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Abstract. We formulated a discrete time model in order to study opti-
mal control strategies for a single influenza outbreak. In our model, we
divided the population into four classes: susceptible, infectious, treated,
and recovered individuals. The total population was divided into sub-
groups according to activity or susceptibility levels. The goal was to
determine how treatment doses should be distributed in each group in
order to reduce the final epidemic size. The case of limited resources
is considered by including an isoperimetric constraint. We found that
the use of antiviral treatment resulted in reductions in the cumulative
number of infected individuals. We proposed to solve the problem by us-
ing the primal-dual interior-point method that enforces epidemiological
constraints explicitly.

Keywords: Influenza, Optimal Control, Interior-Point methods,
Epidemiology.

1 Introduction

Continuous time models have been used to study influenza outbreaks and the
impact of different control policies [4,9,15]. In the case of influenza, the cost
of antiviral treatment or the cost of isolation of infectious individuals has also
been addressed using continuous time models [11,12]. Recently, the evaluation of
influenza public health interventions using discrete epidemiological models has
been proposed [2]. We explore the role of heterogeneity via a discrete time epi-
demiological model involving two interacting groups. An optimal control problem
is formulated to evaluate the effect of antiviral treatment in scenarios involving
limited or unlimited resources. The optimal control problem is solved using the
primal-dual interior-point method, which to the best of our knowledge has not
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been previously used to solve control problems in epidemiology. This method
allows an efficient inclusion of explicit inequality constraints. In this paper, we
introduce the epidemiological model and the optimal control problem in Section
2, the basic ideas of interior point methods are introduced in Section 3. The re-
sults of selected numerical simulations are presented in Section 4, by considering
different scenarios such as different activity or susceptibility levels under limited
or unlimited resources.

2 Problem Formulation

The dynamics of many diseases such as measles and influenza are strongly
correlated with age [3]. Epidemiological models with age structure have been
considered for the continuous case in [3,5,10]. We divide the population into
2 subgroups. LetNi(t) be the number of individuals in group i at time t, (i = 1, 2)
and qij be the probability that somebody from Group i has contact with some-
body from group j. If we assume that both groups are connected (qij > 0) and

we consider proportionate mixing [3], we have qij = qj =
CjNj

m∑

k=1

CkNk

, where Ci is

the average number of contacts per unit of time. Let Si(t), Ii(t), Ti(t), and Ri(t)
denote the number of susceptible, infectious, treated and recovered individuals
in the ith group. We consider a single outbreak and people remain in the same
group. We assume that infectious individuals from group i naturally recover with
probability σi. We consider that the fraction of infected individuals in group i
who get treatment each generation is modeled by τi(t). Since treated individuals
are still infectious, the fraction of susceptible individuals on group i at time t
that get infected at time t+ 1 is modeled by the function:

Gi = ρi

2∑

j=1

(
qj

(
Ij(t) + εjTj(t)

Nj

))
, (1)

where εj represents the effectiveness of treatment for individuals on group j, with
0 < εj ≤ 1. We assume that individuals (from any group) who get treatment
recover with probability σ. The model with control is given by the following
system of difference equations:

Si(t+ 1) = Si(t)(1 −Gi(t))
Ii(t+ 1) = Si(t)Gi(t) + (1− τi(t)) (1− σi) Ii(t)
Ti(t+ 1) = (1− σ) Ti(t) + τi(t) (1− σi) Ii(t)
Ri(t+ 1) = Ri(t) + σiIi(t) + σTi(t).

(2)

In the absence of control, the model is reduced to an SIR model, the basic

reproductive number R0 is given by [8] R0 =
2∑

i=1

ρiqi
1−(1−σi)

. Now we introduce

the optimal control problem associated with the group-structured model (2).
Our goal is to minimize the number of infected individuals in each group over a
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finite interval [0, n], by using the least amount of treatment. The optimal control
problem can be written as:

min
1

2

2∑

i=1

(
n−1∑

t=0

(
BIiIi(t)

2 +Bτiτi(t)
2
)
)
, subject to Model (2), (3)

where n denote the final time. The weight constantsBj , (j = Ii, τi) are a measure
of the relative cost of interventions over [0, n]. In particular, Bτi denote the
relative costs associated with the implementation of antiviral treatment in group
i, respectively.

3 Methodology

The problem is solved by using the primal-dual interior-point method [6,8,14].
Interior-Point Methods (IPM) are algorithms used to solve linear and nonlinear
optimization problems. Contrary to the simplex method, which finds an optimal
solution by testing the adjacent vertices of a feasible set, IPM find optimal so-
lutions by crossing the interior of a feasible region. Computationally, IPM are
more efficient than the simplex method because they have polynomial complex-
ity. In addition, the simplex method finds solutions at the corner points only,
while IPM may find solutions in the interior as well.

