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Abstract. We have developed a program for counting self-avoiding
Hamiltonian walks to run on multiple processors in a parallel mode.
We study Hamiltonian walks (HWs) on the family of two-dimensional
modified Sierpinski gasket fractals, as a simple model for compact poly-
mers in nonhomogeneous media in two dimensions. We apply an exact
recursive method which allows for explicit enumeration of extremely long
Hamiltonian walks of different types: closed and open, with end-points
anywhere in the lattice, or with one or both ends fixed at the corner
sites. The leading term n is characterized by the value of the connec-
tivity constant 1, which depends on fractal type, but not on the type
of HW.
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1 Introduction

Self-avoiding walks (SAWs) have been used in the modeling of polymers, micro
magnetics configuration, studies of diffusion through the porous media, statistics
of polymer chains configuration in solution [1]. The most intensive preoccupa-
tions are directed toward the polymer phase transitions. Due to excluded volume
effect, at high temperatures T (good solvent) long polymer chains are in swollen
configurations. At low temperatures (poor solvent) polymers are in a collapsed
state, caused by the attractive interactions of different sections of a polymer,
mediated by a solvent. The transition between these two states occurs at the θ
temperature, at which excluded volume and attractive forces balance. Whereas
the swollen and θ phases has been well investigated by now, the entropy scaling
of the collapsed phase is still an open issue. A closely related problem is the
scaling of Hamiltonian walks (HWs), which are SAWs that visit all the sites of
the underlying lattice [2]. HWs represent the T = 0 limit of collapsed polymers,
and they are also used in the studies of polymer melting, as well as in the con-
text of protein folding [3]. The number ZN of HWs on homogeneous lattices
for large N behaves as ZN ∼ ωNμNσ

SNα where σ = (d − 1)/d, (d is the di-
mensionality of the lattice), μ is constant less than 1, and ω is the connectivity
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constant. Proposed scaling form for HWs differs from the ordinary SAW case
(swollen polymer), where average number of N-step SAWs, for large N, behaves
as ωNNα, and critical exponent α depends only on d (which is not the case for
HWs). The term μNσ

S is result of the exact study of HWs on the Manhattan
lattice [4], and the consequence of conjecture that collapsed polymer (globule)
has a sharp boundary and surface tension terms are more dominant [5].

2 Hamiltonian Walks on Sierpinski Gasket Fractals

SG is a well known fractal lattice, which can be constructed recursively, starting
with the generator (gasket of order r = 1), which consists of three unit equilateral
triangles, arranged to form a larger triangle (see Fig. 1). The subsequent fractal
stages are constructed self-similarly, by replacing each of the unit triangles of
the initial generator with a new generator. To obtain the rth-stage fractal lattice
(rth order gasket), this process of construction has to be repeated (r− 1) times,
and the complete fractal is obtained in the limit r → ∞ numbers of sites on
the rth order gasket is equal to Nr = 3

2 (3
r + 1). SG resembles 3-simplex lattice

and indeed has the same fractal dimension df = ln 3/ ln 2. An open HW on a
third order gasket is shown on Fig. 3, together with its coarse-grained versions.
Comparing with Fig. 1 one can observe that larger number of types of possible
HW configurations exists on SG than in the case of 3-simplex lattice. There are
exactly eight different types of walks, and they are depicted on Given-Mandelbrot
fractals represent the fractal family characterized with integer b ≥ 2 (scaling
factor) [7]. The first element of row is Sierpinski gasket, fractal with b = 2. At
the same way, other fractal are constructed k. Initiator is a site triangle a. Aa

the first step of construction, r = 1, b(b+1)
2 initiator sets in equilateral triangle

ba on this way that the vertices are connected.
Constructed structure represents the generator of order one G(1)(b). In the

second steep, r = 2, b(b+1)
2 initiator set on the same way in equilateral triangle

b2a site. This is the generator of order 2. After r iterative steps generator order

r, G(r)(b), triangle with bra site has b(b+1)
2 generators (r−1) order, and complete

fractal when r → ∞. The first 3 generators of GM fractal b = 3 parameter is on
fig 1.

Fractal dimension is

df =
ln b(b+1)

2

ln b
. (1)

Initiator vertexes and sites of GM fractal make fractal lattice. The number of
nodes, Nr, of G

(r)(b), is recursive expressed as Nr = b(b+1)
2 (Nr−1− 3)+

∑b+1
1 k.

