System to Verify GDT Agents 183

could be preserved from the context in which this previous goal is executed. For
instance, if node n is decomposed into n1SeqAndn2, if the context of node n1 is
x = y, if x and y are internal variables and if the satisfaction condition of node n1 is
scn1 ≡ x′ = x+ 1∧ y′ = y+ 1, we know that x = y when node n2 is considered. But
this cannot be automatically inferred by the contexte propagation rules.

3.2.3 Weak Proof Schemas

In proof schemas, some important hypotheses miss.

3.2.4 General Observations

Most of the weaknesses highlighted above can be bypassed by re-inforcing satis-
faction conditions of goals. However, this is not a satisfying solution, because it
requires more work to the developper, and it makes the specification more compli-
cated. Thus, it appeared necessary to re-inforce the proof mechanism to solve these
drawbacks.

4 The New Proof System

To define the new proof system, we need new notations, that are introduced in the
following section.

4.1 Predicate Transformers

Notation 4.1 (At). Let f a predicate. f [i] is a predicate where each non-subscripted
variable in f is subscripted by i.

Example: (x = y0)[1]≡ (x1 = y0).

Notation 4.2 (Between). Let f a predicate. f i→ j is a predicate derived from f
where each unprimed and unsubscripted variable is subscripted by i and each
primed variable becomes unprimed and subscripted by j.

Example: (y′ < x∧ x′ = x0)
1→2 ≡ (y2 < x1 ∧ x2 = x0).

Notation 4.3 (Temporal switch). Let f a predicate. f→i is predicate derived from
f where each subscript is increased by i.

Example: (x = x1 ∧ y2 = x1)
→−2 ≡ (x = x−1 ∧ y0 = x−1).

Notation 4.4 (Priming). Let f a predicate. If f contains at least one primed vari-
able, then pr( f ) = f . Otherwise, pr( f ) is the predicate derived from f where each
unsubscripted variable is primed.

Examples: pr((x = x0))≡ (x′ = x0) and pr((x = x′))≡ (x = x′).

Notation 4.5 (Stability). Let t and agent type with two internal variables via,vib
and one surface variable vs (internal and surface variables are described in the next
section). Then, when one agent a of this type is considered stabi→ j is the predicate
viai = via j ∧ vibi = vib j ∧ vsi = vs j.



184 B. Mermet and G. Simon

Notation 4.6 (Untemporalization). Let f a predicate. f×x is the formula f in which
all subscripts of value x are removed.

Example: (x1 = x2)
×1 ≡ x = x2.

Notation 4.7 (Invariant). Let A an agent situated in an environment E . We write:

• iA the invariant associated to the internal variables of the agent;
• iE the invariant associated to the environment variables;
• iE A the conjunction of iA and iE .

4.2 Context Inference

In a context formula, it may be necessary to refer to the value of a variable in a
previous state. In that case, the variable is subscripted by a negative integer. The
value in the current state is represented by the variable name neither subscripted nor
primed. So, the new context inference rules are the following:⎧⎨

⎩
CN1 =CN

CN2 =

((
(CN1 ∧ scN1)

0→1 ∧ stab1→2 ∧ iE A[1]∧ iE A[2]
)→−2

)×0 (1)

Using such rules, contexts are guaranted to use neither primed variables nor vari-
ables with positive subscripts. Indeed, if its true for CN :

• it is trivially true for CN1 ;
• it is true for CN2 because:

– (CN1 ∧ scN1)
0→1 contains variables with negative subscripts from CN1 , and

variables subscripted by 0 and 1;
– stab1→2 contains variables subscripted by 1 and 2;
– iE A[1] contains variables subscripted by 1;
– iE A[2] contains variables subscripted by 2;
– From the previous facts, the formula

(
(CN1 ∧ scN1)

0→1 ∧ stab1→2 ∧ iE A[1]∧ iE A[2]
)→−2

contains variables with negative or null subscripts;
– and so, CN2 contains variables with negative subscripts or unprimed variables

without subscripts.

4.3 Proof Schema

In this new proof mechanism, the context of the right subgoal, in the case of the
SeqAnd operator, contains the essential properties that are guaranted to be true when
the right subgoal is considered. So, as the semantics of the SeqAnd operator is that,
when the right subgoal is executed and succeed, the parent goal must be achieved,



A New Proof System to Verify GDT Agents 185

the proof schema associated to the SeqAnd operator only consists in verifying that
when the right subgoal succeeds in its context, then the parent goal also succeeds.
This leads to the following proof schema:(

CN2 [0]∧ sc0→1
N2

∧ iE A[1]
)→ sc−2→1

N (2)

This proof schema can be informally explained as follows:

• We consider the case where the second subgoal, N2, is executed, which occurs
when its context CN2 is verified. We assign to the state the number 0;

• We only consider the case where this subgoal succeed, reaching another state
numbered 1, hence the formula sc0→1

N2
;

• We also know that in this new state, the environment variable and the agent vari-
able are true. So we have the hypothesis iE A[1];

• Finally, if all these hypotheses are true, the satisfaction condition of the parent
goal must be established between the state in which the parent goal execution has
begun (numbered −2) and the state in which the execution of the second subgoal
ends (numbered 1).

4.4 Guaranted Property in Case of Failure

In the previous proof system, GPF were inferred in a bottom-up manner from leaf
goals. This characteristics presented at least two drawbacks:

• The GDT must be completely specified to be proven. Indeed, leaf goals must be
known to infer GPF of intermediate goals, and these GPFs are required to prove
the correctness of the GDT, as they are used in some proof schemas;

• The GPF inferred may be very complicated and may hold many non-necessary
hypotheses, that may reduce the success rate of automatic provers.

So, in the new proof system, it is asked to the developper to explicitely give GPF of
each node, as he has to do for satisfaction condition. This is not a harder work than
specifying satisfaction condition, and it makes the system quite more compositional.
However, it must be checked that the given GPF are entailed by the behaviour spec-
ified. Thus, we must give GPF inference rules and we have toverify that the GPF
given by the developper is entailed by the GPF inferred from the GDT.

For the SeqAnd operator, the parent goal may fail either when the first subgoal
fails (in that case, its gpf is verified in the context of the execution of the first sub-
goal) or when the second subgoal fails (the gpf of this subgoal is then verified in the
context of the execution of this seconde subgoal). So we have:

infgpf N =

(
CN1 ∧gpf N1

)
∨(
CN2 [0]∧gpf N2

[0]
)×−2

(3)

We can notice that in the formula corresponding to the inferred gpf of a goal, un-
primed variables correspond to the values of the variables when the execution of the



186 B. Mermet and G. Simon

goal begins, and primed variables correspond to the values of the variables when the
execution of the goal ends.

We have now to prove that the specified gpf is correct. Thus, for each NNS goal,
we must establish that when the decomposition fails (that it to say, the inferred gpf is
true), either the parent goal is achieved or its gpf is true. Hence the following proof
schema:

infgpf N → (scN ∨gpf N) (4)

5 Related Works

Several works deal with the formal specification of multi-agent systems, but just a
few consider the formal verification of their specification. Moreover, most of these
systems use model-checking [1, 8, 5]. The most recent and promising work in this
area is surely the Agent Infrastructure Layer (AIL) [3] and its connection with AJPF
(Agent JPF), an adaptation of the Java Path Finder model-checker. AIL is a kind of
intermediate language that can be used to give a formal semantics to most BDI
agent languages (such as AgentSpeak or MetateM). JPF is however not a very effi-
cient model-checker. Although there are best model-checkers such as SPIN [4], this
technique is not well-suited to massive multi-agent systems, where the state-space
is too huge, especially because of the great interleaving possibilities between agent
actions, and as a consequence, only systems with few agents manipulating boolean
concepts can be proven. On the other hand, the system we propose make possible
the automatic verification of huge systems, manipulating complex data using an any
existing first-order theroem prover (it has been tested with PVS [9] and krt [2]).

6 Conclusion

The previous proof system for GDT4MAS agents was of course valid, but it was
difficult to perform proofs with intuitive goal specifications: the satisfaction condi-
tions that the developper had to give had to be really proof-oriented, and using the
model was not really feasible by a developper who did not know all the details of
the proof process. With the new principles presented in this article, the specification
task is more independant from the proof process. Of course, the developper must be
well-heeled with the predicate logic, but it it not necessary for him to understand
how the proof works. Using the method is thus easier. Moreover, the number of
proofs that can be performed is increased.

References

1. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model-checking AgentSpeak.
In: AAMAS 2003, Melbourne, Australia (2003)

2. Clear-Sy: B for free, http://www.b4free.com
3. Dennis, L., Fisher, M., Webster, M., Bordini, R.: Model Checking Agent Programming

Languages. Automated Software Engeneering Journal 19(1), 3–63 (2012)

http://www.b4free.com


A New Proof System to Verify GDT Agents 187

4. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Softw. Eng. 23, 279–295 (1997),
http://dl.acm.org/citation.cfm?id=260897.260902,
doi:10.1109/32.588521

5. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via un-
bounded model checking. In: Autonomous Agents and Multi-Agent Systems (AAMAS
2004) (2004)

6. Mermet, B., Simon, G.: GDT4MAS: an extension of the GDT model to specify and
to verify MultiAgent Systems. In: Sichman, D., et al. (eds.) Proc. of AAMAS 2009,
pp. 505–512 (2009)

7. Mermet, B., Simon, G., Zanuttini, B., Saval, A.: Specifying, verifying and implementing
a MAS: A case study. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M.
(eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 172–189. Springer, Heidelberg (2008)

8. Raimondi, F., Lomuscio, A.: Verification of multiagent systems via orderd binary decision
diagrams: an algorithm and its implementation. In: Autonomous Agents and Multi-Agent
Systems, AAMAS 2004 (2004)

9. SRI International: PVS, http://pvs.csl.sri.com

http://dl.acm.org/citation.cfm?id=260897.260902
http://pvs.csl.sri.com


Using Trusted Communities to Improve the
Speedup of Agents in a Desktop Grid System

Lukas Klejnowski, Sebastian Niemann,
Yvonne Bernard, and Christian Müller-Schloer

Abstract. In open, technical, multi-agent based systems, self-interested agents can
show behaviours that degrade the performance of the system. This can be coun-
tered by providing cooperation incentives. In this paper, we present a formalisation
of delegation incentives for an open, agent-based, Desktop Grid system, based on
decision trees. We then discuss reputation-based delegation strategies, as well as
replication-based delegations strategies and focus on the incentives these strategies
provide for agents to cooperate. We further show why we see room for improve-
ment, and how this can be achieved with organisation-based delegation. We propose
a delegation strategy based on Trusted Communities and present evaluation results
for the comparison of these strategies with respect to the achieved average speedup
in the system.

1 Introduction

In technical, multi-agent-based scenarios, the utility functions of the agents can be
used to model the performance of the system, as well as the performance of the
single involved participants. However, when these systems are open, we need to
consider self-interested agents that do not care for the performance of other agents
or the system as such. These agents have to be treated as blackboxes regarding their
behaviour, as we cannot demand cooperative types of behaviour without violating
agent autonomy. Instead, incentive mechanisms are used to influence the agent be-
haviour in a way that increases their willingness to cooperate.

In this paper, we discuss incentive mechanisms for such an open, multi-agent-
based, technical system and argue how incentive mechanisms based on (a) trust
and reputation, and (b) trust-based MAS-organisations, can be used to improve the
performance of this system.

Lukas Klejnowski · Sebastian Niemann · Yvonne Bernard · Christian Müller-Schloer
Leibniz Universität Hannover, ISE-SRA, Appelstr. 4, Hannover, Germany
e-mail: {klejnowski,niemann,bernard,cms}@sra.uni-hannover.de

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 189
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_23, c© Springer International Publishing Switzerland 2014



190 L. Klejnowski et al.

2 System Model

We study an open, distributed and volunteer-based Desktop Grid System (DGS) to
which we refer as Trusted Computing Grid (TCG), in the tradition of systems like
XtremWeb [14]. The system is designed without central control and the applications
regarded produce bag-of-task jobs, i.e. jobs being composed of independently pro-
cessable work units (WUs). Each user can submit jobs to the system and is expected
to volunteer its machine as worker for other users’ work units.

We use agents that are in charge of the grid client on the machines and make
decisions on behalf of their users. The utility of the agents is based on their goal, to
schedule single work units on available worker agents, such that they minimise the
time it takes to receive valid results. This is formalised using metrics like speedup,
processing time and waste (cf. e.g. [11] and [4]). Due to the open nature of the
system, we have to deal with agents that show various types of behaviour (from al-
truistic to untrustworthy) in order to achieve their self-interested goal of scheduling
their own jobs as efficiently as possible. According to the taxonomy of [10] and
taking the resource perspective, we therefore classify the potentially participating
agents of this Desktop Grid System as: egoistic, volatile, distributed over the inter-
net, dynamic, faulty and heterogeneous. We therefore apply a Trust- and reputation
system and let the agents build up trust relationships based on the outcome of their
interactions as submitters and workers.

2.1 Submitter Decision Tree

In the following we present the agents’ decision tree as depicted in Fig. 1, when
taking the submitter perspective and searching for suited worker agents. An agent
x from the agent society A that has an unprocessed work unit τ, first builds up
the set Y(x), containing each agent y that qualifies as worker based on its estimated
performance Pe

y. Pe
y is dependent on the machine performance, the host and resource

availability, and the work load of agent y. In sum, it represents an estimate of y’s
competence as a delegation partner for x. The set Y(x) is formally composed as
follows:

Y(x) :=
{̃
y ∈ A : Pe

ỹ > Pe
x

}
(1)

The submitter then makes a decision D(x) which delegation strategy is suited best
for delegating τ to a worker agent y ∈ Y(x). This is based on an assessment of y’s
willingness to cooperate, being the probability that y is willing to invest an effort e.
In a DGS, the positive outcome o+ of the delegation is a state, where a valid result
for τ exists, which can only be reached if y processes τ completely (effort e+). Each
other effort level produces a negative outcome o−, meaning no or no valid result for
τ. Here we discern between straight rejection to cooperate (e0) and the attempt to
produce o+ through processing τ to a certain degree d, denoted by e−d . Additionally,
y can be a malicious agent, choosing e−d to harm x. Whenever the outcome o− was
reached, x enters a new round r and either delegates to the next best worker in Y(x)
or processes τ itself when no agent is left in Y(x). This is done until the outcome



Using Trusted Communities to Improve the Speedup of Agents 191

D(x)

D(y)

o+

o-

o-

No delegation

Delegation with reputational 
incentive (RI)

Delegation with TC 
membership incentive

Delegation with RI and 
WU replication

)( dRI ep

)(epRI

D(y)

o+

o-

o-

)(, drepRI ep

D(y)

o+

o-

o-

)( dTC ep

)( 0epTC

r
r

y

x

waste
P
W

P
W

yxS ),(

r
r

y

x

waste
P
W

P
W

yxS ),(

r
r

y

x

waste
P
W

P
W

yxS ),(

r
r

x

x

waste
P
W

P
W

yxS ),(

x
x
y thresT

x
x
y thresT

i
rTCyx,

e
x

e
y PPAyxYxYy ~:~:)(),(

dr twaste

tr twaste

dr twaste

dr twaste

tr twaste

tr twaste

yR

yR

yR

yR

yR

yR

)(, ep repRI

)(epTC

)( 0
, ep repRI

)( 0epRI

),,( d
i
r eTCymembership

),,( 0eTCymembership i
r

i
rTCy 1

Fig. 1 Decision tree for submitter agents



192 L. Klejnowski et al.

is o+, with the assumption that x always produces o+ when processing an own τ,
hence always terminating.

In the following, we argue how x can choose a delegation strategy and what
implications that choice has on the utilities and costs for both x and y. In the TCG,
the utility of an agent is defined by the average speedup it is able to achieve for each
task τ it submits. The speedup is defined as follows:

S (x,y) =
processingtimex,τ

processingtimey,τ +waste
=

Wτ
Px

Wτ
Py
+
∑
r

waster

(2)

In eq. 2 we incorporate the size Wτ of a work unit and the actual worker performance
Py, and contrast this with the a posteriori measure of the submitter performance Px

and the summed waste in all rounds r with the outcome o−. The waster is the time
that τ was in processing in round r without an obtainable result1. In case of e−d the
amount of waste depends on the time td spent with the effort e−d , while the waste
generated by the processing rejection e0 is the time tt needed for the transition to
the next round r+1 and try to delegate τ to the next worker. In general, we observe
td � tt. It is obvious, that agents need to interact with cooperating workers as much
as possible to increase their speedup.

The option to not delegate τ and process it by itself is always possible for x, but
is only used as last resort when no competent or willing workers were found. This
is because the speedup is dependent on x’s own performance Px and can therefore
never be greater than 1 for this strategy.

As long as there are willing workers available, the first delegation strategy with
reputation incentive is preferred over self processing: We use a trust- and reputation
system to rate the workers according to their effort2. Positive outcomes result in y’s
reputation gain (denoted by Ry ↑) and negative outcomes in the loss of reputation
Ry ↓, with the amount of loss being dependent on the costs for x. We then let each
agent x define a trust threshold thresx such that the subjective trustworthiness T x

y of
y has to be greater than that threshold in order to consider y as suited worker. But
how does a high effort pay off for the workers? The answer is through reciprocity: A
worker y will make the decision D(y) to reject a cooperation with x, if T y

x ≤ thresy,
thus if itself would not consider x as a suited worker for its own work units3. In this
way reputation acts as incentive to cooperate and produces reputation loops between
worker and submitter performance.

The second delegation strategy with WU replication (cf. Fig. 1) also applies the
reputation incentive, however, here submitters try to decrease the probability for a
low speedup to the disadvantage of the system: Instead of waiting until the result

1 This is true for applications that do not allow checkpointing.
2 In order to do this, we need to discern the outcomes o− and o+. This is only possible if

we have applications that produce work units whose results can be validated with far less
effort than generated.

3 Agent y will also reject if its work load is already too high in order to maintain a condition
in which it could process own work units with low costs if necessary.



Using Trusted Communities to Improve the Speedup of Agents 193

for τ produced by a worker y can be validated, x generates replicas τi of τ and tries
to delegate these to other workers. As soon as a valid result is returned, it can can-
cel the processing of the remaining replicas. This is an appropriate strategy from
the cost perspective of a submitter, as replication generates hardly any additional
overhead. However the work load in the system is raised by the replication factor
until o+ is reached: This not only reduces the probabilities pRI,rep(e+) and pRI(e+),
as D(y) depends on y’s work load, for other submitting agents, but also for x itself,
as work units τ come in bursts (jobs). In the long term the speedup of x can there-
fore even decrease. On the worker side, wasteful processing of replicas blocks the
worker. This reduces the opportunities to work for agents that could reciprocate and
hence counters the effects of the replication incentive. When applying this strategy,
submitting agents should therefore take the work load of suited workers into account
when making the decision D(x).

2.2 Discussion

Delegation with reputation incentives introduces a problem addressed in [7]: With
agents accumulating trustworthiness through cooperation, a situation can develop
where there is too much trust (over-confidence) to quickly react to changing be-
haviour. This becomes clear when regarding thresx: A highly trustworthy agent can
have a strong negative impact on the speedup of other agents, if it starts to defect,
because it will only be ruled out as worker if successive reputation losses lower
its trustworthiness below the threshold. Additionally, too much trust in a worker y
means that a submitter x subsequently invests more validation and monitoring costs
to evaluate the worker than effectively necessary.

We therefore argue that we need an additional delegation strategy that counters
these issues and hence allows for faster reaction to changing behaviours of trustwor-
thy agents and lower costs for submitters. Additionally, the incentive provided by
this new delegation strategy has to be stronger than the other incentives, in order to
enable worker agents to participate in these interactions. In the following, we pro-
pose such a strategy, with delegation based on the membership in an organisation
called Trusted Community, as introduced in [19].

2.3 Delegation within Trusted Communities

Trusted Communities (TCs) are formed and joined by self-interested agents with
strong mutual trust relations and the purpose to increase their personal utility. TCs
are maintained by management actions delegated to a designated member called
Trusted Community Manager (TCM), having the goal to preserve and optimise the
composition and stability of this organisation. This organisation provides perfor-
mance benefits for their members by improving interaction efficiency, information
sharing and cooperation between the agents.

Agents become members of a TC depending on the strategy the TCM has with
respect to the composition. In general, the realisation of this strategy is based on the



194 L. Klejnowski et al.

observed trustworthiness of agents in the society. When becoming a member of a
TC TCi

r, an agent y makes a contract with the TCM and all other members. This
contract is based on the notion of kinship and states that, if chosen as delegate by
an other member x in the round r, the agent y commits to provide the effort e+. In
case of a contract violation due to effort e0 or e−d , the TCM applies a member control
strategy on the TCi

r, such that it decides on the membership of y, formalised by:

TCi
r+1 = membership(y,TCi

r,e
0) ∈
{
TCi

r,TCi
r \{n}

}
4 (3)

This contract provides strong incentives to invest the effort e+, as agents can rely
on other members also providing them with the same effort. On the other hand, the
validation of a contract violation through e0 is cheap in terms of costs and fast as no
processing time is involved. The validation of a violation via e−d is obviously more
expensive, but can be fairly distributed among the members of a TC. In sum, we
thus expect pTC(e+) > pRI(e+) . This means that the usage of a TC-based delega-
tion strategy is more suited to increase the speedup of agents, than the usage of a
reputation-based delegation strategy, as will be shown in section 3. Additionally, this
incentive mechanism avoids the problems of too much trust and over-confidence, as
we do not need to rate workers with trust- and reputation values, but can react to
uncooperative behaviour immediately (with membership loss).

Besides controlling members in the worker role, the TCM can control members
in the submitter role. This is realised by a monitoring scheme that is transparent to
the submitters and does induce only low costs on the members: Workers in the TC
report information on the work units accepted for processing to the TCM, which then
is able to detect whether submitters have applied WU replication. Again this can be
sanctioned via the member control strategy and works as incentive to cooperate. This
monitoring is of course not applicable in general in the whole system, but needs a
scaled environment like the TC.

The applicability of the Trusted Community delegation strategy is dependent on
the trust-relationships within the agent society: Only where mutual trust builds up
through the reputation incentive delegation strategy, TCs can be formed. Besides,
these relationships often develop between clusters of agents that can partition the
society into groups of cooperating agents. We consider this by allowing the forma-
tion of several Trusted Communities. In the following, our evaluation of the benefit
of the delegation strategies is presented.

3 Evaluation

We have conducted experimental evaluations in simulations of the Trusted Com-
puting Grid, to show that the formation and operation of Trusted Communities as
delegation control organisation can improve the speedup of the member agents and
hence the average speedup of cooperative agents in the system. As experimental
setup we have used an agent society with 100 agents with heterogeneous machine

4 Analogous for effort e−d .



Using Trusted Communities to Improve the Speedup of Agents 195

performance and behaviour with respect to the preferred effort level (adaptive to
system perception, free-riding or selfish). Each agent produced in average 21 grid
jobs composed of an average of 16 WUs. Thus the minimal number of D(s)-decision
evaluations was 33600 during the experiment runtime. The experiments were con-
ducted with the option to have either no TC formation, allow for a single TC to
form, or no restriction to the number of formed TCs. In the case of no TC for-
mation, agents have used the delegation strategy with the reputation incentive. We
then have conducted 20 runs per option and measured the variance in the achieved
speedup as depicted in Fig. 2.

Fig. 2 Speedup gain through the application of Trusted Communities

The results show that, due to the TC membership incentive based on the kinship
contract, TCs are able to increase the speedup of member agents. Additionally, the
formation of several TCs is suited to further improve the results which shows the
scalability of the approach. The variation of the single run results is relatively high,
indicating that the composition and performance of the TCs very much depends on
the system state in the TCG. However, we observe also a high variation for the sys-
tem without TC formation, such that we attribute this to the varying agent behaviour
dynamics. What the incentives have in common is, that notoriously uncooperative
agents are isolated, such that they are forced to apply the no delegation strategy,
resulting in a low speedup.

4 Related Work

We base our methodology on the generic decision tree for trustor agents presented
in [6] and extend this work by applying it to the Desktop Grid domain, as well
as propose an additional delegation strategy based on our work on the multi-agent



196 L. Klejnowski et al.

organisation Trusted Community (cf. [19]). Similar approaches to MAS organisa-
tions can be found in [16], [5] and [20]. In these approaches, we find that some
requirements for the open Desktop Grid System we evaluate here are not met. In
particular, congregations by [5] do not incorporate any notion of trust. In open dis-
tributed computing systems, trust and reliability play an essential role in the par-
titioning of participants into reliable and unreliable hosts (cf. e.g. [13], [3], [21]).
Clans, as presented in [16], are best described as congregations with trust (cf. [18]).
As such, clans provide the previously mentioned support for trust-based interaction
modelling. However, clans are a purely decentralised approach without hierarchy.
We assess this to be detrimental in systems environments where agent behaviour
is highly dynamic, as we assert single agents the potential to damage the stabil-
ity of an MAS-organisation if no coordinated self-management is performed. We
therefore incorporated hierarchy in the TC design. Additionally, a strict reliance
on a trust management system can also be detrimental if over-confidence builds
up. In this we follow the argumentation in [7] regarding negative consequences of
over-confidence. The way we implement TC membership as favourable compared to
non-association is based on the ideas of incentive compatible design (cf. e.g. [22]).
We especially follow the argumentation that agents are rational with respect to max-
imising their utility function (cf. e.g. [8]) and refer to a concrete utility definition
(speedup, cf. e.g. [11],[23]) for an open Desktop Grid. The incentives for Desktop
Grid agents provided by TC membership are a reciprocity-based approach, compa-
rable to approaches discussed in e.g. [15], however transferred to agents represent-
ing the users. Again, the conclusion by the authors that these types of approaches
are vulnerable to collusive behaviour, confirms our approach of hierarchical man-
agement of a TC as introduced in [19] and scheduled for future work. As for our
application scenario, the main classification according to the system perspective in
the taxonomy presented in [10], is that of volunteer-based, distributed, P2P-based,
internet-based Desktop Grid System. Additionally, taking the resource perspective,
we can conclude that participants are egoistic, volatile, distributed over the internet,
dynamic, faulty and heterogeneous, comparable to e.g. the approach presented in
[9]. This constitutes a competitive system with great uncertainty regarding expected
performance and can be addressed by the application of trust as incentive-criterion,
as for example in [12], [23], [17] and [13].

Additional coverage of MAS organisations in similar scenarios has also been
considered in [24], [1] and [25].

5 Conclusion and Outlook

We presented an approach to formalise the delegation decision of agents in an open
Desktop Grid System and described how a delegation strategy with an reputation
incentive can improve the average speedup of these agents. We then discussed the
drawbacks of this approach and proposed a new approach based on the applica-
tion of the MAS-organisation Trusted Community. We showed how this delegation
strategy can counter the drawbacks of a pure reputation strategy and presented the



Using Trusted Communities to Improve the Speedup of Agents 197

evaluation results. These show that the application of TCs leads to a higher average
speedup in the system. Future work will focus on exploiting this incentive mecha-
nism further by using trustworthiness prediction, as in [2], to allow for earlier TC
formation and thus less over-confidence. Additionally, we will compare the results
with the performance of a delegation within clans.

Acknowledgements. This research is funded by the research unit “OC-Trust” (FOR 1085)
of the German research foundation (DFG).

References

1. Abdallah, S., Zhang, H., Lesser, V.: The role of an agent organization in a grid computing
environment. In: Proceedings of the 14th Int Conference on Automated Planning and
Scheduling, Workshop on Planning and Scheduling for Web and Grid Services (2004)

2. Anders, G., Siefert, F., Steghöfer, J.-P., Reif, W.: Trust-Based Scenarios - Predicting
Future Agent Behavior in Open Self-Organizing Systems. In: Proceedings of the 7th Int.
Workshop on Self-Organizing Systems, IWSOS 2013 (2013)

3. Andrade, N., Brasileiro, F., Cirne, W., Mowbray, M.: Discouraging Free Riding in a Peer-
to-Peer CPU-Sharing Grid. In: Proceedings of the 13th IEEE Int. Symposium on High
Performance Distributed Computing, pp. 129–137. IEEE Computer Society, Washing-
ton, DC (2004)

4. Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R.: Fault-aware scheduling for
Bag-of-Tasks applications on Desktop Grids. In: 2006 7th IEEE/ACM Int. Conference
on Grid Computing, pp. 56–63. IEEE (2006)

5. Brooks, C., Durfee, E.: Congregation formation in multiagent systems. Autonomous
Agents and Multi-Agent Systems 7(1) (2003)

6. Burnett, C., Norman, T.J., Sycara, K.: Trust decision-making in multi-agent systems.
In: Proceedings of the 22nd Int. Joint Conference on Artificial Intelligence, vol. 1,
pp. 115–120 (2011)

7. Castelfranchi, C., Falcone, R.: Trust Theory - A socio-Coginitive and Computational
Model. John Wiley & Sons Ltd. (2010)

8. Centeno, R., Billhardt, H.: Using incentive mechanisms for an adaptive regulation of
open multi-agent systems. In: Proceedings of the 22nd Int. Joint Conference on Artificial
Intelligence, Barcelona, Spain, vol. 1, pp. 139–145 (2011)

9. Chakravarti, A., Baumgartner, G., Lauria, M.: The organic grid: self-organizing compu-
tation on a peer-to-peer network. In: Proceedings of the Int. Conference on Autonomic
Computing, pp. 96–103. IEEE (2004)

10. Choi, S., Buyya, R., Kim, H., Byun, E.: A Taxonomy of Desktop Grids and its Mapping
to State of the Art Systems. Technical report, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne (2008)

11. Cremonesi, P., Turrin, R.: Performance models for desktop grids. In: Proceedings of the
10th Int. Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS). Citeseer (2007)

12. Domingues, P., Sousa, B., Moura Silva, L.: Sabotage-tolerance and trustmanagement in
desktop grid computing. Fut. Gener. Comput. Syst. 23(7) (2007)

13. Dyson, J., Griffiths, N., Lim, H., Jarvis, S., Nudd, G.: Trusting agents for grid com-
puting. In: 2004 IEEE Int. Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583) (2004)



198 L. Klejnowski et al.

14. Fedak, G., Germain, C., Neri, V., Cappello, F.: XtremWeb: A generic global computing
system. In: IEEE/ACM Proceedings of the 1st Int. Symposium on Cluster Computing
and the Grid. IEEE Computer Society (2001)

15. Feldman, M., Chuang, J.: Overcoming free-riding behavior in peer-to-peer systems.
ACM SIGecom Exchanges 5(4), 41–50 (2005)

16. Griffiths, N.: Cooperative clans. Kybernetes 34(9/10) (2005)
17. Griffiths, N.: Task delegation using experience-based multi-dimensional trust. In: Pro-

ceedings of the 4th Int. Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2005, p. 489. ACM Press, New York (2005)

18. Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The Knowl-
edge Engineering Review 19(4), 281–316 (2005)

19. Klejnowski, L., Bernard, Y., Anders, G., Müller-Schloer, C., Reif, W.: Trusted Com-
munity - A Trust-Based Multi-Agent Organisation for Open Systems. In: Proceedings
of the 5th Int. Conference on Agents and Artifcial Intelligence (ICAART), Barcelona,
Spain (2013)

20. Mathieu, P., Routier, J.-C., Secq, Y.: Principles for dynamic multi-agent organizations.
In: Kuwabara, K., Lee, J. (eds.) PRIMA 2002. LNCS (LNAI), vol. 2413, pp. 109–122.
Springer, Heidelberg (2002)

21. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A Trust-Based
Approach for a Competitive Cloud/Grid Computing Scenario. In: Fortino, G., Badica,
C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI. SCI, vol. 446,
pp. 129–138. Springer, Heidelberg (2012)

22. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The Knowl-
edge Engineering Review 19(01), 1–25 (2004)

23. Shudo, K., Tanaka, Y., Sekiguchi, S.: P3: P2p-based middleware enabling transfer and
aggregation of computational resources. In: Proceedings of the IEEE Int. Symposium on
Cluster Computing and the Grid CCGrid 2005, vol. 1 (2005)

24. Thabet, I., Bouslimi, I., Hanachi, C., Ghédira, K.: A multi-agent organizational model
for grid scheduling. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 148–158. Springer, Heidelberg (2011)

25. Wang, Y., Vassileva, J.: Trust-based community formation in peer-to-peer file sharing
networks. In: Proceedings of the 2004 IEEE/WIC/ACM Int. Conference on Web Intelli-
gence, WI 2004. IEEE Computer Society, Washington, DC (2004)



High-Volume Data Streaming with Agents

Lars Braubach, Kai Jander, and Alexander Pokahr

Abstract. Agent technology is in principle well suited for realizing various kinds of
distributed systems. Nonetheless, the specifics of agent technology render it difficult
to implement data driven systems, even though these represent an important class of
today’s applications including e.g. audio or video streaming and file transfer. One
central reason why agents are not especially helpful for these kinds of applications is
the message-driven high-level interaction of agents. These kinds of interactions are
meant to support high-level coordination of agents via speech act based actions, not
transport of high volume binary data. Hence, currently agent developers need to re-
sort to standard communication technologies like TCP or UDP to transport data, but
this requires complex management of low-level aspects like connection handling at
the application level and additionally might pose problems due to the requirement of
opening additional ports. To better support also binary data transfer a new streaming
approach is proposed, which introduces virtual connections between agents. Usage
resembles established input and output streaming APIs and lets developers transfer
data between agents in the same simple way as e.g. a file is written to hard disk.
Furthermore, virtual connections allow for failure tolerant transmission on basis of
multiplexed data. The usefulness of the approach will be further explained with a
real-word example application from the area of business intelligence workflows.

1 Introduction

Although multi-agent systems provide concepts for realizing various kinds of dis-
tributed systems, applications with a data centered background are not well sup-
ported due to the focus on high-level messaging among agents. In order to build
applications that need to transfer huge amounts of binary data between agents two
different approaches are available. First, one can directly employ communication

Lars Braubach · Kai Jander · Alexander Pokahr
Distributed Systems and Information Systems Group,
University of Hamburg, Hamburg, Germany
e-mail: {braubach,jander,pokahr}@informatik.uni-hamburg.de

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 199
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_24, c© Springer International Publishing Switzerland 2014



200 L. Braubach, K. Jander, and A. Pokahr

libraries e.g. TCP streams. This has the disadvantages of being forced to handle
lower-level and in many cases intricate communication aspects at the application
level. Second, one can rely on the existing message based communication mecha-
nisms of agents and use them to transfer binary data. The primary problem of this
approach is that will not work with arbitrary large data as it cannot be held in main
memory completely and additionally performance degradation is likely to occur.

In order to motivate the requirements of a streaming approach we have analyzed
an ongoing commercial project called DiMaProFi (Distributed Management of Pro-
cesses and Files) in the area of business intelligence that is conducted together with
the company Uniique AG.1 The main objective of the project is to build a distributed
workflow management system for ETL (extraction, transformation, loading) pro-
cesses. These processes are in charge of moving and transforming huge amounts of
data from different locations to a data warehouse, in which they are loaded to allow
further inspections by domain experts. The workflow tool must allow specifying
very different kinds of workflows as these are completely dependent on the concrete
customer. From this scenario the following requirements were deduced:

• Location transparent addressing: Addressing should be done between agents and
should be location transparent, i.e. it should be possible to transmit data between
agents without knowing their location. In the project, the ETL processes are real-
ized as agents. Here, it is often necessary to copy files to the executing workflow,
e.g. if a subprocess is executed by a different node, data has to be transferred to
it.

• Infrastructure traversal: Data transfer must be able to cope with the existing in-
frastructure characteristics and restrictions. This means that e.g. firewall settings
might constrain the ability to open new connections for transmissions. As a result,
existing communication channels have to be reused and shared. The infrastruc-
tures on which DiMaProFi is deployed depends on the customer, ranging from
banking scenarios with strong restrictions to internet providers with fewer secu-
rity policies but distributed networks. Constraints can therefore vary to a high
degree.

• Failsafe connections and heterogeneous multihoming: Data transfer between
agents should be as failsafe as possible and use all available means to reach
the other agent, for example during connection breakdowns etc. Furthermore,
DiMaProFi deals with big data. This means that it is crucial to avoid complete
retransmissions of large files if parts already have been successfully transferred.

• Non-functional properties: The quality of service characteristics, i.e. non-
functional properties, of the transfer should be configurable. Important prop-
erties include e.g. security, reliability, and priorities. In the workflow scenario,
customers often execute different kinds of ETL processes at the same time. As
these processes have different deadlines, it is important to allocate execution re-
sources according to these deadlines. Part of these resources are non-functional
properties of data transfers.

1 http://www.uniique.de/

http://www.uniique.de/


High-Volume Data Streaming with Agents 201

In this paper an approach will be presented that addresses these requirements with
a distributed streaming concept based on virtual connections. The remainder of this
paper is structured as follows. The next Section 2 presents the approach itself and
its implementation. Thereafter, Section illustrates 3 the usage of the approach with
the ETL workflow application. Section 4 compares the proposed approach to exist-
ing solutions and Section 5 gives some concluding remarks and a short outlook to
planned future work.

2 Data Streaming Approach

The requirements of the last section have been carefully analyzed and strongly in-
fluenced the design of the streaming architecture presented later. Here the findings
are shorty summarized according to the already introduced categories. As an addi-
tional point the agent integration has been added as the characteristics of agents also
determine the set of possible solutions.

• Location transparent addressing: This implies that a connection should have an
agent as start and endpoint. Furthermore, the streaming mechanism should be
enabled to use the existing agent platform addressing to locate the target agent
platform.

• Infrastructure traversal: In order to cope with different environments and se-
curity settings, the solution use existing communication channels for multiple
streams, i.e. multiplex the data.

• Failsafe connections and heterogeneous multihoming: Failsafe connections re-
quire that streams should be able to communicate via different underlying trans-
port connections, i.e. the mechanism must be able to dynamically switch in case
of a breakdown. Moreover, the required intelligent usage of underlying transports
requires a layered approach in which an upper coordination layer selecting and
managing the underlying transports.

• Non-functional properties: The coordination layer has to consider the proper-
ties when selecting among different transport options (e.g. whether a transport is
encrypted, authenticated etc.)

• Agent integration: The streaming mechanism should be accessible to the agents
in a non-disruptive way, i.e. streams being an option in addition to the traditional
message sending approach.

2.1 General Architecture

In Fig. 1 the streaming architecture is depicted. From a high-level view an agent
should be enabled to directly use input and output connection interfaces - in addi-
tion to sending messages - to directly stream binary data to / or receive data from
another agent. The figure also shows that the basic envisioned architecture relies on
the standardized FIPA platform architecture [6] in the sense that it is assumed that
on each agent platform a MTP (message transport service) exists that is capable of



202 L. Braubach, K. Jander, and A. Pokahr

Fig. 1 Stream architecture

sending asynchronous messages to agents of the same and other platforms. For this
purpose it makes use of different transports, which utilize existing communication
technologies such as TCP, UDP or HTTP to transfer the data.

2.2 Stream Usage

In order to better understand the envisioned usage from an agent perspective, in
Fig. 2 the important streaming interfaces are shown. Each connection (IConnection)
has a connection id as well as two endpoints, an initiator (agent) as well as a par-
ticipant (agent). Each side is free to close the stream unilaterally at any point in
time. The other side will be notified of the termination via a corresponding excep-
tion. Furthermore, each connection may be initialized with non-functional proper-
ties consisting of key value pairs.

An output connection (IOutputConnection) is used to write binary data in chunks
to the stream (write). As it is often the case the sender and receiver cannot process
the stream data at the same speed a new mechanism has been introduced to inform
the output side when the input side is ready to process more data (waitForReady).

Fig. 2 Stream Interfaces



High-Volume Data Streaming with Agents 203

Finally, also a convenience method has been introduced that allows for automati-
cally processing a Java input stream by reading data from it and writing it into the
output connection until no more data is available (writeFromInputStream).

The input connection (IInputConnection) offers methods to read data from the
stream. These methods include variants for reading a single byte, as well as a com-
plete buffer of bytes. Before calling these methods it can be checked how much data
is currently available at the stream (available). Moreover, it is possible to register
a callback at the stream and automatically get notified when new data is available
(aread). The input connection also possesses a method for connecting to standard
Java streams. In this respect, the input connection allows for automatically writing
all incoming data to a Java output stream (writeToOutputStream).2

2.3 Low-Level API

Besides the functionality an agent uses to send and receive data from the stream
the question arises how streams are created by the initiator and received by the
participant of a connection. For the first part the interface of the message service
has been extended with two methods that allow for creating virtual connections to
other agents. The method signatures are shown in Fig. 3. The caller is required to
provide the component (i.e. agent) identifier of the initiator and the participant of
the connection. Furthermore, optionally additional non-functional properties can be
specified which have to be safeguarded by the message service during the stream’s
lifetime. As result of the call the corresponding connection instance is returned.

01: IFuture<IOutputConnection> createOutputConnection(IComponentIdentifier initiator,
02: IComponentIdentifier participant, Map<String, Object> nonfunc);
03:
04: IFuture<IInputConnection> createInputConnection(IComponentIdentifier initiator,
05: IComponentIdentifier participant, Map<String, Object> nonfunc);

Fig. 3 Extended message service interface

An agent that is used as participant in one of the create connection methods is
notified about the new connection via the hosting platform. This is done via a new
agent callback method (streamArrived) that is automatically invoked whenever a
new stream is created. Behind the scenes the platform of the initiator contacts the
platform of the participant and creates the other end of the connection at the target
side. This connection is afterwards passed as parameter to the streamArrived method

2 Please note that in contrast to Java streams all connection interfaces are non-blocking
although the method signatures look similar. Blocking APIs are not well suited to work
with agents as these are expected to execute in small steps to remain reactive. An agent
that would directly use a blocking stream method could not respond to other incoming
requests during it waits for the blocked call to return. In the interfaces different future
types are used to render them asynchronous. A future represents a placeholder object that
is synchronously returned to the caller. The real result will be made available to the caller
once the callee has finished processing and set the result in the future [7].



204 L. Braubach, K. Jander, and A. Pokahr

call. Having received such a callback the receiving agent is free to use as it deems
appropriate. Of course, it can also do nothing and ignore such incoming stream
connection attempts.

2.4 High-Level API

For active components [5], which in brief are extended agents that can expose ob-
ject oriented service interfaces, another more high-level API has additionally been
conceived. As interactions with active components are primarily based on object-
oriented service calls, it becomes desirable to be able to use streams also as parame-
ters in these service calls. Using the high-level API an active component can declare
streams as arbitrary input parameter or as the return value of a call. This allows for
passing a stream directly to another agent solely by calling a service method.

Realization is complicated by the fact that method signatures contain the ex-
pected connection type of the callee but not of the caller. This means that a caller
that wants to stream data to the callee has to create an output connection and write
data to it but has to pass an input connection as parameter to the service call for the
callee to be able to pull the data out of the stream. To solve this issue new service
connection types have been introduced, which allow for fetching the corresponding
opposite connection endpoint.

Support of non-functional properties has also been mapped to the high-level API.
As these aspects should not be part of method signatures, that are meant to be func-
tional descriptions, an annotation based approach has been chosen. For each sup-
ported non-functional property a corresponding Java annotation exists that can be
added to the method signature of a service, i.e. @SecureTransmission can be used
to ensure an encrypted data transmission.

2.5 Implementation Aspects

The proposed concept has been implemented as part of the Jadex platform [5]. The
implementation distinguishes different responsibilities via different layers (cf. Fig.
1). On the top layer, the input and output connections ensure that streams comply
with the functional and non-functional stream requirements. These requirements are
addressed by a virtual stream control protocol, which is based on well-established
TCP concepts.3

An output connection sends stream data in form of packets with a fixed size via
the underlying message service. Thus packets, provided by the application layer,
are created by either joining too small data chunks or by fragmenting larger ones
depending on their size. The output connection keeps track of lost packages and
resends them if necessary. Furthermore, the connection realizes flow control by us-
ing a sliding window that adapts the sender’s connection speed to the speed of the

3 A virtual connection has to provide the requested service guarantees regardless of the
existing infrastructure and underlying communication stack. For this reason it is necessary
to reconstruct many aspects of TCP and other protocols on the upper layer.



High-Volume Data Streaming with Agents 205

receiver. Connection set-up and teardown is handled via specific handshake mes-
sages. The input connection receives and collects packets to forward them to the
application level in the correct order.

The underlying message service has been extended to manage virtual connec-
tions and support sending messages belonging to the virtual connection protocol.
Whenever the API is used to create a virtual connection (cf. Fig. 3) the message
service internally creates a connection state at both connection sides and also starts
a lease time based liveness check mechanism to ensure that the other connection
side is still reachable. In case the lease times indicate that the connection has been
lost it is closed unilaterally. The transport layer itself does not need changes have to
support streaming.

3 Case Study

In this section the streaming approach is further explained by dint of the already
introduced DiMaProFi workflow management project with Uniique AG. Customer-
specific ETL processes are generally based on files which need to be loaded, trans-
formed and then written into the customer’s data warehouse. As an example a
simplified version of a real world ETL banking process is used in the following.
Here, source files are deposited in a special folder monitored by a process on a file
server. Since the file sizes are considerable and the ETL process requires a substan-
tial amount of processing time, the transformation processes are executed on differ-
ent machines in the network in parallel for increased performance. The file server
and the data warehouse are separated by a firewall which allows only certain traffic
to pass.

Fig. 4 shows an example for such a process. When a customer file is stored on
the file server, the monitoring process is notified and initiates the ETL process on a
remote machine. The process requests the binary stream for the file server (fetch cus-
tomer file) and stores the file in a temporary folder on the target machine. Then the
received data is cleaned up with respect to the contained address data and thereafter
two parallel transformations are performed on the same output data. The resulting
data sets are written in parallel into the data warehouse. This process is performed in
parallel on multiple machines for each file that has been deposited on the file server.

