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Preface

This volume contains a selection of extended works presented at the international
conference EVOLVE, held in August 2012 in Mexico City, México. The aim of
the EVOLVE is to build a bridge between probability, set oriented numerics, and
evolutionary computation as to identify new common and challenging research
aspects.

The conference is also intended to foster a growing interest for robust
and efficient methods with a sound theoretical background. EVOLVE aims to
unify theory-inspired methods and cutting-edge techniques ensuring performance
guarantee factors. By gathering researchers with different backgrounds, a unified
view and vocabulary can emerge where the theoretical advancements may echo
in different domains.

Summarizing, the EVOLVE conference focuses on challenging aspects arising
at the passage from theory to new paradigms and aims to provide a unified
view while raising questions related to reliability, performance guarantees, and
modeling.

For convenience of the reader, the book is divided into three parts: Proba-
bilistic Modeling (Part I), Evolutionary Computation for Vision, Graphics, and
Robotics (Part II), and Multi-objective Optimization (Part III).

Part I contains four contributions. In Chapter 1, Valdez et al. introduce the
Empirical Selection Distribution (ESD) for biasing the search of an estimation of
distribution algorithm (EDA) based on a Bayesian Network. The authors show
that the search can be enhanced by using the empirical selection distribution
instead of the standard selection method. The results suggest that the ESD
provides more useful information to the algorithm than the usual selection step.
Ponce-de-Leon-Senti and Diaz-Diaz compare in Chapter 3 two particular EDA
type algorithms with respect to their performance: One that is equipped with a
Metropolis step in the inner loop and another one without. Numerical results on
four optimization benchmark functions show that both methods are capable of
finding the global optimum in practically all cases, but the algorithm with the
Metropolis step achieves this goal using less function evaluations.



VI Preface

In Chapter 3, Schaberreiter et al. present a tool implementing a previously
proposed Bayesian network based critical infrastructure (CI) risk model which
attempts to address the challenges of interdependent CI risk monitoring. The
scope of this tool is to provide visual guidance for domain experts to generate a
CI risk model from real-world CIs and to simulate/emulate risk scenarios based
on this model.

In the last contribution of Part I, Ding and Bouvry survey in Chapter 4
the state-of-the-art in the field of probabilistic modeling for evolving networks.
Further, they identify new challenges which emerge on the probabilistic models
and optimization strategies in the potential application areas of network perfor-
mance, network management, and network security for evolving networks.

In the first contribution of Part II (Chapter 5), Olague et al. describe a new
approach to synthesize an artificial visual cortex based on what they call brain
programming. To be more precise, the authors describe a system composed of
an artificial dorsal pathway and an artificial ventral pathway that are fused to
create a kind of artificial visual cortex. Experimental results indicate that high
recognition rates can be achieved for a well-known multiclass object recognition
problem.

In Chapter 6, Hernández et al. present an automatic process for synthesizing
visual behaviors by means of genetic programming resulting in specialized promi-
nent point detection algorithms to estimate the trajectory of a camera with a
simultaneous localization and map building system. The authors experimentally
show that it is in fact possible to find conspicuous points in an image through
a visual attention process, and that it is also possible to purposefully generate
them through an evolutionary algorithm, seeking to solve a specific task.

In the last contribution of Part II, Olague et al. address in Chapter 7 the
problem of evolving an artificial dorsal stream (ADS) using the brain program-
ming strategy. In this work, visual attention is explained as a single mechanism
that adapts itself according to a given task, and thus, brain programming is used
to design an ADS. As one result, the authors present a solution to the size and
missing pop-out problems that were unsolved so far.

Part III consists of four contributions. In the first one, Emmerich and Deutz
investigate in Chapter 8 the gradient field of the hypervolume indicator which
is the most widely used performance indicator in the field of evolutionary multi-
objective algorithms (EMOAs). Their results have a direct impact on local search
mechanisms as well as on stopping criteria of hypervolume based EMOAs. Masi
and Vasile propose in Chapter 9 an algorithm inspired by the slime mould
Physarum Polycephalum that is able to incrementally grow decision graphs in
multiple directions for discrete multi-objective optimization problems. The re-
sulting algorithm is tested on multi-objective Traveling Salesman and Vehicle
Routing Problems. Simulations indicate that building decision sequences in two
directions and adding a matching ability (multi-directional approach) is an ad-
vantageous choice if compared with the choice of building decision sequences in
only one direction (unidirectional approach).



Preface VII

Olofintoye et al. present in Chapter 10 a combined Pareto multi-objective
differential evolution algorithm. This algorithm, CPMDE, combines methods of
Pareto ranking and Pareto dominance selections to implement a novel selection
scheme at each generation. Numerical results show that CPMDE is competitive
in solving unconstrained, constrained, and real-world optimization problems.

Finally, in Chapter 11 Salomon et al. further investigate the ability of the
recently developed Part and Select Algorithm (PSA) to enhance evolutionary
multi-objective algorithms (EMOAs). As main result, the authors show that
such a hybridization substantially reduces the risk of the algorithm to fail in
finding the Pareto front.

We would like to express our gratitude to the authors who have submitted a
contribution to this book. Finally, we would like to thank all the reviewers whose
expertly evaluations have helped to maintain the quality of the book.

Mexico City, Luxembourg, and Bordeaux, Oliver Schütze
May 2013 Carlos A. Coello Coello

Alexandru-Adrian Tantar
Emilia Tantar
Pascal Bouvry

Pierre Del Moral
Pierrick Legrand



Organization

Conference General Chairs

Oliver Schütze CINVESTAV-IPN, México
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Pascal Bouvry
Interdisciplinary Center for Security, Reliability and Trust, University of
Luxembourg, L-1359 Luxembourg, Luxembourg

Eddie Clemente
Departamento de Ciencias de la Computación, División de F́ısica Aplicada, Cen-
tro de Investigación Cient́ıfica y de Educación Superior de Ensenada, Carretera
Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, 22860, B.C., México
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Part I 

Probabilistic Modeling 



Effective Structure Learning

in Bayesian Network Based EDAs

S. Ivvan Valdez, Arturo Hernández, and Salvador Botello

Centro de Investigación en Matemáticas A.C.
C.P. 36240, Guanajuato, Guanajuato, Mex.

{ivvan,artha,botello}@cimat.mx

Abstract. Estimation of Distribution Algorithms (EDAs) is a high im-
pact area in evolutionary computation and global optimization. One of
the main EDAs strengths is the explicit codification of variable depen-
dencies. The search engine is a joint probability distribution (the search
distribution), which is usually computed by fitting the best solutions in
the current population. Even though using the best known solutions for
biasing the search is a common rule in evolutionary computation, it is
worth to notice that most evolutionary algorithms (EAs) derive the new
population directly from the selected set, while EDAs do not. Hence, a
different bias can be introduced for EDAs. In this article we introduce
the so called Empirical Selection Distribution for biasing the search of
an EDA based on a Bayesian Network. Bayesian networks based EDAs
had shown impressive results for solving deceptive problems, by estimat-
ing the adequate structure (dependencies) and parameters (conditional
probabilities) needed to tackle the optimum. In this work we show that a
Bayesian Network based EDA (BN-EDA) can be enhanced by using the
empirical selection distribution instead of the standard selection method.
We introduce weighted estimators for the K2 metric which is capable of
detecting better the variable correlations than the original BN-EDA, in
addition, we introduce formulas to compute the conditional probabilities
(local probability distributions). By providing evidence and performing
statistical comparisons, we show that the enhanced version: 1) detects
more true variable correlations, 2) has a greater probability of finding the
optimum, and 3) requires less number of evaluations and/or population
size than the original BN-EDA to reach the optimum. Our results sug-
gest that the Empirical Selection Distribution provides to the algorithm
more useful information than the usual selection step.

Keywords: Estimation of Distribution Algorithms, Selection Methods
Selection Distribution, Empirical Selection Distribution.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a family of global optimiza-
tion algorithms which main strengths are related with: the explicit codification
of variable dependencies and the use of self-learned parameters for performing

O. Schütze et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics, 3
and Evolutionary Computation III, Studies in Computational Intelligence 500,
DOI: 10.1007/978-3-319-01460-9_1, c© Springer International Publishing Switzerland 2014
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the optimum search. EDAs were derived from probabilistic modeling of genetic
algorithms.

In evolutionary computation literature it is well known that the simple genetic
algorithm (GA), and most of the standard GA approaches, suffer negative effects
of the building block disruption when the decision variables are highly correlated.
That is to say, several specific variable instances must be generated or preserved
in order to increase the probability of sampling the optimum. The problem was
called: the learning linkage problem in the context of evolutionary algorithms
[5], and is one of the main motivations of evolutionary computation researchers
to propose new methods and frameworks such as Estimation of Distribution
Algorithms (EDAs) [14] [17] [24].

Even though the firsts EDAs approaches consider independent variables [14]
[6] [2], soon after graphical models were used to improve the search by integrating
information about variable correlations [3] [18]. bivariate EDAs shown that they
can efficiently solve problems that the simple genetic algorithm and univariate
EDAs can not. Regarding the encouraging results, researchers then propose to
use more complex models than bivariate, resulting in more powerful algorithms.
One of the first algorithms intended to exploit high order correlations was the
Factorized Distribution Algorithm [1]. The FDA uses a factorization of the search
distribution to perform the search, the original approach does not propose a
method to infer such factorization or distribution structure, then other works
extended the original to integrate structure-learning methods[21].

One of these approaches is the Bayesian Optimization Algorithm (BN-EDA)
[17,11,12]. It is a powerful EDA to solve deceptive-like problems, and in general
decomposable or nearly decomposable problems. A general Bayesian Network
based algorithm (BN-EDA) is presented in Algorithm 1, [11]. In Step 3 the
selection step could use different selection methods to select a subset of the
most promising solutions of the current population. In Step 4 the structure
and parameters of a Bayesian network are learned from the selected set. The
enhancement of these two steps is the main contribution of this article.

Algorithm 1. Bayesian Network based estimation of Distribution Algo-
rithm

Create a random population X
t of npop individuals;1

Evaluate the population X
t, F← f(Xt);2

Select nsel individuals from X
t using a selection procedure3

S← selection(Xt,F);
Model S by learning the most adequate Bayesian network B;4

Create a new population X
t+1 by sampling from the joint probability5

distribution of B;
Evaluate population X

t+1;6

Replace all (or some ) individuals in population X
t by those from X

t+1;7

If stopping criteria are not satisfied, return to step 3.8
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Besides the ability of solving hard optimization problems which require the
use of variable dependencies, the BN-EDA provides of additional interesting
features, such as:

– It intends to discover an adequate structure of the problem, in order to
use it for sampling new high-quality candidate solutions. Considering that
the knowledge of the problem structure can be as valuable as the optimum
approximation [11], this is a remarkable feature of the BN-EDA.

– There exist model-efficiency techniques which take advantage of the explicit
structure codification which leads to important speed ups. For instance, us-
ing previous models obtained from several runs to tackle a similar optimiza-
tion problem [7]. Or, an evaluation relaxation technique [13], which uses an
entropy based measure to decide if a candidate solution must be evaluated.

– A priori knowledge could be integrated in the structure and parameter
learning procedure.

– For a theoretical Bayesian network based Algorithm called the Factorized
Distribution Algorithm (FDA) [16], it has been shown that linear scaling of
the population size with nvar (number of variables) is sufficient to converge
to the optimum, even for hard optimization problems [15].

Nevertheless our article is focus in provide evidence about the enhancements
of the empirical selection distribution in the original BN-EDA, the reader must
notice that all the improvements and features just listed are shared or can be
applied in the original BN-EDA as well as in our approach.

In order to introduce the Empirical Selection Distribution, recall that, con-
vergence to the optimum has been proved for theoretical EDAs [24], by using
the exact selection distribution.

The selection distribution is defined as the underlying distribution of an
infinite sized selected set. It has been shown that the selection distribution de-
pends on the objective function [24]. Thus, the greater the objective function
of a point is, the greater the probability associated to such point have to be, in
consequence, for the next generation the most fitted individuals are intensively
sampled. The selection distribution is defined for infinite sized populations and
it can not be directly used in practical approaches.

The empirical selection distribution [23] is derived from the theoretical
model of the exact selection distribution, but considering a finite sized popula-
tion. It can be considered as an a priori probability or relative frequency for each
individual in the population, and then, can be used to estimate the search distri-
bution parameters. Hence, it unifies the selection and estimation steps resulting
in a new procedure for biasing the search.

This article introduces a BN-EDA algorithm which uses the empirical selection
distribution for estimating the structure as well as the conditional probabilities.
According to Mühlenbein [15], a BN-EDA algorithm converges to the optimum
if sufficient variable correlations are learned, and there is a large enough prob-
ability of sampling the optimum. In this vein, we show, by using the most widely
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reported objective functions in BN-EDA (by instance: Deceptive-3 and Trap-5),
that the approach introduced in this article finds more true variable dependen-
cies than the original BN-EDA, and the probability of finding the optimum is
also greater than the original. Additionally, our results show that our approach
requires a smaller population size than the original BN-EDA, which impacts on
the computational cost for solving hard optimization problems. All the promis-
sory results in this article can be explained as an effect of the empirical selection
distribution, considering that it is the unique extra feature we add to the original
BN-EDA.

The paper is presented as follows: Section 2 briefly reviews the most common
selection methods used in EDAs. Section 3 describes the procedure to integrate
the empirical selection distribution for computing the structure and parameters
of a BN-EDA EDA. A set of experiments to contrast the empirical selection dis-
tribution based BN-EDA(ESD-BN-EDA) with the original BN-EDA is presented
in Section 4. Finally, Section 5 presents the main conclusions.

2 Selection Methods

The main goal of a selection operator is to bias the population towards promising
regions of the search space. The most common selection methods: truncation,
Boltzmann, proportional and tournament are a kind of subset selection methods.
This kind of method selects a fraction of the population, then some individuals
are represented and some others are not. Subset selection can be seen as a
weighting method (for the parameter computation) which associates a weight
proportional to the number of times an individual is selected, and 0 otherwise.
In the case of the truncation method the weights become binary. In the case of
the other selection methods, they use a random process to sample the selected
set from the population, it is possible (with an small probability, but possible)
that even the best solution is not represented in the selected set. Hence, practical
approaches which use the subset selection does not maintain a direct relationship
between the objective function and representation intensity in the parameter
computation, and by consequence neither between the objective function and
the posterior search distribution. The possible undesired effects of this lost are:

– Solutions with a high objective value could not be represented or could be
misrepresented in the search distribution, because they could not be selected,
or their frequencies in the selected set does not correspond with the objective
value.

– The selected set very often covers a smaller region than the population, or
represents less instances (in discrete space) than the population. Thus a
natural variance reduction is expected due to the subset selection [22].

– Information about promising regions could be lost even if there are solutions
in the population that indicates such regions, due to the random selection
process in most of the subset selection methods.
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– Due to the fact that different selected sets could be obtained, by the subset
selection method, if it is applied several times over the same population,
the performance of the algorithm is not so confident, thus we expect more
variance in the performance than methods which always compute the same
search distribution from the same population.

On the other hand, the theoretical selection distributions directly depend on
the objective function, by instance the proportional selection distribution can
be written as Equation 1.

p(xi) =
f(xi)∑ninstances

j=1 f(xj)
(1)

Where xi is a possible instance of the decision variables, f(xi) is the objective
function value of xi, and ninstances is the number of possible instances. Note
that the exact selection distribution requires to know the objective values of all
possible instances.

The empirical selection distribution (ESD) [23] is the counterpart model of
the exact selection distribution, when considering a finite population. It intends
to explicitly relate the objective function value with the search distribution.

The ESD for the most common selection methods is shown in Table 1. St is
the selected set, and p(xi) is a probability associated with the individual i. The
ESD has been used in a continuous EDA with a Gaussian distribution [23]. In
this article we introduce a Bayesian network (BN) based EDA which uses the
ESD. The p(xi) are used to estimate the structure and parameters of the BN as
it is shown in the next section. There are some remarkable features of the ESD:

– It considers the whole population to be computed. Consequently we are using
all the available information in the population (notice that subset selection
throws away an important fraction of the population). Meaning that all the
points in the population are represented.

– Considering that all the population is used, hence, a wider region is covered
than using a subset of the population, in consequence we expect a wider vari-
ance if needed (if high-fitness individuals are spread over the search space),
or a reduced variance (if the high-fitness points are in the same reduced
region).

– The sampling intensity correspond to the fitness value.

The next section shows how to integrate the ESD in the structure and parameter
computation of a Bayesian network.

3 Estimating the Structure and Parameters of the
Bayesian Network

A Bayesian network is a probability model which encode the joint proba-
bility distribution for a set of variables. A Bayesian Network for variables
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Table 1. Empirical selection distribution model for a finite-sized population

Empirical Selection Distribution

Truncation

p̂S(xi, t) =

{ 1
|St| if f(xi) ≥ θt

0 otherwise
|St| = � of individuals with f(xi) > θt

Proportional

p̂S(xi, t) =
f(xi)∑|X|

j=1
f(xj)

Binary Tournament

p̂S(xi, t) =
∑|X|

j=1 I(i,j)∑|X|
i=1

∑|X|
j=1

I(i,j)

Where I(i, j) = 1 if f(xj) < f(xi) and 0 otherwise

X = {X1, ..., Xn} consist of: 1) a network structure S that encodes a set of con-
ditional independence assertions about variables in X, and 2) a set P of local
probability distributions associated with each variable. The network structure
S is a directed acyclic graph. The nodes in S are in one-to-one correspondence
with the variables X [9]. Given structure S, the joint probability distribution for
X is given by Equation 2

p(x) =

n∏
i=1

p(xi|πi) (2)

The local probability distributions are the corresponding to the terms in the
product of Equation 2. Πi are the parents of the variable Xi.

In order to estimate or learn a Bayesian network from data it is necessary two
components: a scoring metric, and a search procedure. The search procedure
proposes a candidate Bayesian network, while the scoring metric discriminate
among the proposed networks [10].

For this article we use the same search procedure than the original BOA [17],
a greedy algorithm with edge addition. The procedure starts with an empty
network (without edges), then we test adding a single edge to each variable,
the edge that increases the most the scoring metric is actually added to the
network. The process is repeated until the metric value can not be increased or
the network can not be maintained acyclic.

The scoring metric is modified according to the Empirical Selection Distribu-
tion as is shown in the next subsection.

3.1 The K2 Scoring Metric

According to Lima et al. [11] the K2 metric delivers better results for the BOA,
in terms of model accuracy, than the BIC metric. Hence, in this article as well
as in the original BOA [17] we use the K2 metric for our Bayesian network
based algorithm. The K2 metric can be derived from the BDe metric [10] in
Equation 3.
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P (B,S) = P (B)
∏n

i=1

∏qi
j=1

(
Γ (N ′

ij)

Γ (Nij+N ′
ij)

∏ri
k=1

Γ (Nijk+N ′
ijk)

Γ (N ′
ijk)

)
(3)

Where: ri are the number of states of the finite random variable Xi. qi =∏
Xj∈Πi

rj is the number of possible configurations of the parent set Πi of Xi.

wij is the j−th configuration of the parents Πi, (1 ≤ j ≤ qi). Nijk is the number
of instances in the data S (in this case the selected set), where the variable Xi

takes its k − th value xik and the variables in Πi take their j − th configura-
tion wij . Nij =

∑ri
j=1 Nijk is the number of instances in the data S where the

variables in Πi take their j − th configuration wij .
The K2 variant of the BDe metric considers no prior knowledge about the

instances. Consequently, N ′
ijk = 1, and N ′

ij = ri, in Equation 4.

P (B,S) = P (B)
∏n

i=1

∏qi
j=1

(
ri

Γ (Nij+ri)

∏ri
k=1

Γ (Nijk+1)
Γ (1)

)
(4)

Notice that a logarithmic version of the K2 metric can be use in order to reduce
computational errors and effort.

3.2 Modifying the K2 Metric with the ESD

In order to use the ESD for computing the K2 scoring metric, we define a virtual
sample size greater than npop, nvirtual >> npop. The computation of Nijk and
Nij is as shown in Algorithm 2. We show both computation algorithms in the
same loop, although it can be in a different loop for practical purposes. Notice
that the computation is performed by using a floating point value with N̂ij and

N̂ijk, and rounded at the end of the computation, in order to reduce rounding
errors. Using Nij and Nijk computed as shown in Algorithm 2 we can proceed to
compute the K2 metric as usual. p(xi) in Algorithm 2 is the empirical selection
distribution value associated with the individual xi, for i = 1..npop.

Algorithm 2. Computation of Nijk and Nij using the ESD

N̂ij = 0;1

N̂ijk = 0;2

for Each individual x in the population X do3

if xi takes the value xik and the parents Πi takes the value wij then4

N̂ijk = N̂ijk + (nvirtual)p(xi);5

end6

if The parents Πi takes the value wij in x then7

N̂ij = N̂ij + (nvirtual)p(xi);8

end9

end10

Nij = integer(N̂ij + 0.5);11

Nijk = integer(N̂ijk + 0.5);12
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3.3 Computing the Conditional Probabilities

Once we have obtained the Bayesian Network structure by using the search
process and the scoring metric, then we proceed to compute the parameters or
probabilities to sample by using Equation 5.

p̂ijk = P̂ (Xi = xik|Πi = wij) = Nijk/Nij (5)

In the case of the ESD-BN-EDA, Nij and Nijk are computed as shown in Algo-
rithm 2. Due to rounding errors, it is possible that a normalization procedure be
needed in order to ensure that the parameter is actually a probability (that it
sums 1). Then we apply the Equation 6, the sum is for each instance xijk used
to compute the probabilities associated with the variable Xi.

pijk =
p̂ijk∑
xijk

p̂ijk
(6)
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Fig. 1. Comparison of the correct edges added when using the binary tournament
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Fig. 2. Comparison of the correct edges added when using the proportional selection

4 Experiments and Performance Analysis

The experiments in this Section are intended to provide evidence about the
boosted performance of the BN-EDA when it uses the Empirical Selection Dis-
tribution. The information we desire to determine from the experiments is related
with three main topics:

1) If the ESD is helpful to determine better the truth structure of the problem.
2) If the ESD increases the probability of finding the optimum, and 3) If the
ESD has a beneficial impact on the number of evaluations and population size
needed to find the optimum.

The comparisons are performed by using the problems in the original BOA [17],
as well as in other research paper which investigate the BOA performance under
different selection conditions [11] [12]. The test problems are defined in Table 4
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Fig. 3. Comparison of the correct edges added when using the truncation selection

4.1 Evidencing the Number of Correct Dependencies Captured

Experiment Description. For the objective functions presented in Table 4
we define a random order Ii for the variables xi. This order is used to define
the correlations. For example, suppose that we define the order I = [3, 9, 4,
6, 10, 1, 8, 5, 2, 7] for the ftrap5, then, the objective function is called using
ftrap5(x3, x9, x4, x6, x10) and ftrap5(x1, x8, x5, x2, x7). Hence we expect to add
edges in BN which relate the variables in each one of the sets. Under this order
we known that the related variables are [3, 9, 4, 6, 10] and [1, 8, 5, 2, 7]. We count
how many edges among related variables are added each generation (correct
edges). We contrast the correct edges added by the enhanced ESD-BN-EDA
versus the original. Using violin plots we graphically show the differences in
variance, median, and density (or empirical distribution of the edges) during the
generations. Additionally, we perform hypothesis tests to known if the differ-
ence between correct edges of ESD-BN-EDA and the original are statistically
significant.
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Additively composed function:

f(x) =
∑l−1

i=0 fk(u).
where u =

∑
j∈Si

xj , and Si is a partition of 3 or 5elements of the set {1..nvar}, nvar

is the number of decision variables, and fk is one of the following:

Deceptive order 3 f3deceptive

⎧⎪⎪⎨
⎪⎪⎩

0.9 if u = 0
0.8 if u = 1
0 if u = 2
1 if otherwise

Trap order 5 ftrap5

{
4− u if u < 5
5 otherwise
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Fig. 4. p−value from hypothesis test about the number of correct edges for the binary
tournament
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Fig. 5. p − value from hypothesis test about the number of correct edges for the
proportional selection

Experiment Settings. We perform 30 independent runs for the test problems
in Table 4. The number of variables is 30. We use the first 20 generations for
the comparison because this number is enough for convergence of the algorithm.
According to [11], the firsts generations is when most of the correct edges are
detected, when the convergence is found adding an edge poorly increases the
score, and the model is over-fitted adding spurious edges. The population sizes
are {900, 1300} and the maximum number of allowed parents is k = {2, 4} as
suggested by Pelikan et al. [17], for the f3deceptive and the ftrap5 respectively.

Experimental Results. In Figures 1, 2 and 3, we show violin plots of the
correct edges discovered by each of the algorithms. The violin plots are similar
to box plots but they give a better look of the data distribution: the central
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Fig. 6. p − value from hypothesis test about the number of correct edges for the
truncation selection

dot is the median of the data, the length of the violin plot measured along the
y − axis shows the data dispersion, while the shape of the “box” is a kernel-
density approximation to the data density. Hence, the largest plots means the
highest variance of the data, in this case the largest violin plots means highest
variance in the number of correct edges discovered each generation. The violin
plots labeled as “OG x” are computed with data from the x generation of the
original BN-EDA, while the violin plots labeled with “EG x” is the correspond-
ing x generation of the Empirical Selection based BN-EDA (ESD-BN-EDA). In
Figures 1 to 3, the higher violin plots (with the central dot higher in the y−axis)
represent the generations and algorithm which discovers more edges. In order to
compare more precisely which algorithm discovers more edges, we draw a line
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Fig. 7. Probability of sampling the optimum for the binary tournament

with the median of the correct edges discovered, with the same coordinates in
the x − axis, and the corresponding median in the y − axis: the dashed line
is the original BN-EDA while the solid line corresponds to the ESD-BN-EDA.
Additionally, violin plots let us know which algorithm is the most robust, be-
cause more mass around the center as well as a smaller violin, indicate a more
consistent performance. For this comparison, another interesting characteristic
is that in most of the cases the violin plots show a single mode, which means
that most of the times the number of discovered edges is similar for the same
generation.

Special Note. When using truncation selection, we perform almost the same
estimation for the original BN-EDA and the ESD-BN-EDA, the only difference is
the virtual sample and the general procedure of the estimation (for example the
calculus of log functions with greater numbers), but the same input information
is used to learn the BN. So, we expect a similar behavior of both algorithms
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Fig. 8. Probability of sampling the optimum for the proportional selection

for this selection method, and as expected we obtain similar result as they are
shown in Figure 3.

The Figures 4, 5 and 6 show the p-value from hypothesis tests which compare
the means of the number of correct edges discovered each generation by the
original BN-EDA versus the ESD-BN-EDA. The hypothesis test is performed
by using the Boostrap methodology [4] with 20000 re-samples per generation.
In Figure 4 we show the p-value for the mean of correct edges using binary
tournament selection. When the p-value is approximately 0, it means that there
is strong evidence to say that the ESD-BN-EDA captures more correct edges
than the original BN-EDA. Take into account that a 1 value in the p-value
does not means that the original BN-EDA captures more correct edges than
our approach. A 1 p-value indicates that there is not strong evidence to say
the ESD-BN-EDA captures more correct edges. According to Figure 1, we can
observe that the ESD-BN-EDA always captures at least the same number of
correct edges than the original BN-EDA. The 1 p-value in Figure 4 correspond
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Fig. 9. Probability of sampling the optimum the truncation selection

to the last generations of the algorithms, when the learning of correct edges is
not needed because the algorithm has converged.

Figure 4 also shows that the more complex the problem is (f3deceptive =3
correlated variables, ftrap5 = 5 correlated variables), the greater is the evidence
to say that the ESD-BN-EDA captures more correct edges than the original.

Figures 5 shows that for proportional selection there is a lot of strong evidence
to say that the ESD-BN-EDA captures more correlations. And finally, 6 shows
that for truncation selection we can not say which algorithm is better (a lot of
p−values >> 0), hence as expected, for the truncation selection both algorithms
perform quite similar.

4.2 Evidencing the Probability of Finding the Optimum

Recall that the goal of these experiments is not to show the effectiveness of
the BN-EDA, which has been largely tested [17,8,20,19], in contrast we intend
to show that the BN-EDA can be enhanced by using the ESD. An obvious
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Fig. 10. p − value for hypothesis test about the mean of the probability of sampling
the optimum for the binary tournament

enhancement is to increase the probability of finding the optimum. Each gen-
eration is a different learning stage, because a cumulative bias is introduced in
the model via the selection method, because of this, we test the probability of
finding the optimum each generation in order to show a consistent increment of
it when using the ESD. Using the same settings than in the experiment above,
we compute for each generation the probability of finding the optimum. The
findings are reported in Figures 7, 8 and 9. These Figures show the violin plots
for the probability of the optimum, according to the computed structure and
conditional probabilities of the Bayesian network, using the original BN-EDA
and the ESD-BN-EDA, for 30 independent runs. In addition, the median of this
probability is plotted by using a solid line for the ESD-BN-EDA and a dashed
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Fig. 11. p − value for hypothesis test about the mean of the probability of sampling
the optimum for the proportional selection

line for the original, the x coordinate is the same for both algorithms thus the
lines reflect the actual difference between the medians. As can be seen there is
evidence to say that the ESD-BN-EDA has a higher probability of finding the
optimum during the whole generations. In order to show that the statistical ev-
idence is strong enough we perform Boostrap hypothesis tests. The Figures 10,
11 and 12 are the p-value of testing that the probability of the optimum using
the ESD is greater than the original counterpart.
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Fig. 12. p − value for hypothesis test about the mean of the probability of sampling
the optimum for the truncation selection

A Numerical Issue of This Test. Suppose that, according to the BN dis-
covered, xi depends on xj at generation t. Assume the frequencies of the in-
stances as follows: freq(xi = 0, xj = 0) = 50, freq(xi = 0, xj = 1) = 50,
freq(xi = 1, xj = 0) = 100 and freq(xi = 1, xj = 1) = 0. Using the Bayes
rule p(xi = 1|xj = 1) is not defined, and the empirical joint probability of
p(xi = 1, xj = 1) = 0. But notice that the empirical marginal probability,
p(xi = 1) = 100/200 = 0.5 and p(xj = 1) = 50/200 = 0.25. Thus if the same
frequencies (or quite similar) are maintained for the next generation, and xi does
not depend on xj (given the new computed structure), then p(xi = 1, xj = 1) =
p(xi)p(xj) = (0.5)(0.25) = 0.125 > 0. In practical terms this means that in a
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Fig. 13. p − value and violin plots for comparison of the number of evaluations,
for different selection methods. The hypothesis tested is mean(evaluations of BN-
EDA)>mean(evaluations of ESD-BN-EDA).

generation the probability of sampling the optimum (under a given structure)
could be 0, and some generations later the probability could be different from 0.
Thus, for practical comparisons (because the violin plots of the probability are
in log scale) we replace the probabilities equal to 0, with the worst value found
in the same run, this only affects the plots (not the hypothesis test, neither the
conclusions of the experiment) by avoiding to graphically report −∞ values.
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Fig. 14. Succesful runs from 30, for different population sizes using the binary tour-
nament selection

Results of the Experiment Which Test the Probability of Finding
the Optimum. As can be seen in Figures 7 to 12 there is sufficient statistical
evidence to say that the ESD-BN-EDA has a greater probability to find the opti-
mum than the original. The explanation is that the most fitted solutions actually
are sharing variable values with the optimum and they have a greater weight to
compute the Bayesian network structure and the conditional probabilities. The
p-value close to 0 in the first generations is an remarkable indicator, because
this stage of the algorithm is crucial for detecting the interest region where the
optimum is. In this stage the EDA is performing a more intense exploration than
in the last generations in which the algorithm basically is refining the optimum
approximation and converging to a stable point. As expected the hypothesis
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Fig. 15. Succesful runs from 30, for different population sizes using the proportional
selection

test for the truncation method are not conclusive, because as mentioned for this
selection the ESD-BN-EDA and the original are using the same information.

4.3 Evidencing the Reduction of the Number of Function
Evaluations

In this experiment we run the BN-EDA and the ESD-BN-EDA, under the same
parameters than the experiments above, but the algorithm was stopped when it
finds the optimum. Then we present similar violin plots than in the experiments
above, for the number of evaluations needed for each of the algorithms to reach
the optimum. We use the same settings than the experiment above, except the
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Fig. 16. Succesful runs from 30, for different population sizes using the truncation
selection

population size which is fixed in 1300. 20 successful runs were used for the violin
plots and the hypothesis tests. We tested if the mean of the number of evaluations
of the original BN-EDA is greater than ESD-BN-EDA counterpart.

Results of the Experiment Which Test the Number of Evaluations.
As can be seen the number of evaluations is less for the ESD-BN-EDA than the
original one. And it is sufficient statistical evidence to support this conclusion.
Additionally, the number of evaluations are not statistically different for the
truncation method.
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Fig. 17. Objective value for different population sizes for the binary tournament se-
lection. The p-value correspond to the hypothesis test mean(fbest of ESD-BN-EDA)
>mean(fbest of BN-EDA).

4.4 Evidencing the Reduction of the Population Size

In this experiment we use different population sizes and observe two different
results:

1. The number of times the optimum is reached with each population.
2. The best objective value (in distribution via violin plots) found with each

population. Also we perform hypothesis test to know if there is sufficient
statistical evidence to say that the one algorithm delivers a better objective
value.
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Fig. 18. Objective value for different population sizes for the proportional selec-
tion. The p-value correspond to the hypothesis test mean(fbest of ESD-BN-EDA)
>mean(fbest of BN-EDA).

Results of the Experiment Which Test the Population Sizes. Figures
14, 15 and 16 show the number of times the optimum is reached with different
population sizes, contrasting the original BN-EDA with ESD-BN-EDA. As can
be see, the ESD-BN-EDA consistently outperform the BN-EDA. Figures 17,
18 and 19, show the objective function values of the elite individual for both
approaches. Even if we do not always have sufficient statiscal evidence according
to the p-value, it can be seen that many times the performance of the ESD-
BN-EDA is the best, and in other cases it is a least as good as the original
approach.
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Fig. 19. Objective value for different population sizes for the truncation selection. The
p-value correspond to the hypothesis test mean(fbest of ESD-BN-EDA) >mean(fbest
of BN-EDA).

5 Conclusions

In this paper we deeply test the Empirical Selection Distribution (ESD) inte-
grated in the selection-estimation step of the Bayesian Network based EDA(BN-
EDA). According to our experiments the ESD significantly boosts the BN-EDA.
The main conclusions are when using the Binary tournament and the propor-
tional selection we collect sufficient statistical evidence to say that the ESD
improves the BN-EDA performance. Several enhancements have been proposed
for the BN-EDA [11,7,13], in this context the ESD enhances the BN-EDA, and
at the same time, it is allowed to be combined with the other enhancements.
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The ESD can be seen as a general selection method for biasing EDAs, in this
article we show that even for complex models such as Bayesian Networks, in-
tegrating the ESD in an EDA can be relatively simple. Additionally, we test
the ESD with three selection methods but notice that in general the ESD are
weights for each individual. Then, other kind of bias such as Pareto raking for
multi-objective approaches, or diversity measures can be used, in order to solve
multiobjective problems, or to increase the impact of diverse solutions in the
parameter estimation. In summary, the ESD enhances the BN-EDA but is not
restricted to be used in it. Additionally, the ESD is not only a enhancement for
an EDA but a way of inducing the bias in the search, hence researchers could
propose different biasing schemes only by modifying the ESD computation, and
maintaining unaltered the main EDA body. The results obtained by the boosting
of the BN-EDA with the ESD, encourage the future work in using it with other
multivariate discrete and continuous EDAs. Future work considers to integrate
non-standard selection methods in the BN-EDA, for instance, methods which
consider diversity measures. Additionally, we will continue exploring the effects
of the ESD in other EDAs.
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Abstract. The objective of this chapter is to compare, with respect to the perfor-
mance two versions of EDA type algorithm (AETC – EDA) whose probabilistic
distribution structure is learned at each step using the Extended Tree Adaptive
Learning (ETreeAL) Algorithm. One of the versions has a Metropolis step in the
inner loop, and the other do not. The samples are generated evaluating the objec-
tive function, and running Boltzmann selection roulette through all the cliques of
the learned model. In the outer loop the temperature parameter is updated. The
efficiency is tested using 4 benchmark functions known by its difficulty for evolu-
tionary algorithms. The experiments were performed with 50 and 100 variables.
As results of the experiments, the algorithms obtain the optimum in practically
in all the cases, both algorithms use the learned cliques at each step of the inner
cycles to obtain the best solution at hand. The algorithm with Metropolis step
uses less evaluations in all cases, except for the Fc2 function.

Keywords: Estimation of Distribution Algorithms, Discrete Graphical Markov
Model, Linkage Learning, Structure Learning, Evolutionary Algorithms.

1 Introduction

Most of the studies about EDAs algorithms perform an empirical comparison of two or
more algorithms, employing a set of benchmark problems and some performance crite-
ria, for example, the number of evaluations. The theoretical basis (concepts, definitions,
and theorems) needed to identify the features that led to a better performance of one al-
gorithm with respect to other for each type of problem, are not frequently analyzed. In
this chapter, the theoretical, practical and experimental issues are put together, to offer
information for enriching the discussion.

In genetics, linkage is the tendency for alleles of different genes to be passed
together from one generation to the next [30]. For the evolutionary algorithms it is in-
teresting to detect linkage groups for the underlying structure of the optimization prob-
lem. If the linkage groups are not known in advance they must be detected during the
algorithm execution. This question of linkage learning was proposed by Holland [9]. He
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noted that the complexity of the adaptive systems comes from the interactions of alleles
that reflects the adaptation of the genotype to the environment. This adaptation requires
most of the time a nonlinear structure that changes with the change of the simultane-
ous appearance of groups of variable alleles (epistasis - some phenotype appears only
with an exact combination of alleles). One of the formal models proposed by Holland
to reflect this property is the discrete probabilistic model defined over the space of all
the possible combinations of alleles. Specifically a Discrete Graphical Markov Model
(DGMM) lends his structure of interactions to represent the linkage. The last decade ap-
peared a lot of optimization algorithms based on the linkage learning using probabilistic
graphical models, some of the most used are: the estimation of distribution algorithms
(EDAs) [19], the bivariate marginal distribution algorithm (BMDA) [22], the Bayesian
optimization algorithm [21], the Estimation of Bayesian Network Algorithm (EBNA)
[7], the Learning Factorized Distribution Algorithm (LFDA) [18], and EDAs based on
Markov networks and Gibbs sampling [26] [27]. There are other methods to learn the
linkage: the perturbation methods are based on perturbing the variables, and examining
the fitting differences, to detect sets of variables to be linked [29]. The linkage identi-
fication by nonlinearity check detect nonlinearity by pairwise perturbations in order to
identify the linkage set [20] [28]. The use of DGMM is based on the hypothesis, that
learning the structure of the graphical model is equivalent to linkage learning as will be
seen in the next section. The DGMM is a type of hierarchical log linear probabilistic
graphical model [14].

This chapter presents an analysis of the roll and performance of the linkage learning
in the AETC – EDA optimization algorithm [23]. The AETC – EDA consists on two
main parts. The first part is the ETreeAL algorithm used to learn the linkage with a
probabilistic graphical model [6], and the second part is a cliqued Gibbs sampler algo-
rithm (CG – Sampler) that uses the cliques of the graphical model learned in the first
part to generate the next population. The strategy is to use a DGMM, meaning it, that in
the course of optimization the algorithm iteratively obtains the structure of a graphical
model (linkage learning) and use this information to generate samples using a simula-
tion algorithm based on an annealing process in the outer cycle and a cliqued Gibbs
sampler in the inner cycle. The evaluation of each solution generated by the cliqued
Gibbs sampler and the new structure obtained at each generation, guides the search to
the global optimum. The cliqued Gibbs sampler uses a Boltzmann selection procedure
[8] in order to apply a Boltzmann roulette selection defined in this chapter. Each algo-
rithm is tested with four deceptive functions. The experiments are performed with two
versions of the cliqued Gibbs sampler algorithm, one with a Metropolis step and the
other one without it.

In Section 2 some definitions and concepts needed to describe the algorithms are
given. In Section 3 the algorithm pseudocodes are described and explained. In Section
4, the test functions are described. In Section 5, the experiments are designed, and
the parameters explained. In Section 6, the results are presented and discussed, and in
Section 7 the conclusions are given.



Optimization by Structure Learning during Algorithm Execution 33

2 Definitions and Concepts

The fundamental definitions and concepts needed to construct and explain the algo-
rithms are detailed in order to make the chapter self contained. More explanation about
the AETC – EDA can be consulted in [6], [23], and [24].

Definition 1. Let S = {s1,s2, ...,sv} be a set of sites and let G = {Gs,s ∈ S} be the
neighborhood system for S, meaning it any collection of subset of S for which

1) s /∈ Gs and
2) s ∈ Gr ⇔ r ∈ Gs.
Gs is the set of neighbors of s, and the pair {S,G } is a graph.

Definition 2. A subset C⊂ S is a clique if every pair of distinct sites in C are neighbors.
C = {C} denotes the set of cliques. Let X = {xs,s ∈ S} denotes any family of random
binary variables indexed by S. Let Ω be the set of all possible values of X, that is,
Ω = {w = (x1,x2, ...,xv) : xi ∈ {0,1}} is the sample space of all possible realizations
of X.

Definition 3. X is a Markov random field (MRF) with respect to G if

P(X = w)> 0 for all w ∈Ω (1)

and

P(Xs = xs|Xr = xr,r �= s) = P(Xs = xs|Xr = xr,r ∈ Gs) for every s ∈ S and w ∈Ω (2)

where X denotes the random variable and w denotes the values that this variable can
take.

Definition 4. A Gibbs distribution relative to {S,G } is a probability measure π on Ω
with the following representation

π(w) =
1
Z

e−U(w)/T (3)

where Z and T are constants. U is called the energy function and has the form

U(w) = ∑
c∈C

Vc(w) (4)

Each Vc is a function on Ω that only depends on the coordinates xs of w for which s∈C,
and C ⊂ S.

Definition 5. The family {Vc,c ∈ C } is called a potential and the constant

Z = ∑
w

e−U(w)/T (5)

is called the partition function. The constant T is named temperature and it controls
the degree of “peaking” in the density π .
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Theorem 1. (Equivalence theorem) Let G be a neighborhood system. Then X is a MRF
with respect to G if and only if π(w) = P(X = w) is a Gibbs distribution with respect
to G .

A more extensive treatment can be seen in [8], [3], [10].

Definition 6. Gibbs Sampling is a Markovian updating scheme that works as follows.

Given an arbitrary starting set of values x(0) = (x(0)1 ,x(0)2 , ...,x(0)v ) ∈ Ω , one value x(0)i

is drawn from the conditional distribution P(xi|x(0)1 , ...,x(0)i−1,x
(0)
i+1, ...,x

(0)
v ) for each i =

1, ...,v, where v is the number of variables. So, each variable is visited in the natural

order until v. After that, a new individual x(1) = (x(1)1 ,x(1)2 , ...,x(1)v ) is obtained.

Geman and Geman [8] demonstrated that for

t → ∞, x(t)→ x

where x = (x1,x2, ...,xv) and t is the parameter of the process (if the process is an algo-
rithm, t is an iteration). This sampling schema required v random variate generations,
one for each state i of the schema.

As a component of the cliqued Gibbs sampler, the generator part, a selection proce-
dure is used.

The well-known Metropolis step is a fundamental part of the Simulating Anneal-
ing (SA) algorithm. It was first introduced by Metropolis [15] to simulate the physical
annealing process of solids.

Definition 7. The Metropolis step is defined as the decision of accepting a new state
X ′ based on the α criterion defined by:

α = e−δU(X)/kT (6)

where
δU(X) =U(X ′)−U(X) (7)

T denotes the temperature and k the Boltzmann constant. For k = 1, at each T the SA
algorithm aims to draw samples from the Boltzmann equilibrium distribution:

πT (X)e−δU(X)/kT (8)

Definition 8. Annealing Adaptive Search (AAS): The AAS is an iterative algorithm
that simulated a non stationary finite state Markov chain whose state space is the
domain of the cost function to be optimized. The iterations depend on the annealing
schedule of temperatures {Tk} that goes to zero and gives the name of annealing to the
algorithm. The process converges to a family of Boltzmann distributions. The algorithm
at each iteration generates a random solution according to a Boltzmann distribution
depending of the parameter Tk. When Tk goes to zero the generated solutions converges
to the optimum [8].
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Definition 9. Let xi be a solution and f (xi) be the function of xi to optimize (the cost
function), then the Bolztmann selection procedure evaluates a solution xi

P(xi) =
exp(− f (xi))

E(xm)
(9)

where E(xm) = ∑ j f (x j)p(x j) is the expected value of all the elements in the current
population.

P(xi) is not invariant to scaling but is invariant to translation [5].

Given the state i of the schema x(t), for the value P[xi|x(t)1 , ...,x(t)i−1,x
(t)
i+1, ...,x

(t)
v ] a

value for x(t+1)
i is obtained selecting as follows: if p(x(t+1)

i )> p(x(t)i ) select x(t+1)
i , else

calculate

q =
p(x(t+1)

i )

p(x(t)i )
, (10)

and if a random number uniformly generated in the interval [0,1] is less that q, select

x(t+1)
i .

Definition 10. The Boltzmann roulette selection, select one individual from a contin-
gency table cell, according to the Boltzmann selection procedure (Definition 9).

Definition 11. The K-L divergence from the probability model M to the data x is given
by the Kullback-Leibler information [12]

G2(M,x) = log(L(m̂M
n (x)) =−2

k

∑
i=1

xi log2(
m̂M

i

xi
) . (11)

where k is the sample number of different individuals, n is the total number of individ-
uals, and m̂M

n is the maximum-likelihood parameter estimator of mM
n .

The K-L divergence is also known as relative entropy, and can be interpreted as the
amount of information in the sample x not explained by the model M, or the devia-
tion from the model M to the data x. This K-L divergence is used to calculate SMCI
(Definition 13) and in time EMUBI (Definition 14) in the next paragraphs.

Definition 12. The mutual information measure IXiXj for all Xi,Xj ∈ X is defined as

IXiXj = I(Xi,Xj) = ∑
xi,x j

P(xi,x j) log
P(xi,x j)

P(xi)P(x j)
, (12)

where P(xi,x j) = P(Xi = xi,Xj = x j).

As a part of a strategy to learn a graphical Markov model, a statistical model complexity
index (SMCI) is defined and tested by Diaz et al. [6]. Based on this index it is possible
to obtain an evaluation of the sample complexity and to prognose the graphical model
to explain the information contained in the sample.
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The model representing the uniform distribution is denoted by M0, and the model
represented by a tree is denoted by MT . If a sample is generated by a model M contain-
ing more edges than a tree, the information about the model M contained in this sample
and not explained, when the model structure is approximated by a tree, may be assessed
by the index defined as follows.

Definition 13. Let x be a sample generated by a model M. The statistical model com-
plexity index (SMCI) of the model M is defined by the quantitative expression [6]

SMCI(M,x |MT ) =
G2(MT ,x)−G2(M,x)

G2(M0,x)
. (13)

This index can be named sample complexity index, because it is assessed by the quantity
of information contained in the sample generated by the model M.

Definition 14. Let G be the graph of the model M, and let v be the number of vertices,
let MNE(v) be the maximum number of edges formed with v vertices. The edge missing
upper bound index (EMUBI) (see [6]) is defined by

EMUBIτ(M,x |MT ) = τ(MNE(v)− v+ 1)SMCI(M,x |MT ) , (14)

where τ is the window allowing a proportion of variability in the sample to get into
the model. This coefficient is a filter that allows the sample relevant information for the
model structure construction [6].

This index is used to prognose the number of edges to add to a tree in order to ap-
proximate the complexity of the sample using the graphical model, in this case it is an
unrestricted graphical Markov model.

The next two definitions are used to assess the similarity of the linkage structure
learned by the algorithm and the linkage structure of the optimization problem.

Definition 15. Given the learned graph G1, and the generator graph G2, a graph
similarity index of G1 respect to G2, GSI(G1,G2) is given by the number of common
edges divided by the number of edges in the generator graph G2 [6]. Denote by E1 the
set of edges from G1 and by E2 the set of edges from G2, then the similarity index is
given by:

GSI(G1,G2) =
|E1∩E2|
|E2|

, (15)

where |C| denotes the number of elements in the set C.

Definition 16. Let L = {li} be the learned graph, and G =
{

g j
}

the generator graph
given by their cliques li and g j respectively

a. If for all j there exists i such that li ⊃ g j then it is said that L overlearns G .
b. If for some (but not all) j there exists i such that li ⊃ g j then it is said that L

partially learns G , and
c. The proportion of cliques learned is the number of g j cliques contained in some li

cliques, divided by |G |, is named index of learned cliques or learning index.
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Algorithm 1. Index of learned cliques algorithm
Input: L and G

1 Calculate |L | and |G |
2 count ← 0
3 Learning index← 0
4 for i = 1 to |G | do
5 for j = 1 to |L | do
6 if g j ⊂ li then
7 count ← count +1
8 end
9 end

10 end

Output: Learning index← count
|G |

The generator graph in this chapter is the graph given by the cliques used as variable
blocks of the objective function. To calculate the index of learned cliques an algorithm
whose pseudocode is given in Algorithm 1, is used.

To calculate and interpret the learning index it is necessary to note that a graphical
model is constructed over hypergraphs [2] that are formed by subsets of a given set.
Graphical models are a particular type of hypergraphs whose maximal subsets corre-
spond to cliques of a graph. So, it makes sense to compare cliques subsets with variables
blocks.

3 The Adaptive Extended Tree Cliqued – EDA (AETC – EDA)

In this section the algorithms that conform the AETC – EDA are explained. The CL
algorithm (Algorithm 2) is used as first step of the EtreeAL (Algorithm 3) in order to
obtain the tree model. The tree model is extended to an unrestricted graphical model by
EtreeAL. After that the CG – sampler (Algorithm 4) uses the graphical model learned
to generate the next population of the AETC – EDA (Algorithm 5).