The first term expresses number of nodes of all b(b+1)
2 generators of order r− 1,

with vertices exception. Summa presents the number of generators order r − 1,
and is equal

∑
= (b + 1)(b+ 2)/2. After simplification Nr expression for

Nr = b(b+1)
2 Nr−1 − b2 + 1, and iteration toward the begin, N0 = 3, and

Nr =
b+ 4

b+ 2

(b(b+ 1)

2

)r

+ 2
b+ 1

b+ 2
. (2)
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Fig. 1. Construction GM fractal by b = 3

Fig. 2. Open HW on generator (r + 1)- order for GM fractal b = 5. HW consists od
one walk A, one A1, four B and nine walks B1 on coarsed generators of order r, and
this is the shape AA1B

4B9
1 in reduced notation.

The corresponding numbers of HWs on the rth-2 order gasket will be denoted

by A(r), A
(r)
1 ,A

(r)
1 B(r),B

(r)
1 ,C(r), D(r) and D

(r)
1 .

These numbers fulfill the following recursion relations: Since in [6] it was
exactly shown that B(r) = const · ωNr , with ω = 121/9, one finally obtains the
same scaling form as for 3-simplex lattice: Z0(r) = ωNrNγ

r , with the same value
of exponent γ = ln 16/ ln 3. It was also shown in [8] that the overall number
Z(r) C of closed HWs on SG lattice scales according to the formula ωNr , again
the same as in the case of 3-simplex. The equality of exponents for these two
fractal lattices is in accord with the fact that SAWs on them belong to the same
universality class [10]. On the other hand, it is known that exponents for HWs
on different 2d Euclidean lattices have different values [11], which is explained
to be a consequence of the frustration, induced by the strong constraint that all
the sites must be visited.

It is believed that a relevant physical measure of this frustration is the num-
ber of contacts per monomer, i.e. vertex pairs which are not adjacent along the
HW, but are the nearest neighbors on the lattice. Nevertheless, the number of
contacts on 3-simplex is one, whereas it is two on SG, so that one could have
expected different values of γ. In order to gain a deeper insight into the problem
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of universality and frustration of HWs on lattices embedded in 2d space,the
asymptotic behavior of HWs on the appropriate generalizations of 3-simplex
and SG fractals was analyzed [12].

3 Hamiltonian Walks on Given-Mandelbrot Fractals

One way to construct the SG fractal is to start with a generator that consists of
b(b + 1)/2 unit equilateral triangles, arranged to form a b times larger triangle.
Enlarging the generator b times and substituting the smallest triangles with
the generator, and then repeating this procedure recursively, one obtains fractal
lattice characterized with the integer b. For b = 2, 3, ... the complete so called
Given-Mandelbrot (GM) family of fractals is obtained [9]. SG is the first member
of this family, with the scaling parameter b = 2.

Number of open HWs on the (r + 1)th stage of any GM fractal construction
can be expressed in terms of numbers of 8 HW types within the rt-h order stage,
in a similar manner as in the case of SG. Recursion relations for numbers of
B, and B1-type walks on two successive stages of fractal construction have the
following form

B′ = pB
b(b−1)

2 +1Bb−1
1 , B′

1 = Bb
1 (3)

as was shown in [6]. whereas the numbers of one-leg configurations: A, A1, A2,
and C, satisfy a closed set of recursion relations, which can be put in matrix
form (9) where aij are polynomials in B(r) and B(r)1 .

The number Z(r + 1) of open HWs on the gasket of order (r + 1), can be
expressed as (4) where we have suppressed index r on the right-hand side of this
relation, and Kij are numbers that depend only on b. Substituting established
asymptotical behavior of Ai, C and Di in the latter expression, one finds that
all terms on the right-hand side of equation have the same asymptotical form.
The values of γ for are equal to 2 ≤ b ≤ 8 are 2.5237. . ., 2.1841 . . ., 2.3411 . . .,
2.2461 . . ., 2.2981 . . ., and 2.2755 . . ., respectively. One should mention here
that number of closed HWs asymptotically behaves as Z(r) as was established
in [6], where also a closed formula was derived [8].

