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Abstract. Nowadays a widely production and low cost of sequencing has  
allowed the extension of metagenomics in order to explore the genomic infor-
mation from diverse environments. This offers the opportunity to examine new 
approaches for sequence binning and functional assignment. Driving of meta-
genomic studies using high throughput sequencing, usually follows the same 
pipeline used to analyze single genomes: sequence assembling, gene prediction, 
functional annotation and phylogenetic classification of reads, contigs or scaf-
folds, nevertheless, the accuracy of this approach is limited by the length of the 
reads or resulting contigs.  

In Silico Hybridization System is an approach of functional and taxonomical 
assignment. It has default assignment at gender taxonomic level binning. This 
tool works with two general pipelines: Probes Creator (CrSo), ordered to design 
DNA probes (fingerprints) to gender taxonomic level and Sequential In silico 
Hybridator (HISS) which use the probes to make the hybridization with the 
community reads. 

This bioinformatics tool allows characterization of the microbial metabolism 
in charge of biogeochemical cycles, tracking their key stages using debugged 
reference information. This strategy resulted in an increasing of binning accura-
cy.  The simulated and real scenarios were better described using one probe 
and selection threshold fitted to a logarithmic distribution, with mean sensitivity 
of 85% and mean specificity of 83%. 

Keywords: Metagenomics, binning, metatranscriptomics, soil, nitrogen,  
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1 Introduction 

High-throughput sequencing (HTS) technologies currently have offered an unprece-
dented opportunity to examine the microbial ecology on a wide scale by three general 
approaches: 1) 18S/16S ADNr, fast and effective way to characterize communities 
structure [10, 23]; 2) Whole genomic sequencing (metagenomics), this approach is 
able to deal with the structure of communities along with the functional potential of 
them [12, 26] and 3) Whole transcriptome sequencing (metatranscriptomics), in order 
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to examine the gene potential and metabolic capabilities of the microbial communities 
under certain conditions [17, 27]. Metagenomic analysis follows a relative similar 
pipeline as working with a single organism: sequence assembling, gene prediction, 
functional annotation and phylogenetic classification (binning) of reads, contigs or 
scaffolds [15]. Nevertheless, the metagenomic assembling approach has had not so 
good result so far [16]. In the binning process we attempted phylotyping the se-
quences through composition-based or similarity-based strategies.  

The composition-based strategy extracts information related with GC content [7], 
codon usage [19] or k-mer frequency [22] from the metagenome sequences and com-
pares them with features calculated of reference sequences with known taxonomic 
origin. This strategy allowing achieves optimal assignments to sequence length larger 
than 800bp. 

On the other hand, the similarity-based strategy relies on homology information 
obtained by database searches. The databases could contain nucleotide sequences (i.e. 
complete genome) or protein sequences with known taxonomic origin. However, 
commonly the bioinformatics tools use protein sequences as reference for metage-
nomic analysis, since protein sequences are more conserved than nucleotide se-
quences, they are better suited for detection of remote homologies in order to explore 
an ecosystem which mainly consists of uncultured microorganisms [2]. But, the usage 
of protein sequences as reference has the disadvantage that the metagenomic DNA 
fragments have to be translated into all six reading frames, which increases computa-
tion time of the homology search. This strategy can be sub-divided in two general 
methods: those to use Hidden Markov Models (HMM) [5] or  BLAST-based [1] 
homology searches.  

Despite of all the efforts, these bioinformatics tools have not achieved both the ef-
ficiency and accuracy level required by current metagenomics high-complexity data 
sets because of computational limitations, unable good accurate assignments for short 
DNA fragments (<400bp). Therefore, we present a new strategy to evaluate the tax-
onomic and functional features of soil microbial communities, an integrated approach 
that combines bioinformatic algorithms to probe (fingerprint) design (CrSo) from 
debugged coding gene sequences database and in silico hybridization (HISS), that 
allows to characterize the soil biogeochemical metabolism. Finally we discuss initial 
experimental results, which help evaluate our both fingerprint specificity and hybridi-
zation selection criteria. 

2 Implementation 

A specialized bibliographic review allowed identifying the metabolic processes, sub-
processes and the reactions that compose them, in charge of Nitrogen and Phosphorus 
biogeochemical cycles. In order to distinguish microbial communities, the enzyme 
gene markers selected were not housekeeping genes, but them were differentially 
distributed in microbial communities. A PHP script was developed to retrieve the 
nucleotide, protein sequence and taxonomy identification via SOAP protocol (Simple 
Object Access Protocol) on EMBL -EBI database, this information was storage in 
local database named as SPH. 
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2.1 Probe Design 

CrSo has been split the probe design problem in three general steps, however, these 
are not independent at all and indeed the input parameters in the first step have logical 
relationship with second and third step criteria. The first step reduces the redundancy 
of input information by clustering in an attempt to bring together DNA sequences of 
the same biological sequence, then extracting the consensus sequence. The second 
step, a probe design phase extracts from candidate consensus sequences only those 
subsequences that satisfy the experimental specificity conditions. In the third step a 
probe denoising process is executed, creating clusters with DNA probes to select just 
the singletons.  