The CL algorithm (Chow and Liu algorithm) [4] obtains the maximum weight span-
ning tree using the Kruskal algorithm [11] and the mutual information values IXiXj (Def-
inition 12) for the random variables. The tree obtained by this algorithm is denoted by
MT (CL).

Algorithm 2. CL algorithm
Input: Distribution P over the random vector X = (X1,X2, ...,Xv)

1 Compute marginal distributions PXi , PXiXj , for all Xi,Xj ∈ X .
2 Compute mutual information values (Definition 12) IXiXj for all Xi,Xj ∈ X .
3 Order the values from high to low (w.r.t.) mutual information.
4 Obtain the maximum weight spanning tree MT (CL) by the Kruskal algorithm [11].

Output: The maximum weight spanning tree MT (CL)
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The CL-algorithm (see Algorithm 2) calculates for the number of variables v, v(v−1)
2

mutual informations. If each variable takes two values then the CL-algorithm has com-
plexity O( v(v−1)

2 22) = O(2v(v− 1)) = O(v2). The ETreeAL (Algorithm 3) adds the
number of prognosed edges to the tree to obtain the model structure necessary to the
CG-sampler input, and these operations have polynomial complexity.

Algorithm 3. The extended tree adaptive learning algorithm (ETreeAL)
Input: Distribution P over the random vector X = (X1,X2, ...,Xv)

1 Call CL Algorithm in order to obtain the maximum spanning tree using the mutual
information measure IXiXj (Definition 12) as weight edges.

2 Calculate the edge missing upper bound prediction index (EMUBIτ(M,x |MT (CL))).
3 Add to MT (CL), τ percent from missing edges in the order of the mutual information

values (Definition 12).
Output: Extended tree model structure MEXT (CL)

The Algorithm 3 obtains the Markov model adapted to the sample, and gives the
cliques of this model. The Algorithm 4 has 4 parameters: T is the temperature, α ∈
(0,1) is the annealing parameter, C is the bound of the iterations number to the anneal-
ing step of the temperature, and Q is the upper bound of the outer cycle to complete
the population size. This algorithm receives the cliques of the graphical model as in-
put to fulfill the condition of equivalence required by Theorem 1 (see Section 2). The
variables of each clique are used together by the CG – sampler optimizer to generate
new individuals for the sample. Other authors used blocked Gibbs sampler [25], and
that is why the name ”Cliqued Gibbs Sampler” was given to this sampler. Let f (x) be
the objective function. Ê(xm) is the f (x) mean estimator obtained for the population of
solutions. Without losing generality in the description of the CG-Sampler algorithm, we
assume that the optimization problem is to obtain a minimum and a convenient change
can be made to obtain a maximum.

Observing the CG – Sampler Optimizer Algorithm (Algorithm 4) it is seen that the
algorithm input besides the cliques, receives a population of selected solutions, let P
be the population and let the structure of the graphical model adjusted be given by
its cliques, C = {c1, ...,ck}. In the outer cycle the iterations run through all elements
of the population (N). The inner loop runs through the number of cliques (k) and the
Step 7 generates a marginal table for each clique, and calculates a Boltzmann roulette
selection, running over the marginal table corresponding to the clique c j, for all j=1,..,k.
Let CM = maxc j∈C |c j| then the worst case is when |c j| = CM for all j. In this case
the complexity is given by O((N)(k)2CM), so the complexity of the CG-Sampler is
exponential in the size of the maximum clique of the model.

3.1 Adaptive Extended Tree Cliqued – EDA (AETC – EDA) Pseudocode

The AETC – EDA (Algorithm 5) employs the ETreeAL to obtain the Markov model
structure of the population of solutions for each algorithm’s iteration, with this structure
the CG- sampler optimizer obtains the next population.
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Algorithm 4. CG – Sampler Optimizer Algorithm
Input: A population of selected solutions, and the structure of the graphical model, given

by its cliques, and parameters temperature T , α , C, and Q
1 PNew ←{} , i← 1,S+← S1, j← 0,q← 0
2 repeat
3 Take the solution Si of the selected solutions
4 S′ ← Si

5 for k = 1 to Number of cliques do
6 Take the clique ωk
7 Generate the marginal table of the clique ωk:
8 if f (ωk(S′)) > S+ then
9 S+← ωk(S′)

10 PNew ← PNew ∪{S+} , j← j+1
11 end
12 Roulette Selection: Select the individual ωk(S′)l corresponding to the l cell of the

marginal table according to its selection probability (Boltzmann Selection)
Definition 9.

13 S′ ← ωk(S′)l

14 end
15 /* Metropolis Step */

16 if f (S′)> Ê(xm) then
17 if S′ /∈ PNew then
18 PNew ← PNew ∪{S′} , j← j+1
19 end
20 end
21 else
22 if Random ≤ exp− f (Si)− f (S′)

Ê(xm)∗T
then

23 if S′ /∈ PNew then
24 PNew ← PNew ∪{S′} , j← j+1
25 end
26 end
27 else
28 if Si /∈ PNew then
29 PNew ← PNew ∪{Si} , j← j+1
30 end
31 end
32 end
33 if i =(Percent of selection)∗N/100 then
34 i = 0,q← q+1
35 end
36 else
37 i← i+1
38 end
39 if q≡ 0 mod C then
40 T ← T ∗α
41 end
42 if q > Q then
43 break
44 end
45 until (a new population PNew with size N is obtained);

Output: A new population PNew (Gibbsian Population and S+ )
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Algorithm 5. Adaptive Extended Tree Cliqued – EDA (AETC – EDA)
Input: Number of variables, function to optimize, population size, percent of

selected individuals, stop criterion, τ , temperature T and α
1 Create the initial population of size N at random.
2 repeat
3 Evaluate the population.
4 Order the population and select a portion.
5 With the selected portion of the population call the ETreeAL (Algorithm 3).
6 Call cliqued Gibbs sampler (CG – Sampler) optimizer (Algorithm 4)
7 until (Some stop criterion is met);

Output: Solution of the optimization problem

4 Test Functions

Four functions are employed to analyze the performance of the algorithm AETC –
EDA (see Algorithm 5). The selected functions are a sample from functions of different
difficulties. All of them are deceptive functions proposed to study the genetic algorithm
performance. The Overlapping Trap5 is the most difficult one in this analysis.

In all functions we use v as the number of the variables, xi is a binary variable for
every i, and u = ∑xi is the number of ones in the solution x = (x1, ...,xv).

Fc2 Deceptive Problem. Proposed in [17] its auxiliary function and deceptive decom-
posable function are as follows.

f 5
Muhl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3.0 for x = (0,0,0,0,1)
2.0 for x = (0,0,0,1,1)
1.0 for x = (0,0,1,1,1)
3.5 for x = (1,1,1,1,1)
4.0 for x = (0,0,0,0,0)
0.0 otherwise

fc2(x) =

v
5

∑
i=1

f 5
Muhl(x5i−4,x5i−3,x5i−2,x5i−1,x5i) (16)

The optimum solution is the string with all positions put in 0.

F3 Deceptive Problem. This problem has been proposed in [17]. Its auxiliary function
and deceptive decomposable function are as follows.

f 3
dec =

⎧⎪⎪⎨⎪⎪⎩
2 for u = 0
1 for u = 1
0 for u = 2
3 for u = 3

f3deceptive(x) =

v
3

∑
i=1

f 3
dec(x3i−2,x3i−1,x3i) (17)
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The optimum solution is the string with all positions put in 1.

Trapk Problem. A Trap function of order k [21] can be defined as

Trapk(u) =

{
k u = k
k− 1− u, otherwise

fTrapk (x) =

v
k

∑
i=1

Trapk(x5i−4,x5i−3,x5i−2,x5i−1,x5i) (18)

We use k = 5. The optimum solution is the string with all positions put in 1.

OverlappingTrap5 Problem. An Overlapping Trap function of order 5 [20] can be
defined as

ai = Trap5(x5i−4,x5i−3,x5i−2,x5i−1,x5i)
bi = Trap5(x5i+1,x5i+2,x5i+3,x5i+4,x5i+5)
av/5 = Trap5(x5(v/5)−4,x5(v/5)−3,x5(v/5)−2,x5(v/5)−1,x5(v/5))
b0 = Trap5(x1,x2,x3,x4,x5)

fOverlappingTrap5(x) =

v
5−1

∑
i=1

[ai +ωφ(ai + bi)]+ av/5+ωφ(av/5 + b0) (19)

where ω = 1 and φ is defined as

φ(a+ b) =

{
−1 if (a+ b)≡ 0 mod 2
+1 if (a+ b)≡ 1 mod 2

The optimal solutions are constructed with blocks of size 5. There are two differ-
ent optimal solutions x1 and x2. x1 = (000001111100000....0000011111) and x2 =
(111110000011111....1111100000), where v (number of variables) fulfills the restric-
tion v≡ 0 mod 5.

For the Fc2 function, the graphical model assumed has 10 cliques, the number of
edges is 100, and all cliques have a size 5. For the F3 Deceptive function, the graph-
ical model assumed has 16 cliques, the number of edges is 48, and the size of the
cliques is 3. The Trap5 has the same graphical model as the Fc2 function. In the case of
OverlappingTrap5 the graphical model is more difficult to describe in terms of number
of cliques, size of cliques and number of edges.

5 Experimental Design

Two versions of the algorithm AETC – EDA are tested, with and without Metropolis
step. To test the proposed algorithms two experiments are designed using different pa-
rameter values and four test problems described in the Section 4. The first experiment
employs 48 and 50 variables and population sizes of 50, 70, 90, and 500 individuals,
and the second one employs 99 and 100 variables, and populations sizes of 140, 180,
and 1000 individuals. For each combination of factors, 30 replications are used. To as-
sess the performance of the algorithms the number of evaluations, the learning index,
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the similarity index, and the mean best solution value are calculated. In the Table 1 the
descriptions of the AETC – EDA parameters are listed, where the learning index and
similarity index are given to help the discussion of the results. For the two experiments,
the τ parameter of the ETreeAL (Algorithm 3) is fixed to 1, the number of generation
is 500, and the selection percent of the population is 60 in AETC – EDA.

Table 1. AETC – EDA parameters description

Parameters Description

Number of Evalua-
tions

Mean number of evaluation in 30 runs

Number of Cliques Mean Number of cliques of learned graph in 30 runs
Size of Cliques Mean size of cliques of learned graph in 30 runs
Edge number Mean number of edges of learned graph in 30 runs
Learning Index Mean rate in 30 runs, of cliques of the generator graph contained in

some one clique of the learned graph, divided by cliques number of
generator graph (See Definition 16)

Similarity Index Mean Similarity in 30 runs, of the learned graph respect to the gen-
erator graph (See Definition 15)

Mean best value The mean best value obtained by the AETC – EDA in 30 runs
Sample Complexity x x be the complexity of a Population of AETC – EDA in each genera-

tion and run (See Definition 13). The x is bounded by the value after
the sign <

6 Experimental Results and Discussion

The Tables 2, 3, 4 and 5 contain the results of the algorithm AETC – EDA without a
Metropolis step, and using 48 and 50 variables. In the Table 2 the results for 48 and
50 variables with a population size of 50, are given and the optimum is obtained in all
cases. In the Table 3 the results for 48 and 50 variables and a population size of 70
are presented. Note that the mean size of cliques used are less with a population of 70
than with a population of 50. In the Table 4 the results for 48 and 50 variables and a
population size of 90 are presented and the tendency to use less mean size of cliques is
observed. In the Table 5 the results for 48 and 50 variables and a population size of 500
and the tendency to use a size of cliques is fast equal to 2 can be clearly seen.

The Tables 6, 7, 8 and 9 contain the results of the algorithm using 48 and 50 variables
and employing a Metropolis step. In the Table 6 the results of 48 and 50 variables with
a population size of 50 are given, and the optimum is obtained in all cases. Note that
the size of cliques is more than 2, but the mean size of cliques is less than in the case
without the Metropolis step. In the Tables 7, 8, and 9 the tendency to decrease the mean
size of cliques continue to arrive short to 2.

In the Tables 10, 11, 12 and 13 the number of variables are 99 and 100, and the
algorithm do not contain a Metropolis step. In the Table 10 the population size is 100,
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Table 2. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 50.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 364.233 31731.6 86022.033 27268.666
Number of Cliques 37.2 35.9 43.933 60.5
Size of Cliques 2.586 2.869 2.414 3.706
Edge number 81.03 89.733 71.266 175.433
Learning Index 0.464 0.509 0.387 0.171*
Similarity Index 0.573 0.926 0.389 0.585*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.07 x < 0.3 x < 0.3 x < 0.4

Table 3. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 70.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 594.966 42616.033 112614.133 24704.666
Number of Cliques 37.633 33.7 41.066 49.6
Size of Cliques 2.439 2.774 2.385 3.142
Edge number 72.633 79.733 66.433 123.6
Learning Index 0.548 0.582 0.506 0.332*
Similarity Index 0.578 0.972 0.491 0.583*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.04 x < 0.2 x < 0.2 x < 0.2

Table 4. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 90.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 682.366 70882.333 127519.233 25284.3
Number of Cliques 39.866 34.366 38.166 42.433
Size of Cliques 2.342 2.629 2.529 3.03
Edge number 67.066 72.433 74.466 108.533
Learning Index 0.591 0.608 0.553 0.401*
Similarity Index 0.557 0.972 0.588 0.632*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.03 x < 0.09 x < 0.2 x < 0.2
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Table 5. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 500.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 4341.6 8383.166 4654.266 4456.466
Number of Cliques 48.7 45.2 48.033 47.3
Size of Cliques 2.006 2.04 2.021 2.042
Edge number 49.366 48.80 50.033 51.033
Learning Index 0.676 0.523 0.672 0.668*
Similarity Index 0.403 0.704 0.41 0.42*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.001 x < 0.004 x < 0.003 x < 0.004

Table 6. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 50. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 278.833 2112.8 7868.533 2879.5
Number of Cliques 43.333 50.8 46.333 59.633
Size of Cliques 2.432 2.594 2.138 2.594
Edge number 76.666 96.2 56.166 107.1
Learning Index 0.338 0.329 0.611 0.245*
Similarity Index 0.436 0.762 0.43 0.443*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.05 x < 0.2 x < 0.2 x < 0.2

Table 7. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 70. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 364.966 2931.7 9790.733 2627.266
Number of Cliques 41.6 45.133 44.033 48.466
Size of Cliques 2.279 2.516 2.247 2.488
Edge number 64.566 82.233 61.866 87.766
Learning Index 0.502 0.414 0.591 0.34*
Similarity Index 0.478 0.825 0.481 0.489*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.03 x < 0.08 x < 0.1 x < 0.07
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Table 8. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 90. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 522.533 3825.066 10160 1890.466
Number of Cliques 42.9 40.5 40.566 43.366
Size of Cliques 2.207 2.438 2.35 2.445
Edge number 60.233 70.233 66.933 76.233
Learning Index 0.588 0.485 0.555 0.411*
Similarity Index 0.482 0.829 0.53 0.5*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.02 x < 0.05 x < 0.06 x < 0.07

Table 9. AETC – EDA (CG - Sampler with a Metropolis step).Population size= 500. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 50 48 50 50
Number of Evaluations 6452.566 4228.7 3344.866 3403
Number of Cliques 49 46 48.4 48.166
Size of Cliques 2 2.021 2.012 2.018
Edge number 49 48 49.6 49.966
Learning Index 0.677 0.516 0.674 0.673*
Similarity Index 0.4 0.687 0.406 0.409*
The Optimum value 40 48 50 55
Mean best value 40 48 50 55
Sample Complexity x x < 0.0007 x < 0.002 x < 0.002 x < 0.002

in the Table 11 the population size is 140, in the Table 12 the population size is 180,
and in the Table 13 is 1000. The tendency to decrease the size of cliques needed by
the algorithm continues, and when the size of the population is 1000, the mean size of
cliques arrives short to 2.

The tables 14, 15, 16 and 17 the number of variables is 99 and 100 and the Metropolis
step is contained in the algorithm. The tendency to use less size of cliques with growing
population sizes continues to arrive short to 2 with population size of 1000.

The similarity index in the first experiment using 48 and 50 variables is less in the
case of the algorithm with Metropolis step than without Metropolis step. This can be
seen comparing the Tables 2, 3, 4 and 5 with the Tables 6, 7, 8 and 9. The same behavior
can be seen in the second experiment using 99 and 100 variables (see the Tables 10, 11,
12 and 13 and the Tables 14, 15, 16 and 17). On the other hand, the learning index, in
both experiments is increased, when the population size is increased too.
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Table 10. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 100.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 3411.1 324764 625310.666 325852.8
Number of Cliques 100.066 81.833 90.7 116.6
Size of Cliques 2.713 2.319 2.15 3.23
Edge number 216.533 128.533 118.366 267.066
Learning Index 0.244 0.461 0.301 0.236*
Similarity Index 0.494 0.722 0.285 0.438*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.05 x < 0.2 x < 0.3 x < 0.1

Table 11. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 140.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 3819.6 722050.6 848906.533 401630.266
Number of Cliques 82.033 85.433 84.633 87.133
Size of Cliques 2.497 2.181 2.232 2.762
Edge number 165.266 114.6 128.8 191.066
Learning Index 0.403 0.508 0.37 0.392*
Similarity Index 0.528 0.743 0.396 0.543*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.04 x < 0.06 x < 0.2 x < 0.2

Table 12. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 180.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 7461.566 1450325.6 945505.133 484636.8
Number of Cliques 78.166 89.7 81.3 85.533
Size of Cliques 2.419 2.116 2.312 2.667
Edge number 149.233 109.533 135.7 179.9
Learning Index 0.483 0.499 0.459 0.467
Similarity Index 0.552 0.709 0.491 0.589*
The Optimum value 80 99 100 110*
Mean best value 80 99 100 110
Sample Complexity x x < 0.02 x < 0.06 x < 0.07 x < 0.09
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Table 13. AETC – EDA (CG - Sampler without a Metropolis step). Population size= 1000.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 152299.233 1874572.8 26963.8 111745.8
Number of Cliques 94.9 90.566 95.166 93.6
Size of Cliques 2.052 2.082 2.05 2.094
Edge number 104.866 105.433 104.266 108.8
Learning Index 0.66 0.534 0.661 0.651*
Similarity Index 0.429 0.741 0.426 0.445*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.002 x < 0.004 x < 0.002 x < 0.004

Table 14. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 100. T = 8000.
α = 0.9

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 1522.566 15516.733 19932.633 72130
Number of Cliques 92.3 97.466 98.733 106.5
Size of Cliques 2.438 2.257 2.002 2.17
Edge number 163.6 140.133 99.266 137.133
Learning Index 0.318 0.466 0.663 0.392*
Similarity Index 0.449 0.772 0.396 0.354*
The Optimum value 80 99 100 110
Mean best value 80 99 100 109.933
Sample Complexity x x < 0.04 x < 0.08 x < 0.09 x < 0.09

Table 15. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 140. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 2551.166 24823.366 28188.766 22701.166
Number of Cliques 82.9 94.666 98.666 97.966
Size of Cliques 2.306 2.092 2.004 2.189
Edge number 134.933 110.233 99.433 129.933
Learning Index 0.467 0.494 0.668 0.458*
Similarity Index 0.483 0.703 0.4 0.402*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.02 x < 0.04 x < 0.06 x < 0.05
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Table 16. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 180. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5

Variables 100 99 100 100
Number of Evaluations 4854.133 28234 35599.4 28616.266
Number of Cliques 86 89.2 98.466 95.066
Size of Cliques 2.224 2.181 2.005 2.15
Edge number 124.566 116.366 99.566 117.566
Learning Index 0.582 0.528 0.669 0.535*
Similarity Index 0.497 0.775 0.402 0.41*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.01 x < 0.03 x < 0.04 x < 0.03

Table 17. AETC – EDA (CG - Sampler with a Metropolis step). Population size= 1000. T = 8000.
α = 0.9.

Parameters Fc2 F3 Trap5 OverlappingTrap5
Variables 100 99 100 100
Number of Evaluations 202306.4 125055.033 17410.2 35843.866
Number of Cliques 98.966 96.566 97.133 97.2
Size of Cliques 2 2.015 2.02 2.022
Edge number 99.033 99.43 101.033 101.2
Learning Index 0.656 0.504 0.667 0.667*
Similarity Index 0.39 0.674 0.41 0.411*
The Optimum value 80 99 100 110
Mean best value 80 99 100 110
Sample Complexity x x < 0.0004 x < 0.0009 x < 0.001 x < 0.0009

The two experiments give the following results: the number of evaluations differ
between test functions, and between population sizes (see tables). The optimum is ob-
tained in practical all the cases, except in only one run (see Table 14) for
OverlappingTrap5 function, where a local optimum is obtained. In all tables the *
means, in the case of the OverlappingTrap5 function, that the learning and similarity
indexes are calculated with respect to the hypothetical model of Trap5 function. The
learning and similarity indexes, showed in the tables are calculated with the last model
obtained where the optimum is found. However, intermediate models obtained along
the evolution of the algorithm reach better learning and similarity indexes.

Observing the figures resuming the relationships between population size, and num-
ber of evaluations, it is seen that the algorithms performance for test function Fc2 dif-
fers from the others test functions (see figures). The population size of 500, decreases
the number of evaluations, canceling the effect of the Metropolis step, except for the
Fc2 function (see Figure 1). The performance of this test function is better for short
population sizes, coinciding with the results founded in [13].
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Fig. 1. Fc2 function

Fig. 2. F3 function

Fig. 3. Trap5 function
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Fig. 4. Overlapping Trap5 function

The number of evaluations of the test functions F3, Trap5 and OverlappingTrap5

(see Figures 2, 3, and 4) grows first and then go down at population size of 500. The
number of evaluations of the algorithm using Metropolis step has a better performance
for all the test functions employed than the algorithm without using it, except for the
test function Fc2.

7 Conclusions

As results of the experiments is to emphasize that: the algorithms obtain the optimum in
practically all cases, the algorithm using the Metropolis step outperforms the other one
in all cases, except for Fc2 function, because it can be optimized with small population
sizes either with Metropolis step or not. For 48 and 50 variables and populations of 500
individuals, models of cliques with 2 variables (a tree model) are sufficient to obtain
the optimum, and the same result is obtained for 99 and 100 variables and populations
of 1000 individuals. The algorithms use the learned cliques at each step of the inner
cycles to obtain the best solution at hand. With growing population sizes the mean size
of cliques employed by the algorithm with or without the Metropolis step arrives short
to 2, but this arriving is faster with metropolis step algorithm. The sample complex-
ity is always greater than zero and decreases proportionally to the population size. So,
both, mean size of cliques and the sample complexity decrease proportionally to the
population size. The same can be said for the mean number of edges of the graphical
model. With respect to the number of evaluations of the algorithm, using Metropolis
step, a better performance is observed for all the test functions employed, than without
using it, except for the test function Fc2. The similarity index for the algorithm with
Metropolis step is less than the similarity index for the algorithm without Metropolis
step. The learning index increases directly proportional to the population size. The rea-
son could be that the algorithm has more information about the optimization problem
when the size population is increased. It seems as if for this benchmark functions used
linkage learning is more important (mean cliques sizes) for shorter populations, and
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for larger populations cliques of size 2 are enough. As future work, experiments using
intermediate population sizes will be performed, and more complex test functions will
be used.
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Abstract. Critical infrastructures (CIs) provide important services to
society and economy, like electricity, or communication networks to en-
able telephone calls and internet access. CI services are expected to pro-
vide safety and security features like data Confidentiality and Integrity
as well as to ensure service Availability (CIA). The complexity and in-
terdependency of CI services makes it hard for CI providers to guarantee
those features or even to be able to monitor the CIA risk by taking into
account that an incident in one CI service can cascade to another CI
service due to a dependency.

This work presents a tool implementing a previously published
Bayesian network based CI risk model which attempts to address the
challenges of interdependent CI risk monitoring. While Bayesian net-
works provide a great theoretical basis for CI risk monitoring, tool
support to cover the challenges in this field is missing. The tool was
implemented to provide visual guidance for domain experts to gener-
ate a CI risk model from real-world CIs and to simulate/emulate risk
scenarios based on this model.

Keywords: Critical infrastructures, Critical infrastructure modelling,
Bayesian networks, Dynamic Bayesian networks, Risk estimation, Risk
prediction.

1 Introduction

Critical infrastructure (CI) security has become an important research topic in
the last years. CIs are service providers, the services they provide are so vital to
the social and economic well-being of a society that a disruption or destruction of
the infrastructure would have severe consequences. CI sectors include, amongst
others, the telecommunication, electricity and transport infrastructures.
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Security in CIs can be seen from many viewpoints. In this work, the term CI
security (or CI risk) is used to define the risk of a breach of confidentiality, the
risk of a breach of integrity and the risk of degrading availability (CIA) of a CI
or CI service. During our research some key factors that influence CI security
were identified: First of all, the complexity of CIs makes security complex. CIs
are large organizations and their security is influenced by technical, social and
organizational factors both at a national and international level. This complexity
makes it hard to identify the most critical parts of a CI and their interactions
which influence CI security. Secondly, the dependencies and interdependencies
between CIs and CI services influence the security of CIs. CIs can be dependent
on the service of other CIs and a security incident in one CI or CI service can
cascade and cause an incident in another CI or CI service. Interdependencies
exist when an incident cascades back to the initial service through dependent
services. Thirdly, the diversity of CI sectors makes it hard to have a holistic
view on CI security, e.g. by including dependencies to other CI sectors in CI risk
estimation.

CI security modelling ([2], [1]) was introduced to address those problems and
provide a CI model for on-line risk monitoring. The main entities of the CI se-
curity model are CI services and dependencies between CI services. The model
can estimate the CI service risk after a security incident (observed by system
measurements) and distribute this estimate to dependent CI services which in
turn can use this information to update their risk estimate. The estimated CI
service risk level is represented by a risk value between one (no risk) and five
(maximum risk). The strong points of the CI security model are that by using
CI service risk as the model output, uniform and comparable data is created
that is valid for all CI sectors, and that dependencies can be included in CI
service risk estimation. In [13] this model was extended with a Bayesian net-
work based component to achieve a more powerful approach for risk estimation
which also allows some advanced features like risk prediction and handling of
interdependencies using Dynamic Bayesian networks (DBNs).

The contribution of this work is the presentation of a tool based on the ideas
published in [13]. The main tasks of the tool are on the one hand to provide a
simple and easy to understand graphical user interface to support the decompo-
sition of a CI into the CI security modelling structure (CI services, dependencies
and base measurements), to facilitate expert input and to provide a simple visual
way for base measurement normalization and initial estimation of CI service risk
(those steps will be detailed further in Section 3). On the other hand the tool
provides an implementation of algorithms for automatic CI service risk prob-
ability learning. Although several general-purpose Bayesian network tools are
available, non of those tools fulfilled the requirements of seamless integration
with the presented tool and were not able to handle some specific requirements
of CI security modelling like CI service risk prediction and handling of inter-
dependencies using DBNs. The presented tool fully supports the concepts of
building a Bayesian network based CI security model presented in [13] as well
as risk simulation/emulation in such a model.
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The remainder of the paper is organized as follows: In Section 2, work related
to CI security modelling is discussed. In Section 3, relevant ideas of CI security
modelling are presented to set the context for the tool described in Section 4.
Finally, Section 5 concludes the paper and gives an outlook on future work.

2 Related Work

The concept of CI security modelling relates to several research areas: CI mod-
elling and simulation, CI (inter)dependency identification and risk estimation in
CIs. Identifying the various kinds of dependencies among CIs has been subject
to previous research. In [10] Rinaldi et al. provide an excellent overview on the
dimensions where interdependencies can occur. Several publications propose CI
models based on various different modelling techniques. For example, conceptual
modelling is used in [16] by Sokolowski et al. to represent an abstract and simpli-
fied view of CIs. In [8] Panzieri et al. utilise the complex adaptive systems (CAS)
approach for CI modelling. The model is derived by modelling the mutually de-
pendent sub-systems of the infrastructure. Risk models for CIs were proposed
by some authors. For example, in [7] Haslum et al. use continuous-time hidden
Markov models for real-time risk calculation and estimation. In [3] Baiardi et
al. propose a risk management strategy based on a hyper-graph model to detect
complex attacks as well as to support risk mitigation. In [6] Haimes et al. pro-
pose an eight step risk ranking and filtering framework based on risk scenarios,
using hierarchical holographic modelling. Bayes theorem is used to estimate the
likelihood of risk scenarios. In general, previously published CI models and CI
risk models vary greatly in their purpose and the extent to which they were
implemented. The models are usually too high-level and therefore lack practical
relevance or they are focused on a specific CI and therefore lack generality.

The idea of the CI security modelling differs greatly from the models previ-
ously published. It tries to establish abstract models of CIs that can be compared
with each other while maintaining generality by enabling it to be applied to all
kinds of CI sectors. CI security modelling is ongoing research, the first publi-
cations date from 2010 ([2], [1], [11]). The intend of those publications was to
introduce the service based notion of CIs and to illustrate the dependence of ser-
vices amongst another. The need of a common modelling entity to address the
diversity of different CI sectors was introduced by using a risk-based CI model.
Risk is estimated from system measurements using a weighted-sum method. One
of the shortcomings of this original model is that it relies heavily on expert as-
sessment. Despite evaluating the structure and dependencies of a CI, experts also
assess the importance (weight) of each system measurement to a service in order
to be able to calculate risk using a weighted sum. In [13] BNs are introduced to
the CI security model to provide a more sophisticated yet more convenient way of
representing risk which allows to address shortcomings of the original proposal.
Using this approach, system measurements do not need to be weighted for their
importance which reduces the dependence on expert knowledge. Using BNs and
their temporal extension, DBNs, as a modelling base also allows to include some
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features that were not covered by the original proposal, like risk prediction or a
way to model interdependencies.

To address the complexity of CIs and to reduce the dependence on expert
assessment in determining the structure of the CI security model, a CI analysis
method based on dependency analysis was presented in [15]. The idea is to utilise
different information sources on different organizational levels and to combine
social as well as technical sources to get a holistic view on the investigated
CI and to identify critical services, dependencies between critical services and
system measurements to determine CI service states.

In [14] a set of indicators is presented that allow to evaluate the correctness
of calculated service risk in form of an assurance indicator and in [4] the risk
indicators received from dependent services are evaluated based on the estimated
trust in those services.

A multi-agent based tool supporting risk monitoring using the CI security
modelling approach was presented in [12]. This tool is based on a multi-agent
platform which allows it to operate in distributed environments. The objective of
the tool is to support the deployment phase of a CI security model where parts
of the monitoring environment need to run independently in different locations
(e.g. in different CIs or different sites of a CI). The tool presented in this work
on the other hand does not cover the deployment phase of the CI security model,
but the design of the model. Although the two tools are not compatible yet, in
future CI security models created by this tool could be used to configure the
tool presented in [12].

Although the previously published work related to CI security modelling rep-
resents a solid theoretical basis, the practical relevance could not be evaluated
due to the lack of tool support. The work presented in this article addresses this
issue by presenting a tool that fully supports the concepts of Bayesian network
based CI security modelling presented in [13].

3 BN based Critical Infrastructure Security Model

BNs provide a way to model the probability of an event, given the state of events
it depends on. BNs are directed acyclic graphs where the nodes represent event
variables and the directed arcs represent the relationships or dependencies be-
tween the variables. Nodes in a BN are only dependent on their parent nodes,
not on any other ancestors (conditional independence). In other words, condi-
tional independence is given if a node is independent of its ancestors given the
state of its parents. Each node in the BN has a conditional probability table
(CPT) assigned to it containing the probabilities of the node being in a certain
state, given the state of the parent nodes. Each possible combination of each
state of the parent nodes has to be evaluated. It can be easily seen that the
CPTs for nodes with a significant amount of parent nodes with multiple states
are quite complex. The size of a CPT grows exponentially with the number of
parent nodes.

In this work the main objective of the BN is to be used as a classifier. In
this case, one is interested in the most probable state of a variable given a
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combination of states of the parent variables. For example, it is observed that
variable A is in state “true” and variable B is in state “false”. What is the most
probable state of variable C?

Several reasons lead to using BNs for this model. First of all, the graphical
structure of BNs is very intuitive and easy to interpret for people not familiar
with the modelling domain, no model specific aspects need to be considered.
Secondly, BNs have the capability of learning probabilities from data as well as
being able to be assigned by experts. It is assumed that it is essential in the
CI field, where sophisticated expert knowledge is available, experts will evaluate
probabilities that can not be learned from data or re-evaluate probabilities that
were learned from insufficient data. Furthermore, BNs provide a very natural
way to model dependencies. One of the main goals of BNs is to capture the
relationships and dependencies between events, as does the CI security model.

3.1 Structure for Bayesian Network

When building a model of complex systems, understanding the structure of the
system and the interaction between components and other external systems is
crucial. It is equally important to understand the purpose of the model to be
able to map the real system to the abstract entities of the model.

In the CI security model the central modelling entities are CI services and
the interactions (or dependencies) between services. A CI service is provided
by a CI either to customers or to other CI services as a dependency. The main
objective is to model CI service risk by observing system measurements that
define the service state and by observing dependent CI service risk. The map-
ping between real-world observations and abstract risk estimates is done by the
Bayesian classifier.

The main concern when building a CI model is complexity. Is it feasible to
identify the critical services and dependencies that adequately represent the
structure in a complex system like a CI and to represent them in a model? In
an attempt to address this question a CI analysis method based on dependency
analysis was proposed in previous work ([15]). This method adapts the PROTOS-
MATINE dependency analysis method ([5], [9]) to be used to find the structure
for the CI security model and to identify the modelling entities used in the CI
security model (critical services, dependencies and system measurements). The
method is based on the assumption that in order to get a holistic view of a
complex system, all available information sources (e.g. documentation, manuals,
interviews, contracts, ...) on all levels in an organization (management, process,
technical) need to be combined. The outcome of this method is a graph that
contains the critical services as nodes and their dependencies as edges. System
measurements that define a CI service state can be seen as dependencies of
this service. An example for the structure of a CI security model can be seen
in Figure 1. The nodes SA to SD represent critical services, the nodes M1 to
M7 represent system measurements. The edges represent a dependency between
services (e.g. the availability of SA depends on SB) or between a service and a
system measurement (e.g. the availability of SA depends on the state of M1).
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Fig. 1. Example of a CI security model structure

The grey cycles CI A and CI B do not have any purpose in the model, they
should illustrate that dependent services can also belong to different critical
infrastructures (e.g. SB of CI A is needed to ensure availability of SC in CI B).

3.2 Conditional Probability Tables

After evaluating the structure of the BN, the next step is to evaluate the CPTs
for each node. As mentioned before, the BN is used as a classifier and the main
interest is in determining the most probable state of a node for each combination
of states of the parent nodes.

The following list contains a summary of definitions and pre-conditions to be
able to learn the conditional probability tables for the nodes in the context of
the CI security model:

1. The state of a CI service node represents risk (for example, C, I or A). The
risk value is limited to 5 discrete states, with 1 representing lowest risk and 5
representing highest risk. Since service risk is an abstract concept and can not
be directly measured, an expert has to evaluate the risk a service experienced
during the time period used to learn the probabilities (for example, an expert
estimates that from time x to time y the service faced an incident that can be
classified confidentiality risk level 3). With this information, the probabilities
with respect to the states of the parent nodes can be learned from recorded
data samples.

2. System measurement usually represent continuous measurements. In order
to be more easily processed, they are pre-processed to 5 discrete values with
1 representing a measurement during normal system operation and 5 repre-
senting a maximum allowed deviation from normal operation. Boolean-type
measurements will only have the states 1 (normal operation) and 5 (abnor-
mal operation).
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3. System measurements need to be observable and it is assumed that their
values can be recorded over time and can be combined with a time stamp.

4. Each CPT represents the probabilities for one risk indicator (either C, I or
A). If more than one risk indicator is interesting for a CI service, probabilities
for each indicator have to be estimated separately.

Learning of conditional probabilities for CI service CPTs is a matter of finding
each occurrence of a certain dependency state combination (where a dependency
can be a base measurement or another CI service) in the data set and determining
the service risk state at the time of the occurrence. The most frequent service
risk state is the most probable service risk if this dependency state combination
occurs.

Probabilities that can not be learned from data samples because of incomplete
data (state combinations that never happened or only rarely happened) can be
supplemented by experts. This can be a burden since CPTs might be complex
(CPTs grow exponentially with the number of parents of a node).

3.3 Risk Prediction

The CPTs described in the previous section only capture the current risk of a
service (if there is a certain combination of parent node states, what is the most
probable risk of the service). In practice companies are usually also interested in
the evolution of risk over time after an event occurred. One way of representing
this is to estimate the short-term (e.g. hours after an event) mid-term (e.g. weeks
after an event) and long-term (e.g. months after an event) effects of an event
or incident. In the BN model this can be represented using DBNs. DBNs are
an extension of BNs to allow to model changing temporal relationships between
variables. Both dependencies between variables and conditional probabilities can
change over time. DBNs can model this by representing each time frame t by a
separate BN and linking the time slices in the direction of the time flow.

The basic idea of CI service risk prediction is to separate the data that is
used to learn the BN into time frames after an event happened. A CPT can
be learned (or estimated by an expert) for each time frame. This will give an
estimate of the most probable state of a service in each time frame, e.g. if an
incident happens, what is the risk the service faces in the next hours, the next
weeks and the next months.

Using DBN for risk prediction makes learning the CPTs considerably more
complex. More CPTs need to be considered since each node has a separate CPT
in each time frame and the amount of data needed to learn grows in terms of
the time that has to be considered as well as the amount of recorded incidents
to be able to capture all possible states in each time frame.
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Fig. 2. Example of a cycle in a BN

3.4 Interdependencies – Directed Cycles in Bayesian Networks

One of the shortcomings of BN models is that it is not easily possible to model
directed cycles. In the context of the CI security model this is a problem, since
one of the main goals of the work is to model interdependencies between CI
services. Interdependencies exist when an incident in one CI service effects the
same service again through dependent services. An illustration of this behaviour
can be seen in Figure 2, where the dependency cycle is SA → SB → SC →
SD → SA. The nodes M1,M2,M3,M4 represent system measurements that
can change the state of the service nodes.

One way to address the shortcoming of BNs for this scenario is to use DBNs.
The idea is to estimate the time (t) it takes for an incident to loop back to a
service through a dependent service. This time is taken as the time frame to build
the DBN. The CPT in the first time frame represents the probabilities for CI
service risk given an event without the loop-back effect, the CPT in the second
time frame would represent the probabilities of service risk under the assumption
that the effects of the original event loop back during this time frame. The CPTs
of the third, fourth and n-th time frame represent the probabilities of service risk
after the second, third and (n-1)th loop, respectively.

4 Support Tool

In this section the tool that was implemented to support the Bayesian network
based critical infrastructure risk model is presented. The purpose of the tool is to
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graphically support all the steps of the CI risk model in an intuitive way so that
expert input is facilitated. Furthermore, the tool allows to simulate or emulate
CI risk behaviour after the model is completed.

The design principles for the graphical user interface (GUI) were to provide
a clean, well structured interface to the user that is easy to understand and use,
and contains all the elements of the Bayesian network based CI security model.
To achieve those goals, the tasks were split into 5 separate sub-tasks which are
realized in 5 separate tabs in the GUI of the tool:

1. CI structure: Decomposition of CI and representation in services, depen-
dencies and base measurements.

2. Data pre-processing: For each service, allow to enter base measurement
normalization bounds and service risk estimation.

3. Interdependencies: Allow special handling of interdependencies if cycles
in the graph structure exist.

4. Conditional probability tables: For each service, allow to learn condi-
tional probabilities and allow expert estimation where incomplete or insuffi-
cient data is available to learn the probabilities.

5. CI simulation/emulation:Allow to simulate or emulate CI risk behaviour
and service risk propagation through dependencies.

Those 5 tasks will be detailed in the following sections.

4.1 CI Structure

The structure of the CI according to the CI security model (services, dependen-
cies between services and base measurements) needs to be determined using a
dependency analysis method like the one presented in [15]. To graphically sup-
port this analysis, the CI structure tab of the tool is designed to create a graph
that is composed of those elements, as can be seen in the screen-shot in Figure 3.
The incentive of this representation is to provide an easy to understand overview
of the structure and identify possible flaws and errors in the representation of
the CI security model at an early stage.

Each service and base measurement in the model is given a unique name upon
creation, dependencies are created via drag-and-drop between two elements. To
be able to learn probabilities at a later stage, each base measurement needs to
be assigned a file containing recorded data samples where each sample has the
format “Unix time stamp”1;“value” (e.g. 1338527100;0.002). Each service can be
assigned a service risk file that contains experienced service risk at certain times
in the same format as base measurement files, with the difference that service
risk values can only be 1,2,3,4 or 5. Since service risk is an abstract concept
that can not be directly measured, this information might not be available at

1 A time stamp in Unix time format represents the number of seconds since the the
1st of January 1970 UTC (Coordinated Universal Time). For example, 1338527100
is “Fri, 01 Jun 2012 05:05:00” UTC.
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Fig. 3. Screen-shot of CI structure tab

the time of creation. Therefore the service risk file association is not mandatory
and can be estimated at a later stage.

To account for the fact that each risk indicator (Confidentiality, Integrity and
Availability - CIA) can have a different security model structure, each risk indi-
cator model is created separately. Using the Risk Indicator drop-down menu in
the top panel of the tab, the appropriate risk indicator model can be selected.
Although not necessary, each indicator model can have the same services and
base measurements (which means that the same CI service might or might not
want to monitor the risk for each indicator). Therefore, services and base mea-
surements with the same name in the different indicator models will be treated
as one service at a later stage.

To be able to resume working on a CI security model, the tool allows to
save the model to a XML-based file structure. Aside from the security model
structure, any information provided in one of the subsequent steps will be stored
using this file structure.

4.2 Data Pre-processing

The data pre-processing tab is designed for two purposes: To estimate the CI
service risk where no service risk file was provided and to set the base mea-
surement normalization bounds for each base measurement a service depends
on. This information is needed to be able to learn conditional probabilities from
data at a later stage. To show the data for a service, the appropriate service can
be selected using the Risk indicator and CI services drop-down menus.
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Fig. 4. Screen-shot of data pre-processing tab

As a first step, all available time stamps found in the base measurement files
for the selected indicator will be displayed in the Time column of the Data
section. The Service risk column of the Data section represents the service risk
of the selected service at the displayed time points. If a service risk file was
provided, this column is filled with the contents of the file. If not, this column
remains empty. It is editable so that experts can provide service risk estimates for
the corresponding time points. It is necessary to load the time stamps of all base
measurements of an indicator model and not only the time stamps from the base
measurement the current service depends on, because the service risk estimation
is used by dependent services for learning conditional probabilities. But if the
base measurement files of those dependent services contain more data samples,
there will be no service risk estimate and those data samples can not be used.
As an example, considering the model displayed in Figure 3, ServiceD depends
on ServiceC. If Measurement7 contains less data samples than Measurement5
or Measurement6, service risk of ServiceC would not be estimated if only time
stamps for Measurement7 would be considered. Therefore, the additional data
samples of Measurement5 and Measurement6 could not be used for learning
conditional probabilities.

The rest of the columns in the Data section are base measurements and ser-
vices the current service depends on. If the dependency is a service, the cor-
responding service risk file is displayed. If not, the service risk estimation for
this service has to be done first to be able to complete the data. If the depen-
dency is a base measurement, a table to enter normalization bounds will be
displayed in the Base measurement normalization tables section so that contin-
uous measurements can be normalized to 5 steps, as specified by the security
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model. The tool allows to set the lower and upper bound for each discrete step
as well as to choose approximation if no value is available at a time point. The
approximation was introduced to account for small discrepancies in the time a
measurement was taken. For example, assuming that the interval a measurement
is taken is 30 seconds for both Measurement5 and Measurement6, but Measure-
ment6 measures 15 seconds later than Measurement5, there would never be
a measurement taken at the same time and learning conditional probabilities
would not be possible. Setting the approximation method to Use last available
value for a base measurement fills gaps at time points where no value is avail-
able with the last observed state. This method is obviously not suited if there
are large gaps between subsequent measures, but sufficiently approximates small
gaps.

If the Show data button for a base measurement is pushed, the original values
of this base measurement are shown in the Base measurement values section to
visually assist in finding the optimal normalization bounds. The Update normal-
ized data button will show the normalized data in the corresponding column of
the Data section as well as saving the normalization bounds.

4.3 Interdependencies

To account for the possibility of interdependencies (directed cycles in the CI
security model), the interdependencies tab as shown in Figure 5 was introduced.
It is used to obtain information needed for special handling of services that
are part of a cycle so that learning of conditional probabilities using dynamic
Bayesian networks can be achieved. For each indicator model, which can be
selected via the Risk indicator drop-down menu, the tool identifies any cycles
in the graph model and populates the Interdependencies drop down menu. For
now, only simple cycles (each service can only be part of one cycle) are supported
by the CI security model.

By selecting an interdependency, the effected services as well as the dependen-
cies that form the cycle will be displayed on the right side and on the left side
a section to enter the interdependency information is displayed. The required
information is:

– Round-trip time (in Seconds): The estimated time an incident needs to
loop back to the originating service.

– #Round trips: For each service it can be decided for how many loops
service risk estimation is desired. In many cases, the main effects of the loop-
back will be in the lower order loops, but making the number of considered
loop-backs configurable makes the model more flexible.

4.4 Conditional Probabilities

The conditional probabilities tab, as shown in Figure 6, is designed to learn the
conditional probability tables for each service, and allow for expert estimation
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Fig. 5. Screen-shot of interdependencies tab

where learning is not possible due to insufficient data. Furthermore, the condi-
tional probabilities tab is designed to allow to enable or disable risk prediction
for each service as well as special handling of interdependencies, if cycles exist
in the CI security model.

Using the Risk indicator and CI services drop-down menu allows to select
the desired CI service, which will display the dependencies of the service as
well as all possible input state combinations in the Dependency states section.
On the right next to the Dependency states section, the CPTs for Service risk
probabilities, Short-term risk probabilities, Mid-term risk probabilities and Long-
term risk probabilities are shown. The risk prediction CPTs are only enabled if
risk prediction is enabled.

By enabling the Risk prediction check button for a service in the CI services
section, text fields in the Time period after an event section are enabled that
allow to specify, in Seconds, what time period after an event happened is con-
sidered as short-term risk, mid-term risk and long-term risk. This information
is used by the conditional probability learning algorithm.

By pressing the Learn Conditional Probabilities button for a service in the
CI services section, the conditional probabilities will be learned using the data
provided by the data pre-processing step. The following simple and straight-
forward algorithms are used to learn the conditional probabilities from data:

– Learning of service risk probabilities: For each occurrence of a depen-
dency state combination, the associated service risk (1,2,3,4 or 5) is counted
and at the end divided through the total number of occurrences of this de-
pendency state combination, multiplied by 100%. This will provide the risk
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Fig. 6. Screen-shot of conditional probabilities tab

probability for this dependency state combination which is displayed in the
Service risk probabilities table.

– Learning of risk prediction probabilities: The risk prediction learning
algorithm uses time to measure the changes in CI service risk after an event
happened. For each occurrence of a dependency state combination, the algo-
rithm will take the data samples recoded afterwards, within the time span
provided by the Time period after an event text fields for short-, mid- and
long-term prediction2. The service risk from those data samples in the re-
spective time frames is counted and at the end divided through the maximum
number of collected data samples in the time frame multiplied by 100%. This
gives a probabilistic measure of service risk after an event with a certain de-
pendency state combination happened, shortly after an event as well as in
the mid- and long-term after the event.

After the learning algorithms finished, a window providing statistics from the
learning algorithm, as shown in Figure 7 will be displayed. For each dependency
state combination it is shown how many data samples with a certain risk state
were observed, as well as the total number of observed data samples for this
dependency state combination. Those statistics are shown for service risk proba-
bilities as well as short-, mid- and long-term risk probabilities, if risk prediction
was enabled. The learning statistics can be saved to disk, if necessary.

2 Taking the values from Figure 6, the timespan would be 0-3600 Seconds after the
event for short-term prediction, 3601-43200 Seconds after the event and 43201-86400
Seconds after the event.
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Fig. 7. Screen-shot of conditional probability learning statistics

If risk probabilities for a dependency state can not be learned because this
combination did not occur in the data used to learn the probabilities, those lines
in the risk probability tables remain empty as can be observed in Figure 6. They
can be supplemented with probabilities estimated by an expert. Please note that
Bayesian networks are used as a classifier in this application and therefore only
the risk state with the highest probability is of interest.

Services that are part of an interdependency need special handling to be able
to learn the conditional probabilities for each round. As can be seen in Fig-
ure 8, each interdependency round that is considered by the model is treated
separately and shown as a separate service in the CI services drop-down menu.
For example, it can be seen in Figure 5 that for ServiceD in the Confidentiality
risk indicator 2 interdependency rounds are considered. The CI services drop-
down menu of the Confidentiality indicator in Figure 8 contains two instances
of ServiceD: (I1):ServiceD and (I2):ServiceD, representing the probabilities of
ServiceD without loop-back effect (I1) and with first-order loop-back effect (I2).
Following conditional probability algorithm learning is used for learning condi-
tional probability tables of services that are part of an interdependency:

– Learning of interdependent service risk probabilities:When the Learn
conditional probabilities button of a service is pressed which is part of an
interdependency, the time interval of the currently considered round (e.g.
(I1) or (I2)) is calculated from the provided interdependency round-trip
time. For example, using the round-trip time in Figure 5, (I1) would have
a time interval of 0-10000 Seconds and (I2) would have a time interval of
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10001-20000 Seconds. After that, the data set that is used to learn the con-
ditional probabilities for an interdependency round is composed as follows:
The algorithm iterates through the dataset until a data sample indicates
that the service operates under normal condition (dependency state of all
dependencies is 1). All data samples after this event that are in the desired
time frame (e.g. (I1) or (I2)) are copied to a new data set. If the system goes
to normal condition before the time frame ends, the algorithm is reset and
starts a new time frame. The new dataset is used to learn the conditional
probability table using the algorithms presented before. Risk prediction can
be enabled individually for each interdependency round of a service, but ob-
viously learning results can only be provided if the round-trip time is longer
than the prediction interval of short-, mid- or long-term prediction.