Fig. 4 An ETL process loading a file, transforming and writing it to the data warehouse



206 L. Braubach, K. Jander, and A. Pokahr

// File service service method
01: public IFuture<IInputConnection> fetchFile(String filename);

// Fetch file task except
01: IInputConnection icon = fileservice.fetchFile().get();
02: FileOutputStream fos = new FileOutputConnection(tmpfolder+”/”+filename);
03: icon.writeToOutputStream(fos, agent).get();
04: fos.close();

Fig. 5 Code excerpts of fetching a remote file

The code of the fetch customer file task, which uses the high-level streaming API,
is depicted in Fig. 5. It consists of the (reduced) interface of the file service, which
offers a method fetchFile() to retrieve a remote file.4 As parameter the method takes
the local file name and as result it delivers an input connection that can be used
to download the file data. The code for downloading the file is shown below. First
the input connection is obtained by calling the fetchFile() service method of the file
server (line 1). Afterwards a file output stream for the temporary file is created (line
2) and the whole file content is automatically written to this file output stream by
calling writeToOutputStream() (line 3). Please note, that this method takes the agent
as argument as it executes the stream reading as agent behavior. The get() operation
blocks until no more data is received all data has been written to the file. Finally, the
stream is closed.

4 Related Work

As mentioned in Section 2, powerful streaming support includes a number of re-
quirements that are not generally part of agent communication systems and network
communication is often used to supplant it. However, overlay networks may offer an
approach unrelated to agent that promises to meet some of the requirements. As a
result, three basic categories are considered: agent communication, direct network
communication and use of overlay networks, examples for each are shown in Fig. 6.

Fig. 6 Streaming support requirements and support by different approaches

4 The get() method is part of the future API and causes the call to block until the asyn-
chronous invocation has returned.



High-Volume Data Streaming with Agents 207

Streaming has not been a priority for agent systems. The traditional approach
for agent communication centered around the exchange of speech act based mes-
sages, e.g. in JADE [2], which typically uses HTTP to transfer messages. Messages
free the agents of low-level communication details and provide a form of location-
transparent addressing. This approach is suitable for the exchange of small amounts
of data, however, the lack of explicit streaming support forces agents to send bulk
data in large messages, which can unnecessarily block the agent, or the messaging
layer of the agent platform.

It is thus often suggested to use direct network connections such as TCP sockets
for streaming and bulk transfer [3]. However, this forgoes the advantage of location-
transparent addressing and burdens the agent with a number of low-level tasks,
among them networking concerns such as firewall traversal. Furthermore, calls to
such communication channels are often blocking, forcing intra-agent multithread-
ing and increasing risks of data loss and deadlocks. In addition, if the connection
is interrupted, recovery is difficult and if the chosen protocol like TCP is unavail-
able, the agent is unable to stream data at all. Both network connection and agent
messaging only provide little support for non-functional features. While network
connections often have QoS implementations, their configuration is hard and must
be done at the system level. Application-level QoS-features such as the IPv4 type-
of-service (TOS) field are generally ignored by routers.

An alternative consists in using overlay networks, which often bundle some of
the required features such as (heterogeneous) multi-homing, location-transparent
addressing and infrastructure traversal. While overlay networks do not provide spe-
cific support for agents, they often include a number of useful features. For ex-
ample, Resilient Overlay Networks (RON) [1] allows streaming by tunneling TCP
connections and allows multi-homing and, given an appropriate configuration, in-
frastructure traversal by relaying communications using other nodes. However, the
multi-homing is not heterogeneous and thus connections are only failsafe in a lim-
ited sense. Furthermore, the addressing issue is not resolved and non-functional
properties are unsupported. The overlay network framework Spontaneous Virtual
Networks (SpoVNet) [4]does support both: location-transparent addressing through
unique identifiers and specification of non-functional properties. It also provides
some means for heterogeneous multi-homing using multiple means provided by un-
derlays to transfer messages. However, it does not provide streaming support.

In general, overlay networks show the most promise toward providing a solution
for the requirements but cover only a subset of the required feature set. Combining
multiple such networks may be possible; however, this is hampered by problems
such as integration of different programming languages.

5 Conclusions and Outlook

In this paper a concept and implementation has been presented that allows agents
to stream binary data without consideration of detailed communication aspects.
For this purpose two different APIs have been described. The low-level API en-
ables creation of virtual streams to other agents via the message service and the



208 L. Braubach, K. Jander, and A. Pokahr

high-level API permits stream utilization as normal service parameters and return
values. In the following, it will be summarized how the proposal helps achieving the
initial requirements.

• Location transparent addressing: The architecture makes use of the existing
agent based addressing, i.e. each stream has an initiator and particiapnt agent
identifier. An agent sending data to another agent can use the target’s agent iden-
tifier to create a virtual stream connecting both without knowledge where this
agent resides.

• Infrastructure traversal: The layered model allows for a clear separation of con-
cerns and enables the streaming mechanism to utilize the existing FIPA transport
scheme. As a result, if platforms manage to reach one another through some
channel, it can be used simultaneously for standard messaging as well as for
binary streaming. Stream data is automatically fragmented into small packets,
which can be multiplexed with other data.

• Failsafe connections and heterogeneous multihoming: The message service uses
multihoming by setting up different transports. Connections are virtual, using all
transports available, i.e. the message service will try to send messages (binary
as well as standard) via different transports until it fails and no alternatives are
available.

• Non-functional properties: Streams can be initialized with non-functional prop-
erties. These are used by the connection and message service to handle the con-
nections properly. In the current implementation only non-functional criteria for
security related aspects are supported.

• Agent integration: Streaming is available at the agent level by streaming APIs.
These completely relieve a developer from low-level communication issues. The
integration supports the reactive nature of agents by using a non-blocking ap-
proach without additional threading within an agent.

Besides these aspects also performance of the streaming approach is an important
factor for its usefulness in practice. Using different example applications the perfor-
mance has been compared with the original performace of a direct TCP connection.
The testing has revealed that the performace is very close to a direct connection so
that the comfort of using the APIs does not lead to a trade-off decision between
speed and usability.

As important part of future work we plan to add support for more non-functional
aspects. In particular, we want to support stream priorities and unreliable streams
suitable for audio and video transmission, where outstanding packets should be
discarded and not resend.

References

1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks.
In: Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles,
SOSP 2001, pp. 131–145. ACM, New York (2001)



High-Volume Data Streaming with Agents 209

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - A Java Agent Develop-
ment Framework. In: Multi-Agent Programming: Languages, Platforms and Applications,
pp. 125–147. Springer (2005)

3. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a fipa-
compliant agent framework. Softw., Pract. Exper. 31(2), 103–128 (2001)

4. Bless, R., Mayer, C., Hübsch, C., Waldhorst, O.: SpoVNet: An Architecture for Easy
Creation and Deployment of Service Overlays, pp. 23–47. River Publishers (June 2011)

5. Braubach, L., Pokahr, A.: Developing Distributed Systems with Active Components and
Jadex. Scalable Computing: Practice and Experience 13(2), 3–24 (2012)

6. Foundation for Intelligent Physical Agents (FIPA). FIPA Abstract Architecture Specifica-
tion, Document no. FIPA00001 (December 2002)

7. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue 3(7), 54–62
(2005)



Strategic Behaviour in Multi-Agent Systems
Able to Perform Temporal Reasoning

Matei Popovici and Lorina Negreanu

Abstract. Temporal reasoning and strategic behaviour are important abilities of
Multi-Agent Systems. We introduce a method suitable for modelling agents which
can store and reason about the evolution of an environment, and which can reason
strategically, that is, make a rational and self-interested choice, in an environment
where all other agents will behave in the same way. We introduce a game-theoretic
formal framework, and provide with a computational characterisation of our solu-
tion concepts, which suggests that our method can easily be put into practice.

1 Introduction

Multiagent Systems (MAS) have long been a successful means for modelling the
interaction of software agents (or simply, programs) with themselves, other humans,
and a given environment. In this context, there is an ever increasing need for MAS:
(i) able to perform temporal inferences and (ii) capable of strategic reasoning.

In this paper, we equip MAS with memory and temporal inference capabilities,
by deploying a method for temporal reasoning previously described in [2, 3, 6, 5],
and we study the strategic behaviour of such systems. For the latter, we introduce
the game-theoretic concept of Nash Equilibrium, and show how it can be used for
enforcing MAS stability. We assume each agent has a particular goal, which is de-
pendent on the current and past state(s) of the system. Goals are expressed using
the temporal language LH , introduced and described in [5]. Each agent has some
available actions which are able to change the system state Also, each action has
associated a particular cost. We further assume that agents are rational and self-
interested, meaning they will choose to execute those actions which: (i) make the
goal satisfied, (ii) minimises the agent’s costs. We are interested in those situations

Matei Popovici · Lorina Negreanu
Computer Science Department, University Politehnica of Bucharest,
Bucharest, Romania
e-mail: matei.popovici@cs.pub.ro, lorina@moon.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 211
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_25, c© Springer International Publishing Switzerland 2014



212 M. Popovici and L. Negreanu

where agents cannot individually satisfy their goals i.e. they may have (partially)
conflicting and/or (partially) overlapping goals. In such situations, agents may de-
viate, i.e. change their set of actions to another, if the latter is a possible means for
achieving a better outcome. The solution concept we use, the Nash Equilibrium, is
aimed at identifying the outcomes where no agent has an incentive to deviate. We
further study the computational complexity of related to the Nash Equilibrium, us-
ing the LH -model checking procedure described in [5] and provide with an upper
complexity bound. We conjecture that such a bound is tight.

Related Work: We consider Boolean Games [4] to be one of the first frameworks
which use logic for describing goal-based strategic interactions between agents.
However, instead of propositional logic, we use the more expressive language LH ,
which also allows expressing domain-dependent temporal properties.

The choice of LH over well-known temporal logics such as LTL [7] or CTL [1],
is motivated, on one hand, on the increased computational complexity of model
checking, in the case of LTL [7] and on the reduced expressive power of CTL, with
respect to LH [5].

The rest of the paper is structured as follows. In Section 2 we make a brief account
on the temporal knowledge representation and reasoning method which we use. In
Section 3 we introduce our formal framework, define the Nash Equilibrium solution
concept and describe our complexity results, and in Section 4 we conclude and
identify possible future work.

2 Temporal Representation and Reasoning

In what follows, we succinctly describe the approach for temporal representation
and reasoning which we adopt. For a more detailed presentation, see [5].

Temporal Graph. The history of a given MAS is stored using labelled temporal
graphs. A labelled temporal graph (or simply temporal graph) consists of: (i) hy-
pernodes which model discrete moments of time, (ii) labelled action nodes which
model instantaneous events that change the state of the current environment and (iii)
labelled quality edges which model time-dependent properties.

An example of a temporal graph is shown in Figure 1, where hi, i = 1,3 are hyper-
nodes designating three distinct moments of time, a,b,c,d,e, f and aend

are action nodes, each associated to a certain hypernode, (a,b), (c,d) and (e, f )
are quality edges denoting the time-dependent properties On(ac), On(h) and On(v),
respectively.

Formally, given a vocabulary σA ∪ σQ and σA ∪ σQ-structure I, over uni-
verse I (a set of individuals), a labelled temporal graph (or t-graph) is a structure
H = 〈A,H,T ,E,LA,LQ〉, where A is a set of action nodes, H is a set of hypernodes,
T : A→ H is a onto (or surjective) function which assigns for each action node a,
the hypernode T (a) when a occurs, E ⊆ A2 is a quality edge relation, the function
LQ : E→P(∪R∈σQRI) labels each quality edge with a set of relation instances from
I and the functionLA : A→P(∪R∈σARI) labels each action node with a set of action



Strategic Behaviour in Multi-Agent Systems Able to Perform Temporal Reasoning 213

labels from I. Given the quality edge (a,b) ∈ E, we say that action nodes a or b are
the constructor or destructor nodes of (a,b), respectively.

The language LH . We use the language LH in order to express complex temporal
relations between time-dependent properties, such as has the air conditioner been
opened in the same time a window has been opened or find all properties On(ac)
which are destroyed precisely when a property Opened(x,y) is created.

Due to limited space, we provide with a simplified syntax and semantics of LH .
The original one(s) can be found in [5].

Let Vars be a set of variables, I be a σQ ∪σA-structure and HI be a labelled
t-graph. The syntax of a (Q-)formula is recursively defined with respect to I, as
follows. If R ∈ σQ with arity(R) = n and t ∈ (Vars∪ I)n, then R(t) is an atomic Q-
formula (or an atom). If φ is a (Q-)formula then (φ) is also a (Q-)formula. If φ, ψ
are (Q-)formulae then φ b ψ, φ ¬b ψ, φ m ψ, φ a ψ, φ ¬a ψ are also (Q-)formulae.
b stands for before and ¬b for not before. Similarly, m stand for meets and a for

after. The following are valid LH formulae: (i) On(x) (ii) On(ac) b Opened(x,y)
(iii) On(x) m Opened(John, x). Formula (i) refers to all properties On associated
to some individual x, which can occur at any time in the evolution of the do-
main. Formula (ii) refers to those properties On(ac) which occur before any re-
lation Opened, which may enrol arbitrary individuals x,y. Similarly, formula (iii)
refers to those properties On(ac) which end at the very moment when some relation
Opened(John,x) is created.

LH formulae are evaluated over paths from labelled temporal graphs. The eval-
uation is defined by the mapping ‖ · ‖QH : LH → 2E which assigns for each formula

φ ∈ LH , a set of quality edges ‖φ‖QH which satisfy it. In what follows, we omit
the formal definition of the LH semantics, and defer the interested reader to [5].
Finally, we note that, in the unrestricted case considered in [5], LH -formulae can
also express more general constraints, for instance between actions and properties
(and not just properties, as considered here). Returning to the temporal graph, we
have that: ‖On(x)‖QH = {(a1,a2)}, since (a1,a2) is labelled with On(ac), which uni-

fies with On(x). ‖On(ac) b Opened(John, x)‖QH = {(a1,a2)} since (a1,a2) also oc-
curs before quality edge (a3,a4), which is labelled with Opened(John,win). Finally,
‖On(x) m Opened(John, x)‖QH = ∅ since there is no individual i ∈ I, for which prop-
erties On(i) and Opened(John,i) exist in our labelled temporal graph.

Proposition 1 ([5]). Let H be a temporal graph where temporal nodes H are
equipped with a temporal order: 〈H,<〉. We designate by L<H the language LH de-
fined over such temporal graphs. Given a formula φ ∈ L<H and a property Q, the

decision problem Q ∈ ‖φ‖QH is NP-complete.

3 Formal Setting

In what follows, we formally introduce the concept of Nash Equilibrium adjusted to
our setting, as well as other supporting concepts.



214 M. Popovici and L. Negreanu

Definition 1 (t-frame). Let I be a structure over vocabulary σQ∪σA and with uni-
verse I,Aset = {Ri(i) : Ri ∈ σA, i ∈ RI

i }, and Qset = {Ri(i) : Ri ∈ σQ, i ∈ RI
i }.

A t-frame is given by F = (N,Own,Ont,c, (φn)n∈N , (vn)n∈N , 〈H,<〉), where N is
a finite set of agents, Own : N → 2Aset is a function that assigns to each agent a
subset of action types he can control. Own(n) models the types of changes agent
n can perform to the environment. The sets Own(1) . . .Own(|N|) are a partition of
Aset, Ont ⊆ Aset×Qset ×Aset indicates what are the labels of action nodes that
can create and destroy quality edges with a certain label. In this sense, Ont can be
interpreted as a (simple) ontology.Ont must take into account that each quality edge
(and hence quality label) must be created/destroyed by a unique action node (hence
action label), c :Aset→ R≥0 assigns a cost to each action label, (φn)n∈N is a set of
goals, one for each agent (φn ∈ LH for n ∈ N), (vn)n∈N a goal value for each agent,
measuring the amount of resources each agent is willing to spend for achieving his
goal, a finite and ordered set 〈H,<〉 of hypernodes.

Example 1 (t-frame). Let F be a three-agent frame where h(home cinema), ac(air
conditioner) and v(ventilation) are individuals and Aset = {turnOn(x) : x ∈ I} ∪
{turnOff(x) : x ∈ I} and Qset = {On(x) : x ∈ I}. Each agent 1,2,3 can turn on or
off device ac,h,v, respectively. The costs of each action are fixed to 1. The goals
of each agent are as follows: φ1 = On(ac) b On(h) (the air conditioner must be
started before the home cinema was started), φ2 = On(ac) (at some point in time,
the air conditioner should be started.), φ3 = On(v) m On(h) (the ventilation should
be stopped precisely when the home cinema starts). Finally, vn = 5 for n ∈ {1,2,3},
and 〈H,<〉 is given by: h1 < h2 < h3.

In what follows, we assume that F is a t-frame and hmax ∈ H is the most recent
hypernode, i.e., �h′ ∈ H such that hmax < h′: An action of a agent n is given by:
〈An,LAn ,Tn〉 where An is a set of action nodes, LAn : An → Aset is a labelling
function and Tn : An → H is a mapping of An on the set of hypernodes. We note
that, in this paper, we have restricted LAn , such that each action node receives a
unique label. This restriction is for convenience only.

An action profile consists of a vector (〈An,LAn ,Tn〉)n∈N of actions, one for each
agent in N. An action profile induces a labelled temporal graph 〈A,H,T ,E,LA,LQ〉
where: A = (

⋃
n∈N An)∪ aend, for each pair a,b ∈ A, if there exists a label X ∈ Qset

such that (LA(a),X,LA(b)) ∈ Ont, then create (a,b) ∈ E, and for each such X, X ∈
LQ(a,b), and if there exists an action node a ∈ A and no action node b ∈ A such
that (LA(a),X,LA(b)), then create (a,aend) ∈ E, and for each such X, X ∈ LQ(a,b).
Finally, T (x) = Ti(x) if x ∈ Ai and T (x) = hmax if x = aend and LA(x) = {LAi(x)} if
x ∈ Ai, for i = 1 . . . |N|.

Proposition 2. Given a labelled temporal graphH , there is a unique action profile
a∗ ∈ ×n∈NActionsn such that a∗ inducesH .

Given a labelled t-graph H and a formula φk of agent k, we say φk is satisfied
in H iff ‖φk‖XH � ∅. Thus, a goal φk is satisfied in H if there exists at least one

quality edge inH that belongs to ‖φk‖QH . A labelled temporal graphH induces a cost



Strategic Behaviour in Multi-Agent Systems Able to Perform Temporal Reasoning 215

a

turnOn(ac)

e

turnOn(v)

a

urnOn(ac

e

turnOn(v)

h1

b

turnOff(ac)

c

turnOn(h)

f

turnOff(v)

b

urnOffO (acffff

c

turnOn(h)

f

turnOffO (v)ffff

h2

aend

d

turnOff(h)

aend

d

turnOffO (h)ffff

h3

On(ac)

On(h)

On(v)

a

turnOn(ac)

c

turnOn(h)

e

turnOn(v)

a

urnOn(ac

c

turnOn(h)

e

turnOn(v)

h1

b

turnOff(ac)

f

turnOff(v)

b

urnOffO (acffff

f

turnOffO (v)ffff

h2

aend

d

turnOff(h)

aend

d

turnOffO (h)ffff

h3

On(ac)

On(h)

On(v)

a) b)

Fig. 1 a) A temporal graph induced from an action profile (and a Nash Equilibrium) and b)
A temporal graph which is not a Nash Equilibrium

on a agent n, denoted Costn(H), which is: Costn(H) =
∑

a∈A

(∑
X∈Own(n)∩LA(a) c(X)

)
Cost(n) is the sum of costs of actions performed by agent n. The utility un(H) of
agent n in a labelled temporal graph H is defined as: un(H) = vn −Costn(H) if φn

is satisfied inH , and as un(H) = −Costn(H), otherwise. We say a agent n prefers a
labelled temporal graphH overH′ and writeH �nH′, if un(H)> un(H′). We also
extend the preference relation over action profiles. Given two action profiles a,a′

that induce temporal graphsH andH′, respectively, we write a �n a′ iffH �n H′.
LetH be the labelled temporal graph from Figure 1 a) andH′ be the temporal graph
from Figure 1 b). We have that u1(H)= 5− (1+1)= 3 and u1(H′) = 0− (1+1)= −2,
since agent 1’s goal is satisfied inH but not inH′. ThereforeH �1 H′.

A temporal game is defined as TG = (F , (Actionsn)n∈N , (�n)n∈N) where, for
each n ∈ N, Actionsn designates the set of actions available to agent n and �n

is the preference relation of agent n over temporal graphs. A Nash Equilibrium
(NE) of a temporal game is a labelled temporal graph induced by an action profile:
(a∗1, . . . ,a

∗
n, . . . ,a

∗
|N |) ∈ ×n∈NActionsn such that, for each agent n ∈ N and any action

an ∈ Actionsn: (a∗1, . . . ,a
∗
n, . . . ,a

∗
|N |) �n (a∗1, . . . ,an, . . . ,a∗|N |). Nash Equilibria capture

those situations in which each individual agent n cannot change his action (namely
a∗n) to one that ensures a higher utility. The t-graph in Figure 1 a) is a Nash Equilib-
rium. All three agents have their goals satisfied, and no individual agent can change
his action to achieve a higher utility. The temporal graph from Figure 1 b) is not a
Nash Equilibrium. The goal of agent 1 is not satisfied and there is no action that 1
can take in order to change this. Therefore, 1 would prefer not to execute any action
node(i.e., remain passive), and therefore achieve 0 utility (instead of −2). The same
is true with respect to agent 3.

Proposition 3 (Complexity Results). Checking whether a temporal graph H is a
Nash Equilibrium of a temporal game TG with goals formulated in the language
L<H , is a Π2-problem. Finding if there exists a temporal graph H such that H is a
Nash Equilibrium of a temporal game TG with goals formulated in the language
L<H , is a problem in Σ3.



216 M. Popovici and L. Negreanu

4 Conclusions and Future Work

While the scope of our paper is rather formal, we believe our results can be easily put
into practice. Our complexity results show that implementations are possible, even
if they require an increased computational effort. We consider this effort to be tolera-
ble. Also, by introducing limited memory, that is, by truncating temporal graphs to a
fixed number of hypernodes, the computational effort may be further controlled. As
suggested by all the examples above, our modelling method can be used for identi-
fying stable behaviour of agents in intelligent environments (i.e., buildings equipped
with programmable sensors and control devices). Such an approach is currently a
work-in-progress. However, we consider our method to be general enough for ap-
plication in a wide variety of scenarios that require modelling temporal reasoning
together with strategic behaviour.

Acknowledgements. The authors wish to acknowledge the help and support from prof. Cris-
tian Giumale, which was the first to think about temporal graphs, and whose guidance pa-
troned the work presented in this paper.

The work has been funded by Project 264207, ERRIC-Empowering Romanian Research
on Intelligent Information Technologies/FP7-REGPOT-2010-1.

References

1. Arnold, A., Crubille, P.: A linear algorithm to solve fixed-point equations on transition
systems. Inf. Process. Lett. 29(2), 57–66 (1988)

2. Giumale, C., Negreanu, L.: Reasoning with fluid qualities. In: 17th International Confer-
ence on Control Systems and Computer Science, CSCS-17, vol. 2, pp. 197–203 (Decem-
ber 2009)

3. Giumale, C., Negreanu, L., Muraru, M., Popovici, M.: Modeling ontologies for time-
dependent applications. In: International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pp. 202–208 (2010)

4. Harrenstein, P., van der Hoek, W., Meyer, J.-J., Witteveen, C.: Boolean games. In: Pro-
ceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge,
TARK 2001, pp. 287–298. Morgan Kaufmann Publishers Inc., San Francisco (2001)

5. Popovici, M.: Using evolution graphs for describing topology-aware prediction models in
large clusters. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.) CLIMA
XIII 2012. LNCS, vol. 7486, pp. 94–109. Springer, Heidelberg (2012)

6. Popovici, M., Muraru, M., Agache, A., Giumale, C., Negreanu, L., Dobre, C.: A model-
ing method and declarative language for temporal reasoning based on fluid qualities. In:
Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS,
vol. 6828, pp. 215–228. Springer, Heidelberg (2011)

7. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J.
ACM 32(3), 733–749 (1985)



Control of a Mobile Robot by Human Gestures

Stefan-Gheorghe Pentiuc, Oana Mihaela Vultur, and Andrei Ciupu

Abstract. The control of a mobile robot based on natural human gestures represents
a challenge and a necessity. In this paper we will try to present an innovative system
that controls a mobile robot using human gestures performed with arms. The human
operator acts in the front of a Microsoft Kinect sensor [1] that identifies the skeleton
and transmits the coordinates of its joint points to the PC. It follows the gestures
recognition process, and transmission to the mobile robot. We succeed to integrate
the skeletal tracking, gesture recognition and the control of the mobile robot in an
unique application. With this application a number of experiments were deployed,
that permit us to evaluate the performances of the proposed interaction system. The
overall system evaluation has been made using the following performance parame-
ters: classification accuracy, error rate, precision, recall, sensitivity and specificity.

1 Introduction

Gestures are often used to accompany speech. They can make words more expres-
sive. Nowadays we can use gestures not only to accompany speech, but also to
navigate in a virtual environment [2], to simulate assembly operation inside virtual
environments [3], or to control a device from real world, like a mobile robot, in
our case.

Lately, several HRI based systems have been developed. M. Hahn et al. propose
in [4] a HRI based system to control an industrial robot using hand gestures. They
used Levenshtein Distance on Trajectories (LDT distance) for trajectories matching
and Hidden Markov Models (HMMs) for recognizing different action sequences.

Stefan-Gheorghe Pentiuc · Oana Mihaela Vultur · Andrei Ciupu
Stefan cel Mare University of Suceava,
720229, Romania
e-mail: pentiuc@eed.usv.ro, vultur oana@usv.ro,

aciupu@stud.usv.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 217
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_26, c© Springer International Publishing Switzerland 2014



218 S.-G. Pentiuc, O.M. Vultur, and A. Ciupu

P. Chang-Beom et al. propose in [5] a gesture recognition algorithm which al-
lows a natural human robot interaction. Hands detection is made with the color
distribution of the face region. The face was detected with an improved version of
the Viola-Jones detector. Tracking was realized using a 3D particle filter and the
estimation of the pointing direction is based on a cascade of HMMs.

M. Van den Bergh et al. presents in [6] a functional HRI based system which
uses a real-time 3D hand gestures recognition algorithm. They propose a human
detection method which includes skin, face and leg detection.

T. Cerlinca et al. propose in [7] a system that controls an industrial robot in a very
natural way, through 3D hand gestures. The algorithm used for gesture recognition
was Dynamic Time Wrapping.

The paper will present a new technique for the control of a mobile robot using
dynamic gestures performed with arms. We made a performance analysis of our
interaction system.

As issues of the experimentation stage are evaluated the following performance
parameters: classification accuracy of the system, error rate, precision, recall, sensi-
tivity, and specificity.

The paper is organized in 6 sections as follows: Introduction, Hardware and
software architecture of the interaction system, Models and algorithms for gesture
recognition, Gesture set used for interaction and application functionality, Experi-
mental results, and Conclusions.

2 Interaction System Hardware and Software Architecture

2.1 Hardware Architecture

The application runs on a PC with Intel(R) Core (TM) 2 Quad Q9650 processor at
3GHz frequency and 4GB RAM. We used a Kinect sensor [1] and a mobile robot
(Surveyor’s SRV-1) [8]. The Kinect sensor is a device who has a small base con-
nected to a motorized pivot. Kinect sensor has an RGB camera, two depth sensors
and multi-array microphone. It has some capabilities to provide full-body 3D mo-
tion capture. The Kinect sensor provides an image matrix, and a depth matrix with
z-coordinate for every pixel.

The mobile robot used for interaction is Surveyor’s SRV-1. Designed for re-
search, education, and exploration, Surveyor’s SRV-1 internet-controlled robot em-
ploys the SRV-1 Blackfin Camera Board with 1000MIPS 500MHz Analog Devices
Blackfin BF537 processor, a digital video camera with resolution from 160x128
to 1280x1024 pixels, laser pointer or optional ultrasonic ranging, and WLAN
802.11b/g networking on a quad-motor tracked mobile robotic base [8].



Control of a Mobile Robot by Human Gestures 219

Fig. 1 Surveyor’s SRV-1
mobile robot

2.2 Software Architecture

Software architecture consists of Operating System, Microsoft Visual Studio 2010
Professional, Kinect SDK, software application responsible for images acquisition,
gestures recognition and transmission of commands to the robot.

Microsoft Kinect SDK (Software Development Kit) includes Windows 7 com-
patible PC drivers for Kinect sensor. Microsoft Kinect SDK provides Kinect capa-
bilities for developers to build software applications with C++, C# or Visual Basic
using Microsoft Visual Studio 2010.

This SDK includes skeletal identification and tracking, raw sensor streams.
In our system we used Microsoft Kinect SDK to develop an application that per-

forms image acquisition and gestures recognition (using Dynamic Time Warping
algorithm [9]). After a gesture representing a specific command is recognized, a
correspondent command is transmitted to the robot. For example, if the recognized
gesture is “advance” - we transmit to the IP address of the robot the ‘8’ command,
if the gesture is recognized as “behind” gesture - we transmit to robot the ‘2’ com-
mand, if is “left” - we transmit to the IP address of the robot the ‘4’ command, if the
gesture is recognized as “right” - we transmit to robot the ‘6’ command.

3 Models and Algorithms for Gesture Recognition

The system of gesture recognition is based on a previous learning stage. Learning or
training stage consists of building a training set containing the description of all the
gestures used for control, performed by various users. Each gesture description is
called a pattern, and is analyzed and labeled by a human expert. The patterns in the
training set are composed by skeleton configurations at different moments of time.
A skeleton configuration is defined by the coordinates of the six joints. These six
points of interest from the skeleton are: wrist right, elbow right, shoulder right, wrist
left, elbow left, shoulder left. At every change of the skeleton position an event is
generated, and the coordinates corresponding to the six points of interest are stored
by the application program in a file.

In the recognition process the new gestures are compared with sequence of ges-
tures from the training set using the DTW (Dynamic Time Warping) algorithm. This
algorithm calculates DTW minimum distance between two coordinated sequences:
model sequence and candidate sequence (to be a gesture). DTW algorithm finds the
best match between the two sequences.



220 S.-G. Pentiuc, O.M. Vultur, and A. Ciupu

Fig. 2 The gestures set: a) “advance” (this gesture commands the mobile robot to go forward)
b) “behind” (this gesture commands the mobile robot to go back) c) “right” (commands the
mobile robot to go to the right) d) “left” (commands the mobile robot to go to the left)

4 Gesture Set

We used four gestures to control the mobile robot. The gesture set is presented
in figure 2. The gestures are: “advance”, “behind”, “left” and “right”. The gesture
acquisition is performed by the Kinect sensor. The recognition process is based on
the training set and gestures are recognized using DTW algorithm.

Gestural interface provides to users a simple and intuitive interaction to con-
trol a robot using Kinect sensor. Commands for the robot are performed with the
right or the left hand by indicating the direction forward, behind, left and right. All
commands from the host (computer + kinect) to the SRV-1 robot consist of ASCII
characters or decimal ASCII characters. All orders are confirmed by a robot to ac-
knowledge the host as a ”#” followed by a command. All commands can be executed
using a program with TCP / telnet communications capability.

5 Experimental Results and Discussion

We tested the system using a total of 400 gestures. We run each classifier (“ad-
vance”, “behind”, “left” and “right”) and we performed, for each classifier, 100
gestures of “advance”, 100 gestures of “behind”, 100 gestures of “right” and 100
gestures of “left”.

After performing tests we obtained the confusion matrix [10] shown in table 1.

Table 1 The confusion matrix

Classes Advance Behind Left Right

TP 63 64 66 53
TN 271 300 296 300
FP 29 0 4 0
FN 37 36 34 47



Control of a Mobile Robot by Human Gestures 221

System evaluation was performed using the following performance parameters:
classification accuracy, error rate, precision, recall, sensitivity (or true positive rate)
and specificity (or true negative rate).

A classified pattern is considered a sample that may be either positive or nega-
tive [11]. The classifier decision is represented in a structure known as a confusion
matrix [11]. The confusion matrix has four categories: true positives (TP), true neg-
atives (TN), false positives (FP) and false negatives (FN) [11]. True positives (TP)
are samples correctly identified as positives. True negatives (TN) correspond to neg-
atives samples correctly identified as negative. False positive (FP) refers to negative
samples incorrectly identified as positives. False negatives (FN) refers to positive
samples incorrectly identified as negative [11]. From the contents of this confusion
matrix, some performance parameters can be calculated, such as: classification ac-
curacy, error rate, precision, recall, sensitivity and specificity.

Classification accuracy, error rate, precision, recall, sensitivity and specificity ob-
tained for every gesture are presented in table 2.

Table 2 Classification accuracy, error rate, precision, recall, sensitivity and specificity

Gesture Accuracy Error rate Precision Recall Sensitivity Specificity

Advance 84% 17% 68% 63% 63% 90%
Behind 91% 9% 100% 64% 64% 100%
Left 91% 10% 94% 66% 66% 99%
Right 88% 12% 100% 53% 53% 100%

We obtained an average accuracy rate of about 88.5% with the maximum value
for “behind” and “left” gestures: 91%. The average precision rate obtained is 90.5%
with the maximum value for “behind” and “right” gestures: 100%. We obtained an
average sensitivity of about 61.5% with the maximum value for “left” gesture: 66%
and an average specificity of about 97.25% with the maximum value for “behind”
and “right” gestures: 100%.

6 Conclusions

In this paper we presented a new technique of interaction with a mobile robot using
dynamic gestures performed with arms and we made a performance analysis of the
interaction system. We calculated the following performance parameters: classifica-
tion accuracy of the system, error rate, precision, recall, sensitivity and specificity.

The main contributions of this work are the new interaction techniques proposed
(using dynamic gestures performed with arms) and the performance analysis of our
interaction system.



222 S.-G. Pentiuc, O.M. Vultur, and A. Ciupu

Acknowledgements. This paper is supported in part by the project “Doctoral Burses at
USV” – Contract no. POSDRU/6/1.5/S/22 project co-funded from European Social Fund
through Sectoral Operational Program Human Resources 2007-2013.

References

1. Microsoft Kinect for Windows SDK beta – Programming Guide
2. Vultur, O., Pentiuc, S.G., Ciupu, A.: Navigation System in a Virtual Environment by

Gestures. In: Proceedings of the IEEE 9th International Conference on Communications
(COMM), Bucharest, Romania (2012)

3. Craciun, E.G., Grisoni, L., Pentiuc, S.G., Rusu, I.: Novel Interface for Simulation of
Assembly Operations in Virtual Environments. In: Advances in Electrical and Computer
Engineering, pp. 47–52 (2013),
http://dx.doi.org/10.4316/AECE.2013.01008

4. Hahn, M., Kruger, L., Wohler, C., Kummert, F.: 3D Action Recognition in an Industrial
Environment. In: Proceedings of the 3rd International Workshop on Human-Centered
Robotic Systems (HCRS 2009), Bielefeld, Germany (2009)

5. Chang-Beom, P., Myung-Cheol, R.R., Seong-Whan, L.: Real-time 3D pointing gesture
recognition in mobile space. In: Proceedings of the 8th IEEE International Conference
on Automatic Face & Gesture Recognition (2008)

6. Van den Bergh, M., Carton, D., De Nijs, R., Mitsou, N., Landsiedel, C., et al.: Real-
time 3D hand gesture interaction with a robot for understanding directions from humans.
In: Proceedings of the IEEE International Symposium on Robot and Human Interactive
Communication (2011)

7. Cerlinca, T., Pentiuc, S.G., Vlad, V.: Real-time 3D Hand Gestures Recognition for Ma-
nipulation of Industrial Robots. In: Elektronika ir Elektrotechnika, pp. 3–8 (2013)

8. http://www.surveyor.com/SRV_info.html
9. Senin, P.: Dynamic Time Warping Algorithm Review, pp. 1–23. University of Hawaii al

Manoa (2008)
10. Khati, P.: Comparative Analysis of Protein Classification Methods (2004)
11. Falinouss, P.: Stock Trend Prediction Using News Articles. A Text Mining Approach

(2007), http://epubl.ltu.se/1653-0187/2007/071/
LTU-PB-EX-07071-SE.pdf

http://dx.doi.org/10.4316/AECE.2013.01008
http://www.surveyor.com/SRV_info.html
http://epubl.ltu.se/1653-0187/2007/071/LTU-PB-EX-07071-SE.pdf
http://epubl.ltu.se/1653-0187/2007/071/LTU-PB-EX-07071-SE.pdf


Improving Noise Robustness of Speech Emotion
Recognition System

Łukasz Juszkiewicz

Abstract. In this paper method of improving noise robustness of speech emotion
recognition system is proposed. Such a system has been developed for use in a
social robot, but its performance is highly degraded by environmental noise. To al-
leviate this problem, the histogram equalisation is proposed to reduce the difference
between feature vectors in clean and noisy conditions. In training phase of the sys-
tem the averaged histograms of pitch and MFCC are computed and then serve as
reference for equalisation. System performance was evaluated using Database of
Polish Emotional Speech, which was split into training and test sets. Test sets were
noised with 3 different noise samples. Presented preliminary results show a signifi-
cant improvement of recognition accuracy in noisy environment conditions.

1 Introduction

Emotion recognition is a crucial task in social robotics. In order to communicate in a
natural way with human, the robot should be able to recognise different expressions
of emotions: gestures, facial expressions, content of speech and the tone of voice.
This work focuses on the last issue, i. e. the recognition of emotions encoded in the
human voice intonation.

Social robots are often intended as daily companions of people. Therefore the
speech emotion recognition system of such robot should be able to operate corectly
also in noisy places, like for example public buildings. Changeable acoustic con-
ditions, ambient noise, sounds of motors of the robot etc. cause severe mismatch
between speech parameters in the training and the evaluation phase of the system
operation, which evokes degradation in the recognition accuracy.

Łukasz Juszkiewicz
Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics
ul. Janiszewskiego 11/17 50-370 Wroclaw
e-mail: lukasz.juszkiewicz@pwr.wroc.pl

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 223
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_27, c© Springer International Publishing Switzerland 2014



224 Ł. Juszkiewicz

In the field of automatic speech recognition, several methods were developed to
address this problem [6]. They fall into three main categories:

• removing noise from the speech signal,
• extracting noise-robust features,
• adapting the acoustic model.

These techniques were adapted for robustifing speech emotion recognition systems.
Several different approaches to this problem could be found in the literature: find-
ing more noise-robust parameters of speech [7], extracting large features sets [17],
speech enhancement by adaptive noise cancellation [21], adaptive acoustic space
adaptation [19]. This paper concentrates on the feature normalisation for improv-
ing their robustness. The histogram equalisation technique is proposed to reduce
the difference between feature vectors in clean and noisy conditions. Described sys-
tem was robustified and its performance was evaluated using the emotional speech
corpora.

The intended application of the system is being part of software of the robot
FLASH (see Fig. 1) [2]. FLASH (Flexible LIREC Autonomous Social Helper) is a
mobile-dexterous-social robot designed and constructed by Wrocław University of
Technology as a contribution to EU project LIREC. It is based on two-wheel balanc-
ing platform carrying its torso, which supports other components: the EMYS head
and arms. EMYS (EMotive headY System) possesses eleven degrees of freedom and
its face can display 6 basic emotions such as surprise, disgust, fear, angriness, joy
and sadness. Two arms have 7 degrees of freedom each and their structure resem-
bles human arms. They are equipped with dexterous hands WANDA (Wrut hANDs
for gesticulAtion). FLASH is used for human-robot interactions experiments and
emotion recognition is one of the crucial competences of such robot.

Fig. 1 Social robot FLASH



Improving Noise Robustness of Speech Emotion Recognition System 225

The rest of the paper is organised as follows. In section 2 the structure of the
discussed system is introduced. In section 3 modification of system is described.
In section 4 preliminary evaluation results are discussed. Finally, section 5 presents
conclusions and further research.

2 Structure of the Existing System

Commonly used pattern recognition algorithms are applicable to the speech emotion
recognition. However, there are at least two different approaches. One is estimating
the short-time signal parameters and modelling their changes with Hidden Markov
Models or similar tools [14, 12]. The other is extracting global features of the signal
and applying statistical methods and various types of classifiers: SVM [24, 4], arti-
ficial neural networks [23, 5], decision trees [20], LDA [13]. The second approach
was chosen—each utterance is analysed as a whole, so global features are extracted
and then used for classification.

The speech emotion recognition system [10] developed by this author has the
form of a set of MATLAB scripts using external tools — the programs Praat and
Weka. Praat is a free (Open Source) program for phonetic analysis of speech. It can
compute several parameters of speech: pitch, formants, spectrum, mel-frequency
cepstral coefficients and many others [15]. Weka 3 (Waikato Environment for
Knowledge Analysis) is a popular suite of machine learning software written in Java.
It contains a collection of visualization tools and algorithms for data preprocessing,
filtration, clasterisation, classification, feature selection and regression modelling
[8]. It is freely available under GNU General Public License. The structure of the
system is illustrated in figure 2. There are two phases of the system’s operation:
learning phase and evaluation phase. In the off-line learning phase feature selection
and supervised learning of classifier is carried. In the evaluation phase the prepared
system is used for on-line speech emotion classification.

Speech signal acquisition
(MATLAB)

Feature extraction
 (Praat & MATLAB)

Feature selection
(Weka)

Removing 
unnecessary

features
(Weka)

Classificator training
(Weka)

Classification
(Weka)

Training

Testing

Feature extraction
(Praat & MATLAB)

Speech signal acquisition
(MATLAB)

Fig. 2 Block diagram of speech emotion recognition system



226 Ł. Juszkiewicz

The speech signal is parametrised by Praat. The following parameters are
computed:

• pitch (fundamental frequency),
• mel-frequency cepstral coefficients (MFCC),
• harmonic to noise ration (HNR),
• long-term averaged spectrum (LTAS),
• intensity,
• spectrogram.

In order to extract more useful information from obtained vectors additional vectors
are derived from them:

• first and second order difference,
• values of local minima,
• values of local maxima,
• distance between adjacent extrema,
• value difference of adjacent extrema,
• slopes between adjacent local extrema,
• absolute values of the two above.

These parameters are time-series — their length depends on the duration of analysed
utterance. For classification purposes, it is necessary to convert the time series into
a feature vector of fixed length. This is achieved by treating time series as outcomes
of random variables and computing their statistics:

• arithmetic mean,
• median,
• standard deviation,
• global maximum,
• global minimum,
• first quartile,
• second quartile,
• range,
• interquartile range.

Using this method 1722 features are generated. The structure of the feature vector is
illustrated in figure 3. The number of features is then reduced in the feature selection
process.

Feature selection is done with algorithm provided by Weka, which aim is to find
the subset of features that are highly correlated with class, while having low inter-
correlation. Classifier is a Bayes net, also borrowed form Weka package, using a
simple probability estimator and a hill climbing search algorithm.

The main problem in applying the system to social robot such as FLASH is
noise: sounds generated by the robot itself and environmental noise. It is difficult
to completely filter out those noises so robustness of system to noise is highly de-
sired. Unfortunately, performance of the existing system downgrades considerable,
if analysed recordings are noised. Recognition accuracy of 4 emotions (neutral, joy,



Improving Noise Robustness of Speech Emotion Recognition System 227

sadness and anger) from Database of Polish Emotional Speech (see sec. 4.1) was
81%. Then zero mean white noise was added to recordings from the test set to
archive 30dB signal to noise ratio. As a result the recognition accuracy fell down to
25%, which means no recognition at all. With different types of noise results were
very similar.

3 Improving Noise Robustness

Additive noise introduces a nonlinear distortion to the speech signal parameters
space that has to be compensated. Several methods could be used for this purpose.
They can be categorised as model-based and data distribution based. In the first
technique statistics of the signal (mean, variance etc.) are normalised. Those meth-
ods are Cepstral Mean Normalisation (CMN), Mean and Variance Normalisation
(MVN) and derived from them such as Short-Time MVN and other [22]. The data
distribution based methods try to normalise a signal distribution to the reference.
Short-time Gaussianisation (STG) [3] and Histogram Equalisation (HEQ) [9] meth-
ods fall into this category.

The histogram equalisation method utilises a certain property of random variables
[16]. Suppose that X is a random variable with cumulative density function F(x) and
probability density function f (x). X could be transformed into a random variable Y
with reference probability density function fr(y) and cumulative density function
Fr(y) = F(x) using an invertible transformation y = T (x). Equality of cumulative
density functions

Fr(y) = Fr(T (x)) = F(x) (1)

leads to the expression of the transformation T (x):

T (x) = F−1
r (F(x)). (2)

It can be shown, that if the nonlinear distortion of the speech signal parameters in-
troduced by additive noise is an invertible transformation, than the HEQ normalised
parameters vector of clean utterance and the normalised parameters vector of noised
utterance should be equal. Let x be parameter vector that is subject of an invertible

Fig. 3 Structure of feature
vector



228 Ł. Juszkiewicz

transformation y = G(x) caused by noise. Then the cumulative density functions
will be

Fx(x) = Fy(N(x)) (3)

and as a result, the normalised vectors xn and yn will also be equal:

yn = F−1
r (Fy(N(x))) = F−1

r (Fx(x)) = xn. (4)

The histogram equalisation (HEQ) of MFCC coefficients is widely used in a noise
robust speech recognition [6]. This was the main motivation for making in this paper
an attempt to use HEQ for improving the speech emotion recognition accuracy in
noisy environment conditions.

