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3.1 First Steps in Data Analysis

Let us return to our students from the previous chapter. After completing their survey

of bread spreads, they have now coded the data from the 850 respondents and entered

them into a computer. In the first step of data assessment, they investigate each

variable – for example, average respondent age – separately. This is called univariate
analysis (Fig. 3.1). By contrast, when researchers analyze the relationship between

two variables – for example, between gender and choice of spread – this is called

bivariate analysis (see Sect. 4). With relationships between more than two variables,

one speaks of multivariate analysis (see Sect. 5.3).
How can the results of 850 responses be “distilled” to create a realistic and

accurate impression of the surveyed attributes and their relationships? Here the

importance of statistics becomes apparent. Recall the professor who was asked

about the results of the last final exam. The students expect distilled information,

e.g. “the average score was 75 %” or “the failure rate was 29.4 %”. Based on

this information, students believe they can accurately assess general performance:

“an average score of 75 % is worse than the 82 % average on the last final exam”.
A single distilled piece of data – in this case, the average score – appears sufficient

to sum up the performance of the entire class.1

This chapter and the next will describe methods of distilling data and their

attendant problems. The above survey will be used throughout as an example.

Chapter 3 Translated from the German original, Cleff, T. (2011). 3 Vom Datensatz zur Information.

In Deskriptive Statistik und moderne Datenanalyse (pp. 31–77) # Gabler Verlag, Springer

Fachmedien Wiesbaden GmbH, 2011.

1 It should be noted here that the student assessment assumes a certain kind of distribution. An

average score of 75 % is obtained whether all students receive a score of 75 %, or whether half

score 50 % and the other half score 100 %. Although the average is the same, the qualitative

difference in these two results is obvious. Average alone, therefore, does not suffice to describe the

results.
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DOI 10.1007/978-3-319-01517-0_3, # Springer International Publishing Switzerland 2014
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Graphical representations or frequency tables can be used to create an overview

of the univariate distribution of nominal- and ordinal-scaled variables. In the

frequency table in Fig. 3.2, each variable trait receives its own line, and each

line intersects the columns absolute frequency, relative frequency [in %],2 valid
percentage values, and cumulative percentage. The relative frequency of trait xi is

abbreviated algebraically by f(xi). Any missing values are indicated in a separate

line with a percentage value. Missing values are not included in the calculations

of valid percentage values3 and cumulative percentage. The cumulative percentage

reflects the sum of all rows up to and including the row in question. The figure

of 88.1 % given for the rating average in Fig. 3.2 indicates that 88.1 % of

the respondents described the selection as average or worse. Algebraically, the

cumulative frequencies are expressed as a distribution function, abbreviated F(x),

and calculated as follows:

F xp
� � ¼ f x1ð Þ þ f x2ð Þ þ � � � þ f xp

� � ¼ Xp�n

i¼1

f xið Þ (3.1)

These results can also be represented graphically as a pie chart, a horizontal bar
chart, or a vertical bar chart. All three diagram forms can be used with nominal and

ordinal variables, though pie charts are used mostly for nominal variables.

Analysis of only one variable:
Univariate Analysis

Note: Using SPSS or Stata: The data editor can usually be set to display
the codes or labels for the variables, though the numerical values are stored

Fig. 3.1 Survey data entered in the data editor

2 Relative frequency (f(xi)) equals the absolute frequency (h(xi)) relative to all valid and invalid

observations (N ¼ Nvalid þ Ninvalid): f(xi ) ¼ h(xi)/N.
3 Valid percentage (gf(xi)) equals the absolute frequency (h(xi)) relative to all valid observations

(Nvalid): g(xi ) ¼ h(xi)/Nvalid.
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The traits of the frequency table in the bar chart (poor, fair, average, good,

excellent) are assigned to the x-axis and the relative or absolute frequency to the

y-axis. The height of a bar equals the frequency of each x-value. If the relative

frequencies are assigned to the y-axis, a graph of the frequency function is obtained

(see Fig. 3.3).

In addition to the frequency table, we can also represent the distribution of an

ordinally scaled variable (or higher) using the F(x) distribution function. This

function leaves the traits of the x-variables in question on the x-axis, and assigns

the cumulative percentages to the y-axis, generating a step function. The data

representation is analogous to the column with cumulative percentages in the

frequency table (Fig. 3.4).

In many publications, the scaling on the y-axis of a vertical bar chart begins not

with 0 but with some arbitrary value. As Fig. 3.5 shows, this can lead to a

misunderstanding at first glance. Both graphs represent the same content – the

relative frequency of male and female respondents (49 % and 51 %, respectively).
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Poor 391 46.0 46.0 46.0
Fair 266 31.3 31.3 77.3
Average 92 10.8 10.8 88.1
Good 62 7.3 7.3 95.4
Excellent 39 4.6 4.6 100.0
Total 850 100.0 100.0
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Fig. 3.3 Bar chart/Frequency distribution for the selection variable
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Valid 
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values
Cumulative
percentage

Poor 391 46.0 46.0 46.0
Fair 266 31.3 31.3 77.3
Average 92 10.8 10.8 88.1
Good 62 7.3 7.3 95.4
Excellent 39 4.6 4.6 100.0
Total 850 100.0 100.0

Fig. 3.2 Frequency table for selection ratings
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But because the y-axis is cut off in the first graph, the relative frequency of

the genders appears to change. The first graph appears to show a relationship of

five females to one male, suggesting that there are five times as many female

observations as male observations in the sample. The interval in the first graph is

misleading – a problem we’ll return to below – so that the difference of 2 % points

seems larger than it actually is. For this reason, the second graph in Fig. 3.5 is the

preferable form of representation.

Similar distortions can arise when two alternate forms of a pie chart are used.

In the first chart in Fig. 3.6, the size of each wedge represents relative frequency.

The chart is drawn by weighting the circle segment angles such that each angle

αi ¼ f (xi) � 360�.
Since most viewers read pie charts clockwise from the top, the traits to

be emphasized should be placed in the 12 o’clock position whenever possible.

Moreover, the chart shouldn’t contain too many segments – otherwise the graph

will be hard to read. They should also be ordered by some system – for example,

by size or content.
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Fig. 3.4 Distribution function for the selection variable
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Fig. 3.5 Different representations of the same data (1). . .
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The second graph in Fig. 3.6, which is known as a “perspective” or “3D” pie

chart, looks more modern, but the downside is that the area of each wedge no longer

reflects relative frequency. The representation is thus somewhat misleading. The

pie chart segments in the foreground seem larger. The edge of the pie segments in

the front can be seen, but not those in the back. The “lifting up” of a particular

wedge can amplify this effect even more.

And what of cardinal variables? How should they be represented? The novice

might attempt to represent bodyweight using a vertical bar diagram – as shown in

graph 1 of Fig. 3.7. But the variety of possible traits generates too many bars, and

their heights rarely vary. Frequently, a trait appears only once in a collection of

cardinal variables. In such cases, the goal of presenting all the basic relationships at

a glance is destined to fail. For this reason, the individual values of cardinal

variables should be grouped in classes, or classed. Bodyweight, for instance,

could be assigned to the classes shown in Fig. 3.7.4

By standard convention, the upper limit value in a class belongs to that class;

the lower limit value does not. Accordingly, persons who are 60 kg belong to the

50–60 kg group, while those who are 50 kg belong to the class below. Of course, it

is up to the persons assessing the data to determine class size and class membership

at the boundaries. When working with data, however, one should clearly indicate

the decisions made in this regard.

A histogram is a classed representation of cardinal variables. What distinguishes

the histogram from other graphic representations is that it expresses relative class

frequency not by height but by area (height � width). The height of the bars

represents frequency density. The denser the bars are in the bar chart in part 1 of

Fig. 3.7, the more observations there are for that given class and the greater its

frequency density. As the frequency density for a class increases, so too does its

area (height � width). The histogram obeys the principle that the intervals in a

diagram should be selected so that the data are not distorted. In the histogram,

the share of area for a specific class relative to the entire area of all classes equals

the relative frequency of the specific class. To understand why the selection of

poor
fair
average
good
excellent

poor
fair
average
good
excellent

Fig. 3.6 Different representations of the same data (2). . .

4 For each ith class, the following applies: xi < X � xi þ 1 with i ∈ {1, 2, . . ., k}.
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suitable intervals is so important consider part 1 of Fig. 3.8, which represents the

same information as Fig. 3.7 but uses unequal class widths. In a vertical bar chart,

height represents relative frequency. The white bars in the figure represent relative

frequency. The graph appears to indicate that a bodyweight between 60 and 70 kg

is the most frequent class. Above this range, frequency drops off before rising

again slightly for the 80–90 kg class. This impression is created by the distribution

of the 70–80 kg group into two classes, each with a width of 5 kg, or half that of

the others. If the data are displayed without misleading intervals, the frequency

densities can be derived from the grey bars. With the same number of observations

in a class, the bars would only be the same height if the classes were equally

wide. By contrast, with a class half as large and the same number of observations,

the observations will be twice as dense. Here we see that, in terms of class width,

the density for the 70–75 kg range is the largest.
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Fig. 3.7 Using a histogram to classify data
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It would be useful if the histogram’s differences in class width were indicated

to scale by different widths on the x-axis. Unfortunately, no currently available

statistics or graphical software can perform this function. Instead, they avoid the

problem by permitting equal class widths only.