Fig. 8. Special handling interdependent services

To illustrate the applicability of the presented conditional probability learning
process, a practical example of the learning process without taking into account
interdependencies and risk prediction, is shown. This small example is composed
of a CI service where the CI service risk is estimated from two base measure-
ments. The CI service risk represents the risk experienced by supporting services
(like ssh, ping, mail server,...) of a computing cluster. The base measurements
represent the data records of a service monitoring tool (Nagios) and a service con-
figuration and deployment tool (Puppet). The data sets are data records from a
real-world distributed computing cluster called Grid’5000 (http://grid5000.fr/).

The Nagios status base measurement data set is presented in Figure 9. The sta-
tus information was parsed from log files and the textual state explanation (OK,
WARNING, UNKNOWN, CRITICAL) was mapped to numeric states (1,2,3 and
5) to be able to visualize the data set. The dataset contains 4356 data points
collected over the time span of one month. It can be observed that the nor-
malization states 1 and 2 occur substantially more frequently than the states 3
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and 5 which suggests that automatic learning for the high CI service risk state
probabilities will be less accurate and will have to be supplemented by expert
estimation.
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Fig. 9. Nagios status dataset

The Puppet status base measurement is visualized in Figure 10. The status
information was parsed from log files and the textual state explanation (un-
changed, changed, unresponsive, pending and failed) was mapped to numeric
states (1-5) for visualization. The dataset contains 28987 data points collected
over the time span of three months. The majority of data points are located in
normalization states 1 and 2, with very few data points indicating failed deploy-
ments in normalization state 5. Again, those data points will not be sufficient to
learn the risk probabilities for high CI service risk states.

The risk probabilities for the Service Nodes CI service are visualized in Fig-
ure 11. The probabilities were automatically learned using the previously pre-
processed data sets. The learning statistics of this learning process are presented
in Table 1. Only some of the probabilities, mainly in dependency state combina-
tions containing the normalization values of 1 and 2, but also dependency state
combinations where the Nagios status is 5, could be correctly learned. The other
state combinations, which rarely occur in the data sets, could not be learned at
all or were wrongly classified. The normalization state 4 is not a valid state for
the Nagios base measurement and therefore the risk probabilities for dependency
state combinations containing a Nagios state 4 are set to 0 for all possible CI
service risk states. The learned risk probabilities were reviewed by the CI expert
and all risk probabilities that could not be learned or were wrongly classified
were manually re-estimated.
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Fig. 10. Puppet status dataset

This simple illustration shows that learning of risk probabilities from data is
possible and that the graphical representation by the tool allows estimation of
risk probabilities where automatic learning is not possible.

Fig. 11. Risk probabilities for Service Nodes CI service
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Table 1. Risk probability learning statistics for Service Nodes CI service

State: 1,1 Number of occurrence: (1): 5894, (2): 965, (3): 50, (4): 7, (5): 85
Total number of occurrence: 7001

State: 1,2 Number of occurrence: (1): 1401, (2): 845, (3): 15, (4): 1, (5): 29
Total number of occurrence: 2291

State: 1,3 Number of occurrence: (1): 0, (2): 0, (3): 16, (4): 0, (5): 22
Total number of occurrence: 38

State: 1,4 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 1, (5): 0
Total number of occurrence: 1

State: 1,5 Number of occurrence: (1): 0, (2): 11, (3): 15, (4): 5, (5): 291
Total number of occurrence: 322

State: 2,1 Number of occurrence: (1): 4149, (2): 255, (3): 15, (4): 3, (5): 27
Total number of occurrence: 4449

State: 2,2 Number of occurrence: (1): 82, (2): 525, (3): 10, (4): 1, (5): 10
Total number of occurrence: 628

State: 2,3 Number of occurrence: (1): 0, (2): 0, (3): 43, (4): 0, (5): 0
Total number of occurrence: 43

State: 2,4 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 5, (5): 0
Total number of occurrence: 5

State: 2,5 Number of occurrence: (1): 0, (2): 0, (3): 1, (4): 0, (5): 136
Total number of occurrence: 137

State: 3,1 Number of occurrence: (1): 657, (2): 0, (3): 0, (4): 0, (5): 0
Total number of occurrence: 657

State: 3,2 Number of occurrence: (1): 0, (2): 44, (3): 0, (4): 0, (5): 0
Total number of occurrence: 44

State: 3,3 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 0, (5): 0
Total number of occurrence: 0

State: 3,4 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 0, (5): 0
Total number of occurrence: 0

State: 3,5 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 0, (5): 29
Total number of occurrence: 29

State: 4,1 Number of occurrence: (1): 962, (2): 0, (3): 0, (4): 0, (5): 0
Total number of occurrence: 962

State: 4,2 Number of occurrence: (1): 0, (2): 684, (3): 0, (4): 0, (5): 0
Total number of occurrence: 684

State: 4,3 Number of occurrence: (1): 0, (2): 0, (3): 22, (4): 0, (5): 0
Total number of occurrence: 22

State: 4,4 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 8, (5): 0
Total number of occurrence: 8

State: 4,5 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 0, (5): 134
Total number of occurrence: 134

State: 5,1 Number of occurrence: (1): 345, (2): 0, (3): 0, (4): 0, (5): 5
Total number of occurrence: 350

State: 5,2 Number of occurrence: (1): 0, (2): 152, (3): 0, (4): 0, (5): 4
Total number of occurrence: 156

State: 5,3 Number of occurrence: (1): 0, (2): 0, (3): 4, (4): 0, (5): 0
Total number of occurrence: 4

State: 5,4 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 2, (5): 0
Total number of occurrence: 2

State: 5,5 Number of occurrence: (1): 0, (2): 0, (3): 0, (4): 0, (5): 32
Total number of occurrence: 32
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4.5 Risk Simulation/Emulation

The Risk Simulation/Emulation tab, as Seen in Figure 12, is used to provide a
simple way to test the Bayesian network based security model and the condi-
tional probabilities generated in the previous steps and to visualize the service
risk propagation as a reaction to changing base measurement values. The dif-
ferentiation between simulation and emulation means that using emulation, all
base measurements are shown as editable text fields in the GUI to be changed by
the user during emulation whereas simulation means that those values are read
from a simulation file provided by the user3 to ensure reproducible simulation
results.

In the GUI, the CI security graph model for all indicators is displayed, if a
service or base measurement is present in more than one indicator model, this is
visualized by labelling the dependencies accordingly. When a service is clicked,
risk plots for current risk, short-term risk, mid-term risk and long-term risk are
displayed in the Risk plots section. The x-axis of the plots represents the time
an event happened and the y-axis represents the service risk at that time. Only
the risk indicators that are relevant for a service are displayed. For example,
ServiceD in Figure 12 only considers risk prediction for the Availability indica-
tor, but the service risk is estimated for Confidentiality and Integrity as well.
Interdependency risk for services is visually represented by providing an Interde-
pendency drop-down menu for services that are part of interdependencies. The
risk for each interdependency round can be individually selected and displayed.

Each simulation or emulation starts with all services in normal operation
(service risk for all services is 1). To account for this in emulation mode, all
base measurements displayed in the Base measurement values section are set
to an initial state “Initial”. Changing a base measurement value in simulation
or emulation mode will result in re-calculation of service risk of all dependent
services using the base measurement normalization tables shown in Figure 4
and the CPTs of the services. The risk is recursively updated for all dependent
services, the risk plots are updated and all updated services are highlighted.

At the end of a simulation or emulation the results can be saved to disk. The
results contain, for each base measurement, a list of changed values with time
stamp and for each service a textual version of the risk plots.

4.6 Technical Details

The tool was implemented using Java programming language (compatible to
Java version 7). Oracle Java 7 SDK (Software Development Kit) was used
during implementation. Additional open-source libraries used for implementa-
tion are Zest (http://www.eclipse.org/gef/zest/) for drawing graphs in the
GUI, jgrapht (http://jgrapht.org/) for determining simple cycles in graphs,
jfreechart (http://www.jfree.org/jfreechart/) to display the risk plots and

3 A line in a simulation file has the form @t : X = x : Y = y, which means that
t Seconds after simulation start, base measurement X takes the value x and base
measurement Y takes the value y.

http://www.eclipse.org/gef/zest/
http://jgrapht.org/
http://www.jfree.org/jfreechart/
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Fig. 12. Screen-shot of risk simulation/emulation tab

the Java SWT (Standard Widget Toolkit) (http://www.eclipse.org/swt/) for
all the GUI components.

The tool was implemented using Ubuntu 12.10 operating system. Although
the tool was implemented using Java, which should provide multi-platform sup-
port, the tool was only tested in Linux and therefore multi-platform support is
not guaranteed.

5 Conclusions and Future Work

In this article a tool based on a novel CI risk modelling approach for CI risk
monitoring based on Bayesian networks was presented. The idea of Bayesian
network based CI risk modelling is to represent CIs as services they provide and
the dependencies between the services. Risk is estimated based on observing
system measurements that represent the CI service state as well as on observing
risk of other CI services the service depends on. This model is represented as
a BN where the nodes represent CI services and system measurements, and
the edges represent dependencies between nodes. The probabilities in the CPT
represent the most likely CI service risk, considering the state of the parent nodes
(system measurements or CI services). Those probabilities can be learned from
data records as well as being assigned by experts based on their experience with
CI operation. Using a Bayesian approach for the CI security model allows some
advanced features like risk prediction or handling of interdependencies.

The tool presented in this work fully implements the idea of Bayesian net-
work based CI security modelling. Therefore, the tool is divided into five separate

http://www.eclipse.org/swt/
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parts, realized in the GUI as five tabs of a tab folder: The CI structure tab helps
domain experts in generating the structure of the CI security model by providing
a simple visual representation. The data pre-processing tab allows to pre-process
the dataset used to learn the conditional probabilities and complement it with
data that needs to be provided by domain experts. The interdependencies tab
allows to identify interdependencies (directed cycles in the graph model) and
supplement them with data needed to learn conditional probabilities when in-
terdependencies are present. The conditional probabilities tab allows to learn CI
service CPTs for current risk as well as risk prediction. It also supports special
handling of CI services that are part of an interdependency. Finally, the CI sim-
ulation/emulation tab allows to evaluate service risk propagation by simulating
or emulating base measurement states. The presented tool is available as open
source software. For more information please contact the authors.

Future work will focus on evaluation of the Bayesian network based CI risk
model as well as the tool presented in this work in the context of a case study.
The first part of the evaluation process will investigate the feasibility of CI anal-
ysis. The main question in this phase is if it is possible to extract critical CI
services, system measurements and dependencies from complex systems and if
the graphical representation of the model using the tool can help to simplify the
task. The second part of evaluation concerns CPT learning. The main questions
in this phase will be if the BN approach will be manageable or if there will be
too many evidence variables and therefore too complex CPTs, if the probabilities
can be sufficiently learned from data and if expert estimation of probabilities is
feasible. Furthermore, one interesting aspect of evaluation will be to see if the
implemented learning algorithms of the tool are fast enough to handle CPT
learning using real-world datasets. In the last phase of the validation the useful-
ness of a CI risk monitor will be evaluated with CI operators, using the presented
simulation/emulation approach of the tool as a basis for evaluation.
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Abstract. With the emerging of new networks, such as wireless sensor
networks, vehicle networks, P2P networks, cloud computing, mobile In-
ternet, or social networks, the network dynamics and complexity expands
from system design, hardware, software, protocols, structures, integra-
tion, evolution, application, even to business goals. Thus the dynamics
and uncertainty are unavoidable characteristics, which come from the
regular network evolution and unexpected hardware defects, unavoidable
software errors, incomplete management information and dependency re-
lationship between the entities among the emerging complex networks.
Due to the complexity of emerging networks, it is not always possible
to build precise models in modeling and optimization (local and global)
for networks. This paper presents a survey on probabilistic modeling for
evolving networks and identifies the new challenges which emerge on the
probabilistic models and optimization strategies in the potential appli-
cation areas of network performance, network management and network
security for evolving networks.

Keywords: network evolution, probabilistic modeling, dynamics and
uncertainty.

1 Introduction

It is recognized that three laws, Moore’s law, Gilder’s law and Metcalfe’s law,
which are governing the spread of technology and are related to the rapid evo-
lution of IT networks [10]. Moore’s law indicates the computing capability of
computers doubles every 18 months. Gilder’s law claims the total bandwidth of
communication systems triples every 12 months for the next 25 years. Metcalfe’s
law presents the value of a telecommunications networks is proportional to the
square of the number of connected users of the systems (n2).

The typical evolution in networks is paralleled with following changes: the
improved/degraded hardware performance, updated software (system software,
application software) and its functions, extended network structure with the in-
tegration of emerging heterogeneous networks (mobile communication networks,
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sensor networks, ad hoc networks, vehicle networks, overlay networks, and In-
ternet of Things), extension of network scale with increasing wired/mobile and
wireless devices joined, updated network protocols, improved network functions
(from information exchanging to complex online transaction and numerous ser-
vices), dynamic functional evolution, variation of the network performance, and
emerging network applications and network services.

The evolution of networks is not only on physical networks, but also on in-
formation networks and service networks, which is over physical networks. In
real IT application scenarios, the evolution is characterized with the combina-
tional evolving results on physical networks, information networks and service
networks.

The evolving networks demonstrate the complex changes in network struc-
ture, network functions, network performance, and interoperation relationship
with the time evolving, and thus more opportunistic networks and self-organizing
networks come into being one trend of the network evolution. The emerging
computing models (distributed computing, pervasive computing, cognitive com-
puting, opportunistic computing, scalable computing, autonomic computing,
physical computing, and probabilistic computing), which are employed to model
and manage the complex dynamic networks and pertain to the operation, admin-
istration, maintenance, and provision of networked systems for secure (reliable)
and effective network performance [11].

The dynamics and uncertainty are unavoidable characteristics, which come
from the regular network evolution and unexpected hardware defects, unavoid-
able software errors, incomplete management information and dependency rela-
tionship between the entities among the emerging complex networks. Due to the
complexity of emerging networks, it is not always possible to build precise mod-
els in modeling and optimization (local and global) for networks. New challenges
emerge on the probabilistic models and optimization strategies in the areas of
network performance, network management, network security for evolving IT
networks.

This paper presents a systematic survey on the probabilistic modeling for
evolving networks and identifies the new challenges which emerge on the proba-
bilistic models and optimization strategies in the potential application areas of
network performance, network management and network security for evolving
networks.

2 Emerging Characteristics in Evolving Networks

The evolving IT networks demonstrate emerging characteristics as follows:

1. Dynamics
– Some networks are running in dynamic style by nature, such as mobile

communication networks, wireless sensor networks, vehicle networks, and
overlay networks (P2P, VPN). These networks can be organized as op-
portunistic networks or self-organizing networks. That means the struc-
ture of the networks is changing over the topology, with the variation on
routers, mobile servers and mobile clients.
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– The performance (robustness) of individual network components, such
as routers, servers, clients or other key network devices/services vary
with the network evolution. Some components are improved or degraded
with the hardware performance, technical improvement, or systematic
evolution.

– The performance (robustness) of the individual links, which demonstrate
the dependencies between main network components, changes with the
structural or functional modification of the networks.

– Both local and global changes are interdependent. That means any local
changes may result in the variation of global network performance. Any
global modification can result in the changes in local network perfor-
mance as well.

– Theoretically, the network function and structure have strong interde-
pendence [22]. The evolving structure of networks will bring the changes
in network functions. On the other side, it is possible that network func-
tion modification can result in the redesign/reconfiguration of network
structure.

2. Heterogeneity
In IT networks, there are 2 types of heterogeneous networks, integrated
networks and overlay networks.
– Integrated networks

With the advances of emerging networks, more heterogeneous networks
are integrated. For example, the sensor networks are integrated with lo-
cal networks, vehicle networks join mobile communication networks, het-
erogeneous network devices are integrated into Internet, and the trend of
Internet of Things emerges. The heterogeneous network integration
demonstrates the integration of different structures, different functions,
different performance, different network protocols, different software com-
ponents, and even different services. Integrated networks are not only the
accumulation of networks, but also updated properties and functions
merging with the evolution.

– Overlay networks
An overlay network is a computer network which is built on the top of
another network. Nodes in the overlay networks can be connected by
virtual or logical links, each of which corresponds to a path, perhaps
through many physical links, in the underlying networks. Information
networks and service networks based on the physical networks are com-
monly identified as overlay networks as well. Overlay networks organize
peers with different strategies, thus their topology and routing perfor-
mance are different. The consequent reliability and fault resiliency varies
as well [16]. Overlay networks are organized by spontaneous and dynamic
connectivity between users/clients, this evolution model is accompanied
with the continuing structure dynamics.

3. Temporal Networks
Evolving is a time correlated process. The evolving network structure, de-
scribing how the network is wired and how the abstract nodes are connected,
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helps us to understand, predict and optimize the behaviour of dynamic net-
works. In many cases, however, the edges/links are not continuously active.
In some cases, edges/links are active for non-negligible periods of time. Like
network topology, the temporal structure of edge activations can affect dy-
namics of systems interaction through the network. The dynamic weights,
which indicate the interdependencies between networks components, demon-
strate the network evolving process as well. An evolving networks is a typical
temporal network, which can be modelled to elucidate the behaviour of a dy-
namic system. The fundamental properties in temporal networks are quite
different from those for static networks.

4. Complexity

Complexity has an important relationship to resilience and the robustness of
systems, because resilience mechanisms such as self-organization and auto-
nomic behaviour increase complexity, and increased complexity may result in
greater network vulnerability [24]. The complexity in evolving IT networks
comes from structural complexity, network evolution, connection diversity,
dynamical complexity, nodes diversity, meta-complication. Furthermore, the
various complications can influence each other.

5. Macro view vs. micro view

In evolving complex networks, self-organizing processes are deployed at mul-
tiple levels. Challenging questions about the dynamics of micro-macro tran-
sition include: (i) how are emergent properties related to micro interactions?
(ii) how can we reverse-engineer the mechanics of complex system from their
behaviour under a controlled set of external stimuli? Thus the interrela-
tionship between micro and macro behaviour in evolving networks is rather
important in application scenarios.

6. Probability

In evolving network, the system dynamics and the intrinsic complexity make
the complex networks with probabilistic properties. The incomplete and un-
certain information need to be integrated into the research models, so that
the system models can be more reasonable and realistic [9]. Thus the time
based probabilistic factors should be embedded into the network modeling
in evolving networks.

3 Challenges for Probabilistic Modeling

1. Structure dynamics

In IT networks, the structure evolving is paralleled with the changes on:

– Network nodes: New nodes (network hardware/software components) are
added or removed from the network, or the improvement/degradation in
the performance of nodes.

– Network links: New links (interoperation/interdependency) are added
or removed from the network, or the improvement/degradation in the
performance of links.



Challenges on Probabilistic Modeling for Evolving Networks 81

– Weight of the dependencies: The weight of the dependencies between
network components indicates the measurement of the importance on
the performance or dependencies among the related components. It is a
time related function during the evolution.

Two types of dynamics are required in order to fully understand how net-
works evolve over time. The type of dynamics most commonly used in IT
network analysis are those dealing with the nature of interactions between
nodes as a consequence of the network structure, which is called dynam-
ics on the network. This category governs how nodes react to each other
based on the overall structure of the network. The second type of network
dynamics, named dynamics of the network, governs the changes in the
network structure and evolution of the structure.
There are three approaches to model the dynamic networks:

– The evolution of a network can be described as a sequence of static
networks and since there exist many parameters to describe accurately a
static network, one can study the evolution of the network through the
evolution of these parameters.

– The evolution itself can be studied with defined parameters to capture
the evolving properties, such as the rate of appearance or disappearance
of nodes and edges.

– An intermediate approach can be used which consists specific phenomena
in studying or users of interest with time.

The approach selection is based on the specific scenario. For example, if the
network structure keeps stable and with minor modification, the sequence
snapshot of the static networks can be considered as an appropriate evolving
model. The network infrastructure and network backbone follow this class.
But suppose the network structure evolves with great changes, and then the
parameter modelling or intermediate approach might be appropriate. Mobile
communication networks, sensor networks, vehicle networks belong to this
class.
In modelling the evolving networks, not only the structure properties (topolo-
gies, nodes, and links) are included, but also the non-structural properties
(weights, importance, functions) should be considered. It is also a challenge
to model the dynamic structure and evolving properties in integrated het-
erogeneous network and overlay networks.

2. Stochastic dynamics
Along the network evolution, some changes will generate new data charac-
teristics which might not to be the property of the historical data. Generally,
the building process of the network and the parameter estimation requires
more data as the number of variables varies, as long as the accuracy in the
estimations and in the network topology is to be maintained. However, the
network evolution is not necessarily to maintain the accuracy in the param-
eter estimation because of the unstable and dynamic properties. There is
some difficulties in obtaining a stable historical data for an evolving network
on application scenarios.
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3. Model of heterogeneous networks
Evolving networks are composed of heterogeneous networks in network struc-
tures and functions. This will make the integrated network model more
complex, since some unbalanced and heterogenous network sections are not
integrated consistently in following unique or common principles in the struc-
ture and the functions.

4. Relationship between macro and micro networks
For a large scale heterogeneous network, the macro characteristics are
strongly related to the micro pieces of the network and vice versa. When
modeling the global probabilistic network, the local subnets modeling and
their merging style between pieces are rather important, in which the in-
terdependencies can be identified and measured reasonably. However, large
scale complex networks demonstrate new properties which is hard to be
identified from micro networks, such as small world property, scale free
network, etc.

5. Control and feedback
In modeling network application and services, the control and feedback loop
is inevitable at different levels, particularly in logical and service networks.
The loops among networks are apt to make the related modeling out of
control. The overlap (repeat) dependencies vague the relationship between
the networked components.

6. Computing complexity
The complexity in emerging networks makes medium size models usually
intractable, since the number of variables involved is greater than in static
models. Highly connected networks and dynamic changes among the network
structure and dependencies between related components make the evolving
networks total complex dynamic systems, and thus brings very challenging
problems in computing complexity.

7. Probabilistic factors
The dynamic and complex network behaviours inevitable brings probabilis-
tic factors to the evolving networks. Thus probabilistic factors should be
included in the models of evolving networks. The combination of probabilis-
tic models and complex network model challenges the modelling of dynamic
evolving networks.

4 Probabilistic Modeling for Dynamic Networks

The goal of modelling for evolving networks is to model the state of a system and
its evolution over time in a richer and more natural way. It is widely recognized
that probabilistic graphical models provide a good framework for both knowledge
representation and probabilistic inference for dynamic evolving networks.

A probabilistic dynamic model will be considered as a sequence of graphs in-
dexed by the time, representing the temporal evolution of a system. Each graph
symbolizes the state of the system and the dependencies among its components
at a given time. The dynamic behaviour of the components of the system is de-
scribed by a set of temporal dependencies among these components in different
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time slices. Furthermore, these dependencies are quantified by conditional prob-
ability tables associated with the components of the system. In order to make
the management of such models feasible, a set of restrictions must be considered
for both its qualitative and quantitative aspects.

4.1 Dynamic Graphs

The dynamic behaviour of any specific system which changes over time requires
an implicit or explicit time representation. To model such systems is a very im-
portant task: the initial structure of the model and its propagation over time,
the probabilities attached to the structure, the qualitative and quantitative in-
terrelations among variables in different time slices, etc., need to be taken into
account [18].

Basically, a network can be modelled as a graph, which includes essential
elements: nodes, links, and weighs on links or/and nodes.

A graph can be defined as a triple (V,E, fV , fE) where V is a set of vertexes,
E is a set of edges u, v, and f is a function, fV : V → N , fE : E → N , where N
is some number system, assigning a value or a weight. Depending on the context,
the weights may be real numbers, complex numbers, integers, elements of some
group, etc. A network or fully weighted graph has weights assigned to both nodes
and edges.

These definitions of (static) graphs and networks involve the following entities:
V (a set of nodes), E (a set of edges), fV (mapping vertexes to numbers), fE
(mapping edges to numbers). A dynamic graph is obtained when any of these
four entities changes over time. Thus, there are several basic kinds of dynamic
graphs.

– in a node-dynamic graph or digraph, the set V varies with time. Thus, some
nodes may be added or removed.When nodes are removed, the edges incident
with them are also eliminated.

– in an edge-dynamic (or arc-dynamic) graph or digraph, the set E varies with
time. Thus, edges may be added or deleted from the graph or digraph.

– in a node weighted dynamic graph, the function fV varies with time; thus,
the weights on the nodes also change.

– in an edge weighted dynamic graph or digraph, the function fE varies with
time.

– in fully weighted dynamic graph, both functions fV and fE may vary with
time.

Thus a dynamic graph is defined as a triple with time parameter
t: (V t, Et, f t

V , f
t
E). Harary classifies the dynamic graphs by the change of any of

these [14]:

1. Node dynamic graphs where the vertex set V t changes over time t.
2. Edge dynamic graphs where the edge set Et change over time t.
3. Node weighted dynamic graphs where the f t

V function varies with time t.
4. Edge weighted dynamic graphs where the f t

E function varies with time t.
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All combinations of the above types can occur. For example, a computer network
with changing bandwidth (edge-weight), changing topology (edges being added
or deleted), changing computing power (node-weights changing), and computers
representing nodes crashing, and recovering represents a dynamic graph that
entails all the above basic types.

Work on dynamic graph theory have been motivated by finding patterns
and laws. Power laws, small diameters, shrinking diameters have been observed.
Graph generation models that try to capture these properties are proposed to
synthetically generate such networks [5]. There are several problems to be an-
swered in these complex dynamic networks.

– Is the network evolving normally?
– What is normal behaviour of the network?
– Is there a phase transition along the network evolving?

There is a strong correlation between finding patterns in static graphs and dy-
namic evolving graphs.

Graph similarity functions, which is used to measure the degree of the dy-
namics on networks, are categorized into two groups:

– feature based similarity measures
– structure based similarity measures

Using the topology of the graphs, two similarity metrics have been defined,
maximum common subgraph distance and the graph edit distance.

Graph clustering has become a central tool for the analysis of dynamic net-
works in general, with applications ranging from the field of social sciences to
biology and to the growing field of complex systems. The general aim of graph
clustering is to identify dense subgraphs in networks. Countless formalizations
thereof exist, however, the overwhelming majority of algorithms for graph clus-
tering relies on heuristics, e.g., for some NP-hard optimization problem, and do
not allow for any structural guarantee on their output.

4.2 Power Law Random Graphs

Random graphs can date back to the work of Erdős and Rényi for the theory
of random graphs [12]. The random graph model G(n, e) assigns uniform prob-
ability to all graphs with n nodes and e edges while in the random graph model
G(n, p) each edge is chosen with probability p.

Power law random graph model [2] is an extension of random graph, whose
degree distribution follows a power law. Most of IT network system have this
properties. Power law rand graph model has two parameters. The two parameters
only roughly delineate the size and density but they are natural and convenient
for describing a power law degree sequence. The power law random graph model
P (α, β) is described as follows. Let y be the number of nodes with degree x.
P (α, β) assigns uniform probability to all graphs with y = eα/xβ (where self
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loops are allowed). Note that α is the intercept and β is the (negative) slope
when the degree sequence is plotted on a log-log scale.

There is also an alternative power law random graph model analogous to the
uniform graph model G(n, p). Instead of having a fixed degree sequence, the
random graph has an expected degree sequence distribution. The two models
are basically asymptotically equivalent, subject to bounding error estimates of
the variances.

The power law random graph model provides an approach to model the dy-
namic evolving complex networks. However, there are some questions that re-
main to be resolved. For example, what is the effect of time scaling? How does it
correspond with the evolution of β? What are the structural behaviours of the
power law random graphs?

4.3 Dynamic Flowgraph Methodology

The dynamic flowgraph methodology (DFM) [6] is an approach to model and
analyze the behaviour of dynamic systems for reliability/safety assessment and
verification. DFM models express the logic of the system in terms of causal rela-
tionships between physical variables and states of the system. The time aspects
of the system (execution of control commands, dynamics of the process) are
represented as a series of discrete state transitions. DFM can be used for iden-
tifying how certain postulated events may occur in a system. The result is a set
of timed fault trees, whose prime implicants (multi-state analogue of minimal
cut sets) can be used to identify system faults resulting from unanticipated com-
binations of software logic errors, hardware failures, human errors and adverse
environmental conditions.

DFM models are directed graphs, analyzed by discrete time instances. They
consist of variable and condition nodes; causality and condition edges; and trans-
fer and transition boxes and their associated decision tables. A node represents a
variable that can be in one of a finite number of predefined states. The state of a
node can change at discrete time instances. The state of the node is determined
by the states of its input nodes. Each node can have several inputs but only one
output (its state). The state of the node can act as an input to possibly several
other nodes. The state of a node at time t is determined by

– the states of its input nodes at a single instance of time (say, t− n),
– the lag n, an integer that tells how many time instances it takes for an input

to cause the state of the present node.

The state of a node, as a function of the states of its input nodes, is determined
by a decision table. A decision table is an extension of the truth table where
each variable can be represented with any finite number of states. The decision
table contains a row for each possible combination of input variable states. The
maximum possible number of rows in the decision table is the product of the
numbers of states of the input nodes.

After construction, the DFM model can be analyzed in two different modes,
deductive and inductive. In inductive analysis, event sequences are traced from
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causes to effects; this corresponds to simulation of the model. In deductive anal-
ysis, event sequences are traced backward from effects to causes.

A deductive analysis starts with the identification of a particular system con-
dition of interest (a top event); usually this condition corresponds to a failure.
To find the root causes of the top event, the model is backtracked for a pre-
defined number of steps through the network of nodes, edges, and boxes. This
means that the model is worked backward in the cause-and-effect flow to find
what states of variables (and at what time instances) are needed to produce the
top event. The result of a deductive analysis is a set of prime implicants.

A prime implicant consists of a set of triplets (V, S, T ); each triplet tells that
variable V is in a state S at time T . The circumstances described by the set of
triplets cause the top event. Prime implicants are similar to minimal cut sets
of fault tree analysis, except that prime implicants are timed and they deal
with multi-valued variables (fault trees deal with Boolean variables). A useful
analogy is that deductive analysis corresponds to minimal cut set search of a
fault tree. Once primary implicants have been found, the top event probability
can be quantified in a fault tree.

For large scale dynamic networks, the state analysis and the fault propagation
among dynamic networks make the resolution intangible with huge computing
complexity.

4.4 Dynamic Factor Graphs

Directed and undirected networks coexist in most IT networks. For large net-
works (graphs), the factorization properties of a graphical model, whether undi-
rected or directed, may be difficult to visualize from the usual depictions of
graphs. The formalism of factor graphs provides an alternative graphical repre-
sentation, one which emphasizes the factorization of the distribution.

Let F represent an index set for the set of factors defining a graphical model
distribution. In the undirected case, this set indexes the collection C of cliques,
while in the directed case F indexes the set of parent-child neighborhoods. We
then consider a bipartite graph G = (V,E, F ), where V is the original set of
vertexes, and E is a new edge set, joining only vertexes s ∈ V to factors a ∈ F .
In particular, edge (s, a) ∈ E if and only if xs participates in the factor indexed
by a ∈ F .

For undirected models, the factor graph representation is of particular value
when C consists of more than the maximal cliques. Indeed, the compatibility
functions for the nonmaximal cliques do not have an explicit representation in
the usual representation of an undirected graph. However, the factor graph makes
them explicit.

Time series collected from real-world phenomena are often an incomplete pic-
ture of a complex underlying dynamical process with a high-dimensional state
that cannot be directly observed.

The simplest approach to modeling time series relies on time-delay embed-
ding: the model learns to predict one sample from a number of past samples with
a limited temporal period. This method can use linear auto-regressive models, as
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well as non-linear ones based on kernel methods (e.g. support-vector regression),
neural networks (including convolutional networks such as time delay neural net-
works), and other non-linear regression models. Unfortunately, these approaches
have difficult in capturing hidden dynamics with long-term dependency because
the state information is only accessible indirectly through a (possibly very long)
sequence of observations [7].

To capture long-term dynamical dependencies, the model must have an inter-
nal state with dynamical constraints that predict the state at a given time from
the states and observations at previous times (e.g. a state-space model). In gen-
eral, the dependencies between state and observation variables can be expressed
in the form of a Factor Graph for sequential data, in which a graph motif is
replicated at every time step.

For a complex and non-linear system, a model might allow the use of complex
functions to predict the state and observations, and will sacrifice the probabilistic
nature of the inference. Instead, the inference process (including during learning)
will produce the most likely (minimum energy) sequence of states given the
observations. Dynamic Factor Graph (DFG) is a natural extension of Factor
Graphs specifically tuned for sequential data. To model complex dynamics, DFG
allows the state at a given time to depend on the states and observations over
several past time steps.

Dynamical Factor Graphs manage to perfectly reconstruct multiple oscillatory
sources or a multivariate chaotic attractor from an observed one-dimensional
time series. DFGs also outperform Kalman Smoothers and other neural net-
work techniques on a chaotic time series prediction tasks, DFGs can be used
for the estimation of missing motion capture data. Proper regularization such
as smoothness or a sparsity penalty on the parameters enable to avoid trivial
solutions for high-dimensional latent variables [19].

4.5 Time-Varying Graphs

Time-varying graphs (TVG) have been a topic of active research recently in
the study of communication networks with intermittent connectivity such as
delay-tolerant networks and even disruption-tolerant social networks; duty cy-
cling wireless sensor networks, and so on [8]. Existing research on time-varying
graphs ranges from algorithmic studies on graph journeys to analysis of spe-
cific properties such as flooding time in dynamic random graphs. Empirical
simulation-based analysis of certain temporal graph properties such as temporal
distance and temporal efficiency are hot topics in this area.

The TVG can describe a multitude of different scenarios, from transportation
networks to communication networks, complex systems, or social networks. Some
research questions are generated by the application requirements in dynamic
networks.

One important task is to explore the universe of dynamic networks using the
formal tools provided by the TVG formalism. The long-term goal is to provide
a comprehensive map of this universe, to identify both the commonality and the
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natural differences between the various types of dynamical systems modeled by
TVG.

The design and analysis of distributed algorithms and protocols for time-
varying graphs is an open research area. In fact very few problems have been
attacked so far: routing and broadcasting in delay-tolerant networks; broadcast-
ing and exploration in opportunistic-mobility networks; new self-stabilization
techniques; detection of emergence and resilience of communities, and viral mar-
keting in social networks.

If the interactions in a network can be planned and decided by a designer,
then a number of new interesting optimization problems arise with the design
of time-varying graph. They may concern, for example, the minimization of the
temporal diameter or the balancing of nodes eccentricities.

Analyzing the complexity of a distributed algorithm in a TVG , e.g. in number
of messages, is not trivial, partly because contrarily to the static cases, the
complexity of an algorithm in a dynamic network has a strong dependency,
not only on the usual network parameters (number of nodes, edges, etc.), but
also on the number of topological events taking place during its execution. In
many of the algorithms, the majority of messages is in fact directly triggered by
topological events, e.g., in reaction to the local appearance or disappearance of
an edge. The number of topological events therefore represents a new complexity
parameter, whose impact on various problems remains to study.

Through the use of the interaction-centric point view, TVGs enable to look
at the interplay between topological aspects that allow local interaction to have
global effects.

4.6 Dynamic Bayesian Networks

Dynamic Beyesian Networks (DBN), which is an extension of causal probabilistic
networks [4] and static Bayesian networks, is to model a system that is dynam-
ically changing or evolving over time. This model will enable users to monitor
and update the system as time proceeds, and even predict further behaviour of
the system. In every time slice of a temporal model corresponds to one particular
state of a system, and if the movement between the slices reflects a change in
state instead of time.

Dynamic Beyesian Networks are usually defined as special case of singly con-
nected Bayesian networks specifically aimed at time series modelling.

All the nodes, edges and probabilities that form static interpretation of a
system is identical to a Bayesian network. Variables can be denoted as the sate
of a DBN, because they include a temporal dimension. The states of any system
described as a DBN satisfy the Markovian condition, that is defined as follows:
The sate of a system at time t depends only on its immediate past, i.e. its state
at time t− 1. Also, this property is frequently considered as a definition of First
order Markov property: the future is independent of the past given the present.
The states of a dynamic model do not need to be directly observable. They may
influence some other variables that we can directly measure or calculate. Also,
the state of some system needs not to be a unique, simple state. It may be
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regarded as a complex structure of interacting states. Each state in a dynamic
model at one time instance may depend on one or more states at the previous
time instance or/and on some states in the same time instance [21]. So, in DBN
states of a system at time t may depend on system states at time t − 1 and
possibly on current states of some other nodes in the fragment of DBN structure
that represents variables at time t.

It is not easy to model time and uncertainty in a way that clearly and ad-
equately represents the problem domains at hand. Related approaches can be
classified into three broad categories:

– Models that use static BNs and formal grammars to represent temporal
dimension (known as Probabilistic Temporal Networks)

– Models that use mixture of probabilistic and non-probabilistic frameworks
– Models that introduce temporal nodes into static BNs structure to represent

time dependence.

By using a DBN, we assume that dynamic data are generated sequentially by
some hidden states of a dynamic factor evolving over time. Since the hidden
states cannot be observed directly, they can only be inferred from the observed
data given a learned DBN. Learning a DBN involves estimating both its struc-
ture and parameters from data [25]. The structure of a DBN refers primarily
to (1) the number of hidden states of each hidden variable in a model and (2)
the conditional dependence among hidden states of all the hidden variables of a
model, i.e, factorization of the model state space for determining the topology
of a graph network. There have been extensive studies in the machine learn-
ing community on efficient parameter learning when the structure of a model is
known a priori. Mixed atemporal and temporal independence relations among
DBN models is examined as well [15]. However, much less efforts have been made
to tackle the more challenging problem of learning the optimal structure of an
unknown DBN. As a consequence, most previous DBN-based data modelling ap-
proaches avoid the structure learning problem by setting the structure manually.
However, it has been shown that a learned structure can be advantageous over
those that are manually set [13].

DBNs represent the state of the world as a set of variables, and model the
probabilistic dependencies of the variables within and between time steps. While
a major advance over previous approaches, DBNs are still unable to compactly
represent many real-world domains. In particular, domains can contain multiple
objects and classes of objects, as well as multiple kinds of relations among them;
and objects and relations can appear and disappear over time. Capturing such
a domain in a DBN would require exhaustively representing all possible objects
and relations among them. This raises two problems. The first one is that the
computational cost of using such a DBN would likely be prohibitive. The second
one is that reducing the rich structure of the domain to a very large “flat” DBN
would render it essentially incomprehensible to human beings [20].
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4.7 Probabilistic Complex Networks

The term of “complex network” is usually used for referring the natural net-
works that are usually complex and cannot be modeled just through random
graphs. Most real-world networks have these complex topological features, such
as, heavy-tail in the degree distribution, high clustering coefficient, assortativity
or disassortativity among vertexes, inherent multiparty structure, self-similar hi-
erarchical structure, etc. Clustering coefficient represents the ratio of a network
that satisfies your friends are also mutually friends. The assortativity represents
the grouping of nodes. Inherent multiparty structure indicates that there exists
many intrinsic multiparty properties in the real world.

On the contrary, simple networks usually have these properties. For instance,
they can be represented by graphs such as a lattice or random graph. The
topological structure is roughly the same in any part of network. And, they do
not posses the above complex network features. Examples of complex networks
include social networks, computer networks, biological networks - neurons, or
protein structure, river networks, power-line networks, etc.

A probabilistic complex network can be defined as a set of probabilistic nodes
and probabilistic edges in a network topology which follows the characteristics
of complex networks, such as power-law of the degree distribution of nodes and
the small world phenomenon which specifies the shortest path between any two
nodes are generally small. The network topology can be represented by setting
the probabilities to zero in some of the edges at a completely connected network.
A probabilistic node means there are possibly either discrete states or continuous
value (or attribute vector) in the node. Similarly, a probabilistic edge represents
that the discrete state or value of edges is probabilistic [17].

In a probabilistic complex network, there should be causal relationships be-
tween the states/values of nodes and edges. This is the biggest difference between
a probabilistic complex network and a random graph. The inter-nodes, inter-
edges, and nodes-edges state relationships can be determined by a deterministic
or probabilistic model by some pre-specified rules. When defining dynamic prob-
abilistic complex network as a probabilistic complex network, evolves over time
will be considered. The probably distributions of nodes and edges can be differ-
ent at any sampled time. For simplicity, in IT networks, we only consider the
discrete cases for probabilistic complex networks.

Many real-life network systems (such as Internet, WWW, etc.) can be mod-
eled as probabilistic complex networks of interacting components. Although the
study of such large scale networks is not new, there has recently been much
renewed interest in this field. This is due to technological advances of two types:
(i) the collection of data which depict large networks in detail, and (ii) the devel-
opment of computational tools for the analysis of data. Among the well-studied
examples of such networks are the World Wide Web, citation networks, neuronal
connections, metabolic networks, ecological webs and more [1] .

Traditional Erdős and Rényi random graph models have possion degree distri-
butions. However, it has been found that many real life networks follow power law
distributions. Generalized random graph models have been proposed to mimic
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the power law degree distribution of the real networks but these models do not
explain how such a phenomena occurs in these graphs. Barabasi et al.[3] in-
troduced a model (BA Model) the concept of preferential attachment for this
purpose.

The BAmodel is an algorithm for generating random scale-free networks using
a preferential attachment mechanism. Scale-free networks are widely observed in
natural and human-made systems, including the Internet, the world wide web,
citation networks, and some social networks.

The network begins with an initial network of m0 nodes (m0 ≥ 2) and the
degree of each node in the initial network should be at least 1, otherwise it will
always remain disconnected from the rest of the network. New nodes are added
to the network one at a time. Each new node is connected to existing nodes
with a probability that is proportional to the number of links that the existing
nodes already have. Formally, the probability pi that the new node is connected
to node i is

pi =
ki

Σjkj
(1)

where ki is the degree of node i and the sum is made over all preexisting nodes
j. Heavily linked nodes (“hubs”) tend to quickly accumulate even more links,
while nodes with only a few links are unlikely to be chosen as the destination
for a new link. The new nodes have a “preference” to attach themselves to the
already heavily linked nodes.

Follow the BA model, there are two types of sub-models:

– Model A retains growth but does not include preferential attachment. The
probability of a new node connecting to any pre-existing node is equal. The
resulting degree distribution in the limit is geometric [23], indicating that
growth alone is not sufficient to produce a scale-free structure.

– Model B retains preferential attachment but eliminates growth. The model
begins with a fixed number of disconnected nodes and adds links, prefer-
entially choosing high degree nodes as link destinations. Though the de-
gree distribution early in the simulation looks scale-free, the distribution is
not stable, and it eventually becomes nearly Gaussian as the network nears
saturation. So preferential attachment alone is not sufficient to produce a
scale-free structure. The failure of models A and B to lead to a scale-free
distribution indicates that growth and preferential attachment are needed
simultaneously to reproduce the stationary power-law distribution observed
in real networks [1].

In modelling probabilistic complex networks, still some challenges forward:

1. Finding dynamic community structures in a probabilistic complex networks,
2. Investigating appropriate classification techniques,
3. Applying on various practical datasets,
4. Processing large datasets,
5. Investigating the probabilistic approach to do information classification and

network topology learning.
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5 Conclusions

With the evolution in network structures and the applications, more require-
ments are generated for the modelling of probabilistic dynamic networks. The
challenges include structure dynamics, probabilistic factors, heterogeneous net-
works, control and feedback, computing complexity, etc. There are several
approaches in modelling the dynamic and probabilistic factors and holistic evolv-
ing networks, such as dynamic graph, power law random graph, dynamic flow-
graph method, dynamic factor graphs modeling, time-varying graphs, dynamic
Bayesian Networks, probabilistic complex network modelling. However, most of
the approaches are linked to application scenarios and focus on specific dynamic
systems and on particular dynamic behaviours. There is no common approach
available to deal with the various dynamics among the evolving networks.

Based on the observation and requirements on empirical research, the follow-
ing topics are deserved for detailed investigation:

– dynamic properties of the network should be identified. This includes the
network structure changes, the scale, degree and speed of the changes among
networks;

– the direct/indirect (hidden) factors, which contribute to the network evolv-
ing, should be traced and identified;

– the trend/principle of the evolving should be identified with appropriate
approaches and try to make the future status of the evolving networks be
predictable. This mainly depends on specific application scenarios (datasets);

– local (micro) and global (macro) changes on evolving networks should be
distinguished and synthesized, so that the dynamics of the evolving networks
can be examined systematically;

– control and optimization on dynamic networks is important issues to adjust
the network performance;

– the computing complexity should be controllable and feasible, particularly
in dealing with large scale and probabilistic data.

Thus more and efficient approaches and strategies should be developed to re-
solve the challenging problems and to improve the dynamic modelling of modern
evolving networks.
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Abstract. This chapter describes a new approach to synthesize an artificial vi-
sual cortex based on what we call brain programming. Primate brains have several
distinctive features that help in the outstanding display of perception achieved by
the visual system, including binocular vision, memory, learning, and recognition,
to mention only a few. These features are obtained by a complex arrangement of
highly interconnected and numerous cortical visual areas. This chapter describes
a system composed of an artificial dorsal pathway, or where stream, and an arti-
ficial ventral pathway, or what stream, that are fused to create a kind of artificial
visual cortex. The idea is to show that brain programming is able to evolve a
high number of heterogeneous trees thanks to the hierarchical structure of our
virtual brain. Thus, the proposal uses two key ideas: 1) the recognition of ob-
jects can be achieved by a hierarchical structure using the concept of function
composition, 2) the evolved functions can be discovered through the application
of multiple runs of genetic programming that works concurrently using the hi-
erarchical structure. Experimental results provide evidence that high recognition
rates could be achieved for a well-known multiclass object recognition problem.

Keywords: Artificial Visual Cortex, Brain Programming, Object Recognition.

1 Introduction

The most sophisticated natural vision system that we know of, is the human visual
system; it is capable of recognizing an object even under different variations in loca-
tion, size, rotation, viewpoint, and lighting conditions. Furthermore, the natural visual
system is able to differentiate between visually similar objects and to identify them.
Moreover, it is also able to categorize a set of objects by finding common character-
istics among them. Hence, trying to mimic these capabilities is a challenging problem
that is attracting the evolutionary computer vision community. Thus, in this chapter
we describe a new biologically inspired algorithm to approach the object classification
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problem. Aside from the aforementioned capabilities, the human brain is a great ex-
ample of a purposeful system, since it transforms a set of complex input signals into a
set of complex actions or decisions. Nowadays, the exact manner in which these trans-
formations are performed remains a mystery, and this work attempts to emulate such
functionality by evolving an artificial cortex.

According to the neurologist the brain is divided into four lobes: frontal, temporal,
parietal, and occipital. The last one is of special interest to the scientific community
working in artificial vision, because the visual cortex is located in this lobe. In fact,
the primary visual cortex and the secondary visual area are specialized in image pro-
cessing, for object localization, as well as direction, velocity and trajectory estimation.
The advent of computer technology brought new perspectives, where the brain is mod-
eled as an information processing system, by establishing the research field known as
computational neuroscience. Although the complexity of the brain is recognized within
the domain of evolutionary computation; there is no meaningful work on the develop-
ment of algorithms modeling the ventral stream and its application to the solution of
complex problems [9]. Figure 1 illustrates the main idea that we are proposing to ap-
proach the problem of object recognition. We divide the approach into two key ideas.
The first one is related to the identification of salient features, through the application
of a set of functions that should be able to identify the salience properties that char-
acterize a given object. In general, systems that model the human visual system like
[[8],[27], [20],[17],[13]] are data-driven. They are based on a set of patches that are
used as a dictionary of visual words. This set of small images represent common and
useful characteristics present in all images of a database, integrated by a number of vi-
sual categories. The hypothesis in our work is that such set of patches can be replaced
by a set of mathematical functions. The second idea for our work is based on the con-
cept of an organ; in biology, an organ is described as a collection of tissues joined in a
structural unit to serve a common function. In particular, we are interested in the visual
cortex and the functionality of the different tissues involved in the object recognition
problem. Hence, the idea is to emulate the functionality of the organ as a set of math-
ematical functions within a predefined structure and the approach is being called brain
programming.

This chapter is organized as follows. This Section describes the biological inspiration
and motivation to the present proposal; Section 2 defines how is performed the Artificial
Visual Cortex process; in this way, the proposed GP-based methodology called Brain
Programming is detailed in Section 3. Afterward, experimental results are presented in
Section 4. Finally, the last section contains concluding remarks.

1.1 Statement of the Problem

Object recognition is understood as the problem of determining if an object of a given
set is present in a given image or image sequence. Thus, object recognition is considered
as an open problem since there is not close solution.

The goal of this chapter is to outline a methodology based on two novel approaches.
First, we propose a new model that we called artificial visual cortex. This is imple-
mented through the modeling of a hierarchical structure of the visual cortex together
with the concept of function composition, which are inspired from neurological,
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Fig. 1. Analogy between the ventral stream and the proposed computational model

psychological, and physiological disciplines. Second, the artificial visual cortex is syn-
thesized through a new bioinspired strategy that we called brain programming, which
mimics the manner of how the visual cortex performs the extraction and description of
the visual information needed for the characterization of an object. In other words, the
brain programming strategy searches for a set of mathematical expressions that emu-
late the functionality of specialized tissues present in the brain. In this way, a functional
approach is enforced in order to solve the problem of object recognition.