Step 1: Redundancy reduction. We start with large enzyme CDSs information allo-
cated in SPH. However, this database presented two features: 1) several sequences 
covering the same biological sequence, and 2) sequence fragments of one biological 
sequence are globally alignable, so, it will be impractical testing each sequence from 
database for probe design because it will result in repeated probes. For this, we ex-
ploit the sequence similarities, clustering them, in order to estimate a biological se-
quence from consensus sequence derived from a multiple alignment using UCLUST 
[6]. But, clustering configuration depends on homology features of the target genes, 
so that we determine the level of taxonomic resolution of these functional genes. The 
gene sequences were grouped according to their taxonomic classification and aligned, 
later the sequence similarities were calculated with p-distance model using  
MEGA 5 [24]. 

Step 2: Probe design. At this stage we established a set of constraints to extract 
probes from candidate sequences. We have selected a probe design tool, OligoWiz 2.0 
[28], that implements a complex score model to select the best probe. This model 
allows specificity constraints like: minimum homology, minimum length of homolo-
gy stretch, maximum similarity, probes length and database. Probes satisfying these 
constraints are extracted and passed to the next step. 

Step 3: Probe denoising. In this step, all probe set candidate are clustered [6] as a 
filter process to discard duplicates or close related ones, selecting just the singleton 
clusters for the hybridization process. 

2.2 In silico Hibridization 

The hybridization process follows a general rule: each read aligned significantly with 
a probe, should be considered originating or homology of the enzyme gene that probe 
represents, therefore HISS performs a nucleotide BLAST search for each probe 
against HTS reads database, and reads with non-significant alignments with target 
probes were not taken into account. 

Due to the limitations of in silico hybridization models that determine which DNA 
alignments are significant, HISS examines alignment features to determine homology 
relationship between probe and reads. As the probes are designed to identify multiple 
target genes we have to consider multiple criteria to determine a homology selection 
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threshold, such as overall sequence identity, contiguous matches, mismatches, gaps 
and alignment length [13]. Analytically HISS incorporate a threshold selection func-
tion generated from series of continuous matches thresholds Xi with i mismatches. 
From basis on empirical threshold [14], we define 21 to X0, the longest stretch of 
contiguous matches between a probe and metagenomic sequence, the following thre-
sholds were calculated such as Xi = X0 + W(i). Where W is BLAST input parameter, 
termed word size, involved in BLAST heuristic approach. In blastn program used for 
BLAST searches the default value of W is 11 and the smallest value is 7. Because 
every BLAST result has to include an exact match of length W, it becomes a bound 
on values of specificity thresholds, therefore, in order to increase the sensitivity of 
HISS, it implements a default W value of 7 [29]. 

3 Results 

The entire pipeline was implemented on a HPC environment at Bioinformatics Center 
server of Biotechnology Institute of Universidad Nacional de Colombia, the cluster 
consists of 10 X 2.8 GHz Quad Core processors, running with SUSE10 with 32 GB of 
shared memory. The computational time of the algorithm depends on the number of 
probes and metagenomic sequences for the hybridization, hence the computational 
time of processing is directly dependent on the speedup achieved by BLAST, so the 
execution of HISS could be improved by using parallel versions of BLAST like 
mpiBLAST [4] or pioBLAST [9]. 

The SPH database, lodge 33536 sequences for Nitrogen cycle, associated with 39 
reactions of nitrogen fixation, nitrification, mineralization, assimilation and denitrifi-
cation process, and 13883 sequences for Phosphorus cycle, associated with 34 reac-
tions of mineralization process of phosphomonoesters, phosphodiesteres and inositol 
phosphates. 

The taxonomic resolution suggests a high variability, and confirms that amoA gene 
is a species specific marker but not higher taxonomical levels, furthermore, we found 
that species of the same gender clustering at an identity mean of 82% and 73% for 
genders of the same family (Table 1). Therefore, for the first stage of CrSo, the re-
dundancy parameter was settled to 82% of identity to clustering, in order to make 
gender lever bins. The probes were designed with 75% of identity for minimum ho-
mology, 30 of minimum length of holomoly stretch [14], 83% of identity for maxi-
mum homology, probes length of 100bp and local database named as ProEnvFun 
compounded by EMBL sequences from Prokaryotes, Environmentals and Fungy 
groups to calculate cross hybridization (deeper information in [28]). The denoising 
was configured with 82 % of identity clustering. 