3.1 Structure of Robustified System

The speech emotion recognition system has been modified to include the histogram
equalisation technique for improving noise robustness. The MATLAB Image Pro-
cessing Toolbox provides a histogram equalisation function histeq [1], which
chooses the transformation T (x) to minimise

|C1(T (x))−C0(x)|, (5)

where C0 is the cumulative histogram of signal and C1 is the cumulative sum of
the reference histogram. After estimating speech signal parameters, histograms of
pitch and each of the MFCC coefficients are equalised with respect to reference
histograms. Those are histograms of averaged pitch and MFCCs of recordings from
a training set, which are assumed to be not noised. The histogram equalisation is
done also in the training phase to keep consistency between feature vectors in the
training and the application phases. The feature extraction and selection stages were
not changed neither the classification stage. Structure of modified system is shown
in figure 4.

Speech
signal

acquisition.

Feature
extraction

Refrence
histograms

computation

Histogram
equalisation

Classifier
training

Classification

Training phase

Application phase

Feature
selection

Histogram
equalisation

Speech
signal

acquisition

Feature
extraction

Feature
selection

Fig. 4 Structure of robustified speech emotion recognition system



Improving Noise Robustness of Speech Emotion Recognition System 229

4 Results

The performance of the robustified system was evaluated using emotional speech
corpora. Training and test sets were prepared. Test sets were noised to find out how
it would affect the recognition accuracy.

4.1 Emotional Speech Corpora

The database of Polish Emotional Speech consists of 240 recordings [11]. Four male
and four female actor speakers were asked to enact in five phrases five different emo-
tions (anger, joy, sadness, fear and boredom) as well as the emotionally neutral state.
Phrases are uttered in Polish and their meaning is emotionally neutral. They were
recorded in a professional studio, so the sound quality is very high and the noise
level is very low. The number of recordings is the same for each emotion. These
recordings were evaluated by 50 humans — each of them was asked to classify 60
randomly selected samples. The average recognition ratio was 72%.

4.2 Test Sets

From 160 recordings 112 were randomly chosen (with stratification — number of
instances in each class was the same) to form a training set. Other 48 were used to
make noised test sets. Recordings were mixed, by program sox, with samples of
different noises: street traffic sounds, sound of about hundred people speaking in a
canteen and sound of a vacuum cleaner. For each type of noise test sets with signal
to noise ratio of 30dB, 20dB, 10dB and 0dB were produced. Recordings from the
training set were not modified.

4.3 Results of Tests

Training and test sets were prepared as described in section 4.2 — the procedure
was repeated 5 times to get 5 training sets and 5 test sets for each type of noise and
SNR combination. Differently from the other works [18], our system was trained
using only clean recordings. Selecting features and training the classifier separately
for each type of noise and its dB level combination would lead to the better recog-
nition accuracy for this particular combination, but is completely unfeasible in real
application. Tables 1 and 2 present the results of the system evaluation for different
types of noise and signal to noise ratios. Presented values are averaged recognition
accuracies. Infinite SNR means not noised recordings.

Table 1 Recognition accuracy of orginal system

SNR ∞ 30dB 20dB 10dB 0dB
Accuracy (any noise) 81% 25% 25% 25% 25%



230 Ł. Juszkiewicz

Table 2 Recognition accuracy of robustified system

SNR ∞ 30dB 20dB 10dB 0dB
Accuracy (talks) 78% 75% 73% 60% 47%
Accuracy (street) 76% 68% 60% 43% 35%
Accuracy (vac. cl.) 77% 55% 43% 33% 33%

Results show a significant improvement in recognition accuracy in the presence
of noise as well as slightly lower recognition accuracy in clean conditions, com-
paring with the orginal system. However improvement depends on type of noise
i. e. its frequency spectrum, dynamic range and other parameters. Best results were
achieved for sounds of talking people, slightly worse for street sounds and the worst
for vacuum cleaner noise — distortion introduced by certain types of noise cannot
be treated any longer as the invertible transformation of the parameters space and
compensated by the histogram equalisation. Moreover, in case of very low SNR, it
should be noted that even humans might have problems with recognising correctly
the emotion of recorded speech — emotional content is effaced by the noise. Lower
classification accuracy in clean conditions is a side effect of the histogram equali-
sation. MFCC and pitch histograms depend also on the emotion of speech. In the
original system their variations have a contribution in the recognition process. Af-
ter the histogram equalisation some of this information is lost, even thou invertible
transformation is used for equalisation.

5 Conclusions

This paper presents a robustification of the speech emotion recognition system ded-
icated to the social robot FLASH. Histogram equalisation technique was used to
compensate nonlinear distortion of speech parameters (MFCC and pitch) introduced
by noise. Reference histograms were computed as averaged histograms of the train-
ing set utterances. Preliminary evaluation of the robustified system performance
shows that recognition accuracy highly depends on type of noise. In case of cor-
ruption by sounds of talking people system performs well even at moderate SNR
ratios, but for a vacuum cleaner noise results are much worse. Experiments with
larger data sets should be conducted to verify those results. Future research aims at
speaker dependent recognition and evaluating real-time recognition performance of
the system.

References

1. Enhance contrast using histogram equalization,
http://www.mathworks.com/help/images/ref/histeq.html

2. Robot FLASH, http://lirec.ict.pwr.wroc.pl

http://www.mathworks.com/help/images/ref/histeq.html
http://lirec.ict.pwr.wroc.pl


Improving Noise Robustness of Speech Emotion Recognition System 231

3. Alam, M.J., Ouellet, P., Kenny, P., O’Shaughnessy, D.: Comparative evaluation of feature
normalization techniques for speaker verification. In: Travieso-González, C.M., Alonso-
Hernández, J.B. (eds.) NOLISP 2011. LNCS (LNAI), vol. 7015, pp. 246–253. Springer,
Heidelberg (2011)

4. Casale, S., Russo, A., Scebba, G., Serrano, S.: Speech emotion classification using ma-
chine learning algorithms. In: Proceedings of the 2008 IEEE International Conference on
Semantic Computing, pp. 158–165. IEEE Computer Society, Washington, DC (2008),
doi:10.1109/ICSC.2008.43

5. Dautenhahn, K.: Creating emotion recognition agents for speech signal. Multiagent sys-
tems, artificial societies, and simulated organizations. In: Socially Intelligent Agents:
Creating Relationships with Computers and Robots. Kluwer Academic Publishers (2002)

6. García, L., Segura, J.C., de la Torre, Á., Benítez, C., Rubio, A.: Histogram equalization
for robust speech recognition (2008),
http://www.intechopen.com/books/speech_recognition/
histogram_equalization_for_robust_speech_recognition

7. Georgogiannis, A., Digalakis, V.: Speech emotion recognition using non-linear teager
energy based features in noisy environments. In: 2012 Proceedings of the 20th European
Signal Processing Conference (EUSIPCO), pp. 2045–2049 (2012)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009),
doi:http://doi.acm.org/10.1145/1656274.1656278

9. Hilger, F., Ney, H.: Quantile based histogram equalization for noise robust large vocab-
ulary speech recognition. IEEE Transactions on Audio, Speech, and Language Process-
ing 14(3), 845–854 (2006)

10. Juszkiewicz, Ł.: Speech emotion recognition system for social robots. In: Postȩpy Robo-
tyki, pp. 695–704. Oficyna wydawnicza PW (2012) (in Polish)

11. Lodz University of Technology, Medical Electronics Division: Database of Polish Emo-
tional Speech, http://www.eletel.p.lodz.pl/bronakowski/
med_catalog/docs/licence.txt

12. Mao, X., Zhang, B., Luo, Y.: Speech emotion recognition based on a hybrid of
HMM/ANN. In: Proceedings of the 7th Conference on 7th WSEAS International Confer-
ence on Applied Informatics and Communications, vol. 7, pp. 367–370. World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point (2007)

13. Neiberg, D., Elenius, K.: Automatic recognition of anger in spontaneous speech
14. Nwe, T.L., Foo, S.W., Silva, L.C.D.: Speech emotion recognition using hidden

markov models. Speech Communication 41, 603–623 (2003), doi:10.1016/S0167-
6393(03)00099-2

15. Paul Boersma, D.W.: Praat: doing phonetics by computer, version 5.2.05 (2010),
http://www.praat.org/

16. Peebles, P.Z.: Probability, random variables, and random signal principles / Peyton Z.
Peebles Jr., 3rd edn. McGraw-Hill, New York (1993)

17. Schuller, B., Arsic, D., Wallhoff, F., Rigoll, G.: Emotion recognition in the noise applying
large acoustic feature sets. In: Speech Prosody (2006)

18. Schuller, B., Seppi, D., Batliner, A., Maier, A., Steidl, S.: Towards more reality in
the recognition of emotional speech. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2007, vol. 4, pp. IV-941–IV-944 (April 2007)

19. Schuller, B.W.: Speaker, noise, and acoustic space adaptation for emotion recognition
in the automotive environment. In: 2008 ITG Conference on Voice Communication
(SprachKommunikation), pp. 1–4 (2008)

http://www.intechopen.com/books/speech_recognition/histogram_equalization_for_robust_speech_recognition
http://www.intechopen.com/books/speech_recognition/histogram_equalization_for_robust_speech_recognition
http://doi.acm.org/10.1145/1656274.1656278
http://www.eletel.p.lodz.pl/bronakowski/med_catalog/docs/licence.txt
http://www.eletel.p.lodz.pl/bronakowski/med_catalog/docs/licence.txt
http://www.praat.org/


232 Ł. Juszkiewicz

20. Sidorova, J.: Speech emotion recognition with TGI+.2 classifier. In: Proceedings of the
12th Conference of the European Chapter of the Association for Computational Linguis-
tics: Student Research Workshop, EACL 2009, pp. 54–60. Association for Computa-
tional Linguistics (2009)

21. Tawari, A., Trivedi, M.: Speech emotion analysis in noisy real-world environment.
In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 4605–4608
(2010)

22. Viikki, O., Laurila, K.: Cepstral domain segmental feature vector normalization for
noise robust speech recognition. Speech Communication 25(1-3), 133–147 (1998),
doi:10.1016/S0167-6393(98)00033-8

23. Xiao, Z., Dellandréa, E., Dou, W., Chen, L.: Hierarchical Classification of Emo-
tional Speech. Tech. Rep. RR-LIRIS-2007-006, LIRIS UMR 5205 CNRS/INSA de
Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/École Centrale de
Lyon (2007)

24. Zhou, J., Wang, G., Yang, Y., Chen, P.: Speech emotion recognition based on rough set
and SVM. In: Yao, Y., Shi, Z., Wang, Y., Kinsner, W. (eds.) IEEE ICCI, pp. 53–61. IEEE
(2006)



Developing an Avatar Model
for Driving Simulators

Razvan-Vlad Vasiu, Ligia Munteanu, and Cornel Brisan

Abstract. Driving a vehicle in safety conditions means actually to maintain an equi-
librium in a complex system in which the main components are the runway, the ve-
hicle and the driver. The complexity of the situations that could appear, the safety
aspects and the continuous technological innovations in automotive industry have
imposed the development of technical systems capable in simulating the vehicle
driving, i.e. driving simulators. The dynamic pace of automotive development and
the increase of safety standards have led to the need to continuously upgrading such
devices. In order to reduce development time and resources, a virtual driving simu-
lator is described that allows the user to interact with a computer based simulation
(avatar) version, before having to build a full-scale simulator. Thus, the main goal
of the current paper is to describe the concept of the avatar driving simulator. This
avatar version of a driving simulator, named Computer Avatar Versatile Driving
Simulator - (CAV-Drive) is considered to be a computerized model that allows the
implementation in a software environment (for example, Matlab) different runway
models, vehicles - suspensions, chassis - and driving behaviours for testing and op-
timisation in the virtual world different types of driving simulators.

1 Aspects for an Avatar Driving Simulator Model

1.1 The Concept of Avatar Driving Simulator

The current paper proposes a new concept to develop and analyse a driving simu-
lator. This new concept is based on the correlation between the real world entities

Razvan-Vlad Vasiu · Cornel Brisan
Tehnical University of Cluj-Napoca,
B-dul Muncii nr.103-105, cod 400641, Cluj-Napoca, Romania
e-mail: {razvan.vasiu,cornel.brisan}@mdm.utcluj.ro

Ligia Munteanu
Institute of Solid Mechanics of Romanian Academy, Bucharest, Romania
e-mail: ligia munteanu@hotmail.com

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 233
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_28, c© Springer International Publishing Switzerland 2014



234 R.-V. Vasiu, L. Munteanu, and C. Brisan

that generate cues for the human subjects when driving and their graphical repre-
sentation (avatar) counterparts which simulate the corresponding cues in an artificial
simulated environment (fig. 1). Besides the driver, the physical entities that appear
in the real world are:

• the vehicle - suspensions and the direction mechanisms
• the runway (road) - along which the vehicle is moving with respect to its geom-

etry and roughness

Fig. 1 The correlation between the physical entities and avatar entities that define CAV-Drive

According to the relationships among entities described in fig. 1 the concept of
CAV-Drive is based on describing abstracted entities with respect to the physical
ones using mathematical models through which the motion and visual cues can be
simulated. Thus, the corresponding avatar entities are expressed as:

• the vehicle is described by four simulated suspension models and direction
• the runway: the road geometrical parameters impose a 3-DOF closed loop chain

(mechanism) for vehicle direction handling, while the vertical excitations that in-
fluence the vehicle suspension due to road roughness impose 4-open loop chains

1.2 State of the Art

Driving simulators are complex systems used for simulating and reproducing the
effect of driving in a controlled environment. Developing driving simulators is a
demanding task and requires a large amount of investment in time for structural
implementation and resources as the costs of equipment can be overwhelming [5],
especially when dealing with high-fidelity simulators. Usually, validating driving
simulators refers to their hardware and mechanical structure, but one of the most
demanding challenges is to simulate the vehicle dynamic model as well as retaining
its mechanical properties in order to obtain realistic results. There are many phe-
nomena with non-linear behaviour that influence the sensations that appear when
driving (the contact between the tire and the road surface, for example) and because
of that, are difficult to be computed using an accurate mathematical model. Simu-
lated vehicle models are extensively studied in literature, but most virtual models



Developing an Avatar Model for Driving Simulators 235

are non-deterministic, while the real models are not [10]. Even so, the concept of
a fully simulated driving simulator, described as an avatar, can be useful for a user
in having a realistic feedback and a interactive window to test new concepts [11]
in the process of virtual prototyping for full-scale driving simulator. The current
approaches deal with validations for road design/roughness or simulated vehicle
models, in which the suspensions are usually represented using a classical spring-
mass damper. There are several types of dependent and independent suspensions
and also steering mechanisms currently used in the car manufacturing [1], [12].
Using kinematic analysis, several virtual suspensions were implemented by [9] and
[8] with promising results. Furthermore, different types of runway models with re-
spect to road roughness where described in [7], [13], while the road geometry was
classified and modelled in a modular manner and can be used for simulations [17].
The mechanical structures that offers insight to reproducing vehicle motions are nu-
merous and were heavily discussed and described in [3]. Considering the entities
presented in 1.1 which describe the complete road-vehicle model, results from sim-
ulated models from each corresponding component were presented, this is because
a complete road-vehicle model is yet to be developed.

Each entity will be presented in the following chapters focusing on the set of
parameteres required to be implemented. Chapter 2 deals with the description of a
road profile and how this profile can be used as an input for generating motion cues.
Next, in chapter 3 a 3-DOF parallel mechanism (closed chain) is presented which
will be used as motionbase. In chapter 4 a full road-vehicle model with suspensions
is presented along with a suspension mechanism, whilst in chapter 5 the CAV-Drive
concept is developed by integrating all the entities and validated through numerical
results. In chapter 6 briefly conclude the CAV-Drive concept.

2 Mathematical Road Modelling

The road or the runway is considered one of the most important excitation factors
for a road simulator, this is because while driving disturbances may occur from
the driver’s steering actions and at the level of the tyre/suspension systems (road
irregularities - roughness, holes and others) [4]. These disturbances are described
by vibrations, forces and torques. In automotive industry, they are very important
mainly in driver safety and are felt by the driver from excitation sources such as
the road profile. Thus, in an simulated environment accurate representation of dif-
ferent types of roads leads to obtaining realistic values for the forces that act upon
the wheel. The influence of the road profile was discussed in [14]. Furthermore,
the comfort of driving a vehicle is related to the effects of the road profile. These
effects are produced due to several parameters whose values are categorized by ISO
[15]. The road surface refers to the existence of profiles that describe road irregu-
larities. Road roughness is the main parameter that characterize different categories
of standardised roads and the accurate computation of this parameter contributes
significantly in increasing the realism of a simulator [6]. Some mathematical as-
pects with respect to road roughness are presented. There are several mathematical



236 R.-V. Vasiu, L. Munteanu, and C. Brisan

relations of road roughness [13]. Usually road roughness is expressed using the
Power Spectral Density ψ described by [7]:

ψ(Ω) =

⎧⎪⎪⎨⎪⎪⎩
a/(2πΩ)2 Ω ≤ 1/2π

a/(2πΩ)1.5 Ω ≥ 1/2π
(1)

The spatial angular frequencyΩ values are taken into consideration according to the
road category, as detailed in [15]. Using the Power Spectral Density ψ, the discrete
form for roughness is given as:

z′r(t)+ω0 ∗ zr(t) =
√
ψ(Ω0)uw(t) (2)

where:

1. zr is the road roughness
2. ω0 is the reference angular frequency given in rad/s
3. Ω0 is the reference spatial angular frequency given in rad/m
4. u represents the constant speed of a vehicle
5. w(t) white noise signal with power spectral density being 1

It is worth mentioning that not only the road roughness has an effect on the vehicle,
but also the speed u at which this vehicle is moving on such a profile can have
an important impact that leads to an increase/decrease of vibrations. The range of
values for the above parameters categorize the road roughness into 5 types of roads
ranging from A-category roads (highways) to E-category roads (country roads). An
A-cateogry road profile is presented in fig. 2.

Fig. 2 A-category Road Roughness



Developing an Avatar Model for Driving Simulators 237

3 The Motionbase Platform

When a vehicle is moving along a runway several movements among its relative
components appear. This can have a major effect when dealing with putting a full-
vehicle model on a motionbase. The vehicle model with forces and torques that
appear when moving at tire level is represented in fig. 3. It may be emphasized
that the forces FX , FY and the torque MZ at the vehicle’s center of gravity can be
simulated using a corresponding mechanism. Such mechanism is formed by a planar
mechanism (with 3-DOF) and 4 serial loops, each of them with 2-DOFs. Again, the
generalized forces (Fi, Mi) can be developed by the four serial loops, each of them
being inputs for the wheel. An important remark is that the generalized forces can
reproduce both road geometric roughness and tire-road contact forces.

Fig. 3 Forces that act on a vehicle and the corresponding 3-DOF mechanism

The mechanism decribed in fig.3 is a planar parallel mechanism. The kinematic
analysis of such a mechanism considers a base coordinate system K0 which is
attached to the fixed frame at the midpoint of the length L. The coordinate sys-
tem - K1, is attached to the mobile platform of the mechanism, at the point M. The
direct kinematic problem can be solved using the cut body method [16]. The input
kinematics variables (known variables) for the direct pose problem are:

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
q1

q2

q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where q1,q2 and q3 decribe the movements of the sliders A, D and F, respectively.
The coordinates of the end-effector located at point M are described as functions of
q1,q2 and q3 :

xM = f1(q1,q2,q3)

yM = f2(q1,q2,q3)

α = f3(q1,q2,q3)

(4)



238 R.-V. Vasiu, L. Munteanu, and C. Brisan

The input kinematics variables for the inverse pose problem are the coordinates of
the end-effector M (xM,yM ,α). In this case the displacement values for q1,q2 and q3

are computed using the current geometrical parameters, see fig. 3. The solutions are:

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(yM − ((h/2)cos(α)+ (d/2)sin(α))+

√
l21 − xM + L/2−a2

(yM − ((h/2)cos(α)− (d/2)sin(α))+
√

l21 − (L/2− xM−b)2

(xM + L/2)+msin(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

4 Simulated Suspension Model

Suspension systems allow relative motions from the wheel to the body chassis of
a vehicle. These relative motions are discussed in [1]. There are many suspension
mechanisms, each of them contribute to the vehicle maneuvrability and driver safety
and confort. A suspension model is presented in fig. 4 which is a variant of the
MacPherson suspension [2], but other types can be implemented. The full-vehicle
model has four suspensions models. Each suspension produces an independent re-
sponse from each other given a road profile excitation.

Fig. 4 Suspension Model: one suspension model and vehicle suspension model

The suspension mechanism in fig. 4 is described by the following parameters:

• qs the road response input which lets the suspensions to have vertical motions
• θ1 - considered to be the steer angle of the tire
• θ2 - the camber angle is the angle of the wheel relative to vertical axis of the

road [1]



Developing an Avatar Model for Driving Simulators 239

5 Numerical Results

In order to validate the CAV-Drive concept, it was proposed to simulate the motions
for the vehicle when moving in a straight line with the runway being described as
an A-category road with the profile from fig. 2. Thus, it is considered:

• for the runway, the laws of motion are imposed for only for q1, q2, with q1=q2,
q3 = 0 and q1 = f (t) with f = at+b, t = [0 . . .10], see fig.3

• four independent vehicle suspesions based on fig.4 with the following suspension
parameters:

– Spring Stiffness of suspension, k = 200 N/m
– Damping constant of suspension, b = 30 Ns/m

The block diagram for CAV-Drive was implemented using Matlab Simulink (fig.5)
with the avatar presented in fig.6.

Fig. 5 Simulink implemetation of CAV-Drive concept

Fig. 6 Simulink display of CAV-Drive concept

Based on these considerations the aim is to determine the linear and angular ac-
celeration that act on the chassis’ center of gravity. These accelerations are presented
in figs. 7 and 8.



240 R.-V. Vasiu, L. Munteanu, and C. Brisan

Fig. 7 Values for linear accelerations that act on the chassis

Fig. 8 Values of angular accelerations that act on the chassis

The values for the accelerations are obtained according with the values deter-
mined and described in specialized literature [7].

6 Conclusions

The paper proposes and describes the concept of CAV-Drive as a fully simulated
model for driving simulators by integrating a computed road profile, four open loop
chains that respond to the road excitations, a parallel planar manipulator which
moves the vehicle and a full-vehicle model with suspensions that simulates the



Developing an Avatar Model for Driving Simulators 241

dynamic behaviour. This avatar model can be a very powerful assistance tool that
can be designed to ensure feedback in an interactive manner, this is because the
avatar allows the implementation of different types of suspension models by chang-
ing the suspension parameters for each wheel and can simulate different types of
road profiles (geometry and roughness) without having to physically develop them.

Acknowledgements. Research supported by the grant 149/2011.

References

1. Jazar, N.R.: Vehicle Dynamics: Theory and Applications. Springer, New York (2008)
2. Rill, G.: Vehicle Dynamics. Lecture Notes, Regensburg, Germany (2008)
3. Merlet, J.-P.: Parallel Robots. Springer, The Netherlands (2006)
4. Bogsjo, K., Podgorski, K., Rychli, I.: Models for road surface roughness. Vehicle Sys-

tem Dynamics: International Journal of Vehicle Mechanics and Mobility 50(5), 725–747
(2012)

5. Weinberg, G., Harsham, B.: Developing a low-cost driving simulator for the evaluation
of in-vehicle technologies. In: Proceedings of the 1st International Conference on Auto-
motive User Interfaces and Interactive Vehicular Applications, pp. 51–54 (2009)

6. Pacurari, I.-R.: Cercetari teoretice si experimentale privind dezvoltarea simulatoarelor
de drum (romanian), Theoretical and Experimental Research for road simulators. PhD
Thesis, Universitatea Tehnica din Cluj-Napoca, Cluj-Napoca, Romania (2011)

7. Gonzalez, A., O‘Brien, E.-J., Lia, Y., Casheel, K.: The use of vehicle acceleration mea-
surements to estimate road roughness. J. Vehicle System Dynamics 46(6), 483–499
(2008)

8. Mántaras, D., Luque, P., Vera, C.: Development and validation of a three-dimensional
kinematic model for the McPherson steering and suspension mechanisms. J. Mechanism
and Machine Theory 39(6), 603–619 (2004)

9. Papegay, Y., Merlet, J.-P., Daney, D.: Exact kinematics analysis of Car’s suspension
mechanisms using symbolic computation and interval analysis. J. Mechanism and Ma-
chine Theory 40(6), 395–413 (2005)

10. Schwarz, C.: Validating Vehicle Models. In: Handbook of Driving Simulation for Engi-
neering, Medicine, and Psychology (2011)

11. Kohler, T., Matzler, K., Fuller, J.: Avatar-based innovation: Using virtual worlds for real-
world innovation. J. Technovation 29, 395–407 (2009)

12. Alexandru, P., Visa, I., Talaba, D., Alexandru, C.: Antonya, C.: Modelarea Statico-
Dinamica a Mecanismelor de Ghidare ale Rotilor automobilelor (romanian). In: Static
and Dynamic Modeling of the Guiding Mechanisms for Automobile Wheels, Lux Lib-
ris, Brasov, Romania (2005)

13. Schiehlen, W.: White noise excitation of road vehicle structures. J. Sadhana 31(4), 487–
503 (2006)

14. McManus, K.J., Mann, A., Evans, R.P.: The Analysis of Road Roughness and the Per-
ception of Road Roughness. In: 5th International Symposium on Heavy Vehicle Weights
and Dimensions, pp. 1–11 (1998)

15. ISO 8608: Mechanical vibration-Road surface profiles-Reporting of measured data
(1995)



242 R.-V. Vasiu, L. Munteanu, and C. Brisan

16. Brisan, C.: Aspects of reconfigurability of a special class of parallel robots. In: 2007
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6
(2007)

17. Brisan, C., Vasiu, R.-V., Munteanu, L.: A modular road auto-generating algorithm for
developing the road models for driving simulators. J. Transportation Research Part C:
Emerging Technologies 32, 269–284 (2013)



Interconnection of Federated Clouds

Massimo Ficco, Luca Tasquier, and Beniamino Di Martino

Abstract. Cloud Federation is an emerging computing model where multiple re-
sources from independent Cloud providers are leveraged to create large-scale dis-
tributed virtual computing clusters, operating as within a single Cloud organization.
This model enables the implementation of environmental diversity for Cloud ap-
plications, and overcomes the provisioning and scalability limits of a single Cloud,
by introducing minimal additional cost for the Cloud consumer. In such a scenario,
it is necessary to leverage specific middleware technologies that enable the effec-
tive support of inter-Cloud communication services between Cloud providers. This
paper proposes an interconnection solution for Cloud Federations based on publish-
subscribe services.

1 Introduction

In the last years, the Cloud services market experienced an extremely rapid growth,
as reported in several market research reports, which may lead to severe scalability
problems [12]. Therefore, in order to cope with the resource capacity limits of a sin-
gle Cloud provider, as well as to address the vendor lock-in problem associated to
the choice of a single proprietary Cloud solution, the concept of federating multiple
heterogeneous organizations is receiving an increasing attention by the key players
in the Cloud services market [2]. Cloud Federation extends the scalability of Cloud
systems by introducing extreme elasticity in resource management, and hence, en-
abling service requests to be satisfied also in presence of rapid increasing consumer
demand and heavy usage of the infrastructure.

On the other hand, the main problem in Cloud Federation is to seamlessly
and transparently join, from the operational point of view, two or more Clouds,

Massimo Ficco · Luca Tasquier · Beniamino Di Martino
Department of Industrial and Information Engineering,
Second University of Naples, via Roma 29, 81031 Aversa, Italy
e-mail: {massimo.ficco,luca.tasquier,

beniamino.dimartino}@unina2.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 243
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_29, © Springer International Publishing Switzerland 2014



244 M. Ficco, L. Tasquier, and B.D. Martino

characterized by substantial differences in their organizations. Therefore, a large
effort is being spent within the Cloud Computing community to identify open solu-
tions and standards for Clouds interoperability, such as the Open Cloud
Manifesto [17], Open Cloud Computing Interface (OCCI) [6], Open Cloud Stan-
dards Incubator [16], and the Cloud Data Management Interface (CDMI) [19].
However, although significant benefits may result from the interconnection
of multiple Clouds into an uniform way, the open and dynamic nature of these
systems coupled with their heterogeneity, makes the communication in inter-Cloud
environments an extremely challenging task. Thus, a suitable network virtuali-
zation framework is needed to deal with the heterogeneity of the different
available Cloud solutions in lack of an uniform data communication model. Specif-
ically, in order to enable what is called in the literature “Cloud Federation”, i.e.,
empowering the run of distributed applications on resources located across in-
dependent Cloud infrastructures, it is essential for all the resources belonging
to the cooperating Clouds to be able to communicate with each other, by act-
ing as virtual nodes operating within a single distributed organization. There-
fore, in this paper we envision a federation solution based on the well-known
publish-subscribe service [8]. We propose an inter-Cloud middleware, supporting
the seamless interconnection of distributed resources in different administrative
domains.

2 Related Work

Cloud Federation is a research topic of great interest. At the state of art, many
research works and projects have been devoted to Cloud Computing issues re-
lated with the concept of federation. Several vendor-agnostic open-source solutions
have been proposed, like LibCloud [21], DeltaCloud [22], jClouds [23], Simple-
Cloud [15], mOSAIC [5, 11], and MODAClouds [1]. However, they mainly present
approaches, abstractions and toolkits for the design and execution of applications
on multiple Clouds that aim at supporting system developers and operators in ex-
ploiting multiple Clouds and in migrating their applications from Cloud to Cloud as
needed. For example, mOSAIC provides a Software Platform and a Cloud Agency
for supporting the Cloud developers during the development and deployment of a
Cloud application in a Sky computing infrastructure. In particular, it introduces sup-
plementary layers of abstractions that offer uniform access to heterogeneous Cloud
resources, independently from the Cloud provider and the technologies it supports,
allowing applications to work with abstract Cloud resources. However, only simple
pipes and shared memory are provided to support peer to peer communication at
application level between distributed components. The LibCloud project is a client
library for accessing Clouds, supporting a wide range of providers, implemented in
Python and Java. Analogously, jClouds, is another stable library implementation tar-
geting portable abstractions for Cloud access. DeltaCloud is an open source project
developing an API to deal with several Cloud service providers. It targets REST ac-
cess and backward compatibility across versions, providing long-term stability for



Interconnection of Federated Clouds 245

scripts, tools and applications. Being a service-based REST API, it works like an
intermediary layer, receiving commands and sending them through specially created
Cloud drivers, which provide direct operation mapping with the provider’s API.

To the best of our knowledge, ViNe [24] is the only work that addresses connec-
tivity among virtual components distributed across several Cloud administrative do-
mains. ViNe incorporates the necessary mechanisms for recovering full connectivity
among ViNe-connected nodes, which could potentially be distributed across several
Cloud administrative domains. However, it has not been conceived as a standard
solution, but only as an embedded approach for deployment of user-level virtual
routers for implementing overlay network communication.

3 Publish-Subscribe Service for Clouds Interconnection

The proposed publish-subscribe service-based solution, enables the interconnection
of multiple Cloud organizations scattered throughout the network. It provides an in-
tegration layer that manages the heterogeneity among the Clouds without the neces-
sity of implementing several interfaces and adapters requiring heavy coding efforts
and complex software artifacts. The proposed middleware represents an efficient so-
lution for Cloud interoperability thanks to the decoupling and flexibility offered by
the publish-subscribe interaction model, that can be effectively exploited in order to
deal with Cloud orchestration and the definition of advanced aggregated services on
top of the ones offered by the single federated Cloud organization.

The adopted publish-subscribe service offers data-centric communications based
on an event-based messaging model. The clients can play two distinct roles: pub-
lishers that produce information (e.g., available data sets, runtime resource, storage
space) and distribute the associated notifications, and subscribers that consume noti-
fications in which they are interested. A notification is the act of delivering an event.
The interest of subscribers in the published notifications are specified in terms of
subscriptions (consisting of several predicates). Typically however, a client can take
on both publisher and subscriber roles. The brokers are the entities, located on the
different sites belonging to the federation, that perform matching and forwarding
of messages with respect to a certain event schema (e.g., the advertisement tree or
message type) and according to specific error recovery policies. They realize a vir-
tualized network infrastructure overlaid on top of the physical connections, which
supports the communication between the publisher and subscriber entities operat-
ing within the federation. The main strength of publish-subscribe systems is their
ability of ensuring asynchronous communication among the involved nodes that in-
teract in a loosely decoupled way, resulting in an extremely scalable infrastructure
for information exchange and distributed workflows.

The proposed integration layer articulates according to a well known schema
based on two fundamental building blocks that can be implemented through general
reusable software solutions or design patterns:

• the Adapter resolves the technological heterogeneity of each Cloud with respect
to the integration layer according to a “lingua-franca” approach, i.e., a common



246 M. Ficco, L. Tasquier, and B.D. Martino

language whose format and syntax is used for the communications between the
Clouds. Each Cloud has an adapter from the common language to its own one.

• the Broker is a mediation component between the Clouds, containing the whole
integration layer logic. In this manner, it is not necessary to explicitly connect
each Cloud with the other ones by an ad-hoc connector, but only plug its Adapter
to the Broker, without bringing any change to the integration solutions and/or the
Broker itself. Therefore, the integration is transparent from the perspectives of
both the individual integrated Clouds and the resulting federated solution.

Figure 1 shows the proposed solution, where the front-end of each Cloud is intercon-
nected to an Adapter, and the Adapters are interconnected with the Brokers through
a publish/subscribe service (in order to improve the offered scalability and relia-
bility, the federation can encompass more than one Broker). The integration logic
within the Broker and the Adapter is structured by means of well known Enterprise
Integration Patterns (EIP) [13], resulting into an efficient implementation. In partic-
ular, the EIPs are implemented by using a versatile modular integration framework,
such the Apache Camel [14]. Such framework allows us to define routing and me-
diation rules in a variety of domain-specific languages. Moreover, in our realization
of the integration layer, we extended this solution by considering a component-
oriented approach for the development of the Broker. Therefore, we do not limited
ourselves in using only an integration framework, but relied an Enterprise Service
Bus (ESB) [18] for designing and implementing the interaction and communication
between mutually interacting software components in service-oriented architecture
(SOA). Such a solution is typically already equipped with an integration framework,
but in addition it provides a complete component container for realizing the integra-
tion through component-oriented programming. This facilitates the realization of
the Broker, since we can use the available implementation of the components we
may need, as well as it allows to include the Adapters already available in the IT
market for most of the adopted technologies, such as Web Services, CORBA or
RMI. The result is a considerable limitation of the amount of code to make, and
the adoption of standard and open-source frameworks. Moreover, it increases the
flexibility in the number and kind of information sources to be integrated.

In addition, we have considered an asynchronous communication pattern be-
tween the Brokers and all the integrated components (realized as an ESB). This
allows us to have a scalable and easy solution to dynamically plug new informa-
tion sources. An event-driven middleware [8] based on a well-known standard, such
as Java Service Message (JMS) [20] has been used for this purpose. It provides
content-based filtering by means of selector strings expressed with a subset of the
SQL92 conditional expression syntax. Therefore, with a publish-subscribe service
the Clouds can articulate requests toward the federated components by using notifi-
cations. Moreover, XML is the adopted lingua-franca within the considered Cloud
federation and the format used for the notifications exchanged among the Adapters
by the adopted publish-subscribe service [4]. Therefore, the adapter implementation
can be assumed in terms of EIP:



Interconnection of Federated Clouds 247

Fig. 1 Cloud federation architecture based on a publish/subscribe service

• An incoming Message Endpoint is realized in order to accept messages incom-
ing from the front-end of a given Cloud. There is also a similar, but outgoing,
Message Endpoint for sending messages toward the interior front-end of the fed-
erated Cloud. Such endpoints are coded based on how the front-end has been
realized, e.g., through a socket or a CORBA object.

• A Message Translator performs the conversion of the received data in the internal
format used by the federated Cloud, to a notification in XML and of performing
the dual operation for passing from XML to the internal format.

• Two components are present so as to publish the obtained notifications and/or to
receive notifications published by the other Clouds within the federation.

In such a federation, there are several general key requirements that the adopted pub-
lish/subscribe service-based solution should satisfy, including scalability, reliability,
performability, and security [7].

4 Conclusions

This paper presents a flexible federated Cloud architecture, in which the cooperation
between the involved organizations is based on a scalable publish-subscribe middle-
ware for dynamic and transparent interconnection of multiple types of resources and
entities. In the future work we aim at designing specific techniques for monitoring
performance and security aspects [10, 9, 3].

Acknowledgements. This work has been supported by mOSAIC (grant FP7-ICT-2009-5-
256910), Collaborating Smart Solar-powered Micro-grids (CoSSMic - grant FP7-608806)
projects, and PRIST 2009, “Fruizione assistita e context aware di siti archelogici complessi
mediante terminali mobile”, founded by Second University of Naples.



248 M. Ficco, L. Tasquier, and B.D. Martino

References

1. Ardagna, D., et al.: Modaclouds: A model-driven approach for the design and execution
of applications on multiple clouds. In: 2012 ICSE Workshop on Modeling in Software
Engineering (MISE), pp. 50–56 (2012)

2. Buyya, R., Ranjan, R., Calheiros, R.: InterCloud: Scaling of Applications across multiple
Cloud Computing Environments. In: Proceedings of the 10th Int. Conf. on Algorithms
and Architectures for Parallel Processing (2010)

3. Casola, V., Cuomo, A., Rak, M., Villano, U.: Security and performance trade-off in per-
fcloud. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586,
pp. 633–640. Springer, Heidelberg (2011)

4. Cilardo, A., Coppolino, L., Campanile, F., Romano, L.: Adaptable parsing of real-time
data streams. In: Conf. on Parallel, Distributed and Network-based Processing, pp. 412–
418 (2007)

5. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Building a
mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010. LNCS,
vol. 6586, pp. 571–578. Springer, Heidelberg (2011)

6. Edmonds, A., Johnston, S., Metsch, T., Mazzaferro, G.: Open Cloud Computing Interface
- Core & Models (2010), http://occi-wg.org/about/specification/

7. Esposito, C., Ficco, M., Palmieri, F., Castiglione, A.: Interconnecting Federated Clouds
by Using Publish-Subscribe Service. Cluster Computing, 1–17 (2013)

8. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many Faces of Pub-
lish/subscribe. ACM Computing Surveys 35(2) (2003)

9. Ficco, M.: Security event correlation approach for cloud computing. Journal of High
Performance Computing and Networking 7(3) (2013)

10. Ficco, M., Romano, L.: A generic intrusion detection and diagnoser system based on
complex event processing. In: Proceedings - 1st Int. Conf. on Data Compression, Com-
munication, and Processing, pp. 275–284 (2011)

11. Ficco, M., Venticinque, S., Di Martino, B.: mOSAIC-based intrusion detection frame-
work for cloud computing. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS,
vol. 7566, pp. 628–644. Springer, Heidelberg (2012)

12. Gartner: Forecast: Platform as a Service, Worldwide, 2010-2015, 3Q11 Update (2011),
http://www.gartner.com/id=1792219

13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley Professional
(2003)

14. Ibsen, C., Anstey, J.: Camel in Action. Manning Publications (2011)
15. Inc, Z.T.: Simple Cloud API (2012), http://simplecloud.org/
16. Incubator, O.C.S.: Cloud Management Initiative (2011),

http://www.dmtf.org/standards/Cloud
17. Open Cloud Manifesto Community: Open Cloud Manifesto (2009),

http://www.opencloudmanifesto.org
18. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action: Example Implementations in

Mule and ServiceMix. Manning Publications (2008)
19. SNIA: Cloud Data Management Interface (2012), http://www.snia.org/cdmi
20. Snyder, B., Bosanac, D., Davies, R.: ActiveMQ in Action. Manning Publications (2011)
21. The Apache Software Foundation: Apache Libcloud Python library (2011),

http://incubator.apache.org/libcloud
22. The Apache Software Foundation: Deltacloud API (2011),

http://deltacloud.apache.org/
23. The Apache Software Foundation: jClouds (2011),

http://code.google.com/p/jclouds
24. Tsugawa, M., Matsunaga, A., Fortes, J.: User-level virtual network support for sky com-

puting. In: Fifth IEEE Int. Conf. on e-Science, e-Science 2009, pp. 72–79 (2009)

http://occi-wg.org/about/specification/
http://www.gartner.com/id=1792219
http://simplecloud.org/
http://www.dmtf.org/standards/Cloud
http://www.opencloudmanifesto.org
http://www.snia.org/cdmi
http://incubator.apache.org/libcloud
http://deltacloud.apache.org/
http://code.google.com/p/jclouds


 

  
F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 
Studies in Computational Intelligence 511,  

249 

DOI: 10.1007/978-3-319-01571-2_30, © Springer International Publishing Switzerland 2014  

Effective QoS Monitoring in Large Scale 
Social Networks 

Luigi Coppolino, Salvatore D’Antonio, Luigi Romano,  
Fotis Aisopos, and Konstantinos Tserpes 

Abstract. Social Networking activities are still occupying the majority of the time 
that Internet users are spending in the Web. The generated content and social dy-
namics represent precious resources that everybody wishes to control. This scena-
rio poses several challenges including the fact that different implementations, 
technologies, and formats are used to manage web content and social dynamics in 
heterogeneous, often antagonistic, Social Networking Sites. In order to master this 
heterogeneity the SocIoS project has defined an API that enables the aggregation 
of data and functionality made available by different Social Networking Sites 
APIs and their combination into complex and novel application workflows. How-
ever, the dependency on Social Networking Sites does not allow users of the So-
cIoS API to control the Quality of Service provided by the underlying platforms. 
In this paper we show how the QoSMONaaS (QoSMONitoring as a Service) 
component can be used to monitor and evaluate relevant metrics, such as availa-
bility and response time of the API calls, that are specified in the Service Level 
Agreement document. QoSMONaaS has been developed within the context of the 
SRT-15 project to implement a dependable (i.e. unbiased, reliable, and timely) 
monitoring of Quality of Service. 

Keywords: SLA Monitoring, Social Networks, QoS Monitoring. 

                                                           
Luigi Coppolino · Salvatore D’Antonio · Luigi Romano 
Unviversity of Naples Parthenope, Naples, Italy 
email: {luigi.coppolino,salvatore.dantonio, 

luigi.romano}@uniparthenope.it 

Fotis Aisopos · Konstantinos Tserpes 

National Technical University of Athens, Athens, Greece 
email: {fotais,tserpes}@mail.ntua.gr 

Konstantinos Tserpes 

Harokopio University of Athens, Athens, Greece 
email: tserpes@hua.gr 



250 L. Coppolino et al. 

 

1 Introduction 

Social Networks (SN) are the ideal future service marketplaces. SN users are in-
creasing at a tremendous pace with Web 2.0 and SN Sites (SNS) have attracted 
more than 500 million regular users within just their first 5 years of existence. The 
number of the potential customers is huge, coming from almost every societal 
class, cultural background, and age. The requirements are modest, namely a com-
puter, a browser, network access, and the natural need for socializing. Taking 
advantage of the social dynamics as well as the vast volumes of amateur content 
generated every second in a SNS, is a fundamental step towards creating a poten-
tially huge market of services. Providing developers with cross-platform tools that 
enable them to manage the dynamically generated content and complex social 
interactions will create an agile and profitable market of services and will bring 
the Internet of Services concept a step closer to realization. Such enabling tools 
will make it possible to build, deploy, and potentially sell services that combine 
data and functionalities from two or more different SN services disregarding the 
underlying SN implementation. Such challenging issues are currently addressed 
by the EU FP7 SocIoS project [1] that aims at paving the way for building qualita-
tive, functional and usable business applications exploiting the User Created Con-
tent and the Social Graph of users in Social Networks. The main artifact that  
SocIoS presents is a framework (such as an API) for allowing application devel-
opers of variable level of expertise to combine content and services from a wide 
range of SN sites into complex workflows. The approach for services development 
and deployment is “write once, run everywhere”. The resulting services can be 
deployed on the developer’s own server or inside the SocIoS framework. There 
they can be discovered and used by other users of the platform, allowing SocIoS 
to orthogonally address the debate regarding interoperability through a Trusted 
Third Party (TTP) or an ad-hoc, distributed solution. The terms of service usage, 
including billing information, will be defined by Service Level Agreements 
(SLAs). It is thus necessary to guarantee that breaches of such SLAs are imme-
diately detected. If  the root-cause of the breach is accurately detected, then the 
proper reaction strategy can be implemented and the liability of each party in-
volved in the transaction can be identified. Instead of developing its own QoS 
monitoring solution, the SocIoS framework makes use of the QoS monitoring 
component developed within another FP7 project, namely the SRT-15 project [2]. 
QoSMONaaS (QoSMONitoring as a Service) [3,4,5,6] is an implementation of a 
dependable (i.e. unbiased, reliable, and timely) business process level monitoring 
framework. 

In this paper we present the integration of the two frameworks, and describe 
how QoS-MONaaS can be used to monitor a typical SocIoS application. The pa-
per is structured as follows. Section 2 presents the SocIoS framework. Section 3 
describes the conceptual architecture of QoSMONaaS. The integration between 
the SocIoS framework and QoSMONaaS is presented in Section 4, while Section 
5 provides some concluding remarks and indications about future work. 



Effective QoS Monitoring in Large Scale Social Networks 251 

 

2 The SocIoS Framework 

The SocIoS framework is a software stack that operates on top of SNSs with the 
purpose of: (i) aggregating data and functionality from a multitude of underlying 
social media platforms, (ii) providing a tool for developers to build social analyt-
ics services on top of the supporting social media platforms, and (iii) accommo-
dating newly created applications that use the abovementioned services and  
provide them as through usable interfaces. 

With the proper configuration and development of intermediate services, the 
framework can support any application that requires the harvesting of social me-
dia, filtering the content with sophisticated features while at the same time har-
nessing the scale issues of the endeavour (volume of data, number of users and 
platforms). 

 

 

Fig. 1 SocIoS Framework High Level Architecture 

The objectives mentioned above are achieved through a layered Service-
Oriented Architecture (SOA) which is depicted in Fig. 1. The SocIoS framework 
consists of several main entities, such as the SocIoS Object Model, the Core Ser-
vices, the Auxiliary Services and the Front-End. A short description of these com-
ponents is given below. 