1.2 Visual Cortex

In nature, the visual information processing is done in the brain, and its functionality is
described through the concept of two visual subsystems. Nowadays, one of the most ac-
cepted descriptions of the visual perception phenomenon is the two-streams hypothesis,
which is based on the neuropsychological, neurophysiological, and psychophysical ev-
idence that exhibit the existence of two visual processing regions, known as the ventral
and dorsal streams. In this way, the two-stream hypothesis states that both subsystems
receive the same visual information as input, but their difference lies on the transfor-
mations the information suffers on the streams. This is clearly exposed in the change of
paradigm from a what/where dichotomy into a vision-for-action/vision-for-perception
duality used to explain the same dorsal/ventral anatomical distinction, see [[25], [26],
[32], [31], [19]]. Next, we will give a brief explanation of these two streams.

First, the dorsal stream is mainly related to the spacial location task in the visual
processing system, for this reason it is known as the “where” or “how” pathway.
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Although, there is still some controversy on the functionality of this pathway, since
it is also related to the guidance of actions, as well as, the spacial localization of objects
in the scene. The dorsal stream starts at the retina, and it perceives its main input from
the magnocellular retinocortical layer of the lateral geniculate nucleus of the thalamus,
but it also receives direct subcortical inputs from the superior colliculus and pulvinar
structures. First, the visual information is projected on to the V1 layer, which is part of
the primary visual cortex, also called striate cortex, and it is located on the back side
of the brain. Then, the stream continues through the V2 and V3 layers, followed by
the middle temporal area MT , and the medial superior temporal area MST , which are
part of the extrastriate visual cortex; and finally the stream lead to the posterior parietal
cortex and adjacent areas. In general, it is accepted that the visual attention process is
achieved by the dorsal stream, and the most popular paradigm for this process is the
feature integration theory presented in [29]. Nevertheless, there are other theories that
seek to describe how visual attention is done within the dorsal stream, like [23] and
[34]; also, there are some who relate the visual attention process to both streams, see
[6]. It is important to note that the first computational model for visual attention was
presented by Koch and Ullman in 1985, see [14]. Later, other researchers proposed sev-
eral methodologies mostly based on the feature integration theory, see [18], and [13].
In all these models the image is decomposed in several dimensions in order to ob-
tain a set of conspicuity maps, which are then integrated into a single map called, the
saliency map.

Then, the ventral stream, also known as the “what” pathway, since it is largely as-
sociated with object recognition and shape representation [22]. In the same way as the
dorsal stream, the ventral stream starts at the retina, and it gets most of its input from the
parvocellular layer of the lateral geniculate nucleus of the thalamus, and it is projected
onto the V1 layer. Then, this stream continues through the V 2 and V 4 visual regions that
are part of the extrastriate visual cortex. Finally the ventral stream ends at the TEO and
TE areas of the inferior temporal cortex. From a computational perspective, the ventral
stream is considered a hierarchical, feedforward, and biologically inspired information
processing system, specialized in object recognition [12]. The majority of the proposed
models for this pathway start by decomposing the image into a set of alternating “S”
and “C” layers, named after the simple and complex cells, discovered by Hubel and
Wiesel, see [11]. This concept was first implemented by Fukushima in his neocognitron
system [8]. This system was later improved by other authors like LeCun with his convo-
lutional networks, and by the HMAX model presented in [24]. In these models, the “S”
or simple layers are defined by a set of local filters applied to find higher-order features,
and the “C” complex layers increase the features invariance by combining units of the
same kind, see [30].

In summary, the visual system has been defined by two information processing
streams organized in two broad structures subserving object recognition and spatial
vision. The classical dichotomy between object and space perception focuses on the im-
portance of a single and general purpose representation. On the other hand, the “what”
and “how” theory of Milner and Goodale [19] gives emphasis to the idea that the visual
system is defined according to the requirements of the task that each stream subserves.
The idea is to define multiple frames of reference giving special attention to the goal
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of the observer. In this way, the same object and spatial information is transformed by
the visual system for different purposes. Thus, the ventral system represents the visual
world in allocentric coordinates by promoting conscious perceptual awareness. On the
other hand, the dorsal stream uses egocentric coordinates to transform the information
about objects location, orientation, and size; see [5].

1.3 Evolution and Teleology for Visual Processing

This section describes the idea that visual processing is the result of the evolution of
the brain; hence, the application of artificial evolution for generating object recognition
algorithms is coherent with that idea. The computational approach for our work can
be described in two phases. First, we studied some theory about the evolution of the
brain. Then, we propose a teleological explanation for the two stream hypothesis in the
natural visual system. Nowadays, there are two main schools of knowledge, teleologi-
cal and mechanistic, they both seek to explain how natural systems work. Nevertheless,
it is important to note that teleological explanations do not deny the mechanistic as-
pects of a system. Although, there is a controversy due to the fact that teleological
explanations are not able to materialize the concept of purpose, and on the other hand,
mechanistic explanations cannot avoid the idea of purpose when explaining a system.
Moreover, a purpose is not a desire since when we talk about a purpose we need to
ask if it was achieved or not. Therefore, we propose that a teleological viewpoint ex-
pands the concept of artificial evolution by bringing new and richer explanations of how
evolution works. This viewpoint corresponds to many ideas about the evolution of the
human brain which are described in a richer way through a teleological perspective, see
[19,5,2,1,16,28,21].

The classical conception of the visual system assumes that it constructs some kind of
internal model of the environment. In other words, that the system builds a representa-
tion of the real world inside the brain, which serves as the frame of reference for all the
visual driven actions and decisions. The idea of studying the structure and functional-
ity of the neocortex is based on several explanations: comparative, developmental, and
functional or adaptationist. In particular, we share the doctrine of several biologists, see
[16,28,2], that adaptation in nature, specializes the organs to cover certain necessities
of the organism; hence, developmental and functional explanations are complementary
and not alternate explanations. This is confirmed by the fact that some species from the
same taxonomic group have evolved specialized visual mechanisms, which may work
in distinct manners; but are coherent and correlated to a given particular function of
the organism. Moreover, most scientists agree that such structures are the result of the
evolution using the fundamental principle of natural selection [2,1,16,28,21]. Thus, the
objective of this chapter is to evolve a specialized system based on the functionality of
the ventral and dorsal streams, adapting its behavior to an specific task, in particular for
solving the object classification problem.

2 Artificial Visual Cortex (AVC)

The Artificial Visual Cortex model is based on the idea of an organ, which is defined as
a collection of tissues joined in a structural unit to serve a common function. Thus, the
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AVC is a model of the visual cortex and the way the visual information is processed. The
different models reported on the state-of-the art are inspired from the natural visual sys-
tem focusing the description of the dorsal and ventral streams as separate subsystems;
the specific goals aim to solve the visual attention or object recognition tasks, respec-
tively. It is to note the lack of a general work that attempts to model the visual cortex as
a whole and unique system. In general, there are only few works studying these aspects
where the visual attention output is considered as an input to the object recognition
module in order to create a more complex system. Instead of this simple approach, and
in concordance with the ideas reported in [19,5] we would like to emphasize that the
layers V1 and V 2 are both part of the dorsal and ventral streams. Hence, we propose
here a new approach that results in an artificial visual cortex model using the idea of a
common functionality produced at the early stages of the dorsal and ventral pathways,
see Figure 2. In this way, the AVC offers the functionality of the dorsal stream of dis-
tinguishing early regions in the image, which are used to describe an object and later
continuing it with a model of the ventral stream. Note, that for this new methodology
it is necessary to understand an image as the first input to the visual system. Due to
the nature of function composition between layers in the brain, we propose to define
an image as the graph of a function, see [21]. The function in this case is the base for
understanding the transformation of the physical, geometrical, or other properties of the
scene.

Definition 1 (Image as the graph of a function). Let f be a function f : U ⊂R
2 →R.

The graph or image I of f is the subset of R3 that consist of the points (x,y, f (x,y)),
in which the ordered pair (x,y) is a point in U and f (x,y) is the value at that point.
Symbolically, the image I = {(x,y, f (x,y)) ∈R

3|(x,y) ∈U}.

In this way, the image, seen as the graph of a function, is the input of a computational
system that mimics the functionality and hierarchical structure of the natural visual sys-
tem. In other words, each layer of the visual cortex can be modeled through a set of
mathematical functions that represent a virtual tissue. In this work, the object recog-
nition system is designed following a function driven paradigm. Contrary to previous
research [[8],[27], [20],[17],[13]] where the ventral stream is modelled through a data-
driven scenario.

Thus, the paradigm of genetic programming is used to implement the proposed ap-
proach for which a set of evolutionary visual operators (EVOs) are optimized according
the functionality of each tissue following the hierarchical structure of the AVC. The fi-
nal result is the optimal object recognition program that satisfies the object recognition
task. Hence, the aim of genetic programming is to find the best set of EVOs using a
number of functions over the image working as building blocks over the whole hierar-
chical structure. The goal in this work is to find a solution to a multiclass object recog-
nition problem. A result of the functional approach compared to previous, data-driven
approaches is reflected on the lower amount of computations that brings a significant
economy in the number of operations without sacrificing the overall quality. Hence, the
EVO is defined as follows:

Definition 2. EVO. The Evolutionay Visual Operators (EVO) should be understood as
a general concept that is applied to the evolution of brains; in such a way, that each
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Fig. 2. Flowchart of the artificial visual cortex. Note, the similarity with the visual attention pro-
cess in which the image is decomposed into several dimensions. In our approach a function driven
paradigm is enforced to avoid the application of image patches.

step of the visual information processing is replicated by specialized programs that fit
the functionality of an artificial tissue in an optimal way.

Next, the artificial dorsal and ventral streams are described.

2.1 Artificial Dorsal Stream (ADS)

The ADS is based on the feature-integration theory for attention, proposed by Treisman
and Gelade in 1980, see [29], that suggests that attention must be processed serially by
each stimulus; since, the display of more than one separable feature should be coordi-
nated to characterize or distinguish the possible objects in the scene. In this way, the first
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step of the ADS is represented by the image acquisition stage. Here, the system con-
siders the digital color images, in the RGB color space, and the transformation into the
CMYK, and HSV color spaces, as the input to the algorithm. Thus, the color image is
defined as a set of components from each color space Icolor={R,G,B,C,M,Y,K,H,S,V}.
Next, three evolved visual operators are applied separately to emphasize features based
on color, orientation, and shape. In biological models, that use a data-driven approach,
operators such as opponency color [13], or Gabor filters [27] have been proposed ac-
cording to the knowledge from neuroscience based on how these features are obtained
in the visual cortex of the brain. Here, the operations of the ADS are evolved with ge-
netic programming to obtain an optimal set of EVOs as depicted on Figure 2. The EVO
is a specialized function that was evolved from a set of image operators; and each EVO
has suitable characteristics that are used to create a set of visual maps along the feature
dimension of color, orientation and shape. Then, for each visual map an image pyramid
is created in order to achieve position and scale invariance. Thus, the pyramid is re-
duced to a conspicuous map for each of the aforementioned feature dimensions. In this
way, it is said that artificial evolution is in charge of optimizing the three functions that
extract the information in color, orientation, and shape dimensions, resulting in an EVO
for color EVOC, orientation EVOO, and shape EVOS. These aspects of the optimization
approach enforce the solution of achieving invariance through the definition of the ob-
jective function. Moreover, the hierarchical structure helps to achieve the desired result
using the concept of function composition. Next, we describe the color, orientation and
shape visual maps.

Color Visual Map. The idea of building a color visual map VMC, see Figure 2, is to
create an image that contains outstanding information along the color feature dimension
of the image. Thus, the input image is transformed by the function, EVOC : Icolor →
VMC, to enhance the color features. In this way, an EVOC is evolved with tree-based
genetic programming in order to extract the most significance characteristics of the
image through the color feature dimension. Hence, the evolutionary process uses the
set of functions and terminals shown in Table 1 to generate the operators for the color
dimension. The notation is summarized as follows: A, B can be any of the terminals, as
well as the output of any of the functions, or a composition of them; I is the image that
enters the AVC.

Orientation Visual Map. The orientation visual map VMO is produced by applying
EVOO : Icolor → V MO, this operator is evolved with tree-based genetic programming
to optimize the extraction of edge and corner information within the input image I
or in its color components Icolor. In this way, the elements values of the visual map
VMO represent the feature prominence of the orientation dimension. Thus, the brain
programming applies the functions and terminals of Table 2, in order to enhance the
best orientation features that are useful for the object recognition task. The notation
used is as follows: A or B can be any of the terminals in the Table 2; as well as, the
output of any of the functions; Du symbolizes the image derivatives along direction
u ∈ {x,y,xx,yy,xy}; Gσ are Gaussian smoothing filters with σ = 1 or 2. Note that, the
terminal I represents the image in gray scale and that it could also be the representation
of the color component V in the HSV color space.
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Table 1. Set of functions and terminals used by EVOC to create the visual map V MC

Color Functions Description
A+B, A−B, A×B, A/B Arithmetic functions between two images A and B

log(A), exp(A) Transcendental functions over the image A
(A)2 Square function over the image A√

A Square root function over the image A
Ac Image complement

round(A),�A�,�A� Round, floor and ceil functions over the image A
thr(A) Dynamic threshold function over the image A

Color Terminals Description

R,G,B Color components of the RGB color model
C,M,Y ,K Color components of the CMYK color model

H,S,V Color components of the HSV color model
OpR−G(I),OpB−Y (I) Color opponency Red - Green and Blue - Yellow

Shape Visual Map. The function used to compute the shape visual map, EVOS :
Icolor → VMS, is evolved with genetic programming to extract the shape information
in the input image. In this way, the shape visual map provides characteristics as the
form and structure of the interest object within the image. Note, that the proposed func-
tions in Table 3 are obtained by applying mathematical morphology to the image. Thus,
according to the literature, the work reported in this chapter could be considered as the
first to use morphological image processing for the modeling of the visual cortex.

The intensity visual map is performed by applying the function VMI : Icolor → I; in
this case, VMI is defined as follows: VMI =

R+G+B
3 . Where R, G and B are the color

components of the RGB color model.

Conspicuity Maps. The conspicuity maps (CMs) are obtained by means of a center-
surround function, which is applied to the visual maps in order to simulate a set of
center-surround receptive fields. The natural structure allows the ganglion cells to mea-
sure the differences between firing rates in center (c) and surroundings (s) of gan-
glion cells. For the artificial vision; first, a pyramid V Ml(α) of nine spatial scales
S = {1,2, ...,9} is created for each of the four resulting VMs. Afterwards, an across-
scale substraction � is performed, resulting in a center-surround map VMl(ω) in such
a way that the value of the pixel is augmented as long as the contrast is increased within
their neighbors at different scales. Finally, the VMl(ω) maps are added using an across-
scale addition⊕ in order to obtain the desired conspicuity maps CMl .

Until this stage, we have four CMs, one for each feature, as shown in Figure 2.
The CMs are obtained similar to Walther and Koch model, see [33]. Next, instead of
combining the CMs into a single saliency map, the idea here is to use the four CMs
as input to an artificial ventral stream in order to derive a vector descriptor. Thus, the
information just obtained will be used by a classification process. In fact, the fitness
function proposed in this work is computed from the accuracy achieved with a support
vector machine (SVM).
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Table 2. Set of functions and terminals used by EVOO to create the visual map V MO

Orientation Functions Description
A+B, A−B, A×B, A/B Arithmetic functions between two im-

ages A and B
|A|, |A+B|, |A−B| Absolute value applied to A, and the

adition and substraction operators
log(A) Transcendental functions over the im-

age A
(A)2 Square function over the image A√

A Square root function over the image A
k+A, k−A, k×A, A/k Arithmetic functions between an im-

ages A and a constant k
round(A), �A�, �A� Round, floor and ceil functions over the

image A
in f (A,B), sup(A,B) Infimum and supremum functions be-

tween the images A and B
Gσ=1(A), Gσ=2(A) Convolution of the image A and a Gaus-

sian filter with σ = 1 or 2
Dx(A), Dy(A) Derivative of the image A along direc-

tion x and y
thr(A) Dynamic threshold function over the

image A

Orientation Terminals Description

I, Dx(I), Dy(I), Dyy(I), Dxx(I), Dxy(I) Gray image scale and its derivatives
R, Dx(R), Dy(R), Dyy(R), Dxx(R), Dxy(R), G, Dx(G),
Dy(G), Dyy(G), Dxx(G), Dxy(G), B, Dx(B), Dy(B),
Dyy(B), Dxx(B), Dxy(B)

Color components of the RGB color
model and its derivatives

C, Dx(C), Dy(C), Dyy(C), Dxx(C), Dxy(C), M, Dx(M),
Dy(M), Dyy(M), Dxx(M), Dxy(M), Y , Dx(Y ), Dy(Y ),
Dyy(Y ), Dxx(Y ), Dxy(Y ), K, Dx(K), Dy(K), Dyy(K),
Dxx(K), Dxy(K)

Color components of the CMYK color
model and its derivatives

H, Dx(H), Dy(H), Dyy(H), Dxx(H), Dxy(H), S, Dx(S),
Dy(S), Dyy(S), Dxx(S), Dxy(S)

Color components of the HSV color
model and its derivatives

2.2 Artificial Ventral Stream (AVS)

Once, that artificial dorsal stream has highlighted the color, orientation, shape and in-
tensity features in the image; the artificial dorsal stream is charged to describe such
important regions. The common approach uses a template matching technique to build
a descriptor that characterize the image, this technique implements the correlation be-
tween the information obtained with an interest region selection process, and a number
of prototype patches. The goal is to identify the successful patches and build an ar-
ray that is known as the universal dictionary of features [30,20,27], and which is used
as an input to SVM classifier. From another point of view, in this chapter the tem-
plate matching technique is substituted with a functional approach; in other words, the
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Table 3. Set of functions and terminals used by EVOS to create the visual map V MS

Shape Functions Description
A+B, A−B, A×B, A/B Arithmetic functions between two im-

ages A and B
k+A, k−A, k×A, A/k Arithmetic functions between an im-

ages A and a constant k
round(A), �A�, �A� Round, floor and ceil functions over the

image A
Dild(A), Dils(A), Dildm(A) Dilation operator with disk, square, and

diamond structures
Erdd(A), Erds(A), Erddm(A) Erosion operator with disk, square, and

diamond structures
Sk(A) Skeleton operator over the image A
Prm(A) Find perimeter of objects in the image

A
HMd (A), HMs (A), HMdm(A) Hit or miss transformation with disk,

square, and diamond structures
TH(A), BH(A) Performs morphological bottom-hat

and top-hat filtering over the image A
open(A), close(A) Open and close morphological opera-

tors on A
thr(A) Dynamic threshold function over the

image A

Shape Terminals Description

R,G,B Color components of the RGB color
model

C,M,Y ,K Color components of the CMYK color
model

H,S,V Color components of the HSV color
model

artificial ventral stream uses a set of evolved functions that are capable of replacing the
universal dictionary, and we claim that it corresponds to a function driven approach.
These functions enhancing the set of prominent features that were emphasized during
the interest region detection computed in previous stages. Thus, the computational op-
erations in comparison with a template matching technique are minimized due to the
definition of the descriptor as set of functions. According to Figure 2, the information
provided by the conspicuity maps is feedforward to k operators that emulate a set of
lower order hypercomplex cells replicating the functionality of a virtual tissue. Hence,
all evolved functions along each dimension, color, orientation, shape and intensity, are
added in order to obtain an image that we called mental map MMi, over each feature. In
this way, all mental maps are combined with a max operation, that is used to select the
most n higher values and build an array which is the image descriptor. Note, that each
function is an evolved visual operator (EVO) built by the organic genetic programming
from the particular set of terminals and functions shown in Table 4. Note also that this



108 G. Olague et al.

Table 4. Set of functions and terminals for the ventral stream to create the mental maps MMi

Functions Description
A+B, A−B, A×B, A/B Arithmetic functions between two im-

ages A and B
|A+B|, |A−B| Absolute value applied to the addition

and substraction operators
log(A) Transcendental functions over the im-

age A
(A)2 Square function over the image A√

A Square root function over the image A
Gσ=1(A), Gσ=2(A) Convolution of the image A and a Gaus-

sian filter with σ = 1 or 2
Dx(A), Dy(A) Derivative of the image A along direc-

tion x and y
Terminals Description

CM, Dx(CM), Dy(CM), Dyy(CM), Dxx(CM), Dxy(CM) Conspicuity Maps and its derivatives

second stage could be said to perform an information description operation (IDO) with
the aim of discovering the best set of functions that creates the most discriminant vector
of characteristics. Finally, the descriptor is the input of a SVM classifier that after a
training process decide over the image class membership.

3 Synthesizing AVCs through Brain Programming

This section describes the characteristics of the evolutionary process used to synthesize
AVCs, through the application of brain programming. Thus, the artificial brain is com-
posed of different artificial tissues or layers, which perform a set of functions towards
a single objective. Of course, the proposed methodology could be easily enhanced for
multiobjective tasks. In this sense, the AVC is represented by a complex chromosome,
defined as an array of functions where each of them corresponds to a virtual tissue.
These functions are written as a tree structure and can be interpreted as the genes from
an evolutionary point of view. The phenotype is encoded as depicted in Figures 2, and
3, such diagrams illustrate the complexity of the proposed system using a kind of het-
erogeneous and hierarchical genetic programming. Thus, the AVC should be seen as
a single entity, with the objective of classifying several objects. In other words, the
functional representation of an artificial organ is designed as a hierarchical and hetero-
geneous structure, according to the task at hand. In this way, the size of the chromosome
can change as well as the depth of the genes, throughout the whole evolutionary pro-
cess. Hence, it is important to note that each individual in the population should be
understood as a complete system and not only as a list of tree-based programs. This
complex information processing system executes the following steps.
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Fig. 3. General flowchart of the methodology to synthesize an artificial visual cortex

1. Randomly generate an initial population with a ramped half-and-half technique and
a maximum depth of 7 levels for each gene. The size of the whole chromosome is
randomly initialized with a maximum length of 15 genes.

2. The evolutionary loop starts the execution of each AVC by computing its fitness
using a SVM that is used to calculate the classification rate for a given training
image database.

3. A set of AVCs is selected from the population with a probability based on fitness
using a roulette-wheel selection to participate in the genetic recombination; and the
best AVC is retained for further processing.

4. A new individual of the population is created from the selected AVC by apply-
ing the genetic operators using the crossover or mutation operation at chromo-
some or gene levels. Similar to genetic algorithms, brain programming executes the
crossover between two selected AVCs at the chromosome level by applying a “cut-
and-splice” crossover, see Figure 4. Thus, all data beyond the selected crossover
point in either AVC string is swapped between both parents A and B. On the other
hand, the result of applying a crossover at the gene level is performed by randomly
selecting two AVC parents based on fitness in order to execute a subtree crossover
between both selected genes. Moreover, the mutation at the chromosome level leads
the selection of a random gene of a given parent to replace such substructure by a
new randomly mutated gene. Thus, the mutation at the gene level is calculated
over an AVC by applying a subtree mutation to a probabilistically selected gene; in
other words, a mutation point is probabilistically chosen at a selected gene and the
subtree up to that point is removed and replaced with a new subtree.
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Fig. 4. The genetic operations are applied at the gene and chromosome levels

Table 5. This table shows a comparison in the performance between HMAX and AVC. Note, that
in the case of the HMAX model a learning process was necessary to identify the best patches,
while for the AVC the brain programming was used to discover the best EVOs.

Data sets Performance of HMAX Artificial
boost SVM V. C.

Airplanes 96.7 % 94.9 % 100 %
Cars 95.1 % 93.3 % 99 %
Faces 98.2 % 98.1 % 100 %
Leaves 97.0 % 95.9 % 100 %
Motorbikes 98.0 % 97.4 % 100 %

5. The evolutionary loop is terminated until an acceptable classification rate is reached;
i.e., the accuracy is equal to 100%, or the total number of generations N = 30 is
reached.

4 Experimental Results

This section provides details about the experiments in order to explain the system that
was implemented to learn an artificial visual cortex. All experiments were performed in
a Dell Precision T7500 Workstation, Intel Xeon 8 Core, NVIDIA Quadro FX 3800 and
Linux OpenSUSE 11.1 operating system. In this way, the SVM Matlab implementation
developed by Chan and Lin, see [3], was used in order to compare with the HMAX
model [27]. Thus, two different experiments were designed, the first one develops a
binary test, where the performance of the proposed model in the object present/abscent
experiment using five object classes was evaluated; for this experiment the classes: air-
planes, cars-rear, faces, leaves, motorbikes, and the background used as negative class
from the Caltech 5, see [7]. Table 5 shows a comparison with the HMAX model using
boost and SVM as classifiers; this last one was used in the test performance of the AVC
after the evolution process.
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Table 6. Individuals found after the evolutionary process

Name EVO IDO Evaluation

Airplanes Vs Bg
EVOO = log(Dyy(H))

EVOC =
√

(Y 2−M/C)2

EVOS = Erds(H−S)

f1 = 0.25∗ (I)
f2 = log(Dx(I))

Tr = 100%
Val = 100%
T st = 100%

Cars Vs Bg
EVOO = 0.5(Y )
EVOC = OpB−Y (I)
EVOS = M

f1 = Gσ=2(Dyy(I))
f2 = Dxx(I)
f3 = Gσ=2(Gσ=1(Dy(I)))
f4 = Gσ=1(|Dy(I)|)

Tr = 100%
Val = 100%
T st = 98%

Faces Vs Bg
EVOO = Gσ=2(Dxx(I))
EVOC = log(OpR−G(I))
EVOS = thr(R)

f1 =
√

Dxx(I)
Tr = 99.29%
Val = 100%
T st = 100%

Leaves Vs Bg
EVOO = Gσ=2(|Dx(G)|)
EVOC =

√
(OpB−Y (I))c

)
EVOS = R−G

f1 = 0.5∗ (Dxx(I))
f2 = log(Dxxx(I))

Tr = 97.5%
Val = 100%
T st = 100%

Motorbikes Vs Bg
EVOO = |�Dxx(C)�− in f (Dx(G),H)|
EVOC = log((OpR−G(I))c)
EVOS = HMd (H)−0.56

f1 = Dx(Gσ=2(Dy(I)))
f2 = Dy(Gσ=2(Dxx(I)))
f3 =
√

Dxx(I)+Dx(I)
f4 = Dx(Gσ=2(Dxx(I)))

Tr = 100%
Val = 100%
T st = 100%

In this experiment, each data set was randomly divided into three sets, training, vali-
dation and testing. The number of positive training image was variable (10, 20, 30, 40,
50, 60 ,70) and the negative image was 50. For validation and testing was used 50 neg-
ative and positive images. In all cases, the function fitness was defined by the accuracy
in the validation set. The performance is depicted in Figure 5.

Note that, the 100% accuracy in testing was achieved by AVC with an exception for
the class cars-rear with an accuracy of 99%; nevertheless, this perfomance is higher
than the one achieved by the HMAX. In the other cases, the 100% was scored with 10
and 40 images of training for the airplanes; in the case of faces, the 100% in testing
was achieved with 70 images in training; for the class leaves the 100% perfomance was
achieved with 20 images in training; and for the motorbikes with 40 images in training
was reached the 100% in testing. These individuals are shown in Table 6, and Figure 6
depicts the fitness behavior along the evolution; while Figure 7 presents the complexity
and diversity for the best individual for each generation. Thus, Figures 7 (a) and (b)
describe the complexity of the best individual indicated in Table 6. The Figure 7(c)
shows the amount of genetic diversity found in the population at each generation along
the run that produces the fittest individual in the airplanes vs background experiment.
In this way, the complexity of the best individual is quantified by the three deepth, see
Figure 7 (a), and the number of nodes, see Figure 7 (b); and the diversity is defined as the
percentage of operators uniqueness within the population. Note that, the best individual
is a structure of EVOs and the complexity and diversity is over each operator along the
evolution. Hence, the Figures 7 (d), (e), and (f) describe the complexity and diversity
over the experiment cars vs background. The Figures 7 (g), (h), and (i) correspond
to the complexity and diversity of the evolution of the best individual in the faces vs
background case. The Figures 7 (j), (k), and (l) describe the complexity and diversity of
the evolution of the fittest individual in the leaves vs background experiment. Finally;
Figures 7 (m), (n), and (o) depict the complexity and diversity in the motorbikes vs
background experiment.



112 G. Olague et al.

10 20 30 40 50 60 70
0.95

0.96

0.97

0.98

0.99

1

1.01

Training images

A
cc

ur
ac

y

 

 

Training

Validation

Testing

(a) Airplanes Vs Background

10 20 30 40 50 60 70
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Training images

A
cc

ur
ac

y

 

 

Training

Validation

Testing

(b) Cars Rear Vs Background

10 20 30 40 50 60 70
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Training images

A
cc

ur
ac

y

 

 

Training

Validation

Testing

(c) Faces Vs Background
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(d) Leaves Vs Background
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Fig. 5. Performance achieved by the AVC varying the training set for (a) Airplanes Vs Back-
ground, (b) Cars Side Vs Background, (c) Faces Vs Background, (d) Leaves Vs Background, and
(e) Motorbikes Vs Background
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(a) Airplanes Vs Background
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(b) Cars-rear Vs Background
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(c) Faces Vs Background
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(d) Leaves Vs Background
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(e) Motorbikes Vs Background

Fig. 6. This Figure shows the average fitness, standard deviation, best, and minimum fitness of
the run that produces the best individual for the airplanes, cars-rear, faces, leaves, and motorbikes
classes; discussed in Table 6
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(c) Diversity, Airplanes Vs Bg
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(d) Depth, Cars Vs Bg
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(f) Diversity, Cars Vs Bg
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(g) Depth, Faces Vs Bg

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Generations

N
od

es

 

 

EVO
O

EVO
C

EVO
S

(h) Nodes, Faces Side Vs Bg
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(j) Depth, Leaves Vs Bg
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(m) Depth, Motorbikes Vs Bg
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Fig. 7. The Figure (a) and (b) describe the complexity of the best individual indicated in the Table
6. The Figure (c) shows the amount of genetic diversity found in the population at each generation
along the run that produces the fittest individual in the airplanes vs background experiment for
the first row. In this way, the Figure (a) describes the tree depth of the fittest individual along
to the evolution and the Figure (b) shows the number of nodes of the best individual. Thus, the
complexity and diversity for the cars, faces, leaves and motorbikes classes are also shown in the
rows 2, 3, 4, and 5.
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Table 7. This table shows a comparison of performances that were obtained with the HMAX,
HMAX-CUDA, AVS and AVC

Image HMAX HMAX Artificial Artificial
size MATLAB CUDA V. S. V. C.

Running time 896×592 34s 3.5s 2.6s 9.91s
over different 601×401 24s 2.7s 1.25s 5.32s
image size 180×113 9s 1s 0.23s 0.49s
Performance over 15 train-
ing images per 10 classes

94% 94% 78% 85.3%

Performance over 15 test-
ing images per 10 classes

73% 73% 80% 84%

Number of convolutions 4848 4848 216 95

In the second experiment, the system was tested using 10 classes and 15 images
per class of the Caltech 101 database, see [7]. In order to compare with the origi-
nal HMAX model [27] whose source code was used in our experiments; we provide
the Table 7 that presents a summary of the best results and a comparison with the
HMAX model; as well as an implementation of the HMAX-CUDA and a previous
proposal called the artificial ventral stream (AVS), see [4]. Note, that the total num-
ber of convolutions is much lower than the HMAX and HMAX-CUDA. This aspect
is important since the factor of improvement is on the order of a hundred of oper-
ations. However, the performance of the AVC is lower than the HMAX model, but
its level is worse in testing, while the effectiveness of our approach remains constant.
Figure 9 shows the average fitness of the run where the best program was obtained,
while Figure 8 depicts the process of this individual applied to an image. Also, Fig-
ure 10 illustrates the range of descriptor values of the best solution for each class.
We provide also the overall results of the best AVC through the confusion matrix,
see Table 8.

Table 8. This table shows the results of the best solution in the form of a confusion matrix ob-
tained during the testing of the AVC. The final accuracy acc = 84% classifies correctly (126/150)
images.

Airplanes Bonsai Brains Cars Chairs Faces Leaves Motorcycle Schooner Stop Signal
Airplanes 15 0 0 0 0 0 0 0 0 0

Bonsai 0 9 2 0 3 0 0 0 0 1
Brains 0 2 11 0 1 0 0 0 1 0
Cars 0 0 0 14 0 0 0 0 1 0

Chairs 0 0 2 1 11 0 0 0 0 1
Faces 0 0 0 0 0 14 0 0 1 0

Leaves 0 0 0 0 0 0 15 0 0 0
Motorcycle 0 0 0 0 0 0 0 15 0 0
Schooner 0 1 0 0 0 0 0 0 12 2

Stop Signal 0 2 1 0 0 1 0 0 1 10
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Fig. 8. Flowchart of the best artificial visual cortex discovered with the proposed methodology



Evolving an Artificial Visual Cortex for Object Recognition with Brain Programming 117

(a) Average fitness with standard
deviation

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Length of descriptor

Accuracy

result of the evolved solution for 400 features 

(b) Behavior of accuracy with respect to the descrip-
tor length

Fig. 9. Figure (a) shows the average fitness and standard deviation of the run that produces the
best individual. Figure (b) depicts the performance after changing the descriptor length.
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Fig. 10. This plot shows the descriptors that are used as input to the SVM of the best individual

5 Conclusions

In this work the artificial visual cortex was described as a novel methodology inspired
from the natural visual system, emulating its hierarchical structure and functionality in
order to solve the problem of object classification. In this manner, a new evolutionary
approach, called brain programming, was designed to synthesize an artificial visual
cortex specialized for the object recognition task. This approach allows the evolution
of a group of independent visual operators called EVOs. Note that each of them is built
with different set of terminals and operators working independently towards a specific
goal. Thus, the combination of these operators permits the achievement of a common
objective such as the object recognition task. In this way, each evolved visual operator
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mimics the functionality of a tissue within the artificial brain. Final results achieved by
the system score a classification accuracy of 99% for the two-class test while accuracy
rates in a multi-class test were similar to the state-of-the-art. Nevertheless, the proposed
functional approach provides a significant computational simplification of the overall
structure leading to a lower computational cost.
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Abstract. The interaction between a visual system and its environment
is an important research topic of purposive vision, seeking to establish a
link between perception and action. When a robotic system implements
vision as its main source of information from the environment, it must be
selective with the perceived data. In order to fulfill the task at hand we
must contrive a way of extracting data from the images that will help to
achieve the system’s goal; this selective process is what we call a visual
behavior. In this paper, we present an automatic process for synthesizing
visual behaviors through genetic programming, resulting in specialized
prominent point detection algorithms to estimate the trajectory of a
camera with a simultaneous localization and map building system. We
present a real working system; the experiments were done with a robotic
manipulator in a hand-eye configuration. The main idea of our work
is to evolve a conspicuous point detector based on the concept of an
artificial dorsal stream. We experimentally show that it is in fact possible
to find conspicuous points in an image through a visual attention process,
and that it is also possible to purposefully generate them through an
evolutionary algorithm, seeking to solve a specific task.

Keywords: Evolutionary Visual Behavior, Multiobjective Evolution,
Purposive Vision, SLAM, Conspicuous Point Detection.

1 Introduction

Active vision is a research area that is based on the relationship between per-
ception and action. It studies how vision based systems manipulate their input
visual information to solve a given task, as a result of the interaction between
the vision system and the environment. For example, in active vision a robotic

� Corresponding author.

O. Schütze et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics, 121
and Evolutionary Computation III, Studies in Computational Intelligence 500,
DOI: 10.1007/978-3-319-01460-9_6, c© Springer International Publishing Switzerland 2014

http://cienciascomp.cicese.mx/evovision/


122 D.E. Hernández et al.

Images

Visual perception

I am lost Visual
perception

Self localization

Visual
attention

behavior

Feature mapSLAM

Self localization

Saliency point detector

Action

Purpose

Visual behavior

t1 ti tn

Visual attention

Landmark

Action

Visual

Landmark

ti tnt1

Fig. 1. A visual behavior is defined as the sequence of decisions that a system takes
based on the information it perceives from its environment and how it performs the
set of actions required to achieve its goal.

system is able to manipulate the attitude of a camera to achieve some task, or
purpose, related to the observation of the environment where the robot acts [3].
A distinctive characteristic of active vision is the idea that the observer is capa-
ble of engaging into some kind of activity whose purpose is to change the visual
parameters according to the environmental conditions [9]. In this way, purposive
vision, as an information process, does not function as an isolated entity, but as
a part of a bigger system that interacts with the world in highly specific ways
([1],[2]). The idea studied in this paper is that a purposive visual system is inte-
grated into a more complex system whose interaction with the environment are
done in a specific way opposed to a general manner [10]. Therefore, the aim of
purposive or behavioral vision is to evolve a visual routine, via an evolutionary
algorithm, whose overall goal is to adapt the visual program to a specific task.
This work could be understood as part of the new research area of evolutionary
computer vision, see [16].

Figure 1 illustrates the problem that we would like to approach using a camera
mounted at the end of a robotic manipulator. The idea is that a visual behavior
requires specific information related to the task that is being confronted. On the
left-side of the figure, the visual behavior performed by a person is related to
the extraction of visual information needed to read a map; as well as, the mental
activity that is applied to extract the information needed to find an object within
a scene. In this way, the person performs a set of actions including a visual
behavior that needs to accomplish a number of goals, such as: visual perception
and self-localization, in order find its way through an environment. On the right-
side of the figure, we can see the necessary steps in a self-localization and map
building (SLAM) process. This process is normally modelled as an estimation
task, meaning, the system performs an action based on the information captured
by the perception mechanism with the purpose of self-localization. In this system,
the visual routine is done as a conspicuous point detector, and the action is
executed by the SLAM method. In this way, the objective is to synthesize a
specialized detector to estimate the trajectory of the camera over a specific
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path, evaluated through a SLAM system. Therefore, the aim of this paper is
to experimentally show that it is possible to evolve a specialized visual routine,
based on a visual attention model for the trajectory estimation of a camera
mounted on a robot.

The remainder of this paper is organized as follows. First, we review the con-
cept of visual behavior as a conspicuous point detection based on the artificial
dorsal stream mode. Then, the simultaneous localization and map building sys-
tem where the behavior functions, as well as the process for specializing the visual
behavior through genetic programming are described. Thirdly, we describe the
multiobjective evolutionary algorithm to synthesize conspicuous point detectors.
Finally, we present results of a real working system followed by our conclusions
and future work.

2 Visual Behavior

The main objective in this work is the synthesis of visual routines through ge-
netic programming. The core functionality of the visual routine is a conspicuous
point detector based on a visual attention model; this detector should be adapted
to work within a SLAM system in order to estimate the trajectory of a cam-
era. This section describes the three main aspects of our work: the concept of
conspicuous point detection; followed by the SLAM system used as a testbed
for the detectors; and finally, the optimization of the visual routines through an
evolutionary process for conspicuous point detection.

2.1 Conspicuous Point Detection

The concept of conspicuous point detection used in this work was developed
based on the theory behind an interest point detector. In their work, Trujillo
and Olague showed that it is possible to evolve general purpose interest point
detectors through genetic programming [19,14]. The goal in this work is to evolve
specialized point detectors, or visual behaviors, but at the same time maintaining
general purpose properties.

An interest point is a small region on an image which contains visually promi-
nent information. The right side of Figure 1 depicts a robotic system in a hand-
eye configuration that was used to evaluate the evolved interest point detectors.
The idea is to create a visual behavior capable of extracting relevant visual in-
formation for solving a specific task; like the evaluation of the motion of the
camera in a straight line with the pose estimation approach of a SLAM system.
In particular, the value of importance of a pixel in an image is the result of
a mapping K : R+ → R, this transformation is known as the operator, which
should not be confused by the detector. The first one is applied to an image to
obtain the importance of each pixel, and the latter is an algorithm that extracts
all the interest points or regions in an image. In this way, most interest point
detectors work as follows:
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1. Apply the operator K to the input image in order to obtain the interest
image I∗.

2. Perform a non-maximum suppression operation.
3. Establish a threshold to determine if a given maximum should be considered

an interest point.

The idea in this work is to evolve a visual behavior, in such a way of maintain-
ing general purpose characteristics, such as: repeatability and dispersion; while
adapting the visual processing system to estimate a specific trajectory. In sum-
mary, the following properties are the desired characteristics for the evolved
detectors:

1. Repeatability, the expected interest points should be robust to environmental
conditions and geometric transformations.

2. Dispersion, the detector should be able to find points over the whole image.
3. Trajectory estimation, the detector must find useful information that simpli-

fies the camera pose estimation computed through an SLAM system.

Hence, starting from the concept of an interest point detector; this work proposes
to change the manner in which the importance of a pixel is evaluated by using
the concept of visual attention. This is based on the model of an artificial dorsal
stream instead of a single image operation. Thus, the proposed detector, called
conspicuous point detector, works as follows:

1. Apply an evolved artificial dorsal stream algorithm to obtain a saliency map
to be used as an interest image I∗

2. Perform a non-maximum suppression operation.
3. Establish a threshold to determine if a given maximum should be considered

as a conspicuous point.

To summarize, the resulting detected points by the proposed algorithm are sim-
ilar to those found through an interest point detector, they are all prominent
image regions; but since the process to detect the points is different, and it is
inspired in the artificial dorsal stream model, we decided to name them conspic-
uous points.

ArtificialDorsal StreamModel. The dorsal stream, also known as the “where”
pathway, is related to the visual processing necessary to determine the spatial lo-
cation of the objects in the environment. Nevertheless, the description of the pro-
cesses where the dorsal stream is involved is controversial. It is said to be involved
in the guidance of actions, as well as, the localization of objects in space. The dor-
sal stream starts at the retina, from which it receives its main, if not all, input
through magnocellular retinocortical layer of the lateral geniculate nucleus of the
thalamus, and it projects into layer V1, which is part of the primary visual cortex,
also called striate cortex, that is located at the back of the brain. Then, the dorsal
stream goes through the V2 and V3 layers, which are a part of the brain known
as extrastriate visual cortex; afterwards, the stream continues through the mid-
dle temporal area MT, and the medial superior temporal area MST; and finishing
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Fig. 2. The model of an artificial dorsal stream applied through a conspicuous point
detection algorithm. It can be divided into two stages, the feature detection, where
it seeks prominent features in three dimensions, and the feature integration, where it
combines everything into a single map.

in the posterior parietal cortex and the adjacent areas. In general, it is granted
that visual attention is performed by the dorsal stream, and the most accepted
paradigm for visual attention, is the one presented in [11] known as feature in-
tegration theory. But when it comes to computational models, the first one was
presented by Koch and Ullman [12]. They proposed to decompose the input image
into different dimension in order to obtain a set of conspicuity maps and then in-
tegrate them into a saliency map. This is how we propose to find prominent points
in an image; using the image decomposition into several dimensions enables the
system to find attractive points based in different features, such as orientation,
shape and intensity. Then, the idea is to find a plausible way of combining these
different maps in order to obtain a single saliency map, which can be used as the
interest image by the point detection algorithm.

The process of computing the interest image for the conspicuous point detec-
tion is biologically inspired, starting from the model of visual attention presented
by Treisman and Gelade [18], known as an Artificial Dorsal Stream (ADS). The
input for an ADS is an image and its output is an Optimized Salient Map (OSM).
An OSM is an image whose pixel values represent the saliency of a point along
the considered dimensions. In this way, the ADS is divided into two main stages:
feature acquisition and feature integration; these stages can be seen in Figure
2. In the first phase, the input image is processed at three different and inde-
pendent dimensions: intensity, orientation and shape. A set of visual operators
is applied to the image creating one Visual Map (VM) per dimension. These
maps represent the prominence of each pixel according to the corresponding di-
mension. For the second stage, the system combines the resulting VMs into a
single map. Therefore, the output of the ADS is an OSM that expresses the
prominence of each of the pixels in the input image. The following subsections
describe, with more detail, the two stages along with the transformations that
the image undergoes in each of them.
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Table 1. Functions and terminals used to build the population for orientation

FO = {+, |+ |,−, | − |, |ITO |,×,÷, I2TO
,
√

ITO ,

log2(ITO ),
ITO
2

, Dx, Dy , Gσ=1, Gσ=2}
TO = {I,Dx(I),Dxx(I), Dxy(I), Dyy(I),Dy(I),

Gσ=1(I),Gσ=2(I)}

Feature Acquisition Stage. As mentioned above, this stage is composed of
a set of visual operators that seek to highlight the pixels’ prominence in three
independent dimensions: intensity, orientation and shape. In their work Itti and
Kosh [11] define the operators for these dimensions with a data driven approach.
For the present system, a set of functions is developed through an evolutionary
process to match the functionality of the dorsal stream in the natural visual
system. This leads to a set of Evolutionary Visual Operators (EVOs), that will
now be described. Note that, for the intensity dimension the system uses the
input image since it is already an intensity map.

Orientation. The feature orientation detection function EV OO : I → VMO;
seeks to highlight prominent edges in the image. The values on the VMO is the
prominence of a certain pixel according to the operator EV OO. Table 1 shows
the set of functions and terminals used by the evolutionary algorithm to build
the operators for the orientation dimension, where I is the input image, ITO are
the elements in the terminal set TO; or the output elements of the function set
FO; Du represents the image derivatives in the direction u ∈ {x, y.xy, xx, yy},
and Gσ corresponds to a Gaussian filtering with the given σ value.

Shape. For the shape dimension, the system uses the function EV OS : I →
VMS; the aim of this operator is to accentuate interesting points based on
the appearance and structure of the objects in the image, through mathemat-
ical morphology. The input nodes used to build this operator can be seen in
Table 2.

Generation of Conspicuity Maps. After generating the three VMs, one per
feature dimension, by using the aforementioned operators and the input image

Table 2. Functions and terminals used to build the population

FS = {+,−,×,÷, round(ITS ), floor(ITS ),
ceil(ITS ), dilationdiamond(ITS ), dilationsquare(ITS ),
dilationdisk(ITS ), erosiondiamond(ITS ),
erosionsquare(ITS ), erosiondisk(ITS ), skeleton(ITS )
boundary(ITS ), hit−missdiamond(ITS ),
hit−misssquare(ITS ), hit−missdisk(ITS ),
top− hat(ITS ), bottom− hat(ITS ), open(ITS ),
close(ITS )}

TS = {I}
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for the intensity dimension, the next step is to obtain the conspicuous maps
(CMs) through the center-surround function CS : VM → CM , which tries to
emulate the center-surround receptive fields found in the natural dorsal stream.
In order to achieve this functionality, the system creates a prism VMl(α) with
nine levels, each at a different spatial scale α = {1, 2, ..., 9}. In this way, an
across-scale subtraction � is performed leading to a set of center-surround maps
VMl(ω) for which the value of a pixel increases according to the contrast along
its neighbors at different scales ω = {1, 2, 3, 4, 5, 6}. Finally, the VMl(ω) maps
are merged using an across-scale addition ⊕ in order to obtain a conspicuous map
CMl per feature dimension. Thereafter, the resulting CMs must be combined
using the feature integration operator in order to generate a single saliency map.
This procedure is explained in the following section.

Feature Integration for a Saliency Map. Here we describe how the system
combines the resulting CMs aiming to create a single map. We identify this oper-
ation as the Feature Integration, defined as follows: RFI : CMl → OSM , where
CMl are the conspicuous maps for the three feature dimensions l = {O,S, I}.
Today, there is a lack of knowledge offering an explicit description of this pro-
cess in the natural system; since, it is uncertain how the brain makes the CMs
integration and in which region the saliency map is conceived. But as it has been
stated, in this work, the visual routine was generated in a purposive manner.
Therefore, a saliency map is built using an Evolved Feature Integration (EFI)
function, leaving the task of establishing a good way to combine the maps to the
artificial evolutionary algorithm. The set of functions Ffi and terminals Tfi used
by the evolutionary algorithm to obtain this operator can be found in Table 3.

Table 3. Functions and terminals used to build the population

Ffi = {+, |+ |,−, | − |, |ITfi |,×,÷, I2Tfi
,
√

ITfi ,

log2(ITfi), Dx, Dy , Gσ=1, Gσ=2}
Tfi = {CMO , CMI , CMS , Dx(CMO), Dxx(CMO),

Dxy(CMO), Dyy(CMO), Dy(CMO), ...}

The resulting OSM was contrived through the combination of the CMs,
where the values in the map represent the prominence of each pixel. Therefore, we
propose to use the OSM as an interest image for the feature detection algorithm;
since, the operation is quite different from the typical operator used for interest
point detection, we will refer to the points found with this methodology as
Conspicuous Points (CPs).

3 Trajectory Estimation with a SLAM System

For this work, the task that we focus on is the camera trajectory estimation
through a visual behavior. To accomplish this task, the conspicuous point detector
(CPD) is integrated into a simultaneous localization and map building (SLAM)
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system. In this section, we describe how the systemworks and its relationship with
the visual routine. The behaviormust highlight useful information in the perceived
images in order to be able to locate the camera over time. The SLAM system used
to evaluate the efficiency of the visual behaviors in the corresponding task is based
on the MonoSLAM system presented by Davison et al., see [5]. The system uses a
single camera, it implements a feature based map for the environment represen-
tation, and the localization process is approached as a state estimation task with
a Kalman filtering algorithm. The concept of conspicuous points is applied in or-
der to find prominent visual landmarks in the environment, which are then used
to build the visual features map. The SLAM process is divided into three stages:
initialization, state propagation, and map update.