CrSo triggers five sets of three best probes according to their length (25bp, 40bp, 
60bp, 80bp and 100bp) that were evaluated with simulated metagenomes made with 
Grinder [3]. Ten Illumina sequencing metagenomes were simulated mimic to a low 
complexity community [25], 20 soil representatives genomes were selected from 
NCBI RefSeq. With the best probes we fitted the selection HISS parameters, that 
were started as linear function traced using a series of thresholds X0, X1, X2, X3, X4 
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and X5, analytically calculated, such as: 21, 28, 35, 42, 49 and 56 respectively. How-
ever we acquire better results with a logarithmic function (y = 9.9581ln(x) – 32.067), 
achieving a mean sensitivity of 85% and mean specificity of 83% for all five length 
sets of probes (The sensitivity was evaluated as the ratio of true positives and all Blast 
hits. The specificity was calculated as the ratio of true positives and the value of true 
positives plus false positives).  

Table 1. Taxonomic resolution of functional genes. Data show the mean (±sd) of similarity 
values of the gene groups at different phylogenetic levels. N.A. not applicable 

 
 

 

Fig. 1. Comparison of community characterization of different probe sets. We use an ACP to 
represent the synthetic metagenome INSET (U) as a dot and comparing with probe length and 
number of probes for gene descriptors. 
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The effect of multiple probes for gene was evaluated in order to figuring out the 
community structure. The ACP result suggests that the better way of characterize the 
community is with one probe of 100bp, 80bp or 60bp in length (Fig. 1), and there is 
not evidence to determine which is the best. With 100bp probes, we performed an 
evaluation of probes usage strategy against full-length gene to mapping the communi-
ty. The full-length gene approach consider BLAST results with bitscore bigger than 
55 and 100bp alignment length to assign reads [11]. The results suggest that using 
full-length genes overestimates the number of genes in the community (Fig. 2), simi-
lar scenery have been reported [8]. 

 

 

Fig. 2. Number of reads assigned with HISS one 100bp probe set and full-length gene mapping. 
INSET represents the expecting gen number. Full-lenth gene BLAST hits are represented 10 
times less for representation simplicity. Error 5%. 

There were generated two metagenomes at 1:5 information ratio (Lib1X and 
Lib5X) for evaluating sensitivity of HISS. We tracked denitrification process by cha-
racterizing the community gene abundance. HISS estimates the genes number close to 
the expected value, with a mean of 4 (stdev. 1.5 and mode of 4.3) times greater in 
Lib5X against Lib1X. 

 

 

Fig. 3. Denitrification genes with different abundances detected in the metagenome and the 
metatranscriptome 

Real Scenario. It was explored the functionality of HISS over real soil community 
sequences collected from potato (Solanum phrueja) crop, located in Cundinamarca 
department - Colombia. The system detects denitrification genes in metagenome and 
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some of these were confirmed on metatranscriptome but with different abundances 
(Fig. 3). HISS founds a high richness of functional genes associated to denitrification 
process of different genders, however just few were expressed. That was expected, 
since the ecosystem functional richness possesses an independent dynamics regarding 
to functional homogeny, nevertheless there is a close relationship with taxonomical 
diversity, such as taxa richness and abundance [18].  

4 Discussion 

CrSo probes and HISS detection system were developed for gene detection in short 
reads, they provide a versatile method to predict functional genes in soil metagenomes 
using probes. The number of probes for gene is critical to characterize them in the 
samples; the results exhibit a better characterization with one probe for gene. It is due 
to the hard task of retrieve multiple subsequences from the gene with low cross hybri-
dization with no overlapping.  

The HISS selection function is stringent enough to predict gene fragments of at 
least 21bp at a gender taxonomic level. In contrast to other approaches that are able to 
assign as short as 60bp [20].  CrSo and HISS have showed a high gene abundance 
sensitivity using simulated metagenomic data sets, in contrast to similarity-based 
binning approaches that have indicated that a significant amount of reads get unclassi-
fied or even misclassified [8, 11].  

In the current study, a novel functional gene assignation with gender taxonomical 
level has been devised that attempts to characterize soil metagenomes according to its 
functional groups. The evaluation of real samples suggests that it is possible to track 
the behavior of soil community in order to develop comparable functional and meta-
bolic pathway profiles of communities.  

This work has calculate the similarity of Nitrogen and Phosphorus functional genes 
at different phylogenetic levels, it confirms amoA gene as specie-specific marker 
[21], however its behavior differs at higher taxonomical levels. 
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