The SocIoS Object Model (SOM) [7] is an aggregation of methods provided 
by underlying SNS APIs. The SocIoS API maps a standard interface to collec-
tions of methods and objects of the social networking site APIs. The SOM defines 
both a meta-API (SocIoS API) and a data model.  



252 L. Coppolino et al. 

 

TheCore Services are a set of adaptors that implement the SocIoS API me-
thods as well as the data transformation between the supported SNSs’ APIs and 
the higher service layers (SocIoS Auxiliary Services).  

The Auxiliary Services are third party services that extend the functionality of 
the core services and use the same data models as the core services. Depending on 
their purpose, their operations may or may not be exposed as part of the SocIoS 
API in the sense that they can extend it. This differentiates them from integrated 
and non-integrated Auxiliary Services. In general, they provide analytics to the 
data delivered by the Core Services and even though they can be re-used, they 
were developed with the purpose to meet the requirements of a certain application. 
Some examples are: 

• Media Item Ranking and Recommendation (Integrated): A service for assessing 
the subjective value of a media item to a specific user, 

• Topic-Specific Community Detection (Integrated): A service for identifying 
social media user communities that are implicitly linked to each other, 

• Event Detection (Integrated): A service for highlighting intense or unusual 
activity within a community, 

• Social Filtering (Integrated): A service for managing social media user groups, 
• Translation (Integrated): A service for translating textual content in various 

languages, 
• The FlexiPrice service (non-Integrated): A service that enables two users (a 

buyer and a seller) to set a price of a content item, 
• The Crowdsourcing Game (non-Integrated): A service that allows the posting 

of crowdsourcing tasks in the form of a game. 

Finally, the SocIoS Front-End provides a user interface for interacting with the 
components as well as an authentication mechanism. It also deals with the user 
rights and privacy settings while in certain applications, it may also serve as a 
point of integration for the Core and Auxiliary Services. 

3 QoSMONaaS Conceptual Architecture 

QoSMONaaS was initially thought as an application running on top of the cloud 
platform developed within the FP7 SRT-15 project (Stream Routing Technology 
for 2015) [2]. The main objective of the SRT-15 project is to build a scalable plat-
form for connecting Future Internet (FI) business applications and services. The 
platform will enable the discovery and integration of dynamic enterprise services 
on the Internet. Furthermore it will allow for dependable and scalable cloud-based 
processing of data coming to and from a variety of heterogeneous enterprise ser-
vices spread across multiple distributed locations. In order to be able to embrace 
the change in the enterprise information processing landscape, the SRT-15  
 



Effective QoS Monitoring in Large Scale Social Networks 253 

 

platform relies on technologies that support rapid change, i.e. cloud computing, 
content-based routing [8] and complex event processing [9]. Within the SRT-15 
platform, QoSMONaaS implements a dependable QoS monitoring facility, which 
is made available as a service to third parties willing to access monitoring services. 
QoSMONaaS was designed to be easily ported on top of other cloud platforms. 
Portability was achieved by relying on a clean cut approach, which clearly identi-
fies: (i) the interface that QoSMONaaS shares with other applications (referred to 
as the "Basic Interface"), that is the interface that all applications use to request 
platform services; (ii) the interface that QoSMONaaS uses to gather information 
which is specifically needed for the purpose of QoS monitoring. This information 
is not provided to other applications. Thus, this interface is referred to as the "Ex-
tended Interface"; (iii) two key services, namely Authentication and Anonymiza-
tion, that QoSMONaaS uses from the underlying platform, and which might need 
some modifications and/or require some development efforts if QoSMONaaS is 
ported on top of a different cloud platform (this is referred to as the "Platform-
Adaptation layer"). 

More details on QoSMONaaS architecture can be found in [3]. In order that 
QoSMONaaS is able to monitor the actual QoS level delivered by the Service 
Provider to the Service User, the Service Provider has to provide the underlying 
cloud platform (or the Platform-Adaptation layer) with both a formal description 
of the Service Level Agreement, containing information about the Key Perfor-
mance Indicators (KPIs) which are of interest, and a formal description of the 
specific business process. The Service User will then request the monitoring ser-
vice, in the same way as it would request any other service. As already mentioned, 
QoSMONaaS uses the service provided by an anonymization system in order to 
avoid that the real identity of monitored parties be revealed to the monitoring ap-
plication. This makes the QoSMONaaS application "trusted by design" since it 
would not be able to act in favor of one of the parties. The basic idea is that since 
the monitoring tool ignores the real identities of the involved parties, it cannot 
cheat. In the current implementation we use a simple scheme, which is in all re-
spects similar to those used in many social network applications [10]. Basically, 
the approach relies on the simple graph-anonymization technique, which replaces 
the identifying information of the parties with random identifiers. 

4 SocIoS – QoSMONaas Integration 

The SocIoS framework (Fig. 2) allows users to get data from SNs according to a 
predesigned workflow.  
 
 
 
 
 
 



254 L. Coppolino et al. 

 

 

 

Fig. 2 SocIoS framework logical view 

The workflow describes: i) the data sources, and ii) what kind of auxiliary ser-
vices has to be applied to filter the gathered data before some of them reach the 
end user. Workflow execution can be regulated by some SLAs describing the QoS 
to be guaranteed to the end user. As an example, some users will get a best effort 
service, whereas others, such as news agencies, can buy a real-time service where 
data is due to happen within a specific timeframe. 

SLA management was not natively implemented within the SocIoS framework, 
but was demanded to the QoSMONaaS application. To enable QoSMONaaS to 
monitor SLA compliance, the SLA have to be formalized according to the WS-
Agreement language [12]. An excerpt of a possible SLA is provided in Fig.3. It 
describes two constraints, one for the end user and one for the service provider. 
Specifically, the "CallOfFindActivities" term expresses the constraint “the number 
of the FindActivities API invocations must be less than 5 in an observation win-
dows of 20 seconds”, while the "ResponseOfFindActivities" term expresses the 
constraint “the average response time of the FindActivities API must be less than 
5 seconds in an observation windows of 20 seconds”. To perform  the integration 
between QoSMONaaS and the SocIoS framework two steps were necessary: i) 
data format adaptation; and ii) formalization of the domain description for the sake 
of the monitoring component. 



Effective QoS Monitoring in Large Scale Social Networks 255 

 

Regarding the data format, it was necessary to convert SocIoS data to the for-
mat used by QoSMONaaS. QoSMONaaS data are formatted according to the 
Google Protocol Buffers (GPB) [11] format, that is a way of encoding structured 
data in an efficient yet extensible format. Concerning the domain description, an 
ontology describing the relationships between the data concepts represented in the 
SocIoS data stream was created. As an example Fig. 4 shows the definition of the 
“FindActivities” concept. Such a concept is associated to the call of the SocIoS 
API findActivities() which retrieves the activity stream of a specified SN user. 
The concept is described by using the property “MultipleFilter” and the property 
“pr-OnStream”. “MultipleFilter” is used to explain how to identify a particular 
concept on the data stream (in this case a filter with multiple conditions is used), 
while “pr-OnStream” identifies the stream where this kind of concept can be 
found. This property is useful in case of multiple input streams. It is worth noting 
that thanks to the high modularity of QoSMONaaS, its adoption for the monitor-
ing of the services provided by the SocIoS framework does not require any mod-
ification of the application, but only the provisioning of proper configuration data. 

In order to demonstrate the integration between QoSMONaaS and the SocIoS 
framework we have executed a simple run with a controlled workload to check the 
correct operation. The selected scenario involves three actors, namely an end user 
of the SocIoS platform, a service provider (SocIoS) and QoSMONaaS that is in 
charge of monitoring the SLA signed by the user and the service provider. Before 
starting the monitoring of the process, two actions are required: i) Provider Regis-
tration, and ii) User Registration. During the first step the SocIoS service provider 
has to register to the QoSMONaaS application. At that time the SLA and the on-
tology are provided to QoSMONaaS for the automatic generation of the state ma-
chines allowing the actual monitoring of the SLA compliance based on the data 
provided by the SocIoS framework. After the registration the provider enables end 
users to monitor the provided service. During the second step, the end user regis-
ters to QoSMONaaS for monitoring the SocIoS-based service, and specifies a 
monitoring time window. Once the first two steps are completed the monitoring 
task can start and the end user is informed in real-time about violations of KPIs in 
accordance with the agreed SLA.  

In the SocioS use case the SLA regulates the relationship between the Core 
Services and the end users. The Core Services deliver an API to the end users 
either implicitly (if the end user employs a front-end) or explicitly (if the end user 
is a developer). The important aspects that need to be guaranteed in order to en-
sure a certain level of provided quality from the Core Services are the amount of 
API calls available (availability) and the response time for each one of these calls. 
The reason is that during a pilot execution phase it has been noticed that the de-
pendency of the Core Services to the underlying SNS APIs affects the quality as 
perceived by the end user (Quality of Experience-QoE). The SLA to be monitored 
includes two metrics for the findActivities() SocIoS API call, i.e. FindActivities 
and ResponseOfFindActivities. The first refers to the number of calls made to  
that Core Service method, whereas the latter to the time it took the Core Services 
server to respond. 



256 L. Coppolino et al. 

 

 

 

Fig. 3 An example of SLA for the SocIoS framework 

 

Fig. 4 Ontological description of the SocIoS framework domain 



Effective QoS Monitoring in 

 

In order to feed QoSMON
phase has been used, in 
shown in Fig. 5.  

Fig. 5 SocIoS sample data 

An instance that depict
while the end-user were
Fig. 6. 

Fig. 6 Outcome of the QoSM

Details about the two m
seen in Fig. 7 and Fig. 8 f
and the response time of t

Fig. 7 Violation report for th

 

#|2013-02-04
T12:38:23.359+0200|INF
javax.enterprise.syste
_ThreadName=Thread-1;
class eu.sociosprojec
calling findActivitie

n Large Scale Social Networks 25

NaaS a log of the SocIoS pilots’ execution and evaluatio
which the values of interest were recorded in the form

ts the violations that occurred during the pilot evaluatio
e invoking the findActivities() method is illustrated i

 

MONaaS component for the SocIoS SLA evaluation 

metrics that were evaluated and the SLA breaches can b
for the amount of API calls in the time unit (availability
these calls, respectively. 

he number of invocations of findActivities in a time unit 

FO|glassfish3.1|
em.std.com.sun.enterprise.server.logging|_ThreadID=1
| SOCIOS_EVAL CORE
ct.sociosapi.server.adaptors.youtube.YoutubeAdaptor
es() and getting 16 results in 4320 msec|#] 

57

on 
m 

 

on 
in  

be 
y) 

 

04;



258  

 

 

Fig. 8 Violation report for th

5 Conclusions an

In this paper we have dis
projects, namely the SRT
scribed the usage of SRT
NaaS, for the Quality of 
demonstrate the integratio
a simple run with a contr
work a more extensive ex
date the proposed integrat
monitoring application for

Acknowledgments. This w
7thFramework Programme un
to thank all their project co-w

References 

1. The SocIoS project, ht
2. The SRT-15 project, ht
3. Romano, L., De Mari, D

in the Cloud. In: 2011 F
cations and Processing (

4. Adinolfi, O., Cristaldi, 
chitecture for QoS Mon
on Signal Image Techn
pp. 527–532 (2012) 

5. Cicotti, G., D’Antonio, 
frastructures: The QoSM
Unland, R. (eds.) Intell
Springer, Heidelberg (2

L. Coppolino et a

he response time of findActivitiesmethod in a time unit 

nd Future Work 

scussed a joint work made by partners of two EC funde
T-15 and the SocIoS projects. In particular we have de
T-15 component for QoS monitoring, named QoSMO
service assessment of a typical SocIoS application. T

on between QoSMONaaS and SocIoS we have execute
rolled workload to check the correct working. As futur
xperimental campaign will be performed in order to val
ted approach. Furthermore, security issues affecting Qo
r cloud computing environment will be investigated [13

work has been partly funded by the European Commission
nder contract no.257774 and no. 257843. The authors also wis
workers, in particular Emmanuel Sardis and Luigi Sgaglione. 

tp://www.sociosproject.eu/ 
ttp://www.srt-15.eu/ 
D., Jerzak, Z., Fetzer, C.: A Novel Approach to QoS Monitorin
First International Conference on Data Compression, Commun
(CCP), June 21-24, pp. 45–51 (2011) 
R., Coppolino, L., Romano, L.: QoS-MONaaS: A Portable A

nitoring in the Cloud. In: 2012 Eighth International Conferenc
nology and Internet Based Systems (SITIS), November 25-2

S., Cristaldi, R., Sergio, A.: How to Monitor QoS in Cloud I
MONaaS Approach. In: Fortino, G., Badica, C., Malgeri, M
ligent Distributed Computing VI. SCI, vol. 446, pp. 255–26
012) 

al.

 

ed 
e-

O-
To 
ed 
re 
li-
oS 
3]. 

n's 
sh 

ng 
ni-

Ar-
ce 

29, 

In-
M., 
64. 



Effective QoS Monitoring in Large Scale Social Networks 259 

 

6. Cicotti, G., Coppolino, L., Cristaldi, R., D’Antonio, S., Romano, L.: QoS monitoring 
in a cloud services environment: the SRT-15 approach. In: Alexander, M., et al. (eds.) 
Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 15–24. Springer, Heidelberg (2012) 

7. Tserpes, K., Papadakis, G., Kardara, M., Papaoikonomou, A., Aisopos, F., Sardis, E., 
Varvarigou, T.A.: An Ontology for Social Networking Sites Interoperability. In: Proc. 
of the 4th International Conference of Knowledge Engineering and Ontology Devel-
opment (KEOD 2012), pp. 245–250 (2012) 

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys (CSUR) 35(2), 114–131 (2003) 

9. Complex Event Processing: Applications, products, research, and developments in 
event processing, http://www.complexevents.com/event-processing/ 

10. Ying, X., Pan, K., Wu, X., Guo, L.: Comparisons of randomization and K-degree ano-
nymization schemes for privacy preserving social network publishing. In: Proceedings 
of the 3rd Workshop on Social Network Mining and Analysis, SNA-KDD 2009 (2009) 

11. Google Protocol Buffer,  
https://developers.google.com/protocol-buffers/ 

12. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, 
J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Global Grid Forum 2 (2004) 

13. Ficco, M., Rak, M., Di Martino, B.: An intrusion detection framework for supporting 
SLA assessment in Cloud Computing. In: Proceedings of the 2012 4th International 
Conference on Computational Aspects of Social Networks, CASoN 2012, pp. 244–249 
(2012) 

 
 



Personalized Recommendation of Semantically
Annotated Media Contents

Alba Amato, Beniamino Di Martino, Marco Scialdone, and Salvatore Venticinque

Abstract. The optimal decision about the best set of recommendations to the user
is a relevant problem in different application contexts. Here we focus on a method-
ology for dynamically and efficiently retrieval and delivery of multimedia contents,
like documents, images, video etc., which have been annotated with semantic infor-
mation. We introduce the definition and the computation of the similarity between
sets of concepts belonging to a common ontology and discrete optimization tech-
nique for choosing the ones to be recommended. We enable personal agents reason-
ing about the best set of recommendations, which are relevant to the user’s profile,
so optimizing his/her satisfaction. We present its implementation in a framework
that supports experts in the domain of the Cultural Heritage to augment the archae-
ological site with a set of multimedia contents.

1 Introduction

The definition and the computation of the similarity between sets of concepts be-
longing to a common ontology is really important to help sharing knowledge in
those contexts where documents, images, video etc. are annotated with semantic
information. Similarity-based classification is useful for retrieving and filtering in-
formation in an automatic way when it needs to recommend any contents or appli-
cations which are relevant to a profile that has been described by the same ontology.
In fact the similarity between two sets of concepts represents the evaluation of the
similarity of the information content they share in the ontology. This is essential
in application aimed at managing knowledge and filtering it in such a way that all

Alba Amato · Beniamino Di Martino · Marco Scialdone · Salvatore Venticinque
Department of Industrial and Information Engineering,
Second University of Naples, Naples, Italy
e-mail: {alba.amato,beniamino.dimartino,

salvatore.venticinque}@unina2.it,
marcoscialdone@hotmail.com

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 261
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_31, c© Springer International Publishing Switzerland 2014



262 A. Amato et al.

the relevant information for the user is returned in a reasonable amount of time and
in an automatic way. One important application field is represented by Agent Sys-
tems, in particular for improving the decision of the agents used for dynamically
and efficiently data processing, retrieval and delivery. In this paper, we introduce
a method for enabling personal agents reasoning about the best set of recommen-
dations, which are relevant to the user’s profile, so optimizing his/her satisfaction.
We present its implementation in a framework that supports experts in the domain of
the Cultural Heritage [1] to augment the archaeological site with a set of multimedia
contents. The proposed methodology allows for evaluating the relevance of media
contents, for filtering the ones which do not satisfy some constraints, and finally for
decision about the best set to be recommended to the user. The paper is organized as
follows: in Section 2 some relevant works are presented, Section 3 describes the ap-
plication context; in Sections 4 is described the proposed solution and its application
to a case study; in Sections 5 an experimental evaluation is presented; conclusions
are drawn in Section 6.

2 Related Work

Several approaches have been developed to compute the similarity between sets of
concepts using different methodologies. In this paper we take into account only
those based on the distance between concepts. In particular, in the selected ap-
proaches, the similarity function is based on the idea that concepts which are close
according to their positions in the ontology are more similar than topics that have a
larger distance. In [2] authors chose the minimal linking approach based on the set
of linkings Ml between concept sets A and B. For r ∈ Ml it holds ∀a ∈ A ∀b ∈ B
with (a,b) ∈ r and vice versa. For the distance calculation those elements from Ml

is chosen for which the sum of concept distances Δ∗ is minimal:

distl(A,B) = minr∈Ml ( ∑
(a,b)∈r

Δ∗(a,b)
|r| )

In [3] authors assume that, given two sets of concepts A and B, it is not sufficient
that a concept in the source set matches a concept in the target set to obtain 1 as
result but it is necessary that all the concepts in the source set should have a related
concept in the target set. Besides they believe that it is necessary a score to obtain
a similarity function that respects the inequality that can occur if there are many
concepts with high similarity in the two sets or if there are many concepts with low
similarity in the two sets of concepts. So they introduce an algorithm based on the
following formula:

m

√
∑n

k=0(ak)m

n

where ak represents the similarity between a concept of the set A and the set B
calculated using an extension of Dijkstra’s algorithm; n represents the number of
elements of the set A; m represent a score to specify how much the higher values



Personalized Recommendation of Semantically Annotated Media Contents 263

should be weighted with respect to lower ones. In [4] the distance between the sets
A and B, is calculated as:

∑
c∈A,c′∈B

D(c,c′)

where D(c,c′) is the length of the minimal path between the nodes corresponding to
c and c’ in the Ontology, if such a path exists, and is 0 otherwise. As this definition
involves some redundancy, authors introduce the notion of normalized set of simple
concepts. In [5] the similarity measure between the set A and B is calculated as:

SF(A,B) =
1
|A| ∑

ti∈A

maxt j∈BS(t1, t2)

where:

S(t1, t2) =

{
e−α l · eβh−e−βh

eβh+e−βh , if t1 �= t2,

1, otherwise

where l is the length of the shortest path between concept t1 and t2 in the graph, h
is the level in the tree of the direct common subsumer from t1 and t2, α ≥ 0 and
β ≥ 0 are parameters scaling the contribution of shortest path length l and depth h,
respectively. The depth of the direct common subsumer is used in the calculation
to express the fact that topics at upper layers of hierarchical semantic nets are more
general and are semantically less similar than topics at lower levels. Our approach
is really similar to the previous but the scaling of the contribution of shortest path is
computed as a normalization respect to the number of arcs between concepts.

3 The Agent Based MARA Framework

The availability of personal devices can be used to plan and support the tourist by
suggesting him the itineraries, the Points Of Interest (POI) and by providing mul-
timedia contents in the form of digital objects which can semantically augment the
perceived reality. In this context relevant issues are the profiling of the user, the
discovery and the delivery of the contents that can improve the user’s satisfaction,
new models of interactions with reality. The MARA (Mobile Augmented Reality in
Archeology) project aims at designing and implementation of a context-aware plat-
form for assisted fruition through mobile devices of archaeological sites. Agents
execute autonomously and proactively in order to support the user’s activity within
the environment where he is moving. Agents discover surrounding objects, they
use them to update the representation of the user’s knowledge, react using the local
knowledge to organize and propose the available contents and facilities by an inter-
active interface. They implement context aware services which use personal devices
to collect perceptions and for content delivery. An ontology has been designed to
describe the sites of interest and to annotate the related media. A general part in-
cludes the concepts which are common to all the class of applications that can be



264 A. Amato et al.

modeled according to the proposed approach. Among the others the Time class and
his properties (CurrentTime, AvailableTime, ElapsedTime, ExploitationTime) allow
to organize and assist the visit taking into account time information and handling
time constraints. Position class and its properties allow to localize the user and ob-
jects around him. An application specific part of the ontology, developed by the
experts of the application field, includes the concepts that belong to the domain of
the cultural heritage and additional classes and individual. The ontology is used for
annotating the multimedia contents. To annotate texts, images and any kind of con-
tents we extended the AktiveMedia tool. In Figure 1 a picture of the Amphitheater
of S. Maria Capua Vetere is annotated with the Column and the Arc classes which
are part of this kind of building. The output produced by the annotator is an RDF
file with concepts and properties of the AktiveMedia ontology and of the domain
ontology. Multimedia contents are automatically stored into the repository after the
annotation phase. Each content can be linked to more points of interest.

Fig. 1 The annotator

4 Context Aware Semantic Discovery

The semantic discovery service of MARA returns a set of digital objects related to
POIs in the pervasive environments. Each content is annotated by concepts from
the ontology and can be discovered by a SPARQL query to the content repository.
The result of the query is a set of N instances of digital objects whose relevance to
the user context has not been considered yet. The context awareness of the services
is exploited by computing the relevance of each content to the profile p, which is
that semantic representation of the context, including interest, position, etc.. The an-
notation and the user’s profile are represented using the Vector Space Model (VSM).
VSM is a model for semantic representations of contents as vectors of items created
by G. Salton [7]. In our case aj is the vector of concepts ci, j of the domain ontology.

• aj =< {c1, j,o1, j},{c2, j,o2, j}, ...,{cl, j,ol, j}> ∀ j = 1..N
• p =< c1,c2, ...,cm >

Sizes l and m are the number of different concepts that appear in the annotation
aj and in the profile p. If a term occurs in the annotation, ok, j is the number of



Personalized Recommendation of Semantically Annotated Media Contents 265

occurrences of that term in the annotation. We defined a score A(aj,p) to measure
the relevance of an annotation aj to the profile p by the following formula 1

wj = w(aj,p) =
1
l

l

∑
k=1

rk where rk = ok, j ∗ 1
m

m

∑
i=1

1
dk,i + 1

(1)

where dk,i is the minimum number of edges that connect the node representing the
concept ck, j of the annotation to ci of the profile. In Equation 1, for each item ck, j of
the vector aj the relevance to the profile p is computed by adding the relevance of
that concept to each concept of the profile, and by multiplying each contribution for
the number of occurrences ok, j. The relevance between two concepts is calculated by
dividing 1 by the number of edges of the ontology that connect the node representing
the concept ck of the profile to ck, j plus 1. As a result we have a score for each
annotated item that is associated to a POIs so that it is possible to order the items
and the POIs according to user’s preferences. However a user have some additional
limitations that are the time available, the distance he wants to go away, the device’s
capability to play certain types of content, etc. For this reason it is necessary to
select the valid contents excluding, for example, those that cannot be enjoyed by his
device. Besides it is necessary that the duration of the visit does not exceed the time
that is available to the user. To do this we formulate a set of constraints to take into
account the capabilities of the device and the time available to play the contents.
Hence, the best set of contents to be delivered should 1) maximize the score, 2) be
compliant with the device technology and 3) not exceed time and space limits. This
problem can be reduced to a discrete optimization problem that consists in searching
the optimal value (maximum or minimum) of a function f : x ∈ Z n → R, and the
solution x = {x1, . . . ,xn} in which the function’s value is optimal. f (x) is said cost
function, and its domain is generally defined by means of a set of m constraints on
the points of the definition space. Constraints are generally expressed by a set of
inequalities:

n

∑
i=1

bi, jxi ≤ a j ∀ j ∈ {1, . . . ,m} (2)

and they define the set of feasible values for the xi variables (the solutions space of
the problem). In our case: wi ≥ 0∀i = 1..N,W = {b1, ..,bm} where wi represents a
score and B a set of constraints bi, each one composed of N + 1 integer. We have to
compute

max
N

∑
k=1

wixi

so that
N

∑
k=1

bi, jxi ≤ b j,N+1

with xi ∈ {0,1} ∀i = 1..N. The goal is to maximize the value delivered. The vector
x represents a possible solution: its components xi are 1 or 0 depending on whether
the object is included or not in the best set. To set the constraints we create a ta-



266 A. Amato et al.

ble with a column for each content and a row for each requirement. The rows of
the matrix B are contain in each cell bi, j = 1 if the requirement is necessary for
the content in that column, bi, j = 0 otherwise. In Table 4 we specify the ability of
the device to reproduce audio, to reproduce video, to show text files, to show 3D
models. Furthermore in the last column of the table we have bi,N+1 = 0 if the device
cannot play/display the content to which the row i refers, N otherwise. Table 4 (a)
represents the case of a device that can play audio and video and show text file, but
it cannot show 3D contents. For example, the fourth row represents the fact that the
device can not show 3D contents, so it is necessary to exclude the content C2. This
example, where b j ∈ 0,1, is a particular case of a more general problem of greater
complexity can be formulated by representing with bi, j ∈ Z the quality of a content
and with bi,N+1, the degree of a capability for the device. In this case a feasible solu-
tion can include a subset of contents which are compliant with the quality of service
that can be perceived by the device. Similarly, time constraints are set using a vector
having for each content the minutes needed for its fruition. The sum of the duration
of each content included in the solution must be less or equal than user availability
(in terms of minute for the visit). For example, if the visitor can spend 30 minutes
for the visit and the minutes needed for each content are the one specified in Table 4
(b). To satisfy the constraint: ∑N

i=1 bixi ≤ 30, we must include in the solution C3 only
without other content. Of course it means that this solution is feasible, but it does
not mean that this the best one. To address the complexity of this problem we use
the Branch and Bound technique described in [6]. After that a solution is available,
referring each content to a POIs, the itinerary is computed in real time by a Navit
facility that allows to find the best route through all the destinations.

Table 1 Constraints and device capabilities

(a) Content requirements

C1 C2 ... Cn Device
Audio 1 1 ... 0 N
Video 1 0 ... 1 N
Pdf 1 1 ... 1 N
3D 0 1 ... 0 0

(b) Time requirements

C1 C2 ... Cn Available
Time 20 30 ... 8 30

5 Experimental Results

In this section we evaluate effectiveness and performance of the proposed approach
in order to verify that recommendation are really relevant and are provided in real
time to the user. We evaluate the similarity between a given profile and a set of con-
tents, which have been expressed by a vector of concepts belonging to our ontology.
After that in a second step we choose only the set of contents that maximize the
relevance, but satisfy a number of constraints defined in the user profile. We used
a machine with Intel Core i5 2.67GHz and 4GB RAM. The first test has been per-
formed varying 1, 2, 4, 8, 16 and 32 concepts for describing both content and and



Personalized Recommendation of Semantically Annotated Media Contents 267

Fig. 2 Performance evaluation of similarity with random profile and contents

Fig. 3 Time to compute the similarity for all annotations of KB

profile. In this case concepts have been chosen randomly and only performance are
significant. In Figure 2 we can see that the time needed for computing the similarity
increases exponentially with the number of concepts. In a second test, in order to
define a significant profile we suppose that it is automatically updated by the appli-
cation that saves the most recent 16 distinct concepts belonging to the last viewed
contents. We have built in this way a user profile keeping an annotation with 16 con-
cepts and we compared it with all the others in our knowledge base. The knowledge
base is composed of 118 contents produced and annotated by experts of the appli-
cation domain, who are also authors of the ontology. The number of concepts used
for each annotation varies from 2 to 19. We observe in Figure 3 that the mean time
is 15.5 ms, which means that 2 seconds are enough to update the similarity between
the user profile and all contents in our knowledge base. In the second step we run
the Branch and Bound algorithm for filtering only the most relevant contents which
satisfy the user/device constraints. For each content we specify the time needed for
delivery, and if they require to show text, to play audio or video. The computation
has been performed with different input and varying the number of contents till 32.
We can see in Figure 4 that here the time increases very fast after a certain number
of contents till to 22.5 seconds. We can consider that a reasonable choice would be



268 A. Amato et al.

Fig. 4 Performance evaluation of content filtering

Fig. 5 Distribution of similarity

to include no more than 26 items in this step. In fact in this case the time does not
exceed 1 second and it is comparable with that one needed to evaluate the similarity.
Moreover it would be noneffective to consider not relevant contents and to exceed
with the number of recommendations. Unfortunately the evaluation of similarity
does not provide good results. In Figure 5 we show the similarity between the user
profile and all the annotations in the knowledge base in ascending order. The prob-
lem we experienced is a narrow range between the less relevant content and the most
relevant one equals to 30%. It is due above all to the limited depth of the ontology
and the recurrence of the same concepts. To confirm the previous consideration we
also generated random annotations by the ontology varying the maximum distance
between the a concept of the annotation and the other concepts of the profile. This
allowed us to evaluate how the defined metric and the ontology affect the similarity
regardless how the annotations have been produced. However in Figure 6 we no-
ticed the same results. We can conclude that with this kind of ontology, even if the
proposed methodology could be used to compute recommendations in real time, it
needs to improve the metric for evaluating the relevance of annotations. In order
to get a wider range within which the similarity can varies we can consider to use
weights for defining the relevance of concept in the annotation, in the profile or in
the ontology.



Personalized Recommendation of Semantically Annotated Media Contents 269

Fig. 6 Second Experiment with Random Profile

6 Conclusion

In this paper we propose the study of semantic techniques for computing the simi-
larity between sets of concepts belonging to the same ontology, representing user’s
profile and annotation of multimedia contents. We evaluated tis implementation in
a framework that supports the experts in the domain of the Cultural Heritage to
augment the archaeological site with a set of multimedia contents. We discussed
performance results and effectiveness of the proposed techniques to recommend
such media to visitors. Even if performance figures demonstrate the feasibility of
the approach and they can be used for tuning applications and dimensioning the
computing resource, however the chosen metric is not effective to evaluate the rel-
evance of annotations with shallow ontologies. Future work includes the design of
solution to the described problems by the associations of weights to the concepts
into the annotation and into the user profile. We will also consider the extension
of the semantic matching approach by computing the semantic distance between
concepts belonging to different ontologies.

Acknowledgements. This work has been supported by PRIST 2009, Fruizione assistita e
context aware di siti archelogici complessi mediante terminali mobili and by FP7- 608806,
CoSSMic: Collaborating Smart Solar-powered Micro-grids, FP7-SMARTCITIES-2013.

References

1. Amato, A., Di Martino, B., Venticinque, S.: Semantically augmented exploitation of per-
vasive environments by intelligent agents. In: Proc. of 10th International Symposium on
Parallel and Distributed Processing with Applications, pp. 807–814. IEEE CPS (2012)

2. Billig, A., Blomqvist, E., Lin, F.: Semantic Matching based on Enterprise Ontologies.
In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 1161–1168.
Springer, Heidelberg (2007)

3. Cordi, V., Lombardi, P., Martelli, M., Mascardi, V.: An Ontology-Based Similarity be-
tween Sets of Concepts. In: WOA (2005)

4. Bouquet, P., Kuper, G., Scoz, M., Zanobini, S.: Asking and answering semantic queries.
In: Proc. of Meaning Coordination and Negotiation Workshop (2004)



270 A. Amato et al.

5. Haase, P., Siebes, R., van Harmelen, F.: Peer Selection in Peer-to-Peer Networks with
Semantic Topologies. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S.
(eds.) ICSNW 2004. LNCS, vol. 3226, pp. 108–125. Springer, Heidelberg (2004)

6. Aversa, R., Di Martino, B., Mazzocca, N., Venticinque, S.: High Performance Computing:
Paradigm and Infrastructure A Hierarchical distributed shared memory Parallel Branch &
Bound Application with Pvm and OpenMP for multiprocessor clusters. Wiley (2004)

7. Salton, G., Lesk, M.E.: Computer evaluation of indexing and text processing. Journal of
the ACM 15(1), 8–36 (1968)



Supporting Cloud Governance through
Technologies and Standards

Victor Ion Munteanu, Teodor-Florin Fortiş, and Adrian Copie

Abstract. With the dawn of Cloud computing, competitors all over the world rush
to take advantage of this new paradigm and the economic models it brings. Unfor-
tunately for the earnest, cloud computing is not short of problems, most of which
are being addressed through different platform-as-a-service, cloud management or
governance solutions. Coming to support a natural integration between cloud man-
agement and cloud governance, CloudML and other specifications like Tosca enable
a model-based approach which addresses inconsistencies found at infrastructure or
platform levels thus contributing to the automation of the cloud service lifecycle.

1 Introduction

Cloud computing is a new paradigm which brings about new ways of thinking about
and using resources, by exposing them as services and enabling a secure, flexible
and scalable use, all while being affordable.

In the context of this new cloud economy, more and more small and medium-size
enterprises (SMEs) are moving to the cloud in an effort to reduce costs by accessing
the shared infrastructure as well as existing automation processes, which enables
them to maintain less of their own personnel and infrastructure.

Despite these clear advantages brought by the cloud, there are also downfalls
which lead to poor exploitation of this environment. One of the early ones is vendor-
lockin which locks the cloud developer to a specific cloud provider. Other problems
relate to lack of transparency regarding security and privacy practices among cloud
providers [11].

Victor Ion Munteanu · Adrian Copie
West University of Timişoara, bvd. V.Pârvan 4, Timişoara, Romania
e-mail: {vmunteanu,adrian.copie}@info.uvt.ro
Teodor-Florin Fortiş
Institute e-Austria Timişoara, bvd. V.Pârvan 4, Timişoara, Romania
e-mail: fortis@info.uvt.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 271
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_32, c© Springer International Publishing Switzerland 2014



272 V.I. Munteanu, T.-F. Fortiş, and A. Copie

In order to tackle these problems and increase efficiency, cloud developers must
resort to additional tools in order to provide cross-cloud interoperability, application
deployment and task automation, tools like PaaS solutions or cloud management
ones.

Cloud management, even though being close to existing PaaS solutions, focuses
on providing specific cloud management tasks as detailed in [7, 9]. Its primary role,
along with that of PaaS solutions, is to enable an easier cloud adoption by delegating
and automating cloud computing operations like resource provisioning, monitoring,
application deployment, SLA management, etc.

Complementary to the services provided by cloud management, cloud gover-
nance focuses on providing integration at SaaS level by providing mechanisms that
enable service ecosystems through the specification of policies which are then car-
ried out by the underlying cloud management solutions.

In their papers, Distributed Management Task Force (DMTF) offers a reference
architecture for cloud governance along with its interactions with cloud manage-
ment [8]. Other reference models which identify the role it plays are presented
in [19, 23].

One key element for a governance-management solution consists by the Service
Level Agreements (SLAs) which, along with Service Level Objectives (SLOs) and
Service Level Agreement Templates (SLATs), provide support for cloud monitoring
at all layers (*aaS). Having autonomic detection of SLA violations is crucial as
“prevention of SLA violations avoids unnecessary penalties providers have to pay
in case of violations [...] interactions with users can be minimized” [10].

This paper focuses on cloud governance, specifically the way in which existing
technologies and standards interact in order to support it and where none exist and
there is room for future development.

The rest of the paper is structured as follows. Background information is dis-
cussed in Section 2. Section 3 covers the service lifecycle and shows relations be-
tween existing technologies which interact at different steps. Finally, conclusions
and future work are covered in Section 4.

2 Background Information

2.1 Cloud Governance and Service Lifecycle

Stemming from Service Oriented Architecture (SOA) governance and ISO/IEC
38500 principles for IT governance, cloud governance “focuses on the creation,
communication and enforcement of service policies [...] that consist of a set of con-
straints and capabilities that govern how services and their consumers
interact” [20].

Through these service policies, cloud governance has the ability to manage and
provide a comprehensive cloud service lifecycle which, in turn, enables cloud de-
velopers ease-of-use when developing applications [12]. This ability is essential for
the cloud as providing self-managed automated service lifecycle reduces costs and
complexity of the tasks developers have to perform.



Supporting Cloud Governance through Technologies and Standards 273

While SOA service lifecycle has been covered extensively in the literature [14,
21, 15], research into cloud service lifecycle is still in its early stages, the work done
focusing on aspects related to both service distribution and scaling [8, 17].

Moreover, current standardization directions related to cloud services and gover-
nance revolve around OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA)1. It enables the description of services across all *aaS layers
through the use of service templates. Additionally, TOSCA builds upon and pro-
vides integration with other standards such as DTMF OVF2, DMTF CIM3, DMTF
CIMI4, OGF OCCI5 and OASIS SCA6.

2.2 Cloud Management and Cloud Automation

Complementary to cloud governance, cloud management has an executive approach
providing efficiency and ease of use in the utilization of cloud resources, thus en-
suring that the enterprise objectives set by the governance are achieved through
planning, deploying, running and monitoring current activities.

A typical cloud management solution usually revolves around the Monitor-
Analyse-Plan-Execute cycle performed around a cloud resource Knowledge base,
as detailed in IBM’s MAPE-K model [18].

For complete management to take place, automation along with compliance, se-
curity, fault tolerance and recovery etc. must be offered by a cloud management
solution. Only them will it meet “programmer expectations in regard to resource
management for scalability, data durability, and high availability” [1].

New attempts to address cloud management come as model-driven approaches
where applications are modeled based on they components by emphasizing the re-
lationships between them. CloudML is one such approach which aims at having a
cloud modeling language for cloud application development [5].

Current standards that are important to cloud management and cloud automation
include OGF OCCI (protocol and API for management tasks) and DMTF CIMI
(runtime maintenance and provisioning of cloud services though REST / HTTP).

2.3 Cloud Governance Requirements for Cloud Modeling

Typical cloud application modeling spans from development to deployment, from
defining the model for the application architecture to defining the way it will be
monitored and scaled.

1 http://www.oasis-open.org/committees/tosca/
2 http://www.dmtf.org/standards/ovf
3 http://www.dmtf.org/standards/cim
4 http://dmtf.org/sites/default/files/standards/documents/
DSP0264 1.0.0.pdf

5 http://occi-wg.org/
6 https://www.oasis-open.org/committees/sca-j/

http://www.oasis-open.org/committees/tosca/
http://www.dmtf.org/standards/ovf
http://www.dmtf.org/standards/cim
http://dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0264_1.0.0.pdf
http://occi-wg.org/
https://www.oasis-open.org/committees/sca-j/


274 V.I. Munteanu, T.-F. Fortiş, and A. Copie

Modeling can be split into design time modeling and run time modeling, both be-
ing essential for existing cloud management solutions as design time modeling de-
scribes the general structure of the application and the relations it has with the under-
lying infrastructure (provisioning and deployment at IaaS) while run time modeling
enables the component grouping and scaling based on specified QoS constrains.

In the case of cloud governance, modeling is closely related to the service life-
cycle, at design time the focus being on specifying existing connections with other
services (service dependence), modeling offers, pricing etc while at run time it fo-
cuses on the modeling of service QoS and scalability.

2.4 Multi-agent Approach to Cloud Management
and Governance

Due to their nature, multi-agent systems make perfect candidates for distributed
environments as “they offer the high-level software abstractions needed to manage
complex applications and because they were invented to cope with distribution and
interoperability” [2].

Unfortunately, the number of agent based implementation in cloud computing is
relatively small even though “the convergence of interests between MASs that need
reliable distributed infrastructures and cloud computing systems that need intelli-
gent software with dynamic, flexible, and autonomous behavior will result in future
intelligent services and applications” [22].

One of the more notable multi-agent systems in charge of cloud management is
mOSAIC’s Cloud Agency which offers functionality for the provisioning, monitor-
ing and reconfiguration of cloud resources for major cloud vendors like Amazon
Web Services, OpenNebula, GoGrid and others [24, 25, 26].

Another solution uses self-organizing agents in order to provide automated cloud
service composition [13] and deals with dynamic provisioning of cloud resources
while having incomplete knowledge about them.

A multi-agent architecture specifically designed to handle cloud governance
while encompassing an underlying cloud management solution is discussed
in [12, 16].

3 Cloud Service Lifecycle

As identified in [17], the main operations pertaining to the cloud service lifecycle
are:

Design-time operations – refer to general information about the services which
enable it to be published.

Provisioning operations – refer to the process of discovering and contracting ser-
vices.

Deployment operations – refer to the process of instantiating and commissioning
services.



Supporting Cloud Governance through Technologies and Standards 275

Fig. 1 Service lifecycle in contrast to cloud modeling

Execution operations – refer to the process of managing a running instance along
with any economic implications it might have.

Retirement operations – refer to service retirement, ending its lifecycle

Figure 1 shows the above expanded service lifecycle in close relation with cloud
modeling.

Related work covering the cloud service lifecycle in [6] identifies similar opera-
tions (phases): definition phase, offering phase, subscription and instantiation phase,
production phase.

Moreover, [3] shows how TOSCA interacts within the service lifecycle through
operational aspects (deployment, termination and management of a service) and the
definition of service templates thus providing reusability and automation of service
management.

While not running at SaaS layer, CloudML, as a Domain-Specific language
(DSL) for cloud provisioning, addresses a series of challenges which are part of
the service lifecycle like complexity (endpoints, frameworks, topologies), multi-
clouds (working with several cloud providers), reproducibility (reusable templates
and models), shareability (sharing of templates and various files), robustness (mak-
ing use of existing technologies) and metadata dependency (provisioning models
etc) [4].

Somehow different, Cloudify7 is an open source PaaS stack which features cloud
management and basic cloud governance through service lifecycle support. It en-
ables the definition of applications as a collection of services which have lifecyle
operations (events) which can be customized and also enables the definition of met-
rics and thresholds which can be used for application scaling.

A multi-agent approach to handling this service lifecycle is covered in [12, 17],
as well as the most important lifecycle activities are covered in [16].

3.1 Choreography between Standards

Many of the existing standards can be combined in order to cover different aspects
needed to achieve successful cloud governance, as can be seen in Figure 2 where
each color represents a different technology/standard as follows:

7 http://www.cloudifysource.org/

http://www.cloudifysource.org/


276 V.I. Munteanu, T.-F. Fortiş, and A. Copie

Fig. 2 Cloud governance layers

CloudML (blue) can be used to model requirements at IaaS and PaaS level as well
as deployment specifications.

CIMI (red) enables communication with cloud providers for the provisioning and
management of cloud resources.

TOSCA (purple) offers service description as well as topology, orchestration and
scaling.

Grayed items are still not completely covered by any standard / technology.

Though instantiation items are divided, they can be handled by multiple standards
as CloudML can handle provisioning though its runtime components as well as it
can define the topology between various components.

3.2 Service Example

In order to exemplify the cloud service lifecycle, both elementary and composite
services have been chosen in order to underline different aspects that exist in the
lifecycle stages as show in Table 1.

Each of these services has different requirements and offered capabilities. Fol-
lowing the description of these services we can determine that they can be divided
into two groups:

Elementary – that only have IaaS and PaaS requirements. They are: Encryption,
Geolocation, Image

Composite – have SaaS requirements. They are show in Table 2 along with their
dependencies.

In order to be able to orchestrate services, they need to be discovered based on ca-
pabilities, therefore requirements at SaaS level need to be expressed as capabilities.

Furthermore, when scaling takes place, all dependencies (and their dependencies)
must be scaled as well.



Supporting Cloud Governance through Technologies and Standards 277

Table 1 Example of elementary and composite services

Name Description Requirements

Identity management Holds user identities and credentials SaaS
Encryption Performs on demand encryption, validation and

signing
IaaS, PaaS

Geolocation Handles information related to geolocation IaaS, PaaS
Image Handles image processing and storing IaaS, PaaS
Geographic Informa-
tion System

Handles all types of geographical data SaaS

Micro blogging Handles user micro blogs SaaS
Email Cloud email service SaaS
Document Handles the hosting, signing etc. of documents SaaS
Weather forecasting Cloud weather forecasting SaaS
Communication Enables conferencing over IP SaaS
Financial Handles invoices, billable time etc. SaaS
Books Online electronic book store SaaS
Payment Online payment service SasS
Shipping Offers online shipment tracking SaaS
Chatting An online chatting service SaaS

Table 2 Composite services and their dependencies

Name Dependencies

Identity management Encryption
Geographic Information
System

Geolocation, Image

Micro blogging Identity management, Image
Email Identity management, Encryption
Document Identity management, Encryption
Weather forecasting Geographic Information System
Communication Identity management
Financial Identity management, Document, Payment
Books Identity management, Financial, Document
Payment Encryption
Shipping Identity management, Geolocation
Chatting Identity management, Communication

4 Conclusions and Future Work

This article presents a survey on cloud management and governance showing dif-
ferent aspects and the technologies and standards that address them.

In that regard, CloudML and TOSCA are discussed along with the implication
they have in the cloud service lifecycle during design time modeling and run time
modeling.



278 V.I. Munteanu, T.-F. Fortiş, and A. Copie

Furthermore, existing multi-agent solutions which cover cloud management and
cloud governance are presented, underlining any support they give to the cloud ser-
vice lifecycle.

Future work consists of full integration of CloudML and TOSCA within the ex-
isting multi-agent architecture while adding support for various technologies like
Puppet or Chef for automatic cloud service deployment and configuration.