Initialization Stage. In order to estimate the trajectory of the camera, the
system has to determine its position along its movement; thus, the state of
the SLAM system is defined by the camera’s pose, position and orientation,
and speed. In this manner, the process estimation of the camera’s attitude x̂v,
defined by its position r and orientation q, and linear and angular speeds, v and
ω, is approached through Kalman filtering. Coupled with these variables, the
system maintains an environment map, which is defined through a sparse set of
visual landmarks. Therefore, the system tracks the position of the camera, along
with the spacial position for each feature yi composing the map. Hence, the
system estimates the state st, which contains the information about the camera
and the feature map. The state estimation ŝt is coupled with the uncertainty
estimation St. The initial state of the system is assumed to be known; in other
words, the camera position is known along with a starting map, which consists
of four landmarks on a calibration plane. The state st and its covariance St are
defined as follows

st =

⎛⎜⎜⎝
x̂v
ŷ1
ŷ2
:

⎞⎟⎟⎠St =

⎡⎢⎢⎢⎣
Sxx Sxy1 Sxy2 . . .
Sy1x Sy1y1 Sy1y2 . . .
Sy2x Sy2y1 Sy2y2 . . .
...

...

⎤⎥⎥⎥⎦ .
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State Propagation. The state estimation is performed through a Kalman fil-
tering method, and it is divided into two stages, prediction and measurement.
The future states of the camera are assumed to follow a dynamic model of the
form of

st = Ast−1 +wt,

where A is the state transition matrix, and wt is the process noise. At each time
step, the filter makes a prediction of the current state based on the previous
state and the dynamic model. The prediction s−t is also known as the a priori
state, together with its error matrix S−

t ; this first step is called prediction stage.
The dynamic model is defined by

s−t = Ast−1,

S−
t = ASt−1A

T + λw,

where λw is the process covariance that models noise, assumed to be a white
Gaussian noise.

Measurement Stage. The idea in this stage is to use the images captured by the
camera to improve the state estimation. Hence, the measurements zt, represent
the image location at time t of the visual landmarks, and are related to the
current state of the camera, defined by

zt = Cst + vt,

where vt is the measurement noise, and C relates the camera pose to the images
position of the landmarks. The measurement model is then used to establish an
a posteriori state estimate ŝt together with its error matrix St by incorporating
the measurements zt through the following equation

ŝt = s−t +Gt(zt −Cs−t ),

St = S−
t −GtCS−

t ,

where Gt is known as the Kalman gain, defined as

Gt = S−
t C

T (CS−
t C

T + λv)
−1,

with λv being the measurement covariance. In this manner, the a posteriori
state estimation at time t is complete; therefore, the state ŝt together with its
uncertainty matrix St is ready for the next estimation cycle.

Map Update. Now that we have a good estimation of the camera’s position, the
system must capture more information of the environment in order to broaden
its representation, this is done by extending the feature map. In this manner, the
system applies the conspicuous point detection algorithm to find landmarks in
the environment, which may enhance the state estimations in future time steps.
In this way, the detector must bring, implicitly, the required characteristics on
the conspicuous points to help the system solve the position estimation task.
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The final step for the map update is to determine the spacial position of the
visual landmarks. Since, the system uses monocular vision, it uses a particle
filter to establish the depth of the visual landmarks. Once the depth is known
for a certain point, it is added to the map for further estimations.

After these three steps, the estimation cycle of the Kalman filter is complete,
and the position estimation is ready for the next iteration. This estimation cycle
is executed for each image captured by the camera.

3.1 Evolving an ADS for Conspicuous Point Detection

This section describes the process of specialization of the ADS through the ap-
plication of what we call brain programming (BP). This variation of genetic
programming gets its name from the fact that it evolves not only a single func-
tion, but a set of them embedded into a hierarchical structure and coupled with
some pre-designed procedures, aiming to emulate the functionality of an organ,
such as the brain. For this work, the proposed genotype is formed by three op-
erators, which can be seen as the genes, and when they are put together within
a particular structure (program) they form a complex chromosome. The corre-
sponding phenotype for the proposed model can be seen in Figure 2. Therefore,
the algorithm in charge of processing the visual information is able to extract
the conspicuous points within the image, by mimicking the functionality of an
ADS, which is a single processing module. The aim of the proposed representa-
tion is to encourage the construction of complex functions capable of solving the
task at hand; in this case, the construction of a conspicuous point detector to
be applied inside the SLAM system previously described. Then, it is important
to note that each individual of the population is understood as a complete ADS
adapted to the purpose of extracting conspicuous points from the image, each
individual is defined by the operators merged within an specific structure, and
it is therefore not just a list of tree-based programs but rather an information
processing system as shown in Figure 2. The evolved detectors are tested within
the SLAM system described in Section 3. For this particular work, the testing
trajectory of the detectors is the camera moving on a straight line, parallel to a
wall rich in information. The SLAM system estimates the camera position during
its trajectory using the evolved detector within the feature map building stage of
the SLAM. Then, the fitness of the detector is evaluated through the quality of
the position estimations, as well as, some other qualities of the extracted points.
The evolved detectors should exhibit the properties mentioned in Section 2.1.
Due to the amount of work required for the evolutionary algorithm, a camera
motion sequence was captured in order to be used by the off-line evaluation to
compute the detectors. The hypothesis for this work is that a good detector
for the camera’s trajectory estimation is one with high repeatability and high
point dispersion. Which should bring stable landmarks and a disperse feature
map. The following functions are used to evaluate the evolved detectors and are
defined from a minimization perspective:
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Repeatability. The average repeatability rK(ε) is calculated for the operatorK
by evaluating the repeatability between two consecutive images, using a neigh-
borhood of size ε. It is important to note that the repeatability is calculated
using the position of the camera produced by the highly-accurate robot move-
ment instead of using the homographies between the images.

rIi(ε) =
|RIi(ε)|

min(γi−1, γi)
,

where γi−1 =
∣∣{xc

i−1}
∣∣ and γi = |{xc

i}| are the number of points detected in
images Ii−1 and Ii. RIi(ε) represents the set of pairs of points (xc

i−1, x
c
i ) that

were found in two consecutive images within a region of radius ε:

f1 =
1

rK(ε) + c1
,

where c1 is a constant to avoid an invalid division.

Dispersion. To evaluate the detectors, Dp(K) is the average dispersion of the
extracted points from the image sequence using the set individual K; where
c2 = 10 is a normalization constant.

f2 =
1

eDp(K)−c2
.

The point dispersion in image Ii is calculated using the points’ entropyD(I,X) =
−
∑

Pj · log2(Pj) where X is the set of detected points and Pj is approximated
using a histogram.

Trajectory Adjustment. The fitness of the individuals for calculating the
camera motion is measured using the mean squared error of the estimated tra-
jectory using the real straight-line trajectory given by the high-accurate robotic
arm.

f3 =

M∑
i=1

[xvi − x̂vi ]
2

M

Multiobjective Visual Behavior Evolution. For our work, we took a mul-
tiobjective (MO) approach which allows us to incorporate several optimization
criteria to evaluate the evolved detectors, see [15]. It is important to note that
in a MO algorithm the result is a set of Pareto optimal solutions, rather than
a single best individual, see [7]. In our algorithm, each individual represents a
conspicuous point detection program, which is composed of three operators em-
bedded within a complex program, one used to generate the orientation VMO,
the other for the shape VMS , and the last one for the feature integration process.
These operators are created using the sets of functions and terminals defined in
Section 2.1. The evolutionary process was executed using a Unibrain Fire-I cam-
era mounted on a Stäubli RX-60 robot with six degrees of freedom. The camera
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Table 4. Parameters used in the multiobjective GP for the synthesis of conspicuous
point detectors

Parameters Description

Population 30 individuals

Generations 30 iterations

Initial population Ramped Half-and-Half

Genetic operations probabilities Crossover pc = 0.85
Mutation pμ = 0.15

Max three depth 6 levels

File size (SPEA2) 15

Parent selection 15

captured monochromatic images with a resolution of 320× 240 pixels. The test-
ing trajectory was the robot moving in a straight-line, parallel to a wall rich in
visual information, the length of the path is 70 centimeters, and it was repre-
sented by a set of 150 images. The parameters for the evolutionary algorithm
can be found in Table 4. In this manner, each individual is evaluated through
its functionality within the SLAM system. The image sequence is also employed
to evaluate the repeatability and dispersion of each of the individuals. Next the
genetic operations are executed according to the SPEA2 [20] algorithm for par-
ent selection, one-point crossover and sub-tree mutation acting independently
on each of the three operators in order to create the new offspring.

Therefore, the evolutionary algorithm implemented for our work is hierar-
chical, the operations do not have a real meaning by them self, since they
are adapted to work together within a specific structure. It is also said to be
heterogeneous, as mention earlier, we implemented different sets of functions
and operators per each desired EVO. Finally, as described in this section, it is
multiobjective, due to the aiming of the adaption of multiple detectors to the
given task by evaluating their performance from three perspectives: repeatability,
dispersion, and trajectory estimation.

4 Experimental Results

This section describes the results from the evolutionary process, in order to out-
line the implemented system that synthesizes an artificial dorsal stream using
a conspicuous point detection process. The resulting population can be seen in
Figure 4, which shows the distribution of the individuals along the fitness space.
Also, in Figure 4 we can see an aerial view from the Repeatability-Dispersion
plane, which shows the individuals group in the corner near the origin of the
plane. The meaning can be interpreted as representing the set of individuals that
achieve high performance along these two fitness functions creating point detec-
tors that find highly repeatable but dispersed points. In Figure 4, we can see lat-
eral views from the MSE-Repeatability and MSE-Dispersion planes. Moreover,
we can observe that the individuals are distributed along the MSE axis, mean-
ing it is harder to find fitter solutions with respect to this evaluation function,
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Fig. 4. Resulting Pareto front for the evolutionary process along the Repeatability-
Dispersion plane

which results natural, since this is the function related to the task of tracking
the camera. This distribution also means that this fitness function is in conflict
with the other two. The Table 5 lists the non-dominated individuals forming the
Pareto front produced with the system just described. The resulting operators
are called conspicuous point detectors for SLAM (CPSLAM). These individuals
were tested inside a monocular vision SLAM system described in Section 3. All
experiments were carried out in a Dell Precision T7500 workstation, with a Intel
Xeon 8 Core processor, an NVIDIA Quadro FX 3800 video card running the
OpenSUSE 11.1 linux as an operating system.

It is interesting to note that most of the individuals do not use all the di-
mensions for the construction of the saliency map, which can be related to the
fact that the evaluation trajectory is very simple. The most applied dimension
is the orientation, meaning that this should be considered as the most helpful
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Fig. 5. Resulting Pareto front for the evolutionary process along the Dispersion-MSE
plane

information for solving this particular straight line trajectory motion, due to the
edge detection capabilities of the proposed operations.

Figure 6 shows the change on the diversity of the individuals in the popu-
lation. Diversity is defined as the percentage of uniqueness of the solutions in
the population. As mentioned earlier, there are three operator inside each indi-
vidual, and we observe the normal tendency of an evolutionary algorithm. The
population starts with high diversity, since it is created pseudo-randomly but
it grows due to selection and crossover; nevertheless, we can also see some in-
crement due to mutation. Since our evolutionary process is heterogeneous we
evaluated the diversity for each operator separately. Measuring the diversity in
our process is important because it shows that brain programming is capable
of exploring different regions of the solution space, and it also helps to compare
solutions that achieve similar results.
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Table 5. Individuals found after the evolutionary process creating a Pareto front

Name Operator Fitness

CPSLAM1

EV OO = round(Dx(Dy(I))) + 0.09
EV OS = hit − missdiamond(I)

EFI =
CMI

Dy(CMS )

f1 = 0.124
f2 = 2.647
f3 = 44.51

CPSLAM2

EV OO = thresh(log2(�infimum(Dx(Dx(I)), I)�))
EV OS = dilatesquare( I

0.93
)

EFI = | (�CMI−Dx(Dy(CMI ))�)
0.63

|

f1 = 7.774
f2 = 1.926
f3 = 24.459

CPSLAM5

EV OO = Gσ=1(Dy(Dy(I)))
EV OS = �I�

EFI = (Dx(Dy(CMO)))2

f1 = 0.195
f2 = 1.258
f3 = 65.67

CPSLAM11

EV OO = infimum(I2 , infimum((Dx(supremum(Dy(I), DX (I)/2)))2 , TMP))
TMP = |Dx(Dx(I)) − Gσ=1 ∗ I|

EV OS = kSust(�Erodediamond(Dilatesquare (I))�, 0.05)
EFI = round((Dy(Dy(CMI )))/0.87)

f1 = 0.134
f2 = 2.373
f3 = 33.67

CPSLAM13
EV OO =

√
thresh(supremum((Dx (Dx(I)))

1
0.85 , round(I)))

EV OS = hit − missdiamond(perimeter((I/0.97)) + (I + 0.55)
1

0.31 )

EFI = (round(Dy(Dy(CMI ))/0.87))2

f1 = 30.592
f2 = 2.569
f3 = 9.164

CPSLAM14

EV OO =
√

�|Dx(I) − �Dy(Dy(I))�|�

EV OS = hit − missdiamond(perimeter(I/0.97) + (I + 0.55)
1

0.31 )

EFI = ||eDx(Dy(CMS ))−CMS − (Dy(Dy(CMI ))/0.87)| × Gσ=2 ∗ (Dx(Dx(CMS ))

−Dx(Dx(CMO))) + ((|CMO + Dx(CMI )| − Gσ=1 ∗ Dx(Dx(CMS ))) + 0.18)|

f1 = 0.279
f2 = 1.189
f3 = 86.504

CPSLAM18
EV OO =

√
thresh(supremum((Gσ=1 ∗ Dy(Dy(I)))

1
0.85 , round(Gσ=1 ∗ I)))

EV OS = hit − missdiamond(�I� + (I + 0.55)
1

0.31 )
EFI = (CMO + Dx(Dx(CMO)) − Gσ=1 ∗ Dx(Dx(CMS )) + 0.18

f1 = 0.171
f2 = 1.151
f3 = 200.47

CPSLAM19

EV OO = infimum(I2 , Dy(I))

EV OS = hit − missdisk(I)

EFI = round(Dy(Dy(CMS )))2

f1 = 0.124
f2 = 2.654
f3 = 6.851
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Fig. 6. Evolution of the diversity measure of the population over the evolution process

As mentioned previously, the evolutionary process applied in our work follows
a multiobjective approach. Figures 7, 8 and 9 describe the evolution of the aver-
age fitness values of the population and the fitness values of the best individual
at each generation for the repeatability, point dispersion and MSE of the con-
spicuous point detectors generated by each individual. In the case of the point
dispersion and MSE fitness functions, we can see a regular tendency for a mini-
mization process. They both tend to decrease, but for the repeatability value we
can observe small increments; this is due to the fact that it is in conflict with the
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Fig. 7. Evolution of the Repeatability fitness, the graphic shows the best individual in
each generation, and the population average

other fitness values. Note, that Figure 9 is presented in a logarithmic manner,
this is due to the high values in the early steps of the evolutionary process; since,
the population is created randomly and the detectors are not adapted for the
task of solving the camera trajectory estimation task.

Figure 10 shows the execution of the system using the individual CPSLAM5
that achieves the better results. The sequence on the left correspond to the
captured images where the ellipses on the images represent the computed vi-
sual landmarks. The right side of the figure depicts the error on the estimated
trajectory along the XY and XZ planes.

In order to better understand the inner workings of a conspicuous point detec-
tion, Figure 11 shows how the resulting best individual CPSLAM5 decomposes
an image in order to find prominent points. As we can see on the image, it first
decomposes the image in three dimensions, but then, in the integration stage,
it focuses on the orientation maps for creating the interest image. Finally, after
the non-maximum suppression operation we can observe that the detector finds
small areas of prominent points dispersed along the image, which is the kind of
point distribution that is helpful for the SLAM system, since it has to create
the sparse feature map for the position estimation task. Surprisingly, the final
best result is similar to a typical interest point detector like those designed in
previous research, see [14]. This result helps us show that brain programming is
a viable technique for real world applications, since it is coherent with previous
knowledge, and in a simple task, like the one approached in this chapter, brain
programming is capable of finding human competitive solutions.
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Fig. 8. Evolution of the Dispersion fitness value; best individual in each generation,
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Fig. 10. System execution using the CPSLAM5 individual. On the left side we plot
some images capture by the camera during its trajectory motion together with some
points highlighted by the system. The right size shows the position estimation provided
by the SLAM system.
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Fig. 11. Transformation of an input image performed by the CPSLAM5 detector
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5 Conclusions and Future Work

The main objective of this work was to show that it is possible to purpose-
fully generate visual behaviors through a multiobjective evolutionary algorithm,
along with the idea of applying the concept of an artificial dorsal stream for a
prominent point detection system, resulting in what we called conspicuous point
detectors. Another important aspect of our work is that we focus on creating
detectors for a specific task, in this case the trajectory estimation of a camera,
rather than focusing on generic detectors. The results in this work show, that
it is possible to perceive artificial evolution as a purposive process; also, that it
is possible to find conspicuous points in an image through the concept of visual
attention; and finally, that is it possible to design such detectors to solve a given
task. Also, we can see on the results that exists in fact a conflict between the
properties we seek in a conspicuous point detector, which shows that it is co-
herent to approach this as a multiobjective optimization process. The proposed
perspective of behavior vision brings a rich research line of work, we list some
of these next:

1. The synthesized detectors where generated using a simple straight line mo-
tion trajectory. It would be interesting to test the resulting detectors in more
complex trajectories, and evolve the detectors using these new motions, and
compare the resulting detectors.

2. Another problem is to apply the evolved conspicuous point detectors in other
visual tasks in order to compare its efficiency against interest point detectors.

3. Also, we can compare the performance of a conspicuous point detector
against other interest point detectors using a standard benchmark.

4. Moreover, another goal could be to introduce motion related visual opera-
tions to see if they improve the functionality of the detectors.

5. Finally, the idea is to perform some tests in order to find which feature
dimensions are better based on the environment where the system works.
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Abstract. Visual attention is a natural process performed by the brain,
specifically by the dorsal stream, whose functionality is to perceive salient
visual features. This chapter is devoted to the task of evolving an artificial
dorsal stream (ADS) using the brain programming strategy. The idea is
to state the problem of visual attention, normally studied as two parts:
bottom-up and top-down, in terms of a unified approach following a
teleological framework. Indeed, in this work visual attention is explained
as a single mechanism that adapts itself according to a given task. In this
way, brain programming is used to design ADSs. Experimental results
show that this new approach can contrive ADSs useful in the solution of
“top-down and bottom-up” visual attention problems. In particular, we
present a solution to the size and missing pop-out problems that were
unsolved previously in the literature.

Keywords: brain programing, visual attention, genetic programming.

1 Introduction

Visual attention is a skill, which allows to a creature, living or artificial, to di-
rect their gaze rapidly towards the objects of interest in the visual environment
[14]. The objects of interest refers to those objects or regions in the environment,
which contain important information at a given time. Moreover, the visual atten-
tion mechanism is one of the most important mechanisms in the visual system
because the brain is unable to process all visual information acquired along
the entire visual field. In this way, there are two basic processes that define the
problem of visual attention. The first basic phenomenon is due to the limited ca-
pacity of information processing. Therefore, only a small amount of information
available to the retina can be processed and used to control a specific behavior.

� Corresponding author.

O. Schütze et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics, 141
and Evolutionary Computation III, Studies in Computational Intelligence 500,
DOI: 10.1007/978-3-319-01460-9_7, c© Springer International Publishing Switzerland 2014



142 G. Olague et al.

MO(·) MI(·) MC(·) M(·)

t1 t2

f1 t3 t1 t2

t1

f1 f2

t3 t4

f2

t2

MO MI MC M

MO

MI MC

Terminal and function sets

Phenotype Function written

Genotype

as syntax
trees

Dorsal Stream

Neurophysiology

Pyramidal

Stellate
cell

cell

Fig. 1. This figure illustrates the analogy between the natural and artificial systems.
The idea is based on replicating the functionality of a set of artificial tissues that
conform what we called the brain programming (BP) system.

The second basic phenomenon is selectivity; in other words, the ability to fil-
ter unwanted information [7]. The brain can be extremely complex and despite
rapid scientific progress much about how the brain works remains a mystery. In
nature, there is a large diversity of brain anatomies that are characterized by
the specialization of visual systems. Such diversity shows the power of evolution
through adaptation. In this way, it has been argued that the evolution of specific
visual mechanisms in the primate brain is the product of natural selection [4].
Contrary, in the recent past it was widely believed that human observers con-
structed a complete representation of everything in their visual field [8,25]. This
has been amply refuted by a large amount of vision research.

In this work, we follow the idea that visual attention is controlled by both
cognitive, or top-down (TD) factors, such as knowledge, expectation, and cur-
rent goals; as well as, reactive stimulus, or bottom-up (BU) factors, that refers to
sensory stimulation like novelty, unexpectedness, and brightness, see [6]. More-
over, the low level mechanisms for feature extraction act in parallel over the
entire visual field using the TD and BU systems in order to provide the signs
that highlight the image regions. Afterwards, attention is focused sequentially
on the highlighted regions of the image in order to make a posterior analysis, or
simply by processing them [26,14].

1.1 Problem Statement

Since the late 19th century visual attention has been studied by researchers from
different scientific disciplines; such as: neurologists, physiologists, psychologists,
and in the last three decades by people working on computer vision. In partic-
ular, we believe that a new community of researchers working with genetic and
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evolutionary methods could be interested in the problem of visual attention, see
[18]. Note that, all these researchers believe that it is necessary to implement this
property within artificial systems since it is reasonable to assume such process as
a feasible way to reduce the complexity of visual information processing. In this
way, considering the selectivity of visual information, the answers to the ques-
tions: “what features should be selected?” and “when to use those features?” are
not evident. Moreover, a problem arises after the feature detection stage known
as feature combination. Combining different features, such as color, orientation
and shape, within a single saliency representation becomes complex since these
features came from different visual dimensions. The complexity increases when
you are looking for a particular object, and it is necessary to filter the informa-
tion to stress the features of the desired object. In this work, brain programming
(BP) is used to address this problem. In this way, the idea is to apply BP as the
mechanism to obtain the most suitable artificial dorsal streams (ADSs) programs
that are capable of pursuing the desired goals.

2 Visual Attention Processing

This section proposes a new approach for visual attention with the aim of orga-
nizing the whole system as a single functional entity that changes its operation
according to a purpose, but without changing its general structure. In this way,
contrary to most traditional approaches that represent the visual attention model
through the division of the process into reactive and volitive parts; our proposal
provides the simplicity and uniqueness to endow a machine with the ability of
designing visual attention programs that fit specific goals. Next, the main theory
is reviewed in order to understand our approach to visual attention.

2.1 Classical Approach to Visual Attention

Visual attention functionality is related to the brain areas around the dorsal
stream. Thus, the dorsal pathway is defined as projecting from V1 through
V2, V3, middle temporal area (MT), medial superior temporal area (MST) and
finally to the posterior parietal cortex, see [27]. Nevertheless, there is a lack
of consensus about the specific brain areas (structure, and functionality), that
conform the dorsal stream. For example, in another theory the dorsal stream
is also known as the “how” stream [17]; while, in the work described in [3] the
dorsal stream areas do not correspond to the literature.

Nowadays, classical explanations of visual attention are in agreement that
the dorsal stream functionality can be influenced by BU and TD factors. In this
way, it is affirmed by [6] that there are two interacting neural systems involved
in the control of BU an TD factors that control visual attention. As a result,
the dichotomy of visual attention has inspired several computational models
that are commonly based on only one of these two factors. For example, the
research in computational neuroscience has traditionally separated their study;
as well as, the implementation of visual attention using a benchmark system
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for human-visual gaze estimation [21,5] or for the solution of object recognition
tasks. Contrary to this line of research, we propose to study visual attention
from a teleological standpoint as a way of unifying through this framework both
factors with the intention of considering visual attention as a single mechanism.

Next, both BU and TD factors are reviewed in order to introduce our approach
with the aim of understanding the structure and functionality of visual attention.
In this way, both factors should be studied through a unique process that is
capable of adapting itself according to the pursued goal or goals.

“Bottom-Up” Control for Visual Attention. In the literature the idea of
BU visual attention is related with involuntary attention, which is usually com-
pared with the concept of a spotlight. This metaphor has been used by Posner
et al. [22] to explain that visual attention operates “as a spotlight which im-
proves the detection of events in their proximity”. Actually, one of the best and
easiest ways of implementing a set of tests is to study BU attention in terms of
visual search. Commonly, the exploratory task is studied experimentally using
a set of images containing challenging visual stimuli that are presented to an
observer. For each image there is an object called target that is different from
the rest. Today, the existing computational models are mostly BU models based
on the feature-integration theory [26], that we review next. The first biologically,
neurologically, and plausible computational model for BU visual attention was
proposed by Koch and Ullman [14]. Later, Milanese [16] proposed a visual at-
tention system using mechanisms, inspired from biological processes, which were
adopted by the research community to create a whole new trend in visual atten-
tion systems. Some of these processes are color opponencies such as: red-green
and blue-yellow; as well as, the center-surround difference present in the recep-
tive field of the cortical cells. One of the most well-known models is probably
that of Itti et al. [12], which provided software that popularize these theoretical
processes. In summary, this can be considered as a very detailed model that
proposes simple solutions to complex issues. Later, another breakthrough was
proposed by Rensink [24,23] who introduced the notion of proto-objects and
the interpretation of the apparent blindness of observers to recognize dramatic
changes within a scene. Finally, Walter and Koch [28], showed that the proposed
model can enhance the task of object recognition through the application of the
concept of proto-object for visual attention tasks.

“Top-Down” Control for Visual Attention. Today, there is an agreement
that TD cues play a key role in the processing of visual information. In particular,
it is known that during the TD visual attention there are numerous connections
between higher and simpler information processing areas. In this way, it is said
that voluntary attention takes more time, and effort to accomplish high-level
tasks in comparison with involuntary attention. This is because the target shares
with the distractors two or more features, which forces the observer to perform
a scanning of the whole scene.



Optimizing an Artificial Dorsal Stream on Purpose for Visual Attention 145

The TD visual phenomenon, just explained, is usually studied in psychophysics
through the so-called “cuing experiments”. This type of experiments consists in
presenting a “cue” that guides the observer’s attention toward the target. In this
way, it is said that cues may indicate where is the target, like in the case of an
arrow pointing towards the target, or by answering the question of what is the
target by means of finding the similarities between a picture, or written descrip-
tion of the target, see [9]. Thus, there have been several attempts to implement
models using TD models. For example, Oliva et al. [19] propose an attentional
model that uses knowledge about the distribution of features over the image in
order to select salient regions. Peters and Itti [21] proposed a combined model
BU/TD, in which they measure the ability of the model to predict the saccades
of people playing video games. In this way, they improved the prediction by a
margin that doubles the performance obtained by the BU model. The TD part
computes a feature vector describing the “gist” of the image with the positions of
saccades obtained from real observers that are used to train the model. Finally,
a feature vector is calculated to generate the saccades prediction map. Recently,
Borji, et al. [5] follow the same line of research proposed by Peters and Itti, but
the system is based on a different approach that determines the position of the
saccades with respect to the observer by applying a set of robust classifiers.

Thus, from a computational modeling standpoint TD factors are not a trivial
task; in other words, emotions and desires are difficult concepts to model within
computer science. Nevertheless, a purpose should not be confused with a desire;
when we refer to a purpose, we talk in terms of whether the goals are achieved or
not; i.e., the goals are always associated with a metric. Here lies the importance
of modeling TD and BU mechanisms in teleological terms.

2.2 A Unified Approach for Visual Attention

Aristotle defined the final cause or telos as that for which something is done,
its purpose. He also distinguishes between the telos and desire, as well as the
consciousness and intelligence. Therefore, according to Aristotle, an organism,
like a seed, has a purpose just as a person, see [2]. Later, Kant [13] wrote, in
the “Analytic of Teleological Judgment”, that organisms must be regarded in
teleological terms, and in the “Dialectic of Teleological Judgment”, he attempts
to reconcile this teleological conception of organisms with a mechanistic account
of nature. Everything can be completely explained by causality, except the or-
ganisms. In fact, the understanding of terms such as: final cause, end, purpose,
end for which, good for which, in Darwin’s documents is in relation to his thesis
of natural selection, see [15].

From our standpoint, we define attention as the result of a single mechanism
that is designed to obey a general purpose. For example, the most primitive pur-
pose for life could be survivorship. But, the achievement of survivorship depends
on many other particular tasks; for example, prey hunting, mating, predator es-
cape, etc. In this sense, visual attention is capable to adapt to the kind of goal
associated to the current task of the organism. In order to accomplish such task,
it is necessary to have a unique and general visual attention structure capable of
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performing, by some temporal readaptation, the necessary functions to perform
such task. Furthermore, considering the fact that most of the tasks involved in
the design of BU and TD factors are complex, we could say that the space of
possible readaptations is at least very large and discrete. Therefore, we define
visual attention as follows.

Definition 1 (Visual Attention). Visual attention is a process that designs
a relationship between the different properties of the scene, which are perceived
through the visual system with the aim of selecting a particular aspect.

For these reasons, we consider visual attention as a single computational struc-
ture that performs BU and TD processes. In consequence, in this work visual
attention is studied within a unified framework in order to evolve visual attention
programs (VAPs) that will be adapted to specific tasks.

3 Purposive Evolution for Visual Attention

Nowadays, from a biological perspective, it is well-known that the development
of specific visual mechanisms in the primate brains is associated to evolution;
specifically, this is linked to natural selection as it is explained in evolutionary
theory. Moreover, the theory of evolution is not exempt of the concept of purpose
and vice versa. Charles Darwin was the one who brought the concept of purpose
into consideration. Note that Darwin uses the term final cause systematically
in his writings as documented by Lennox [15]. On the other hand, Barton [4]
explains the evolution of primates brains in terms of the specialization of visual
mechanisms; such as visual attention. Thus, this section describes the general
structure of attention, which is biologically inspired and will be evolved to suit
different objectives. The resulting evolved programs will be known as artificial
dorsal streams. Moreover, following the same direction of Treisman, the descrip-
tion of the general approach is divided into two main stages: acquisition and
integration; see [26].

3.1 Acquisition of Early Visual Features

In previous works of artificial visual attention, the operators are established
according to particular visual characteristics and the manner in what neurosci-
entists describe the knowledge about how they are obtained; an approach that
some authors refer to as data driven. But, the brain can be very complex and
despite rapid scientific progress, much about how it works remains a mystery.
However, it is well known that vision is useful for accomplishing certain tasks.
In this way, the ADS is a function driven approach that considers the biological
visual process from the standpoint of its functionality, paying special attention
to its aim and exploiting the knowledge about a given task and the intrinsic
characteristics of the scene, to create complex programs based on functions,
called visual operators. Moreover, it is widely recognized that the operation of
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Table 1. Functions and terminals used by EV OO to create the orientation visual map
VMO

FO = {+, −, ×, ÷, | + |, | − |,
√
Iout, I

2
out, log2(Iout),

Gσ=1,Gσ=2, |Iout|, Iout
2

, Dx, Dy}
TO = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Gσ=1(Ir),

Gσ=2(Ir), Dx(Ir), Dy(Ir), Dxx(Ir), Dyy(Ir),
Dxy(Ir), . . . }

the visual cortex, specifically the dorsal stream, is a product of the evolution-
ary process. For these reasons, we propose to use evolutionary computation to
obtain these artificial visual operators. In summary, this section explains how
to use specialized evolved visual operators (EVOs) for the acquisition of visual
dimensions such as color, orientation and shape. Next, the EVO features used
within the ADS are defined.

Orientation. In previous works the characteristic of orientation for images was
computed in gray scales. Thus, our work proposes to evolve the property of
orientation along different color bands of the image. In this way, a rich set of
information is generated since edges, corners, and other similar features could
appear easily highlighted within the color bands. Therefore, the evolutionary
approach evolves a function EV OO : Icolor → VMO that cooperates with the
ADS in order to accomplish the task. The resulting EV OO operation is a visual
map VMO for which the pixel value represents the feature prominence; in such a
way, that the larger the pixel value, the greater the orientation prominence of the
feature. This computation is performed through a set of functions and terminals
that are provided in Table 1. The notation that was used is as follows. ITO can
be any of the terminals in TO; as well as, the output of any of the functions in
FO; Du symbolizes the image derivatives along direction u ∈ {x, y, xx, yy, xy};
Gσ are Gaussian smoothing filters with σ = 1 or 2.

Color. In biology, the color is encoded through photoreceptor cells known as
cones, which are located in the retina. However, a special case is the yellow
color which is not perceived in the cones but in the retinal ganglion cells. Then,
the dorsal pathway is composed of several tissues V1, V2 and V4, whose cells
respond to color features. In this work, the characteristics of color information
will be used as the building blocks to construct the EV OC by applying color
opponencies and simple arithmetic operations between the different color bands
in the corresponding color space. In the same way, as in EV OO, the evolutionary
process uses a set of functions and terminals provided in Table 2 to evolve the
feature along the color dimension. The result is a visual map EV OC : Icolor →
VMC containing the color prominent features.
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Table 2. Functions and terminals used by EVOC to create the color visual map VMC

FC = {+, −, ×, ÷, | + |, | − |,
√
Iout, I2out,

log2(Iout), Exp(Iout), Complement(Iout) }
TC = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, RGoppn,

Y Boppn }

Table 3. Set of functions and terminals used by EV OS to create the shape visual map
VMS

FS = {+, −, ×, ÷, round(Iout), �Iout�, �Iout�,
dilationdiamond(Iout), dilationsquare(Iout),
dilationdisk(Iout), erosiondiamond(Iout),
erosionsquare(Iout), erosiondisk(Iout),
skeleton(Iout), boundary(Iout), hit −
missdiamond(Iout), hit − misssquare(Iout),
hit − missdisk(Iout), top − hat(Iout),
bottom− hat(Iout), open(Iout), close(Iout)
}

TS = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}

Shape. As in previous dimensions, the evolutionary process uses a set of func-
tions and terminals provided in Table 3 to characterize the shape information
used in our proposed system. Note, that we propose to describe these features
through mathematical morphology. The result is a visual map EV OS : Icolor →
VMS containing the shape prominent features. This part is evolved with the aim
to provide the information about shape and structure of the object of interest
within the image. We would like to remark that the application of this kind of
morphological functions has not been applied in previous research studying the
ventral and dorsal streams.

Intensity. Finally, to obtain the intensity of pixels in the image the model
averages the red, green and blue values for each pixel. The result of this operation
is a visual map VMI in which the pixel represents the prominence over the
intensity space. The VMI formula is written as follows:

VMI =
IR + IG + IB

3
,

where IR, IG, and IB are the red, green and blue bands respectively.

Computing the Conspicuity Maps. The conspicuity maps (CMs) are ob-
tained by means of a center-surround function that is applied in order to simu-
late the center-surround receptive fields [28]. This natural structure allows the
ganglion cells to measure the differences between firing rates in center (c) and
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Table 4. Set of functions and terminals used by EFI to create the object saliency
map OSM

Ffi = {+, −, ×, ÷, | + |, | − |,
√
Iout, I2out,

Exp(out), Gσ=1,Gσ=2, |Iout|, Dx, Dy}
Tfi = {CMI , CMO , CMC ,Dx(CMI),Dy(CMI),

Dxx(CMI), Dyy(CMI), Dxy(CMI), ... }

surroundings (s) areas of ganglion cells. First, a pyramid VMα
l of nine spa-

tial scales S = {1, 2, ..., 9} is created for each of the three resulting VMs. Af-
terwards, an across-scale subtraction � is performed, resulting in a pyramid
of center-surround maps VMω

l for which the value of the pixel is augmented
as long as the contrast of their neighbors at different scales is higher. Finally,
the VMl(ω) maps are added using an across-scale addition ⊕ in order to obtain
the conspicuity maps CMl. At this stage, we have one CM for each feature. The
CMs were obtained as explained in the Walther and Koch model [28]. Finally,
the CMs are combined to obtain a single saliency map as explained in the next
section.

3.2 Feature-Integration for Visual Attention

The saliency map (SM) defines the place for the most prominent locations of
the image; given the characteristics of intensity, orientation, color and shape. In
other words, the objective of this stage is to decide where attention should be
directed at any given time. In neuroscience, an exact description about how the
brain makes this integration, or where is located the saliency map in the brain
is unknown. In this work, the problem statement considers that the problem
must be addressed regarding the task to be performed. In other words, since
the task needs to accomplish a goal; then, the main criterion should be the one
that guides the suitable combination of characteristics. In this way, genetic pro-
gramming is very useful since it provides a methodology to address the problem.
Therefore, we decided to evolve the integration of CMs through a function that
we called Evolved Feature Integration (EFI). Once the integration of features
is performed, we get an optimized saliency map (OSM) indicating the location
of the most prominent regions within the original image, known as proto-object
(Pt). The definition of the EFI function is as follows:

EFI : CMl → OSM ; l ∈ {O,C, I} .

The evolutionary method uses the set of functions and terminals, listed in Table
4, to create a fusion operator that highlights the features of the object of interest.

Hence, an OSM is characterized through a proto-object Pt or a sequence of
proto-objects {P1, P2, . . . , Pi, . . . , Pt}, see [23]. These structures provide the local
descriptions using the concept of proto-object or salient region of the OSM, which
is attended at time t. In the next section, we explain the evolutionary process
used to obtain the ADS.



150 G. Olague et al.

4 Brain Programming

In this section, we describe the main aspects for the evolution of ADSs using the
brain programming (BP) strategy. In BP the chromosome is composed of several
genes and each one is represented with a tree structure. At the chromosome level
the whole genotype is described by the parallel set of functions acting over the
orientation, color, and shape dimensions. While at the gene level the genetic
operations are performed like in classical genetic programming. The design of
BP embody an organic motivation in a sense of describing an organ or tissue,
as a part of a living organism, and their complexity. We introduce a set of new
concepts in order to deal with the evolution of complex structures, which are
explained next.

The first phase of the BP is the training. In this phase the BP learns to focus a
prominent object using an image database for training. The Algorithm 1 lists the
steps that the BP performs in order to obtain the ADSs. In this work, we propose
an ADS genotype that is robust because it is capable of encoding in a better way
the phenotype of the dorsal stream. More specifically, the genotype consists of
four trees; where each has a different and specialized functionality. Hence, each
tree has its own independent set of functions and terminals. Unlike the classical
GP that only works with a representation of a single tree using a unique set of
functions and terminals. Thus, BP encodes the four tree-based programs within
a hierarchical structure that defines the visual attention program. In this way,
the functions and terminal sets of the four trees are listed in Tables 1, 2, 3, and 4
considering orientation, color, shape, and feature integration, respectively. The
ADS genotype is created as follows: the first tree is an EV OO; the second tree
is called an EV OC , the third tree is an EV OS , and the fourth tree is named
an EFI; each one with a maximum depth of 9 levels. The first one encodes
the orientation, or the operation defining the orientation-sensitive cells in V1
[11]. The second one encodes the color, or the operation of photoreceptor cells
and color-sensitive cells present in the layers V1 and V4 of the visual cortex.
The third one models the shape feature that characterizes shape-sensitive cells
present in layers V2 and V4 of the brain. Finally, the fourth one encodes the way
in which the features are combined to obtain the saliency map, or operation of
the posterior parietal cortex, see [10]. The algorithm initializes a population of
30 ADSs with a ramped half-and-half technique.

After initialization, the BP needs a well-posed fitness function. In this work,
we propose to use the F-measure as the fitness function working in a machine
learning framework in order to compare and select among several ADSs. This
measure has already been used in previous works as evaluation for applications
related to computer vision such as [20] and [1]. The calculation of the fitness
of the ADS is the result of a comparison between a Pt attended by the ADS,
and a manual location previously defined. Thus, attention and segmentation of
an object, should follow an ideal visual attention criterion. In this way, a target
is considered attended if a not empty subset of pixels that conform the object
intersects the proto-object Pt. Moreover, another difference arises considering
the existence of two-level complexity in the structure of the genotype. First,
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Algorithm 1. Brain Programming Algorithm

Randomly create an initial population of ADSs.
repeat

Execute each ADS, using the training image database, and compute its fitness.
Select one or two ADSs from the population with a probability proportional to
their fitness to participate in genetic recombination.
Create a new ADS by applying genetic operations with specific probabilities.

until An acceptable solution is found or some other stopping condition is met (e.g.,
a maximum number of generations is reached).
return The best ADS up to this point.

BP manages the whole genotype at the chromosome level by recognizing it as
a single unit that serves the desired goal. Second, the gene level, as in classical
GP, considers the tree as the unit where the genetic operation is performed.
Therefore, BP allows the creation of new genetic operators inspired by gene
and chromosomal biological mutations, as well as the computational crossovers,
each one operating at a different level, see Figure 2. These genetic operators are
selected according to a probability that is defined following the scheme proposed
by Koza, where each operation is computed independently, but their addition of
probabilities is one. Hence, the probability of crossover at gene and chromosome
levels is 0.4, while the mutation probability at both levels is 0.1.

The next step is the selection of one or two ADSs using the roulette-wheel
approach. Thus, the best ADS is kept in the following generation, and the genetic
recombination is repeated until a whole new population is created. Finally, the
evolutionary loop finishes when a total number of generations, N=30, is reached;
Table 5 provides the BP parameters for the experiments. Therefore, once the
training stage ends and the ADS with the best fitness is obtained; then, the
testing stage starts. Hence, the fittest ADS is tested using a different image
database, known as the testing database.

5 Experiments and Results

This section describes the experimental results that were obtained after evolving
the ADSs. Also, implementation details are discussed about BP for the sake of
clarity. Experiments were performed in a Dell Precision T7500Workstation, Intel
Xeon 8 Core, NVIDIA Quadro FX 3800, and Linux OpenSUSE 11.1 operating
system. The following experiments are divided in two parts, according to the
goal that the ADS is attempting to reach. The BP is basically the same for
both experiments, the only parts that change are the fitness function, which
encodes the goal, and the set of images utilized for training that represents the
problem. The fitness function and database applied through BP correspond to
the characterization of the purpose, the answer to the question: What are the
individuals for? In other words, it is the way in which the purpose is implemented
as a computer program.
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Fig. 2. This figure depicts the genetic operations of crossover and mutation. a) and b)
illustrate the crossover and mutation, respectively, at the chromosome level; while, c)
and d) show a visual representation of crossover and mutation at the gene level.
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Table 5. Initialization values for the BP algorithm

Parameters Description

Generations 30

Population size 30 individuals

Initialization Ramped Half-and-Half

Crossover at chromosome
level

0.4

Crossover at gene level 0.4

Mutation at chromosome
level

0.1

Mutation at gene level 0.1

Tree depth Dynamic depth selection

Dynamic max depth 7 levels

Real max depth 9 levels

Selection Roulette-wheel

Elitism Keep the Best Individual

5.1 Evolution of ADSs for Aiming Scene Novelty

The first set of experiments is designed in terms of visual search, which is com-
monly applied like in classical research devoted to visual attention. In this way,
the tests are designed to obtain through artificial evolution an ADS that is

IB log log

R+G+B
3

EFIEV OO

EVOC

CMI

CMO

CMC

IG Dy
Abs

Dx

CMC

Visual attention results

Fig. 3. Bottom-Up image testing of novelty. This figure depicts the best visual attention
program that was evolved with brain programming to attend the triangle.



154 G. Olague et al.

specially adapted to find the novelty, or asymmetries, in a simple set of images
of the kind that are used in psychophysical studies.

Search of Appearance Novelty. The first experiment was conceived with
the aim of obtaining an ADS capable of centering attention with respect to
appearance novelty. Figure 3 shows the ADStriangle that was obtained by the BP
strategy. We remark that the ADStriangle utilizes only the color dimension that
proposes to regularize the blue band of the image through the logarithm function.
This process reduces the contrast between the black and white areas, and as a
result, the regions around the triangle are highlighted after the central-surround
processing and evolved feature integration steps. Thus, the ADS obtained by BP
is listed below:

EV OO = Dy(IG)
EV OC = log(log(IB))
EFI = ‖Dx(CMC)‖ .

(1)

Thus, during evolution only one image per training was used. Note that this
image shows the highlighted black square at the top-right corner of Figure 3.
The remaining images illustrate the results achieved during a set of preliminary
tests considering rotation and translation; indeed, the triangle was correctly
focused.

Search of Size Novelty. The experiment described next is noteworthy because,
according to the literature, it has not been solved previously by any computa-
tional method applied to visual attention. A possible reason may be due to the
overlook in the study of the feature size, and consequently the lack of a suitable
choice of functions within the problem statement. Thus, in order to develop this
experiment we are proposing to increase as an extra dimension the property of
shape (EV OS), which will be computed, as explained in Section 3.1, through the
fundamental operations of mathematical morphology. Next, the results obtained
along 9 different executions are illustrated below.

The design of this experiment is based on neurological studies of BU attention
using a set of images containing an object that is different from the rest. Thereby,
the training set consists of 3 images containing an object with bigger size, see
Figure 4.

In Figure 5 the statistics presents the BP development along 30 generations
considering: a) the fitness, b) the measure of population diversity, and finally,
c) and d) to measure the population complexity. Note, that in Figure 5 a),
the average fitness of the population is constantly improved, same for the best
and median fitness. This means that BP obtains better ADSs while focusing
on bigger shapes as evolution progresses. The Figure 5-b) depicts the classical
trend towards convergence and loss of diversity in the evolutionary run. BP
as any evolutionary algorithm describes the same behavior due to the natural
selection principle. Thus, diversity was measured with the Hamming distance
among individuals. In this case, between the fitness of two selected ADSs. This
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Fig. 4. Training set of images used by BP to obtain an ADS for focusing size novelty
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Fig. 5. Brain programming statistics along the execution of 9 experiments for search
of size novelty. a) Fitness chart shows average, median, and best fitness, b) Diversity of
population shows the percentage of uniqueness of EV Os and EFI operators, as well as
the Hamming distance among the individuals of the population; c) and d) depict the
structure complexity of the EV Os and EFI operators based on the amount of nodes
and depth respectively.

measure show that even when uniqueness decreases the difference among the
performance of the ADSs remain almost constant. On the other hand, owing
to the flexible representation of tree-based genotype; algorithms solutions may
grow too big without any improvement in their performance and generalization-
ability. Nevertheless, Figures 5-c) and 5-d) show that for this BP experiment the
complexity stays almost the same during evolution while fitness grows.
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Afterwards, the best individuals, obtained for each of the BP runs, were tested
in a different set of images. The ADSSize with the highest performance during
the testing stage is shown in Equation (2). Note, that this ADSSize applies only
the feature of orientation, EFI = CMO; while EVOs not needed are shown in
red. In this way, the EVOO consists of the derivatives along y and x direction
of the complement image K, followed by a 11.11 root square operation, The
resulting information is enough to focus correctly on the bigger objects in most
of the testing images. The results in the testing stage are shown in Figure 6,
where ADSSize focuses properly the object of interest in 8 out of 9 images.

Fig. 6. Results of the best ADSSize along the 9 executions during the testing stage
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hitmissDmnd(H)×

Fig. 7. Example about the functionality of the best ADSSize applied over a testing
image

EV OO = 11.11
√
(DX(DY (K))

EV OC = B
EV OS = hitmissDmnd(H)× (erodeSqr(closeMph(M))− hitmissDmnd(K))
EFI = CMO

(2)
An example of how the ADSSize behaves during the computation of the saliency
region is shown in the Figure 7. Although, all operations were computed, this
ADSSize utilizes only the CMO. Therefore, the whole diagram can be reduced
with a significant amount of computational saving. In fact, the best way of
executing the whole program is to read the EFI in the first place.

Search for Missing Novelty. Again, the search for missing novelty, as well
as size novelty, has not been solved previously by any computational method
devoted to the solution of visual attention. In this subsection the results obtained
for 10 different runs are described next.
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Fig. 8. These figures show the set of images used during training of BP considering
the missing novelty problem
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Fig. 9. Brain programming statistics along 10 executions considering the search of
empty spaces. a) Fitness chart showing average, median, and best fitness population;
b) diversity using the percentage of uniqueness for EVOs and EFI operators, as well
as the Hamming distance among the individuals in the population; c) and d) depict
the complexity of the structure for the EVOs and EFI operators based on the number
of nodes and depth respectively.

The design of this experiment is based on the neurological studies of BU
attention using a set of images containing a white space, which is normally
interpreted as a missing object. In particular, the set of training images is made
of 3 images containing a white region, see Figure 8.
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Fig. 10. Results of the best ADSMiss obtained along 10 executions of the testing stage

Figure 9 depicts: a) the average, best, and median fitness of the population,
whose results means that BP efficiently optimize ADSs for focusing blank spaces,
the graph b) depicts a decreasing trend in the uniqueness of the different opera-
tors, similarly, diversity was measured by Hamming distance among individuals.
In this case, between the fitness of the ADSs whose measure shows that even
when the uniqueness decreases the difference level among the performance of
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Fig. 11. Example of the functionality of the best ADSMiss applied over a testing image

ADSs exhibits a slight increment. Finally, c) and d) show that for this BP ex-
periment the complexity remains almost constant during evolution while fitness
population increases.

Afterwards, the best individuals obtained from each of the BP executions
are tested on a different set of images. The ADSMiss exhibiting the highest
performance during the testing stage is shown in Equation (3). Note, that this
ADSMiss applies only the feature of orientation, note the EFI, while the EVOs
that are not used are shown in red. The EVOO consists of a double derivative
along the directionX followed by a Gaussian filter and two logarithm operations.
Finally, in the feature integration stage an absolute function was applied to the
conspicuity map of orientation CMO. The results in the testing stage are shown
in Figure 10, where the ADSMiss focused properly on the missed object in 15
out of 17 images.
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Fig. 12. Training set of images used by BP to obtain an ADS for focusing the red can
target

EV OO = log(log(Gσ=1(DXX(K))))
EV OC = H
EV OS = skeletonShp(skeletonShp(H))
EFI = |CMO|

(3)

Figure 11 depicts the information for rightly computing the region of the miss-
ing object. Although, in this example the whole ADSMiss is shown only for
illustrative purposes, since it only uses the CMO.
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Fig. 13. Brain programming statistics along the execution of 10 experiments for the
attention of red can. a) Fitness chart shows average, median, and best fitness, b)
diversity of population shows the percentage of uniqueness of EV Os and EFI operators
as well as the Hamming distance among the individuals of population, c) and d) depict
the complexity of the structure of the EV Os and EFI operators based on the number
of nodes and depth respectively.