We rewrite Problem (3) as a nonlinear programming problem:

min f(y), s.t. E(y) = 0, 0 ≤ y ≤ ymax, (4)

where y =

[
y1
y2

]
, yi = [Si(1), Ii(1), Ti(1), τi(0), . . . , Si(n), Ii(n), Ti(n), τi(n −

1)]T , for i = 1, 2 and the final time n. The objective functional is given by:

f(y) =
1

2

2∑

i=1

(
BIi‖Ĩi‖2 +Bτi‖τi‖2

)
,

f : R8·n → R, with Ĩi = (Ii(0), Ii(1), . . . , Ii(n − 1))T and τi = (τi(0), τi(1), . . . ,
τi(n − 1))T , for i = 1, 2. From Model (2), we get the equality constraint E :

R
8·n → R

6·n, E(y) =

(
E1(y)
E2(y)

)
, where Ei(y), for i = 1, 2 is defined from (2) [8].

Now we consider a more realistic scenario when treatment supplies are limited.
We modify Problem (3) by including the “isoperimetric” constraint [12,13]

2∑

i=1

(
n−1∑

t=0

(τi(t)Ii(t))

)
= k, (5)

where k represents the available number of treatment doses and n the final time.
Notice that (5) can be written as

∑2
i=1 τ

T
i Ĩi − k = 0. A similar problem has

been solved in [12] by considering limited vaccine in a continuous time influenza
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model. The problem was solved by including a new state variable related to the
isoperimetric constraint, which requires boundary conditions at t = 0 and t = n;
The authors of [12] remark that convergence issues have to be addressed. We
solve the new problem by using the primal-dual interior-point method, which
allows the inclusion of the new constraint more efficiently. The optimal control
problem can be written as (4) where the previous equality constraint is modify

as E : R4·n·m → R
3·n·m+1, E(y) =

(
E1(y), E2(y), τ

T
1 Ĩ1 + τT

2 Ĩ2 − k
)T

.

The Lagrangian function associated with Problem (4) is defined by:

L(y, w, z1, z2) = f(y) + E(y)Tw − yT z1 − (ymax − y)T z2,

where w, z1, and z2 are the Lagrange multipliers associated with the equality and
inequality constraints, respectively. Therefore the perturbed KKT conditions
[8,14] are given by:

Fμ(y, w, z1, z2) = [∇yL,E(y), Y Z1 − μe, (Ymax − Y )Z2 − μe]
T
= 0, (6)

where Y = diag(y), Ymax = diag(ymax), Z1 = diag(z1), Z2 = diag(z2), and
e = (1, . . . , 1)T ∈ R

8n. The primal-dual interior-point algorithm for the nonlin-
ear programming problem (4) is presented in [8]. The results of some numerical
simulations both in the case of limited and unlimited supplies for different sce-
narios are presented in the next section.

4 Numerical Results

In this section, we present some results of selected simulations under various
scenarios. For each case, we compare the proportion of infected individuals gen-
erated in the absence or in the presence of control. The baseline parameter values
are given in [8]. For scenario 1, we consider the case of seasonal influenza. We di-
vide the total population into two groups with different population sizes. Group

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

Time(days)

C
on

tr
ol

 E
ffo

rt

 

 

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

Time(days)

P
ro

p.
 o

f i
nf

ec
. i

nd
iv

id
ua

ls

 

 

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(days)

C
um

. p
ro

p.
 o

f i
nf

ec
. i

nd
iv

id
ua

ls

 

 

0 50 100 150 200
0

0.005

0.01

0.015

0.02

Time(days)

C
on

tr
ol

 E
ffo

rt

 

 

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

Time(days)

P
ro

p.
 o

f i
nf

ec
. i

nd
iv

id
ua

ls

 

 

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Time(days)

C
um

. p
ro

p.
 o

f i
nf

ec
. i

nd
iv

id
ua

ls

 

 

Treatment in Group 1 without treatment
with treatment

without treatment
with treatment

Treatment in Group 2 without treatment
with treatment

without treatment
with treatment

Group 1

Group 2

A B

D

C

E F

Fig. 1. In scenario 1, Group 1 (12.5 % of the population) is more susceptible but less
active than Group 1. Since Group 2 is more active, more effort has to be applied in
this group.
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1 is given by 12.5% of the population aged 65 or more, and Group 2 is 87.5%
of the population aged less than 65 [1]. We assume that R0 = 1.27 and that
Group 1 is the high risk population (ρ1 > ρ2). The final time is 240 days. Figure
1 shows the results for Scenario 1. Since we have Group 2 as the more active
one, the optimal control requires more resources for this group than for Group
1; Figure 1D shows that we need to apply twice the treatment for Group 2 than
for Group 1 (Figure 1A). The reduction on the final epidemic size is given by
8% and 12% in Groups 1 and 2, respectively.