The distribution function of a cardinal variable can be represented as unclassed.

Here too, the frequencies are cumulative as one moves along the x-axis. The values

of the distribution function rise evenly and remain between 0 and 1. The distribution

function for the bodyweight variable is represented in part 2 of Fig. 3.8. Here,

one can obtain the cumulated percentages for a given bodyweight and vice versa.

Some 80 % of the respondents are 80 kg or under, and 50 % of the respondents

are 70 kg or under.

3.2 Measures of Central Tendency

The previous approach allowed us to reduce the diversity of information from the

questionnaires – in our sample there were 850 responses – by creating graphs and

tables with just a few lines, bars, or pie wedges. But how and under which

conditions can this information be reduced to a single number or measurement

that summarizes the distinguishing features of the dataset and permits comparisons

with others? Consider again the student who, to estimate the average score on the

last final exam, looks for a single number – the average grade or failure rate.

The average score for two final exams is shown in Fig. 3.9.5

Both final exams have an identical distribution; in the second graph (part 2), this

distribution is shifted one grade to the right on the x-axis. This shift represents a

mean value one grade higher than the first exam. Mean values or similar parameters

that express a general trend of a distribution are called measures of central
tendency. Choosing the most appropriate measure usually depends on context and

the level of measurement.
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Fig. 3.8 Distorting interval selection with a distribution function

5 The grade scale is taken here to be cardinal scaled. This assumes that the difference in scores

between A and B is identical to the difference between B and C, etc. But because this is unlikely in

practice, school grades, strictly speaking, must be seen as ordinal scaled.
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3.2.1 Mode or Modal Value

The most basic measure of central tendency is known as the mode or modal
value. The mode identifies the value that appears most frequently in a distribution.

In part 1 of Fig. 3.9 the mode is the grade C. The mode is the “champion” of the

distribution. Another example is the item selected most frequently from five

competing products. This measure is particularly important with voting, though

its value need not be clear. When votes are tied, there can be more than one

modal value. Most software programmes designate only the smallest trait. When

values are far apart this can lead to misinterpretation. For instance, when a cardinal

variable for age and the traits 18 and 80 appear in equal quantities and more than all

the others, many software packages still indicate the mode as 18.

3.2.2 Mean

The arithmetic mean – colloquially referred to as the average – is calculated

differently depending on the nature of the data. In empirical research, data most

frequently appears in a raw data table that includes all the individual trait values.

For raw data tables, the mean is derived from the formula:

x ¼ 1

n
x1 þ x2 þ : : : þ xnð Þ ¼ 1

n

Xn
i¼1

xi (3.2)

All values of a variable are added and divided by n. For instance, given the values

12, 13, 14, 16, 17, and 18 the mean is x ¼ 1

6
12þ 13þ 14þ 16þ 17þ 18ð Þ ¼ 15.

The mean can be represented as a balance scale (see Fig. 3.10), and the

deviations from the mean can be regarded as weights. If, for example, there is a

deviation of (�3) units from the mean, then a weight of 3 g is placed on the left

side of the balance scale. The further a value is away from the mean, the heavier

the weight. All negative deviations from the mean are placed on the left side of
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Fig. 3.9 Grade averages for two final exams
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the mean, and all positive deviations on the right. The scale is exactly balanced.

With an arithmetic mean, the sum of negative deviations equals the sum of positive

deviations:

Xn
i¼1

xi �xð Þ ¼ 0 (3.3)

In real life, if a heavy weight is on one side of the scale and many smaller

weights are on the other, the scale can still be balanced (cf. Fig. 3.10). But the mean

is not a good estimate for this kind of distribution: it could over- or underestimate

the many smaller weights. We encountered this problem in Sect. 2.5; in such cases,

an outlier value is usually responsible for distorting the results. Assume you want

to calculate the average age of animals in a zoo terrarium containing five snakes,

nine spiders, five crocodiles, and one turtle. The last animal – the turtle – is

120 years old, while all the others are no older than four (Fig. 3.11).

Based on these ages, the mean would be 7.85 years. To “balance” the scale, the

ripe old turtle would have to be alone on the right side, while all the other animals

are on the left side. We find that the mean value is a poor measure to describe

the average age in this case because only one other animal is older than three.

To reduce or eliminate the outlier effect, practitioners frequently resort to a trimmed
mean. This technique “trims” the smallest and largest 5 % of values before

calculating the mean, thus partly eliminating outliers. In our example, the 5 %

trim covers both the youngest and oldest observation (the terrarium has 20 animals),

thereby eliminating the turtle’s age from the calculation. This results in an average

age of 2 years, a more realistic description of the age distribution. We should

remember, however, that this technique eliminates 10 % of the observations, and

this can cause problems, especially with small samples.

Let us return to the “normal” mean, which can be calculated from a frequency

table (such as an overview of grades) using the following formula:

x ¼ 1

n

Xk
v¼1

xv � nv ¼
Xk
v¼1

xv � f v (3.4)

-4

-3

-2

12

13

15

-3

-2

14 16

18

17

-1

Sum of deviations = 6

x

10

11

15

-5

12

13

30

14

15

-1

Sum of deviations = 15Sum of de-
viations = -15

x

3

2

1

Sum of deviations = -6

Fig. 3.10 Mean expressed as a balanced scale
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We will use the frequency table in Fig. 3.2 as an example. Here the index v runs
through the different traits of the observed ordinal variables for selection (poor,
fair, average, good, excellent). The value nv equals the absolute number of

observations for a trait. The trait good yields a value of nv ¼ n4 ¼ 62. The variable

xv assumes the trait value of the index v. The trait poor assumes the value x1 ¼ 1,

the trait fair the value x2 ¼ 2, etc. The mean can be calculated as follows:

x ¼ 1

850
� 391 � 1þ 266 � 2þ 92 � 3þ 62 � 4þ 39 � 5ð Þ ¼ 1:93 (3.5)

The respondents gave an average rating of 1.93, which approximately

corresponds to fair. The mean could also have been calculated using the relative

frequencies of the traits fv:

x ¼ 0:46 � 1þ 0:313 � 2þ 0:108 � 3þ 0:073 � 4þ 0:046 � 5ð Þ ¼ 1:93 (3.6)

Finally, the mean can also be calculated from traditional classed data according

to this formula:

x ¼ 1

n

Xk
v¼1

nvmv ¼
Xk
v¼1

f vmv; (3.7)

where mv is the mean of class number v.
Students often confuse this with the calculation from frequency tables, as

even the latter contain classes of traits. With classed data, the mean is calculated

from cardinal variables that are summarized into classes by making certain

assumptions. In principle the mean can be calculated this way from a histogram.

Consider again Fig. 3.7. The calculation of the mean bodyweight in part 1 agrees

with the calculation from the raw data table. But what about when there is no

raw data table, only the information in the histogram, as in part 2 of Fig. 3.7?

Figure 3.12 shows a somewhat more simplified representation of a histogram with

only six classes.

Age
Total1 2 3 4 120

Animal Snake 2 1 1 1 0 5
Turtle 0 0 0 0 1 1
Crocodile 1 2 2 0 0 5
Spider 4 4 1 0 0 9

Total 7 7 4 1 1 20

Note: Mean = 7.85 years; 5 % trimmed mean = 2 years

Fig. 3.11 Mean or trimmed mean using the zoo example
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We start from the implicit assumption that all observations are distributed

evenly within a class. Accordingly, cumulated frequency increases linearly from

the lower limit to the upper limit of the class. Here class frequency average

necessarily equals the mean. To identify the total mean, add all products from the

class midpoint and the attendant relative frequencies.

Here is another example to illustrate the calculation. Consider the following

information on water use by private households (Table 3.1):

The water-use average can be calculated as follows:

x¼
Xk
v¼1

f vmv ¼
X4
v¼1

f vmv ¼ 0:2 � 100þ 0:5 � 300þ 0:2 � 500þ 0:1 � 800¼ 350 (3.8)

With all formulas calculating the mean, we assume equidistant intervals

between the traits. This is why the mean cannot be determined for nominal

variables. This is also why, strictly speaking, no mean can be calculated for ordinal

variables. But this is only true if one takes a dogmatic position. Practically minded

researchers who possess sufficiently large samples (approx. n > 99) often calculate

the mean by assuming equidistance.