Acknowledgements. The research leading to these results has received partial funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 318484 (FP7-ICT 2011-8-318484 MODAClouds) and Romanian Government
grant PN-II-ID-PCE-2011-3-0260 (AMICAS). The views expressed in this paper do not nec-
essarily reflect those of the corresponding projects’ consortium members.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley view of
cloud computing. Berkeley report (2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.pdf

2. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a fipa-
compliant agent framework. Software-Practice and Experience 31(2), 103–128 (2001)

3. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA.
IEEE Internet Computing 16(03), 80–85 (2012),
doi: http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43

4. Brandtzaeg, E., Mosser, S., Mohagheghi, P.: Towards CloudML, a Model-based Ap-
proach to Provision Resources in the Clouds. In: Stoerrle, H., Botterweck, G., Bour-
delles, M., Kolovos, D., Paige, R., Roubtsova, E., Rubin, J., Tolvanen, J.-P. (eds.) Joint
Proceedings of Co-located Events at the 8th European Conference on Modelling Foun-
dations and Applications (ECMFA 2012), pp. 18–27. Technical University of Denmark,
Copenhagen (2012)

5. Brandtzæg, E., Parastoo, M., Mosser, S.: Towards a Domain-Specific Language to de-
ploy applications in the clouds. In: Proceedings of the Third International Conference
on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012), pp.
213–218 (2012)

6. Breiter, G., Behrendt, M.: Life cycle and characteristics of services in the world
of cloud computing. IBM Journal of Research and Development 53(4), 3 (2009),
doi:10.1147/JRD.2009.5429057

7. Cloud Computing Use Cases Group: Cloud computing use cases white paper (2010),
http://opencloudmanifesto.org/Cloud Computing Use Cases
Whitepaper-4 0.pdf

8. Distributed Management Task Force: Architecture for managing clouds (2010),
http://dmtf.org/sites/default/files/standards/documents/
DSP-IS0102 1.0.0.pdf

9. Distributed Management Task Force: Use cases and interactions for managing clouds
(2010), http://www.dmtf.org/sites/default/files/standards/
documents/DSP-IS0103 1.0.0.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf


Supporting Cloud Governance through Technologies and Standards 279

10. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose,
C.A.F.: Towards autonomic detection of SLA violations in cloud infrastructures. Future
Gener. Comput. Syst. 28(7), 1017–1029 (2012),
http://dx.doi.org/10.1016/j.future.2011.08.018,
doi:10.1016/j.future.2011.08.018

11. Fortiş, T.F., Munteanu, V.I., Negru, V.: Steps towards cloud governance. A survey. In:
Proceedings of the ITI 2012 34th International Conference on Information Technology
Interfaces (ITI), pp. 29–34 (2012), doi:10.2498/iti.2012.0374

12. Fortiş, T.F., Munteanu, V.I., Negru, V.: Towards a service friendly cloud ecosystem. In:
Proceeding of the 11th International Symposium on Parallel and Distributed Computing
(2012)

13. Gutierrez-Garcia, J., Sim, K.M.: Self-organizing agents for service composition in cloud
computing. In: 2010 IEEE Second International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pp. 59–66 (2010), doi:10.1109/CloudCom.2010.10

14. Kohlborn, T., Korthaus, A., Rosemann, M.: Business and software service lifecycle man-
agement. In: IEEE International Enterprise Distributed Object Computing Conference,
pp. 87–96 (2009),
doi: http://doi.ieeecomputersociety.org/10.1109/EDOC.2009.20

15. Maule, R.W., Lewis, W.C.: Service evolution lifecycle for service oriented architecture.
IEEE Congress on Services, 461–462 (2009),
doi: http://doi.ieeecomputersociety.org/10.1109/
SERVICES-I.2009.69

16. Munteanu, V.I., Fortiş, T.F., Negru, V.: An event driven multi-agent architecture for en-
abling cloud governance. In: Proceedings of the 2012 Fifth IEEE International Confer-
ence on Utility and Cloud Computing (2012)

17. Munteanu, V.I., Fortiş, T.F., Negru, V.: Service lifecycle in the cloud environment. In: In-
ternational Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC (2012)

18. Naick, I.: Make autonomic computing a reality with IBM Tivoli (2004),
http://www.ibm.com/developerworks/library/ac-itito/
index.html

19. NIST: Cloud architecture reference models: A survey (2011),
http://collaborate.nist.gov/twiki-cloud-computing/pub/
CloudComputing/Meeting4AReferenceArchtecture013111/
NIST CCRATWG 004v2 ExistentReferenceModels 01182011.pdf

20. Oliver, D.: What is SOA governance? (2007),
http://geekswithblogs.net/SabotsShell/archive/2007/02/04/
105428.aspx

21. Stantchev, V., Malek, M.: Addressing dependability throughout the SOA life cycle. IEEE
Transactions on Services Computing 4, 85–95 (2011),
doi: http://doi.ieeecomputersociety.org/10.1109/TSC.2010.15

22. Talia, D.: Clouds meet agents: Toward intelligent cloud services. IEEE Internet Comput-
ing 16(2), 78–81 (2012), doi:10.1109/MIC.2012.28

23. Tung, T.: Defining a cloud reference model. In: International Symposium on Cluster
Computing and the Grid, pp. 598–603. IEEE Computer Society (2011),
doi: http://doi.ieeecomputersociety.org/10.1109/
CCGrid.2011.66

http://dx.doi.org/10.1016/j.future.2011.08.018
http://doi.ieeecomputersociety.org/10.1109/EDOC.2009.20
http://doi.ieeecomputersociety.org/10.1109/SERVICES-I.2009.69
http://doi.ieeecomputersociety.org/10.1109/SERVICES-I.2009.69
http://www.ibm.com/developerworks/library/ac-itito/index.html
http://www.ibm.com/developerworks/library/ac-itito/index.html
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/Meeting4AReferenceArchtecture013111/NIST_CCRATWG_004v2_ExistentReferenceModels_01182011.pdf
http://geekswithblogs.net/SabotsShell/archive/2007/02/04/105428.aspx
http://geekswithblogs.net/SabotsShell/archive/2007/02/04/105428.aspx
http://doi.ieeecomputersociety.org/10.1109/TSC.2010.15
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2011.66
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2011.66


280 V.I. Munteanu, T.-F. Fortiş, and A. Copie

24. Venticinque, S., Aversa, R., Di Martino, B., Rak, M., Petcu, D.: A cloud agency for
SLA negotiation and management. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop
2010. LNCS, vol. 6586, pp. 587–594. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2031978.2032058

25. Venticinque, S., Aversa, R., Di Martino, B., Petcu, D.: Agent based cloud provisioning
and management - design and prototypal implementation. In: CLOSER 2010, pp. 184–
191 (2011)

26. Venticinque, S., Negru, V., Munteanu, V.I., Sandru, C., Aversa, R., Rak, M.: Negoti-
ation policies for provisioning of cloud resources. In: Proceedings of the 4th Interna-
tional Conference on Agents and Artificial Intelligence, pp. 347–350. SciTePress (2012),
doi:10.5220/0003747003470350

http://dl.acm.org/citation.cfm?id=2031978.2032058


Exploiting Cloud Technologies and Context
Information for Recommending Touristic Paths

Flora Amato, Antonino Mazzeo, Vincenzo Moscato, and Antonio Picariello

Abstract. In the developing of applications for touristic paths planning, context-
aware recommendation services are gaining more and more relevance. Recom-
mender applications can accommodate location’s dependent information with user’s
needs in a mobile environment, related to the touristic domain.

In this paper, we propose a touristic context-aware recommendation system based
on both the experience of previous users and on personal preferences of tourists. The
information are gathered by several heterogeneous sources (sensors, web portals,
repositories related to touristic events and locations) and are stored and analyzed
in a cloud architecture that is particularly suitable to process and manage the huge
amount of data extracted.

Keywords: Recommendation Systems, Knowledge Management, Cloud
Computing.

1 Introduction

Travel and tourism industry is one of the most important and dynamic sectors, es-
pecially in B2C e-commerce. The tourism industry is regarded as one of the biggest
sectors in the world generating an estimated 11% of the global gross domestic prod-
uct and employing 200 million people and serving 700 million tourists worldwide,
a figure which is expected to double by the year 2020.

The great advances of the information technologies are continuously changing
the way in which touristic services are performed, enabling people to access accurate
and “on-line” information as well as to undertake reservations and plans in real time,
thus reducing costs and satisfactions w.r.t. conventional methods.

Flora Amato · Antonino Mazzeo · Vincenzo Moscato · Antonio Picariello
Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,
University of Naples “Federico II”, via Claudio 21, Naples, Italy
e-mail: {flora.amato,mazzeo,vmoscato,picus}@unina.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 281
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_33, c© Springer International Publishing Switzerland 2014



282 F. Amato et al.

Just to make an example, taking a quick look at what is happening in the last few
years, people search for information before traveling, usually make online air-ticket
bookings, and hotel and room reservations, decide the kind of restaurants to go and
the events to attend. As a matter of fact, itinerary planning is often a difficult and
time consuming task for people, especially if they visit a destination for the first
time: it involves substantial research to identify what are the main locations to visit,
the time spending at each location, what should be next locations, and the time it
will take to get from one place to another and of course how to reach the next places
(public transportation, taxi, and so on). Without any prior knowledge, at the moment
a lot of people still rely on travel books or on recommendation travel blogs.

However, these options have a lot of problems: travel books do not cover all
cities/locations and, perhaps more importantly, are not free; travel blogs reflect a
single person’s view, with no guarantees that the information provided are reliable.
In this framework, recommender systems are becoming more and more important
as applications that applications exploit to suggest products and provide people with
useful information to facilitate their decision-making processes. In other words,
such kind of system implicitly assumes that it can map user needs and constraints,
through appropriate recommendation algorithms, and convert them into a number
of location-events-products selections using appropriate knowledge that is retrieved
and analyzed by the system[4, 5, 8].

In this paper we propose a touristic context-aware recommendation system based
on both the experience of previous users and on personal preferences of tourists and
dependent on the context. The information are gathered by several heterogeneous
sources (sensors, web portals, repositories related to touristic events and locations).
All the information are stored and analyzed in a cloud architecture that is particu-
larly suitable to process and manage the huge amount of data extracted.

2 Related Works

The focus of the paper is the introduction of context-aware recommendation services
for touristic paths planning: in this framework, recommendation is the problem of
estimating ratings - sometimes called also utilities - for the set of items that has
not yet been seen by a given user [10]. In Content Based recommender systems, the
rating ri

j of item o j is estimated using the utilities r(ui, ok) assigned by the user ui

to items ok that are in some way “similar” to item o j. One of the main drawbacks
of these techniques is that the system can only recommend items that are similar to
those already rated by the user itself (overspecialization).

Collaborative Filtering is, in the opposite, the process of filtering or evaluating
items using the opinions of other people. Collaborative systems predict the rank of
items ri

j for a particular user ui based on the utility r(uh,ok) of items ok previously
rated by other users uh “similar” to ui. It takes its root from something human beings
have been doing for centuries: sharing opinions with others. Content-based filtering
and collaborative filtering are usually combined by means of the hybrid approach
that helps to avoid certain limitations of each method.



Exploiting Cloud Technologies and Context Information 283

In the area of recommendation systems, in the last few years, the use of additional
contextual information has recently brought to the introduction of the Context-aware
Recommender Systems (CARS)[10]. In the Contextual Pre-filtering techniques con-
text information are used to initially select the set of relevant items, while a classic
recommender is used to predict ratings. In the Contextual Post-filtering approaches
context are used in the last step of the recommending process to “contextualize”, for
each user, the output of a traditional recommender.

3 Recommending Personalized Touristic Paths

The problem of building effective context-aware recommendation services, able
to support an intelligent planning of touristic paths, implies the identification of
“items” that are most likely to satisfy the interests of a user at any given point of
his/her exploration depending on the context conditions. Here we need to address
some fundamental research questions: (i) how can we model the context? (ii) how
can we select a set of objects that are good candidates for a recommendation and
how can we rank the set of candidates? (iii) how can we organize the recommended
objects in visiting paths? In other words, which kind of recommending strategy can
we adopt?

In our idea, each interesting item (hotel, restaurant, museum, etc.) that will com-
pose a touristic path is characterized by a set of metadata, corresponding to specific
values of taxonomic attributes of an available a-priori knowledge useful for touris-
tic applications, and by a set of context information, describing the “situation” for
the place captured by apposite sensors. The context is represented by means of the
well-known key-value model[1] that uses some pre-defined variables to describe
several conditions of a visiting place. We define four main classes of context param-
eters (dimensions of the context): (i) time dimension of the considered place (the
relative time requested to user to reach the place, the opening/closing time, etc.);
(ii)location dimension for the considered place (the address, the actual position in
terms of GPS coordinates, the relative position of user respect to the place, etc.); (iii)
environmental dimension for the considered place in terms of current weather and
environmental conditions (e.g. temperature, humidity, rainfall degree, wind, season,
moment of the day, etc.); (iv) social dimension for the considered place in terms
of number of users (e.g. visitors, guests, etc.) close to the considered place and the
number of positive/negative feedbacks.

In addition to the context data, we use a Knowledge Base containing a set of rules
able to provide, in each moment and for each recommended, item a comfort degree
on the base of some context parameters values.

For example, the following part of rule very low degree ← (env cond.temp ≥
30◦ ∧ env cond.humidity ≥ 80%) indicates a very low comfort degree for an out-
door archeological site. The comfort degree is eventually used in the post-filtering
recommendation activity to arrange the order of items of the same type (if there
is more than one alternative in the path). The context parameters values can be



284 F. Amato et al.

periodically obtained using apposite web services or exploiting the sensors avail-
able on the place.

Once captured the context status of a place, the basic idea is that when a user is
interested in the suggestion of a touristic path, the system: (i) receives the request
and collects the information about user preferences/needs, for example the list of
interesting items (e.g. museums, restaurants, hotel) and of the related constraints
(e.g. he/she would like to visit museums with baroque pictures, then to eat in a
cheap restaurant offering pizza, and finally to accommodate in a comfortable hotel
near the sea); (iii) selects a set of candidate objects for each type of objects that
satisfy the user needs (pre-filtering strategy); (iv) ranks these objects using a proper
recommendation strategy; (v) arranges such objects in apposite touristic visiting
paths considering the comfort degree and the available cartography (post-filtering
strategy).

We use as recommendation strategy an importance ranking method that some of
the authors have proposed in to [2]. Such a method combines metadata informa-
tion of objects (items), past behavior of individual users and overall behavior of the
whole community of users and context information. Our basic idea is to assume that
when an object oi is chosen after an object o j in the same browsing session, this
event means that o j “is voting” for oi. Thus, our idea is to model a browsing system
for a set of objects O as a labeled graph (G,l), where G=(O,E) is a directed graph
and l: E → N is a function that associates each edge in E ⊆ O×O with a particular
weight, representing the number of times that an object oi was accessed immedi-
ately after an object o j. As a consequence, a link from o j to oi indicates that part of
the importance of o j is transferred to oi.

Given a labeled graph (G,l), we can formulate the definition of preference grade
of an object for a user as ρ(oi)=∑o j∈PG(oi) wi

j o j, where PG={o j∈O|(o j,oi)∈E} is
the set of predecessors of oi in G, and wi

j is the normalized weight of the edge from
o j to oi. For each o j∈O, ∑oi∈SG(o j) wi

j=1 must hold, where SG={oi∈O|(o j,oi)∈E}
is the set of successors of o j in G. It is easy to see that the vector R = [ρ(oi). . . ρ(on)]T

can be computed as the solution to the equation R = C · R, where C={wi
j} is an ad-

hoc matrix that defines how the importance of each object is transferred to other
objects and can be seen as a linear combination of browsing matrices [3]. Once ob-
tained the discussed matrices, our main goal is to compute customized rankings for
each individual user considering his/her preferences and the context information. In
this case, we can then rewrite previous equation considering the ranking for each
user as Rl = C· Rl , where Rl=[ρ(o1). . . ρ(on)]T is the vector of preference grades,
customized for a user ul .

C, under certain assumptions and transformations, is a real square matrix hav-
ing positive elements, with a unique largest real eigenvalue and the correspond-
ing eigenvector has strictly positive components, and the discussed equation can be
solved using the Power Method algorithm. It is important to note that C takes into
account the user’s preferences and the context and does not have to be computed for
all the database objects, but it needs to be computed only for those objects that are



Exploiting Cloud Technologies and Context Information 285

Fig. 1 System Overview

good candidates, i.e. the objects that are closest to users and in which a user is really
interested in (pre-filtering strategy). To compute the set of candidates that are more
similar to user preferences, we model a single user as a particular set of objects
and consider only the browsing patterns containing a sequence of objects that are
“similar” to the user objects and that have been visited by any user in the same order.
In particular, we exploit a semantic similarity[6, 7] based on the object metadata that
has been computed used the Li-Bandar-McLean metric for semantic relatedness of
concepts based on a vocabulary [9]).

Finally, the list of suggested items is organized in apposite visiting paths: they
are not fixed and are arranged on the base of environmental situations and comfort
degrees (post-filtering strategy).

4 The System Overview

Figure 1 shows an overview of our recommender system, which takes as input the
current context in terms of user location and preferences (items of interest) and gen-
erates a touristic path. We can distinguish the following main components. Items
Manager - It is a repository manager that stores the items to be suggested with
the related descriptions. Users Log Tracker - It is a module devoted to capture and
store - in an appropriate format - all the users’ browsing sessions in terms of ac-
cessed items during their explorations. Context Manager - It is a module devoted to
gather from sensors, web portals and other kind of repository the context informa-
tion. Recommendation Engine - It is the system core that for each user and on the
base of current context dynamically proposes a set of recommended objects ordered
on the base of their utility; in particular, it is composed by: (i) a Browsing Matri-
ces Computation Module - able to transforms the collected browsing sessions into
two matrices: a global matrix which takes into account the overall browsing behav-
ior of the users, and a local matrix which considers the behavior of a single user;
(ii) a Candidate Set Building Module - computes the subset of items that fit with
users needs; (iii) a Items Ranks Computation Module - performs the ranking of the



286 F. Amato et al.

selected candidates for recommendation; (iv) a Touristic Paths Generation Module -
capable of arranging the suggested items on the base of environmental situations and
the comfort degrees. Items Deliverer - It aims at delivering recommended paths to
each user in a format that will depend on the user profile and device. All the services
are provided by means of a dedicated Cloud Computing infrastructure that allows
to deal with big collections of data and numerous user accesses, ensuring high per-
formances, scalability and security characteristics for the whole system [12],[11].

5 Conclusions

Our proposal represents an extension of a recommender system supporting touristic
paths planning. We have shown that the customized recommendations may be com-
puted combining several features of objects, past behavior of individual users and
overall behavior of the entire community of users and context information.

References

1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual
information in recommender systems using a multidimensional approach. ACM Trans-
actions on Information Systems (TOIS) 23(1), 103–145 (2005)

2. Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: Modeling recom-
mendation as a social choice problem. In: Proceedings of the fourth ACM Conference
on Recommender Systems, New York, NY, USA, pp. 329–332

3. Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: A multimedia se-
mantic recommender system for cultural heritage applications. In: 2011 Fifth IEEE In-
ternational Conference on Semantic Computing (ICSC), pp. 403–410. IEEE (2011)

4. Amato, A., Di Martino, B., Venticinque, S.: A semantic framework for delivery of
context-aware ubiquitous services in pervasive environments. In: 2012 4th Int. Conf.
on Intelligent Networking and Collaborative Systems (INCoS), pp. 412–419 (2012)

5. Amato, A., Di Martino, B., Venticinque, S.: Semantically augmented exploitation of per-
vasive environments by intelligent agents. In: 2012 IEEE 10th Int. Symp. on Parallel and
Distributed Processing with Applications (ISPA), pp. 807–814 (2012)

6. Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: Semantic management of multimedia
documents for e-government activity. In: Int. Conf. on Complex, Intelligent and Software
Intensive Systems, CISIS 2009, pp. 1193–1198. IEEE (2009)

7. Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: A system for semantic retrieval and
long-term preservation of multimedia documents in the e-government domain. Interna-
tional Journal of Web and Grid Services 5(4), 323–338 (2009)

8. Amato, F., Mazzeo, A., Penta, A., Picariello, A.: Knowledge representation and man-
agement for e-government documents. In: Mazzeo, A., Bellini, R., Motta, G. (eds.) E-
Government Ict Professionalism and Competences Service Science. IFIP, vol. 280, pp.
31–40. Springer, Boston (2010)

9. Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application
oriented evaluation of five measures. In: Proceedings of the Workshop on WordNet and
other Lexical Resources (2001)

10. Kantor, P.B., Ricci, F., Rokach, L., Shapira, B.: Recommender systems handbook.
Recherche 67, 02 (2010)



Exploiting Cloud Technologies and Context Information 287

11. Moscato, F., Aversa, R., Di Martino, B.: An analysis of mosaic ontology for cloud re-
sources annotation. In: 2011 Federated Conference on Computer Science and Informa-
tion Systems (FedCSIS), pp. 973–980. IEEE (2011)

12. Moscato, F., Aversa, R., Di Martino, B.: An ontology for the cloud in mosaic. In: Cloud
Computing: Methodology, System, and Applications (2011)



An FPGA-Based Smart Classifier for Decision
Support Systems

Flora Amato, Mario Barbareschi, Valentina Casola, and Antonino Mazzeo

Abstract. In recent years, the accuracy and performance of decision support sys-
tems have become a bottleneck in many monitoring applications. As for the accu-
racy, different classification algorithms are available but the overall performance
are related to the specific software implementation. In this paper we propose a
novel hardware implementation to fasten a decision tree classifier. We also present
the evaluation of our architecture by putting in evidence the positive performance
results obtained with the proposed implementation.

1 Introduction

In modern decision support systems there is the need to improve the performance in
terms of detection, reliability and real time capabilities. These features are usually
in contrast among each other. Furthermore, many monitoring systems rely on het-
erogeneous data acquisition tools (sensors, video, historical and simulated data,...)
and on data elaboration and correlation to prune non significant information [8, 11];
this heterogeneity, even if desirable, introduces the need to further interpret what
data really represents to reduce false alarms and detect even weak alarm conditions.
The adoption of semantic techniques and inference knowledge is a must to cope
with heterogeneity, even in large environment as in the clouds, nevertheless at the
same time real-time capabilities must be ensured.

In some recent works [7, 8] we proposed an innovative approach for smart event
detection and semantically enriched phenomena comprehension: the knowledge
base is inferred off line for further comprehension and model prediction refinement,
while a light classifier is used to quickly raise an alarm. In many monitoring appli-
cations, specific classifiers are adopted to elaborate huge amount of data and they

Flora Amato · Mario Barbareschi · Valentina Casola · Antonino Mazzeo
Department of Electrical Engineering and Information Technology
University of Naples Federico II, Napoli, Italy
e-mail: {flora.amato,mario.barbareschi,casolav,mazzeo}@unina.it

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 289
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_34, c© Springer International Publishing Switzerland 2014



290 F. Amato et al.

need appropriate computational resources. A classification system could adopt hard-
ware solutions to boost up performances but, the variable nature of classifiers (they
need to periodically change their parameters when too false positives are counted
or when some errors are caused by misconfigurations) does not match hardware
characteristics. In fact, hardware cannot change its functionality, the only way to
change hardware behaviour is to re-project the whole hardware. Indeed, approaches
based on Field Programmable Gate Array (FPGA) technology, that allows to easily
reconfigure hardware, can been used to implement classifiers, too. In some recent
works [9] FPGA architectures were used for implementing algorithms for face de-
tection, for image recognition and videosurveillance applications [6] or for real time
object recognition. Indeed, a classifier is composed by a learner and by a predictor.
The learner does not change its functionalities during application lifetime. It has
to process the training set at start-up and the result of its computation defines how
the predictor has to work. On the other hand, the predictor has to quickly evaluate
and classify new data according the configuration parameters. In this paper we in-
troduce an optimized hardware implementation based on reconfigurable hardware
to implement a decision tree classifier. We also propose an application that auto-
matically produces the VHDL code for FPGA synthesis, optimized for the chosen
classifier. First experimental results are very promising, they report a response time
of nanoseconds order. The reminder of the paper is structured as follows, in Section
2 the general architecture of a smart classifier is presented. In Section 3 some de-
tails of the adopted classifier is presented. In Sections 4 and 5 we illustrate in details
the proposed hardware implementation to optimize the tuning and configuration of
the Predictor component and some evaluation results will be discussed. Finally, in
section 6 some conclusion and future work will be discussed.

2 A Two Steps Decision Support System

In previous works we proposed a smart Decision Support Systems (DSS) able to
perform a quick classification of potential alarms and to refine the final decision
based on semantic inferences on data and events [1, 2]. The system core was based
on two different components:

1. a Smart Event Classifier;
2. a Post Reasoner.

In real environments, a complex potential hazard cannot be easily detected by using
data from a single device, nevertheless sensor networks and data heterogeneity do
not help in correlating data. So, the main idea behind that proposal was related to
semantically enrich sensor data gathered by different sensors and correlate them for
“operator-aware” event detection.

We developed a complex architecture made of different modules to: (i) seman-
tically enrich data, (ii) implement the smart real-time classifier, (iii) implement the
post-reasoner. In Figure 1, the DSS main modules are reported. We suppose that
the sensor data source consists of heterogeneous sensor networks (WSN, camera,



An FPGA-Based Smart Classifier for Decision Support Systems 291

Fig. 1 Decision Support System architecture

intrusion device, etc) measuring different parameters. Data are gathered from sen-
sor nodes and can be accessed through a specific sensor gateway. Gateway sensors
code data in XML.

The system is made of three modules:
The Transformation and integration module gathers and integrates data com-

ing from heterogeneous sensors. Data are here semantically enriched to add infor-
mation and description about measures and sensors [1] and automatically encoded
in RDF files. They contain unique references to descriptions of the measured vari-
ables and parameters of each network and are then integrated into a single RDF file,
containing instances of the measured values that will populate the ontology.

The Semantic Classifier module implements a rule-based classifier: the com-
bination of measurements allows classifying events, if there is a particular event,
classified as critical, the system raises the corresponding alarm. The smart classifier
operates on semantically enriched data, so, a rule can be expressed by combining
atomic events from heterogeneous sources [3]. We chose a well-known classifier
[12] to build the predictive model, it is a decision tree classifier made of a learner
and a predictor component. The learner module uses a training set data in order to
tune the predictor parameters, while the predictor is responsible to classify data and
decide if alarm conditions occur. Furthermore, on a periodic basis or even when
mis-classified events occur, the learner can recalculate the parameters of the predic-
tor on the basis of a new training set, properly built to refine the behaviour of the
classifier.

The overall performance, in terms of response time and accuracy of the whole
decision system, rely on the performance and accuracy of this module and its design
is very crucial. For this reason, in this paper we propose to synthesize it with a
reconfigurable hardware as an FPGA. The expected advantages are twofold:

1. we expect to boost up the performance [13] and meet real time constraints,
2. we can easily reconfigure the whole predictor in case of parameter changing.

In the next Sections, we will illustrate in details this component and its hardware
implementation.

The Post Reasoner module allows to analyze causes and reasons of the criti-
cal events that have taken place (basic function for an operator) and to refine the



292 F. Amato et al.

procedures and rules of classification if a false alarm rate is not acceptable. Rea-
soning operations were performed on data in order to extract inferred knowledge
recurring to a Pellet reasoner. The real time classification actions feed the knowl-
edge base for the Post Reasoner component. The just built ontology is stored in a
repository (Triple Stores) and can be used off-line through the adoption of semantic
query languages as SPARQL. Through queries, the post reasoner is able to under-
stand and explain to end users the meaning of the alarms and their causes. Details
about this component are out of the scope of this paper and can be found in some
previous works [7].

3 The Fast Classification Algorithm

In order to semantic classify heterogeneous sensed data, we have implemented,
among the different classifiers available in literature, the decision tree classifier
proposed by [12]. The well-known classifier is composed by a learner module for
building the predictive model and a predictor component for performing decision
activity on the data. In binary decision mechanisms and the set of decision rules
are modelled as a tree where nodes represent classes associated to atomic events to
be detected, and branches represent conjunctions of conditions; i.e. conditions on
the sensed data that lead to composed event classes. In order to define the branch
rules of the decision tree, a domain expert manually defines a training set, made
of already classified data. The predictor is a parametric system: parameters, given
by the learner module, determine the classification function. Periodically, or when
mis-classified events happen, the learner can recalculate the parameters on the basis
of a new training set in order to refine the behavior of the classifier. Indeed deci-
sion trees are chosen with the aim of easing further refinement [10]. In fact, it is
a white box model and domain operators will be able to easily interpret decision
tree results after a brief explanation. This kind of model allows to quickly identify
if specific conditions of mis-classification occur and, consequently, to re-tune the
model. Moreover if a given situation is observed in the model, it is easy to explain
the conditions by recurring to the boolean logic. The Classifier takes in input the se-
mantically enriched data codified in RDF. By using an XLST engine these data are
reported in a table containing a row for each sample and a column for each relevant
measured parameter. Element i, j, then, contains the measure value of the sample
i for the parameter j. In the remainder of this section, we are going to give some
details on the classifier algorithm and how to use it. These details will be useful to
understand the different optimization that can be performed at hardware level.

The algorithm describes the fundamental steps for building the model, it works
recursively on data taken from the training set. At each step the data set is split,
based on a condition of a chosen feature (defined by thresholds). The selection of
the feature is performed on the basis of an Entropy Test[4].

If T is the set of samples, and f req(Cj ,T ) is for the number of samples in T that
belong to class Cj . Let |T | be the number of samples in the set T . Then the entropy
of the set T is defined as:



An FPGA-Based Smart Classifier for Decision Support Systems 293

Data: Training Set T , Output Class C =C1, ...,Ck
Result: Prediction Model outputted by learner
/* Base Case */
if T f T contains one or more examples, all belonging to the same class C j then

Create a single leaf in which all the sample having label C. /* The decision
tree for T is a leaf identifying class C j */

end
if T = /0 then

Creates a single leaf that has the label of the most frequent class of the samples
contained in the parent node /* heuristic step leading to
misclassification rates */

end
/* Recursive Case */
if T contains samples that belong to several classes then

foreach Feature f do
Find the normalized information gain by splitting on f, based on an Entropy
Test Value

end
Let fi be the attribute with the highest normalized information gain; Create a

decision node that splits on f j;/* node associated with the test

*/
Create a branch for each possible outcome of the test; Execute the algorithm on

each branch (corresponding to a subset of sample) /* partitioning of
T in more subsets according to the test on the
attribute obtained by splitting on f j */

end

Algorithm 1. Description of the algorithm for building a decision tree model

In f o(S) =−∑(( f req(Cj ,T )/T ) · log2( f req(Cj ,T )/T ))

The algorithm computes the value of Info for all Ti partitioned in accordance with n
conditions on a feature fi:

In f o fi(T) = ∑((Ti/T ) · In f o(Ti))

The features that maximizes the following Gain value are selected for the splitting:

Gain( fi) = In f o(T )− In f o fi(T)

Running this algorithm, we built a tree data structure; evaluating the conditions re-
quires the visiting of all paths in the tree. In the predictor module, even in the best
case of a balanced tree, the complexity of visiting a tree path, in order to evaluate
all the conditions leading to a leaf, is O(log2(n)), with n the number of tree nodes.
Consequently, implementing the predictor in software implies that the node condi-
tions of a given tree path are evaluated sequentially. We propose a reconfigurable
hardware architecture to reduce the time spent in the decision tree path discovery,
by elaborating the whole algorithm in only 2 sequences. Hardware implementation,
intrinsically concurrent, of the predictor allows us to elaborate the conditions of the



294 F. Amato et al.

nodes of the tree branches in a concurrent way. Furthermore hardware implemen-
tation allow us to set real time constraints, too. In fact, during the hardware design
phase, we can estimate the delay associated with the critical path and we can build
the real time conditions on the basis of such values. In the next sections we will
show that our hardware approach increase the throughput of 103 times, providing
results of the order of ≈ 10ns.

4 An Optimized Hardware Implementation of the Decision
Tree Predictor

To get an hardware description of the predictor, first of all we needed the training
set. So we collected some meaningful data and we manually labelled them with
a classification value. The training set is the input of an automated process which
produced the required hardware.

In this process we can identify two phases. The first one aims at defining the
learner, that computes the predictor parameters. We choose KNIME [5], a data min-
ing framework, to complete the first phase. With the decision tree blocks of KN-
IME, we are able to retrieve the predictor parameters. Generally this phase is done
off-line, periodically or when errors, caused by a misconfiguration, occur. For this
reason there are not strict time constraints in this phase. The second phase aims at
building and using the predictor. Due to real time constraints, we will implement it
in hardware. In this paper we proposed an application that automatically produces
the VHDL code for FPGA synthesis, optimized for the chosen classifier.

4.1 Predictor Phase

As previously said, a decision tree predictor is typically implemented as a visiting
algorithm, that is an exploration of the tree, from the root to leaves, node by node
in a sequential way. In fact the algorithm has to evaluate each decision to determine
in which branch it has to continue until it reaches a leaf. We propose a hardware
architecture to dramatically reduce the time spent in the decision tree path discov-
ery, computing the whole algorithm in only 2 sequences. Thanks to the hardware
features, we implemented the visiting algorithm with a different approach:

1. We simultaneously evaluate all predicates contained in all tree nodes;
2. We automatically define a boolean function that implements the visit and verify

which leaves are effectively reached according to the classified class.

All the decisions are not computed in sequence, but in parallel. Each decision is a
boolean value: for this reason the visiting algorithm can be treated as a multi-output
boolean function, in which the inputs are the decisions and the outputs the classes.
Also this boolean function could be optimized and reduced in order to increase the
performance. It can be implemented as a sum of products (SOP); in particular a path
that leads to a given class Ci is implemented as an anding function of the boolean



An FPGA-Based Smart Classifier for Decision Support Systems 295

decisions along the path. All anding functions associated to different paths that lead
to the same class Ci are in oring:

Ci =
∨

P∈Path set o f Ci

( ∧
Decision Node∈P

decision

)

We can characterize a single class function by the Class Characteristic, that is the
maximum path length plus the number of paths that lead to the class. As shown in
Figure 2, our architecture computes all the decisions (rounded rectangles) in par-
allel, and each result is given in input to the boolean net, that decides which class
the input belongs. In particular, to compute all decisions very quickly, we have im-
plemented in VHDL a generic Decision Box. It computes a predicate between two
values: D = A ρ C. The effective input of the Decision Box is only the first operand
(A) representing the new data, while the operation (ρ) and the second operand (C)
are pre-defined, decided during the learning phase. The output D is a boolean vari-
able.

a < 9,45 a >= 9,45

b = 1 b != 1 c <= -4 c > -4

a < 9,45a

b != 1b

c <= -4c

class 0 class 1 class 2 class 1

d0

d1

d2

AND
d0
!d1

AND
d0
d1

AND
!d0
!d2

AND
!d0
d1

OR

class 0

class 1

class 2

Decision boxes
Boolean net

Fig. 2 Predictor hardware architecture

The Decision Box has 3×6 different configurations, as it supports 3 different data
types (single precision floating point, 32 bit signed integer, 32 bit unsigned integer)
and 6 different comparing operations (<, <=, ==, ! =, >=, >).

The Decision Boxes outputs, the decisions, have to be analyzed by the second part
of the architecture to classify the input data. In our architecture this task is executed
by the Boolean Net.

These 2 components are automatically produced by the PMML2VHDL tool in 2
VHDL files at the end of the Learning phase, described in the next section.

4.2 Learning Phase

In the Learning phase, we used the KNIME tool that supports us for the entire
analysis process and to realize the learner, accordingly to the algorithm previously
described. It offers data access, data transformation, initial investigation, powerful
predictive analytics, visualization and reporting in an integrated graphical interface.



296 F. Amato et al.

labelled 
samples

KNIME

Read 
Data

Learner

Predictor

PMML

P
M

M
L 

P
ar

se
r OptimizationBLIF

Boolean 
net VHDL

Decision 
Nodes 
VHDL

PMML2VHDL

Fig. 3 Learning phase

As illustrated in Figure 3, in the learning phase, KNIME loads the training set file
containing data that were manually labelled and previously classified. According to
the classification process, KNIME produces in output an XML file, the PMML, that
describes the obtained tree.

We developed an application, named PMML2VHDL, that automatically pro-
duces the VHDL files describing the Predictor. The Predictor hardware has been
optimized for this specific classifier, for this reason we have developed two dif-
ferent components and, consequently, the PMML2VHDL application will produce
two different hardwware description files: theDecision Nodes VHDL and Boolean
Net VHDL.

The first one contains all predicates that have to be evaluated. The second de-
scribes the optimized boolean net for class assignment, so it contains a function for
each class defined into the decision tree predictor. To produce an optimized boolean
net we used Berkeley SIS tool. So PMML2VHDL tool produces an intermediate re-
sult of the boolean net, that is the raw net described in BLIF format. With heuristic
method, SIS minimizes and optimizes the net, returning another BLIF file. This last
file is translated in a VHDL data flow description, ready to be synthesized.

5 Evaluation of the Proposal

In this section we are going to illustrate some experimental results about our
proposal. We took about 100 samples from a local sensor network. The sensors
collected temperature, humidity, pressure, battery level and GPS position every 10
seconds. We manually labelled data with an alarm value to define the training set
and configure the predictor parameters with KNIME. We generated and optimized
the VHDL with our application.

We have performed several experiments by changing each time the number of
alarm classes and the training set size and we used Xilinx ISE and a Virtex-5
XC5VLX110T to synthesize and test the architecture. We evaluated the response
time (the throughput) of our FPGA-based architecture and the area used to imple-
ment the components. Note that algorithm precision is not evaluated as it is not
affected by this implementation.

The Decision Box implementation can have 3× 6 different configurations. To
obtain a higher throughput we implemented Decision Box in pipelined version with
depth 2. In Table 1 the main implementation characteristics are reported for the



An FPGA-Based Smart Classifier for Decision Support Systems 297

Table 1 Evaluation of Floating Point Decision box with latency 2

Parameter < == <= > ! = >=

Slices LUTs 43 27 44 32 44 44
Slices Flip-Flops 43 28 45 33 45 45

Delay (ns) 1,779
Throughput (float/s) 562113546,9

6 different operations; the interesting result is that we get about 560 millions of
computed decisions per second, with an used area of about 44 LUTs per box.

The Boolean Net delay depends on the predictor tree implementation, as all in-
puts (the decisions) have the same arrival time. Our hardware implementation com-
putes a classification for a given class as a SOP. For this reason the delay time for
an output class depends on the number of paths that leads to the class and on the
maximum path length. In fact in the SOP implementation the delay is a function of
the higher fan-in of product terms and of number of product terms. In the previous
section, we defined the Class Characteristic to get a meaningful parameter for com-
paring the Boolean Net delays. As shown in Figure 4, the delay does not linearly
increase with the Class Characteristic but it has a step behavior. This is primary due
to the the chosen FPGA, as the gate delay is the same of a LUT if the fan-in is less
than or equal 6, so for similar Class Characteristics the delay was the same.

It is also possible to note that the delay time is significantly longer than Decision
Boxes time, about 7ns, but this value is considerably better than a software imple-
mentation of the predictor module; indeed, with KNIME [5], we obtained a delay
of ≈ 10ms.

To avoid bottle-neck effect on the throughput, it’s possible to implement a high
performance pipelined version, too.

Finally, we considered the Boolean Net used area in terms of FPGA LUTs. By
using the Virtex5 Family we have 4 LUTs for each slice. As illustrated in Figure 5,
results show a linear trend with the growing of function literals: the mean slope is
about 11,84 lits/LUTs.

16 17 20 21 23 26 27
0

2

4

6

8

10

Class characteristic

D
el

ay
 (

ns
)

Fig. 4 Step behavior of Class Char-
acteristic and net delay

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Literals

6−
in

pu
t s

lic
e 

LU
T

s

 

 

Fig. 5 Used FPGA LUTs on number
of literals



298 F. Amato et al.

6 Conclusions and Future Work

In recent years, the need for smart monitoring systems has grown and, in particular,
the accuracy and performance of decision support system has become a bottleneck.
As for the accuracy, different classification algorithms are available but the overall
performance is related to the specific software implementation.

In this paper we proposed a process to implement in hardware a reconfigurable
decision tree classifier. Furthermore we proposed an innovative architecture to fasten
the classification process, it is composed by a set of Decision Boxes to compute in
parallel all decisions and by a Boolean Net, to effectively compute the classification.
We evaluated the proposal from different prospectives, putting in evidence the great
performance obtained with the hardware implementation. In future work we intend
to enhance the proposal by introducing automatic pruning rules in the tree model
with the application, in order to improve performance of the predictor Boolean Net,
that is the most critical component.

References

1. Amato, F., Casola, V., Gaglione, A., Mazzeo, A.: A common data model for sensor net-
work integration. In: Proceedings of the 4th International Conference on Complex, In-
telligent and Software Intensive Systems, pp. 1081–1086 (2010)

2. Amato, F., Casola, V., Gaglione, A., Mazzeo, A.: A semantic enriched data model for
sensor network interoperability. Simulation Modelling Practice and Theory 19(8), 1745–
1757 (2011)

3. Amato, F., Casola, V., Mazzeo, A., Romano, S.: A semantic based methodology to clas-
sify and protect sensitive data in medical records. In: 2010 Sixth International Confer-
ence on Information Assurance and Security (IAS), pp. 240–246. IEEE (2010)

4. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural
language processing. Computational linguistics 22(1), 39–71 (1996)

5. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel,
K., Wiswedel, B.: Knime - the konstanz information miner: version 2.0 and beyond.
SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

6. Bhowmik, D., Amavasai, B.P., Mulroy, T.J.: Real-time object classification on fpga us-
ing moment invariants and kohonen neural networks. In: IEEE SMC UK-RI Chapter
Conference 2006 on Advances in Cybernetic Systems, pp. 43–48 (2006)

7. Casola, V., Esposito, M., Mazzocca, N., Flammini, F.: Freight train monitoring: A case-
study for the pshield project. In: Proceedings - 6th International Conference on Innova-
tive Mobile and Internet Services in Ubiquitous Computing, IMIS 2012, pp. 597–602
(2012)

8. Casola, V., Gaglione, A., Mazzeo, A.: A reference architecture for sensor networks in-
tegration and management. In: Trigoni, N., Markham, A., Nawaz, S. (eds.) GSN 2009.
LNCS, vol. 5659, pp. 158–168. Springer, Heidelberg (2009)

9. Cho, J., Mirzaei, S., Oberg, J., Kastner, R.: Fpga-based face detection system using haar
classifiers. In: FPGA, pp. 103–112 (2009)

10. Deng, H., Runger, G.C., Tuv, E.: Bias of importance measures for multi-valued attributes
and solutions. In: Proceedings of the ICANN, pp. 293–300 (2011)

11. Ficco, M.: Security event correlation approach for cloud computing. Journal of High
Performance Computing and Networking 7(3) (2013)



An FPGA-Based Smart Classifier for Decision Support Systems 299

12. Liu, B., Ma, Y., Wong, C.K.: Improving an association rule based classifier. In: Zighed,
D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp.
504–509. Springer, Heidelberg (2000)

13. Wittig, R.D., Chow, P.: Onechip: An fpga processor with reconfigurable logic. In: IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 126–135. IEEE (1996)



Agents Modeling under Fairness Assumption
in Event-B

Irina Mocanu, Lorina Negreanu, and Adina Magda Florea

Abstract. Multi-agent systems, which are composed of autonomous agents are
present in applications that span a wide range of domains: ambient intelligence,
telecommunications, finance, Internet, energy, health. Therefore, it is critical to have
rigorous, effective design and verification methods to ensure their development. In
this paper, we present a formal modeling and proof of a multi-agent system for re-
questing services, under the fairness assumption. The model is specified and verified
using Event-B and the Rodin platform.

1 Introduction

This paper specifies and verifies, using the Event-B [5], [6] formal specification
method, a multi-agent system for requesting services under the fairness assumption.
This should be read as an extension of the model we previously specified in [9], who
will be integrated in an ambient intelligent system.

Fairness plays an important role in software specification, verification and de-
velopment. Fairness properties state that if something is enabled sufficiently often,
then it must eventually happen [8].This becomes important in our model when the
requests are satisfied. It is possible that a request cannot be satisfied for an indefi-
nite period of time while other requests continue normally. This may occur if the
satisfying scheme of the requests is unfair.

The paper is organized as follows: Section 2 describes the proposed system, Sec-
tion 3 presents the refinement of the model specified in [9] while fairness constraints
are stated using the Event-B method, Section 4 lists conclusions and future work.

Irina Mocanu · Lorina Negreanu · Adina Magda Florea
University “Politehnica” of Bucharest,
Computer Science Department,
Splaiul Independentei 313,
060042 Bucharest, Romania
e-mail: {irina.mocanu,lorina.negreanu,adina.florea}@cs.pub.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 301
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_35, c© Springer International Publishing Switzerland 2014



302 I. Mocanu, L. Negreanu, and A.M. Florea

2 System Description

We refine the former specification of the system for managing requests for ser-
vices [9] under the strong fairness assumption [8]. Consider a supervised person
that wants to do an activity at a relaxing centre (e.g. swimming, physiotherapy or
talking to somebody). Since the person’s well being is important we need to have a
system that will manage his request based on some measured parameters.