The case of limited resources is considered in Scenario 2 and 3. We assume that
both groups have the same population size. In Scenario 2 we assume same activity
level but Group 1 is more susceptible than Group 2, ρ1 > ρ2. For Scenario 3, we
consider same susceptibility but Group 1 is more active than Group 2, C1 > C2.
Figures 2 and 3 show the optimal control function, the proportion of infected
individuals, and the cumulative proportion of infected individuals in both groups
under each scenario for different values of treatment doses k.

Figure 2 shows the results for Scenario 2. The optimal control solution shows
that more resources should be used for Group 1 (Figure 2A and 2C), since this
is the high risk group; however the proportion of infected individuals is higher
in Group 1 (Figures 2B and 2D). By using different values of k, 3%, 6%, and
13%, the final epidemic size in Group 1 is reduced by 2.4%, 6%, and 16% for
each case; for Group 2, it is reduced by 3%, 7%, and 19%. Although the optimal
solution allows the use of more resources towards Group 1, the reduction on the
final epidemic size is a little higher in Group 2. For small values of k, (3% and
6%), Figures 2A and 2D show that in both groups, the resources should be used
at the beginning of the epidemic, 55 and 75 days respectively.

In the case of Scenario 3, Group 1 has a higher activity level than Group 2
but the same susceptibility. Figure 3 shows that the optimal control solution
requires the application of more treatment doses in Group 1 (Figures 3A and
3D); however, the proportion of infected individuals is the same in both groups
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Fig. 2. For Scenario 2, since Group 1 has higher activity level, more resources need to
be used towards this group (Figure A and D) however for each value of k the reduction
on the final epidemic size is higher in Group 2.
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Fig. 3. For Scenario 3, since Group 2 is at higher risk, more resources need to be used
for this group. However, since the activity level is the same for both groups, the number
of infected individuals is similar for Group 1 and Group 2.

(Figures 3B and 3E). For different values of k (4%, 7%, and 14%), Figures 3C and
3E shows that the final epidemic size is reduced by 5%, 8%, and 15% respectively.

In all scenarios, we find that the use of treatment reduces the number of
infected individuals. If one of the groups is more susceptible, more effort has
to be implemented in that group, but the reduction in the final epidemic size
will be larger in the less susceptible group. In addition, if we consider limited
resources, we found that the resources should be used at the beginning of the
epidemic until all the resources are used.

5 Conclusions

We formulated a discrete group-structured model under the assumption that
people mix more with individuals in the same group and groups are mixing
randomly. We introduced an optimal control problem (3) in order to study how
treatment should be implemented in each group in order to minimize the number
of infected individuals at the end of the epidemic. In all scenarios, we found that
the implementation of treatment reduces the number of infected individuals
at a minimal cost. If one of the groups is more susceptible, more effort has
to be implemented in that group but the reduction in the final epidemic size
will be bigger in the less susceptible group. In the case of limited resources,
we found that the maximum effort in control have to be implemented at the
beginning of the epidemic until all the resources are used. Most of the optimal
control problems in this area are solved by using PontryaginsMaximum Principle
[7,12,13] We proposed to solve it by using the primal-dual interior-point method.
This methodology allows the inclusion of constraints in a simpler way, specially
in the case of isoperimetric constraint.
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8. González-Parra, P.: Constraint optimal control for a multi-group discrete time
influenza model. PhD. dissertation, The University of Texas at El Paso, El Paso,
TX (2012)

9. Herrera-Valdez, M.A., Cruz-Aponte, M., Castillo-Chavez, C.: Multiple outbreaks
for the same pandemic: Local transportation and social distancing explain the
different “waves” of A-H1N1pdm cases observed in Mxico during 2009. Math. Biosc.
& Eng. 8(8), 21–48 (2011)

10. Hethcote, H.W.: An age-structured model for pertussis transmission. Math.
Biosc. 145, 89–136 (1997)

11. Lee, S., Chowell, G., Castillo-Chavez, C.: Optimal control for pandemic influenza:
the role of limited antiviral treatment and isolation. J. Theor. Biol. 265, 136–150
(2010)

12. Lee, S., Morales, R., Castillo-Chavez, C.: A note on the use of influenza vaccination
strategies when supply is limited. Math. Biosc. & Eng. 8(8), 171–182 (2011)

13. Lenhart, S., Workman, J.: Optimal control applied to biological models. Chapman
& Hall, CRC Mathematical and Computational Biology series (2007)

14. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer (2006)
15. Rios-Soto, K., Song, B., Castillo-Chavez, C.: Epidemic spread of influenza viruses:

The impact of transient populations on disease dynamics. Math. Biosc. & Eng. 8(8),
199–222 (2011)


	Optimal Control for a Discrete Time Influenza Model
	1 Introduction
	2 Problem Formulation
	3 Methodology
	4 Numerical Results
	5 Conclusions
	References