The informational value of the mean was previously demystified in Sect. 3.2

using the example of average test grades. An average grade of C occurs when all

students receive C. The same average results when half of the students receive an A

and the other half an F. The same kind of problem could result by selecting travel

destinations based on temperature averages. Beijing, Quito, and Milan all have an

average temperature of 12 �C, but the experience of temperature in the three cities

varies greatly. The winter in Beijing is colder than in Stockholm and the summer is

hotter than in Rio de Janeiro. In Milan the temperatures are Mediterranean,

fluctuating seasonally, while the altitude in Quito ensures that the temperature

stays pretty much the same the whole year over (Swoboda 1971, p. 36).
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Fig. 3.12 Calculating the mean from classed data

Table 3.1 Example of mean calculation from classed data

Water use [in l] 0–200 200–400 400–600 600–1,000

Rel. frequency 0.2 0.5 0.2 0.1

Source: Schwarze (2008, p. 16), translated from the German
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The average is not always an information-rich number that uncovers all

that remains hidden in tables and figures. When no information can be provided

on distribution (e.g. average deviation from average) or when weightings and

reference values are withheld, the average can also be misleading. The list of

amusing examples is long, as described by Krämer (2005, p. 61). Here are a few:

• Means rarely result in whole numbers. For instance, what do we mean by the

decimal place when we talk of 1.7 children per family or 3.5 sexual partners

per person?

• When calculating the arithmetic mean, all values are treated equally. Imagine a

proprietor of an eatery in the Wild West who, when asked about the ingredients

of his stew, says: Half and half. One horse and one jackrabbit. It is not always
accurate to consider the values as equal in weight. The cook might advertise

his concoction as a wild game stew, but if the true weights of the inputs were

taken into account, it would be more accurately described as horse goulash.

Consider an example from the economy: if the average female salary is 20 MUs

(monetary units) and the average male salary is 30 MUs, the average employee

salary is not necessary 25 MUs. If males constitute 70 % of the workforce,

the average salary will be: 0.7�30 MU þ 0.3�20 MU ¼ 27 MU. One speaks

here of a weighted arithmetic mean or a scaled arithmetic mean. The Federal

Statistical Office of Germany calculates the rate of price increase for products

in a basket of commodities in a similar fashion. The price of a banana does not

receive the same weight as the price of a vehicle; its weight is calculated based

on its average share in a household’s consumption.

• The choice of reference base – i.e. the dominator for calculating the average –

can also affect the interpretation of data. Take the example of traffic deaths.

Measured by deaths per passenger-kilometres travelled, trains have a rate of

nine traffic deaths per 10 billion kilometres travelled and planes three deaths per

ten billion kilometres travelled. Airlines like to cite these averages in their ads.

But if we consider traffic deaths not in relation to distance but in relation to

time of travel, we find completely different risks. For trains there are seven

fatalities per 100 million passenger-hours and for planes there are 24 traffic

deaths per 100 million passenger-hours. Both reference bases can be asserted

as valid. The job of empirical researchers is to explain their choice. Although

I have a fear of flying, I agree with Krämer (2005, p. 70) when he argues that

passenger-hours is a better reference base. Consider the following: Few of us

are scared of going to bed at night, yet the likelihood of dying in bed is nearly

99 %. Of course, this likelihood seems less threatening when measured against

the time we spend in bed.

3.2.3 Geometric Mean

The above problems frequently result from a failure to apply weightings or by

selecting a wrong or poor reference base. But sometimes the arithmetic mean as a

measure of general tendency can lead to faulty results even when the weighting and

reference base are appropriate. This is especially true in economics when measuring
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rates of change or growth. These rates are based on data observed over time, which

is why such data are referred to as time series. Figure 3.13 shows an example of

sales and their rates of change over 5 years.

Using the arithmetic mean to calculate the average rate of change yields a value

of 1.25 %. This would mean that yearly sales have increased by 1.25 %. Based on

this growth rate, the €20,000 in sales in 2002 should have increased to €21,018.91
by 2006, but actual sales in 2006 were €20,691.00. Here we see how calculating

average rates of change using arithmetic mean can lead to errors. This is why the

geometric mean for rates of change is used. In this case, the parameter links initial

sales in 2002 with the subsequent rates of growth each year until 2006. The result is:

U6 ¼ U5 � 1þ 0:1ð Þ ¼ U4 � 1� 0:1ð Þð Þ � 1þ 0:1ð Þ ¼ : : :
¼ U2 � 1þ 0:1ð Þð Þ � 1� 0:05ð Þ � 1� 0:1ð Þ � 1þ 0:1ð Þ: (3.9)

To calculate the average change in sales from this chain, the four rates of

change (1 þ 0.1)�(1–0.05)�(1–0.1)�(1 þ 0.1) must yield the same value as the

fourfold application of the average rate of change:

1þ pgeom

� �
� 1þ pgeom

� �
� 1þ pgeom

� �
� 1þ pgeom

� �
¼ 1þ pgeom

� �4

(3.10)

For the geometric mean, the yearly rate of change is thus:

pgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1ð Þ 1� 0:05ð Þ 1� 0:1ð Þ 1þ 0:1ð Þ4

p
� 1 ¼ 0:853 (3.11)

The last column in Fig. 3.13 shows that this value correctly describes the

sales growth between 2002 and 2006. Generally, the following formula applies

for identifying average rates of change:

pgeom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p1ð Þ � 1þ p2ð Þ � � 1þ pnð Þn

p
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

1þ pið Þn

s
� 1 (3.12)

Changes in sales when using

Year Sales [mio.]
Rate of change 

[in %] arithm. mean geom. mean
2002 €20,000.00 €20,000.00 €20,000.00 
2003 €22,000.00 1.000% €20,250.00 €20,170.56 
2004 €20,900.00 -5.000% €20,503.13 €20,342.57 
2005 €18,810.00 -10.000% €20,759.41 €20,516.04 
2006 €20,691.00 10.000% €21,018.91 €20,691.00 

Arithmetic mean 1.250%
Geometric mean 0.853%

Fig. 3.13 An example of geometric mean
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The geometric mean for rates of change is a special instance of the geometric
mean, and is defined as follows:

xgeom ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � : : : � xnn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

xi
n

s
(3.13)

The geometric mean equals the arithmetic mean of the logarithms6 and is only

defined for positive values. For observations of different sizes, the geometric mean

is always smaller than the arithmetic mean.

3.2.4 Harmonic Mean

A measure seldom required in economics is the so-called harmonic mean. Because

of the rarity of this measure, researchers tend to forget it, and instead use the

arithmetic mean. However, sometimes the arithmetic mean produces false results.

The harmonic mean is the appropriate method for averaging ratios consisting of

numerators and denominators (unemployment rates, sales productivity, kilometres

per hour, price per litre, people per square metre, etc.) when the values in

the numerator are not identical. Consider, for instance, the sales productivity

(as measured in revenue per employee) of three companies with differing

headcounts but identical revenues. The data are given in Table 3.2.

To compare the companies, we should first examine the sales productivity of

each firm regardless of its size. Every company can be taken into account with a

simple weighted calculation. We find average sales per employee as follows:

x ¼ 1

3

S1
E1

þ S2
E2

þ S3
E3

� �
¼ €433:33 (3.14)

If this value were equally applicable to all employees, the firms – which have

16 employees together – would have sales totalling 16�€433.33 � €6,933, but
the above table shows that actual total sales are only €3,000. When calculating

company sales, it must be taken into account that the firms employ varying

numbers of employees and that the employees contribute in different ways to

total productivity. This becomes clear from the fact that companies with equal

sales (identical numerators) have different headcounts and hence different values

in the denominator. To identify the contribution made by each employee to sales,

one must weight the individual observations (i ¼ 1,. . ., 3) of sales productivity

(SPi) with the number of employees (ni), add them and then divide by the total

number of employees. The result is an arithmetic mean weighted by the number of

employees:

6 If all values are available in logarithmic form, the following applies to the arithmetic mean:

1

n
ln x1ð Þ þ : : :þ ln xnð Þð Þ ¼ 1

n
ln x1 � : : : � xnð Þ ¼ ln x1 � : : : � xnð Þ1n ¼

ffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

xi
n

s
¼ xgeom:
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n1 �SP1þn2 �SP2þn3 �SP3

n
¼ 10 �€100

16
þ5 �€200

16
þ1 �€1;000

16
�€187:50 (3.15)

Using this formula, the 16 employees generate the real total sales figure

of €3,000. If the weighting for the denominator (i.e. the number of employees)

is unknown, the value for k ¼ 3 sales productivity must be calculated using an
unweighted harmonic mean:

xharm ¼ kXk
i¼1

1

xi

¼ kXk
i¼1

1

SPi

¼ 3

1

€100
þ 1

€200
þ 1

€1; 000

¼ €187:50

Employee
(3.16)

Let’s look at another example that illustrates the harmonic mean. A student

must walk 3 km to his university campus by foot. Due to the nature of the route,

he can walk the first kilometre at 2 km/h, the second kilometre at 3 km/h, and

the last kilometre at 4 km/h. As in the last example, the arithmetic mean yields the

wrong result:

x ¼ 1

3
2
km

h
þ 3

km

h
þ 4

km

h

� �
¼ 3

km

h
; or 1 hour (3.17)

But if we break down the route by kilometre, we get 30 min for the first

kilometre, 20 min for the second kilometre, and 15 min for the last kilometre.