The system we propose is composed of several agents [9]: (i) an agent to interro-
gate the ambient factors - Temperature Agent; (ii) an agent to verify the health status
of the supervised person -Pulse Agent; (iii) an User Agent associated with the user;
(iv) Service Agents (there are n agents - each agent has a specialization and a maxi-
mum available time) and (v) a Community Agent (this agent knows all the services
available and unavailable). The user makes a request and the User Agent will analyze
the request by computing the priority and the duration of the service using the mon-
itoring information (health status of the person and performed activities). The User
Agent will send a verification message to the Temperature Agent and to the Pulse
Agent in order to verify if the supervised person can perform that activity. If these
parameters (the ambiental temperature/pulse) are in normal values for that person,
the User Agent will send a request message to the Community Agent (new request).
If the answer for the request is not received in a predefined time, the User Agent
will send a message to the Community Agent (modify request) in order to increase
the priority of the requested service for that user. The request will be canceled by
the User Agent (cancel request). If there is available time for requested service,
the corresponding Service Agent will inform the User Agent through the Commu-
nity Agent ( satisfy request). Some services may be requested more frequently than
others. Thus the Community Agent will request to increase the maximum available
duration for a Service Agent, by taking some available time from other services
(request available). The Service Agent associated with the requested service with
fewer requests will add some extra time to that service (release available).

3 Formal Specification

In the previous work [9] we specified the request as the main modeling element.
A request is defined as a member of the set of requests. It has a status (pending
or satis f ied), a service and a duration associated, that can be accessed through the
functions

status ∈ requests → STATUS,
where status assigns a status to each request,

re f erence ∈ requests → SERVICES,
where reference assigns a service to each request,

duration ∈ requests → N*,
where duration assigns a duration to each request (with the assumption that if a
service is requested, the duration is at least 1). The status of the request is changed



Agents Modeling under Fairness Assumption in Event-B 303

into satis f ied, if the duration of the requested service is either less than or equal to
the time availability of the service, defined as:

available ∈ SERVICES → N.
In the modeling [9] we started by considering that all requested references exist in
the set of available services and that this set and the set of requests are given in
an up-to-date state. We derived by refinement [7] the situation in which we have
to take into account new requests, modification of requests, cancelation of requests
and update of services time availability.

3.1 Refinement under the Fairness Assumption

Bellow we refine the previous specification described by [9] addressing the problem
of fairness. The previous specification captures the notion of flow by a set. In fact,
it is possible that a request remains always pending and is never satisfied, because
there are always other requests which are processed.

Our solution is to add a priority to each request that is increased the longer it
waits and to satisfy the request with the highest priority. If a request is waiting too
long (more than a specific deadline) the request is canceled. The event new request
gives each new request a priority using a parameter p (p ∈ N). The variable priority,
priority ∈ requests → N, records the priority of the request and the new condition
strengthens the guard of the event satisfy request:

∀ p · (p ∈ requests ∧ status(p)=pending ∧
duration(p) ≤ available(re f erence(p))

⇒ priority(p) ≤ priority(r)).
In order to manage the waiting time of a request we add a time stamp recorded in
the variable timer, timer ∈ requests → N. The event new request gives each new
request a time stamp using the variable clock, clock ∈ N, that grows larger as each
successive operation is invoked:

timer(r) := clock.
The event cancel request is enabled if the difference between the current clock value
and the time stamp of the request is larger than the deadline of the request:

clock - timer(r) > deadline(r),
where the constant deadline,

deadline ∈ REQUESTS → N,
records the maximum time for a request to be processed. The event modify request
increases the priority of the request if it took longer than the amount of time given
by the constant oldies,

oldies ∈ REQUESTS → N
clock - timer(r) > oldies(r).

The context of the described refinement together with the added variables are given
in Fig. 1. Invariants for the variables timer, clock and priority together with the
corresponding initialization are given in Fig. 2.

The event satisfy request is given in Fig. 3.



304 I. Mocanu, L. Negreanu, and A.M. Florea

CONTEXT
Services c1

EXTENDS
Services c0

CONSTANTS
deadline
pq
oldies

AXIOMS
axm1: deadline ∈ REQUESTS → N
axm2: pq → N
axm3: oldies ∈ REQUESTS → N

END

—

MACHINE
Services 2

REFINES
Services 1

SEES
Services c1

VARIABLES
. . .

timer
clock
priority

Fig. 1 The context and variables for the refinement

inv1: timer ∈ requests → N
inv2: clock ∈ N
inv3: priority ∈ REQUESTS → N
. . .
act6: timer := /0
act7: clock := /0
act8: priority :∈ REQUESTS → N

Fig. 2 The invariants and initialization for the refinement

satisfy request:
REFINES

satisfy request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: duration(r) ≤ available(reference(r))
grd4: ∀ p · (p ∈ requests ∧ status(p)=pending ∧

duration(p) ≤ available(reference(p)) ⇒ priority(p) < priority(r))
THEN

act1: status(r):= satisfied
act2: available(reference(r)) := available(reference(r)) - duration(r)
act3: clock := clock + 1

END

Fig. 3 The satisfy request event



Agents Modeling under Fairness Assumption in Event-B 305

The events new request and cancel request are given in Fig. 4 while mod-
ify request is given in Fig. 5. The events request available and release available
are not further refined. They have the same specification as in [9].

new request:
REFINES

new request
ANY

r
d
s
p

WHERE
grd1: r ∈ REQUESTS \ requests
grd2: d ∈ N1
grd3: s∈SERVICES
grd4: p ∈ N

THEN
act1: requests := requests ∪ {r}
act2: status(r) := pending
act3: duration(r) := d
act4: reference(r) := s
act5: priority(r) := p
act6: timer(r) := clock
act7: clock := clock + 1

END

—

cancel request:
REFINES

cancel request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: clock - timer(r) > deadline(r)

THEN
act1: requests := requests \ {r}
act2: status := {r} << | status
act3: duration := {r} << | duration
act4: reference := {r} << | refer-

ence
act5: priority := {r} << | priority
act6: timer := {r} << | timer
act7: clock := clock + 1

END

Fig. 4 The new request and cancel request events

modify request:
REFINES

modify request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: clock - timer(r) > oldies(r)

THEN
act1: priority(r) := priority(r) + pq
act2: clock := clock + 1

END

Fig. 5 The modify request event



306 I. Mocanu, L. Negreanu, and A.M. Florea

3.2 System Evaluation

The proof statistics given in Table 1 show that 52 proof obligations were generated
by the Rodin platform [3], [2]. 47 proof obligations were discharged automatically
while the others were discharged by interactive proofs. In Table 1 Services 0 repre-
sents the abstract model; Services 1 represents the refinement described in [9] and
Services 2 represents the refinement under the fairness assumption.

Table 1 The statement of the development

Element name Total Auto Manual Reviewed Undischarged
Services 52 47 3 0 0

Services 0 25 20 3 0 0
Services 1 4 4 0 0 0
Services 2 23 23 0 0 0

4 Conclusions and Future Work

In this paper, we have presented a specification and verification technique of a multi-
agent system for requesting services under the fairness assumption. The informal
specification of the system is translated into the Event B notation to verify the re-
quired properties. The model refinement that Event-B emphasizes simplifies proofs
by providing a progressive and detailed view of the system.

As future work we intend to use UML-B, specified in [4], to model the system
and translate the specifications into Event-B for verification. Since the final target
is to have an executable code we intend to generate Java code from the Event-B
specification with the aid of EB2J plug-in, [1].

Acknowledgements. The work has been funded by Project 264207, ERRIC- Empowering
Romanian Research on Intelligent Information Technologies/FP7- REGPOT-2010-1 and the
Sectoral Operational Programme Human Resources Development 2007-2013 of the Roma-
nian Ministry of Labour, Family and Social Protection through the Financial Agreement POS-
DRU/89/1.5/S/62557.

References

1. EB2J Tool (2013), http://eb2all.loria.fr/
2. Rodin Platform (2013),

http://wiki.eventb.org/index.php/Rodin_Platform
3. Rodin User’s Handbook v.2.5 (2013),

http://handbook.eventb.org/current/html/index.html
4. UML-B (2013), http://wiki.eventb.org/index.php/UML-B
5. Abrial, J.-R.: The B book. Cambridge University Press (1996)
6. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Press

(2010)

http://eb2all.loria.fr/
http://wiki.eventb.org/index.php/Rodin_Platform
http://handbook.eventb.org/current/html/index.html
http://wiki.eventb.org/index.php/UML-B


Agents Modeling under Fairness Assumption in Event-B 307

7. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and reachability in event B. In: Treharne,
H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 222–241.
Springer, Heidelberg (2005)

8. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based fairness
enhanced systems. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 5–24.
Springer, Heidelberg (2008)

9. Negreanu, L., Mocanu, I.: Formal verification of service requests in a multi-agent system
using Event-B method. In: 8th Workshop on Workshop Knowledge Engineering and Soft-
ware Engineering (KESE 2012), ECAI 2012, Technical Report TR-2012/1, Montpellier,
France, August 27-31, pp. 62–65. University of Almeria, Almeria (2012)



A Survey of Adaptive Game AI:
Considerations for Cloud Deployment

Gabriel Iuhasz, Victor Ion Munteanu, and Viorel Negru

Abstract. Modern video games have become an important part of AI research in
the past years, largely thanks to the characteristics of their environment and the
challenges they pose to AI researchers. This paper is a a survey of the current game
AI state of the art and highlights important achievements in this field. An adaptive
multi-agent system that can be deployed on a cloud infrastructure to solve compu-
tational constraints of advanced machine learning methods is also presented.

Keywords: Artificial Intelligence,Video Games, Machine Learning, Multi-Agent
Systems, Cloud Computing.

1 Introduction

In recent years, researchers have become ever more active in using games as a test
bed for advancing artificial intelligence (AI) techniques, especially due to the fact
that games provide a controlled environment while still maintaining properties sim-
ilar to real-life.

Games are populated with entities called non-player characters (NPCs) with
which the player can interact and which can be considered agents. In most games
there is a heterogeneous distribution of agent types, some having only reactive
agents while others needing proactive ones as part of there AI.

As games usually encompass one or more NPCs, we can infer that games are
multi-agent systems (MASs) which are structured hierarchically based on the tasks
each agent has to solve. While commercial games have a tendency to stick with
simple static methods for their AI systems, academic AI systems do not and mostly

Gabriel Iuhasz · Victor Ion Munteanu · Viorel Negru
West University of Timişoara, Timişoara, Romania
e-mail: {iuhasz.gabriel,vmunteanu,vnegru}@info.uvt.ro
Victor Ion Munteanu · Viorel Negru
Institute e-Austria Timişoara, Timişoara, Romania

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 309
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_36, c© Springer International Publishing Switzerland 2014



310 G. Iuhasz, V.I. Munteanu, and V. Negru

utilize adaptive machine learning (ML) techniques. There are two types of ML tech-
niques in game AI: offline and online.

This research is important as lessons learned from developing MAS for game
AI can be transferred to real life situations that have similar task distribution and
environmental constraints. This paper presents a survey on adaptive agent and multi-
agent based game AI solutions. The focus is on strategy games and massive mul-
tiplayer online (MMO) as these genres provide a greater challenge and encompass
the majority of AI challenges present in other titles. Furthermore, a novel multi-
agent solution for deploying ML techniques in games on a cloud infrastructure is
presented.

2 Major Trends in Game AI

Generally speaking most modern video games have extremely complex environ-
ments for NPCs to interact in [1]. These environments posses incomplete informa-
tion, each NPC knows only parts of the game state. The level of interaction each
NPC has with the environment is also an important characteristic as some mod-
ern games each player has unlimited opportunity to interact with the environment,
concurrent moves being permitted.

In strategy games there is also a level of asymmetry as one player may have some
form of advantage, be it in resources or unit numbers, over the opposing players.
Games have more in common to real life scenarios such as military command or
disaster management than traditional board games. It should be noted that game
environments are also stochastic.

Because of these characteristics, researchers have highlighted the potential to de-
velop ”human-level” AI [2]. In his paper Michael Buro [3] identifies some of the
major AI challenges present in games, giving good insight into the complexity of
the modern game domain. These include resource management, decision making
under uncertainty, spatial and temporal reasoning, collaboration, opponent model-
ing, learning and adversarial real-time planning. Some of these challenges have been
actively pursued by the AI community while others have been sadly neglected. The
field of game AI collaboration has received little attention.

One important distinction between the academic definition of AI and the gaming
industry definition of AI is the fact that game AI has to be entertaining. This means
that most NPC behaviour present in games is not based on academic AI techniques
but rather on rule of thumb. Sophisticated ML techniques are rarely used. The gam-
ing industry prefers static techniques such as Finite State Machines (FSM), simple
Decision Trees, scripting and Rule Based systems.

Hard-coded techniques have one major drawback: they become predictable after
a relatively short amount of time and are hard to maintain and debug when they
are used to model more complex behaviours. For example, FSMs transitions and
the number of states (s) grow exponentially with the number of events (e): s = 2e,
consequently increasing the number of transitions (a) even faster: a = s2.



Considerations for Deploying Game AI in the Cloud 311

Rule-base Systems are brittle when faced with a problem that is out of bounds
with their knowledge base. They are unable to rely on past experience to select a
similar rule or update their rule base. Expert knowledge is used in their creation
which, once in place, can not be modified and requires substantial effort to maintain
and debug. The A* pathfinding algorithm and FSM for decision making make up
more than 2/3 of current game AI systems [4].

It is common for AI systems and gameplay elements to be designed and imple-
mented in parallel. This means that if a gameplay mechanic is changed in the latter
stages of development it has a catastrophic effect on the AI systems. This situation
can be remedied by adaptive and ML techniques which are far more flexible and
would require little to no modification. An ML framework could be used in several
game titles thus lowering development time and cost.

2.1 Game Genres

Strategy games such as Real-Time Strategy games (RTS) are one of the more chal-
lenging genres when it comes to their AI systems. One of the main factors when
designing the AI for RTS games is the extremely large state space and environment
which are: partially observable, deterministic, sequential, dynamic and continuous.
It is also important to note that these types of games posses a massive state space ap-
proximated to 1011500 in the case of RTS [5]. Also, the number of actions available
to the player is also superior in the case of RTS as it has approximately 1 million
possible actions while chess has 30. Many sofisticated methodologies an techniques
have been used to create AI systems for RTS games. These include: Cognitive ar-
chitecture [6], Goal-driven autonomy [7], Reactive Planning [8] and Case-based
reasoning [9].

FPS (First person shooter) are at the cutting edge when it comes to graphics tech-
nologies. It has also benefited from some extremely interesting AI solutions like the
AI Director in the game Left 4 Dead1. Its role is to dynamically adjust gaming
difficulty and story pacing based on current player stress levels. Other commer-
cially available titles such as FEAR and Killzone have adopted interesting adapta-
tion mechanisms to their game AI. FEAR uses a STRIPS-planner while Killzone 2
uses HTN (Hierarchical Task Network) planner [10].

ML based systems for FPS are also present in the academic literature as the GDA
system which was used Choi [11]. Genetic algorithms and neural networks were
shown to manage the complexity of FPS environment [10]. There are still a lot of
open research problems: dynamic terrain analysis, fast tactical path finding, effi-
cient combat reasoning, opponent modeling and squad coordination. Some effort
has been made in these directions, of particular note being the architecture devel-
oped by Hartley [12] which uses incremental dual-state representation and k-d tree-
based techniques.

RPG (Role playing game) gameplay involves controlling one or more characters
in order to solve quest-based challenges. In contrast to other genres, neutral and

1 http://aigamedev.com/premium/article/procedural-director/

http://aigamedev.com/premium/article/procedural-director/


312 G. Iuhasz, V.I. Munteanu, and V. Negru

Fig. 1 Proposed Cloud deployment for Game AI MAS

even friendly NPCs are common. Due to the idiosyncrasies of RPG games, content
generating techniques have been widely used, research being focused on procedural
content generation. In [13] Grey J. and Bryson J. present an AI system capable of
dynamically generating dialog with context generated from episodic memory and
emotional bias towards past social interactions.

3 Cloud/Server Side AI

Massively multiplayer online (MMO) games feature support for a large number of
players which simultaneously interact in a persistent environment. In order to play
these games, a player has to log into a server which hosts the environment of the
game and its the AI, meaning that on the client side little to no persistent information
is stored.

Some MMOs have millions of subscribers and, because of this, the game world
is split up into realms or shards, each of them representing a particular instance of a
world. This is not the only solution as some MMOs have one cluster of servers that
runs the entire game world. Such is the case with EVE online which can host up to
60000 player on a single game world instance.

When it comes to the AI methods used in MMO games these are not sophisti-
cated. Utilizing hard-coded static methods such as those presented in Section 2. The
work of Claybool M. [14] shows that the impact of network latency and the degree
of lag has varying impact on the gameplay. Games that need only the first level
of reasoning (micromanagement or fine unit control) are extremely susceptible to
game lag. Other games such as RTS games where micromanagement is only a small
part of the AI job are more resilient.

There is a wide variety of MMO sub-genres, the most prevalent one being RPGs
(MMORPG). Research done in this area is focused on rule based systems [15] and
on Bayesian modeling for human players [16]. Aranda G. proposes another ap-
proach that defines a MMOG layer where all the games logics and mechanics are
implemented and must be solved at run-time [17].



Considerations for Deploying Game AI in the Cloud 313

3.1 Cloud Game AI Deployment Considerations

The major shortcoming of ML techniques when applied to game AI is that they re-
quire a substantial amount of computational resources which are limited on normal
gaming hardware. Some data mining approaches for strategy prediction and army
clustering have also been done [18]. They used game replays to extract expert hu-
man domain knowledge to create predictive models.

We propose a MAS framework for deploying adaptive game AI on a cloud plat-
form. More and more single player games require perpetual internet connection in
order to be played. This is a security measure that is part of digital rights man-
agement (DRM) system. This represents an opportunity to use existing DRM tech-
nologies to benefit gameplay by deploying adaptive agents on a cloud computing
infrastructure.

Our system has 9 agent types: API agents that handle interface with game in-
stances, reactive and proactive agents which execute tasks depending on the game
genre, audit and manager agents that handle MAS deployment and stability, negoti-
ation agents that handle all inter-MAS negotiations and database agents that handle
all database queries, databases varying from shared knowledge ones to game event
logging ones.

The most important part of our proposed framework is the two agent types that
are the learner agent and the predictor agent deployed in the cloud. The learner agent
receives data in the form of past game states and produces a viable predictive model.
Once the learning agent finishes, it exports the model to the predictor agent which
then proceeds to validate the predictive model. Once this is done the model can be
incorporated into the AI subsystem. It is important to note that most ML methods
can be encapsulated into learner and predictor agents. By scaling these agents we
can address the high computational cost of such methods while still maintaining an
adequate QoS.

4 Conclusions

This paper presents a survey on advances and current research in ML and MAS
solutions for computer games. This survey focused mainly on RTS and MMO game
genres as the authors feel that these represent the biggest challenges when it comes
to game AI.

Open research questions have also been highlighted such as inter-agent negotia-
tion and the lack of a game domain ontology to aid with interoperability. A cloud-
based MAS solution is proposed in order to alleviate some of the computational
constraints of ML techniques applied to game AI systems.

In a field where agent modeling is more mature, standard ontologies have been
developed in order to formalize the relevant domain knowledge. There has been little
to no work for creating a viable game domain ontology which would be extremely
useful for MAS interoperability and reusability.



314 G. Iuhasz, V.I. Munteanu, and V. Negru

Acknowledgements. This work was partially supported by the Romanian national grant PN-
II-ID-PCE-2011-3-0260 (AMICAS), FP7-REGPOT-CT-2011-284595 (HOST) and by the
strategic grant POSDRU/CPP107/ DMI1.5/S/78421, Project ID 78421 (2010), co-financed
by the European Social Fund - Investing in People, within the Sectoral Operational Pro-
gramme Human Resources Development 2007–2013. The views expressed in this paper do
not necessarily reflect those of the corresponding projects’ consortium members.

References

1. Lewis, J.M., Trinh, P., Kirsh, D.: A corpus analysis of strategy video game play in star-
craft: Brood war. In: Proceedings of the 33rd Annual Conference of the Cognitive Sci-
ence Society (2011)

2. Laird, J.E., van Lent, M.: Human-level ai’s killer application: Interactive computer
games. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence. pp. 1171–
1178, AAAI Press (2000)

3. Buro, M.: Real-time strategy gaines: a new ai research challenge. In: Proceedings of the
18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1534–
1535. Morgan Kaufmann Publishers Inc., San Francisco (2003)

4. Yildirim, S., Stene, S.B.: A survey on the need and use of ai in game agents. In: Pro-
ceedings of the 2008 Spring Simulation Multiconference, SpringSim 2008, pp. 124–131.
Society for Computer Simulation International, San Diego (2008)

5. Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection in
a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS
(LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

6. Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In: Proceed-
ings of the 21st National Conference on Artificial Intelligence, AAAI 2006, vol. 2, pp.
1469–1474. AAAI Press (2006)

7. Muñoz-Avila, H., Jaidee, U., Aha, D.W., Carter, E.: Goal-driven autonomy with case-
based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176,
pp. 228–241. Springer, Heidelberg (2010)

8. Josyula, D.P.: A unified theory of acting and agency for a universal interfacing agent.
PhD thesis, College Park, MD, USA, AAI3202442 (2005)

9. Szczepanski, T., Aamodt, A.: Case-based reasoning for improved micromanagement in
real-time strategy games. In: Proceedings of the Workshop on Case-Based Reasoning
for Computer Games, 8th International Conference on Case-Based Reasoning, ICCBR
2009, pp. 139–148 (July 2009)

10. McGee, K., Abraham, A.T.: Real-time team-mate ai in games: a definition, survey, &
critique. In: Proceedings of the Fifth International Conference on the Foundations of
Digital Games, FDG 2010, pp. 124–131. ACM, New York (2010)

11. Choi, D.: Reactive goal management in a cognitive architecture. Cogn. Syst. Res. 12(3-
4), 293–308 (2011)

12. Hartley, T., Mehdi, Q.: Online action adaptation in interactive computer games, vol. 7,
pp. 28:1–28:31. ACM, New York (2009)

13. Grey, J., Bryson, J.J.: Procedural quests: A focus for agent interaction in role-playing-
games. In: Proceedings of the AISB 2011 Symposium: AI & Games (2011)

14. Claypool, M., Claypool, K.: Latency and player actions in online games. Commun.
ACM 49(11), 40–45 (2006)



Considerations for Deploying Game AI in the Cloud 315

15. Ballinger, C.A., Turner, D.A., Concepcion, A.I.: Artificial intelligence design in a multi-
player online role playing game. In: Proceedings of the 2011 Eighth International Con-
ference on Information Technology: New Generations, ITNG 2011, pp. 816–821. IEEE
Computer Society, Washington, DC (2011)

16. Synnaeve, G., Bessière, P.: Bayesian modeling of a human mmorpg player. CoRR
abs/1011.5480 (2010)

17. Aranda, G., Botti, V., Carrascosa, C.: Mmog based on mas: the mmog layer. In: Pro-
ceedings of the 8th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2009, Richland, SC, pp. 1149–1150. International Foundation for
Autonomous Agents and Multiagent Systems (2009)

18. Synnaeve, G., Bessière, P.: Special tactics: A bayesian approach to tactical decision-
making. In: CIG, pp. 409–416 (2012)



From Agent-Oriented Models to Profile Driven
Military Training Scenarios

Inna Shvartsman and Kuldar Taveter

Abstract. We propose an approach for creating agent-based “man-in-the-loop” sim-
ulation scenarios for training military and paramilitary staff. The approach is based
on psychological theories and enables to define small standalone simulation sce-
narios for a certain context. It considers several types of personality profiles. Each
profile is represented as a combination of needs-based personality characteristics.
The overall objective of this research is to achieve realistic “man-in-the-loop” mili-
tary training scenarios where some roles are played by humans and some other roles
by software agents.

Keywords: Agent-oriented modeling, military trainings, agent simulations.

1 Introduction

Personality traits are the unique sets of attributes possessed by individuals. In psy-
chology, trait theory is an approach to the study of human personality. Personality
generally refers to the character of an individual or his/her permanent behavioral
traits [1]. According to recent studies [2], in a military task environment, a very im-
portant role for soldiers’ situational perception is played by two narrow need-based
personality traits: Sensation Seeking and Need for Structure. Sensation seeking is a
personality trait defined by the tendency to search for experiences and feelings that
are “varied, novel, complex and intense” [3], and by the readiness “to take physical,
social, legal, and financial risks for the sake of such experiences” [3]. Personal need
for structure is another personality trait defined by a desire for certainty and clarity,
and a corresponding aversion to ambiguity [4].

Inna Shvartsman · Kuldar Taveter
Tallinn University of Technology, Department of Informatics,
Akadeemia tee 15a, 12618 Tallinn, Estonia
e-mail: innashvartsman@hot.ee, kuldar.taveter@ttu.ee

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 317
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_37, c© Springer International Publishing Switzerland 2014



318 I. Shvartsman and K. Taveter

In this paper we propose an agent-oriented modeling approach for designing and
conducting military training scenarios. Our approach is based on psychological the-
ories. It considers several types of personality profiles. Each profile is defined in
terms of the individual set of skills, such as reaction speed and completeness of ac-
tivities, and team skills, such as attention on the activities by other team members
and helpfulness towards other team members. We also aim to map each profile to
the scale of needs-based personality characteristics with Sensation Seeking on one
end and Personal need for structure on another [2]. Our objective is to achieve real-
istic “man-in-the-loop” military training scenarios where some roles are played by
humans and some other roles by software agents.

In our approach, we first represent each training scenario by a set of agent-
oriented models described in section 2 and then define for each scenario separately
software agents with different psychological profiles, based on the models. The re-
sulting software agents are guided by simple rules that are defined based on the
descriptions of the psychological profiles of interest and evaluation criteria for the
scenario. The profiles and the corresponding agents differ in the levels of the follow-
ing criteria: reaction speed, completeness of performing an activity, attention on the
activities by other team members, and helpfulness towards other team members. We
are interested in the overall emergent behavior of the simulation system consisting
of humans and software agents performing the scenario as a whole rather than in
mimicking as precisely as possible human behaviors.

2 Agent-Oriented Modeling

In our approach, training scenarios are defined by agent-oriented modeling (AOM).
AOM [5] is a top-down approach for modeling and simulating the behaviors of
socio-technical systems. In the problem domain addressed by us, a socio-technical
system is a “man-in-the-loop” military training system. In AOM, a problem domain
is first conceptualized in terms of the goals to be achieved by a socio-technical sys-
tem, the roles required for achieving them, and the domain entities embodying the
required knowledge. The roles are mapped to the agents playing the roles, the goals
– to the activities performed by the agents, and the domain entities – to the items of
knowledge held by the agents. Models are considered as abstractions. Appropriately
abstracting a system can reduce its complexity for better understanding of the sys-
tem’s particular aspects and their impact on its behavior. The types of models that
are relevant for this paper are goal models and role models.

A goal model can be considered as a container of three components: goals, qual-
ity goals, and roles [5]. A goal is a representation of a functional requirement of
the socio-technical system, that is, a training system. A quality goal, as its name
implies, is a non-functional or quality requirement of the system. Goals and qual-
ity goals can be further decomposed into smaller related sub-goals and sub-quality
goals. Goal models also determine roles that are capacities or positions that are
needed to achieve the goals. Role models describe the capacities or positions that
are required for achieving the goals.



From Agent-Oriented Models to Profile Driven Military Training Scenarios 319

Fig. 1 The high-level motivation model for evacuation training simulation

Fig. 1 represents the training scenario, based on an example from our earlier
research [6], by means of a goal model. Goals are represented as parallelograms,
quality goals are clouds, and roles are stick figures. The arcs indicate relationships
between constructs. The purpose of the scenario is to train evacuation.

In our approach, simulations are tuned by quality goals. Our simulation scenario
is characterized by such quality goals as Immediate, Attentive, Helpful and Up-to-
date – as is illustrated by the lower part of Fig. 1. Both quality goals characterize
the behaviors of agents playing the roles Paramedic and Safeguard.

3 Proactive vs. Reactive Behavior in Training Scenarios

This section describes how the behaviors of software agents can be defined based
on different psychological profiles. Software agents are characterized along the di-
mension of proactivity vs. reactivity. Acting in advance of a future situation, rather
than just reacting, is understood as proactive behavior. In terms of agent’s context,
according to [7], proactivity can be defined as follows: “agents do not simply act in
response to their environment; they are able to exhibit goal-directed behavior by tak-
ing the initiative”. In case of reactivity, “agents perceive their environment, (which
may be the physical world, a user via a graphical user interface, a collection of other
agents, the Internet, or perhaps all of these combined), and respond in a timely fash-
ion to changes that occur in it.” In the military context, where the responsibilities



320 I. Shvartsman and K. Taveter

and constraints of roles are generally well defined by, for example, rules of combat,
it is important to build flexible, adaptive leaders with keen understanding and strong
decision-making skills. Proactive soldiers and leaders generally do not need to be
asked to act, nor do they require detailed instructions.

According to the model of a training scenario represented in Fig. 1, the training
exercise is evaluated by the dimensions of speed, efficiency, attentiveness and help-
fulness by team members. All of them correspond to the respective quality goals,
as can be seen in Fig. 1. Within this paper, we focus on the quality goals of at-
tentiveness and helpfulness by team members because they well correlate with the
proactivity of team members [8]. In the training scenario, proactive behavior is par-
ticularly required of performers of the roles Paramedic and Safeguard. We therefore
focus on these two roles. According to [8], helping behaviors can simply be catego-
rized as reactive helping and proactive helping, whereas reactive helping is triggered
by an external request. On the other hand, proactive helping is not initiated by help
requests but by the anticipation of others’ needs from shared by the agents’ knowl-
edge — even if such needs are not directly expressed [9].

According to [10], a quality goal (“soft goal” as the authors term it) is achieved
(“satisfied” as the authors describe it) when thresholds of some precise criteria are
reached. In psychological training, the achieving of quality goals is characterized
by discrete scale from 0 to 3. Based on the criteria, we can define agents playing
the roles Paramedic and Safeguard that meet these criteria to a greater or lesser
degree. It is done by representing the corresponding agent behaviors by their be-
havioral rules in Table 1. These rules include a number of undefined in this paper
constructs, several of which are concerned with message exchange between agents
and situation awareness by agents. The “Request for help” and “Offer help” con-
structs denote the respective messages sent and received by the agent in focus.
The “Assess the situation” construct denotes assessing the situation with respect
to performance by other agents. The “Possible problem” construct denotes the situ-
ation where any other agent has a problem possibly requiring help by other agents.

Table 1 Prototypical behavioral rules

Quality goal /
Scale

0 1 2 3

Attentive No behavioral rule ON RECEIVE Re-
quest help THEN
Assess the situation

ON RECEIVE
THEN Assess the
situation
ON SEND THEN
Assess the situation

ON Interaction
THEN Assess the
situation

Helpful No behavioral rule ON RECEIVE Re-
quest help THEN
WAIT N Sec.;
SEND Request
help

ON RECEIVE Re-
quest help
THEN
SEND Offer help

ON Possible prob-
lem
THEN BROAD-
CAST Offer help



From Agent-Oriented Models to Profile Driven Military Training Scenarios 321

Finally, the “Interaction” construct refers to any interaction between any two agents
or an agent and its environment in the training system.

According to [8], to help other agents often requires the agent to monitor the
performance by other agents. In our approach, we define paying attention through
assessing the performance by other relevant agents, relying on the common knowl-
edge by the agents involved. In the training scenario of evacuation under discussion
here, this means that an agent playing the role of Safeguard assesses the perfor-
mance of the agent playing the role of Paramedic and the other way round, based
on the shared by these agents situational knowledge. In the second row of Table 1,
the behavioral rules corresponding to the quality goal “Helpful” are represented in a
similar manner. The most helpful agent is the one that offers help to everyone when-
ever any of the situation assessments performed by this agent indicates a possible
problem with any of the other agents. Attentiveness and helpfulness are separate
characteristics that may have different levels for the same agent.

We define for software agents of the training system constants payingAttention
and beingHelpful reflecting the level of attentiveness and helpfulness, respectively.
Next, we can define the following logic applied as a part of scenario for achieving
the goal “Help” by a software agent playing the Paramedic role:

Input the beingHelpful constant
Switch to behavior based on beingHelpful value
Case 0
Break // No behavioral rule
End Case
Case 1
If RECEIVE Request help
WAIT N Sec.
SEND Request help
End If
End Case
Case 2
If RECEIVE Request help
SEND Offer help
End If
End Case
Case 3
BROADCAST Offer help
End Case
End Switch

4 Conclusions

In this research, an approach for creating agent-based simulation scenarios for train-
ing military and paramilitary staff is proposed. The approach is based on psycholog-
ical theories. Two different needs-based personality characteristics are discussed:



322 I. Shvartsman and K. Taveter

Sensation Seeking and Personal Need for Structure. Agent-oriented modeling is
used to define and visualize training scenarios by goal and role models. In the case
study, the training exercise is evaluated by the dimensions of speed, efficiency, at-
tentiveness and helpfulness by team members. All of them are characterized by the
respective quality goals. The agents are defined based on the criteria proposed for
achieving the quality goals. The corresponding agent behaviors are represented by
their behavioral rules. According to the previous and current studies on proactive
and reactive behaviors in psychological and military contexts, it can be hypothe-
sized that software agents enacting sensation seekers need to be more proactive,
while software agents enacting structure preferrers need to be more reactive. In
this research, many aspects were not considered, and a number of research prob-
lems were left for future research. Among them is a plan to design a system where
software agents following different psychological profiles are generated from agent-
oriented models. In our future work the hypothesis stated above needs to be tested
in real experiments.

Acknowledgements. This research was supported by the Estonian Doctoral School in Infor-
mation and Communication Technology.

References

1. Kassin, S.: Psychology. Prentice-Hall, USA (2003)
2. Parmak, M., Euwema, M.C., Mylle, J.: Changes in Sensation Seeking and Need for

Structure Before and After a Combat Deployment. Military Psychology 24 (2012)
3. Zuckerman, M.: Sensation seeking. In: London, H., Exner, J. (eds.) Dimensions of Per-

sonality. Wiley, New York (1978)
4. Neuberg, S.L., Newsom, J.T.: Personal need for structure: individual differences in the

desire for simple structure. Journal of Personality and Social Psychology 65, 113–131
(1993)

5. Sterling, L., Taveter, K.: The Art of Agent-Oriented Modeling. MIT Press, Cambridge
(2009)

6. Shvartsman, I., Taveter, K., Parmak, M., Meriste, M.: Agent-oriented modelling for sim-
ulation of complex environments. In: IMCSIT 2010, The International Multiconference
on Computer Science and Information Technology, pp. 209–216. IEEE Computer Soci-
ety (2010)

7. Wooldridge, M.J., Jennings, N.R.: Agent Theories, Architectures, and Languages: a Sur-
vey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS,
vol. 890, pp. 1–22. Springer, Heidelberg (1995)

8. Fan, X., Yen, J.: Modeling and simulating human teamwork behaviors using intelligent
agents. Journal of Physics of Life Reviews 1, 173–201 (2004)

9. Marks, M., Zaccaro, S., Mathieu, J.: Performance implications of leader briefings and
team interaction training for team adaptation to novel environments. Journal of Applied
Psychology 85, 971–986 (2000)

10. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: Achieving, Satisficing, and Excelling. In:
Hainaut, J.-L., et al. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 286–295. Springer,
Heidelberg (2007)



An Agent-Based Solution for the Problem of
Designing Complex Ambient Intelligence
Systems

Marius-Tudor Benea

Abstract. This paper presents an agent-based solution for the problem of designing
complex ambient intelligence systems. The solution offered is a method of combin-
ing many subsystems, developed individually, into a bigger, more complex, system,
meant to make use of the collective intelligence emerging from collaboration of all
the subsystems. An example of such a complex ambient intelligence system is the
environment built around a smart city, where it is desired to improve the experience
of the inhabitants of a city, while still carefully using the available resources.

1 Introduction

Ambient Intelligence (AmI) ‘‘provides a vision of the Information Society where
the emphasis is on greater user-friendliness, more efficient services support, user-
empowerment, and support for human interactions”, as described in [4]. As we can
see, the focus in AmI environments is put on the user. But there are some impor-
tant problems, too, that are caused mainly by the user itself (e.g. the transportation
problem and its consequences, caused by the user’s preference for the comfort of
a drive from door to door over other means of transportation, which creates prob-
lems like traffic congestion and pollution). However, even in such cases AmI can
offer an answer. In the case of a smart city, for example, we could use AmI not only
as a way to offer users a better experience but also to improve the efficiency and
environmental-friendliness of the cities, given the communication channel between
the city and the user and vice-versa offered by the ambient intelligence environment.
The main problem, in this case, is how to create intelligent enough cities in order

Marius-Tudor Benea
Laboratoire d’Informatique de Paris 6,
University Pierre and Marie Curie, France and
Computer Science Department,
University Politehnica of Bucharest, Romania
e-mail: marius-tudor.benea@lip6.fr

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 323
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_38, c© Springer International Publishing Switzerland 2014



324 M.-T. Benea

attract the user to use some publicly available and optimized services (e.g. the pub-
lic transportation system for transiting the city). Further, the information generated
by the users could be used to optimize even more these services and to create even
more intelligent cities.

While the advantages of having ambient intelligence systems of a city level com-
plexity which posses an increased degree of intelligence are clear by now, it’s not
very obvious how to develop them. In this paper we present a solution for designing
multi-agent systems (MAS) for building ambient intelligence applications charac-
terized by an increased level of complexity, like in the case of smart cities, meant to
push the intelligence of such systems to a better level. The approach to AmI that we
use is agent-oriented. The solution offered is to combine many small AmI systems,
designed, developed and optimized individually in order to solve specific problems,
into bigger, more intelligent AmI systems, that are supposed to have high degrees of
intelligence in the form of the collective intelligence emerging from the subsystems
composing them. Together with this solution, the paper also presents a method for
doing it.

The structure of the paper is the following one: Section 2 presents some related
works. In Section 3 and its subsections we describe the solution proposed and we
discuss the details that concern it. Finally, we draw some conclusions and we present
the perspectives of our work, in Section 4.

2 Related Work

Many research projects have been conducted in order to propose solutions for im-
proving the performance and efficiency of complex environments. One particular
case of a such environment, that we also use as an example throughout this paper,
is the case of the cities. There is a trend of making them more efficient and more
friendly to their inhabitants, transforming them, thus, into smart cities.

S-CLAIM (Smart Computational Language for Autonomous, Intelligent and
Mobile Agents), [1, 9], offers a good solution for developing AmI applications,
as proven in [1]. It forces a hierarchical representation of agents which can be
successfully used in order to accomplish important ambient intelligence tasks like
context-awareness, information about the context being inferred directly from the
architecture of the multi-agent system underlying an AmI system. Based on the
CLAIM language [7, 16, 15], which was successfully used in projects like Ao Dai
[6], the framework comprising the language and its platform offers expressiveness,
ease of use, support for multiple platforms and some other advantages. This work
is based on the representation method for AmI applications based on mobile agents,
offered by S-CLAIM and it extends it accordingly, considering the needs of the
studied problem.

Streitz et al., [14], studies how information and communication technology, par-
ticularly ambient intelligence, will influence the future of our cities, considering the
tendency to shift towards an Urban Age. These cities of the future are called hu-
mane cities, defined as “places and environments where people enjoy everyday life



Agent-Based Complex AmI Systems 325

and work, have multiple opportunities to exploit their human potential and lead a
creative life”, and are the future form smart cities will take. The accent is put on the
fact that such cities will be created by means of ambient intelligence environments.

Many researches related to smart cities have been conducted with the goal in
mind of improving the transportation system, which is an important problem in
urban areas (but they are limited to it). Passos et al., in [11], recall many of the
different aspects involved in the AmI concept and identify potential applications of
its technological asset in ITS-related scenarios. Candamo et al., [2], made a survey
of the image-processing human behavior recognition algorithms in the context of
transit applications. This is of interest for both AmI and ITS, but, however, focuses
only on one particular problem that could be further integrated by these systems,
namely, the problem of understanding humans in the context of transportation, by
means of image processing techniques.

None of the works presented above propose guidelines for designing very com-
plex ambient intelligence systems, like in the case of smart cities, composed of many
subsystems, strongly interconnected, that collaborate in order to obtain a better per-
formance (both from a user point of view and from the point of view of the global
system - in our case, the city), by means of the intelligence that emerges from their
global collaboration.

3 Designing Complex AmI Systems Using MAS

In this section we present the approach for designing complex AmI systems, like
the example of a city (smart city), which is used used as a case study. In few words,
the global system is considered to have a hierarchical structure, being a collection
of subsystems, each of them designed to solve one particular problem. These sub-
systems are further composed of other components (in the form of subsystems),
until they reach an atomic system, individually built in order to implement a simple
scenario. The global AmI system is a system of systems and one of its main char-
acteristics is the collective intelligence emerging from the collaboration between
all the subsystems composing it, which is higher than the sum of the degrees of
intelligence of all components.

Given the distributed character of the AmI systems and the continuous changes
of their execution context and topologies, an approach to AmI based on multi-agent
systems is an excellent solution, [1, 10, 5, 6, 13, 12]. The current approach is, thus,
agent-based and the solution used is inspired by the agent representation approach
used by the S-CLAIM language, [1, 9], in which the agents are grouped into simple
hierarchies (where simple means that each agent has at most one parent) and it
extends this approach for more complex scenarios.

Considerations. The current approach is exemplified, as mentioned above, on the
case study of a smart city, but it could be applied to any other scenario where we
deal with complex environments. In such an environment, an AmI system meant to
help the user in his daily activities should take into consideration a lot of aspects.



326 M.-T. Benea

For a smal AmI application, like in the case of the SmartRoom scenario, [1], it
is easy to have an overview of how the system will look like and it’s quite obvi-
ous how to design it. It is difficult, however, to design, a-priori, an AmI system that
takes into account all the possible problems and scenarios occurring in a city, using
the same method as for the case of the more simple SmartRoom scenario. When
we discuss about cities (or even bigger environments), no single developer or team
could approach all the possible problems in an optimal way. Thus, a better solution
is to consider that stand-alone AmI applications have been developed and optimized
for simple scenarios and that a good method of integrating them is available. Con-
sidering the existence of a framework like S-CLAIM and its associated platform,
[1], which offers a good development environment for the implementation of a wide
range of AmI applications and by using which all these applications would have
similar structures and execution specifications, their integration is possible.

Given these considerations, the problem of designing complex AmI environments
reduces to the problem of defining a method for combining multiple stand-alone
AmI applications, giving birth to bigger environments that make use of the inge-
nuity of each subsystem and its components in a clever way. As the multi-agent
systems on which the AmI applications developed with S-CLAIM on top of its as-
sociated platform, [1], are based on well defined topologies (in the form of the agent
hierarchies described in the same article), the problem becomes the one of extending
S-CLAIM’s formalism with a method for growing the underlying agent graphs of
multiple applications into bigger graphs, by means of some well defined techniques
adapted to the context of complex AmI systems.

Analysis of a Smart City Example. One of the first problems that have to be solved
when designing a city level AmI system is how to divide it into components that
could be managed by separate AmI applications. There is no best answer for this.
One option would be to consider a hierarchical physical structure, starting from
the user and the devices he uses and continuing with his places of interest (home,
work, etc.). These places of interest can be grouped together into bigger entities,
like neighborhoods, that group into districts which, eventually, compose the whole
city. Taking the city of Paris as an example (this choice is simply a preference of the
authors; any other city or even a fictitious one could be considered), we can see how
it is divided into districts in Figure 1, left.

We have now a division of Paris from a physical point of view, by districts. So, we
can consider that each such division is represented by an AmI environment, which
works well for the respective region. However, we can see that in the example from
the previous paragraph most of the elements considered are static. But there is one,
the user, who is also characterized by mobility. And he is not the only one. Let’s
consider the cars. They are mobile too, so they can change their position. They can
travel from one district to another. In Figure 1, right, we can see how, adding the
transport network (only the métro network is considered) over the map from the left
side of the figure, the districts aren’t isolated anymore. They become interconnected.

In order to have a simple hierarchy of agents, as in [1], in which each agent has
only one parent, we can make use of agent mobility in order to deal with the problem



Agent-Based Complex AmI Systems 327

Fig. 1 Division of Paris into districts (left & right) + métro network (right)

of the mobile components of the environment. So, for example, let’s consider a bus,
the bus number 38. It has to pass from the 1st district to the 6th (it’s not important
where exactly they are on the given map). If it is considered to be located in one of
the districts of Paris and if we want to express this as part of the context described
by the agents’ hierarchy, we can simply move the agent that assists the bus from the
sub-hierarchy of one district to the sub-hierarchy of the other. Thus, mobility is a
simple solution for this problem.

What if we consider a particular 38 bus as the child of the 38 bus line (in each
situation, by mentioning a certain entity we refer to the agent representing it), and
the 38 bus line as the child of the Paris bus network, also a child of agent managing
the Paris transportation system, etc.? In this situation there is no direct way to repre-
sent the district where the bus is located. So, a pure hierarchical structure (i.e. each
agent has only one parent) of the multi-agent system underlying the AmI system of
the city is not a solution. There is also a need for communication between the AmI
subsystems of a certain level. For example, an agent located physically in the 6th

district should know that there is a 38 bus in another district that is 15 minutes away
from the entity it represents and that it is the closest 38 bus.

The problem of the bus can be solved simply by adding, for example, one agent to
each bus station (it is also a good thing to consider for a transportation AmI system,
as the stations possesses useful information about the conveyances that pass through
them). The station knows when a bus passed so it can inform the line’s agent about
this, so that the line has an overview of the positions of all its buses. However, this
can be expressed in a better way too, also encoding it in the hierarchy of agents,
but this time a more complex hierarchy, in which an agent can have more than one
parent. For example, a station could have as parent the district it is located in and
also all the bus lines that contain that station. The possibility of having more parents
is not supported in S-CLAIM, but it is undoubtedly an useful feature.