Zr+1 =

2∑

i≤j=0

kijAi rAj rB
m−2+(i+j)
r B

n−(i+j)
1 r + Cr

2∑

i=0

kiAi rB
m−1+i
r Bn−1−i

1 r

+ k3C
2
rB

m
r Bn−2

1 r +

1∑

i=0

ki
′Di rB

m+i
r Bn−1−i

1 r ,

(4)

where m = b and n = b(b−1)
2 . Term coefficients kij , ki ..., are independent of r,

doesn’t influence on HW’s number.
Recurrent relations B i B1 are

Br+1 = pBm
r Bn

1 r , B1 r+1 = pBm−1
r Bn+1

1 r , (5)
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and for A ,A1 , A2 and C :

Ai r+1 =

2∑

j=0

aijAj rB
m−1−(i−j)
r B

n+(i−j)
1 r + ai3CrB

m−i
r Bn−1+i

1 r , i = 0, 1, 2 ,

Cr+1 =

2∑

i=0

ciAi rB
m−2+i
r Bn+1−i

1 r + c3CrB
m−1
r Bn

1 r .

(6)

Term coefficients in recurrent relations for A1 and A2 can expressed over the
coefficients A and B, a10 = a00 − p/2 , a11 = a01 , a12 = a02 + p/2 , a13 = a03 i
a20 = a00 − p , a21 = a01 , a22 = a02 + p , a23 = a03 , .

The number od B and B1 are proportional to r. division of this relation give
B1 r+1

Br+1
= B1 r

Br
, and B1 r

Br
= const = t =

B1(1)

B(1)
(t is the rate of starting number of

walks B1 i B, i and is the function of fractal parameter b). One variable Ai r can
be expressed over other A2 r = 2tA1 r − Art

2, ∀ r > 1. Elimination B1 r i A2 r

relations in (5) and (6) go in

Br+1 = ptnBm+n
r ,

Ar+1 = Bm+n+1
r [tn(a00 − a02)Ar + tn−1(a01 + 2a02)A1 r + tn−1a03Cr] ,

A1 r+1 = Bm+n+1
r [tn+1(a00 − a02 − p)Ar + tn(a01 + 2a02 + p)A1 r + tna13Cr] ,

Cr+1 = Bm+n+1
r [tn+1(c0 − c2)Ar + tn(c1 + 2c2)A1 r + tnc3Cr] .

(7)

Iteration of the first of these relations, or go with solution Br = c c
(m+n)r

1 ),
and(2), and definitions t, m i n, the result is1

Br = BωNr , gdje je ω =
[
p
]k1

[
B(1)

]k2
[
B1(1)

]k3

, i (8)

⎛

⎝
xr+1

x1 r+1

yr+1

⎞

⎠ =
1

p

⎛

⎝
a00 − a02 (a01 + 2a02)/t a03/t

t(a00 − a02 − p) a01 + 2a02 + p a03

t(c0 − c2) c1 + 2c2 c3

⎞

⎠

⎛

⎝
xr

x1 r

yr

⎞

⎠ , (9)

4 Implementation and Parallelization

Initial attempts to find the number of walks was based on sequential Fortran code
which, while providing correct results, left a lot to be desired both in performance
and scalability department. In order to obtain desirable performance and ease
the parallelization we opted to forgo brute-force path counting approach and try
to find a more elegant solution.

The problem of building all walks on the gasket can be reduced to the problem
of constructing each walk using the predefined elementary triangles. Since, given

1 B = p
− 2(b+2)

b(b−1)(b+4) [B(1)]
b(b+2)−4
b(b+4) [B1(1)]

− b+2
b+4 .
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Table 1. Coefficients p, a0i and ci in recursion relations for HW B, A i C for the
numbers of B, A i C -type, found by direct computer enumeration of all possible
corresponding configurations, together with the values of connectivity constant and
exponent on GM fractals with 2 ≤ b ≤ 8

b a01 a02 a03 c0 c1 c2 c3

2 2 0 2 1 2 1 6
3 14 4 22 12 16 4 32
4 128 82 212 152 168 48 352
5 1532 1482 2704 2544 2120 424 4048
6 23812 31518 42368 52072 35152 6568 67680
7 486284 817798 878168 1340536 735312 112088 1374944
8 12778136 26422308 23141696 43647128 20117360 2742936 37493824
9 438476480 1079408072 797598000 1797330104 705340848 167728048 1301033984

a division, a gasket can consists of a constant number of sub triangles, the gasket
itself can be constructed by combining the available triangles.

The algorithm used here maps the elementary walks to elementary triangles
and combines them in a lower triangular matrix of elementary triangles, thereby
mimicking the above given structure. As the elementary walks are predefined,
the elementary triangles are defined accordingly. In this way, there exist six pre-
defined triangles, each constructed from a separate elementary walk, to be used
for constructing the gasket. The division of the gasket determines the dimensions
of the lower triangular matrix, which is a square matrix, hence both dimensions
are equal, and the total number of triangles to use in constructing the gasket.