The durations indicated in the denominator vary by route segment, resulting in a

total of 65 min. The weighted average speed is thus 2.77 km/h.7 This result can also

be obtained using the harmonic mean formula and k ¼ 3 for the route segments:

xharm ¼ kXk
i¼1

1

xi

¼ 3

1

2
km

h

þ 1

3
km

h

þ 1

4
km

h

¼ 2:77
km

h
(3.18)

Table 3.2 Harmonic mean

Sales Employees Sales per employee (SP) Formula in Excel

€1,000 10 €100.00

€1,000 5 €200.00

€1,000 1 €1,000.00

Sum €3,000 16 €1,300.00 SUM(D3:D5)

Arithmetic mean €433.33 AVERAGE(D3:D5)

Harmonic mean €187.50 HARMEAN(D3:D5)

7 (30 min � 2 km/h þ 20 min � 3 km/h þ 15 min � 4 km/h) /65 min ¼ 2.77 km/h.
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In our previous examples the values in the numerator were identical for every

observation. In the first example, all three companies had sales of €1,000 and in

the second example all route segments were 1 km. If the values are not identical,

the unweighted harmonic mean must be calculated. For instance, if the k ¼ 3

companies mentioned previously had sales of n1 ¼ €1,000, n2 ¼ €2,000, and

n3 ¼ €5,000, we would use the following calculation:

xharm ¼ nXk
i¼1

ni
xi

¼ nXk
i¼1

ni
SPi

¼ €1; 000þ €2; 000þ €5; 000

€1; 000

€100
þ €2; 000

€200
þ €5; 000

€1; 000

¼ €500

Employee
(3.19)

As we can see here, the unweighted harmonic mean is a special case of the

weighted harmonic mean.

Fractions do not always necessitate the use of the harmonic mean. For example,

if the calculation involving the route to the university campus included different

times instead of different segments, the arithmetic mean should be used to calculate

the average speed. If one student walked an hour long at 2 km/h, a second hour at

3 km/h, and the last hour at 4 km/h, the arithmetic mean yields the correct the

average speed. Here the size of the denominator (time) is identical and yields the

value of the numerator (i.e. the length of the partial route):

x ¼ 1

3
2
km

h
þ 3

km

h
þ 4

km

h

� �
¼ 3

km

h
(3.20)

The harmonic mean must be used when: (1) ratios are involved and (2) relative

weights are indicated by numerator values (e.g. km). If the relative weights are

given in the units of the denominator (e.g. hours), the arithmetic mean should be

used. It should also be noted that the harmonic mean – like the geometric mean – is

only defined for positive values greater than 0. For unequally sized observations,

the following applies:

xharm < xgeom < x (3.21)

3.2.5 The Median

As the mean is sometimes not “representative” of a distribution, an alternative is

required to identify the central tendency. Consider the following example: You

work at an advertising agency and must determine the average age of diaper users

for a diaper ad. You collect the following data (Table 3.3):

Based on what we learned above about calculating the mean using the class

midpoint of classed data, we get: x ¼ 0.3�0.5 þ 0.15�1.5 þ 0.25�3.5 þ 0.04�8
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þ0.03�36 þ 0.23�81 � 21 years.8 This would mean that the average diaper user

is college age! This is doubtful, of course, and not just because of the absence of

baby-care rooms at universities. The high values on the outer margins – classes 0–1

and 61–100 – create a bimodal distribution and paradoxically produce a mean in the

age class in which diaper use is lowest.

So what other methods are available for calculating the average age of diaper

users? Surely one way would be to find the modal value of the most important

age group: 0–1. This value, the so-called median, not only offers better results in

such cases. The median is also the value that divides the size-ordered dataset

into two equally large halves. Exactly 50 % of the values are smaller and 50 % of

the values are larger than the median.9

Figure 3.14 shows five weights ordered by heaviness. The median is ~x ¼ x0;5 ¼
xð3Þ ¼ 9, as 50 % of the weights are to the left and right of weight number 3.

There are several formula for calculating the median. When working with

a raw data table – i.e. with unclassed data – most statistics textbooks suggest

these formula:

~x ¼ x nþ 1

2

� � for an odd number of observations nð Þ (3.22)

and

Table 3.3 Share of sales by age class for diaper users

Age class Under 1 1 2–4 5–10 11–60 61–100

Relative frequency (%) 30 15 25 4 3 23

Cumulated: F(x) (%) 30 45 70 74 77 100

Median=x 0,5

33 66 9 1212 15

Fig. 3.14 The median: The central value of unclassed data

8 To find the value for the last class midpoint, take half the class width – (101–61)/2 ¼ 20 – and

from that we get 61 þ 20 ¼ 81 years for the midpoint.
9 Strictly speaking, this only applies when the median lies between two observations, which is to

say, only when there are an even number of observations. With an odd number of observations, the

median corresponds to a single observation. In this case, 50 % of (n-1) observations are smaller

and 50 % of (n-1) observations are larger than the median.
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~x ¼ 1

2
x n

2

� � þ x n

2
þ 1

� �
0
@

1
A for an even number of observations: (3.23)

If one plugs in the weights from the example into the first formula, we get:

~x ¼ x nþ 1

2

� � ¼ x 5þ 1

2

� � ¼ xð3Þ ¼ 9 (3.24)

The trait of the weight in the third position of the ordered dataset equals

the median. If the median is determined from a classed dataset, as in our diaper

example, the following formula applies:

~x ¼ x0:5 ¼ xUPi�1 þ
0:5� F xUPi�1

� �
f xið Þ xUPi � xLOWi

� �
(3.25)

First we identify the class in which 50 % of observations are just short

of being exceeded. In our diaper example this corresponds to the 1 year olds.

The median is above the upper limit xi � 1
UP of the class, or 1 year. But how many

years above the limit? There is a difference of 5 % points between the postulated

value of 0.5 and the upper limit value of F(xi � 1
UP ) ¼ 0.45:

0:5� F xUPi�1

� � ¼ 0:5=0:45 ¼ 0:05 (3.26)

This 5 % points must be accounted for from the next largest (ith) class, as it

must contain the median. The 5 % points are then set in relation to the relative

frequency of the entire class:

0:5� F xUPi�1

� �
f xið Þ ¼ 0:5� 0:45

0:25
¼ 0:2 (3.27)

Twenty per cent of the width of the age class that contains the median must be

added on by age. This results in aΔi of 3 years, as the class contains all persons who
are 2, 3, and 4 years old. This produces a median of ~x ¼ 2þ 20% � 3 ¼ 2:6 years.

This value represents the “average user of diapers” better than the value of the

arithmetic mean. Here I should note that the calculation of the median in a bimodal

distribution can, in principle, be just as problematic as calculating the mean.

The more realistic result here has almost everything to do with the particular

characteristics of the example. The median is particularly suited when many

outliers exist (see Sect. 2.5). Figure 3.15 traces the steps for us once more.
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3.2.6 Quartile and Percentile

In addition to the median, there are several other important measures of central

tendency that are based on the quantization of an ordered dataset. These para-

meters are called quantiles. When quantiles are distributed over 100 equally sized

intervals, they are referred to as percentiles. Their calculation requires an ordinal

or cardinal scale and can be defined in a manner analogous to the median. In

an ordered dataset, the p percentile is the value at which no less than p per cent

of the observations are smaller or equal in value and no less than (1-p) per cent of

the observations are larger or equal in value. For instance, the 17th percentile of age

in our grocery store survey is 23 years old. This means that 17 % of the respondents

are 23 years or younger, and 83 % are 23 years old or older. This interpretation is

similar to that of the median. Indeed, the median is ultimately a special case

(p ¼ 50 %) of a whole class of measures that partitions the ordered dataset into

parts, i.e. quantiles.

In practical applications, one particular important group of quantiles is known as

the quartiles. It is based on an ordered dataset divided into four equally sized parts.

These are called the first quartile (the lower quartile or 25th percentile), the second

quartile (the median or 50th percentile), and the third quartile (the upper quartile or

75th percentile).