5.2 Evolution of ADSs for Aiming Specific Targets

In this section, the final ADSCan and their performance are presented for the
case of the TD tasks. Figure 13 provides the statistics of the TD runs: the
chart 13-a) shows that the average, best, and median fitness of the population
improved quickly, considering that the 10 experiments score an ADS with a
maximum fitness in the 5th generation or earlier. This means that BP find
easily the optimal ADS for focusing the red can. Figure 13-b) demonstrates a
decreasing tendency regarding the diversity of multiple operators scoring lower
levels with around 15% of uniqueness. This phenomenon is possibly obtained due
to an early convergence of the BP process. Consequently, the diversity measured
by the Hamming distance scores a decreasing tendency along the whole run.
As a result, we can observe how the complexity remain constant after the fifth
generation, see Figures 13-c) and 13-d).

Finally, we would like to show some experiments to illustrate that for the red
can target a solution could be attained without changing the proposed compu-
tational framework. During the training stage, the ADSCan is able to detect the
object of interest, in this case the red can, with a successful rate of 100% consid-
ering 44 images, see Figure 12. Moreover, during the testing stage the ADSCoke
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Fig. 14. Results of the best ADSCan along 10 executions of the testing stage

is able to detect the object of interest with a rate of 91.52% using 59 images.
Hence, from 59 test images the coke was detected in 54 occasions. Moreover,
the percentage of detection increases after considering a second attempt since
the red can was correctly detected in 4 additional images; scoring a total of 58
images that represent the 98.3% of the total, see Figure 14.

Next, the ADSCan obtained by BP is specified in Equation (4). This expression
is complex and therefore, it is difficult to decompose its functionality.

EVOO = Gσ=1(M)

EVOC = (Exp(R) × M

Complement(H)
)× Exp(H)

EFI = (((DY Y (CMC) +DXX(CMO))− Exp(DXXX(CMI)))

−Gσ=1(Gσ=2(Gσ=1(
√

Gσ=1(Gσ=1(CMO))
Gσ=1(CMC) )))

(4)

The obtained ADSCan is complex and has a very good performance. In this
way, the Figure 15 is useful to analyze how it works; with such example it is
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Fig. 15. Example of the functionality of the best ADSCan applied over a testing image

possible to see that the CMO and CMC highlight the red can since both are
added in order to enhance even more the object of interest. Moreover, the CMI

enhance information that is uninteresting and that is subtracted during the
feature integration stage and producing a decrease in the level of noise.
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6 Conclusions

This work presents a new and useful approach for understanding visual attention.
The experiments are motivated by new ideas about purposive evolution and
brain programming. The results confirm that the BP is a powerful methodology
that is capable of obtaining ADSs that can be seen as “top-down”or “bottom-
up”computational models of the visual attention system that are capable of
solving the visual attention problem. Moreover, original programs that solve
the size and missing pop-out task were obtained by our approach, and to our
knowledge it is the first time to be achieved. Also, the incorporation of shape
dimension, carried out with morphological operations, is an original contribution
to the research in visual attention. As a conclusion, for some tasks it is not
necessary to compute all features; thus, simplifying the ADSs final structure.
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Abstract. In multi-objective optimization the hypervolume indicator is
a measure for the size of the space within a reference set that is dominated
by a set of μ points. It is a common performance indicator for judging the
quality of Pareto front approximations. As it does not require a-priori
knowledge of the Pareto front it can also be used in a straightforward
manner for guiding the search for finite approximations to the Pareto
front in multi-objective optimization algorithm design.

In this paper we discuss properties of the gradient of the hypervol-
ume indicator at vectors that represent approximation sets to the Pareto
front. An expression for relating this gradient to the objective function
values at the solutions in the approximation set and their partial deriva-
tives is described for arbitrary dimensions m ≥ 2 as well as an algorithm
to compute the gradient field efficiently based on this information. We
show that in the bi-objective and tri-objective case these algorithms are
asymptotically optimal with time complexity in Θ(μd+μ log μ) for d be-
ing the dimension of the search space and μ being the number of points
in the approximation set. For the case of four objective functions the
time complexity is shown to be in O(μd + μ2). The tight computation
schemes reveal fundamental structural properties of this gradient field
that can be used to identify zeros of the gradient field. This paves the
way for the formulation of stopping conditions and candidates for opti-
mal approximation sets in multi-objective optimization.

Keywords: Set Oriented Optimization, Multiobjective Gradient, Hy-
pervolume Indicator, Computational Complexity, Optimality Conditions.

1 Introduction

The gradient field assigns to each vector in the search space (or decision space)
a vector of all partial derivatives at this vector that is called the gradient at
this point. Gradients play an important role in the formulation of optimization
algorithms, as they are vectors that point in the direction where function values
will increase the most and thus can guide the search towards better solutions.
Moreover, for differentiable functions the gradient at local optima is zero, which
can be used to identify candidates for local optima.

O. Schütze et al. (eds.), EVOLVE - A Bridge between Probability, Set Oriented Numerics, 169
and Evolutionary Computation III, Studies in Computational Intelligence 500,
DOI: 10.1007/978-3-319-01460-9_8, c© Springer International Publishing Switzerland 2014
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The problem of solving multi-objective optimization problems, is often re-
stated as finding a finite approximation set to the Pareto front of the problem.
In this case the hypervolume indicator provides a figure of merit for an approx-
imation set. Loosely speaking, it measures the volume of the subspace that is
Pareto dominated by the approximation set. The hypervolume indicator gradi-
ent at a set of decision vectors points in the direction that locally yields maximal
improvement of this indicator by simultaneously updating all points. It was first
described in [1], but analysis and computation schemes were mainly restricted
to the bi-objective case. This chapter presents a substantially extended analy-
sis and efficient algorithms for computing the hypervolume indicator gradient
field. In the bi- and tri-objective cases these algorithms are even asymptotically
optimal. In particular the following research questions will be addressed:

Given information on the objective function vectors and partial derivatives of
the objective functions for all points in the approximation set:

– Can we concisely define the hypervolume indicator gradient field and the
points where it is defined for an arbitrary number of objective functions?

– Can structural properties of the gradient expression be exploited to find
efficient algorithms for computing the hypervolume gradient?

– Can these structural properties be used to identify compact equations for
the zeros of the hypervolume gradient field?

As will be shown, the answer to all three questions is affirmative.
In the following discussion we will first establish a formal framework for defin-

ing the hypervolume indicator gradient at an approximation set. Actually, we
will be talking about two gradient fields:

1. The gradient field for the mapping from a set of decision vectors to the
hypervolume indicator

2. The gradient field for the mapping from a set of objective vectors to the
hypervolume indicator

We will proceed with the definition of these gradient fields and identify at which
domains consisting of approximation sets the gradient fields are well-defined. Effi-
cient algorithms for the computation of the gradient field at an approximation set
will be provided, for both mappings. Their asymptotic optimality for the bi- and
tri-objective case will be proven. Finally, a locality property of the hypervolume
indicator will be discussed. It yields concise formulations of conditions of points
where the gradient field of the first mapping obtains values of zero. This can be
used in optimality conditions. The same property gives rise to a new interpretation
of the hypervolume indicator gradient field and a technique for its visualization.
The final section is also devoted to the discussion of implications of the new the-
oretical results for set-oriented multi-objective optimization in the future.

2 Related Work

The idea to use gradient information in multi-objective optimization is not new.
Fliege [2] suggests a steepest descent method that searches within the cone of

dominating solutions in the direction where the net decrease of objective function
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values is expected to be maximal among all vectors with a given length, added to
the current variable vector. This direction, obtained by quadratic maximization
based on the Jacobian (the matrix of the objective functions gradients), is termed
multi-criterion gradient. Variations and generalizations of this approach have
been proposed by Brown and Smith [3] and Bosman and de Jong [4]. More
recently a gradient based method that approximates the gradient from points
that are generated in an evolutionary search in [5] was suggested. A similar
line of research is given by methods that generate non-dominated points by
linear combinations of the negative gradients with positive weights [6,7]. For
small step-sizes this yields non-dominated or dominating solutions. Thereby,
the Euler method is used to integrate along a path of such solutions. Recently,
these methods have been hybridized for evolutionary multi-criterion optimization
by Shukla et al. [8] by computing favorable directions for generating offspring
individuals. Unlike the aforementioned methods, homotopy and continuation
methods as described by Hillermeier [9] and Schütze et al. [10] use gradient-
based search not in the first place to move search points closer to the Pareto
front, but for finding a well-distributed set of points covering the Pareto fronts.
The basic idea is to gradually extend the manifold around a given Karush-Kuhn-
Tucker point. This way, given a smooth and connected Pareto front, accurate
approximations can be achieved. A technique called directed search uses gradient
information to steer the search in a desired direction given by a vector in the
objective space [11].

In this chapter we will further explore an alternative use of gradients in
multi-objective optimization that was proposed in [1]. Here the gradient field
is formulated on the (μd)-dimensional space of concatenated sets of μ decision
vectors in R

d or, respectively, at multi-sets of decision vectors R
μd. Following

this paradigm, the improvement of a single decision vector is measured explicitly
and solely in how much this vector improves with respect to its contribution to a
scalar performance measure stated on an entire set of decision vectors.

3 Formal Definition of the Hypervolume Indicator
Gradient Field

A central concept in this work is that of a gradient at a vector and that of
a gradient field. To avoid ambiguity of language we will provide elementary
definitions, first.

3.1 Gradient at a Vector and Gradient Field

We introduce partial derivatives via one-sided partial derivatives for a function
ϕ : Rn → R.

∂+ϕ

∂xi
(x) = lim

t↓0
ϕ(x + tei)− ϕ(x)

t

denotes the right one-sided partial derivative at x for xi, and

∂−ϕ
∂xi

(x) = lim
t↑0

ϕ(x+ tei)− ϕ(x)

t
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is the left one-sided partial derivative. If both values exists at a point x and are
equal, we denote by

∂ϕ

∂xi
(x) :=

∂+ϕ

∂xi
(x) =

∂−ϕ
∂xi

(x)

the partial derivative at x with respect to xi.
The gradient of a function R

n → R at a vector is a vector pointing in the
direction of the steepest ascent at that point. The steepness of the slope is given
by the length of this vector. It is defined via partial derivatives as:

∇ϕ(x) :=

(
∂ϕ

∂x1
(x), . . . ,

∂ϕ

∂xn
(x)

)�
. (1)

The function ∇ϕ : R
n → R

n is commonly referred to as the gradient field
associated to ϕ.

3.2 Multi-objective Optimization, Efficient Set, and Pareto Front

In multi-objective (or: multicriteria) optimization, we consider an m-tuple of
functions

(f1 : Rd → R, . . . . . . ,fk : Rd → R, . . . . . . ,fm : Rd → R),

each function of which is to be minimized or maximized. Without loss of gen-
erality, in the following we assume the goal is maximization. We denote by
f : Rd → R

m the corresponding vector valued function (f1, . . . , fm)�. The prac-
tically very important special cases m = 2 and m = 3 are called bi-objective (or:
bicriteria) and tri-objective (or: tricriteria) problems.

In the following discussion it will be important to clearly distinguish between
decision vectors x ∈ R

d, that is the domain of f or decision space, and objective
vectors in y ∈ R

m, that is the co-domain of f or objective space. As f is not
necessarily surjective the following definition is made: An objective vector y is
attainable if y = f(x) for some x ∈ R

d. The set of attainable objective vectors
is termed attainable objective space.

The above problem of multi-objective optimization is not well stated, as it is
not clear how to deal with conflicting objective functions, that is pairs fk and
fk′ with argminx∈Rd(fk) ∩ argminx∈Rd(fk′) = ∅. However, Pareto dominance
establishes a partial order on the objective space. The maximal elements of
this partial order for the attainable objective space we will term Pareto optimal
objective vectors and their pre-images with respect to f we will term efficient
decision vectors. Accordingly, the set of all Pareto optimal objective vectors we
term Pareto front, whereas the efficient set will be the set of all efficient decision
vectors. See also Ehrgott [12] for these definitions.

In Pareto optimization we are interested in finding the efficient set and Pareto
front for f . The Pareto front is interesting, because it reveals the nature of the
trade-off between different objectives and contains all objective vectors that can-
not be strictly improved anymore without additional statements about
preferences.
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Remark 1. Note that we restrict ourselves here to the continuous and uncon-
strained case, but definitions can be generalized in a straightforward way to
decision spaces with (integrity) constraints. This does however not hold for the
gradient computations that will be discussed in this paper.

In continuous multi-objective optimization we face the problem that the effi-
cient set and the Pareto front of a function can be innumerably large sets. One
approach is to approximate the Pareto front with a finite multi-set of, say μ,
attainable objective vectors1. We will term a multi-set Y of μ solutions in the
attainable objective space an approximation set to the Pareto front , and a multi-
set X of μ solutions in the decision space an approximation set to the efficient
set.

3.3 Hypervolume Indicator

One approach to state optimality of an approximation set in the decision space
is to require for an approximation set of maximal hypervolume indicator H .
Roughly speaking, this indicator assigns a better (higher) value to approximation
sets to the Pareto front that dominate many objective function vectors than to
approximation sets that dominate fewer objective vectors. We define

DomSet(Y) = {y′ ∈ R
m| ∃y ∈ Y : y Pareto dominates y′}

As this set has infinite measure, its size cannot serve as an indicator. Instead
the hypervolume indicator measures the size of the dominated volume within
the reference set [r,∞) for a reference vector r ∈ R

m. Hence, the definition of
the hypervolume indicator reads:

H(Y, r) = λ(DomSet(Y) ∩ [r,∞)),

and λ denotes the Lebesgue measure on R
m, that is the area of the dominated

set in the reference space is measured in case m = 2 and its volume in the case
m = 3. The choice of a proper reference point is a task that is typically delegated
to the user. Ideally it should be dominated by all attainable objective vectors.
We write H(Y) instead of H(Y, r) if the definition of r is clear from the context.

For geometrical considerations the following equivalent definition (for m > 1)
is sometimes more accessible, but requires r ≤ y, componentwise, for all y ∈ Y:

H(Y, r) = λ(∪y∈Y[r,y]).

The hypervolume indicator (or: S-metric) was first introduced as a unary per-
formance indicator [13,14] and is nowadays also widely used in bounded-size
archiving and to guide the search towards the Pareto front. It is commonly used
and analyzed in the context of evolutionary multi-objective optimization [15][16],
but has hardly been considered so far in deterministic algorithms for finding the

1 Note that the symbol μ is used, as it is a common symbol for denoting the size of a
population in evolutionary multi-objective optimization.
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Pareto front (cf. [17]). Recently, the hypervolume indicator received attention in
computational geometry as it is a special case of Klee’s measure problem and it
may serve to establish lower complexity bounds for this problem [18]. In general
it is likely that the time complexity of the hypervolume indicator is exponential
in dimension m, while fast algorithms with subquadratic time complexity in the
number of points in the approximation set μ exists for the practically relevant
cases with m = 2, m = 3 (cf. [19]), and m = 4 (cf. [20]).

3.4 Gradients at Approximation Sets

As gradients are defined at vectors and not at multi-sets, a mapping from multi-
sets to vectors that represent these will be established next. A multi-set X of μ
decision vectors in R

d, that may serve as an approximation to the efficient set,
is represented as a concatenation of its elements and called a μd-vector. We say
a μd-vector

X := (x
(1)
1 , . . . , x

(1)
d , . . . . . . , x

(i)
1 , . . . , x

(i)
d , . . . . . . , x

(μ)
1 , . . . , x

(μ)
d )� ∈ R

μ·d

represents the multi-set {x(1), . . . ,x(μ)}. We name the subsequence with upper
index i ∈ {1, . . . , μ}, the i-th subvector of the μd vector. Accordingly, we can
represent multi-sets in R

m, that may serve as approximations to the Pareto front,
as μm-vectors Y. We say

Y := (y
(1)
1 , . . . , y(1)m , . . . . . . , y

(i)
1 , . . . , y(i)m , . . . . . . , y

(μ)
1 , . . . , y(μ)m )� ∈ R

μ·m

represents the multi-set {y(1), . . . ,y(μ)}. We name the subsequence with upper
index i ∈ {1, . . . , μ}, the i-th subvector of the μm vector. As μ (the number of
points in the approximation set), d (the number of dimensions of the decision
space) and m (the number of objective functions) are constant in the search al-
gorithms that we consider, it turns out to be a convenient notational convention.

The mapping we have just defined is, in general, not injective.

Proposition 1. Every multi-set of size μ with elements in R
d (or, respectively,

R
m) has at least one and at most μ! representing μd-vectors (or, respectively

μm-vectors). Each μd-vector (or, respectively μm-vector) represents exactly one
multi-set in R

d (or, respectively, Rm).

Proof. The concatenation of vectors from the multi-set can be done in μ! different
orders. Due to duplicates the number of distinguishable μd vectors might be less
than μ!. ��

The proposition takes into account the possibility of duplicates in the multi-set,
in which case the number of representations will be less than μ!.

To establish a connection between μd-vectors and μm-vectors, define the map-
ping F : Rμd → R

μm with

X �→ (f1(x
(1)), . . . , fm(x(1)), . . . . . . , f1(x

(μ)), . . . , fm(x(μ)))
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Remark 2. The reformulation of multi-sets to concatenated vectors will not be
needed in the long run, as we will show that the gradient can be decomposed
into subgradients associated with single points. To say it with Wittgenstein’s
metaphor, our construction serves as a ’ladder’ that after we climbed it can be
discarded again.

For technical reasons, first the definition of the hypervolume indicator needs to
be slightly adapted to be compatible with the vector representation:

H(Y) = λ

⎛⎝ ⋃
i=1,...,μ

(−∞, (y
(i)
1 , . . . , y(i)m )�] ∩ [r,∞)

⎞⎠ . (2)

Proposition 2. Let Y denote a μm-vector that represents some multi-set Y in
R

m. Then H(Y) = H(Y).
Proof. ��

For a given μd-vector X of μ points we define:

HF(X) := H(F(X)). (3)

The introduced formal framework is sound, as by optimizing HF over the set of
μd-vectors we will obtain multi-sets of maximal hypervolume. For precision, the
following lemma is stated:

Lemma 1. Each multi-set of size μ that maximizes HF is represented by at least
one and at most μ! maxima of HF. A μd-vector that is not maximal with respect
to HF does not represent a maximal multi-set of size μ for HF.

Proof. This follows from Propositions 1 and 2. ��

4 The Hypervolume Gradient Field

The gradient field ∇HF is defined by Equation 1 for the mapping HF at any μd-
vector where HF is differentiable, that is for any μd-vector for which all partial
derivatives with respect to HF are well defined. Analogously, the gradient field
∇H is defined by Equation 1 at any μm-vector where H is differentiable.

We will first look at how the partial derivatives of the gradient field ∇H and
∇HF can be computed given the information (in the points where the functions
are partially differentiable):

fk(x
(i)) for i = 1, . . . , μ; k = 1, . . . ,m

and
∂fk

∂x
(i)
j

(x(i)) for i = 1, . . . , μ; j = 1, . . . ,m; k = 1, . . . ,m.

Subsequently we will classify regions of differentiability.
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4.1 C HF at a µd-Vector

Using a different notation the mapping HF in Equation 3 can be defined by the
following composition of mappings:

R
μ·d F−→︸︷︷︸

decision space to objective space

R
μ·m H−→︸︷︷︸

objective space to single value

R. (4)

According to Equation 1 the hypervolume indicator gradient ∇HF(X) of the
composition HF = H ◦ F is defined as:

∇HF(X) =

(
∂HF(X)

∂x
(1)
1

, . . . ,
∂HF(X)

∂x
(1)
d

, . . . ,
∂HF(X)

∂x
(μ)
1

, . . . ,
∂HF(X)

∂x
(μ)
d

)�
(5)

The chain rule provides us with the gradient of HF at a point X:

∇HF(X)=

⎛⎜⎜⎜⎝
⎛⎜⎜⎝∇H

⎛⎜⎜⎝
f(x(1))

f(x(2))
· · ·

f(x(μ))

⎞⎟⎟⎠
⎞⎟⎟⎠

�

·

⎛⎜⎜⎜⎝
f ′ at x(1) 0 0 · · · 0

0 f ′ at x(2) 0 · · · 0
...

...
... · · ·

...

0 0 0 0 f ′ at x(μ)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

�

(6)

To visualize the structure of the composition we give a detailed description:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂y

(1)
1

.

.

.
∂H

∂y
(1)
m

.

.

.
∂H

∂y
(μ)
1

.

.

.
∂H

∂y
(μ)
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F(X))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

︸ ︷︷ ︸
∇H(F(X))

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1(x(1))

∂x
(1)
1

· · · ∂f1(x(1))

∂x
(1)
d

0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
∂fm(x(1))

∂x
(1)
1

· · · ∂fm(x(1))

∂x
(1)
d

0 · · · 0 0 · · · 0

0 · · · 0
.
.
. · · ·

.

.

. 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · 0
.
.
. · · ·

.

.

. 0 · · · 0

0 · · · 0 0 · · · 0 ∂f1(x(μ))

∂x
(μ)
1

· · · ∂f1(x(μ))

∂x
(μ)
d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · 0 0 · · · 0 ∂fm(x(μ))

∂x
(μ)
1

· · · ∂fm(x(μ))

∂x
(μ)
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
F′(x(1),...,x(μ))

(7)

It is clear that F′(x(1), . . . ,x(μ)) depends solely on the gradient functions ∇fi
at the subvectors x(1), . . . ,x(μ) that correspond with the decision vectors of the
original problem. Hence, if these m · μ local gradients are known, the Jacobian
matrix F′(X) can be computed.

4.2 Gradient of the Mapping H at a µm-Vector

The computation of the components ∇H((y
(1)
1 , . . . , y

(1)
m , . . . , y

(μ)
1 , . . . , y

(μ)
m )) can

be traced back to a geometrical problem as depicted in Figure 1. In two di-
mensions these components are simply the lengths of the line segments of the
’staircase’ (or attainment curve). For details, see [1].
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Let us next focus on the general case m ≥ 2: Let Y denote a μm-vector that
is given by the mapping F at some μd-vector X in which case Y = F(X).

We first look at the case of non-duplicate coordinates in (y
(1)
k , . . . , y

(μ)
k ) for

each k = 1, . . . ,m and points that do not occur at the boundary of the reference
space [r,∞).

Definition 1. Let π1,...,ǩ,...,m(y) ∈ R
m−1 denote the projection of a subvector y

in the μm-vector onto the coordinates 1, . . . , ǩ, . . . ,m, where ǩ means that k is
omitted.

Theorem 1. Let i ∈ {1, . . . , μ}. Let Hm−1 denote the hypervolume indicator for
the (m− 1)-dimensional objective space with reference space [π1,...,ǩ,...,m(r),∞).

Let Y >k
(i) denote the multi-set of projections π1,...,ǩ,...,m(y(i)) of subvectors y(i)

of a μm-vector Y with a higher k-th coordinate than the k-th coordinate of the
subvector y(i).

∂Hm

∂y
(i)
k

(Y) = Hm−1(Y
>k
(i) ∪ {π1,...,ǩ,...,m(y(i))})−Hm−1(Y

>k
(i) ).

Proof. The theorem follows from the geometrical insight that for a sufficiently
small Δ a small variation of the m-th coordinate in positive direction by the
amount of Δ will cause a linear increment of the hypervolume indicator by the
size of a slice, given by the face of the attainment surface [21] adjacent to this
point in the (m−1)-dimensional projection times Δ. See also Figure 1 and Figure
2 for a visualization of the geometrical construction in 2-D and, respectively, 3-D.

Example 1. The construction in Figure 2 shows, here for i = 2 and k = 3,
that one-sided partial derivatives are equal to areas of the visible face A which

is adjacent to the i-th subvector. In this example ∂−H/∂y
(2)
3 is smaller than

∂+H/∂y
(2)
3 and hence ∂H/∂y

(2)
3 is not defined. Also for y

(3)
3 one-sided partial

derivatives are unequal, while for all other coordinates the one-sided partial
derivates are equal in the positive and negative coordinate direction and thus
the partial derivatives are defined.

4.3 Characterization of the Set of Differentiable Points

Partial derivatives of a μm vector are either positive, zero, or undefined. In
case they are undefined, still all one-sided derivatives exist, but are unequal for
at least one coordinate of the μm vector. Next, we provide criteria based on
properties of subvectors that allow in most cases to decided whether or not a
μm vector is differentiable.

Let us partition the multi-set of subvectors of a given μm-vector Y with
respect to Pareto dominance, relative to the other subvectors, and relative to
the reference space:

1. Partitioning into subsets based on Pareto dominance relative to the other
subvectors in Y
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f1 or y1

f2 or y2

�

�

ΔH
Δy

(i)
1

=
(y

(i)
1 +Δy

(i)
1 −y

(i)
1 )·(y(i)

2 −y
(i+1)
2 )

Δy
(i)
1

= y
(i)
2 − y

(i+1)
2

ΔH = (y
(i)
1 + Δy

(i)
1 − y

(i)
1 ) · (y(i)

2 − y
(i+1)
2 )

�
�

���

�

y(1)

�

y(i−1)

�

y(i) = (y
(i)
1 , y

(i)
2 )

� (y
(i)
1 + Δy

(i)
1 , y

(i)
2 )

� y(i+1) = (y
(i+1)
1 , y

(i+1)
2 )

�

�

y(μ−1)

�

y(μ)

�

r

Fig. 1. Geometrical construction used for identifying the partial derivatives ∂H/∂y
(i)
j

of the gradient for m = 2 at some non-dominated μm-vector

(a) S: Is the set of strictly dominated subvectors, that is subvectors for which
there exists a subvector in Y that is strictly better in all coordinates.

(b) W : Is the set of weakly dominated subvectors, that is subvectors for
which there exists no subvector in Y that is strictly better in all co-
ordinates and that are Pareto dominated by at least one subvector in
Y.

(c) N : Is the set of non-dominated2 subvectors that in no objective space
coordinate have a duplicate value with another non-dominated subvec-
tor at this coordinate, e.g. a subvector (1, 2, 3)� and another subvector
(3, 2, 1)� have no duplicate but (2, 1, 3)� and (3, 1, 2)� have.

(d) D: Is the set of non-dominated subvectors with duplicate coordinates for
some objective space coordinate.

2 where non-domination means here Pareto domination with respect to another sub-
vector in Y
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Fig. 2. Geometrical construction for identifying a one-sided partial
derivative ∂+H/∂y

(2)
3 := A at some non-dominated μd-vector Y =

(y
(1)
1 , y

(1)
2 , y

(1)
3 , . . . , y

(3)
1 , y

(3)
2 , y

(3)
3 )T for m = 3.

2. Partitioning into subsets relative to the reference space [r,∞)
(a) I: Is the set of subvectors in the interior of the reference space.
(b) B: Is the set of subvectors on the boundary of the reference space.
(c) E: Is the set of subvectors in the exterior of the reference space.

Furthermore, we can partition subvectors with respect to differentiability:

1. Z: Is the set of subvectors for which all partial derivatives are zero.
2. U : Is the set of subvectors for which some partial derivatives are undefined,

but as always is the case for the hypervolume indicator H one-sided partial
derivatives exist.

3. P : Is the set of subvectors for which the partial derivatives are all positive.

The relation between these subsets is summarized in the following proposition

Proposition 3

Z = E ∪ S (8)

U = D ∪ (W \ E) ∪ (B \ S) (9)

P = N ∩ I (10)

Proof. In the exterior E and the strictly dominated subspace any differential
move of a subvector will leave the hypervolume unchanged, therefore all partial
derivatives are zero. In case of N ∩ I the size of the face that determines the
one-sided partial derivative is the same for the positive and negative direction of
a differential move of a single coordinate. It is positive, because the hypervolume
will increase (decrease) at the same linear rate when moving the point up or down
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in the k-th coordinate. It needs to be shown that the rate is positive. The rate
is given by the increment of the m − 1 dimensional hypervolume to the hyper-
volume of Y >k

(i) . This increment must be strictly positive, because the projected

point is non-dominated with respect to Y >k
(i) , and when adding a non-dominated

point to a set the hypervolume increases (strict monotonicity property [22]). The
projected subvector must be non-dominated in the m−1 dimensional projection
with respect to the subvectors in Y >k

(i) because these vectors are already ‘better’

in the k-th coordinate and points in N must be non-dominated in m dimensions.
For U we cannot decide based on the proposition whether all partial derivatives
exist, but the one sided derivatives exist as by changing a single coordinate the
hypervolume changes at a linear rate (proportional to the size of a m− 1 dimen-
sional cuboid) or it remains constant. Clearly Z,U and P do not overlap and
cover the set of possible subvectors and thus {Z,U, P} forms a partition of the
set of subvectors. ��

Theorem 2. A μm-vector with partitionings {S,W,N,D} and {I, B,E} is dif-
ferentiable, if U = D ∪ (W \ E) ∪ (B \ S) = ∅.

Proof. Because Z, U , P is a partition, if the condition is satisfied all subvectors
are either in Z or in P and therefore their partial derivatives are defined (either
zero or positive). ��

Remark 3. In three and more dimensions it is possible that all partial deriva-
tives are defined at subvectors that are non-adjacent but have one coordinate in
common. An example would be Y = ((1, 5, 2) ◦ (5, 1, 2) ◦ (3, 3, 3))�. Here we use
◦ as a symbol for concatenation of tuples, e.g. ((a, b) ◦ (c, d)) = (a, b, c, d). An
example where partial derivatives are undefined due to duplicate coordinates is
given with Figure 2, for the 3-rd subvector and the 2-nd subvector.

Example 2. In Figure 3 a μm-vector with μ = 10 and m = 2 is depicted. We
obtain these subsets:

Partition based on dominance: S={6, 9, 10},W ={5, 7},N = {1, 2, 3, 4, 8},
D = ∅

Partition based on reference space: I = {1, 3, 4, 5, 6, 7}, B = {8, 10}, E =
{2, 9}

Partition based on differentiability: Z = {2, 6, 9, 10}, U = {5, 7, 8}, P =
{1, 3, 4}.

Clearly, only subvectors in U �= ∅ might have unequal one-sided partial deriva-
tives. This is indeed the case for the 5-th and 8-th subvector, while for the 7-th
subvector the one-sided partial derivatives are equal and zero.

Duplicates among subvectors in the same coordinate can be checked for easily,
and whenever they are obtained and the subvectors are neither in S or in E
a deeper investigation might be required for checking differentiability. Next, a
neccessary condition for differentiability of such μm vectors will be derived for
cases where subvectors are in the interior of the reference space I = (r,∞).
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Fig. 3. Differentiability regions

Definition 2. A subvector y(i1) of Y is said to be interlaced with a subvector

y(i2) in Y, iff ∃k ∈ {1, ...,m}: y(i1)k = y
(i2)
k and

λ(([rǩ , π1,...,ǩ,...m(y(i1))] ∩ [rǩ, π1,...,ǩ,...m(y(i2))]) \DomSet(Y >k
(i1))) > δ (11)

for some δ > 0, where λ denotes the m − 1 dimensional Lebesgue measure and
rǩ = π1,...,ǩ,...,m(r).

Proposition 4. If any two subvectors in I are interlaced for some μm-vector,
the function H is not differentiable.

Proof. If two vectors are interlaced for the k-th coordinate for which the condi-

tion is satisfied it clearly holds that ∂−H/y
(i1)
k + δ ≤ ∂+H/y

(i1)
k , and hence the

two one-sided partial derivatives are not the same. ��

It is conjectured that differentiability is given exactly when all subvectors in the
interior of the reference space I are mutually non-interlaced. However, a further
investigation of this question and the question of how to check the condition in
Equation 11 efficiently is left to the future work.

Finally, the following proposition states a sufficient condition for differentia-
bility of HF.

Proposition 5. The set of differentiable points of HF comprises all μd-vectors
X for which H is differentiable at F(X) and f is differentiable at all subvectors
of X.
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Proof. This follows from the well-known fact that the composition of differen-
tiable functions is differentiable and the fact that F is differentiable at X iff f is
differentiable at each subvector of X. ��

Remark 4. Note, that there are points for which HF is differentiable that are
not captured in the above proposition. In these cases f ′ has at some subvectors
of X zero components. Because of these zero components the one-sidedness of
components in ∇H(F(X)) might not influence the differentiability at X, if the
position of the zeros matches the position of the one-sided derivatives.

5 Efficient Computation

Next, the computational time complexity of computing the gradient field ∇HF

at μd-vectors, given the Jacobian matrices f ′(x(i)), i = 1, . . . , μ and F(X) is
discussed. Note that the input data requires memory space in Θ(μdm), and the
output data requires memory space in Θ(μd). Only worst case complexities are
considered here.

A näıve implementation of the scheme proposed above has super-quadratic
complexity in the number of points of the approximation set, because a straight-
forward computation of Equation 6, that is ∇H(F(X))�F′(x) requires no less
than μ2m2d multiplications and memory resources proportional to μ2md.

The computation of the hypervolume indicator can be done efficiently by
utilizing

1. the sparsity of the Jacobian matrix F′(X), and
2. fast dimension sweep algorithms for incremental hypervolume updates when

computing ∇H(Y) at a given μm-vector Y.

5.1 Exploiting Sparsity in Matrix Multiplication

An observation from studying the structure in Equation 7 is that many compo-
nents have a zero value and for each column of the matrix only m components
need to be considered in the scalar multiplication with the vector on the right
hand side.

Theorem 3. Given a vector valued objective function f : R
d → R

m, a μd-

vector X, the partial derivatives ∂H
∂yi

k

(F(X)) and ∂fk(x
(i))

∂x
(j)
i

for i = 1, ..., μ; j =

1, . . . , d; and k = 1, . . . ,m the μd components of ∂HF

∂x
(i)
j

(X) can be computed with

a computational complexity in O(μdm) by means of

∂HF

∂x
(i)
j

(X) =
m∑

k=1

∂H
∂y

(i)
k

(F(X)) · ∂fk(x
(i))

∂x
(i)
j

, i = 1, . . . , μ, j = 1, . . . , d. (12)

Proof. This follows immediately when omitting all zero terms in Equation 6. ��
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5.2 Dimension Sweep Algorithms for Computing ∇H
The next goal is to efficiently compute the components of the gradient of the
mapping from the objective space to the hypervolume indicator, that is ∂H

∂y
(i)
k

(Y),

i = 1, . . . , μ and k = 1, . . . ,m, for some μm-vector Y ∈ R
μm after checking for

differentiability of H in Y ∈ R
μm.

Recall, that Theorem 1 states that the partial derivative is given by the in-
cremental change in the dominated hypervolume of the (m − 1)-dimensional
projection, after adding a single point.

Our algorithm is inspired by dimension sweep algorithms for computing the
hypervolume indicator as described in [19] and, for 4-D, in [23].

Figure 4 outlines the details of the algorithm to compute hypervolume compo-
nents. The first part of the algorithms determines all subvectors that evaluate to
zero and subvectors with undefined partial derivatives (lines 1-3). This requires a
classification of subvectors using Proposition 3. If the set of undefined subvectors
is non-empty the μm-vector,H will be classified as undefined in (cf. Theorem 2).
For the Z,U, P partition different sets need to be identified. The non-dominated
set can be identified with time complexity in O(μ(log μ)max(1,m−2)) using the
algorithm of Kung et al. [24]; all other sets and set-operations can be computed
with time complexity in O(mμ log μ) either using elementary algorithms or based
on sorting [25].

In the remainder the algorithm computes gradient components for subvec-
tors in P based on the definition in Theorem 1. This is done by m dimension
sweeps, each one computing the partial derivatives of subvectors in P of the k-th
objective function.

Following Theorem 1 starting from the subvector with highest k-th coordinate
the algorithm adds one by one in descending order of the k-th coordinate the pro-
jected subvectors q to a balanced tree data structure T and computes the incre-
mental change in the (m − 1)-dimensional hypervolume indicator of the set of
points processed so far (all points higher in the k-th coordinate as it follows from
Theorem 1) caused by this insertion. For the computation it is only required to
maintain the set of the non-dominated points in the (m − 1)-dimensional pro-
jection among the points that have been processed so far in the k-th sweep. The
tree data structure T is used to maintain this set and quickly identify dominated
points to be removed. This way a fast amortized logarithmic-time update schemes
(2-D) or amortized linear-time update schemes (3-D) for the hypervolume indica-
tor can be achieved. These update algorithms can be derived from the algorithms
described by Beume et al. [19] and, in more than three dimensions, by Guerreiro et
al. [23]. For a discussion of the reformulation of these dimension sweep algorithms
for computing the m-dimensional indicator, as incremental update schemes for
(m− 1)-dimensional hypervolume indicators, see Hupkens and Emmerich [26]. In
the last step of the algorithm’s iteration dominated points are removed from the
tree. The time for this step amortizes to the cost of identifying a single dominated
point, as elements can be removed only once.
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Algorithm: GradMultiSweep
Input: μm vector Y with subvectors y(1) ∈ R

m, . . . , y(μ) ∈ R
m, reference point

r
Output: Partial derivatives ∂H

∂y
(i)
k

, i = 1, . . . , μ; k = 1, . . . ,m.

1. Determine the partition Z, U , and P of the subvectors of Y using Proposition
3.

2. if U 	= ∅ output ("Partial derivatives might be only one-sided in "

+ U)
3. Assign 0 to all partial derivatives of subvectors in Z.
4. Remark: In the remainder compute partial derivatives for all subvectors in

P .
5. For k ∈ {1, . . . ,m}

(a) Compute Pk as the set of all (m−1)-dimensional projections of subvectors
of P by omitting their k-th coordinate.

(b) Add subvectors in Pk in descending order of the k-th coordinate to a
queue Q.

(c) Initialize tree data structure for collecting non-dominated point T as
empty.

(d) While Q is not empty:
i. q ← Lop off first (greatest) element from the queue Q.
ii. Compute increment ΔH(q, T) of (m − 1)-dimensional hypervolume

indicator when adding q to T using efficient update schemes (for
m = 2 sorting can be used, for m = 3 see Beume et al. [19], and for
m ≥ 4 see Guerreiro et al.[23]).

iii. Set ∂H
∂y(i(q)) = ΔH(q, T ), where i(q) is the index that corresponds to

the index of the original subvector in Y of which q is the projection.
iv. Add q to T and remove all elements that are Pareto dominated in

the (m− 1)-dimensional projection by q from T.

Fig. 4. Computing gradient components

The following theorem summarizes the complexity results of computing gra-
dients of the hypervolume in the objective function space:

Theorem 4. Given a μm-set Y of μ concatenated vectors of size m with no
duplicate coordinates among subvectors. Then the computation of all components

∂H/∂y
(i)
k (Y) for k = 1, . . . ,m has a time complexity in Θ(μ log μ) for m = 2, 3

and a time complexity in O(μ2) for m = 4.

Proof. The lower bound of Ω(μ logμ) for m = 2 can be proven by reduction of
uniform gap as in [19]. For a given set {u1, . . . , um} we need to represent this
set as an instance of to the hypervolume gradient in linear time by duplica-
tion of coordinates, yielding (u1,−u1, u2,−u2, . . . , uμ,−uμ). After computing
the hypervolume partial derivatives for a reference point r = (mini=1,...,μ{ui},
−maxi=1,...,μ{ui}), the uniform gap is decided positive if and only if all non-
zero partial derivatives are the same, which can be checked in a linear number
of comparisons.
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For proving a lower bound for m = 3, we show that there exists a linear time
reduction of the hypervolume indicator in two dimensions to the problem of
computing the gradient components in three dimensions. As the complexity of
computing the hypervolume indicator in two dimensions was proven by Beume
et al. [19] to be in Ω(μ log μ), a time complexity faster than Ω(μ log μ) would
yield a contradiction. The reduction reads as follows: Given μ mutually non-
dominated vectors in 2-D, say u(1), . . ., u(μ), and assume they are all dominating
the 2-D reference point (r1, r2)

�. Now we can construct a problem with reference

point (r1, r2, 0)
� and a μm-vector Y = (u

(1)
1 , u

(1)
2 , 1)�, . . ., (u(1)

1 , u
(1)
2 , μ)�, then

H(u(1), . . ., u(μ)) =
∑μ

i=1
∂H

∂y
(k)
3

. ��

Example 3. This example illustrates the computation of ∇H at a μm-vector
Y = ((12, 11, 7) ◦ (1, 3, 7) ◦ (3, 10, 8) ◦ (14, 4, 5) ◦ (6, 12, 4) ◦ (−1, 2, 9))� using Al-
gorithm 4. Reference point is (0, 0, 0)�. The algorithm first partitions the multi-
set of subvectors into U = ∅, Z = {(1, 3, 7)�, (−1, 2, 9)�} and P = {(12, 11, 7)�
(3, 10, 8)�, (14, 4, 5)� (6, 12, 4)�}. All partial derivatives of the 2nd and 6th
subvector are set to zero. Figure 5 visualizes a sweep of P for the final outer
loop with index k = 3: We initialize the queue as Q = [(6, 12)� � (14, 4)� �
(12, 11)� � (3, 10)�]. The pictures from the left to the right Figure 5 show the
situations right after each iteration of the inner loop. First the algorithm lops off
q at the front of the queue and inserting it to T. The hypervolume update in the
(m− 1)-dimensional projection to f1 and f2 is now 30 and the partial derivative

∂H/∂y
(3)
3 is set to this value, because 3 is the upper index of the subvector from

which the current q originated. Now, Q = [(6, 12)� � (14, 4)� � (12, 11)�] and
the tree contains element (3, 10)�. In the next iteration q = (12, 11)� is drawn

from the queue. The hypervolume update is now 102 and assigned to ∂H/∂y
(1)
3 ,

as 1 is the index of the subvector in Y from which q originated. The vector
(3, 10)� is removed from the tree, because q = (12, 11)� dominates it in the first
two dimensions. The next two iterations will not remove points from the tree

and the partial derivatives ∂H/∂y
(4)
3 = 8 and ∂H/∂y

(5)
3 = 6 will be computed

in this order. Thereafter the queue is empty and the algorithm terminates.

Fig. 5. Gradient computation for a 3-D gradient∇H(Y) for Y = ((3, 10, 8)◦(12, 11, 7)◦
(14, 4, 5) ◦ (6, 12, 4))� and reference point r = (0, 0, 0)�
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5.3 Time Complexity of Computing the Gradient at a µd-Vector

When putting the results of Theorems 4 and 3 together we obtain that the time
complexity in the number of points in the approximation set, μ, is governed by
the bounds given in Theorem 4. However, when dealing with a large number
of dimensions the influence of m and d might be considerable. The cost for the
matrix multiplication is influenced by the search space dimension and scales
with O(μdm). Here μd is the same complexity as computing the gradients of all
points in the approximation set and thus is at its lower bound.

Theorem 5. Given an objective function f , a μd vector X, the partial deriva-

tives ∂H
∂yi

k

(F(X)) and ∂fk(x
(i))

∂x
(j)
i

for i = 1, ..., μ; j = 1, . . . , d; and k = 1, . . . ,m the

time complexity of computing all μd components of ∂HF

∂x
(i)
j

(X) of the hypervolume

gradient HF(X) is given by Θ(dμ + μ logμ) in m = 2 and m = 3 dimensions,
and by O(μd + μ2) in m = 4 dimensions.

Proof. The output size is μd, therefore this is a lower bound for the complexity.
Then the result follows from Theorem 3 and Theorem 4 and the fact that m is
assumed to be constant. ��

6 Gradient Components and Hypervolume Contributions

Revealing the relation between hypervolume contributions of points and the gra-
dient components provides an important insight into the structure of the gradi-
ent field, that can yield (1) an alternative algorithm for computing hypervolume
contributions, and (2) a concise formulation of an optimality criterion.

The hypervolume contribution ΔH(y, Y ) of a multi-set Y and a point y ∈ Y
is defined as:

ΔH(y, Y ) = H(Y )−H(Y \ {y}) (13)

Accordingly, define the hypervolume contributionΔH(i, Y ), i = 1, . . . , μ of the i-
th subvector in the μm-vectorY as the size of the truncated dominated subspace
that is dominated by the i-th subvector but not by any other subvector. Putting
this into more concrete terms, let π1,...,̌i,...,μ(Y) denote the projection of y with
the i-th subvector removed. Then

ΔH(i,Y) = H(Y)−H(π1,...,̌i,...μ(Y))

From the geometrical situation described in Theorem 1 we obtain:

∇ΔH(i,Y) =

(
∂ΔH(i,Y)

∂y
(i)
1

, . . . ,
∂ΔH(i,Y)

∂y
(i)
m

)�
= (14)

=

(
∂H(Y)

∂y
(i)
1

, . . . ,
∂H(Y)

∂y
(i)
m

)�
(15)
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Furthermore, let us define the following subgradient at X:

∇HF(i,X) =

(
∂HF

∂x
(i)
1

, . . . ,
∂HF

∂x
(i)
d

)�
,

that is HF(i,X) is equal to the i-th subvector of HF(X).
Let us recall the equation from Theorem 3:

∂HF

∂x
(i)
j

(X) =

m∑
k=1

∂H
∂y

(i)
k

(F(X)) · ∂fk(x
(i))

∂x
(i)
j

, i = 1, . . . , μ, j = 1, . . . , d. (16)

It can be written in a compact form:

Theorem 6. Let f ′(x(i)) denote the Jacobian matrix of f : Rd → R
m at x(i)

and ∇ΔH(i,F(X)) the m partial derivatives of the hypervolume contribution.
Then

∇HF(i,X) = ∇ΔH(i,F(X)) · f ′(x(i)), i = 1, . . . , μ. (17)

Proof. This follows by rewriting Equation 16. ��

According to this new interpretation of Theorem 3, it can be said that the i-th
subvector of ∇F(X) is the gradient of the hypervolume contributions at the i-th
subvector of X for all other values in X being constant.

Remark 5 (Visualization of 2-D and 3-D gradient). The fact that the compo-
nents of the gradient are related to the gradients of the hypervolume contri-
butions can be used for a graphical representation of the gradient of H at a
μm-vector. For each subvector (that is for each point in the Pareto front approx-
imation) the gradient vector is drawn as an arrow starting in that point. Nor-
malization by dividing by the length of the subgradient, that is ||∇ΔH(i,Y)||,
makes the visualization more readable. Examples follows.

Example 4. The visualization in Figure 6 is based on the data of Example 3 and
subvectors that contribute only zero gradient components are omitted.

Example 5. In Figure 7 a visualization for m = 2 and μ = 5 is depicted. See
Figure 8 for an example with m = 3 and with 100 points distributed randomly
on the positive part of a sphere with radius 10 and a reference point of 0. Here
normalization is used to make the picture more transparent.

Remark 6 (Implementation of 3-D Gradient). To implement the 3-D example
in Figure 8 a fast computation of the 3-D Gradient field computation has been
implemented in C++. It is based on the algorithm of Fonseca and Emmerich
[27] that computes all contributions to the hypervolume indicator within a single
sweep and with a time complexity in O(μ log μ). This algorithm can be easily
modified to compute the visible facets of the volumes that are dominated by
precisely one single subvector and therewith the components of ∇H at some μm
vector within a single sweep. The details of this implementation are omitted in
this paper, but the code is made available under http://natcomp.liacs.nl.

http://natcomp.liacs.nl
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6.1 Optimality Conditions

From the theoretical observations in Theorem 6 necessary conditions for opti-
mality of μd vectors w.r.t. the hypervolume indicator can be stated in a concise
way.

Let us restrict our attention first to differentiable μd vectors X with all sub-
vectors of F(X) being non-dominated and in the interior of [r,∞). These μd
vectors will be termed proper μd-vectors. Note, that for proper μd vectors all
partial derivatives of H(F(X)) are non-zero.

As HF is differentiable in X the following optimality condition holds:

Theorem 7. A necessary condition for HF being optimal is that

∇ΔH(i,F(X)) · f ′(x(i)) = 0 (18)

for all i = 1, . . . , μ, or in different notation

m∑
k=1

∂ΔH(i,F(X))

∂y
(i)
k

· ∂fk(x
(i))

∂x
(i)
j

= 0 (19)

for all i = 1, . . . , μ; j = 1, . . . , d.

Proof. This is the usual condition for stationarity of points and decomposition
of the gradient described in Theorem 6. ��

Loosely speaking, Theorem 7 means that by finding solutions for which all hyper-
volume contribution gradients turn zero, candidates for optimal approximation
sets can be obtained. This observation yields μd equations to be satisfied for μd
variables to be determined.

We note that this condition holds also for non-proper μd vectors, although we
can already a-priori conclude that optima of non-proper μd-vectors are of minor
interest. If our aim is to approximate an non-degenerate Pareto front, that is a
(m − 1)-dimensional manifold, every one of the μ points in the approximation
set should contribute.

A close look at Equation 18 shows that there can be two reasons that a proper
μd-vector satisfies the equation for a particular index i:

1. Some components of the Jacobian matrix are zero.
2. The partial derivatives of the contribution (which remain constant for a fixed

value of d) are canceled out by the components of the column vectors of the
Jacobian matrix.