What properties would such a complex hierarchy have? The most important one
is that it is possible to decompose it into several simple ones, in which the agents
having more parents would be copied in each simple hierarchy, according to one
single child-parent link. So, if we can decompose a complex system this way, can
we also reverse the process and use the resulted method to combine different AmI



328 M.-T. Benea

1 r e p e a t
2 choose two AmI a p p l i c a t i o n s and t h e mul t i −

a g e n t s y s t e m s A and B beh ind them ;
3 f i n d t h e s e t T of a l l t h e p a i r s o f tw in a g e n t s

i n t h e two mul t i −a g e n t sys t ems , A and B ;
4 f o r each p a i r (xa,xb) ∈ T of tw in a g e n t s :
5 c r e a t e a new agen t , xab ;
6 parentsxab := parentsxa

⋃
parentsxb ;

7 parentsxa := {xab} and parentsxb := {xab} ;
8 xab.open(xa) and xab.open(xb) .
9 d e f i n e and c r e a t e a new agen t , ab ;

10 change t h e parents l i s t s o f t h e r o o t a g e n t s of
t h e two AmI s y s t e m s chosen a t s t e p 2 from
null t o {ab} ;

11 s o l v e f u r t h e r i n t e g r a t i o n prob l ems ( e . g . a d a p t
t h e GUIs ) .

12 u n t i l on ly one AmI sys t em i s l e f t .

Fig. 2 Algorithm for building complex, intelligent, AmI systems in a bottom-up manner

systems into bigger, more complex, subsystems? The answer is yes. We can propose
a method to identify the agents that can be combined into a single one, having all
the capabilities of the comprised agents and the list of all their parents. We can
extend this idea in order to provide an alternative to the top-down, rigid, design
of an AmI environment. We can do this in a simple, bottom-up, manner, in which
smaller systems are separately created according to some immediate and important
needs by developers who have a vision over them, and then they are combined in
order to form bigger systems.

One other advantage of the model in which each agents can have more parents,
beside the possibility to build complex AmI systems in a bottom-up manner is the
possibility to find more complex solutions to the problems the agents deal with, by
making use of the collective intelligence of all the components that were previously
combined in the development process. In other words, an agent can ask all its parents
a question and, afterwards, it can aggregate all the answers and draw a conclusion
based on them all. This is done directly, quickly and in a parallel manner, without
stressing the agent that is in the top of a simple hierarchy, risking thus to create a
bottleneck.

The Solution. In the context of complex systems, like the smart cities, we have
many, smaller, subsystems. Each subsystem tries to solve one different problem,
like in the case of a division of the city according to the services offered to the
inhabitants (transportation, events, weather state and forecast, etc.). In order to make
these subsystems communicate, a component (let’s say a user) should be represented
in more such subsystems by the same entity (e.g. the assistant of a user can be a
reporting entity for the weather service and part of a group traveling with the same
mean of transportation, in the same time). So, the best way to connect the separate



Agent-Based Complex AmI Systems 329

Fig. 3 Example AmI System of Paris. The horizontal arrows suggest that the components are
also interconnected directly. A rectangle is a system, a circle an agent.

subsystems is to identify the common parts and to represent them by the same entity
(an agent that collects all the capabilities of the agents in each such subsystem and
all the parents is a good choice). The question is how to do it. For cases like agents
that are single in their computational context, [9], the answer is simple. For more
complex situations, appropriate algorithms should be proposed.

The method described in this subsection has a recursive character, so that it can
be used to connect any systems into higher level ones, like smart cities together
creating smart regions, that connected together can create smart groups of regions
and so on, until, finally, we can have an AmI system that works at a global level.

In Figure 2 we present the algorithm to be considered in order to build, in a
bottom-up manner, the complex AmI systems described before. The steps 2, 3, the
defining part of 9 and 11 are left to the appreciation of the developers and are to be
studied in depth in the future. For the third step, we define as twins two agents which,
according to some considerations (e.g. computational context, entity represented,
design, name, responsibilities, etc.), are good choices for the future joints between
the two old AmI systems. parentsx is the set of parents of the agent x; x.open(y)
is the action by which agent x absorbs agent y. For more details about the open
primitive, see [1, 15, 3]. At the steps 9 and 10 an agent supposed to manage the new
AmI system is created and given a role.

Exemplifying the Solution. Let’s consider an AmI system of Paris comprising the
components shown in Figure 3 (Obs. 1: the horizontal arrows are the connections
made at the steps 4-8 in the algorithm in Figure 2 and the agents above each sys-
tem are the ones created at the steps 9 and 10; Obs. 2: This system was already
built using the algorithm in Figure 2 from the subsystems represented by the inner



330 M.-T. Benea

Fig. 4 The transportation and weather services considered separately

rectangles). At the beginning, two users, Michel and Robert, are in the LE Restau-
rant located in the 5th district of Paris, so their agents are children of the agent
representing the restaurant (only the agent managing the restaurant is represented
in Figure 3). A taxi comes for the two and both assistant agents become children
of the agent managing the taxi, with respect to the transportation AmI application.
Robert is still connected to the Internet, so useful information (air pressure, GPS
position, etc.) is collected by his mobile device and sent to a separately weather sys-
tem (Figure 4). We want to connect these two systems into one single system. Thus,
the two Robert agents will “compress” into a single agent (Figure 5). Further, the
TransportationAndWeatherMgmt agent is defined and created in order to manage
the new, more complex, AmI system.

Discussion about the Solution on the Basis of the Example. The bottom-up ap-
proach for building complex AmI systems, presented in this paper, has a great ad-
vantage. It allows the developers to improve and optimize simple, stand-alone AmI
systems, in order to offer the best possible solutions for the problems they solve.
Thus, the bigger system, which makes use of the intelligence of these stand-alone
systems (its subsystems), developed using the method presented in this work, has
access to a very powerful resource, a diversified collection of other systems (ap-
proaches to problems), which, according to [8], could create a more intelligent
whole, as the diversity is a factor that considerably improves the collective intel-
ligence of groups/collections of entities.

As an example, in figures 4 and 5 we have some simplified structures of the sys-
tems represented. They include many more agents and each agent may also be part
of other hierarchies, as, for example, an agent representing a bus may be the child
of the line it represents, but it may also be part of the traffic in the area it is lo-
cated in (determined using its GPS coordinates). Considering that it wants to find



Agent-Based Complex AmI Systems 331

Fig. 5 The transportation and weather services, connected

out the remaining time until a certain destination point (e.g. in order to answer a
question put by the assistant of a user who wishes to go to the location of a certain
event, from his agenda), it could ask its both parents and each of them will provide
an answer, based on their proper techniques. The bus line can use some statistic
information about the times needed for the same distance in similar conditions in
the past and about the way buses in front of it went earlier. The traffic agent for that
area offers some more fresh information about the state of the traffic. However, as
the buses use their own lane, the answer provided by the traffic agent may differ
from the actual time needed by the bus in order to reach the specified destination.
So, it is up to the bus to combine the two pieces of information in order to generate
an answer. So the bus could draw a better conclusion as a result of combining the
two mentioned systems rather than being part of them, separately. And this is a
very important aspect for such a complex and open system like a smart city, as it
is possible to have only a partial view of the environment at a given time moment,
thus having to deal with uncertainty.

4 Conclusions and Perspectives

In this paper we provided a bottom-up solution for designing complex agent-based
ambient intelligence systems, like for the case of smart cities, in which the final
system is the result of combining many individually developed agent-based appli-
cations designed to deal with smaller problems. We used smart cities as en example



332 M.-T. Benea

of such complex AmI environment. The solution we proposed is meant to be used
while designing complex AmI systems which the user desires to be endowed with a
high degree of intelligence.

Some open research problems are how to automatically do the interconnection of
the subsystems into a bigger systems (dealing with the 2, 3, 9 and 11 steps in Figure
2), what protocols to use for the communication between an agent and all its parents
to be as effective as possible, how to deal with the complex knowledge records
obtained by combining multiple answers to a single question and how to measure
and use the intelligence that emerges from the collaborations of all the subsystems
in order to offer the best possible services to the users.

References

1. Baljak, V., Benea, M.T., Seghrouchni, A.E.F., Herpson, C., Honiden, S., Nguyen, T.T.N.,
Olaru, A., Shimizu, R., Tei, K., Toriumi, S.: S-claim: An agent-based programming lan-
guage for ami, a smart-room case study. Procedia Computer Science 10(0), 30–37 (2012)

2. Candamo, J., Shreve, M., Goldgof, D., Sapper, D., Kasturi, R.: Understanding transit
scenes: A survey on human behavior-recognition algorithms. IEEE Transactions on In-
telligent Transportation Systems 11(1), 206–224 (2010)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proceedings of POPL 1998. ACM Press
(1998)

4. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for am-
bient intelligence in 2010. Office for official publications of the European Communities
(2001)

5. El Fallah Seghrouchni, A., Florea, A.M., Olaru, A.: Multi-agent systems: A paradigm to
design ambient intelligent applications. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.)
Intelligent Distributed Computing IV. SCI, vol. 315, pp. 3–9. Springer, Heidelberg (2010)

6. El Fallah Seghrouchni, A., Olaru, A., Nguyen, N.T.T., Salomone, D.: Ao dai: Agent ori-
ented design for ambient intelligence. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA
2010. LNCS, vol. 7057, pp. 259–269. Springer, Heidelberg (2012)

7. El Fallah-Seghrouchni, A., Suna, A.: An unified framework for programming au-
tonomous, intelligent and mobile agents. In: Mařı́k, V., Müller, J.P., Pěchouček, M. (eds.)
CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 353–362. Springer, Heidelberg (2003)

8. Howe, J.: Crowdsourcing: How the Power of the Crowd Is Driving the Future of Busi-
ness. Business books, Random House (2009)

9. Olaru, A.: A context-aware multi-agent system for ami environments. Ph.D. thesis, Uni-
versity Politehnica of Bucharest & University Pierre and Marie Curie, Paris (2011)

10. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: A context-aware multi-agent system
as a middleware for ambient intelligence. Mobile Networks and Applications (2012)

11. Passos, L., Rossetti, R., Oliveira, E.: Ambient-centred intelligent traffic control and man-
agement. In: 2010 13th International IEEE Conference on Intelligent Transportation Sys-
tems (ITSC), pp. 224–229 (2010)

12. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial
intelligence. IEEE Intelligent Systems 23(2), 15–18 (2008)

13. Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43(4), 36:1–36:66 (2011)



Agent-Based Complex AmI Systems 333

14. Streitz, N.: Smart cities, ambient intelligence and universal access. In: Stephanidis, C.
(ed.) Universal Access in HCI, Part III, HCII 2011. LNCS, vol. 6767, pp. 425–432.
Springer, Heidelberg (2011)

15. Suna, A.: Un environnement pour la programmation d’agents intelligents et mobiles.
Ph.D. thesis, Université Paris 6 - Pierre et Marie Curie, Paris, France (2005)

16. Suna, A., El Fallah Seghrouchni, A.: Programming mobile intelligent agents: An opera-
tional semantics. Web Intelligence and Agent Systems 5(1), 47–67 (2004)



Agent-Based System for Affective Intelligent
Environment

Mihaela-Alexanda Puică, Irina Mocanu, and Adina-Magda Florea

Abstract. Within the Ambient Intelligence research field there is little attention
payed to the affective side of the users. However, we believe that it should not
be ignored, because emotions have an important role in all human cognitive pro-
cesses and in their behavior. A smart environment should be able to detect the emo-
tional state of the persons living there and to adjust its answers according to the user
affective needs.

With this objective in mind, we address the idea of building a smart museum.
Consequently, we have built an agent-based system that aims to respond to the af-
fective component of the visitors of this museum, by guiding them to the gallery that
would induce them a pleasant affective state. In this paper we introduce the agent-
based system built, but we focus on the first step that must be done in the system life
cycle: detect visitor affective state. We do this by reading their facial expressions,
using the Kinect Face Tracking SDK.

1 Introduction

Affective Computing and Ambient Intelligence are both recent fields of study in the
Artificial Intelligence research domain. An important amonunt of work was done in
both directions, but less interest was shown towards combining them.

We believe the two research fields can help eachother. Ambient Intelligence aims
at building smart environments where devices help people in their activities in a
non-intrusive manner. Affective Computing aims at improving human-computer in-
teraction by understanding and responding to user emotions and by displaying be-
lievable behavior. The goal of our work is to build an environment where agents
anticipate both the practical and the affective user needs.

Mihaela-Alexanda Puică · Irina Mocanu · Adina-Magda Florea
University Politehnica of Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania
e-mail: mihaela.puica@gmail.com,

{irina.mocanu,adina.florea}@cs.pub.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 335
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_39, c© Springer International Publishing Switzerland 2014



336 M.-A. Puică, I. Mocanu, and A.-M. Florea

In what follows, Section 2 presents related work done in Ambient Intelligence
and Affective Computing, focusing on emotion recognition from facial expressions.
Section 3 shows the system and the scenario in which the system is applied, Section
4 presents the method and the results obtained and Section 5 draws conclusions and
future work.

2 Related Work

Research in Ambient Intelligence emphasizes the user-centric perspective, where
various devices capture context information, which is then used by the system to
react to changes or to proactively give information to the users by anticipating their
needs. Examples include SmartDrawer [2], a system that takes care that the pacient
takes the pills as adviced; Camile [9], dedicated to elderly or disabled people, giving
them the possibility to control the lightning in a room; AoDai [8], a multi-agent
system that uses context-awarness to guide a user in a smart environment.

The systems mentioned above do not take into consideration user affective state,
but there is some work done in this direction. The review in [4] includes systems that
infer user affective state and use it to keep the user in a productive state. BioStories
[14] builds a model of the user affect which is then used by the system to adapt to
the user emotional state.

The primary activity of these systems is to automatically recognize human emo-
tions. There are several methods to do this, resumed by Rafael Calvo and Sidney
D’Mello in their review [3]. These methods depend on the forms of the sentic mod-
ulation, i.e. the influence of emotion on bodily expression [13].

Facial expressions appear when the face muscles move, resulting in different
forms of the eyes, brows, nose and lips, as well as specific wrinkles. In psychology,
Paul Ekman did a lot of research, developing a system for objectively classifying
expressions (Facial Action Coding System [7]) and argumenting that there are 6
basic emotions, universally expressed and recognized by humans in different cul-
tures. In artificial intelligence, research focuses on classification of a small number
of emotions using neural networks, genetic algorithms or support vector machines.
According to [10], current emotion recognition systems using facial expressions
recognize between 2 to 7 emotion categories, with an accuracy of 83% - 98%.

Gestures and posture refer to the whole body and arms position. Both sitting
and standing bodies are revealing for user emotions. The Labanotation [1] uses the
articulations of the body to determine the position of a standing user. For sitting
body postures, The Body Preasure Measurement System (BPMS) [12] recognizes
the interest level with an accuracy of about 82%.

Speech is characterized by parameters like pitch or volume, which can be used to
determine the emotion encoded into the voice intonation. Current systems for affect
detection from voice use 10 to 20 features and have an accuracy of about 80% (see
[5] or [15]).



Agent-Based System for Affective Intelligent Environment 337

Physiological parameters require special devices to be measured, but the results
are encouraging. [3] compared 12 studies that classify 3 up to 8 emotions with an
average accuracy of 80%.

Multimodal emotion recognition uses several of the methods presented above
to detect affect. It can be done at three levels (data fusion, feature fusion, decision
fusion), depending on the moment of result integration. There are few implemented
systems and they do not have very conclusive results.

3 An Agent-Based System for Dealing with Affective Behavior

Considering an arts museum, we would like to design an agent that can anticipate the
type of art objects that a visitor is likely to appreciate. Based on the user preferences,
the agent should be capable to guide them to the gallery that would provide them
with a pleasant experience.

In order to do this, the visitor is to be shown samples from each gallery and the
agent must read their facial expression, infering whether the artworks produce a pos-
itive or negative effect upon them. Using this information, the agent will recommend
the gallery that it considers the most appropriate for the tracked visitor.

Fig. 1 shows the system structure. In the center lies the user because the whole
system works for their benefit. Thus, when the visitors enter the museum, it is likely
that while looking at the sample objects in the entrance hall, their faces will express
emotions like curiosity or dislike. We are only interested in these emotions and we
assume that they are strong enough to surpass the affective state of the visitor before
entering the museum.

Based on the emotions felt by the visitor, and using the information in the knowl-
edge base and in the feedback dataset, the reasoning engine chooses a certain gallery
that will be recommended to the visitor.

Fig. 1 Agent-based system for smart museum



338 M.-A. Puică, I. Mocanu, and A.-M. Florea

The knowledge base contains the artworks presented in the museum, each piece
being tagged with several keywords that define the type (e.g. painting, sculpture),
style (e.g. classicist, renaissance, modernist), theme (e.g. portrait, landscape, battle)
and induced state (e. g. melancholy, playfulness, quietness) of that piece of art. Each
person has some preferences among these criteria, and the reasoning engine has to
infer them based on their inital emotions.

The feedback dataset is initially empty. During the visit, user emotions are again
assesed, and at the end of the tour, the visitor is invited to submit their feedback by
answering a few, short questions. Both methods are used to assess user satisfaction.
This feedback is used to recommend the visitor the next gallery to visit.

In this paper we focus on the first part of the described system, thus the next
section details the method we applied to detect visitor emotions.

4 A Method for Emotion Recognition

Our approach was directed towards building a psychological model of human emo-
tion recognition through facial expressions and applying this model on automatic
recognition. For that, we first studied the differences in the facial expressions of the
six basic emotions, as described by Paul Ekman [6]. After the analysis, we chose to
consider only the modifications in the eyes, brows and lips, the nose generally being
less revealing for affect detection. Fig. 2 shows the psychological model that we
came up with. We can note that happiness and disgust are only expressed through
the mouth.

Fig. 2 Face feature modifications for each emotion

For the implementation, we decided to use the Microsoft Face Tracking SDK1

because it allows us to build applications that can track human faces in real time,
which is what we need for a smart museum. This SDK tracks head position and
facial features, returning 121 reference points on the face.

Considering the pshychological model shown in Fig. 2, we decided to use only
58 points, corresponding to the brows, eyes and mouth. Thus, we have:

1 http://msdn.microsoft.com/en-us/library/jj130970.aspx

http://msdn.microsoft.com/en-us/library/jj130970.aspx


Agent-Based System for Affective Intelligent Environment 339

• 16 points for the eyes (8 for the left eye and 8 for the right eye)
• 20 points for the brows (10 for the left brow and 10 for the right brow)
• 20 points for the lips (12 for the exterior lips, 8 for the interior lips)
• 2 points for eye centers (left eye center and right eye center)

Fig. 3 shows a representation of the tracked points. At the left of the figure there are
the points returned by the Face Tracking SDK, while at the right are those used by
our system. The points at the right of the figure were plotted in Octave using feature
coordinates obtained through tracking a real person.

Fig. 3 The points returned by the Face Tracking SDK1 and the 58 points used by our system

All the experiments using the Kinect sensor were conducted in the Ambient In-
telligence laboratory presented in [11].

We followed a supervised learning approach, training a neural network with fa-
cial expressions for known emotions. Fig. 4 shows in detail the steps necessary to
achieve our goal, from the face tracking up to the emotion output.

After obtaining the 58 points that define the brows, eyes and mouth, we measured
18 distances between the face elements. These are shown in Fig. 5.

At this point, we analysed the data gathered so far to observe how different the
values are. Table 1 shows the most frequent values for the distances between the
brows and the eyes, computed for one person tracked 6 times, once for each emotion,
each dataset containing more than 100 frames.

We can notice that the values for the computed distances are quite similar. To
differentiate them better, we propose the following 3 clusters:

Fig. 4 System structure



340 M.-A. Puică, I. Mocanu, and A.-M. Florea

Table 1 Distances measured on a sample face (in mm)

Distance Happiness Sadness Fear Anger Surprise Disgust

UpperBrowEyeCenter 14 15 16 10 17 11
LowerBrowEyeCenter 10 11 12 7 13 7
UpperBrowCornerEyeCorner 13 14 15 9 16 9
LowerBrowCornerEyeCorner 9 10 11 6 12 7

• {happiness, sadness}
• {fear, surprise}
• {anger, disgust}
We can thus train the neural network to output 3 classes, and afterwards split each
class into the 2 emotions.

Nevertheless, absolute distance values differ for different face geometries or dis-
tances and angles of tracking. Therefore, we should compute relative distances, i.e.
the ratio between the absolut distances for an emotion and the absolut distances for
the neutral expression. Table 2 shows the values for the relative distances.

We then trained a simple feedforward neural network with one hidden layer of
10 neurons, and the logistic sigmoid (logsig) as activation function. We decided on
this structure after training and testing the network with different parameters.

Fig. 5 Distances measured between face features



Agent-Based System for Affective Intelligent Environment 341

Table 2 Relative distances (in mm)

Relative distance =
Absolute distance / Neutral

Happiness Sadness Fear Anger Surprise Disgust

UpperBrowEyeCenter 1.01 1.14 1.21 0.9 1.25 0.85
LowerBrowEyeCenter 1.03 1.18 1.28 0.88 1.31 0.82
UpperBrowCornerEyeCorner 1.02 1.15 1.22 0.86 1.26 0.83
LowerBrowCornerEyeCorner 1.03 1.2 1.3 0.87 1.34 0.81

4.1 Results

We tracked different persons expressing the 6 emotions. We put together all the data
(except for one person), with a total of more then 1000 frames for each emotion, and
split the dataset into training, validation and test data. The results were as follows:

• for absolute distances, the predictive accuracy was 87.56%; when testing the
network on data not in the training set, the accuracy decreased to 78.83%

• for relative distances, the predictive accuracy was 91.41%; when testing the net-
work on data not in the training set, the accuracy was almost the same, 91.07%

The results thus confirm that relative distances offers better results then absolute
distances. The overall accuracy is greater in the case of relative distances, and also
the accuracy for a new person hasn’t decrease as in the case of absolute distances.

5 Conclusion

We have built an agent-based system that aims at detecting user emotions and mak-
ing recommendations based on user affective state. Particulary, we presented the
case of a smart museum where the agent anticipates the gallery that the visitor would
enjoy most. In this paper we focused on emotion recognition from facial expressions
using the Kinect sensor.

Our approach was to follow the pshychological model in order to make the auto-
matic affect recognition. We computed the distances between the face features and
we showed that relative distances provide a better accuracy than absolute distances.
The overall accuracy of 91% proves the feasibility of this approach.

Nevertheless, the results could still be improved. First, we should reconsider the
relevance of the distances. Secondly, we should increase the dataset with more per-
sons, to cover more face geometries or ways of expressing emotions. Thirdly, the
current method doesn’t consider rotations or translations of the person’s head, so the
tracked user must look at the sensor for accurate results.

Acknowledgements. The work has been funded by Project 264207, ERRIC-Empowering
Romanian Research on Intelligent Information Technologies/FP7- REGPOT-2010-1 and by
the Sectoral Operational Programme Human Resources Development 2007-2013 of the



342 M.-A. Puică, I. Mocanu, and A.-M. Florea

Romanian Ministry of Labour, Family and Social Protection through the Financial Agree-
ment POSDRU/107/1.5/S/76813.

References

1. Badler, N., Smoliar, S.: Digital representations of human ovement. Computing Sur-
veys 11(1), 19–38 (1979)

2. Becker, E., Metsis, V., Arora, R., Vinjumur, J., Xu, Y., Makedon, F.: Smartdrawer: Rfid-
based smart medicine drawer for assistive environments. In: Proceedings of the 2nd In-
ternational Conference on Pervasive Technologies Related to Assistive Environments
(PETRA 2009), pp. 49:1–49:8. ACM (2009)

3. Calvo, R., D’Mello, S.: Affect detection: An interdisciplinary review of models, meth-
ods, and their applications. IEEE Transactions on Affective Computing 1(1), 18–37
(2010)

4. Cearreta, I., López, J.M., López de Ipiña, K., Garay, N., Hernández, C., Graña, M.: A
study of the state of the art of affective computing in ambient intelligence environments.
In: Interacción 2007 (VIII Congreso de Interacción Persona-Ordenador, II Congreso
Espanol De Informatica - CEDI 2007), pp. 333–342. Asociación Interacción Persona-
Ordenador (AIPO) (2007)

5. Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotion in speech. In: Proceedings of
International Conference on Spoken Language Processing, pp. 1970–1973 (1996)

6. Ekman, P.: Emotions Revealed. Henry Holt and Company LLC (2003)
7. Ekman, P., Friesen, W.: Facial Action Coding System: Investigator’s guide. Consulting

Psychologist Press (1978)
8. El Fallah Seghrouchni, A., Olaru, A., Nguyen, N.T.T., Salomone, D.: Ao dai: Agent ori-

ented design for ambient intelligence. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA
2010. LNCS, vol. 7057, pp. 259–269. Springer, Heidelberg (2012)

9. Grammenos, D., Kartakis, S., Adami, I., Stephanidis, C.: Camile: Controlling ami lights
easily. In: Proceedings of the 1st International Conference on Pervasive Technologies
Related to Assistive Environments (PETRA 2008), pp. 35:1–35:8. ACM (2008)

10. Hebe, N., Cohen, I., Huang, T.: Multimodal Emotion Recognition. In: Handbook of Pat-
tern Recognition and Computer Vision. World Scientific (2005)

11. Ismail, A.-A., Florea, A.-M.: Multimodal indoor tracking of a single elder in an AAL
environment. In: van Berlo, A., Hallenborg, K., Rodrı́guez, J.M.C., Tapia, D.I., Novais,
P. (eds.) Ambient Intelligence & Software & Applications. AISC, vol. 219, pp. 137–145.
Springer, Heidelberg (2013)

12. Mota, S., Picard, R.: Automated posture analysis for detecting learner’s interest level. In:
Proceedings in Computer Vision and Pattern Recognition Workshop, vol. 5, pp. 49–54
(2003)

13. Picard, R.: Affective Computing. MIT Press (2000)
14. Vinhas, V., Oliveira, E., Reis, L.P.: BioStories: Dynamic multimedia environments based

on real-time audience emotion assessment. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2010.
LNBIP, vol. 73, pp. 512–525. Springer, Heidelberg (2011)

15. Yang, N., Muraleedharan, R., Kohl, J., Demirkol, I., Heinzelman, W., Sturge-Apple,
M.: Speech-based emotion classification using multiclass svm with hybrid kernel and
threshholding fusion. In: 2012 IEEE Workshop on Spoken Language Technology (2012),
http://www.rochester.edu/news/show.php?id=5072

http://www.rochester.edu/news/show.php?id=5072


An Argumentation Framework for BDI Agents

Tudor Berariu

Abstract. This article presents a practical approach to building argumentative BDI
agents. As in the last years the domain of argumentation reached maturity and offers
now a very rich and well structured abstract theory, the challenge now is to put this
work into practice and prove its usefulness in real applications. There is a high inter-
est from the multi-agent systems community in applying argumentation for agents’
defeasible reasoning.

The main goal of the work presented in this paper was to provide the means to
enable argumentative capabilities in BDI agents. For this reason, Jason, a platform
for the development of multi-agent systems using the BDI model of agency, was
extended with a module for argumentation. The proposed argumentation module is
decoupled from the BDI reasoning cycle as it operates only on the belief base of the
agents and does not interfere in the execution of plans, creation of goals, or agent’s
commitments. Although no protocol for argumentation-based dialogues is proposed
here, agents can engage in any such dialogues as the argumentation module makes
suggestions of attacks to put forward in conversation or gives structured justifica-
tions for different beliefs. An instantiation of Dung’s abstract framework is used
with state of the art structure of arguments and ways of attack and defeat between
arguments.

1 Introduction

One fundamental aspect in artificial intelligence and multi-agent systems is agent
reasoning about the external world, itself or the actions to take at a certain point of
time.

One common problem in agent logic is ensuring the consistency of beliefs af-
ter information conflicting with previous view of the world is perceived. After such

Tudor Berariu
University Politehnica of Bucharest, Bucharest, Romania
e-mail: tudor.berariu@gmail.com

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 343
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_40, c© Springer International Publishing Switzerland 2014



344 T. Berariu

an information update, the consistency of the belief set must be preserved and this
process is called non-monotonic reasoning. Two distinct approaches to its formal-
ization are known. First, there are different extensions to the classical logic like
McDermott and Doyle’s modal operator M [12], Reiter’s logic for default reason-
ing [14] or McCarthy’s circumscription theory [11]. The second class of formalisms
for mechanizing non-monotonic reasoning are the various families of truth mainte-
nance systems (TMS), first proposed by Doyle in [6].

Close to Doyle’s vision, argumentation provides an alternative way to deal with
non-monotonic reasoning: arguments can support existing beliefs or can act as coun-
terarguments against them. In this way, solving conflicts between arguments does
the job of belief revision.

The paper presents an argumentation-based system able to maintain consistency
of the belief base of BDI agents, while hiding the functioning of the argumenta-
tion mechanisms from the BDI reasoning cycle. The system allows the agents to
query the argumentation module for suggestions of attacks or argumentation-based
justifications for accepted or rejected beliefs

The approach starts from Dung’s abstract argumentation framework [7] but it
is centered towards the integration of argumentation with the practical aspects of
BDI agent behaviour by developing an argumentation module to be integrated in
the Jason platform1.

The document is structured as follows: section 2 introduces some fundamental
concepts from argumentation theory, section 3 describes my practical solution to
the problem stated above, while section 4 brings an example of non-monotonic rea-
soning that uses argumentation in the proposed system.

2 Abstract Argument Systems

The work of Dung [7] is considered the first major step towards argumentation
systems as it provides the means to use argumentation theory for non-monotonic
reasoning. Dung offers an abstraction of the attack relation between arguments, on
top of which refutation, a central concept in argumentation, is built. A refutation of
an argument is an opposed argument that attacks the original argument and defeats
it. There are several ways to attack an argument: by asking an appropriate critical
question that raises doubt about the acceptability of the argument, by questioning
one of its premises or by putting forward counter-arguments that oppose the origi-
nal argument, meaning that the conclusion of the opposing argument is the opposite
(negation) of the conclusion of the original argument. There are also more complex
ways to attack arguments: doubting about the relevance of the premises to the con-
clusions or even about the relevance of the argument in relation to the issue of the
dialogue, arguing that a set of arguments commit a logical fallacy.

An example of Dung-style representation of arguments is that shown in Figure 1.
In that example, argument A1 attacks A2, A3 and A4; A3 attacks A5; A5 and A6
attack each other.

1 http://jason.sourceforge.net/Jason/Jason.html

http://jason.sourceforge.net/Jason/Jason.html


An Argumentation Framework for BDI Agents 345

Fig. 1 Representation of argument attacks

An abstract argument system is a tuple 〈A ,R〉 where A is a set of arguments
and R is a binary relation over A called attack relation.

It is clear that, while arguments attack each other, they cannot stand together and
their status is subject to evaluation. That means that the justification state of each
argument must be determined. An argument is regarded as justified if it survives the
attacks it receives and it is rejected otherwise.

The argument evaluation needs a formal method that describes the steps of the
process or the states of arguments based on some criteria. These formal methods are
called argumentation semantics and there are two categories: extension-based and
labeling-based.

Extension-based semantics specifies how to obtain sets of arguments E where
each extension E of an argumentation framework 〈A ,R〉 is a subset of A con-
taining a set of arguments that can stand together. In extension-based semantics the
justification state of an argument is defined in terms of membership of the respective
argument to the extensions.

In extension-based semantics two alternative types of justification, namely skep-
tical and credulous can be considered. In a formal way, for an argumentation frame-
work AF and a semantics S , an argument a is:

• skeptically justified if and only if ∀E ∈ ES (AF) : a ∈ E
• credulously justified if and only if ∃E ∈ ES (AF) : a ∈ R.

Using this classification, justification states of arguments can be defined. An argu-
ment a is:

• justified if and only if ∀E ∈ ES (AF) : a ∈ E (this corresponds to skeptical justi-
fication);

• defensible if and only if ∃E1,E2 ∈ ES (AF) : a ∈ E1,a /∈ E2 (this corresponds to
credulous justification)

• overruled if and only if ∀E ∈ ES (AF) : a /∈ E (arguments that cannot be justified
are rejected).



346 T. Berariu

Building on definitions for acceptable arguments (that are defended against all at-
tacks) and admissible sets (that contain only acceptable arguments), Dung proposes
four traditional semantics:

complete E is a complete extension if and only if E is admissible and every argu-
ment of A which is acceptable wrt. E belongs to E

grounded The grounded semantics are easier to explain by the process of building
them incrementally from the unattacked arguments. The arguments attacked by
them can be suppressed. The process is repeated until no new arguments arise af-
ter a deletion step. The set of all initial arguments identified so far is the grounded
extension.

stable A stable extension attacks all arguments not included in it.
preferred An extension E is a preferred extension of AF if E is as large as possible

and able to defend itself from attacks.

There are other extension-based semantics proposed in the literature: stage seman-
tics [15] (the stage extension is the maximum conflict-free set); semi-stable se-
mantics [4] (the semi-stable extension is the maximal complete extension); ideal
semantics [8]; CF2 semantics [1]. Another semantics proposed, the prudent seman-
tics [5] is based on a more extensive notion of attack in the context of traditional
semantics: an argument a indirectly attacks an argument b if there is an odd-length
attack path from a to b. Recent work on argumentation semantics explore methods
of local computation of extensions [10].

This represents the theoretical basis for our work.

3 Building Argumentative Agents in Jason

There are some attempts in the literature to combine the BDI model of agency with
argumentation based reasoning. Most of these works concern negotiation or other
dialogue games where agents have to respect a certain protocol. The challenge tack-
led in this document is a bit different. The goal here is to build an argumentation
module attached to the BDI engine that enables general argumentation capabilities
to the agents, not just for a specific dialogue game. By this claim I mean that an agent
capable of a non-monotonic argumentation based reasoning can participate into ar-
gumentation dialogues if the rules to follow a specific protocol are programmed in
the agent and, possibly, an argumentation strategy is defined. For persuasive agents,
such a strategy should work using a proper argumentation semantics that identifies
the set of arguments to defeat, as the one proposed in [9]. An aspect one should be
careful when designing an argumentation based reasoning engine for a BDI agent is
that information comes from multiple sources which can influence the status of each
piece of information from an argumentation point of view and, as a consequence,
the entire reasoning process.

The framework used in this project is based on the latest instantiations of Dung’s
abstract formalism, especially on Prakken’s work [13]. As in [13], I used an ab-
stract argumentation framework with structured arguments and three types of attacks



An Argumentation Framework for BDI Agents 347

between them: rebutting, undercutting and undermining. Also, the framework takes
advantage of the distinction between contradiction and contrariness (as in [2]).

To construct multi-agent systems in the BDI paradigm, we chose Jason a platform
that uses a high level language (an extension of AgentSpeak) [3] for programming
the agents.

The approach taken in this work was to separate the BDI strict reasoning cycle
(the Jason reasoning cycle) from the argumentation defeasible reasoning. The result
is that there are two reasoning modules that operate on the agent’s knowledge, but
not on the same piece of information. This might seem a disadvantage at first, but
there are rational reasons to do that.

One advantage of decoupling the BDI reasoning module from the argumentation
module is the fact that agents might receive (sense) a lot of data that is irrelevant
from an argumentative point of view. There are beliefs which generate goals and
plans that do not need an argumentation treatment. For example, an agent has a mo-
tion sensor and its only use is decide whether to turn on the light or not. Represent-
ing all this data as arguments in an argumentation framework brings an unneeded
overhead.

3.1 Coupling the Modules

When a new belief is added, deleted or a new set of percepts are received from the
environment, before the BDI logic starts to treat the new events, these are intercepted
by the argumentation module. Here a sequential update on many layers is done and
a set of visible modifications (additions and removals) to the belief base is sent to
the BDI reasoning engine in Jason.

First, from the set of all beliefs and percepts received (for either addition or re-
moval), only those that are relevant for the argumentation system are kept. The oth-
ers are passed untouched to the BDI engine. The filtering is done on the basis of
the language and on the formulas that appear in rules. If there is no rule that has as
an antecedent or as its consequent a certain formula, then the latter is not relevant
for argumentation. This verification adds a small computational overhead for the
cases when beliefs or percepts that are irrelevant to argumentation pass through the
argumentation module.

Next, these beliefs and percepts are transformed into premises in the knowledge
base of the argumentation theory. Here, the type of premise is decided as described
later. There are several rules that apply in order (user expressed preferences, custom
functions or default rules from the argumentation theory: e.g. the Carneades model).

On the basis of the modified premises (new premise, premises whose types were
changed, deleted premises) the set of matched rules is also updated. New arguments
are formed if new rules match or old arguments are deleted if they correspond to
premises that were removed.

At the next level, the list of attacks between arguments is updated. First, attacks
from and to deleted arguments are removed. Second, new attacks for new arguments
based on the contrariness function are computed.



348 T. Berariu

Fig. 2 The course of action in the argumentation framework when a new belief is added/
removed or perceived

With the new list of attacks, the successful attacks which result in defeat are
filtered. This is done using the theory described in the previous section.

The updates propagate further to the semantic extensions of arguments. The last
set of accepted arguments is saved. With the new graph of defeats between argu-
ments a new set of acceptable arguments is computed. The preferred semantics are
used as they have the highest level of consistency. The differences between the old
set and the new set of accepted arguments are actually the changes that are transmit-
ted back to the Jason agent to be processed by the agent’s belief revision function.



An Argumentation Framework for BDI Agents 349

3.2 Controlling the Argumentation Module through Beliefs

As all added or removed beliefs pass through the argumentation framework, the
same strategy was used to control the argumentation module with beliefs that have
reserved predicate names.

In order to control the way in which conclusions are accepted, I introduced the
argument acceptability(arg) belief, where arg takes on of the follow-
ing values: {CREDULOUSLY ACCEPTABLE for credulously S-acceptable conclu-
sions, SKEPTICALLY ACCEPTABLE, or RANDOM}. In a similar manner, using the
plausible argument orderings one can configure one of the two plausible
argument orderings defined by Amgoud: LAST LINK or WEAKEST LINK.

There are two special beliefs for defining strict and defeasible rules.
defeasible rule(RuleName,RuleText) adds a defeasible rule to the ar-
gumentation system, while strict rule(RuleName,RuleText) adds a strict
rule. Rules are given in the following format:

literal1& . . .&literaln ⇒ ϕ

where ϕ is the conclusion and literali with i ∈ {1, . . . ,n} are antecedents.
Next, there are two predicates used to define the contradiction and the contrari-

ness relations: contradictory(Literal1, Literal2) and
contrary(Literal1, Literal2). As undercutting attacks against the ap-
pliance of a rule are needed, beliefs in the form evidence against(Literal,
RuleName) add such information in the argumentation system.

In order to differentiate between different types of premises based on their source,
the premise from(AgentName,PremiseType) beliefs can be used.

As the argumentation module should help the agent in persuasion, inquiry, nego-
tiation or deliberation dialogues, another belief that queries the argumentation mod-
ule has been added. why(Proposition) interrogates the argumentation module
to find out why the respective argument is accepted or rejected. The response comes
in a belief because(X,Y) where X is one of {in,out} and possible answers are:

• because(out,unknown) : which means that the proposition in the query
is not in the knowledge base. Agent is not aware of the query formula or its
negation.

• because(in,premise(premise type)) : which means that the specific
proposition was added as a premise in the knowledge base and is not the result
of any form of reasoning (strict or defeasible). The current status of that premise
is premise type (axiom, assumption,. . .).

• because(out,¬Proposition)which means that the formula in the query
is not itself in the knowledge base, but its negation is currently an accepted argu-
ment.

• because(in,¬Proposition) which means that the formula in the query
is not itself in the knowledge base, but its negation is currently an overruled
argument.



350 T. Berariu

• because(in,Rule) : which tells the agent that the argument corresponding
to the proposition in the query is currently accepted and it is the result of a ap-
plying the (defeasible or strict) rule Rule.

• because(out,ListOfDefeats) : which returns a list with all the conclu-
sions of the arguments that defeated the current one.

The argumentation engine maintains a graph-like representation for the arguments
and their justifications. In order to resolve why(Proposition) queries, the ar-
guments space is explored starting from the belief matching Proposition.

4 Case Study: Business Trip

In what follows a scenario for argumentation implemented in Jason is described.
This example uses a single agent for whom the argumentation module works just as
a nonmonotonic reasoning agent.

In the next figures, a green box represents an accepted argument, a red box a
refuted one, while blue is for strict rules and yellow for defeasible rules.

Consider an agent that has only one belief that represents the information that is
the birthday of one of his friends and one defeasible rule which says that if is the
birthday of a friend, then he probably goes to a party. Consider now that we add
another belief to the agent. Suppose he has a meeting in Berlin, so he will probably
fly to Berlin. He cannot be both in Berlin and Bucharest at the same time, so the two
propositions are marked as contradictory.

friend_s_birthday.
defeasible_rule("DR1","friend_s_birthday => go_to_party").
meeting_in_berlin.
defeasible_rule("DR2","meeting_in_berlin => fly_to_berlin").
contradictory("go_to_party","fly_to_berlin").

Now, arguments for go to party and fly to berlin attack each other. As
there are no preferences between defeasible rules or premises that can be applied
here, both attacks are successful.

There are two preferred extensions, one that contains fly to berlin and one
that contains go to party. Hence, if the agent is credulous, he will accept both
and if he is a skeptical agent, he will accept none of the two (see Figure 3). Both
provide good information about the uncertainty of arguments, but neither is useful
from a practical point of view. An agent cannot use all the arguments that he credu-
lously accepted, as there can be pairs of conflicting arguments and it’s not useful to
reason just on the arguments that can be skeptically accepted as that could lead to
no action taken (not going to the party and not flying to Berlin).

Now, let’s consider, that in general, if you have to go to a business meeting you
go in most of the cases. But you are not going to all of your friends’ birthday parties.
So, we add a rule that says that the appliance of rule DR2 is more probable than the
appliance of rule DR1.



An Argumentation Framework for BDI Agents 351

(a) Credulous (b) Skeptical

(c) Random preferred

Fig. 3 Accepted arguments depending on the acceptability principle

argument_ordering("LAST_LINK").
prefer_rule("DR1","DR2").

Now, as just the attack from DEF1 to DEF2 succeeded, there is only one preferred
extension (so all arguments are both skeptically and credulously accepted). The new
state of the arguments is represented in Figure 4.

Now, suppose that the agent watched the news were the possibility of another
eruption of the volcano in Island was announced. This would mean that the air-
ports will be closed. This last argument provides a situation in which the rule
meeting in berlin⇒ fly to berlin cannot be applied. That results in an
undercutting attack as in Figure 5.

The Jason code for the information added is:

volcano_at_news.
evidence_against("airport_closed","DR2").
strict_rule("SR1","volcano -> airport_closed").
defeasible_rule("DR3","volcano_at_news => volcano").

As the argument corresponding to airport closed is not attacked by any other
argument, it will defeat the argument with the conclusion fly to berlin in all
preferred extensions.



352 T. Berariu

Fig. 4 Argument ordering using rule preferences

Fig. 5 Example of undercutting attack

5 Conclusions and Future Work

This paper presents a framework for supporting abstract argumentation reasoning
in BDI agents. State-of-the art concepts from argumentation theory were put in



An Argumentation Framework for BDI Agents 353

practice using a popular platform for developing BDI agents, Jason. In our work,
we implemented a module to be used when programmers want to add argumenta-
tion reasoning to their agents built in Jason. The use of this module does not affect
the rest of the functioning of Jason as the module intercepts any addition or removal
of beliefs in forms of percepts , messages from other agents or mental notes of the
agent itself and outputs to the Jason reasoning engine the effects of applying ar-
gumentation to that specific change. What the agent will be aware of (in the Jason
context) is a set of consistent beliefs, as the other pieces of information correspond-
ing to defeated arguments are hidden.

Future work will investigate the impact argumentation has on different types of
dialogues between agents, especially in negotiations. Another line of development
we foresee emerging from this work is the study of the utility of different semantics
in practical scenarios of multi-agent interaction.

Acknowledgment. This work has been funded by project ERRIC (Empowering Romanian
Research on Intelligent Information Technologies), number 264207/FP7-REGPOT-2010-1.

References

[1] Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argu-
mentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

[2] Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artificial intelligence 93(1), 63–101 (1997)

[3] Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley and Sons, Ltd. (2007)

[4] Caminada, M.: Semi-stable semantics. In: Computational Models of Argument: Pro-
ceedings of COMMA, pp. 121–130 (2006)

[5] Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frame-
works. In: 17th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2005, pp. 5–572. IEEE (2005)

[6] Doyle, J.: A truth maintenance system* 1. Artificial Intelligence 12(3), 231–272 (1979)
[7] Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games* 1. Artificial Intelligence 77(2),
321–357 (1995)

[8] Dung, P., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based
argumentation. In: Proceeding of the 2006 conference on Computational Models of
Argument: Proceedings of COMMA 2006, pp. 145–156. IOS Press (2006)

[9] Gratie, C., Florea, A.M.: Argumentation semantics for agents. In: Cossentino, M.,
Kaisers, M., Tuyls, K., Weiss, G. (eds.) EUMAS 2011. LNCS, vol. 7541, pp. 129–144.
Springer, Heidelberg (2012)

[10] Gratie, C., Florea, A.M., Meyer, J.J.C.: General directionality and the local behavior of
argumentation semantics. In: Ossowski, S., Toni, F., Vouros, G.A. (eds.) Proceedings of
the First International Conference on Agreement Technologies, AT 2012, Dubrovnik,
Croatia, October 15-16. CEUR Workshop Proceedings, vol. 918, pp. 113–127. CEUR-
WS.org (2012)

[11] McCarthy, J.: Circumscription–a form of non-monotonic reasoning. Artificial Intelli-
gence 13(1-2), 27–39 (1980)



354 T. Berariu

[12] McDermott, D., Doyle, J.: Nonmonotonic logic 1. Artificial Intelligence 13, 41–72
(1980)

[13] Prakken, H.: An abstract framework for argumentation with structured arguments. Ar-
gument & Computation 1(2), 93–124 (2010)

[14] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
[15] Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumen-

tation stages. In: Computational Dialectics Workshop, pp. 3–7. Citeseer (June 1996)



Using Emotion as Motivation in the Newtonian
Emotion System

Valentin Lungu, Andra Băltoiu, and S, erban Radu

Abstract. The main goal of this work has been to develop an emotion simulation
model and agent architecture that provides artificial characters in virtual environ-
ments with believable behavior in order to enhance virtual environment experiences
for human users; this means that emotions should act as motivation for agent behav-
ior, influence and improve perception, reasoning and decision-making.