Although there are several methods for calculating quantiles from raw data

tables, the weighted average method is considered particularly useful and can be

found in many statistics programmes. For instance, if the ordered sample has a size

of n ¼ 850, and we want to calculate the lower quartile (p ¼ 25 %), we first have to

determine the product (n þ 1)�p. In our example, (850 þ 1)�0.25 produces the

value 212.75. The result consists of an integer before the decimal mark (i ¼ 212)

and a decimal fraction after the decimal mark (f ¼ 0.75). The integer (i) helps

indicate the values between which the desired quantile lies – namely, between the

observations (i) and (i þ 1), assuming that (i) represents the ordinal numbers of

the ordered dataset. In our case, this is between rank positions 212 and 213. Where

exactly does the quantile in question lie between these ranks? Above we saw that
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Fig. 3.15 The median: The

middle value of classed data
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the total value was 212.75, which is to say, closer to 213 than to 212. The figures

after the decimal mark can be used to locate the position between the values with

the following formula:

1� fð Þ � xðiÞ þ f � x iþ1ð Þ (3.28)

In our butter example, the variable bodyweight produces these results:

1� 0:75ð Þ � xð212Þ þ 0:75 � xð213Þ ¼ 0:25 � 63:38þ 0:75 � 63:44 ¼ 63:43 kg (3.29)

Another example for the calculation of the quartile is shown in Fig. 3.16.

It should be noted here that the weighted average method cannot be used

with extreme quantiles. For example, to determine the 99 % quantile for the five

weights in Fig. 3.16 a sixth weight is needed, since (n þ 1)�p ¼ (5 þ 1)�
0.99 ¼ 5.94. This weight does not actually exist. It is fictitious, just like a weight

of 0 for determining the 1 % quantile ((n þ 1)�p ¼ (5 þ 1)�0.01 ¼ 0.06). In such

cases, software programmes indicate the largest and smallest variable traits as

quantiles. In the example case, we thus have: x0.99 ¼ 15 and x0.01 ¼ 3.

3.3 The Boxplot: A First Look at Distributions

We have now seen some basic measures of central tendency. All of these measures

attempt to reduce dataset information to a single number expressing a general

tendency. We learned that this reduction does not suffice to describe a distribution

that contains outliers or special forms of dispersion. In practice, so-called boxplots

are used to get a general sense of dataset distributions.

The boxplot combines various measures. Let’s look at an example: Imagine that

over a 3 year period researchers recorded the weekly sales of a certain brand of

Italian salad dressing, collecting a total of 156 observations.10 Part 1 of Fig. 3.17

shows the boxplot of weekly sales. The plot consists of a central box whose lower

edge indicates the lower quartile and whose upper edge indicates the upper quartile.

The values are chartered along the y-axis and come to 51,093 bottles sold for the

(n+1)×p = 6×0.5 = 3.0 ® i=3; f=0 ® x0.5 = 1×x(3)+0×x(4)= 9

(n+1)×p = 6×0.25 = 1.5 ® i=1; f=0.5 ® x0.25 = 0.5×x(1)+ 0.5×x(2)=4.5

(n+1)×p = 6×0.75 = 4.5 ® i=4; f=0.5 
® x0.75 = 0.5×x(4)+ 0.5×x(5)=13.5

3 6 9 12 15

Fig. 3.16 Calculating

quantiles with five weights

10 The data can be found in the file salad_dressing.sav at springer.com.
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lower quartile and 54,612 bottles sold for the upper quartile. The edges frame the

middle 50 % of all observations, which is to say: 50 % of all observed weeks saw no

less than 51,093 and no more than 54,612 bottles sold. The difference between the

first and third quartile is called the interquartile range. The line in the middle of the

box indicates the median position (53,102 bottles sold). The lines extending from

the box describe the smallest and largest 25 % of sales. Known as whiskers, these

lines terminate at the lowest and highest observed values, provided they are no less

than 1.5 times the box length (interquartile range) below the lower quartile or no

more than 1.5 times the box length (interquartile range) above the upper quartile.

Values beyond these ranges are indicated separately as potential outliers. Some

statistical packages like SPSS differentiate between outliers and extreme values –
i.e. values that are less than three times the box length (interquartile range) below

the lower quartile or more than three times the box length (interquartile range)

above the upper quartile. These extreme values are also indicated separately. It is

doubtful whether this distinction is helpful, however, since both outliers and

extreme values require separate analysis (see Sect. 2.5).

From the boxplot in Part 1 of Fig. 3.17 we can conclude the following:

• Observations 37 and 71 are outliers above the maximum (60,508 bottles sold)

and below the minimum (45,682 bottles sold), respectively. These values are

fairly close to the edges of the whiskers, indicating weak outliers.

• Some 15,000 bottles separate the best and worst sales weeks. The smallest

observation (45,682 bottles) represents a deviation from the best sales week of

more than 30 %.

• In this example the median lies very close to the centre of the box. This means

that the central 50 % of the dataset is symmetrical: the interval between the

lower quartile and the median is just as large as the interval between the median

and the upper quartile. Another aspect of the boxplot’s symmetry is the similar

length of the whiskers: the range of the lowest 25 % of sales is close to that of the

highest 25 %.

37

71

Upper quartile

Median

Lower quartile

Maximum (without
outliers/extreme 
values)

Extreme value/ 
outlier

Minimum (without
outliers/extreme 
values)

48,000

52,000

56,000

60,000

Sa
le

s 
[in

 b
o�

le
s]

 

Sa
le

s 
[in

 b
o�

le
s]

 

Newspaper promotion
YesNo

45,000

50,000

55,000

60,000

Fig. 3.17 Boxplot of weekly sales
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Figure 3.18 summarizes different boxplot types and their interpretations. The

boxplots are presented horizontally, not vertically, though both forms are common

in practice. In the vertical form, the values are read from the y-axis; in the

horizontal form, they are read from the x-axis.

If the boxplot is symmetrical – i.e. with the median in the centre of the box

and whiskers of similar length – the distribution is symmetrical. When the value

spread is large, the distribution is flat and lacks a clear-cut modal value. Such a

distribution results, for instance, when plotting ages at a party with guests from

various generations. If the value spread is small – i.e. with a compact box and

whiskers – the distribution is narrow. This type of distribution results when plotting

ages at a party with guests from a single generation. Boxplots can also express

asymmetrical datasets. If the median is shifted to the left and the left whisker is

short, then the middle 50 % falls within a narrow range of relatively low values. The

remaining 50 % of observations are mostly higher and distributed over a large

range. The resulting histogram is right-skewed and has a peak on the left side. Such

a distribution results when plotting the ages of guests at a student party. Conversely,

if the median is shifted to the right and the right whisker is relatively short, then the

distribution is skewed left and has a peak on the right side. Such a distribution

results when plotting the ages of guests at a retirement-home birthday party.

In addition to providing a quick overview of distribution, boxplots allow

comparison of two or more distributions or groups. Let us return again to the

salad dressing example. Part 2 of Fig. 3.17 displays sales for weeks in which ads

appeared in daily newspapers compared with sales for weeks in which no ads

appeared. The boxplots show which group (i.e. weeks with or without newspaper

Single-generation party distribution
narrow 

distribution

Multi-generation party distribution
broad distribution

Student party distribution right-skewed

Retirement-home party distribution le�-skewed

Fig. 3.18 Interpretation of different boxplot types
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ads) has a larger median, a larger interquartile range, and a greater dispersion

of values. Since the median and the boxplot box is larger in weeks with newspaper

ads, one can assume that these weeks had higher average sales. In terms of

theory, this should come as no surprise, but the boxplot also shows a left-skewed

distribution with a shorter spread and no outliers. This suggests that the weeks

with newspaper ads had relatively stable sales levels and a concentration of

values above the median.

3.4 Dispersion Parameters

The boxplot provides an indication of the value spread around the median. The

field of statistics has developed parameters to describe this spread, or dispersion,

using a single measure. In the last section we encountered our first dispersion

parameter: the interquartile range, i.e. the difference between the upper and

lower quartile, which is formulated as

IQR ¼ x0:75 � x0:25ð Þ (3.30)

The larger the range, the further apart the upper and lower values of the

midspread. Some statistics books derive from the IQR the mid-quartile range, or
the IQR divided by two, which is formulated as

MQR ¼ 0:5 � x0:75 � x0:25ð Þ (3.31)

The easiest dispersion parameter to calculate is one we’ve already encountered

implicitly: range. This parameter results from the difference between the largest

and smallest values:

Range ¼ Max xið Þ �Min xið Þ (3.32)

If the data are classed, the range results from the difference between the upper

limit of the largest class of values and the lower limit of the smallest class of values.

Yet we can immediately see why range is problematic for measuring dispersion. No

other parameter relies so much on external distribution values for calculation,

making range highly susceptible to outliers. If, for instance, 99 values are gathered

close together and a single value appears as an outlier, the resulting range predicts a

high dispersion level. But this belies the fact that 99 % of the values lie very close

together. To calculate dispersion, it makes sense to use as many values as possible,

and not just two.

One alternative parameter is the median absolute deviation. Using the median as

a measure of central tendency, this parameter is calculated by adding the absolute

deviations of each observation and dividing the sum by the number of observations:

MAD ¼ 1

n

Xn
i¼1

xi � ~xj j (3.33)
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In empirical practice, this parameter is less important than that of variance,

which we present in the next section.