In the unconstrained bi-objective case the Fritz John necessary conditions for a
differentiable point x (with respect to f1 and f2) to belong to the efficient set
read:

∃λ1, λ2 ≥ 0 : λ1 �= λ2 and λ1∇f1(x) + λ2∇f2(x) = 0 (20)

This means either at least one of the gradient vectors is zero, or the gradient
vectors point in the opposite direction.
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Fig. 6. Gradient computation for a 3-D gradient∇H(Y) for Y = ((3, 10, 8)◦(12, 11, 7)◦
(14, 4, 5) ◦ (6, 12, 4))� and reference point r = (0, 0, 0)�

Fig. 7. Gradient computation for a 2-D gradient ∇H(Y) for Y = ((7, 17) ◦ (11, 15) ◦
(14, 13) ◦ (15, 8) ◦ (21, 6))� and reference point r = (0, 0, 0)�
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Fig. 8. Normalized gradient of H at Y (upper picture) and non-normalized gradient
at Y, for Y given as a random set of objective vectors distributed randomly on the
positive section of a sphere with radius 10
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We can combine this with the previous result and obtain:

Corollary 1. A necessary condition for a proper μd-vector consisting of effi-
cient subvectors with respect to the bi-objective optimization problem to represent
a locally optimal approximation set of the hypervolume indicator is given by:

∂H
∂y

(i)
1

(F(X))

∂H
∂y

(i)
2

(F(X))
=
||∇f2(x

(i))||
||∇f1(x(i))|| (21)

for all i = 1, . . . , μ.

In other words, the differential change in the i-th subvector of X in the decision
space causes a growth of the hypervolume contribution of the i-th subvector of
F(X) in the y1 direction, that is compensated by a decrease of the hypervolume
contribution of that subvector in direction y2.

It is expected that a more general analysis of the findings presented in this
section will reveal refined optimality conditions and a better understanding
of the properties of (locally) optimal approximation sets. It may also shed
new light on the yet unanswered question of how points in bounded size sets
that maximize the hypervolume indicator distribute on a given Pareto front
(see also [28]).

7 Conclusions and Outlook

This chapter refined the definition of the hypervolume indicator gradient field
for the higher dimensional case. The size of the faces of the boundary of the
dominated subspace are the gradient components at a set of objective vectors in
the decision space. Partial derivatives of the gradient can be readily computed
by using algorithms for computing the incremental hypervolume contributions.
This yields algorithms with asymptotically optimal computational time com-
plexity Θ(μd+μ logμ) for computing the gradient at an approximation set from
the Jacobian matrices of f at the points, and the values of the objective vectors
in the bi- and tri-objective case. In the four objective case the time complexity
can be guaranteed to be in O(μd+ μ2). Further progress in incremental update
schemes for the hypervolume indicator will also yield sharper bounds for gra-
dient computations. Finally by deriving tight computation schemes, structural
properties of the hypervolume indicator gradient field were revealed that entail
a set of μd simple equations to be satisfied for an proper approximation set to be
optimal. The analysis of these conditions may shed a light on the fundamental
laws that govern the distribution of points in hypervolume indicator optimal ap-
proximations sets to the Pareto front (see also [28]). Moreover, the formulation
of stopping criteria that guarantee local optimality for hypervolume-indicator
based Pareto optimization is now in reach.
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Abstract. This paper will address an innovative bio-inspired algorithm
able to incrementally grow decision graphs in multiple directions for dis-
crete multi-objective optimisation. The algorithm takes inspiration from
the slime mould Physarum Polycephalum, an amoeboid organism that
in its plasmodium state extends and optimizes a net of veins looking
for food. The algorithm is here used to solve multi-objective Traveling
Salesman and Vehicle Routing Problems selected as representative ex-
amples of multi-objective discrete decision making problems. Simulations
on selected test cases showed that building decision sequences in two di-
rections and adding a matching ability (multi-directional approach) is
an advantageous choice if compared with the choice of building decision
sequences in only one direction (unidirectional approach). The ability to
evaluate decisions from multiple directions enhances the performance of
the solver in the construction and selection of optimal decision sequences.

Keywords: Physarum, Multi-Objective, Multi-Directional.

1 Introduction

The idea that nature can inspire humans to solve complex decision making prob-
lems was widely used over the past two decades. A number of bio-inspired al-
gorithms designed to solve decision making problems was and still are studied
and developed. An example is the ACO (Ant Colony Optimisation) alghorithm
[1] that takes inspiration from the social behaviour of ants looking for food. Fol-
lowing this concept, the behaviour of other social animals was successfully used:
examples are bee colonies [2], fireflies [3], birds [4].

The method proposed in this paper takes inspiration from Physarum Poly-
cephalum, see Fig. 1, known as many-headed slime mould, a simple organism
inahabiting moist areas that was endowed by nature with heuristics that can
be used to solve single-objective and multi-objective discrete decision making
problems. In [5] it has been shown that Physarum Polycephalum is able to solve
a maze finding the shortest path that connects the maze’s entrance and exit by
changing its shape. It has been shown also that a living Physarum is able to
recreate the Japan rail network [6] and the Mexican highway network [7], both
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Fig. 1. Physarum Polycephalum. Image courtesy of Howard County Bird Club at
www.howardbirds.org.

using an experimental arena with food sources at each of the major cities in
the regions. Physarum based algorithms have been developed recently to solve
multi-source problems with a simple geometry [8,9], mazes [10] and transport
network problems [6,10].

In this paper a multi-directional modified Physarum Polycephalum algorithm
able to solve NP-hard multi-objective classical problems in operations research
is proposed. In [11,12,13] multi-objective bio-inspired algorithms, i.e. ant colony
algorithms, have been proposed and studied. The algorithm presented in this
work is a multi-objective generalization of the single-objective multi-directional
modified Physarum solver previously presented in [14] for discrete decision
making.

In Sect. 2 the physiology of Physarum is introduced: discrete decision making
problems are modeled with decision graphs where nodes represent the possible
decisions while arcs represent the cost vector associated with decisions. Each arc
has a scalar dominance index associated which is calculated comparing all the
arcs leaving a node, as explained in Sect. 2. Decision graphs are incrementally
grown and explored in multiple directions using the Physarum-based heuristic.
This paper aims at proving that a multi-directional incremental Physarum solver
is more efficient, in terms of success indexes (see Sect. 3.1), than a unidirectional
incremental Physarum solver when applied to the solution of multi-objective de-
cision problems that can be represented with directed symmetric decision graphs,
i.e. graphs where the contribution of an arc to a complete path can be evalu-
ated moving forward or backward along the graph. In [14] it has been already
shown that the single-objective multi-directional modified Physarum algorithm
is more efficient than the unidirectional algorithm when applied to small scale
single-objective discrete decision making problems. This thesis will be demon-
strated for the multi-objective algorithm in Sect. 4 solving some test cases.
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Bi-objective Traveling Salesman and Vehicle Routing Problems (TSP and VRP),
introduced in Sect. 3, with a number of nodes between 10 and 100, were chosen
as representative examples of the above type of decision making problems, here
called reversible decision-making problems, i.e. problems in which a decision can
be taken either moving forward or backward along the graph, as explained in
Sect. 2.

2 Biology and Mathematical Modeling

Physarum Polycephalum is a large, single-celled amoeboid organism that ex-
hibits intelligent plant-like and animal-like characteristics. Its main vegetative
state, the plasmodium, is formed of a network of veins (pseudopodia). The stream
in these tubes is both a carrier of chemical and physical signals, and a supply
network of nutrients throughout the organism [9]. Physarum searches for food
by extending this net of veins, whose flux is incremented or decremented de-
pending on the food position with reference to its centre. The longest is the
path connecting the centre with the source of food, the smallest is the flux and
viceversa: best veins in terms of length that connect its centre with the food tend
to increase their radius and the flux of nutrients inside, while longer veins tend
to decrement the flux and close with time. This behaviour can be interpreted
as a natural attitude in optimising the energy required to feed the organism by
shape variation.

2.1 Problem Formulation: Multi-Objective Discrete Decision
Making

Given a solution j to a discrete multi-objective decision making problem P , with
cost vector sj = [sj1, s

j
2, ..., s

j
n] and a solution i with cost vector si = [si1, s

i
2, ..., s

i
n],

the solution j dominates i if sjk ≤ sik for all the k = 1, 2, ..., n and sjk < sik for
at least one k. The relation sj ≺ si states that sj dominates si. The dimension
of the vector sj expresses the number of evaluating criteria for a solution j. The
cost vector represents the cost associated with a decision. A general problem in
discrete multi-objective optimisation is to find the feasible non dominated solu-
tions to the given discrete multi-objective decision making problem P . Following
the theory developed in [18], it is possible to associate a scalar dominance index
I(s) to each solution. The lower is the index, the better is the solution: if one
considers the set of solutions S = {sj , si, sk} where sj ≺ si ≺ sk, the set of
associated scalar indexes will be I = {I(sj) = 0, I(si) = 1, I(sk) = 2}. All the
non-dominated solutions in a general set S form the set:

PF = {s|I(s) = 0} (1)

which is called Pareto front. Therefore, the solution of the problem P translates
into finding the elements of PF .
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Fig. 2. Generally a Physarum working in direct flow (DF ) would build the decision
that brings from a to b, while the Physarum working in back flow (BF ) would build
the symmetric decision bringing from b to a (left). In a traveling salesman problem
(TSP, right) nodes are fixed while arcs are built with time and a decision that brings
from a to b can be built from both DF and BF Physarum, as for the arc that connect
4 to 5.

2.2 Multi-Objective Multi-Directional Physarum Algorithmic

A reversible discrete decision problem can be modeled using a symmetric directed
graph. The reversibility of a decision that induces a change from a state a to
state b indicates here that the decision that brings back from b to a exists and
can be evaluated. Not necessarily these two decisions have the same cost. The
symmetric directed graph can be seen as the superposition of two directed graphs
(direct-flow, DF, and back-flow, BF, graphs) whose nodes are coincident and
edges have opposite orientation. In so doing, the decision between state a and b
has a forward link a to b and a superposed backward link b to a. It is assumed
that the first decision node is the heart of a growing Physarum in DF, and the
end decision node the heart of a growing Physarum in BF. The two Physarum
are supposed able to incrementally grow the decision graph in the two directions
by extending their net of veins. A multiple direction growing decision Physarum
graph is obtained. In the example mentioned before, the Physarum working in
DF would build its graph by creating arcs that move from a to b. If the graph
was traversed by a virtual agent, the agent would walk along an arc from a to
b. The other Physarum would build its graph in the opposite direction then
walking along each arc from b to a. The result is a graph where both nodes and
links are incrementally built by two expanding Physarum.
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Fig. 3. Example of acrs’ values assignment. Lij and Iij are respectively the cost vector
and dominance index associated with the general decision from node i to node j.

In this work the decisional problems analyzed are the TSP and the VRP, see
Sect. 3; being Hamiltonian paths, all the nodes are built at the beginning, and
only the arcs are built with time. This means that both the Physarum working
in DF and the one working in BF can build arcs connecting two nodes in both
directions. If the graphs built by the two Physarum are fully connected after a
transient of growth, which is the case in this paper, two superposed symmetric
directed graph are obtained. Fig. 2 shows a simple example for a TSP problem.

Exploration Using the Hagen-Poiseuille law, the flux through the net of Physarum
veins is [6,8,9,10]:

Qij =
πr4ij
8μ

Δpij
Lij

(2)

where Qij is the flux between i and j, μ is the dynamic viscosity, rij the radius,
Lij the length and Δpij the pressure gradient.

In a multi-objective algorithm the length Lij , representing the cost of the
decision that brings from i to j, is a vector Lij . Its value can be substituted
with the scalar dominance index Iij ∈ N

0, see Fig. 3: the cost vectors associated
with each veins that connect a node Ni with other nodes Nk

j can be compared
and the dominance indexes can be evaluated. Eq. (2) becomes:

Qij =
πr4ij
8μ

Δpij
(Iij + 1)

(3)

where plus 1 was added to avoid a singularity for Iij = 0.
The strategy of using a single structure (in this case the flux) has been previ-

ously examined in [11] for Ant Colony Optimisation applied to multi-objective
problems (where a weighted sum of all the objectives is used instead of the in-
dex Iij). Another strategy, as reported in [11], could be the use of several fluxes
structures ([11] refers to pheromones), one for each objective. The first strategy
was chosen because it has the advantage of being easy to implement and usable
when the number of objectives is high, as in many real-world problems. This
considerations will be further discussed in Sect. 4.1.
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Table 1. Input parameters for the modified Physarum solver

m Linear dilation coefficient, see Eq. (9).
ρ Evaporation coefficient, see Eq. (5).
GFini Initial growth factor, see Eq. (7)
Nagents Number of virtual agents.
pram Probability of ramification, see Sect. 2.2.
α Weights on ramification, see Eq. (8).
kexplosion radii upper limit, see Eq. (10)

Diameter variations then cause a change in the flux. Veins’ dilation due to
an increasing number of nutrients flowing can be modeled using a monotonic
function of the flux:

d

dt
rij

∣∣∣∣
dilation

= f (Qij) (4)

where f(0) = 0 , i.e. linear, sigmoidal, etc. Veins’ contraction, similarly to the
evaporative effect in ACO [1], can be assumed to be linear with radius:

d

dt
rij

∣∣∣∣
contraction

= −ρrij (5)

where ρ ∈ [0, 1] is defined evaporation coefficient. The probability associated
with each vein connecting i and j is then computed using a simple adjacency
probability matrix based on fluxes:

Pij =

{
Qij∑

j∈Ni
Qij

if j ∈ Ni

0 if j /∈ Ni

(6)

where Ni is the set of neighbour for i.
An additive term in the veins’ dilation process, whose first main term is ex-

pressed in Eq. (4) was added in the algorithm and takes inspiration from the
behaviour of the amoeba Dictyostelium discoideum [16]. This dilation is:

d

dt
rijbest

∣∣∣∣
elasticity

= GFrijbest (7)

where GF is the growth factor and rijbest the veins’ radius of the best chains
of veins, i.e. the veins that form the paths in the decision graph that are in the
current calculated Pareto front. This dilation, as explained in [14], simulates the
tendency of best veins to further increase their radius for the effect of the flux.

Growth in Multiple Directions and Matching. The incremental growth of decision
network in multiple directions is then based on a weighted roulette. Nutrients
inside veins are interpreted as virtual agents that move in accord with adjacency
probability matrix in Eq.( 6). Once a node is selected, there is a probability pram
of ramification towards new nodes that are not yet connected with the actual
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node. The value of pram can be chosen a priori or a law can be defined, i.e.
pcram = pcram(Ac), where c is the current ramifying node and Ac the number
of arcs that leave node c. In this work a priori values were chosen before the
simulations.

If ramification is the choice, a weighted roulette, based on objective function
evaluations, helps the Physarum with the selection and construction of a new
link. The probability of a new link construction from the current node c to a
new possible node ni ∈ N , where N is the set of new possible decisions, is here
assumed to be inversely proportional to the cost Icni of the decision between c
and ni, i.e. the dominance scalar index associated with the decision:

pcni ∝
1

(Icni + 1)α
(8)

where α is a weight. Once a new link is built, a complete decision path is con-
structed (creating other links if necessary).

Assuming then the presence of two counter expanding Physarum, one in
direct-flow DF and one superposed in back-flow BF, as explained in the pre-
vious paragraph, a matching condition can be then defined. If an arc connecting
two nodes that belongs to DF and BF Physarum respectively, exists or can be
created, it is traversed by the agent and becomes part of both the DF and the BF.
Some matching strategies were compared in [14] for single-objective problems.
In this paper, two matching strategies were implemented in the multi-objective
modified Physarum solver.

The first one, called selective-matching, follows an elitist criterion where at
each generation a joint path is selected if and only if its total cost vector is not
dominated by the previous joint paths selected during the same generation, as
in [14]. It could be noted that if a high number of exploring agents is chosen, a
high number of paths are matched. This could lead to a slowdown of the code
speed, especially if complete decision sequences are long, as in more complex
multi-objective VRPs and TSPs (more than 20 cities). For this reason, an other
strategy, called mix-matching, was designed for larger scale problems. Selective
matching is done only considering the best n solutions in DF and BF during a
generation, so that worst routes are excluded a priori. A value n = dim

5 , where
dim is the problem dimension, i.e. the number of cities for TSP and VRP, was
used in the simulations presented in this paper. Furthermore the n best decisions
in DF and BF are matched with the Pareto front found by the algorithm at the
time of matching.

These matching conditions can be interpreted as a communication ability be-
tween the two Physarum: they move according to their nature and the knowledge
acquired exploring the decision space, which contains both personal experience
and shared information.

Restart Procedure. Simulations on selected test cases (see Sect. 4) were carried
out adding in the Physarum algorithm two restart procedures to avoid stagnation
on local minima. The first restart procedure, called restart1, is a routine for the
adaptive control of the growth factor GF . This control was introduced in order
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Algorithm 1. Multi-directional incremental modified Physarum solver
initialize m, ρ, GFini, Nagents, pram, α
generate a random route from start to destination both in DF and BF
for each generation do

for each virtual agent in all directions (DF and BF ) do
if current node 	= end node then

if rand ≤ pram then
using Eq. (8) create a new link to a node not yet connected
update scalar dominance indexes for current node, see Sect. 2.1

else
move on existing graph using Eq. (6)

end if
end if

end for
look for possible matchings among decision sequences in DF and BF
update Pareto front
contract and dilate veins using Eqs. (4), (5), (7)
if rij exceeds upper radius limit, see Eq. (10) then

block radius increment
end if
update fluxes and probabilities using Eqs. (3), (6)

end for

to incrementally boost the effect of GF during a simulation, driving exploring
agents towards best veins. Simulations showed that the adaptive control of GF
helps the convergence of the algorithm towards optimal solution when used on
small scale problems (number of cities less than 16 in this paper). Given an initial
value for the growth factor GFini, GF is incremented by a fixed percentage
σ after every generation. If the highest probability pPF

best associated with the
paths in the calculated Pareto front so far is higher than a fixed value plowlim ,
the increment is set to zero. Then, if pPF

best exceeds a value phighlim , GF is set
equal to GFini and veins are dilated and contracted to their initial value. In
the present paper is assumed σ = 0.01, plowlim = 10−4 , phighlim = 0.85 for the
bi-objective Vehicle Routing Problem test case Tuscany10 and phighlim = 0.95
for the bi-objective Traveling Salesman Problem test case Ulysses16. A second
restart procedure, called restart2, was designed for larger scale problem, i.e. the
bi-objective traveling salesman instance KroAB100. It is based on minimum
nodes in common among decision sequences in a generation and among decision
sequences and Pareto front; the algorithm is restarted if one of the following
conditions is achieved:

I) the minimum number of nodes in common ncom
min, obtained comparing all

decision sequences among each other in a generation, exceeds a threshold ncom.
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Table 2. Values used as input parameters - TSP test case (first row) and VRP test
case (second row)

Instance m ρ GFini Nagents pram α kexplosion

Ulysses16 5× 10−5 1·10−5

Nagents
5 · 10−3 100 0.8 0 108

Tuscany10 5× 10−5 1·10−5

Nagents
1 · 10−3 150 0.8 0 108

KroAB100 5× 10−5 5·10−6

Nagents
5 · 10−3 50 1 0 5

II) a fraction β of the decision sequences built during a generation belong to the
calculated Pareto front at same generation.

In this paper a value ncom = dim
2 , where dim is dimension of the problem, i.e. the

number of cities, and a value β = 2
3 were used. The goal of this restart procedure

is to avoid both a stagnation to local single minima and to the calculated Pareto
front itself.

Considerations on the Algorithm. The set of Eqs. (2)-(6) can be implemented
as in the following. In accordance to Eq. (2), flux in each vein is proportional
to the radius and inversely proportional to the length (the scalar dominance
index in a multi-objective problem, Eq. (3) ). These two main parameters are
taken into account in the algorithm. Once a vein is selected by a virtual agent
in a generation, its radius is incremented using Eq. (4). In the present work, a
function linear with respect to the product between the radius r

(n)
ij of the veins

traversed by agent n, and the inverse of the sum of dominance indexes (I(n)tot , see
Sect. 2.1), associated with each arc of the decision taken by agent n, will be used
for the veins’ dilation:

d

dt
r
(n)
ij

∣∣∣∣
dilation

= m
r
(n)
ij

I
(n)
tot

(9)

where the coefficient m is the linear dilation coefficient. Evaporation is taken into
account using Eq. (5) for each agent. Fluxes are then calculated using Eq. (3) and
probabilities are updated in accordance with Eq. (6). Due to the mathematical
nature of the algorithm (the flux is related to the fourth power of the radius), an
upper limit on the maximum vein radius was introduced in order to avoid veins’
flux explosion. If the radius rij exceeds a maximum value rmax, the vein dilation
is blocked up until the radius is again below rmax for the effect of evaporation.
This upper limit, called kexplosion, is given as ratio between rij and rini:

kexplosion =
rij
rini

(10)

where rini is the initial radius of the veins. The main parameters of the modified
Physarum solver are listed in Table 1. The initial radius of the veins rini is
always set equal to 1 in the simulations presented in this paper. The pseudocode
of the multi-directional incremental modified Physarum solver is provided in
Algorithm 1.
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3 Application to Multi-Objective Traveling Salesman and
Vehicle Routing Problems and Benchmark

In single-objective optimisation the Traveling Salesman problem, TSP, is the
problem of finding the shortest tour that visit each city of a given set S of n
cities.

In the multi-objective optimisation case considered in this paper the cost
function to be minimized is a vector of two values: the total length Ltot =

∑
j Lj

and the total road traffic Ttot =
∑

j Tj of each tours, where j = 1, ..., n is the
index that identifies each part of the tour. The road traffic is here assumed to
be inversely proportional to the length Tj = 1/Lj. The shorter is the tour, the
higher is the probability that the tour is chosen by drivers, increasing the road
traffic. The total road traffic Ttot =

∑
j Tj will be called Road Traffic Index in

the following. Although conflicting criteria, both length and road traffic in a tour
have to be minimised.

TSPLIB [17] was used to benchmark the proposed Physarum algorithm, devel-
oped in Matlab R© R2010b, on the TSP problem. In Sect. 4 are reported the results
obtained by applying the multi-objective multi-directional Physarum solver to
test case Ulysses16 that was modified adding the road traffic to the cost func-
tion and to the test case KroAB100, obtained from the single-objective intances
KroA100 and KroB100. For the KroAB100 the consideration above on the road
traffic index does not apply: it is a bi-objective problem itself and two objectives
to be minimised are included in the instance.

The multi-objective Vehicle Routing Problem, VRP, considered in this paper
is a similar problem. Given a set of n cities with a demand k, whose reciprocal
distance Lj and road traffic Tj = 1/Lj are known, v vehicles of capacity c,
d depots located in fixed cities, the VRP is the problem of delivering goods
located in the depots using a defined amount of vehicles with finite capacity.
The goal is to satisfy the demand of each city minimizing the cost functions, i.e.
the distance and road traffic. VRP reduces to a TSP if there is only one vehicle
with infinite capacity. When the modified Physarum algorithm is applied to
VRP, a probability skew factor ψ is included in the algorithm. If an agent is
not obliged to go to depot, the probability to reach the depot is lowered of a
factor (1 − ψ). Other probabilities are then risen of a same value in order to
have the sum of probabilities equals to 1. The skew factor ψ is introduced in the
model to avoid frequent returns to depot in the decision sequences and is here
set equals to 0.5. The Physarum solver applied to VRP was tested on a map of
9 cities plus one depot. The map is built using 9 Italian cities (Firenze, Livorno,
Montecatini, Pistoia, Prato, Montevarchi, Arezzo, Siena, San Gimignano), with
a city considered the depot (Ponsacco). The Euclidean distance in kilometers
was used. VRP parameters were set to n = 9, k = cost = 1, v = 1, c = 4, d = 1,
i.e. one vehicle with capacity equals to 4, one depot and a constant demand
equals to 1.
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Fig. 4. Pareto front - TSP test case Ulysses16 at 6.5 · 105 function evaluations, (a)
- VRP test case Tuscany10 at 3 · 105 function evaluations, (b). In the legend, Global
indicates the global Pareto front obtained from all the runs of the D and D&B algo-
rithms (1600 for the VRP test case and 2800 for the TSP test case), while D and D&B
indicate an example of a Pareto front found during a run of the D and D&B algorithms
respectively.

3.1 Testing Procedure

The testing procedure proposed in [18] was used in this paper. Two metrics are
defined:

Mspr =
1

Mp

Mp∑
i=1

min
j∈Np

‖ fj − gi

gi

‖ (11)

Mconv =
1

Np

Np∑
i=1

min
j∈Mp

‖
gj − fi

gj

‖ (12)

where Mp is the number of elements, with objective cost function g, in the
true global Pareto front and Np is the number of elements, with objective cost
function f, in the Pareto front that a given algorithm is producing. Although
similar, the two metrics are measuring two different things: Mspr is the sum,
over all the elements in the global Pareto front, of the minimum distance of all
the elements in the Pareto front Np from the ith element in the global Pareto
front: this metric would be high if Np was only a partial representation of the
global Pareto front. Mconv, instead, is the sum, over all the elements in the
Pareto front Np, of the minimum distance of the elements in the global Pareto
front from the ith element in the Pareto front Np: this metric would give a low
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Fig. 5. Variation of the indexes of performance pconv and pspr with the number of
function evaluations - TSP test case Ulysses16, (a) and (b) - VRP test case Tuscany10,
(c) and (d)

value if Np was an accurate, although partial, representation of the global Pareto
front.

From the considerations above, both the metrics Mspr and Mconv should be
low for a good estimate of the global calculated Pareto front. The indexes of per-
formance pconv = P (Mconv < tolconv) and pspr = P (Mspr < tolspr) will be used
to explore the efficiency of the algorithm and to compare the multi-directional
and the unidirectional versions. Given n repeated runs, pconv is the probability
that Mconv achieves a value less than tolconv, while pspr is the probability that
Mspr achieves a value less than tolspr . 200 runs are sufficient in order to obtain
an error ≤ 5% with a 95% of confidence [18]. For the TSP test case Ulysses16
the tolerances tolconv and tolspr are set equal to 0.0465 and 0.045 respectively,
for the VRP test case Tuscany10 to 0.030 and 0.035, and for the TSP test case
KroAB100 to 0.048 and 0.058.
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Fig. 6. Pareto fronts for TSP test case KroAB100 at 4 · 107 function evaluations. In
the legend of figure a), Global indicates the global Pareto front obtained from all the
runs of the D and D&B algorithms (40), while D and D&B indicate an example of
a Pareto front found during a run of the D and D&B algorithms respectively. In the
legend of figure b), Global indicates the global Pareto front as in a), while Global, D
and Global, D&B indicate the global Pareto fronts obtained from all the runs of the D
and D&B algorithms respectively (20).

4 Results

The multi-objective multi-directional modified Physarum solver, named D&B
in the following, was compared against a multi-objective unidirectional modi-
fied Physarum solver, named D. The D algorithm is obtained by freezing the
backflow BF. The two algorithms were applied to the modified symmetric trav-
eling salesman problem test case Ulysses16, to the symmetric traveling salesman
problem test case KroAB100 and to the vehicle routing problem test case Tus-
cany10, described in Sect. 3. The values used as input parameters in the simu-
lations, chosen after a series of trials, are listed in Table 2. Selected ones showed
best performance. The restart procedure restart1 and the matching strategy
selective-matching were used for Ulysses16 and Tuscany10, while restart2 and
mix-matching were used for KroAB100. Simulations were carried out on a 64-bit
OS Windows 7 Intel R© CoreTM2 Duo CPU E8500 3.16GHz 3.17GHz.

Ulysses16 & Tuscany10. In both the test cases the true global Pareto front was
unknown. In order to obtain a global Pareto front all the runs (1600 for the VRP
test case Tuscany10 and 2800 for the TSP test case Ulysses16 ) of the multi-
directional and unidirectional algorithms were used: two global Pareto fronts for



208 L. Masi and M. Vasile

1 2 3 4

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Function evaluations

P co
nv

 T
SP

 te
st 

ca
se

 K
ro

A
B1

00
a)

 

 

D
D&B

1 2 3 4

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Function evaluations

P sp
r T

SP
 te

st 
ca

se
 K

ro
A

B1
00

b)

 

 

D
D&B

Fig. 7. Variation of the indexes of performance pconv and pspr with the number of
function evaluations - TSP test case KroAB100

both the VRP and TSP test cases were built using all the solutions found by the
algorithms. In Fig. 4 the global Pareto fronts are shown. The figure reports also
an example of Pareto front found by unidirectional (D) and multi-directional
(DB) algorithms, for bothUlysses16 and Tuscany10. Fig. 5 shows the variation
of the indexes of performance pconv and pspr with the number of function eval-
uations for the TSP test case ((a) and (b)) and for the VRP test case ((c) and
(d)). A function evaluation is defined as the call to the objective function, i.e.
each arc selected by the virtual exploring agents (see Sect. 2.2) is considered
a function evaluation. Results for the VRP test case Tuscany10, as shown in
Fig. 5 (c) and (d), demonstrate that the multi-objective multi-directional mod-
ified Physarum algorithm with matching ability (D&B) provides higher indexes
of performance pconv and pspr, than the multi-objective unidirectional modified
Physarum algorithm (D), at all the function evaluations limit. This gain is up to
approximately 50% for the pspr and pconv at 3 ·105. The results for TSP test case
Ulysses16, reported in Fig. 5 (a) and (b), show that the multi-directional algo-
rithm provides better performance after 6 ·105 function evaluations and the gain
is up to 10% for both pspr and pconv at 6.5 ·105. The behaviour of the indexes of
performance for this multi-objective instance are similar to the behaviour of the
index of performance in [14] for the same TSP test case with single-objective:
the unidirectional algorithm tends to have a better performance during the early
stage of the simulation, then the performance of the multi-directional algorithm
exceeds the performance of the unidirectional.

KroAB100. As for the test cases above, for KroAB100 the true global Pareto
front was unknown. In order to obtain a global Pareto front all the runs (40) of
the multi-directional D&B and unidirectional D Physarum algorithms were used.
For this test case, only 20 runs were performed for each algorithm instead of 200.
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Fig. 8. Value of the metrics in Eqs. (11)-(12) for the D and D&B algorithms at 5 · 106
and 4 · 107 function evaluations

However, this number of runs doubles the one used to compare various algorithms
on the same instance in [13]. In the following, Global is used to indicate the
Pareto front found by all the runs of the multi-directional and unidirectional
Physarum algorithms as explained above, while Global D and Global D&B are
used to indicate the global Pareto fronts obtained from all the runs of the D
and D&B algorithms respectively (20). Fig. 6 a) shows two examples of Pareto
fronts found after one single run of the D and D&B algorithms. Fig. 6 b) shows
a comparison of the Global D and Global D&B. Both figures let the reader
see that the introduction of multi-directionality in the algorithm is an optimal
choice. This is confirmed analyzing Fig. 7: while the indexes of performance pspr
and pconv of the multi-directional algorithm reach respectively 88% and 75%, the
ones of the unidirectional algorithm are still under 1%. However there is a small
transient at a low number of function evaluations (less than 1 · 107), not visible
in Fig. 7, where the unidirectional algorithm performs better than the multi-
directional (although the performance is still not significant). This transient can
be appreciated in Fig. 8: it reports the value of the metrics in Eqs. (11)-(12) for
the D and D&B algorithms at 5 · 106 and 4 · 107 function evaluations. From the
figure it is evident that D performs better at low function evaluations, but their
increment is not able to improve its performance significantly, as for D&B. This
behaviour is similar to that found in [14].
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Fig. 9. Effect of the variation of the linear growth coefficient m and evaporation ρ at
4 · 107 function evaluations. In a) Global is the global Pareto front obtained from all
the runs of the D and D&B algorithms (40) as in Fig. 4, D&B indicates an example of
a Pareto front found during a run of the D&B algorithm with classical settings, as in
Tab. 2, and D&B increasing m indicates an example of a Pareto front found during a
run of the D&B algorithm where m = 5 ·10−3 and ρ = 10−5 . In b), Global is the global
Pareto front as above, while Global D&B increasing m indicate the global Pareto fronts
obtained from all the runs (20) of the D&B algorithms with m = 5 ·10−3 and ρ = 10−4

and Global, D&B indicate the global Pareto fronts obtained from all the runs (20) of
the D&B algorithms with classical settings.

Fig. 9 shows the effect of increasing the linear growth coefficient to m = 5·10−3

and evaporation parameter to ρ = 10−5. This variation should increase the rate
of veins’ expansion with time and limit the effect of contraction. From Fig. 9
one can argue that increasing the rate of veins’ expansion is a bad choice: the
algorithm tends to converge very rapidly to a set of solutions and the exploration
is not efficient as with lower rate of expansion.

The results obtained by applying the Physarum algorithm to the three afore-
mentioned test cases are quite interesting and prove the initial assumption that
building decision sequences in two directions and adding a matching ability is an
advantageous choice if compared with the choice of building decision sequences
in only one direction in the solution of multi-objective discrete decision making
problems. The two Physarum can evaluate each step of the decision sequence
from two directions and create joint paths: this forward and backward decision
making process improves the performance of the algorithm.

A comparison among the proposed algorithm and other bio-inspired ACO-style
algorithms is not reported in this paper and will be the subject of the future
work. Recently [13] provided an excellent comparison of the performance of
multi-objective ACO algorithms and of SPEA2 and NSGA-II, applied to a bench-
mark of TSP problems, including KroAB100. In [13] the higher performance of the
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ACO algorithms if compared to NSGA-II and SPEA2 is shown. A first visual anal-
ysis of the Pareto Front obtained by the Physarum algorithm and the best multi-
objective ACO algorithms in [13] indicates that the Physarum is able to find very
quickly the centre of the front while there is a difficulty in finding the tails. This
can be explained by the fact that a single structure is used (see Sect. 4.1).

4.1 Conclusion

This paper proposed an innovative multi-objective multi-directional incremental
modified Physarum solver for multi-objective discrete decision making prob-
lems. The algorithm showed the ability to solve multi-objective problems in
combinatorial optimisation, i.e. symmetric traveling salesman and vehicle rout-
ing problems, that were selected as representative examples of multi-objective
reversible decision making problems. Simulations on selected test cases proved
that a multi-directional approach with matching ability performs better than a
unidirectional one when applied to small scale multi-objective reversible discrete
decision making problems. This result is in line with the results showed in [14]
for single-objective discrete decision making using a multi-directional modified
Physarum algorithm. The multi-directional decision making process enhances
the performance of the multi-objective solver: this gain is up to 50% (based on
the indexes of performance proposed in Sect. 3.1) for the VRP test case.

It should be noted that, as introduced in Sect. 2.2, the strategy of using a
single structure (in this case the flux), where the index of dominance Iij is the
parameter from which the Physarum draws knowledge on the decision space, is
new. It has the advantage of being very easy to implement and it can be used
when the number of objectives is high, as in many real-world problems. The
disadvantage is that the proposed approach tends to concentrate the virtual ex-
ploring agents in the centre of the Pareto front, excluding the tails. On the other
hand, the use of multiple structures, one for each objective, was well described
and studied in [13]: it has the advantage of being able to expand the tails of
the Pareto front, but an increase in the number of objectives would lead to the
introduction of more structures, resulting in computational cost and complexity.
However, the disadvantage of using a single structure as proposed in this paper,
could be overcome by adding sub-populations of agents that consider only one
objective. This will be further studied in the future, although first results are
encouraging.
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Abstract. In recent years, methods of multi-objective evolutionary al-
gorithms (MOEAs) have been developed to solve problems involving the
satisfaction of multiple objectives within the limits of certain constraints,
yet there still exists some uncertainty about finding a generally trustwor-
thy method that can consistently find solutions which are really close to
desired objectives in all situations. In this study, a combined Pareto
multi-objective differential evolution (CPMDE) algorithm is presented.
The algorithm combines methods of Pareto ranking and Pareto domi-
nance selections to implement a novel selection scheme at each genera-
tion. The ability of CPMDE in solving unconstrained, constrained and
real-world optimization problems was demonstrated. Competitive results
obtained from benchmarking CPMDE suggest that it is a good alterna-
tive for solving real multi-objective optimization problems.

Keywords: Pareto, multi-objective optimization, evolutionary algorithm,
differential evolution, constraints.

1 Introduction

Optimization problems are ubiquitous in engineering and the sciences. Simply
put, optimization is an attempt to maximize a systems desirable properties while
simultaneously minimizing its undesirable characteristics [1]. Optimization also
refers to the art of finding one or more feasible solutions corresponding to extreme
values of one or more objectives while satisfying specified constraints. A signifi-
cant portion of research and applications in the field of optimization has focused
on single objective optimization, whereas most of the natural world problems
involve multiple objectives which are conflicting in nature [2]. The task of find-
ing one or more optimum solutions in an optimization problem involving more
than one objective is known as multi-objective optimization problem (MOOP)
[3]. In the solution of MOOPs, the aim is to simultaneously optimize a set of
conflicting objectives to obtain a group of alternative trade-off solutions called
Pareto-optimal or non-inferior solutions which must be considered equivalent in
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the absence of specialized information concerning the relative importance of the
objectives [4,5].

Differential evolution (DE) is a stochastic direct search evolution strategy op-
timization method that is fairly fast and reasonably robust. Since its inception
in the 90’s, DE has found practical applications in the solution of scientific opti-
mization problems [6]. Due to its reported successes, its use has been extended
to other types of problem domains, including multi-objective optimization [1,7].
In recent times, several researches extending the application of DE for finding
solutions in the multi-objective problem domains have been reported in the lit-
eratures [8,9,10]. For example, Fan et al., [5] presented and validated a new
differential evolution method for multi-objective optimization. In their study,
a new selection scheme was designed to replace the existing one to enable DE
applicable to solve either single objective or multi-objective optimization prob-
lems. In their selection scheme, the trial population solution is compared with
its counterpart in the current population. If the trial candidate dominates the
current population member it will survive to the next generation and replace the
current population vector, otherwise the current population member is retained.
They suggest that if the trial solution is worse than the target solution in any
one of the objectives, it should be discarded. The method was validated using
three multi-objective benchmark optimization problems. Simulation results show
that the approach is capable of generating an approximated Pareto-front for the
selected problems. To further examine the practical applicability of the proposed
method, it was used to optimize a prototype air mixer subject to two objectives.
Results show that the new DE approach can handle practical multi-objective
problems successfully.

A comprehensive survey of the state-of-the-art on methods of multi-objective
optimization using differential evolution is provided by Mezura-Montes et al.,
[7]. In the survey, methods that adjust the selection scheme of traditional DE to
implement new selection schemes for multi-objective optimization are broadly
categorized as either methods employing Pareto-ranking or Pareto-dominance
approaches. Methods of Pareto-ranking for multi-objective DE assign ranks to
each solution in the combined trial and target population based on their non-
domination levels. Solutions on the best non-dominated front are assigned a rank
of ‘1’; the solutions in the next set are assigned ‘2’ and so on. Algorithms using
this method often select all solutions with the best ranks for propagation to the
next generation. In Pareto-dominance method for DE, ranks are not assigned,
rather, a solution that wins the domination contest at an index proceeds to
the next generation [7]. In this study, a novel multi-objective evolutionary algo-
rithm (MOEA) which incorporates DE as its base algorithm is proposed. The
algorithm combines the Pareto-ranking and Pareto-dominance approaches in a
unique way to implement a novel selection scheme at each generation. Hence,
it is named combined Pareto multi-objective differential evolution (CPMDE).
Results obtained from benchmarking CPMDE show its promises as an excel-
lent alternative method of MOEA. The remainder of this paper is structured
as follows. In Section 2 we present the CPMDE algorithm. Section 3 presents



CPMDE for Multi-objective Optimization 215

methodologies adopted for benchmarking CPMDE while Section 4 presents the
results of the benchmark and evaluation of CPMDE. The paper is concluded in
Section 5.

2 Combined Pareto Multi-objective Differential
Evolution

At each generation of CPMDE, the combined population of trial and target
solutions are checked and non-dominated solutions (i.e. solutions on the best
non-dominated front - with rank ‘1’) are marked as ‘non-dominated’ while others
are marked ‘dominated’. After generating a trial population, tournaments are
played between trial solutions and their counterparts in the target population
at the same index. Four scenarios emerge: 1) if the trial solution is marked ‘non-
dominated’ and the target is marked ‘dominated’ then the trial vector replaces
the target vector and the target vector is discarded. 2) If the trial solution is
marked ‘dominated’ and the target is marked ‘non-dominated’ then the trial
vector is discarded. 3) If both solutions are marked ‘dominated’ then we resort
to the method of Pareto-dominance selection where the trial vector replaces the
target vector if it dominates the target or if they are non-dominated with respect
to each other. 4) If both vectors are marked ‘non-dominated’, then a harmonic
average crowding distance measure suggested by Huang et al., [11] is employed
to select the solution that will proceed to the next generation. Furthermore, the
crowding tournament is delayed until all solutions marked ‘non-dominated’ in
the first three scenarios are installed in the next generation after which non-
dominated solutions at the remaining indices are sorted out one at a time.

2.1 CPMDE Algorithm

The step-by-step procedure of the proposed CPMDE can be summarized in the
following algorithm:

1. Input the required DE parameters like number of individuals in the population
(Np), mutation scale factor (F), crossover probability (Cr), maximum number of
iterations/generations (gMax), number of objective functions (M), number of de-
cision variables/parameters (d), upper and lower bounds of each variable.

2. Initialize all solution vectors randomly within the limits of the variable bounds.

3. Set the generation counter, g = 0.

4. Generate a trial population of size Np using DE’s mutation and crossover opera-
tions (Price et al., [1]).

5. Perform a domination check on the combined trial and target population and
mark all non-dominated solutions as ‘non-dominated’ while marking others as
‘dominated’.
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6. Play domination tournaments at each population index. Tournaments are played
by comparing trial and target solutions at the same index.

i. If the trial solution is marked ‘non-dominated’ and the target is marked ‘dom-
inated’ then the trial vector replaces the target vector and the target vector is
discarded.

ii. If the trial solution is marked ‘dominated’ and the target is marked ‘non-
dominated’ then the trial vector is discarded.

iii. If both solutions are marked ‘dominated’, then replace the target vector with
the trial vector if it is dominated by the trial vector or if they are non-
dominated with respect to each other.

iv If both vectors are marked ‘non-dominated’, then note down the index and
proceed to the next index. When all solutions marked ‘non-dominated’ from
steps i – iii above are installed in the next generation, then sort out all so-
lutions noted in step iv one at a time using the harmonic average crowding
distance measure [11]. The solution with a greater harmonic average distance
is selected to proceed to the next generation.

7. Increase the generation counter, g, by 1. i.e. g = g+1.

8. If g < gMax, then go to step 4 above else go to step 9.

9. Remove the dominated solutions in the last generation.

10. Output the non-dominated solutions.

*Note domination checks are performed using the naive and slow method suggested by

Deb [3].

2.2 Visualizing the Effect of the Combined Pareto Selection
Procedures on the Difference Vector Distribution

DE is based on evolution using difference vectors; therefore the difference vector
distribution affects the optimization process [1]. We illustrate the impact of the
distribution of difference vectors on algorithm performance as follows: Figure 1a
shows a hypothetical distribution of 12 vectors in a bi-objective optimization
problem where both objectives are minimized. We assume vectors 1-6 are the
target vectors while vectors A-F are the trial vectors. Figure 1b shows the ranks
of the solutions. To fill the six slots in the next generation, we further assume that
solutions 1, 2, 3 competes against A, B, C and solutions 4, 5, 6 competes against
D, E, F respectively. Following these assumptions, algorithms based solely on
Pareto ranking selection (PRS), (eg. NSGA-II) will select solutions 1-6 as parents
for the next generation (Figure 2a), while the procedure of CPMDE selects
solutions 1, 2, 3 because they have a rank of ‘1’ as parents for the next generation.



CPMDE for Multi-objective Optimization 217

E

A

D
B

6

3

4

5

2

1

Target solution

(a) Hypothetical distribution of 12 vectors

F

f2

f1

5

6

B
D

C

E

F

1

2

3 2
3

4

4

Trial solution Pareto rankf2 *
A

1

C

(b) Pareto ranks of the vectorsf1

Fig. 1. Hypothetical distribution of 12 vectors and their Pareto ranks

This serves to provide a direction for the search. Also solution D will replace
solution 4 while E will replace solution 5 because they are non-dominated with
respect to each other though solutions 4 and 5 lies on a front with a better non-
dominated rank (Figure 2b). Figures 3a and 3b present the difference vector
distribution obtained by PRS and CPMDE. Inspection of Figure 3a shows that
the sheaf of vector difference produced by PRS algorithms like NSGA-II contains
some short vectors suitable for local search. The longer vectors are however
aligned somewhat longitudinally to the best non-dominated front found. Figure
3b shows that by controlling elitism of the pool, by allowing solutions on lower
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(b) CPMDE difference vector distribution(a) PRS difference vector distribution

Fig. 3. Difference vector distributions produced by PRS and CPMDE

ranks to proceed to the next generation, the difference vector distribution of
CPMDE can contain some short vectors suitable for local search and long vectors
which are traverse to the fronts and suitable for a global search. Figure 4a shows
that Perturbation with the difference vector distribution of procedures based
solely on Pareto ranking selection like NSGA-II has a propensity to get attracted
to a local optimal front while those of CPMDE are able to escape local fronts in
the early generations.

2.3 Promoting Diversity among Solutions in the Obtained
Non-dominated Set

In order to obtain a diverse set of solutions in the obtained non-dominated front,
CPMDE employs the harmonic average crowding distance measure suggested
by [11], to select the solution that will proceed to the next generation when
both solutions lie on the best non-dominated front. This method harmonizes the
average distances of all k-nearest neighbours around a solution. The harmonic
average distance d, is computed using equation (1) [11]:

d =
k

1
d1

+ 1
d2

+ · · ·+ 1
dk

(1)

where d1, d2, , dk are the Euclidean distances of k nearest neighbouring solutions
and k is the number of nearest solutions. If one of the distances is very large
and other distances are all small, the harmonic average distance will still be
small. In this way, influence of outliers on the computation of crowding degree
may be overcome. Solutions with higher harmonic average distances are better
[11]. Furthermore, at higher iterations, the harmonic distance measure ensures
uniform distribution of solutions on the non-dominated front.
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2.4 Handling Constraints in CPMDE

Variable Bound Constraints. In CPMDE, boundary constraints are han-
dled using the bounce-back strategy. This strategy replaces a vector that has
exceeded one or more of its bounds by a valid vector that satisfies all boundary
constraints. In contrasts to random re-initialization, the bounce-back strategy
takes the progress towards the optimum into account by selecting a parameter
value that lies between the base vector parameter value and the bound being
violated [1].

Equality and Inequality Constraints. Equality and inequality constraints
are handled using the constrained-domination technique suggested by [3]. A
solution x(i) is said to constrained-dominate a solution x(j), if any of the following
conditions is true:

i. Solution x(i) is feasible and solution x(j) is not feasible.

ii. Solutions x(i) and x(j) are both infeasible, but solution x(i) has a smaller
overall constraint violation.

iii. Solutions x(i) and x(j) are feasible and solution x(i) dominates solution x(j).
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3 Benchmarking CPMDE

The performance of CPMDE is compared with 6 state-of-the-art MOEAs on
four unconstrained benchmark test beds. The performance of CPMDE was also
compared on one constrained test problem and further observed on a three-
objective optimization problem. Furthermore, the performance of CPMDE on
an engineering cantilever design problem is demonstrated. Other algorithms used
in benchmarking CPMDE in this study include NSGA-II (real coded), NSGA-
II (binary coded), SPEA, PAES, MODE-E (MODE with external archive and
crowding distance measure) and MOPSO.

3.1 Benchmark Test Problems

Four test problems: SCH, FON, KUR and ZDT4 were used for evaluating the
performance of CPMDE on unconstrained optimization problems. These are
common difficult benchmark problems used in the literatures [10,11,12,13]. These
are bi-objective problems in which both objectives are to be minimized. Each
problem poses a different type of difficulty to MOEAs. SCH is a single variable
problem having a convex Pareto-optimal front. This is the simplest of the test
problems. FON is an n-variable problem having a non-convex Pareto-optimal
front. The 3-variable version is adopted in this study. The non-convexity of
the front is the major difficulty posed here. KUR is a 3-variable problem hav-
ing a number of disconnected Pareto-optimal fronts. Finding uniform spread of
solutions on all discontinuous regions is the challenge in this problem. ZDT4
is a 10-variable problem with 219 local optimal fronts. Escaping all local non-
dominated fronts to converge to the global optimal front is a real challenge in
this problem.

To evaluate the performance of CPMDE on constrained optimization prob-
lem, the problem TNK is used [12]. This is a bi-objective problem with two
constraints. Both of the objectives are to be minimized. TNK has a non-convex,
discontinuous Pareto-optimal front. Finding uniform spread of solutions on all
segments while satisfying both constraints is a challenge in this problem. The-
oretical MOEA optimization studies generally consider a small number of ob-
jectives. The bi-objective case is by far the most studied. Real world MOEA
applications, by contrast, are frequently more ambitious, with the number of
treated criteria reaching double figures in some cases [14]. Hence, the perfor-
mance of CPMDE was evaluated on test problem DTLZ2 to demonstrate its ef-
fectiveness in solving problems involving more than two objectives. The
3-objective version of the test problem is adopted in this study. The definitions
and descriptions of all test functions are taken from literatures [3,8,13,14] and
summarized in Table 1.
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3.2 Performance Measures

Various performance measures for evaluating MOEA performance have been
suggested and implemented [3]. For example, Schuetze et al., [15] proposed a
method for finding good Hausdorff approximations of Pareto fronts using an av-
eraged Hausdorff distance measure (Δp). The measure Δp is a performance in-
dicator in multi-objective evolutionary optimization which simultaneously takes
into account proximity to the true Pareto front and uniform spread of solutions.
Hence, it efficiently combines both spread and convergence measures in a single
performance metric. The proposed methodology has further been found useful
in MOEA evaluations [16,17]. In order to provide a uniform basis for comparison
of MOEAs used in this study however, two performance measures reported in
published studies were adopted [11,12]. Convergence metric is used to evaluate
convergence to the global Pareto-optimal front while diversity metric is employed
to measure the spread of solutions on the obtained non-dominated front.

Convergence Metric. This is the average distance of the non-dominated set
of solutions in Q from a set P* of Pareto-optimal solutions. It is computed using
equation (2). An algorithm with a smaller value of convergence metric is better
[3].