We put forth the Newtonian Emotion System, a representation model vectorial
in nature, easily integrated into computational environments and firmly grounded
in Pluthcik’s theory of emotion. The system functions according to psychological
theory, influencing the way that a character perceives the environment. The system
does not influence reasoning. However it does influence the agent’s actions through
the motivation mechanism, which we consider vital for the agent to have believable
affective states.

1 Introduction

The main goal of our work is to provide virtual characters with the ability of emo-
tion expression. Several attempts have been made to endow artificial agents with
an emotional layer [10, 9, 14, 2, 3]. However, we believe that in order for artificial
agents to have deep, meaningful and believable emotions, they need their emotional
layer to serve a similar function to that of its natural human counterpart.

Emotion in humans has been strongly linked to motivation. Emotions are a part
of the human evolutionary legacy [1, 11, 13, 4, 12], serving adaptive ends, acting
as a heuristic in time-critical decision-processes (such as fight-or-flight situations).
We believe that emotions act as a subsystem that enhances human behavior, by step-
ping up brain activity in arousing circumstances, directing attention and behavior,

Valentin Lungu · Andra Băltoiu · S, erban Radu
University POLITEHNICA of Bucharest, Bucharest, Romania
e-mail: valentin.lungu@cs.pub.ro

http://aimas.cs.pub.ro/people/valentin.lungu/

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 355
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_41, c© Springer International Publishing Switzerland 2014

http://aimas.cs.pub.ro/people/valentin.lungu/


356 V. Lungu, A. Băltoiu, and S, . Radu

establishing importance of events and act as motivation. The Newtonian Emotion
System [5, 6, 8, 7] that we developed will influence agent behavior by establishing
the importance of events and by influencing knowledge processing, as well as pro-
vide the agent with an emotional state that it will be able to express and that will
further influence its behavior.

2 The Newtonian Emotion System

This chapter presents our new improved emotion simulation technique based off
of Plutchik’s emotion taxonomy. However, the emotion representation scheme has
been streamlined, the emotion feature being reduced to a four-dimensional vector,
and emotion interactions follow Newtonian interaction laws that are easier to learn
and understand. The architecture has also been reduced to the bare minimum nec-
essary for emotion simulation and expression while still influencing character be-
havior and memory in the same way. The new architecture allows for any behavior
generation technique (belief-desire-intention, expert systems, behavior trees, finite
state machines) and any machine learning algorithm (SVM, linear regression, clus-
tering), in essence, allowing designers to develop a system that suits them best,
while incoroprating emotion simulation.

2.1 Newtonian Emotion System Space

In this section we introduce the Newtonian Emotion Space, where we define con-
cepts that allow emotional states to interact with each other and external factors,
as well as the two laws that govern the interaction between an emotional influence
and an emotional state. The Newtonian Emotion Space is based on the work of R.
Plutchik, shown in Fig. 1.

Laws of Emotion Dynamics

The following are two laws that form the basis of emotion dynamics, to be used in
order to explain and investigate the variance of emotional states within the emotional
space. They describe the relationship between the forces acting on an emotional state
and its motion due to those forces.

Theorem 1. The velocity of an emotional state remains constant unless it is acted
upon by an external force.

Theorem 2. The acceleration a of a body is parallel and directly proportional to
the net force F and inversely proportional to the mass m: F = m ·a

Emotion Center and Gravity

The emotion space has a center, the agent’s neutral state, a point in space to which all
of the agent’s emotional states tend to gravitate (usually (0,0,0,0), however, different
characters might be predisposed to certain kinds of emotions, thus, we should be



Using Emotion as Motivation in the Newtonian Emotion System 357

disapprovalremorse

contempt awe

submission

loveoptimism

aggressiveness

pensiveness

annoyance anger rage

ecstacy

joy

serenity

terror fear apprehension

admiration

trust

acceptance

vigilance

anticipation

interest

boredom

disgust

loathing amazement

surprise

distractionsadness

grief

Fig. 1 Newtonian emotion space

able to specify a different emotional centre, and instill a certain disposition, for each
character; we also use different emotion state mass to show how easy/hard it is to
change an agent’s mood). In order to represent this tendency we use gravitational
force:

G = m · p− c
||p− c|| · kg,

where p is the current position, c is the center and kg is a gravitational constant. This
force ensures that, unless acted upon by other external forces, the emotional state
will decay towards the emotion space center.

2.2 Newtonian Emotion System Architecture

We developed an emotion subsystem architecture (Fig. 2) that interposes itself be-
tween the agent’s behavior module and the environment. The subsystem models the
process described by Lazarus.

Events perceived from the environment are first processed by the appraisal mod-
ule, where an emotional force is associated with it. The resulting list of events is then
sorted in descending order according to magnitude and fed into the agent’s percep-
tion module. This is done in accordance with the psychological theory of attention
narrowing, so that in a limited attention span scenario, the agent will be aware of
the more meaningful events.



358 V. Lungu, A. Băltoiu, and S, . Radu

Fig. 2 Emotion system architecture

We treat the agent behavior module as a black box that may house any behavior
generation technique (rule based expert system, behavior trees, etc.). The interface
receives as input events perceived from the environment and produces a set of pos-
sible actions. The conflict set module takes this set of rules and evaluates them in
order to attach an emotional state to each. Out of these, the action whose emotion
vector most closely matches the agent’s current state is selected to be carried out.

argmin
i∈{con f lictset}

arccos
eagent · ei

||eagent || · ||ei||

Feedback from the environment has an associated emotion force vector that actu-
ally affects the agent’s emotional state. Feedback is distributed to the appraisal and
conflict set modules as well as the agent’s behavior module. Actions undertaken are
temporariliy stored in an action buffer for feedback purposes.

2.3 Test Scenario

Feedback from the environment has an associated emotion force vector that affects
the agent’s state. The agent attempts to maximize its Gain (joy and truth axes) and
minimize its Risk (fear and surprise axes), and thus will choose actions that increase
one while decreasing the other; however, the agent does not know what the feedback
will be. It is the learning’s module task to attempt to predict it, based on the current
context. The better the prediction, the better informed a decision the agent can make.

We chose to use linear regression to predict feedback in our application. Linear
regression is a way of modelling the relationship between a dependent variable and
one or more explanatory variables. The data is modelled using a linear combination



Using Emotion as Motivation in the Newtonian Emotion System 359

of the set of coefficients and explanatory variables. Linear regression is a super-
vised machine learning technique that estimates unknown model parameters from
the data.

In our case, the algorithm attempts to learn the feedback method explained. The
dependent variable is the emotional force received by the agent, while the explana-
tory variable is a feature vector constructed based on the action’s context (Fig. 3).
The structure of this array is made up of three segments:

• Base. Contains the basic information about the action.
• Agents. Contains information about the agents involved in the action.
• Objects. Contains information about the objects (other than equipment, i.e. con-

tainers, traps) involved in the action.

Fig. 3 Action context

The algorithm then receives the correct feedback from the environment which
modifies the weights in the algorithm according to the difference between the esti-
mated feedback force and the actual feedback force.

2.4 Learning in the Newtonian Emotion System

Both appraisal (percept and action appraisal) modules use machine learning tech-
niques in order to learn to predict the outcome of events and actions, respectively.
As there are many viable options for which learning technique to use (hidden
markov models, neural networks, q-learning, POMDP), we use a plug-and-play
model where the technique can be replaced [7]. The appraisal module attempts to
predict the emotional feedback received from the environment based on characteris-
tics of the event to classify and previous feedback. The goal of the appraisal module
is to better label (and thus establish priority of) events for the perception model. The
conflict set module works in a similar way based on the characteristics of actions
taken. The goal of the conflict set module is to settle conflicts between compet-
ing actions by selecting the most appropriate action to be performed. The action
that has the greatest Gain-Risk ratio will be chosen. Both modules treat the event,



360 V. Lungu, A. Băltoiu, and S, . Radu

rule respectively, configuration as the observable state of the model, and attempt to
predict the next hidden state (the emotional feedback force). Let us take the follow-
ing example: character A’s behavior module generates as the next action, an attack
on character B. The following simplified feature vector for the action is built, that
encodes information about the current context (feelings about the action, feelings
about our target and action direction). From previous experience, the agent knows
that the action would raise it’s aggression level (feelings about the attack action are
on the anger and anticipation axes [0,0,-.9,-.3]); we also assume that we are some-
what afraid of the character that we are attacking [0,0,.7,0], and we know that we
are performing the action, so action direction is 1. Based on this feature vector, the
appraisal module predicts an emotional feedback with a dominant on the anger and
anticipation axes of [0,0,-.2,-.2]. We assume this action has a satisfactory Gain/Risk
ratio and gets selected and executed. We also assume that it succeeds. According to
the environment feedback formula we used, the result would be [0,0,-.2,-.3] which
means that the estimation was close, but could be better. The feedback result is
added to the learning module data set, and the results are nudged in the direction of
[0,0,-.2,-.3] - [0,0,-.2,-.2] = [0,0,0,-.1], for a better future prediction. The perception
appraisal module works in a similar way to appraise perceived actions, however the
percepts are sorted according to a factor based on their distance to the agent’s cur-
rent emotional state (minimum) or their distance to the average emotional state of
events perceived this turn (maximum). This is so that an agent will prioritize events
that it resonates with or that stand out from the norm.

2.5 Personality Filter

The personality filter allows an agent’s designers to skew the agent’s perception
of events. It defines a perception in interpreting emotional forces when applied to
feedback received from the environment. The personal filter consists of a four di-
mensional vector (each element matching an axis of the Newtonian Emotion rep-
resentation scheme) with values between -1 and 1 that scales the agent’s emotional
feedback according to personal criteria. For example, an agent may feel fear more
accurately than joy and as such, its personal filter should reflect this, having a lower
scaling factor for joy than for fear. Another agent may be extremely slow to anger,
this would be reflected in the personal filter as a very low scaling factor for the
anger axis. It would even be possible to change the sign altogether so that some
agents may feel anger instead of fear or joy instead of sadness (leaving room for the
representation of psychologically damaged individuals).

3 Emotion as Motivation

The emotional feedback that an agent receives from the environment influences its
behavior. This is achieved by selecting an action from the conflict set provided
by the behavior model according to the feedback that the agent predicts from the
environment.



Using Emotion as Motivation in the Newtonian Emotion System 361

In order to evaluate its effect on the agent’s current state, we put forth the notion
of tensor product between two states, because of the information this gives about the
influence that one axis has on another. This product has an interpretation as stress
produced by an emotional force on the current emotional state, showing how the
force is, relative to the current state of the agent. This is called the emotional impact
and the tensor product is computed between the two forces acting on the agent:
the Gravity force, pulling the agent towards its center, and the learned action force
(estimated feedback).

Stress = [Feedback] · [Gravity]

=

⎡
⎢⎢⎣

f joy

ftrust

f f ear

fsurprise

⎤
⎥⎥⎦ · [g joy gtrust g f ear gsurprise

]
(1)

This allows the assessment of the influence that each emotion axis of the action
has on those of the current state. In line with Lazarus’ appraisal theory, emotional
evaluation implies reasoning about the significance of the event, as well the deter-
mination of the ability to cope with the event. Therefore we define two metrics for
assessing emotional experiences. Well-being measures the effect the action has on
the positive axes (Joy-Trust) of the current state, thus establishing the gain implied
by the action; while Danger describes the risk, as it evaluates the action in terms of
its influence on the Fear-Surprise axes.

When choosing an action, an agent estimates how much its current well-being is
influenced by the action in regard to how much danger the action implies, a gain-risk
ratio. In terms of the tensor product, this involves a column-wise computation with
respect to the Well-being axes of the agent’s current state (for Gain) and a row-wise
computation with respect to the Danger axes of the action (for Risk).

Gain = g joy · ( f joy + ftrust + f f ear + fsurprise)

+ gtrust · ( f joy + ftrust + f f ear + fsurprise) (2)

Risk = f f ear · (g joy + gtrust + g f ear + gsurprise)

+ fsurprise · (g joy+ gtrust + g f ear + gsurprise) (3)

Thus the Impact factor can be used to assign priorities to all actions in order to
resolve the conflict set.

Impact = Gain−Risk (4)

Let’s assume that a character’s current state is [.3,.5,-.1,-.1] (gravity = [-.5,-.8,
.16,.16]). We will further assume that the agent finds itself in a conflictual situa-
tion surrounded by other agents. We will also assume that the behavior module will
only generate options to attack the other characters, and that the appraisal module
predicts the correct feedback. In the table, the possible feedback options are various
degrees of



362 V. Lungu, A. Băltoiu, and S, . Radu

• fear and surprise (alarm) - the attack fails, but was not expected to
• anger and surprise (outrage) - when the attack succeeds, but was not expected

to
• anger and anticipation (aggression) - when the attack succeeds and was ex-

pected to

According to our feedback formula, we have the following impact factors:

Table 1 Attack impact table

Gravity Feedback Gain Risk Impact
[-0.5 -0.83 0.16 0.16] [0 0 0.2 0.3] 0.4 0.3 0.10
[-0.5 -0.83 0.16 0.16] [0 0 -0.6 -0.6] 1.56 1.176 0.38
[-0.5 -0.83 0.16 0.16] [0 0 -0.4 0.3] 0.13 0.098 0.03
[-0.5 -0.83 0.16 0.16] [0 0 -1 -1] 2.6 1.96 0.64
[-0.5 -0.83 0.16 0.16] [0 0 1 0.6] -2.08 -1.568 -0.51
[-0.5 -0.83 0.16 0.16] [0 0 1 0.3] -1.69 -1.274 -0.42

In table 1) we can see that the agent will prefer the two options that will increase
it’s aggression, will be neutral towards attempting to attack an agent that will suprise
it, and will be reluctant to attack when it might fail.

As a further example, let us assume that the agent is in the same state and that
it is surrounded by objects that it can pick up, the only actions generated are ac-
tions to pick up objects and the joy felt when picking up an object is equal to

value(ob ject)
value(ob ject)+wealth(agent) .

Table 2 Take impact table

Gravity Feedback Gain Risk Impact
[-0.5 -0.8 0.16 0.16] [0.1 0 0 0] -0.13 0 0.13
[-0.5 -0.8 0.16 0.16] [0.2 0 0 0] -0.26 0 0.26
[-0.5 -0.8 0.16 0.16] [0.3 0 0 0] -0.39 0 0.39
[-0.5 -0.8 0.16 0.16] [0.4 0 0 0] -0.52 0 0.52
[-0.5 -0.8 0.16 0.16] [0.5 0 0 0] -0.65 0 0.65
[-0.5 -0.8 0.16 0.16] [0.6 0 0 0] -0.78 0 0.78

As we can see in the second table (Fig. 2), for varying item values, we get differ-
ent priorities. The agent would prefer to pick up the most valuable item first.

4 Conclusion

We have provided virtual characters with the means of artificial expression and
methods for its integration into intelligent artificial agent architectures. The system
is firmly grounded in theory, respecting PLutchik’s taxonomy, Lazarus’ appraisal



Using Emotion as Motivation in the Newtonian Emotion System 363

model, replicating the way emotions influence human perception and motivating
a character’s actions in the environment. We have developed a game artificial in-
telligence framework and demonstrated how easily the Plug-and-play architecture
is integrated with the AI framework as well as the game engine used. We have also
succeeded in keeping the system complexity down in order to make the system more
accessible and easy to use and adopt. Last, but not least, the Plug-and-Play system
is scalable (as the system only intervenes within the agent’s context, the overhead is
linear) and both the New Newtonian Emotion System and the Plug-and-Play inter-
face are easily expandable.

5 Future Work

There are several application domains that the model can easily expand to. The first
among these would be as a trust and reputation model. Emotions play such a role
in humans. The process is called reciprocal altruism, an emergent norm in human
systems that states that one person will help another, seemingly without any possi-
bility of reciprocation, in the hopes that the initial actor will be helped themselves at
a later date - in artificial intelligence terms, this means that an agent would act in a
manner that temporarily reduces its fitness while increasing another agent’s fitness,
with the expectation that the other agent will act in a similar manner at a later time.
Emotions serve as an evaluator to help spot cheaters that try to abuse the system.
We could use the Trust-Disgust axis in order to quantify how a given agent per-
forms when a contract has been agreed upon, and use the Surprise-Anticipation axis
in order to evaluate how an agent conforms to emergent but non-contractual norms.
In order for the system to be useful in spotting cheaters. This can be achieved in a
centralized or distributed manner, depending on goals.

Acknowledgements. The work has been funded by Project 264207, ERRIC-Empowering
Romanian Research on Intelligent Information Technologies/FP7-REGPOT-2010-1.

References

[1] Heuer, F., Burke, A., Reisberg, D.: Remembering emotional events. Memory and Cog-
nition 20, 277–290 (1992)

[2] Clore, G., Ortony, A., Collins, A.: The cognitive structure of emotions. Cambridge Uni-
versity Press, Cambridge (1988)

[3] Pereira, D., Oliveira, E., Moreira, N.: Formal modelling of emotions in BDI agents.
In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 62–81.
Springer, Heidelberg (2008)

[4] Kensinger, E.A.: Remembering emotional experiences: The contribution of valence and
arousal. Reviews in the Neurosciences 15, 241–251 (2004)

[5] Lungu, V.: Rule-based system for emotional decision-making agents. In: Sisteme Dis-
tribuite, Suceava (2009) ISSN 2067–5259



364 V. Lungu, A. Băltoiu, and S, . Radu

[6] Lungu, V.: Artificial emotion simulation model. In: 7th Workshop on Agents for
Complex Systems (ACSYS 2010) held in conjuction with 12th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2010,
Timisoara (2010)

[7] Lungu, V.: Newtonian emotion system. In: Proceedings of the 6th International Sympo-
sium on Intelligent Distributed Computing - IDC 2012. Springer Series on Intelligent
Distributed Computing, vol. VI, pp. 307–315 (September 2012)

[8] Lungu, V.: Artificial emotion simulation model and agent architecture. Advances in
Intelligent Control Systems and Computer Science 187, 207–221 (2013)

[9] Sabouret, N., Ochs, M., Corruble, V.: Simulation of the dynamics of non-player char-
acters’ emotions and social relations in games. IEEE Transactions on Computational
Intelligence and AI in Games 1(4), 281–297 (2009)

[10] Ioerger, T.R., El-Nasr, M.S., Yen, J.: Peteei: a pet with evolving emotional intelligence.
In: Proceedings of the third annual conference on Autonomous Agents, Seattle, Wash-
ington, United States, pp. 9–15 (April 1999)

[11] Schachter, S., Singer, J.: Cognitive, social, and physiological determinants of emotional
state. Psychological Review 69, 379–399 (1962)

[12] Scherer, K.: What are emotions and how can they be measured? Social Science Infor-
mation 44(4), 695–729 (2005)

[13] Sharot, T., Phelps, E.A.: How arousal modulates memory: Disentangling the effects of
attention and retention. Cognitive, Affective and Behavioral Neuroscience 4, 294–306
(2004)

[14] Strauss, M.: Eric: a generic rule-based framework for an affective embodied commen-
tary agent. In: AAMAS 2008: Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 97–104 (2008)



Distributed Reputation Mechanism Using
Semantic Repositories

Andreea Urzica and Ileana Bobric

Abstract. Trust and reputation represent topical subjects in computer science, given
the evolution of multi-agent systems, e-commerce or recommender systems. The
present paper proposes a distributed reputation mechanism and analyses the users’
satisfaction degree in order to compare various methods of computing reputation.
A scenario has been chosen as a use-case for the proposed mechanism, scenario
that consists of an open real estate market. The mechanism may be further applied
to any offer-request market and implementation may be used as a framework for
competitively testing various aggregation functions.

1 Introduction

Reputation mechanisms bring a significant benefit especially to the new entrants
within an open, heterogeneous multi-agent system. This paper proposes a reputation
mechanism based on aggregating the opinions available in various semantic repos-
itories and shows how the entities within virtual communities are able to identify
and use the reputation levels of others.

The present work also provides some methods for aggregating reputation infor-
mation and discusses their comparison on the same set of data. Other decision meth-
ods can be further added and used with the proposed system. The testing framework
offers enough realism and has a modular architecture. Different sets of preferences
and differently altered perception (even when confronted with the same reality) are
simulated for each agent.

The paper is structured as follows: Section 2 briefly discusses similar efforts in
building and identifying reputation within multi-agent systems, Section 3 describes
the dynamics of the proposed mechanism and Section 4 introduces several methods

Andreea Urzica · Ileana Bobric
University Politehnica of Bucharest, 313 Spl. Independentei, Bucharest, Romania
e-mail: andreea.urzica@cs.pub.ro, ileana.bobric@cti.pub.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 365
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_42, c© Springer International Publishing Switzerland 2014



366 A. Urzica and I. Bobric

that can be used by this mechanism for computing reputation. In Section 5 we present
some experimental results and Section 6 concludes.

2 Related Work

Trust and reputation management is a topical issue in Internet-based application and
there are many research efforts ongoing (e.g. [2], [3], [5], [7]). Similarly to REGRET
[5], the proposed model also uses direct experience and third party information, but
allows the agent to decouple the methods of combining the available information
and computing reputation from the opinion storage and representation means. By
contrast to the model proposed in [7], our model has the ability of invoking any
other method with no costs of re-defining the structure of the model. Concerning the
applicability of the domain tackled, in [6] trust and reputation management meth-
ods are used for semantic web service selection and ranking solution based on QoS.
In contrast to classical reputation mechanism (e.g. [1]), we propose a different ap-
proach, that allows agents to compute subjectively the reputation, making use of all
the evidence (opinions of other users) recorded in the semantic repositories.

An early attempt towards a computational view on trust in multi-agent systems is
Stephen Marsh’s thesis [4] that takes inspiration from sociological research on trust.
The proposed model includes an implicit integration with the three facets identified
by Marsh: basic, general and situational trust. In our model the situation is clearly
described, right from the start, by the query addressed to the opinion repository. The
general trust can be updated by each agent dynamically with regard to the degree of
accuracy of the authors that it can perceive.

3 Real Estate Market Decisions Based on Reputation

The problem tackled here is a frequent one: the request-offer matchmaking on a
free market. This problem may be instantiated to many application domains, such as
commercial transactions, job fairs, transport and tourism facilities etc. The domain
chosen to be studied in this paper is the real estate market, in particular, the house
renting interactions. By selecting and aggregating the existing opinions of a group
concerning a house, the potential lodgers are able to compute, in a decentralised
manner, the reputation built by the landlord of that house.

The system includes two types of communication media for the agents: a real
estate agency and a forum. The real estate agency intermediates the interaction
between lodgers and landlords. It mainly selects for the lodger all the offers cor-
responding to their requirements. The forum allows lodgers to communicate with
other lodgers, so they can express their opinions concerning the quality of their
interaction with the landlords. The forum also provides filtering criteria. Figure 1
provides an overview on the system, along with the message exchange paths.

Upon querying an agency with regard to certain requirements about a house (e.g.
location, dimension, price, etc.), an agent may be presented multiple choices. The
role of the reputation mechanism is to help the agent make a decision and select the



Distributed Reputation Mechanism Using Semantic Repositories 367

Fig. 1 Interactions between
the agents within the system

option that will bring her maximum utility. Upon using the real estate property for a
while, a lodger is able to issue an opinion and post it on a forum, thus enriching the
real estate knowledge, for the use of other potential lodgers. This cycle is illustrated
in Figure 2. In order to evaluate the performance of the reputation mechanism during
the simulation the following conventions have been made:

• There is a certain real value of each real estate property, known only by the
simulation designer, called reality hereafter.

• The opinions posted by agents on forums accurately reflect their perceptions
concerning the houses.

• All agents may have an altered perception of the reality. Each agent perceives
the value of the house altered by a certain percent, according to a certain scheme.
The alteration percent is specific to every agent and it does not vary over time.

• The agents may be more objective or more blinded in perceiving the reality, de-
pending on the bias percent. The closer this percent is to zero, the more accurate
is the perception of the agent. This is how we can simulate the difference in
opinion of different agents concerning the same object. The aim of the reputation
model is to facilitate the collaboration between agents with similar views, since
there is no universal good or bad, it all depends on the evaluation system.

4 Computing the Reputation

Four different decision methods are provided for illustrating the functioning of the
reputation mechanism. An opinion consists of values assigned, by an agent, to var-
ious attributes describing the analysed object (i.e the apartment). For each of the

Fig. 2 The life cycle
Expectations–Opinions



368 A. Urzica and I. Bobric

methods, the chosen house will be the one with the maximum value for the expec-
tations function.

The first aggregation method provided as an example in this paper is named Ex-
pert Opinion. An agent using this method will make its decisions based on the opin-
ion of a single author on the forum considered by the agent to be an expert with
regard to a certain real estate property (maybe because if has the greatest number of
posts concerning that property). For each property returned as an option complying
with its request, an agent computes the expectations as an average function on the
scores of all the attributes of the house.

The second method provided as an example in this paper is called The Weakest
Link. By using this decision method the agents choose a house by considering that
the most relevant rate received by a house to be the minimum one. For each house
matching the requirements, for each opinion concerning the house, all the rates for
each criterion are aggregated into one single opinion rate. The aggregation function
used may be a weighed sum, where the weights reflect the relevance of the criterion
to the agent.

The decision method called Dynamic Trust aggregates all the opinions of all users
found on a forum concerning a house. In addition this method makes use of the
trust factor associated to each author as reputation information provider. An agent
using this method will iterate through the list of opinions for each house and, for
each opinion issuer will aggregate its opinions and weight them by the trust factor
associated to that issuer. The expectation level built by and agent about a house x is
computed using the following formula.

expectations(x) =
∑m

i=1 AuthorAverage(Authori)

∑m
i=1 Trust(Authori)

, (1)

After using the house for a given period of time, the agent is able to compute the
difference between its current perception and the expectations it had. The higher the
similarity, the higher is the trust. For instance, if Alice’s perception about a house
is 9, and she knows that Bob’s opinion about the same house is 6, she may learn
that a future opinion of Bob should be multiplied by 1.5 in order to be useful for
Alice. α ∈ [0,1]. The graphic in Figure 3 shows how this mechanism provides a
good estimation of the adjustment.

MyOpinion = 9;AuthorAggOpinion(Bob)= 6;Trusti(Bob) = 1.5 (2)

Trusti(y) = Trusti(y)+α × (Trusti+1(y)−Trusti(y)) (3)

The fourth method is called Personal Experience. This method allows an agent to
grant a higher importance to its own opinions concerning the object to be appraised
if previous experience concerning the object exists. This method balances the opin-
ions of the community against the agent’s personal opinions according to the amount
of personal experience. For each of the options between which an agent has to decide
upon, the agent computes the personal experience factor. The personalExperience-
Factor will give a higher weight to its own opinions if the agent has more opinions
concerning a certain landlord and will increase the weight for the opinion of others



Distributed Reputation Mechanism Using Semantic Repositories 369

Fig. 3 Opinion bias predic-
tion

if the agent knows rather little about the same landlord. The personal experience
factor concerning a house x is determined by extracting the following information
from a forum:

π(x) = personalExperienceFactor(x) (4)

π(x) =
number of personal opinions about x

total number of opinions concerning x
(5)

expectations(x) = π × f (personalOpinions(x))+(1−π)× f (authorOpinions(x)) (6)

5 Implementation and Experimental Results

The proposed reputation model aims at promoting the service providers that offer the
best facilities and discourage those with lower quality service. A success marker for
the reputation model would be the higher preference of the agents within the com-
munity towards high quality service providers than towards lower quality providers.
The experimental results have shown the correlation between the lodgers’ prefer-
ences and landlords’ quality of service.

The four reputation extraction methods have been tested comparatively by mea-
suring the satisfaction degree for each agent. The satisfaction value is inversely pro-
portional to the disappointment value. The disappointment value is the difference
between the perception of the object and the expectations level. The bars in Figure 4
show the average satisfaction degree of the agents corresponding to each of the four
reputation extraction methods compared. We can conclude that the reputation ex-
traction method best identifying the behaviour of the service providers is Dynamic
trust. Thus, a trust evaluating mechanism for the reputation information providers
brings an important benefit to the reputation model.

Fig. 4 Agent satisfaction
degree based on the rep-
utation extraction method
used



370 A. Urzica and I. Bobric

6 Conclusions

This paper proposes a decentralised reputation extraction mechanism that can be
further applied to any offer-request market. The implementation may be used as a
framework for testing competitively various aggregation functions.

The proposed mechanisms shows good results when applied to open, heteroge-
neous multi-agent systems. A significant aspect introduced by the present paper
consists in analysing the opinion formation lifecycle and highlighting the factors
that may influence each step.

The model includes several reputation extraction methods and a comparative
study on the results. The simulation design captures realistic agent behaviour, distin-
guishing agent perception from the objective reality, and allowing agents to develop
different perceptions of the same reality, according to their own internal structure.

Acknowledgements. The work presented in this paper has been funded by Project 264207,
ERRIC-Empowering Romanian Research on Intelligent Information Technologies / FP7-
REGPOT-2010-1.

References

1. Bilgin, S., Singh, M.P.: A DAML-Based Repository for QoS-Aware Semantic Web Ser-
vice Selection. In: Proceedings of the IEEE International Conference on Web Services,
pp. 368–375 (2004)

2. Despotovic, Z., Aberer, K.: Possibilities for Managing Trust in P2P Networks. EPFL Tech-
nical Report No. IC200484 (2004)

3. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for on-
line service provision. Decision Support Systems 43, 618–644 (2007), doi:10.1016/
j.dss.2005.05.019

4. Marsh, S.: Formalising trust as a computational concept. PhD Thesis, University of Stir-
ling (1994)

5. Sabater, J., Sierra, C.: REGRET: A reputation model for gregarious societies. In: Proceed-
ings of the Fifth International Conference on Autonomous Agents, pp. 475–482 (2001)

6. Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-based service selection and ranking with
trust and reputation management. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3760, pp. 466–483. Springer, Heidelberg (2005)

7. Yu, B., Singh, M.P.: Distributed Reputation Management for Electronic Commerce. In:
Computational Intelligence, pp. 535–549 (2002)



Author Index

Aisopos, Fotis 249
Allende, Héctor 17
Allende-Cid, Héctor 17
Amato, Alba 261
Amato, Flora 281, 289

Băltoiu, Andra 355
Barbareschi, Mario 289
Barhamgi, Mahmoud 175
Benea, Marius-Tudor 323
Berariu, Tudor 343
Bernard, Yvonne 189
Bobric, Ileana 365
Braubach, Lars 199
Brisan, Cornel 233
Butka, Peter 119

Camacho, David 157
Carchiolo, Vincenza 67
Casola, Valentina 289
Castelli, Gabriella 93
Chatalic, Philippe 103
Chytil, Martin 5
Ciupu, Andrei 217
Coelho, Jorge 141
Copie, Adrian 271
Coppolino, Luigi 249

D’Antonio, Salvatore 249
de Amorim Fonseca, Andre 103
Di Martino, Beniamino 243, 261
Dostal, Martin 37

Fayn, Jocelyne 175
Ficco, Massimo 243

Florea, Adina-Magda 301, 335
Fortiş, Teodor-Florin 271

Gonzalez-Pardo, Antonio 157
Gusev, Marjan 77

Holubová, Irena 5
Hong, Kirak 131

Iuhasz, Gabriel 309

Jander, Kai 199
Ježek, Karel 37
Juszkiewicz, �Lukasz 223

Klejnowski, Lukas 189

Longheu, Alessandro 67
Lungu, Valentin 355

Malgeri, Michele 67
Mamei, Marco 93
Mangioni, Giuseppe 67
Mazzeo, Antonino 281, 289
Mermet, Bruno 181
Miura, Takao 23
Mocanu, Irina 301, 335
Monge, Raúl 17
Moraga, Claudio 17
Moscato, Vincenzo 281
Müller-Schloer, Christian 189
Munteanu, Ligia 233
Munteanu, Victor Ion 271, 309
Muscalagiu, Ionel 163



372 Author Index

Nageba, Ebrahim 175
Nečaský, Martin 5
Negreanu, Lorina 211, 301
Negru, Viorel 163, 309
Nguyen, Filip 55, 87
Nguyen, Ngoc Thanh 1
Niemann, Sebastian 189
Nogueira, Lúıs 141
Nykl, Michal 37

Ottenwälder, Beate 131

Pentiuc, Stefan-Gheorghe 217
Picariello, Antonio 281
Pitner, Tomáš 55, 87
Pócs, Jozef 119
Pócsová, Jana 119
Pokahr, Alexander 199
Polák, Marek 5
Popa, Horia Emil 163
Popovici, Matei 211
Potuzak, Tomas 151
Puică, Mihaela-Alexanda 335

Radu, Şerban 355
Ramachandran, Umakishore 131
Ristov, Sasko 77

Romano, Luigi 249
Rosaci, Domenico 31, 45
Rosi, Alberto 93

Sarné, Giuseppe M.L. 31, 45
Scialdone, Marco 261
Shvartsman, Inna 317
Simon, Gaele 181

Tasquier, Luca 243
Taveter, Kuldar 317
Toporkov, Victor 109
Toporkova, Anna 109
Tovarňák, Daniel 55, 87
Tselishchev, Alexey 109
Tserpes, Konstantinos 249

Urzica, Andreea 365

Vasiu, Razvan-Vlad 233
Venticinque, Salvatore 261
Vultur, Oana Mihaela 217

Yamaguchi, Makoto 23
Yemelyanov, Dmitry 109

Zambonelli, Franco 93


	Preface
	Organization
	Contents
	Integration Computing and Collective Intelligence
	1 Knowledge Integration
	2 Ontology Integration
	3 Integration Computing for Building Collective Intelligence
	References

	Evolution of a Relational Schema and Its Impact on SQL Queries
	1 Introduction
	2 Database Model
	3 Query Model
	4 SQL Query Visualization Model
	4.1 Visualization Model Components
	4.2 Mapping to the Database Model
	4.3 Mapping of Operations

	5 Change Propagation in the Graph
	5.1 Query Graph Operations

	6 Proof of the Concept
	7 Conclusion
	References

	Context-Aware Regression from Distributed Sources
	1 Introduction
	2 State of the Art
	3 Proposal
	3.1 Learning
	3.2 Predicting

	4 Experimentation
	5 Conclusions
	Reference

	Incremental Patterns in Text Search
	1 Motivation
	2 Text Matching
	3 Maximum Prefix for KMP Algorithm
	4 Constructing Patterns Incrementally
	5 Experimental Results
	5.1 Preliminaries
	5.2 Results and Discussion

	6 Conclusion
	References

	REBECCA: A Trust-Based Filtering to Improve Recommendations for B2C e-Commerce
	1 Introduction
	2 The REBECCA Framework
	2.1 Computing Customer Interests and Product Reliability

	3 The REBECCA Recommendation Algorithm
	4 Experiments and Conclusions
	References

	Exploration of Document Classification with Linked Data and PageRank
	1 Introduction
	2 Previous Work
	3 LinkedData
	4 Feature Selection
	5 Evaluation
	6 Conclusion and Future Work
	References

	Matching Users with Groups in Social Networks
	1 Introduction
	2 The Social Network Scenario
	3 The U2G Matching Algorithm
	3.1 The User Agent Task
	3.2 The Group Agent Task

	4 Experiments
	5 Conclusion
	References

	Semantically Partitioned Peer to Peer Complex Event Processing
	1 Introduction
	1.1 Complex Event Processing
	1.2 Peer to Peer Complex Event Processing

	2 State of the Art
	3 Peer to Peer Complex Event Processing
	3.1 Event Space Correlation Problem
	3.2 Partitioning Algorithms
	3.3 Evaluation

	4 Conclusion and Future Work
	References

	A Heuristic to Explore Trust Networks Dynamics
	1 Introduction
	2 The Trust Network: Model and Definitions
	3 The Heuristic for the Reduction of the Effort-Rank Space
	4 Simulation Results
	5 FinalRemarks
	References

	Resource Scaling Performance for Cache Intensive Algorithms inWindows Azure
	1 Introduction
	2 Related Work
	3 Testing Methodology
	3.1 Testing Environment
	3.2 Test Cases
	3.3 Testing Goal

	4 The Results of the Experiments
	5 Which Orchestration Is Optimal?
	5.1 Hardware Infrastructure Impact on Sequential Execution
	5.2 Hardware Infrastructure Impact on Parallel Execution

	6 Conclusion and Future Work
	References

	Distributed Event-Driven Model for Intelligent Monitoring of Cloud Datacenters
	1 Introduction
	2 Background
	3 Distributed Event-Driven Monitoring Model
	4 Conclusions and Future Work
	References

	Programming Self-organizing Pervasive Applications with SAPERE
	1 Introduction
	2 The SAPERE Approach and Its Reference Architecture
	3 The SAPERE Middleware and Its Programming Interface
	3.1 The Middleware
	3.2 The SAPERE API
	3.3 LSAs

	4 The Eco-laws Set
	4.1 Bonding
	4.2 Aggregate Eco-law
	4.3 Decay Eco-law
	4.4 Spread Eco-law

	5 From Eco-laws to Distributed Self-organization
	6 Related Works and Conclusions
	References

	SOMEWHERE2 – A Robust Package for Collaborative Decentralized Consequence-Finding
	1 Introduction
	2 Consequence Finding in P2P Inference Systems
	3 Architecture of SOMEWHERE2
	4 Conclusion
	References

	Heuristic Co-allocation Strategies in Distributed Computing with Non-dedicated Resources
	1 Introduction
	2 General Scheme and Slot Co-allocation Strategies
	2.1 AEP Scheme
	2.2 AEP-Based Heuristic Strategies

	3 Experimental Studies of Slot Co-allocation Strategies
	3.1 Simulation Environments
	3.2 Experimental Results

	4 Conclusions and Future Work
	References

	Distributed Version of Algorithm for Generalized One-Sided Concept Lattices
	1 Introduction
	2 Generalized One-Sided Concept Lattices
	3 Distributed Algorithm for Generalized One-Sided Concept Lattices
	4 Illustrative Experiments with the Generated Data Sets
	5 Conclusions
	References

	Scalable Spatio-temporal Analysis on Distributed Camera Networks
	1 Introduction
	2 Spatio-temporal Analysis
	3 Problem Description
	4 Scalable State Update
	5 Evaluation
	5.1 Scalability of State Update
	5.2 Impact of Selective Update on Spatio-temporal Queries

	6 Related Work
	7 Conclusion
	References

	Service-Wide Adaptations in Distributed Embedded Component-Based Systems
	1 Introduction
	2 Coordinating Service-Wide Adaptations
	3 Properties of the Coordination Model
	4 Conclusions
	References

	Distributed/Parallel Genetic Algorithm for Road Traffic Network Division for Distributed Traffic Simulation
	1 Introduction
	2 Basic Notions
	2.1 Distributed/Parallel Road Traffic Simulation Description
	2.2 Road Traffic Network Division Description
	2.3 Genetic Algorithms Description

	3 Road Traffic Network Division Method
	3.1 Sequential Dividing Genetic Algorithm Description
	3.2 Distributed/Parallel Dividing Genetic Algorithm Description

	4 Tests and Results
	5 Conclusion
	References

	Environmental Influence in Bio-inspired Game Level Solver Algorithms
	1 Introduction
	2 The Lemmings Game
	3 Description of the Studied Algorithms
	3.1 Genetic Algorithm
	3.2 Ant Colony Optimization
	3.3 The Common-Sense Ant

	4 Experimental Phase
	5 Conclusions
	References

	The Impact of the “Nogood Processor” Technique in Scale-Free Networks
	1 Introduction
	2 The Framework
	3 Scale-Free Network
	4 Nogood Processor in Scale-Free Network
	5 Experimental Results
	6 Conclusions
	References

	Knowledge-Based Agent for Efficient Allocation of Distributed Resources
	1 Introduction
	2 RMA Architecture
	3 Model Evaluation
	4 Related Works
	5 Conclusion
	References

	A New Proof System to Verify GDT Agents
	1 Introduction
	2 TheGDT4MASModel
	2.1 Main Concepts
	2.2 Properties Proven by the Method

	3 Previous Proof System
	3.1 Principles
	3.2 Limits

	4 The New Proof System
	4.1 Predicate Transformers
	4.2 Context Inference
	4.3 Proof Schema
	4.4 Guaranted Property in Case of Failure

	5 Related Works
	6 Conclusion
	References

	Using Trusted Communities to Improve the Speedup of Agents in a Desktop Grid System
	1 Introduction
	2 System Model
	2.1 Submitter Decision Tree
	2.2 Discussion
	2.3 Delegation within Trusted Communities

	3 Evaluation
	4 Related Work
	5 Conclusion and Outlook
	References

	High-Volume Data Streaming with Agents
	1 Introduction
	2 Data Streaming Approach
	2.1 General Architecture
	2.2 Stream Usage
	2.3 Low-Level API
	2.4 High-Level API
	2.5 Implementation Aspects

	3 Case Study
	4 Related Work
	5 Conclusions and Outlook
	References

	Strategic Behaviour in Multi-Agent Systems Able to Perform Temporal Reasoning
	1 Introduction
	2 Temporal Representation and Reasoning
	3 Formal Setting
	4 Conclusions and Future Work
	References

	Control of a Mobile Robot by Human Gestures
	1 Introduction
	2 Interaction System Hardware and Software Architecture
	2.1 Hardware Architecture
	2.2 Software Architecture

	3 Models and Algorithms for Gesture Recognition
	4 GestureSet
	5 Experimental Results and Discussion
	6 Conclusions
	References

	Improving Noise Robustness of Speech Emotion Recognition System
	1 Introduction
	2 Structure of the Existing System
	3 Improving Noise Robustness
	3.1 Structure of Robustified System

	4 Results
	4.1 Emotional Speech Corpora
	4.2 Test Sets
	4.3 Results of Tests

	5 Conclusions
	References

	Developing an Avatar Model for Driving Simulators
	1 Aspects for an Avatar Driving Simulator Model
	1.1 The Concept of Avatar Driving Simulator
	1.2 State of the Art

	2 Mathematical Road Modelling
	3 The Motionbase Platform
	4 Simulated Suspension Model
	5 Numerical Results
	6 Conclusions
	References

	Interconnection of Federated Clouds
	1 Introduction
	2 Related Work
	3 Publish-Subscribe Service for Clouds Interconnection
	4 Conclusions
	References

	Personalized Recommendation of Semantically Annotated Media Contents
	1 Introduction
	2 Related Work
	3 The Agent Based MARA Framework
	4 Context Aware Semantic Discovery
	5 Experimental Results
	6 Conclusion
	References

	Supporting Cloud Governance through Technologies and Standards
	1 Introduction
	2 Background Information
	2.1 Cloud Governance and Service Lifecycle
	2.2 Cloud Management and Cloud Automation
	2.3 Cloud Governance Requirements for Cloud Modeling
	2.4 Multi-agent Approach to Cloud Management and Governance

	3 Cloud Service Lifecycle
	3.1 Choreography between Standards
	3.2 Service Example

	4 Conclusions and Future Work
	References

	Exploiting Cloud Technologies and Context Information for Recommending Touristic Paths
	1 Introduction
	2 Related Works
	3 Recommending Personalized Touristic Paths
	4 The System Overview
	5 Conclusions
	References

	An FPGA-Based Smart Classifier for Decision Support Systems
	1 Introduction
	2 A Two Steps Decision Support System
	3 The Fast Classification Algorithm
	4 An Optimized Hardware Implementation of the Decision Tree Predictor
	4.1 Predictor Phase
	4.2 Learning Phase

	5 Evaluation of the Proposal
	6 Conclusions and Future Work
	References

	Agents Modeling under Fairness Assumption in Event-B
	1 Introduction
	2 System Description
	3 Formal Specification
	3.1 Refinement under the Fairness Assumption
	3.2 System Evaluation

	4 Conclusions and Future Work
	References

	A Survey of Adaptive Game AI: Considerations for Cloud Deployment
	1 Introduction
	2 Major Trends in Game AI
	2.1 Game Genres

	3 Cloud/Server Side AI
	3.1 Cloud Game AI Deployment Considerations

	4 Conclusions
	References

	From Agent-Oriented Models to Profile Driven Military Training Scenarios
	1 Introduction
	2 Agent-Oriented Modeling
	3 Proactive vs. Reactive Behavior in Training Scenarios
	4 Conclusions
	References

	An Agent-Based Solution for the Problem of Designing Complex Ambient Intelligence Systems
	1 Introduction
	2 Related Work
	3 Designing Complex AmI Systems Using MAS
	4 Conclusions and Perspectives
	References

	Agent-Based System for Affective Intelligent Environment
	1 Introduction
	2 Related Work
	3 An Agent-Based System for Dealing with Affective Behavior
	4 A Method for Emotion Recognition
	4.1 Results

	5 Conclusion
	References

	An Argumentation Framework for BDI Agents
	1 Introduction
	2 Abstract Argument Systems
	3 Building Argumentative Agents in Jason
	3.1 Coupling the Modules
	3.2 Controlling the Argumentation Module through Beliefs

	4 Case Study: Business Trip
	5 Conclusions and Future Work
	References

	Using Emotion as Motivation in the Newtonian Emotion System
	1 Introduction
	2 The Newtonian Emotion System
	2.1 Newtonian Emotion System Space
	2.2 Newtonian Emotion System Architecture
	2.3 Test Scenario
	2.4 Learning in the Newtonian Emotion System
	2.5 Personality Filter

	3 Emotion as Motivation
	4 Conclusion
	5 Future Work
	References

	Distributed Reputation Mechanism Using Semantic Repositories
	1 Introduction
	2 Related Work
	3 Real Estate Market Decisions Based on Reputation
	4 Computing the Reputation
	5 Implementation and Experimental Results
	6 Conclusions
	References

	Author Index