3.4.1 Standard Deviation and Variance

An accurate measure of dispersion must indicate average deviation from the mean.

The first step is to calculate the deviation of every observation. Our intuition tells

us to proceed as with the arithmetic mean – that is, by adding the values of the

deviations and dividing them by the total number of deviations:

1

n

Xn
i¼1

xi �xð Þ (3.34)

Here, however, we must recall a basic notion about the mean. In an earlier

section we likened the mean to a balance scale: the sum of deviations on the left side

equals the sum of deviations on the right. Adding together the negative and positive

deviations from the mean always yields a value of 0. To prevent the substitution of

positive with negative values, we can add the absolute deviation amounts and

divide these by the total number of observations:

1

n

Xn
i¼1

xi �xj j (3.35)

Yet statistics always make use of another approach: squaring both positive and

negative deviations, thus making all values positive. The squared values are then

added and divided by the total number of observations. The resulting dispersion

parameter is called empirical variance, or population variance, and represents one

of the most important dispersion parameters in empirical research:

VarðxÞemp ¼ S2emp ¼
1

n

Xn
i¼1

xi �xð Þ2 (3.36)

The root of the variance yields the population standard deviation, or the

empirical standard deviation:

Semp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞemp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi �xð Þ
2

vuut (3.37)

Its value equals the average deviation from the mean. The squaring of the

values gives a few large deviations more weight than they would have otherwise.
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To illustrate, consider the observations 2, 2, 4, and 4. Their mean is three, orx ¼ 3.

Their distribution has four deviations of one unit each. The squared sum of the

deviations is:

Xn
i¼1

xi �xð Þ2 ¼ 12 þ 12 þ 12 þ 12 ¼ 4 units (3.38)

Another distribution contains the observations 2, 4, 4, and 6. Their mean is

four, or x ¼ 4, and the total sum of deviations again is 2 þ 2 ¼ 4 units. Here, two

observations have a deviation of 2 and two observations have a deviation of 0. But

the sum of the squared deviation is larger:

Xn
i¼1

xi �xð Þ2 ¼ 22 þ 02 þ 02 þ 22 ¼ 8 units (3.39)

Although the sum of the deviations is identical in each case, a few large

deviations lead to a larger empirical variance than many small deviations with the

same quantity (Semp
2 ¼ 1 versus Semp

2 ¼ 2). This is yet another reason to think

carefully about the effect of outliers in a dataset.

Let us consider an example of variance. In our grocery store survey, the

customers have an average age of 38.62 years and an empirical standard devia-

tion of 17.50 years. This means that the average deviation from the mean age is

17.50 years.

Almost all statistics textbooks contain a second and slightly modified formula

for variance or standard deviation. Instead of dividing by the total number of

observations (n), one divides by the total number of observations minus 1 (n�1).

Here one speaks of unbiased sample variance, or of Bessel’s corrected variance:

VarðxÞ ¼ 1

n� 1

Xn
i¼1

xi �xð Þ
2

(3.40)

Unbiased sample variance can then be used to find the unbiased sample standard
deviation:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi �xð Þ
2

vuut (3.41)

This is a common cause of confusion among students, who frequently ask

“What’s the difference?” Unbiased sample variance is used when we want to

infer a population deviation from a sample deviation. This method of measuring

variance is necessary to make an unbiased estimation of a population deviation
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from a sample distribution when the mean of the population is unknown. If we

use the empirical standard deviation (Semp) of a sample instead, we invariably

underestimate the true standard deviation of the population. Since, in practice,

researchers work almost exclusively from samples, many statistics textbooks

even forgo discussions of empirical variance. When large samples are being

analyzed, it makes little difference whether the divisor is n or (n-1). Ultimately,

this is why many statistics packages indicate only the values of unbiased sample

variance (standard deviation), and why publications and statistics textbooks mean

unbiased sample variance whenever they speak of variance, or S2. Readers should

nevertheless be aware of this fine distinction.

3.4.2 The Coefficient of Variation

Our previous example of customer age shows that, like the mean, the standard

deviation has a unit – in our survey sample, years of age. But how do we compare

dispersions measured in different units? Figure 3.19 shows the height of five

children in centimetres and inches. Body height is dispersed Semp ¼ 5.1 cm –

or Semp ¼ 2.0 in – around the mean. Just because the standard deviation for

the inches unit is smaller than the standard deviation for the centimetres unit

does not mean the dispersion is any less. If two rows are measured with different

units, then the values of the standard deviation cannot be used as the measure

of comparison for the dispersion. In such cases, the coefficient of variation is

used. It is equal to the quotient of the (empirical or unbiased) standard deviation

and the absolute value of the mean:

V ¼ S

xj j ; provided the mean does not have the value x ¼ 0 (3.42)

The coefficient of variation has no unit and expresses the dispersion as a

percentage of the mean. Figure 3.19 shows that the coefficient of variation – 0.04

– has the same value regardless of whether body height is measured in inches or

centimetres.

Now, you might ask, why not just convert the samples into a single unit

(for example, centimetres) so that the standard deviation can be used as a parameter

for comparison? The problem is that there are always real-life situations in

which conversion either is impossible or demands considerable effort. Consider

the differences in dispersion when measuring. . .
• . . .the consumption of different screws, if one measure counts the number of

screws used, and the other total weight in grammes;

• . . .the value of sales for a product in countries with different currencies. Even

if the average exchange rate is available, conversion is always approximate.

In such – admittedly rare – cases, the coefficient of variation should be used.
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3.5 Skewness and Kurtosis

The boxplot in Fig. 3.18 not only provides information about central tendency and

dispersion, but also describes the symmetry of the distribution. Recall for a moment

that the student party produced a distribution that was right-skewed (peak on

the left), and the retirement-home birthday party produced a distribution that was

left-skewed (peak on the right). Skewness is a measure of distribution asymmetry.

A simple parameter from Yule & Pearson uses the difference between median and

mean in asymmetric distributions. Look again at the examples in Fig. 3.20: In the

right-skewed distribution there are many observations on the left side and few

observations on the right. The student party has many young students (ages 20, 21,

22, 23, 24) but also some older students and young professors (ages 41 and 45). The

distinguishing feature of the right-skewed distribution is that the mean is always to

the right of the median, which is why x > ~x. The few older guests pull the mean

upward, but leave the median unaffected. In the left-skewed distribution, the case is

reversed. There are many older people at the retirement-home birthday party, but

also a few young caregivers and volunteers. The latter pull the mean downwards,

moving it to the left of the median x < ~xð Þ. Yule & Pearson express the difference

between median and mean as a degree of deviation from symmetry:

Skew ¼ 3 � x� ~xð Þ
S

(3.43)

Values larger than 0 indicate a right-skewed distribution, values less than 0

indicate a left-skewed distribution, and values that are 0 indicate a symmetric

distribution.

The most common parameter to calculate the skewness of a distribution is the

so-called third central moment:

Skew ¼

1

n

Xn
i¼1

xi �xð Þ3

S3
(3.44)

To understand this concept, think again about the left-skewed distribution of

the retirement-home birthday party in Fig. 3.21. The mean is lowered by the

young caregivers, moving it from around 91 years to 72 years. Nevertheless, the

sum of deviations on the left and right must be identical. The residents of the

Child no.
Mean Semp

Coefficient
of variation  1 2 3 4 5

cm x 120 130 125 130 135 128.0 5.1 0.04
in y 48 52 50 52 54 51.2 2.0 0.04

Fig. 3.19 Coefficient of variation
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retirement home create many small upward deviations on the right side of the

mean (16, 17, 19, 22, 23). The sum of these deviations – 97 years – corresponds

exactly to the few large deviations on the left side of the mean caused by the young

caregivers (47 and 50 years).

But what happens if the deviations from the mean for each observation are cubed

xi �xð Þ3
� �

before being summed? Cubing produces a value for caregiver ages of

72
Sum of cubed dev. = -228.823 Sum of cubed

dev. = 38.683
Note: The numbers in the boxes represent ages. The mean
is indicated by the triangle. Like a balance scale, the cubed
deviations to the left and right of the mean are in disequilibrium.

Fig. 3.21 The third central moment

right-skewed le�-skewed

22

25

72

-50 

-47 
91

89

95

94

88

23

22

19

17

16

Sum of dev. = -97 Sum of 
dev. = 97

x~x

20

21

28

-8

-7
22

23

45

41

24

17

13

-6

-5

-4

Sum of dev. = 30Sum of 
dev. = -30

x~ x

Note:  The numbers in the boxes represent ages. The mean is indicated by the arrow.
Like a balance scale, the deviations to the left and right of the mean are in equilibrium.

Fig. 3.20 Skewness
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�228,823 and a value for resident ages of 38,683. While the sums of the basic

deviations are identical, the sums of the cubed deviations are different. The sum

on the side with many small deviations is smaller than the sum on the side with

a few large deviations. This disparity results from the mathematical property

of exponentiation: relatively speaking, larger numbers raised to a higher power

increase more than smaller numbers raised to a higher power. One example of this

is the path of a parabolic curve.