The algorithm attempts to build a gasket by placing elementary triangles in
the triangular matrix. The process starts from the top-most, left-most cell of
the triangular matrix and proceeds recursively to build the gasket. Each call
of the recursive function places a single triangle at the position of the call and
proceeds to call the same function on the next position in the triangular matrix.
The recursive calling ends when either the last cell of the matrix is reached or
no suitable elementary triangle can be placed at the specified position.

Elementary triangles are arranged in such a way that the HWs extruding from
previously placed elementary triangles are continued by newly placed elemen-
tary triangle rotated and/or mirrored to fit in an adequate way to satisfy the
continuation requirement.

After a gasket is constructed, a final check is performed to determine whether
the gasket is of the targeted type. This check is performed in such a way that
three points of the triangle are checked for matches against the target triangle.
If they match, the gasket is checked for loops since certain triangle combinations
can result in loops. If no loops exist, the given gasket is determined to be of the
targeted type and the corresponding HW counter is increased.

Optimization of the algorithm is reflected in the triangle-building approach, as
certain paths are eliminated, which would otherwise be unnecessarily evaluated.
The approach does introduce the path looping problem which can efficiently be
dealt with by a final check of looping. This check is done in linear time and is
executed by a single thread.
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4.1 Parallelization and Scalability

We have implemented two approaches to parallelization of aforementioned im-
plementation. Both approaches are based on OpenMP multi-threaded shared
memory model[13].

The first approach is relatively simple but comes with some caveats as it
is based on OpenMP nested parallelism. Upon calling a function on a certain
cell of the matrix, a set of maximum of six elementary triangles can be placed
at the given position. For each of these possible placements a new thread is
spawned and the current state of the triangular matrix copied and assigned to
it. This way, the number of threads increases exponentially with each call of
the recursive function. Certain constructs of triangles can efficiently be resolved
by a single thread, so for these constructs only a single thread is used (this
refers to the non-necessity of branching for constructing the final n triangles).
There are two issues with this approach. First one is the fact that just creating
a large number of threads negatively impacts performance, event though not
all threads are active at the same time. Second issue is that if we try to keep
number of simultaneously active threads, as well as newly created threads, close
to a reasonable number we pay the penalty close to the end of calculation when
few long-lasting threads effectively reduce the scalability of the implementation.
Careful fine-tuning allowed us to achieve very good scalability for up to 48 CPU
cores but at the price of creating several thousands of threads.

While nested parallelism approach did produce scalability, it also caused se-
vere problems with different compilers, versions and architectures available at
various HP-SEE HPC resource centers. HP-SEE project represents a continua-
tion of series of GRID and HPC related projects in SEE region [14]. In order to
alleviate these problems we implemented a version that uses OpenMP 3.0 task
construct. This allowed us to keep the number of threads close to the number of
physical CPU cores while improving the scalability (Table 2).

Scalability testing was performed at Pecs SC resource center. Pecs supercom-
puter is a SGI 1000 Ultraviolet supercomputer based around Intel Xeon X7542
6-core processors with ccNUMA SMP architecture. The application was com-
piled by Intel C++ compiler version 12.1.5 and GCC C/C++ compiler version
4.3.4 both with -O3 optimization level. While GCC did produce measurably

Table 2. Scalability testing of SFHG application

CPU cores Walk type Level CPU time/Wall time Efficiency

1 C 8 1.00 1.00
2 C 8 1.97 0.99
4 C 8 3.91 0.98
8 C 8 7.82 0.98
12 C 8 11.31 0.94
16 C 8 15.02 0.94
24 C 8 21.74 0.91
48 C 8 40.93 0.85
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better results for nested parallelism version, incomplete support for OpenMP
task construct in available version prevented us from comparing the compilers
for our production code.

5 Summary and Conclusion

We have analyzed asymptotic behavior of the numbers of open and closed Hamil-
tonian walks on Given-Mandelbrot (generalized Sierpinski gasket) fractal fam-
ilies and made a few new steps (8 and 9) in exact evaluating the numbers of
self-avoiding walks and calculating the asymptotic behavior of leading terms.
Potential capability of program in parallel processing will give the analyzing
tool for more complex 3D fractal structures.
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Performance Computing Infrastructure for South East Europe’s Research Com-
munities (HP-SEE), a project co-funded by the European Commission (under
contract number 261499) through the Seventh Framework Programme. HP-SEE
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