Υ =

∑|Q|
j=1 dj

|Q| (2)

where dj is the Euclidean distance (in the objective space) between the solution
j ∈ Q and the nearest member of P*.

Diversity Metric. This metric measures the extent and spread of solutions in
the obtained non-dominated front. It is computed using equation (3):

Δ =

∑M
m=1 d

e
m +
∑|Q|−1

i=1 |di − d̄|∑M
m=1 d

e
m + (|Q| − 1)d̄

(3)

where di is the Euclidean distance (in the objective space) between consecutive
solutions in the obtained non-dominated front Q, and d̄ is the average of these
distances. M is the number of objectives. The parameter dem is the Euclidean
distances between the extreme solution of the Pareto front P* and the boundary
solution of the obtained non-dominated front Q with respect to each objective
m. An algorithm with a smaller value of diversity metric Δ is better [3].

3.3 Experimental Setup

In this study, DE/rand/1/bin variant of DE was used as the base for CPMDE.
Cr and F were set at 0.3. Population size Np was set to 100 and the algorithm
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P
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Fig. 5. A schematic diagram of a cantilever beam. Source: Adapted from Deb, (2001)

was run for a maximum number of generations, gMax = 250 to give a total of
25000 fitness computations. A set of 500 uniformly spaced solutions were taken
from the Pareto-optimal set for computation of all metrics. Averages and vari-
ances of metric values over 10 runs are reported in this study. For test problem
TNK, gMax was set at 500 generations. Harmonic average crowding distances
are computed using two nearest neighbours.

3.4 Cantilever Design Problem

To demonstrate the applicability of CPMDE in solving real-world optimization
problems, the algorithm was applied to design a cantilever beam. A problem
originally studied by [3] using NSGA-II and further studied by [8] using MDEA
is adopted here. A schematic representation of a cantilever beam is depicted
in Figure 5. This problem has two decision variables of diameter(d) and length
(l). The beam is designed to carry an end load P . There are two conflicting
objectives that should be minimized; the weight of the beam f1 and end de-
flection f2. Minimizing the weight, f1, will result in an optimum solution that
will have small dimensions of d and l. If the dimensions are small, the beam
will not be adequately rigid and the end deflection of the beam will be large.
If on the other hand, the beam is minimized for end deflection, the dimensions
of the beam will be large, thereby making the weight of the beam to be large.
There are two constraints in this design problem. 1) The maximum stress, σmax

must be less than the allowable strength Sy and 2) the end deflection δ must be
smaller than a specified limit of δmax. The two-objective constrained optimiza-
tion problem for the two decision variables d(mm) and l(mm) is formulated as
follows [3]:

Objective function 1 (Minimize weight): f1(d, l) = ρπd2

4 l

Objective function 2 (Minimize deflection): f2(d, l) = δ = 64Pl3

3Eπd4

Subject to: σmax ≤ Sy, δ ≤ δmax

Bound constraints: 10 ≤ d ≤ 50mm, 200 ≤ l ≤ 1000mm
where: σmax = 32Pl

πd3
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ρ, P, d and l are the density, force, diameter and length respectively. The following
parameter values are used: ρ = 7800 kg/m3, P = 1 KN, E = 207 GPa, Sy =
300 MPa and δmax = 5mm. On this problem, the following settings are used for
CPMDE: Cr = 0.9, F = 0.5, Np = 100 and gMax = 300.

4 Results and Discussion

The mean and variance of the convergence metric on the unconstrained test
beds over 10 runs of CPMDE are reported in Table 2 while those of the diversity
metric are presented in Table 3. The performance metrics for MOPSO on the
test problem ZDT4 is not available. The authors reported that this algorithm
failed on this multi modal test bed. Reported values of convergence and diversity
metrics for other algorithms used in benchmarking CPMDE are taken from
correlative literatures [8,12] and presented in the respective tables. Best mean
results are shown in boldface. Figure 6 depicts the convergence of the obtained
non-dominated front to the true Pareto-optimal front in problems SCH and
FON, while Figure 7 depicts the convergence of the obtained non-dominated
front to the true Pareto-optimal front in problems KUR and ZDT4. The values
of the test metrics are indicated on the respective plots. Figure 8 shows the
performance of CPMDE for 500 generations on the problem TNK. Figure 9 shows
the convergence of solutions obtained by CPMDE to the true Pareto-optimal
surface of test problem DTLZ2 while Figure 10 shows the results obtained by
CPMDE on the cantilever beam design problem.

From the results in Tables 2 and 3, it is found that CPMDE performed well in
converging to the Pareto front of SCH. It produced the 3rd best result for conver-
gence metric and the best result for diversity metric (Υ=0.003273,Δ=0.156397).
PAES performed best in convergence on this test bed (Υ=0.001313), the perfor-
mance of CPMDE is therefore comparable with other algorithms on this problem.
CPMDE outperformed all other algorithms in converging to the Pareto fronts of
test beds FON and KUR as it produced convergence metrics of Υ=0.001646 and
Υ=0.017632 respectively. However, MODE-E produced better values of diversity
metrics on these beds while CPMDE was the runner up in both cases. Therefore,
it can be said that the performance of CPMDE is comparable to MODE-E and
better than the other algorithms on these test beds.

The advantage of CPMDE in converging to the global Pareto-optimal front in
deceptive multi-modal functions is amply demonstrated on test problem ZDT4.
Here, CPMDE outperformed all other algorithms in convergence and diversity
(Υ=0.000731, Δ=0.203378). The runner-up in this case is MODE-E with met-
rics (Υ=0.030689, Δ=0.338330). The convergence metric on this problem is
several orders of magnitude lesser than those of other algorithms. On all un-
constrained problems except KUR, CPMDE produces variance values of zero
(Table 2) and a value of 0.000002 for test problem KUR. This suggests that CP-
MDE is reliable and stable in converging to the Pareto-optimal fronts of these
beds.
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Fig. 6. Convergence of CPMDE non-dominated front to the true Pareto-optimal front
in problems SCH and FON
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Fig. 8. Non-dominated solutions obtained by CPMDE on test problem TNK for 500
iterations

By inspection, Figure 8 shows that CPMDE is able to find uniform spread of
solutions on all segments of the discontinuous Pareto front of problem TNK. This
suggests that CPMDE employing a constraint domination constraint handling
technique can find solutions to this type of problems.

Figure 9 depicts the convergence of the non-dominated solutions obtained by
CPMDE to the true Pareto-optimal surface of DTLZ2. It can be seen from the
figure that the non-dominated solutions are very close to and well distributed on
the surface. Therefore, CPMDE is able to solve optimization problems involving
more than two objectives.

Inspection of Figure 10 shows that CPMDE produces quality non domi-
nated solutions along the Pareto front in an engineering cantilever design prob-
lem. This suggests that CPMDE can perform well on real-world engineering
problems.
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5 Conclusion

In this study, a combined Pareto multi-objective differential evolution (CPMDE)
multi-objective evolutionary algorithm is presented. By incorporating combined
Pareto procedures to implement a novel selection scheme at each generation,
CPMDE is able to adaptively balance exploitation of non-dominated solutions
found with exploration of the search space. Thus it is able to escape all local op-
tima and converge to the global Pareto-optimal front. It was found that CPMDE
could converge to the Pareto optimal front of unconstrained optimization prob-
lems. The ability of CPMDE to converge to the global Pareto-optimal front in
deceptive multi-modal functions is amply demonstrated on test problem ZDT4
which has 21 billion local optimal fronts. Among the 7 algorithms compared in
this study, CPMDE produced the best convergence in 3 out of the 4, and best
diversity in 2 out of 4 unconstrained test beds. Also, the variances of the metrics
suggest that the algorithm is stable on the test beds. The ability of CPMDE in
solving constrained optimization problems and optimization problems involving
more than two objectives was also demonstrated. Furthermore, CPMDE was ap-
plied to solve a real-world problem where its ability to solve such problems was
demonstrated. Competitive results obtained from the benchmark and applica-
tion of CPMDE suggests that it is a good alternative for solving multi-objective
optimization problems. Therefore, CPMDE is adoptable as a method of MOEA
for solving real-world MOOPs.
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Abstract. It has generally been acknowledged that both proximity to the Pareto
front and a certain diversity along the front, should be targeted when using evolu-
tionary multiobjective optimization. Recently, a new partitioning mechanism, the
Part and Select Algorithm (PSA), has been introduced. It was shown that this par-
titioning allows for the selection of a well-diversified set out of an arbitrary given
set, while maintaining low computational cost. When embedded into an evolu-
tionary search (NSGA-II), the PSA has significantly enhanced the exploitation
of diversity. In this paper, the ability of the PSA to enhance evolutionary mul-
tiobjective algorithms (EMOAs) is further investigated. Two research directions
are explored here. The first one deals with the integration of the PSA within an
EMOA with a novel strategy. Contrary to most EMOAs, that give a higher priority
to proximity over diversity, this new strategy promotes the balance between the
two. The suggested algorithm allows some dominated solutions to survive, if they
contribute to diversity. It is shown that such an approach substantially reduces the
risk of the algorithm to fail in finding the Pareto front. The second research direc-
tion explores the use of the PSA as an archiving selection mechanism, to improve
the averaged Hausdorff distance obtained by existing EMOAs. It is shown that
the integration of the PSA into NSGA-II-I and Δp-EMOA as an archiving mech-
anism leads to algorithms that are superior to base EMOAS on problems with
disconnected Pareto fronts.
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1 Introduction

In many real-world applications, several objectives must be optimized at the same time,
leading to a multi-objective optimization problem (MOP). Mathematically, a MOP can
be stated as follows:

min
x∈Q

F(x) (1)

where Q⊂R
d is a domain in d-dimensional real space, F(x) is defined as the vector of

the k objective functions:
F(x) = [ f1(x), . . . , fk(x)]

T

where each objective function fi(x), i = 1, . . .k, maps the vector x ∈ R
d to R. The

set of optimal solutions of the problem (1) is usually called the Pareto set P . The
task of many set-oriented search procedures is to find a suitable finite sized approx-
imation of the Pareto front F(P ) (i.e., the image of the Pareto set), since this front
represents the set of optimal compromises measured in objective space, which usually
is of primary interest. Out of the set-oriented search procedures for the numerical treat-
ment of MOPs, EMOAs are widely used due to their global and universal approach
and their high robustness [7,11]. Most EMOAs simultaneously attempt to account for
both proximity of the approximation set to the Pareto front and its diversity [4]. It has
been indicated in [4] that both proximity and diversity should be explored and exploited
during the evolutionary search. Exploration of diversity and proximity may be related
to the selection of the next generations parents and/or the control of crossover/mutation
rates [25], [1], [17]. For example, in [25] the authors suggested an adaptive variation
operator that exploits the chromosomal structure (binary representation) and controls
crossover/mutation rates during the evolution in order maximize the information gain
and to prevent information flow disruption between the different chromosomal struc-
tures. Within the exploration phase, the authors in [5] suggested to iteratively explore for
good children through iterative density estimation of different optional children combi-
nations. In that work good candidate parents have been searched for through clustering
of their related performances in the objective space. It should be noted that this proce-
dure is applied only to non-dominated candidate solutions.

On the other hand, exploitation of proximity and diversity is related to the selection
of the solutions that will be saved for the next generation (through elitism or archiving)
and will take place in reproduction. Domination is the predominant approach used to
exploit proximity to the true Pareto front. Diversity is exploited by different approaches
that can be classified into three main categories. The first treats diversity as a property
of a set and evolves sets with a good diversity. The diversity can be measured according
to the accumulated distances between the members of the set [19], [27], or indirectly by
the hypervolume measure [32] or the averaged Hausdorff distance Δp [23]. Algorithms
in the second category treat diversity as a property of each individual according to the
density of solutions surrounding it. Fitness sharing of NPGA [15], crowding distance
of NSGA-II [9], the diversity metric based on entropy [28] and the density estima-
tion technique used in SPEA2 [31] are examples of this category. Algorithms of the
third category decompose the multi-objective problem into a number of single objec-
tive problems (scalarization). Each of these problems ideally aims for a different zone
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on the Pareto front such that the set of solutions to the auxiliary problems form a diverse
set of optimal solutions. MOEA/D [29] is probably the most famous method within this
category. A recent method from this category [33] combines Pareto dominance with
Chebyshev decomposition for the selection process.

When selection takes place for the sake of exploiting proximity and diversity, proper
selection criteria must be formulated, in order to achieve a balance among these two
inspirations. Such a balance is not easy to achieve because it has been shown that these
motivations are contradicting [3]. An improvement in one usually involves regression
in the other. A balance between proximity and diversity within the exploitation phase
has been targeted in various ways. One way is to select the elite population by pure
truncation selection. In truncation selection, the algorithm sorts all individuals based on
their domination level and includes the first individuals as the elite population. Trun-
cation selection is exploited in many EMOAs, such as NSGA-II [9] and SPEA2 [31].
In those algorithms the exploitation of proximity takes over that of diversity as the so-
lutions are primarily chosen based on domination relations. Some efforts to overcome
this drawback have been made e.g., using the Balanced Truncation Selection (BTS) [5]
within MIDEA (Multi-objective Mixture based Iterated Density Estimation Evolution-
ary Algorithm). In that algorithm, the exploitation of diversity can be improved by a
tuned truncation threshold. The idea is to include in the elite population more diverse
solutions by allowing higher truncation threshold values at the beginning of the search.
It is noted that also in this algorithm, the non-dominated solutions will be preferred over
dominated solutions. In other words, a solution dominated by most of the population
will not be selected even though it is most isolated.

Another way to allow for a better balance between proximity and diversity is to
change the dominance relation among the solutions by changing the area considered
as dominated by a solution. Laumanns and Ocenasek [18] proposed to use the concept
of ε-dominance [20] which is a modification of the original Pareto dominance. The
underlying principle of ε-dominance is that two solutions are not allowed to be non-
dominated to each other, if the difference between them is less than a properly chosen
value. Extensions based on this idea are the CDAS [22], where the user can control the
size of a solution’s dominated area and the cone ε-dominance [3], where the shape of
the dominated area is a cone.

Recently, the Part and Select Algorithm (PSA) was introduced to select a diverse sub-
set from a given set of points [21]. This mechanism has a low computational complexity,
and it is capable to select a diverse subset, of any size, even if the original set is poorly dis-
tributed. These properties make PSA suitable as a selection mechanism within EMOAs.
It has been shown in [21] that the integration of the PSA into NSGA-II improves its
ability to find a diverse approximated set. In [2] a niching mechanism based on the PSA
was used to find a set of different cross sections for a topology optimization problem.

In this paper, the ability of the PSA to improve EMOAs is further investigated. Two
research directions are explored here. The first one deals with embedding the PSA
within a novel genetic algorithm. The algorithm adjusts the balance between proximity
and diversity by allowing some dominated solutions to survive if they improve the diver-
sity. The second one explores the use of the PSA as an archiving selection mechanism,
to improve the averaged Hausdorff distance Δp obtained by existing EMOAs.
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The remainder of this paper is organized as follows. The PSA is described in Sec-
tion 2, and its previous utilization within an EA is briefly surveyed. In Section 3 a
novel PSA based EMOA with an adjustable parameter to control the trade-off between
proximity and diversity is introduced. The effect of this parameter is studied, and a
comparison with NSGA-II-PSA is conducted in Section 4 to highlight the algorithm’s
advantage in dealing with a poor initial population. The implementation of PSA as an
archiving mechanism integrated into NSGA-II-I and Δp-EMOA is presented in Sec-
tion 5. The performance of these PSA based algorithms is compared with the original
EMOAs. Finally, conclusions are drawn in Section 6.

2 PSA – Part and Select Algorithm

The Part and Select Algorithm (PSA) has been recently introduced in [21] as an algo-
rithm for selecting m well-spread points from a set of n points. It has a low compu-
tational complexity (O(nmk), where k is the dimensionality of the points), and can be
used for many applications. The procedure has two steps: First, the set is partitioned
into subsets so that similar members are grouped in the same subset. Next, a diverse
subset is formed by selecting one member from each generated subset. The following
description of the algorithm is borrowed from [21].

2.1 Partitioning a Set

The core of the PSA is the algorithm of partitioning a given set of points in the objective
space into smaller subsets. In order to partition a set into m subsets, PSA performs
m−1 divisions of one single set into two subsets. At each step, the set with the greatest
dissimilarity among its members is divided. This is repeated until the desired stopping
criterion is met. The criterion can be either a predefined number of subsets (i.e., the
value of m) or a maximal dissimilarity among each of the subsets. The dissimilarity of
a set A is defined by the measure �A as follows:

Let A := {f1 = [ f11, . . . , f1k]
T , . . . , fn = [ fn1, . . . , fnk]

T} ⊂R
k (i.e., n objective vectors

fi = F(xi) for vectors xi ∈ Q), and denote

a j := min
i=1,...n

fi j , b j := max
i=1,...n

fi j , Δ j := b j− a j, j = 1, . . . ,k (2)

�A := max
j=1,...k

Δ j (3)

In fact, �A is the diameter of the set A in the Chebyshev metric. The size of �A is
a measure of the dissimilarity among the members of A, with a large �A indicating a
large dissimilarity among the members of A.

The pseudocode of PSA for a fixed value of m is shown in Algorithm 1. At every
iteration the algorithm finds the subset with the largest diameter, and parts it into two
subsets.
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Algorithm 1. Partitioning a set A into m subsets
A1 ← A
Evaluate �A1 according to Eq. (3) and store �A1 in an archive.
i← 2
while i < m do

Find A j and coordinate p j such that �A j = Δpj = max
l=1,...i−1

�Al

Part A j to subsets A j1 ,A j2 :

A j1 ←
{

f =
[

f1, . . . , fp j , . . . , fk
]T ∈ A j, fp j ≤ apj +�A j/2

}
A j2 ←

{
f =
[

f1, . . . , fp j , . . . , fk
]T ∈ A j, fp j > apj +�A j/2

}
Evaluate �A j1 and �A j2 according to Eq. (3), and replace in the archive �A j and p j with
the pairs �A j1,�A j2 and p j1,p j2 accordingly.
S←
{

A1, . . . ,A j1 ,A j2 , . . . ,Ai
}

i← i+1

Figure 1 demonstrates the steps of the algorithm and highlights the results obtained
by its use. Consider the set of 24 points in the bi-objective space depicted in the top left
panel of Figure 1. Suppose that the purpose is to partition this set into m= 5 subsets. The
gray rectangle represents the region in the objective space that contains the solutions of
the set. According to Eq. (3), the diameter of the given set is the length of the horizontal
side of the rectangle. Therefore, the first partition is made by vertical incision (indicated
by the vertical line in the middle of the rectangle). The results of this partition are
depicted in the top right panel of Figure 1. The left subset in this panel has the greatest
diameter (in horizontal direction). Therefore, the next partition is made on this subset
by vertical incision. The results of this partition are depicted in the middle left panel of
Figure 1. The other two panels of Figure 1 depict the results of the next two iterations
of Algorithm 1.

Note that the results of the partitioning are different than the results of using a com-
mon grid in the original space. With a common grid, an initial interval in every dimen-
sion is divided into equal sections, resulting in the division of the hyperbox into smaller
hypberboxes of equal space. Since the original set A does not necessarily ‘cover’ the en-
tire space, each hyperbox in the grid might or might not contain a member of A. Hence,
there is no way to predict which resulting grid will have the desired number of occupied
boxes. In addition, there are certain limitations on the number of hyperboxes in the grid.
For example, in a two-dimensional grid it is possible to create m = {1,2,4,6,9,12, . . .}
boxes, while only a number of m= n2, when n is a positive integer, will produce an even
grid. With PSA, only the occupied space (marked as the gray rectangles in Figure 1) is
considered. When a set Ai is partitioned into two subsets Ai1 and Ai2 , the space consid-
ered from now on is given only by the two hyperboxes circumscribing Ai1 and Ai2 . The
rest of the space in Ai is discarded. Every partition increases the number of subsets by
one, and therefore any desired number of subsets can be created.

2.2 Selection of a Representative Subset

Once the set A has been partitioned into the m subsets A1, . . . ,Am, the ‘most suitable’
element from each subset must then be chosen in order to obtain a subset A(r) of A
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Fig. 1. Partitioning of 24 elements in bi-objective space into m = 5 subsets (indicated by the gray
boxes) (borrowed from [21])



PSA Based Multi Objective Evolutionary Algorithms 239

Fig. 2. Selection of a representative subset A(r) out of A using center point selection (borrowed
from [21])

that contains m elements. This is of course problem dependent. Since this study aims
for high diversity of the chosen elements, the following heuristic is suggested (denoted
as center point selection): From each set Ai choose the member which is closest (in
Euclidean metric) to the center of the hyperrectangle circumscribing Ai. If there exist
more than one member closest to the center, one of them is chosen randomly.

Figure 2 illustrates this rule. The original set of 24 elements (compare to Figure 1)
was partitioned by Algorithm 1 into five subsets. The centres of the grey rectangles
are marked with a cross. In each subset the member closest to the center is circled (a
random member is circled in the subset with only two members). The representative set
A(r) = {a1,a2,a3,a4,a5} is the set of all circled points.

Figure 3 illustrates the performance of PSA in selecting a subset from a randomly
chosen (non-dominated) population in a three-objective space. A set of 500 randomly
distributed points is depicted in Figure 3(a). The set is partitioned into 40 subsets, and
the central member of each subset is selected as a representative point to form the
representative subset depicted in Figure 3(f). According to Eq. (3), the diameter of
the given set is the distance over f2. Therefore, the first partition is made over f2. At
the second partition, the subset of the circles from Figure 3(b) has the largest dissimi-
larity and therefore is partitioned (over f1). At the next partition the subset of gray stars
is partitioned over f1 to form the four subsets shown in Figure 3(d). The final stage of
Algorithm 1 is shown in Figure 3(e). The subset shown in Figure 3(f) is obtained by
selecting the point closest to the center of each of the 40 subsets. Figure 3(a) clearly
shows that the distribution of the points in the original set is not uniform. Nevertheless,
PSA managed to select a subset of fairly evenly distributed points from it.

2.3 NSGA-II-PSA

NSGA-II-PSA was introduced in [21] as an improvement of the well-known NSGA-
II [9] by a straightforward integration of the PSA into it. The algorithm differs from
its base EMOA in the selection of the elite population, and in the crowding measure
assignment; both of which are conducted by using the PSA. The approximated sets
obtained by NSGA-II-PSA were better then those obtained by NSGA-II in terms of
both spread and convergence. Figure 4 depicts some of the comparative results between
NSGA-II and NSGA-II-PSA, conducted in [21].
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Fig. 3. Demonstration of PSA in a three-dimensional space: Selection of a representative subset
of 40 points from a randomly distributed set of 500 points (borrowed from [21])
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3 A New EMOA with PSA as a Diversity Preservation Operator

In this section, a new EMOA is suggested - Diversity Preservation Genetic Algorithm
(DPGA) - that aims simultaneously for proximity and diversity. It is designed for MOPs
that pose a special challenge to spread the candidate solutions along the Pareto front.
The basic structure of DPGA is similar to the structure of NSGA-II-PSA [21]. NSGA-
II-PSA, as most EMOAs, inherently favors proximity over diversity. The reason for that
is the selection mechanism, that selects according to non-dominance, and diversity is
related as a second goal. In order to overcome this property, the selection in DPGA is
conducted with two parallel goals; some solutions are selected according to their rank
of non-dominance, while some solutions are selected by their remoteness from other
solutions in the objective space.

In DPGA, two parent populations PP
t+1 and PD

t+1 are selected from the current pop-
ulation Rt . PP

t+1 is selected according to proximity, while PD
t+1 is selected according to

diversity. These two populations form the new parent population: Pt+1 = PP
t+1 ∪PD

t+1.
The proportion between the sizes of the two sets is controlled by the proximity factor α
in the following manner: |PP

t+1|= αN , |PD
t+1|= (1−α)N , where N = |Pt+1|. The tour-

nament selection for each population is also conducted according to its aim: Members
from PP

t+1 are compared, as in NSGA-II-PSA, according to proximity and secondly, as
a tiebreaker, according to diversity. Members from PD

t+1 are compared according to di-
versity, and secondly according to proximity. After selection, the members of both sets
are combined, and crossover and mutation are applied to form the next offspring pop-
ulation Qt+1. This procedure might produce offspring that are better both in proximity
and in diversity.

By selecting according to remoteness, a highly dominated solution can be graded
with a high fitness. This approach is not intuitive, and indeed, there are no methods
known to the authors that give high priority to dominated solutions. Therefore, a justifi-
cation of that novel approach is given here through an example. Consider the following
MOP, which is a slight variation1 of DTLZ4 for two objectives [10]:

Minimize f1(x) = r(x)cos(θ(x))
Minimize f2(x) = r(x)sin (θ(x))

where x = [x1, . . . ,x7]
T , 0≤ xi ≤ 1

θ(x) =
π
2
(1− 2|x1− 0.5|)100

r(x) = 1+
7

∑
i=2

(xi− 0.5)2

(4)

Proximity to the true Pareto front is defined by the value of r(x), and the location along
the Pareto front is defined by the value of θ(x). The Pareto optimal set corresponds

1 The difference of the problem in Eq. (4) from DTLZ4 is that the peak of θ(x1) is at x1 = 0.5
rather than at x1 = 1. It moves the area of interest away from the limits of the design space,
which is more likely to be sampled by many EAs, including NSGA-II-PSA and DPGA.
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Fig. 5. A random initial population of 500 solutions for the MOP of Eq. 4

to r = 1, i.e., xi = 0.5 for all i = 2, . . . ,7, and to all the values of θ between 0 and
π/2. The mapping from x1 to θ, as depicted in Figure 5(b), results in θ values close
to zero for 98% of the x1 values. All other values of θ correspond to 0.49 < x1 <
0.51. Figure 5 depicts a random population of 500 solutions. Only two solutions of this
population have θ value greater than 0.1 radian. Both of them are dominated by most of
the other solutions. An algorithm that favours non-dominated solutions will skip these
two solutions, and their genetic information (i.e., x1 close to 0.5), which is important to
spread the approximated set along the Pareto front, will be lost.

The algorithm of DPGA is presented in Algorithm 2. A discussion about the setting
of α (Step 4) appears in Section 3.3. Steps 5–7 are explained in Section 3.1. Steps 8–9
are explained in Section 3.2.

Algorithm 2. DPGA - Diversity Preservation Genetic Algorithm
1: R1 ← Generate a random set of solutions of size 2N
2: t ← 1
3: while Stopping criteria not met do
4: Set α
5: PP

t+1 ← Preserve αN solutions from Rt based on non-dominance
6: R∗t ← Rt\PP

t+1
7: PD

t+1 ← Preserve (1−α)N solutions from R∗t based on diversity.
8: QP

t+1 ← SP(PP
t+1)

9: QD
t+1 ← SD(PD

t+1)

10: Q∗t+1 ← QP
t+1∪QD

t+1
11: Q∗∗t+1 ←CrossOver(Q∗t+1)
12: Qt+1 ←Mutation(Q∗∗t+1)

13: Rt+1 ← PP
t+1∪PD

t+1∪Qt+1
14: t ← t +1
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Algorithm 3. Elite Preservation in DPGA

PP
t+1 ← Preserve αN solutions from Rt according to NSGA-II-PSA

assign proximity and diversity measures to the solutions in PP
t+1 according to

NSGA-II-PSA.
R∗t ← Rt\PP

t+1

Partition R∗t with PSA to (1−α)N subsets D =
{

D1, . . . ,D(1−α)N

}
PD

t+1 ← /0
for each Di ∈D do

Di,nd = nondominated solutions of Di

di ← center point selection from Di,nd
Assign a diversity measure to di equal to |Di,nd |
PD

t+1 ←
{

PD
t+1,di

}
Sort PD

t+1 to ranks of non-dominance, and assign a proximity measure to each member accord-
ing to its rank
Pt+1 ← PP

t+1∪PD
t+1

3.1 Elite Preservation in DPGA

At each generation DPGA preserves N members in the elite (parent) population Pt+1,
from the current population Rt of size 2N. This is done in two stages: First, αN mem-
bers are selected from Rt to form PP

t+1 according to the elite preservation procedure of
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Fig. 6. Elite selection in DPGA. The 12 members preserved for proximity from the 30 mem-
bers of the previous generation’s population are marked with squares in (a). Preservation of 3
additional members for diversity is demonstarted in (b). The remaining members are divided into
3 sets D1, D2 and D3. The non dominated members of each set Di,nd are marked with small
diamonds. The central members of each Di,nd, marked with large diamonds, are preserved in
PD

t+1
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NSGA-II-PSA [21]. Next, (1−α)N members are selected from the remaining members
in Rt to form PD

t+1. This second selection is done by partitioning the remaining members
of Rt to 1−α subsets using the PSA, and including one member of each subset in PD

t+1.
During the elite preservation stage every member i in Pt+1 is given a proximity measure
irank and a diversity measure idiversity. The criteria for these measures are different for
the members of PP

t+1 and PD
t+1. The exact procedure of the elite preservation and the

fitness assignment is described in Algorithm 3. The procedure is illustrated in Figure 6.

3.2 Selection in DPGA

As NSGA-II, DPGA also uses a binary tournament selection from Pt+1 to form the
children population Qt+1. The comparison between two candidate parents is done ac-
cording to the proximity and diversity measures assigned to each member in Pt+1. The
difference from NSGA-II is that two tournaments are done in parallel; one for the
population of PP

t+1, and another for PD
t+1.

The diversity oriented selection operator SD, applied on PD
t+1, is described in Algo-

rithm 4. The proximity oriented selection operator SP, which is in fact the crowded
comparison operator ≺n of NSGA-II, is the same as SD, except for the if condition in
line 4, that in the case of SP gives the first priority to the rank of non-dominance and the
second to diversity.

Algorithm 4. SD - Diversity Oriented Selection Operator

1: QD
t+1 ← /0

2: for k = 1 to (1−α)N do
3: Randomly select members i and j from PD

t+1
4: if (idiversity < jdiversity) or ((idiversity = jdiversity) and (irank < jrank)) then
5: QD

t+1 ← QD
t+1∪{i}

6: else
7: QD

t+1 ← QD
t+1∪{ j}

3.3 Sensitivity to Parameters

The performance of DPGA is highly affected by the proximity factor α. Setting α too
low will hold back the algorithm from converging towards the Pareto front, since the
computational power is wasted on too many dominated solutions. On the other hand, a
too high value of α may lead to premature convergence, and to loss of important genetic
information that may lead to undiscovered non-dominated regions. There is a stage in
the evolutionary progress, when it does not make sense anymore to maintain dominated
solutions, since they lack the time to reach the first front. Hence, the value of α should
not be fixed for the entire run of the algorithm.

One possible way for the setting of α is suggested here. In this heuristic, DPGA
consists of two stages; at the first stage a constant value of α ∈ (0,1) is set; at the
second stage the selection is done as in NSGA-II-PSA (it can be conducted by simply
set α to one). This heuristic requires two a-priory decisions – the value of α at the first
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stage, and when to switch from the first to the second stage. The second decision can be
described through a parameter µ – the portion of the generations in which the selection
is done according to DPGA. The proper values of α and µ are problem dependent, and it
is out of the authors’ ability at the moment to suggest a generic way to determine them.
An analysis of the performance of DPGA for one benchmark, with different values of
these parameters, is given in Section 4. The conclusions on the parameters setting for
this benchmark can be implemented as a starting point for other problems.

Other heuristics, such as a gradual increase of α, or setting α as a function of the
generation count, can lead to better performance, but may be associated with more
parameters. Probably, the proper way is to change α according to the progress of the
global search. Meaning, to decrease it when the elite population loses its diversity, and
to increase it otherwise. This should be done automatically within the evolutionary
algorithm.

4 Simulations for DPGA

In this section, the proposed DPGA is evaluated and the sensitivity of the parameters
α and µ is studied. The algorithm is analyzed on the DTLZ4 benchmark with 3 ob-
jectives. This benchmark is used, since it poses a special challenge in spreading the
approximated set. This is exactly the kind of problems the DPGA should be used for.
The conclusions on the parameters setting for this problem can be implemented as a
starting point for other problems. The approximated sets are evaluated by the hypervol-
ume measure (HV) [32].

First, the algorithm is tested for different values of α and µ. The values of α =
{0,0.15,0.3,0.45,0.6,0.75,0.9,1} and µ= {0,0.1,0.2,0.3,0.4,0.5}were examined for
all possible combinations. Fifty independent runs were carried out for each setting. For
the sake of proper comparison, all combinations of parameter setting ran on the same
fifty initial populations. The parameter setting of α = 1 or µ= 0 is the NSGA-II-PSA al-
gorithm without the modifications of DPGA. Therefore, these settings are evaluated only
once on the test set, and the corresponding results are referred to as ”NSGA-II-PSA”.

According to the results of this analysis, another comparison is made to check the
ability of DPGA to handle a poor initial population. DPGA with the best combination
of α and µ, is compared with NSGA-II-PSA as a reference in this test. Each algorithm
solves the problem for 100 times with the same initial population which caused in the
worst performances in the previous simulations.

4.1 Experimental Setup

Both algorithms are given real-valued decision variables. They use the simulated binary
crossover (SBX) operator and polynomial mutation [8], with distribution indices of
ηc = 20 and ηm = 20 respectively. A crossover probability of pc = 1 and a mutation
probability of pm = 1/3 are used. The population size is set to 300, and the number of
generations to 250.
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4.2 Results of DPGA with Various Parameter Settings

The HV values of the final results in all the tests varied between 7.325 and 7.435.
Approximated sets with values larger than 7.4 include at least some solutions on the
surface of the sphere of the Pareto front. Sets with lower HV values consist of solutions
on the f1− f2 plane and f1− f3 plane only. Results of that kind are considered as a
failure of the algorithm to spread the approximated set along the Pareto front. Figure 7
depicts a boxplot of the statistic results of the NSGA-II-PSA (α = 1, µ = 0) and one
parameter setting (α = 0.15, µ= 0.4), as well as three approximated fronts and their HV
values. The results in Figure 7(b) are considered as a failure. Those in Figure 7(c) are
quite poor, and the results in Figure 7(d) are considered as good results. The boxplot
of NSGA-II-PSA in Figure 7(a) shows the failures of the algorithm as outliers. The
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Fig. 7. HV values of 50 tests for NSGA-II-PSA and DPGA, and examples for the HV measure
associated with three approximated Pareto fronts. HV values that are less than 7.4 are considered
as a failure to spread the approximated set along the Pareto front (e.g., the outliers of NSGA-II-
PSA, marked as red crosses, and the results in Figure 7(b)).
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Fig. 8. Statistic results of 50 tests for NSGA-II-PSA and for DPGA with different values of α
and µ

boxplots in Figure 7(a) indicate that there is no statistically significant difference in
location of the HV values of NSGA-II-PSA and DPGA. On the other hand, DPGA
with the above parameter setting is much more consistent regarding to different initial
populations, and has no failures in spreading the approximated front. NSGA-II-PSA
has 11 failures out of 50.

The results of the statistic evaluation of all the combinations of α and µ values are
depicted in Figure 8. Four statistical qualities are concerned here: Figure 8(a) depicts
the best HV of 50 tests; Figure 8(b) depicts the median HV; Figure 8(c) depicts the
mean HV; and Figure 8(d) depicts the percentage of failures. Note that all the values of
µ converge to the same point when α = 1, since the results do not depend on µ in that
case, and the algorithm is simply NSGA-II-PSA. The same statement holds for µ = 0
as it is the same for all values of α (the blue line labeled ”NSGA-II-PSA”). Three clear
observations can be made from the results shown in Figure 8: (a) the best results from
50 trials are obtained with NSGA-II-PSA; (b) DPGA reduces the chance of a failure for
most parameter settings (especially for α < 0.5 and µ≥ 0.2); (c) for this benchmark, the
mean performance is more affected from the number of failures, and therefore, DPGA
has a better mean HV than NSGA-II-PSA for most of the parameter settings.
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These results corroborate the hypothesis that dominated solutions might contain cru-
cial information, and the preservation of some diversified dominated solutions at the
beginning of the evolutionary process can prevent premature convergence. It is worth
reminding that NSGA-II-PSA is already an improvement of NSGA-II, and by recalling
Figure 6(b) in [21], all of the approximated sets found with NSGA-II for DTLZ4 with
3 objectives have HV lower than 7.4.

To choose the best parameter setting of DPGA for the DTLZ4 benchmark accord-
ing to these results, the main objective should be the reduction of failures. In general,
the percentage of failures decreases with the increase of µ and the decrease of α. Both
µ = 0.4 and µ = 0.5 satisfy this demand. Due to the inevitable tradeoff between prox-
imity and diversity, the performance should be considered as well, reflected by the
mean, median and best HV. Considering all the above, the best parameter setting for
this benchmark is α = 0.15,µ = 0.4. It had no failures, and has the best performance
over all the other settings with no failures.

4.3 Poor Initial Population

Here, a comparison between NSGA-II-PSA and DPGA is conducted in order to ex-
amine the ability of the algorithms to handle a very poor initial population. The initial
population which produced the largest amount of failures in Section 4.2 was used as
a benchmark. In this simulation, the worst initial population is given as an input to
DPGA with the best combination of α and µ, and to NSGA-II-PSA, and is solved by
each algorithm for 100 times.

The HV values of the obtained approximated fronts are depicted in Figure 9. The
advantage of DPGA over NSGA-II-PSA is clear. While NSGA-II-PSA has failed 45
times in finding solutions on the surface of the sphere, DPGA has only failed 3 times.
The HV of the successful results are quite the same for both algorithms.
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Fig. 9. Results of 100 tests with a poor initial population. For clarity, the results are sorted ac-
cording to performance.
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5 Using PSA for Hausdorff Approximations of the Pareto Front

In this section, a first attempt is made to show that PSA can be used successfully within
EMOAs to compute Hausdorff approximations of the Pareto front. The Hausdorff dis-
tance dH (e.g., [14]) prefers, roughly speaking, approximations A ⊂ �n such that its
images are located equally spaced along the Pareto front. Hence, dH can be viewed as
a performance indicator that is closely related to the terms spread and convergence as
used in the EMO community. PSA is integrated into NSGAII-I [16] to produce two
new algorithms: NSGA-II-I-PSA and NSGAII-I-Δp-PSA. Both algorithms use an ex-
ternal archive in addition to the procedures of NSGAII-I. In all the tests conducted
in this study NSGA-II-I-PSA achieved better Hausdorff approximations2 than its base
EMOA, and NSGAII-I-Δp-PSA improved the performance in most cases. On models
where the Pareto front is connected, both of the new methods cannot compete with
Δp-EMOA [13], which is a specialized algorithm to produce good Hausdorff approxi-
mations. NSGA-II-I-PSA, however, is advantageous in cases where the Pareto front is
disconnected. We conjecture that this is the merit of PSA that is independent from the
geometry of the underlying model. First results for bi-objective problems (i.e., k = 2)
are presented here, and considerations of k > 2 and further improvements of the hybrid
are kept for future research.

The performance indicator considered in this section, Δp, is defined as follows.

Definition 1 (averaged Hausdorff distance Δp [23]). Let p ∈�,
A = {a1, . . . ,ar} ⊂�d be a candidate set and Y = {y1, . . . ,yr} ⊂�k be its image, i.e.,
yi = F(ai), i = 1, . . . ,r. Further, let P := {p1, . . . , pm} ⊂�k be a discretization of the
Pareto front. Then it is

Δp(Y,P) = max

⎛⎝(1
r

r

∑
i=1

dist(yi,P)
p

)1/p

,

(
1
m

m

∑
i=1

dist(pi,Y )
p

)1/p
⎞⎠ , (5)

where dist(x,B) := infb∈B ‖x− b‖ denotes the distance between a point x and a set B.

Δp is a combination of slight variations of the well-known Generational Distance (GD,
see [26]) and the Inverted Generational Distance (IGD, see [6]). For p=∞ the indicator
coincides with the Hausdorff distance (i.e., Δ∞ = dH), and hence, Δp can be viewed as
an averaged Hausdorff distance.

The NSGA-II-I is a variant of the classical NSGA-II and is based on the conjecture
that a sequential update of the crowding distances leads to a more homogeneous dis-
tribution of the population than the single determination of the crowding distances of
the original NSGA-II. This algorithm is used here as a base EMOA for the new algo-
rithms, that include an additional external archive strategy as indicated in the Figure 10.

2 In fact, we will use the averaged Hausdorff distance in order to avoid punishments of single
outliers that can occur when using stochastic search methods such as evolutionary algorithms
[23].
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Algorithm 5. Δp-Update
Require: new solution oi, archive Ai, reference front R, archive size NA
Ensure: new archive Ai+1

N D = nondominated solutions of Ai∪oi
if |N D |< NA then

for all a ∈ ND do
h(a) = Δp(ND\{a},R)

a∗ = argmin{h(a) : a ∈ ND}
Ai+1 = ND\{a∗}

Algorithm 6. PSA-Update
Require: population Pi, offspring Oi, archive Ai, archive size NA
Ensure: new archive Ai+1

N D = nondominated solutions of Pi∪Oi∪Ai
if |N D |< NA then

Ai+1 = N D
else

Ai+1 = PSA(N D, NA)

Table 1. Averaged Δ1 values for test problems with different characteristics

Sphere model DTLZ3 Dent ZDT3
NSGAII-I 0.00503875 0.00638702 0.01618773 0.00591195
NSGAII-I-PSA 0.00460146 0.00621689 0.01501212 0.00527150
NSGAII-I-Δp-PSA 0.00473097 0.00680468 0.01539346 0.00552639
Δp-EMOA 0.00003729 0.00495835 0.00067532 0.00777191

PSA is being used here for the update of the archive in two variants: (i) it is used
as a tool to select the best individuals to be stored in the external archive (NSGA-II-
I-PSA), and (ii) PSA is integrated into the procedure of Δp-EMOA [13] that selects
the best individuals to the external archive according to an approximated reference set
(NSGAII-I-Δp-PSA). Here, PSA is used as a tool to obtain the reference set required to
compute the distance to the set of interest. The procedure of the external archive strategy
using PSA as the tool to select the best individuals in each generation (for NSGA-II-
I-PSA) is detailed in Algorithm 6. The procedure where PSA is used to generate the
reference set that Δp needs to be computed (NSGAII-I-Δp-PSA) is given in Algorithm
7. In this algorithm, first the set N D is computed that consists of all nondominated
solutions of the current population Pi, the new offpsring set Oi and the current archive
Ai. If the magnitude of N D is greater than the size of the external archive NA, then PSA
is applied on N D to obtain a reference front R of magnitude NA. This set is further on
used to update the archive Ai by Oi according to the best Δp values with respect to R.
Hereby, Δp-Update denotes the archiver used in [13] which is given in Algorithm 5,
where h(a) is the Δp value of the set of solutions ND without the solution a.



252 S. Salomon et al.

Fig. 10. General NSGAII-I procedure with an external archive. PSA-Update is being used at
NSGA-II-I-PSA, and Δp-PSA-Update is used for NSGAII-I-Δp-PSA.

Algorithm 7. Δp-PSA-Update
Require: population Pi, offspring Oi, archive Ai, archive size NA
Ensure: new archive Ai+1

N D = nondominated solutions of Pi∪Oi∪Ai

if |N D |< NA then
Ai+1 = N D

else
R = PSA(N D, NA)
Ai+1 = /0
for all o ∈ Oi do

Ai+1 = Δp-Update(o, Ai, R)

Table 2. Averaged Δ1 values for test problems with disconnected fronts

Kursawe Poloni Schaffer ZDT3
NSGAII-I 0.03966693 0.06964843 0.02621266 0.00592310
NSGAII-I-PSA 0.03470179 0.05784069 0.02189886 0.00515468
NSGAII-I-Δp-PSA 0.03774589 0.06157774 0.02304279 0.00548551
Δp-EMOA 0.03489292 0.08614311 0.03160346 0.00778455
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Fig. 11. Boxplots of Δp-values at final generation

To test the new algorithms, they are first evaluated on four test problems with differ-
ent characteristics: (i) the bi-objective sphere model [13] that has a convex Pareto front,
(ii) DTLZ3 [10] that has a concave Pareto front, (iii) the Dent problem [24] that has a
convex-concave front, and (iv) ZDT3 [30] where the Pareto front is disconnected. The
number of decision variables and their ranges are specified as recommended in litera-
ture, for the bi-objective sphere model 0 ≤ xi ≤ 1 (i = 1,2), for the DTLZ3 0 ≤ xi ≤ 1
(i = 1, ...,10), for the Dent −1.5 ≤ xi ≤ 1.5 (i = 1,2) and for the ZDT3 0 ≤ xi ≤ 1
(i = 1, ...,20). Twenty independent test runs are made, each with a budget of 50,000
function calls, a population size equal to 100 and an archive size NA equal to 100. All
algorithms have been implemented in jMetal [12]. The simulated binary crossover op-
erator is parameterized by a component-wise probability equal to 0.9 and a distribution
index equal to 20. Polynomial mutation is applied using a mutation probability equal to
1/d (d = number of decision variables) and the distribution index equal to 20. Table 1
shows the obtained numerical results for the Δp indicator where p = 1, and Figure 11
shows boxplots of the Δp values at the final generation. The Δp indicator is calculated
based on fixed reference fronts referred to as benchmark fronts in the following. Ideal
benchmark fronts are composed of the set of m solutions with minimum Δp value with
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respect to the true Pareto front, where m denotes the population size of the EMOA.
As the true Pareto fronts of the test problems are known in this study, these fronts are
composed by m well distributed points along the true Pareto front (i.e. the set of m
points with optimal PL-metric as it is defined in [13]). It can be seen that the Δp-EMOA
yields the best results for all models with connected Pareto front, but in the case of the
disconnected front (ZDT3) NSGAII-I-PSA obtains better values. This is also reflected
in Figure 11 which shows the respective Δp-values at the final EMOA generation.
Additionally, statistical significance of the results is confirmed by this means, regarding
the comparison to the Δp-EMOA.

In order to investigate the behavior of the PSA based algorithms on models with dis-
connected fronts, a further test is made using the MOPs ([7]) Kursawe, Poloni, Schaffer,
and ZDT3. The setting of the experiments is the same as for the previous ones. The num-
ber of decision variables and their ranges are as follows: For the Kursawe −5≤ xi ≤ 5
(i = 1,2,3), for the Poloni (−1 ∗π)≤ xi ≤ π (i = 1,2), for the Schaffer −5 ≤ xi ≤ 10
(i = 1) and for the ZDT3 0 ≤ xi ≤ 1 (i = 1, ...,20). Table 2 shows the obtained results,
and Figures 12 – 15 show the median distance to the Pareto front in terms of Δ1 on
the ordinate and the number of function evaluations on the abscissa. NSGA-II-I-PSA
wins the competition on all four models which is most probably due to PSA that is in-
dependent of the geometry of the problem. Δp-EMOA prefers connected Pareto fronts
since the reference front needed for the Δp archiver is built on the assumption that the
Pareto front is connected [13]. Such an assumption is not made in PSA. To take into
account the stochastic nature of the EMOA and to show the performance differences
are significant, Figure 16 shows boxplots of the Δp-indicator at the final generation.
The differences in location of the Δp-values of the NSGAII-I-PSA compared to the
other EMOA are statistically significant, beside for Kursawe. These results are encour-
aging, however, more investigations are required to obtain a better EMOA aiming for
Hausdorff approximations which we leave for future work.

Fig. 12. Median distances to the Pareto front w.r.t. Δp for Kursawe problem
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Fig. 13. Median distances to the Pareto front w.r.t. Δp for Poloni problem

Fig. 14. Median distances to the Pareto front w.r.t. Δp for Schaffer problem

Fig. 15. Median distances to the Pareto front w.r.t. Δp for ZDT3 problem
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Fig. 16. Boxplots of Δp-values at final generation

6 Conclusions and Future Work

In this study, the ability of the PSA (Part and Select Algorithm) as a selection mech-
anism within EMOAs was examined. In one part of the study, PSA was used for elite
selection, and in the other it was used as an archiving tool. For both cases, the results of
the PSA based algorithms were satisfactory, and they were found to have better perfor-
mance than their non-PSA equivalents for certain types of optimization problems.

A new evolutionary optimization approach was presented, that preserves some dom-
inated solutions from one generation to the next. This approach was studied through a
novel PSA based EMOA denoted as DPGA. The algorithm has the capacity to control
the trade-off between the exploitation of proximity, to the exploitation of diversity. It
was shown that by assigning high fitness to solutions that are isolated in the objective
space, even if they are dominated, the chances for a failure in spreading the candidate
solutions along the Pareto front decrease. As future work the performance of DPGA
should be also evaluated for ”regular” optimization problems that do not pose a spe-
cial challenge to find a diverse set of candidate solutions. Some more comparisons with
state-of-the-art EMOAs should be conducted as well. Finally, DPGA can be improved
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if its related parameter α could be adjusted automatically. In order to do so, a measure
to identify that proximity is over-exploited on the account of diversity, is required. This
measure can be used during the progress of the algorithm to decide the appropriate
value of α.

The PSA was found to be also an appropriate archiving tool for Hausdorff approx-
imations inspired EMOAs for special cases. The proposed algorithm NSGAII-I-PSA
could not compete with the specialized algorithm for Hausdorff approximations Δp-
EMOA on models where the Pareto front is connected. However in cases where the
Pareto front is disconnected, NSGAII-I-PSA has outperformed the Δp-EMOA, produc-
ing better Hausdorff approximations to the Pareto front according to the Δp indicator for
the four benchmark problems selected. The advantage of NSGAII-I-PSA is thanks to
that PSA is independent from the geometry of the underlying problem, so the selection
of the best solutions with respect to spread and convergence is not affected by the gaps
within the Pareto fronts of the problems. We conjecture that the consideration of PSA
will be particularly advantageous in cases more than three objectives are under consid-
eration. Hence, the extension of the NSGA-II-I-PSA to higher-dimensional problems
seems like a promising research direction.
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