The total sum of the values from the left and right hand sides results in a

negative value of �190,140 (¼ �228,823 þ 38,683) for the left-skewed distribu-

tion. For a right-skewed distribution, the result is positive, and for symmetric

distributions the result is close to 0. A value is considered different than 0 when

the absolute value of the skewness is more than twice as large as the standard error
of the skew. This means that a skewness of 0.01 is not necessary different than 0.

The standard error is always indicated in statistics programmes and does not need to

be discussed further here.

Above we described the symmetry of a distribution with a single parameter. Yet

what is missing is an index describing the bulge (pointy or flat) of a distribution.

Using the examples in Fig. 3.18, the contrast is evident between the wide distribu-

tion of a multi-generation party and the narrow distribution of a single-generation

party. Kurtosis is used to help determine which form is present. Defined as the

fourth central moment, kurtosis is described by the following formula:

Kurt ¼

1

n

Xn
i¼1

xi �xð Þ4

S4
(3.45)

A unimodal normal distribution as shown in Fig. 3.22 has a kurtosis value of

three. This is referred to as a mesokurtic distribution. With values larger than three,

the peak of the distribution becomes steeper, provided the edge values remain the

same. This is called a leptokurtic distribution. When values are smaller than three,

a flat peak results, also known as a platykurtic distribution. Figure 3.22 displays the
curves of leptokurtic, mesokurtic, and platykurtic distributions.

When using software such as Excel or SPSS, similar parameters are sometimes

calculated and displayed as an excess. But they normalize to a value of 0, not 3.

The user must be aware of which formula is being used when calculating kurtosis.

-3 -2 -1 0 1 2 3

leptokurtic

mesokurtic
(normally distributed)

-3 -2 -1 0 1 2 3

mesokurtic
(normally distributed)

platykurtic

Fig. 3.22 Kurtosis distributions
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3.6 Robustness of Parameters

We previously discussed the effects of outliers. Some parameters, such as mean or

variance, react sensitively to outliers; others, like the median in a bigger sample,

don’t react at all. The latter group are referred to as robust parameters. If the data

include only robust parameters, there is no need to search for outliers. Figure 3.23

provides a summary of the permitted scales for each parameter and its robustness.

3.7 Measures of Concentration

The above measures of dispersion dominate empirical research. They answer (more

or less accurately) the following question: To what extent do observations deviate

from a location parameter? Occasionally, however, another question arises: How

concentrated is a trait (e.g. sales) within a group of particular statistical units (e.g. a

series of firms). For instance, the EU’s Directorate General for Competition may

investigate whether a planned takeover will create excessively high concentration

in a given market. To this end, indicators are needed to measure the concentration

of sales, revenues, etc.

The simplest way of measuring concentration is by calculating the concentration
ratio. Abbreviated as CRg, the concentration ratio indicates the percentage of a quantity

(e.g. revenues) achieved by g statistical units with the highest trait values. Let’s assume

that five companies each have a market share of 20 %. The market concentration ratio

CR2 for the two largest companies is 0.2 þ 0.2, or 0.4. The other concentration rates

can be calculated in a similar fashion: CR3 ¼ 0.2 þ 0.2 þ 0.2 ¼ 0.6, etc. The larger

the concentration ratio is for a given g, the greater the market share controlled by the g
largest companies, and the larger the concentration. In Germany, g has a minimum

robust?
nominal ordinal cardinal

Mean not permi�ed not permi�ed permi�ed not robust
Median not permi�ed permi�ed permi�ed robust
Quantile not permi�ed permi�ed permi�ed robust
Mode permi�ed permi�ed permi�ed robust
Sum not permi�ed not permi�ed permi�ed not robust
Variance not permi�ed not permi�ed permi�ed not robust
Interquartile range not permi�ed not permi�ed permi�ed robust
Range not permi�ed not permi�ed permi�ed not robust
Skewness not permi�ed not permi�ed permi�ed not robust
Kurtosis not permi�ed not permi�ed permi�ed not robust

Parameter Level of Measurement

Note:  Many studies use mean, variance, skewness, and kurtosis with ordinal scales as well. Section 2.2 
describes the conditions necessary for this to be possible.

Fig. 3.23 Robustness of parameters
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value of three in official statistics. In the United States, the minimum value is four.

Smaller values are not published because they would allow competitors to determine

each other’s market shares with relative precision, thus violating confidentiality

regulations.

Another very common measure of concentration is the Herfindahl index. First
proposed by O.C. Herfindahl in a 1950 study of concentration in the U.S. steel

industry, the index is calculated by summing the squared shares of each trait:

H ¼
Xn
i¼1

f xið Þ2 (3.46)

Let us take again the example of five equally sized companies (an example of

low concentration in a given industry). Using the above formula, this produces the

following results:

H ¼
Xn
i¼1

f xið Þ2 ¼ 0:22 þ 0:22 þ 0:22 þ 0:22 þ 0:22 ¼ 0:2 (3.47)

Theoretically, a company with 100 % market share would have a Herfindahl

index value of

H ¼
Xn
i¼1

f xið Þ2 ¼ 12 þ 02 þ 02 þ 02 þ 02 ¼ 1 (3.48)

The value of the Herfindahl index thus varies between 1/n (provided all

statistical units display the same shares and there is no concentration) and 1 (only

one statistical unit captures the full value of a trait for itself; i.e. full concentration).

A final and important measure of concentration can be derived from the

graphical representation of the Lorenz curve. Consider the curve in Fig. 3.25 with

the example of a medium level of market concentration in Fig. 3.24. Each company

represents 20 % of the market, or 1/5 of all companies. The companies are then

ordered by the size of the respective trait variable (e.g. sales), from smallest to

largest, on the x-axis. In Fig. 3.25, the x-axis is spaced at 20 % point intervals, with

the corresponding cumulative market shares on the y-axis. The smallest company

(i.e. the lowest 20 % of companies) generates 10 % of sales. The two smallest

companies (i.e. the lowest 40 % of the companies) generate 20 % of sales, while the

three smallest companies generate 30 % of sales, and so on.

The result is a “sagging” curve. The extent to which the curve sags depends on

market concentration. If the market share is distributed equally (i.e. five companies,

each representing 20 % of all companies), then every company possesses 20 % of

the market. In this case, the Lorenz curve precisely bisects the coordinate plane.

This 45-degree line is referred to the line of equality. As concentration increases or

deviates from the uniform distribution, the Lorenz curve sags more, and the area

between it and the bisector increases. If one sets the area in relationship to the entire

area below the bisector, an index results between 0 (uniform distribution, since
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otherwise the area between the bisector and the Lorenz curve would be 0) and

(n�1)/n (full possession of all shares by a statistical unit):

GINI ¼ Area between bisector and the Lorenz curve

Entire area below the bisector
(3.49)

This index is called the Gini coefficient. The following formulas are used to

calculate the Gini coefficient:

Fig. 3.24 Measure of concentration
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20% 40% 60% 80% 100%
Firm with smallest
market share
(20% of the firms)
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Fig. 3.25 Lorenz curve
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(a) For unclassed ordered raw data:

GINI ¼
2
Xn
i¼1

i � xi� nþ 1ð Þ
Xn
i¼1

xi

n
Xn
i¼1

xi

(3.50)

(b) For unclassed ordered relative frequencies:

GINI ¼
2
Xn
i¼1

i � f i� nþ 1ð Þ

n
(3.51)

For the medium level of concentration shown in Fig. 3.24, the Gini coefficient

can be calculated as follows:

GINI ¼
2
Xn
i¼1

i � f i� nþ 1ð Þ

n

¼ 2 � 1 � 0:1þ 2 � 0:1þ 3 � 0:1þ 4 � 0:2þ 5 � 0:5ð Þ � 5þ 1ð Þ
5

¼ 0:36 (3.52)

In the case of full concentration, the Gini coefficient depends on the number

of observations (n). The value GINI ¼ 1 can be approximated only when a very

large number of observations (n) are present. When there are few observation

numbers (n < 100), the Gini coefficient must be normalized by multiplying each

of the above formulas by n/(n�1). This makes it possible to compare concentrations

among different observation quantities. A full concentration always yields the value

GINInorm. ¼ 1.

3.8 Using the Computer to Calculate Univariate Parameters

3.8.1 Calculating Univariate Parameters with SPSS

This section uses the sample dataset spread.sav. There are two ways to calculate

univariate parameters with SPSS. Most descriptive parameters can be calculated

by clicking the menu items Analyze ! Descriptive Statistics ! Frequencies.
In the menu that opens, first select the variables that are to be calculated for

the univariate statistics. If there’s a cardinal variable among them, deactivate

the option Display frequency tables. Otherwise, the application will calculate

contingency tables that don’t typically produce meaningful results for cardinal

variables. Select Statistics. . . from the submenu to display the univariate parameters

for calculation.
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SPSS uses a standard kurtosis of 0, not 3. Figure 3.26 shows the menu and the

output for the age variable from the sample dataset.

Another way to calculate univariate statistics can be obtained by selecting

Analyze ! Descriptive Statistics ! Descriptives. . .. Once again, select the desired
variables and indicate the univariate parameters in the submenu Options.

Choose Graphs ! Chart Builder. . . to generate a boxplot or other graphs.

3.8.2 Calculating Univariate Parameters with Stata

Let’s return again to the file spread.dta. The calculation of univariate parameters

with Stata can be found under Statistics ! Summaries, tables, and tests ! Sum-
mary and descriptive statistics ! Summary statistics. From the menu select the

variables to be calculated for univariate statistics. To calculate the entire range of

Statistics

age
N Valid 854

Missing 0

Mean 38.58

Std. Error of Mean 0.598

Median 30.00

Mode 25

Std. Deviation 17.472

Variance 305.262

Skewness .823

Std. Error of Skewness .084

Kurtosis -.694

Std. Error of Kurtosis .167

Range 74

Minimum 18

Maximum 92

Sum 32946

Percentiles 25 25.00

50 30.00

75 55.00

Note: Applicable syntax commands: Frequencies;  Descriptives

Fig. 3.26 Univariate parameters with SPSS
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descriptive statistics, make sure to select Display additional statistics, as otherwise
only the mean, variance, and smallest and greatest values will be displayed.

Figure 3.27 shows the menu and the output for the variable age in the sample

dataset.

To see the graphs (boxplot, pie charts, etc.) select Graphics from the menu.

3.8.3 Calculating Univariate Parameters with Excel 2010

Excel contains a number of preprogrammed statistical functions. These functions

can be found under Formulas ! Insert Function. Select the category Statistical to
set the constraints. Figure 3.28 shows the Excel functions applied to the dataset

spread.xls. It is also possible to use the Add-in Manager11 to permanently activate

the Analysis ToolPak and the Analysis ToolPak VBA for Excel 2010. Next, go to

Data ! Data Analysis ! Descriptive Statistics. This function can calculate the

most important parameters. Excel’s graphing functions can also generate the most

important graphics. The option to generate a boxplot is the only thing missing from

the standard range of functionality.

Go to http://www.reading.ac.uk/ssc/n/software.htm for a free non-commercial,

Excel statistics add-in (SSC-Stat) download. In addition to many other tools, the

add-in allows you to create boxplots.

Excel uses a special calculation method for determining quantiles. Especially

with small samples, it can lead to implausible results. In addition, Excel scales the

kurtosis to the value 0 and not 3, which equals a subtraction of 3.

. summarize age
Variable |       Obs Mean    Std. Dev.       Min        Max

-------------+--------------------------------------------------------
age |       850    38.61765    17.50163         18         92

. summarize age, detail
alter

-------------------------------------------------------------
Percentiles Smallest

1%           18             18
5%           20             18

10%           22             18       Obs 850
25%           25             18       Sum of Wgt.         850
50%           30                      Mean           38.61765

Largest       Std. Dev.      17.50163
75%           55             83
90%           66             85       Variance       306.3071
95%           71             89       Skewness       .8151708
99%           80             92       Kurtosis       2.290657

Note: Applicable syntax commands for univariate parameters: ameans; centile; inspect; mean;pctile; 
summarize; mean; tabstat; tabulate summarize.

Fig. 3.27 Univariate parameters with Stata

11 The Add-In Manager can be accessed via File ! Options ! Add-ins ! Manage: Excel

Add-ins ! Go. . .
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3.9 Chapter Exercises

Exercise 4:
A spa resort in the German town of Waldbronn conducts a survey of their hot spring

users, asking how often they visit the spa facility. This survey results in the

following absolute frequency data:

first time rarely regularly frequently every day

15 75 45 35 20

1. Identify the trait (level of measurement).

2. Sketch the relative frequency distribution of the data.

3. Identify the two location parameters that can be calculated and determine their

size.

4. Identify one location parameter that can’t be calculated. Why?

Variable Age
Parameter Symbol Result Excel Command/Function

Count N 850 =COUNT(Data!$C$2:$C$851)
Mean x 38.62 =AVERAGE(Data!$C$2:$C$851)
Median 30.00 =MEDIAN(Data!$C$2:$C$851)
Mode xmod 25.00 =MODALWERT(Data!$C$2:$C$851)
Trimmed Mean xtrim 37.62 =TRIMMEAN(Data!$C$2:$C$851;0,1)
Harmonic Mean xharm 32.33 =HARMEAN(Data!$C$2:$C$851)
25th percentile x0.25 25.00 =PERCENTILE(Data!$C$2:$C$851;0,25)
50th percentile x0,5 30.00 =PERCENTILE(Data!$C$2:$C$851;0,5)
75th percentile x0,75 55.00 =PERCENTILE(Data!$C$2:$C$851;0,75)
Minimum MIN 18.00 =MIN(Data!$C$2:$C$851)
Maximum MAX 92.00 =MAX(Data!$C$2:$C$851)
Sum S 32,825.00 =SUM(Data!$C$2:$C$851)
Standard Deviation Semp 17.50 =STDEVP(Data!$C$2:$C$851)
Standard Deviation S 17.49 =STDEV(Data!$C$2:$C$851)
Empirical Variance VARemp 306.31 =VARP(Data!$C$2:$C$851)
Unbiased Variance VAR 305.95 =VAR(Data!$C$2:$C$851)
Skewness 0.82 =SKEW(Data!$C$2:$C$851)
Kurtosis -0.71 =KURT(Data!$C$2:$C$851)

Example: Calculation of univariate parameters of the dataset spread.xls

Fig. 3.28 Univariate parameters with Excel
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Exercise 5:
Supposed the following figure appears in a market research study. What can be said

about it?

0

0.5

1

1.5

2

1972 1980 1982 1986 1987 1988

Produced vehicles in UK [in millions of vehicles]

Exercise 6:
Using the values 4, 2, 5, 6, 1, 6, 8, 3, 4, and 9 calculate. . .
(a) The median

(b) The arithmetic mean

(c) The mean absolute deviation from the median

(d) The empirical variance

(e) The empirical standard deviation

(f) The interquartile range

Exercise 7:
The arithmetic mean x ¼ 10 and the empirical standard deviation Semp ¼ 2 were

calculated for a sample (n ¼ 50). Later the values x51 ¼ 18 und x52 ¼ 28 were

added to the sample. What is the new arithmetic mean and empirical standard

deviation for the entire sample (n ¼ 52)?

Exercise 8:
You’re employed in the marketing department of an international car dealer. Your

boss asks you to determine the most important factors influencing car sales. You

receive the following data:

Country

Sales [in 1,000 s

of units]

Number of

dealerships

Unit price [in 1,000 s

of MUs]

Advertising budget

[in 100,000 s of MUs]

1 6 7 32 45

2 4 5 33 35

3 3 4 34 25

4 5 6 32 40

5 2 6 36 32

6 2 3 36 43

7 5 6 31 56

8 1 9 39 37

9 1 9 40 23

10 1 9 39 34
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(a) What are the average sales (in 1,000 s of units)?

(b) What is the empirical standard deviation and the coefficient of variation?

(c) What would be the coefficient of variation if sales were given in a different unit

of quantity?

(d) Determine the lower, middle, and upper quartile of sales with the help of the

“weighted average method”.

(e) Draw a boxplot for the variable sales.

(f) Are sales symmetrically distributed across the countries? Interpret the boxplot.

(g) How are company sales concentrated in specific countries? Determine and

interpret the Herfindahl index.

(h) Assume that total sales developed as follows over the years: 1998: +2 %; 1999:

+4 %; 2000: +1 %. What is the average growth in sales for this period?

Exercise 9:
(a) A used car market contains 200 vehicles across the following price categories:

Car price (in €) Number

Up to 2,500 2

Between 2,500 and 5,000 8

Between 5,000 and 10,000 80

Between 10,000 and 12,500 70

Between 12,500 and 15,000 40

(a) Draw a histogram for the relative frequencies. How would you have done the

data acquisition differently?

(b) Calculate and interpret the arithmetic mean, the median, and the modal class.

(c) What price is reached by 45 % of the used cars?

(d) 80% of used cars in a different market are sold for more than €11,250. Compare

this value with the market figures in the above table.

Exercise 10:
Unions and employers sign a 4-year tariff agreement. In the first year, employees’

salaries increase by 4 %, in the second year by 3 %, in the third year by 2 %, and in

the fourth year by 1 %. Determine the average salary increase to four decimal

places.

Exercise 11:
A company has sold €30 m worth of goods over the last 3 years. In the first year

they sold €8 m, in the second year €7 m, in the third year €15 m. What is the

concentration of sales over the last 3 years? Use any indicator to solve the problem.
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