
Chapter 4
Discussion and Conclusions

We have demonstrated on several data sets related to natural disasters of various
nature that using logarithms of the original observations is more appropriate for
fitting of heavy tails. By doing so, power-like tails (in particular those obeying the
Pareto law with an arbitrary index) are transformed into exponential tails, and the
corresponding GPD form parameter becomes non-positive. Zero value of the GPD
form parameter corresponds to the exponential tail, whereas its negative values
correspond to a distribution with a finite end point Mmax. Tails heavier than any
power-like tail are not frequently encountered in practice, so for the log-trans-
formed data it is sufficient to consider GPDs with non-positive indexes. Thus, the
peak-over-threshold distributions of log-sizes of events are best approximated by
the GPD with a negative parameter (see Tables 4.1, 4.2). The density function of
such distributions takes very small values at the approach of its final point Mmax,
which results in a ‘‘duck beak’’ shape, see Fig. 2.2. For instance, the limit behavior
of probability density function of earthquake magnitudes taken from the Harvard

catalog is best approximated by the following power law: Mmax � xð Þ�1�1=nffi
Mmax � xð Þ5:14. This fact explains in particular the origin of unstable statistical

estimates of the parameter Mmax: smalls changes in earthquake magnitudes can
result in significant fluctuations of the corresponding estimates of Mmax. In con-
trast, estimates of the integral parameter Qs qð Þ are typically stable and robust, as
we have demonstrated above.

We would like to emphasize that a reliable estimation of quantiles of levels
q [ 1� 1=n can be obtained only with some additional assumptions on the
behavior of the distribution’s tail. Sometimes, such assumptions can be made on
the basis of physical processes behind the studied phenomena. Here we have used
for this purpose certain theorems of the extreme value theory (EVT). In our case,
these EVT based assumptions boil down to assuming a regular behavior of the tail
1� F mð Þ of the distribution of sizes of events in the vicinity of its rightmost point
Mmax. It should be noted that the assumptions regarding the asymptotic behavior of
the distribution’s tail cannot equally apply to all practical cases, and they should be
supported by additional information for each particular studied phenomenon. In
fact, the EVT suggests a statistical methodology for the extrapolation of quantiles
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beyond the data range; whether such an extrapolation is justified should be thor-
oughly investigated in each particular case. In our view, the EVT provides us with
the best statistical approach to this problem.

Application of the EVT to different extreme events data is reduced to fitting of
the GPD to the tail of the corresponding distribution of event sizes or their log-
arithms. According to the EVT, the Generalized Pareto Distribution is the only
possible limit distribution for the ‘‘peaks over threshold’’ events. GPD is a flexible
two-parametric family of densities with well-known statistical properties. In cer-
tain cases however, even the GPD fails to reasonably approximate the distribu-
tion’s tail. This may happen in a case when the Limit Theorem of the EVT is
inapplicable to a particular data set, since the behavior of the sample’s DF in the
extreme range cannot be described by a single asymptotic function. For example, it
may switch from a power-law like behavior for a certain range of values to an
exponential one for the next range of values. In such cases, we have no well
defined criteria to choose the value of the threshold for ‘‘the peaks over threshold’’
method, and the application of the exposed approach is not recommended.

Tables 4.1 and 4.2 summarize the main characteristics of the natural disasters
analyzed above, together with the parameters of the corresponding fitted GPDs.
The first column of Table 4.1 we indicates whether the log-transform was applied
to the original values. The third column contains the estimates of the form
parameter of the GPD. In two cases the form parameter is null, which corresponds
to the exponential distribution (exponential distribution is the limit case of the
GPD when n ! 0). In all the other presented cases, the form parameter estimates
are negative, which indicates the finiteness of the corresponding distributions.

In the fourth column we give the p values which represent the probability to
exceed the discrepancy between the observed and the fitted distributions, also
known as, the Kolmogorov distance. We consider that if the p value is less than 0.1
one has grounds to reject the fitted curve). One can see that the GPD approximates
reasonably well the extreme parts of the distribution’s tail for all the considered
catalogs of natural disasters. Only in one case (fatalities from floods in USA,
1995–2011) the p value is less than 0.4 which indicates a poor quality of fit. There
are two cases (economic losses resulting from floods in USA) when the p value
equals 0.90 which corresponds to a very close approximation.

As discussed above, the absolute value |n | indicates the steepness of decrease of
the extreme part of the distribution’s tail. According to Tables 4.1 and 4.2, the
steepest extreme tails are observed for the economic losses produced by floods and
hurricanes, whereas the corresponding fatality and the injured/affected distribu-
tions have, as a rule, smaller parameter |n|, which corresponds to a slower decay of
the tail. As was previously noted, the (unlimited) exponential distribution of
log(x) corresponds to the (unlimited) Pareto distribution of x. This situation
occurred once (the last row of Table 4.1) for the case of tornado related fatalities in
USA. It is obvious that the maximum number of fatalities in any disaster is limited,
however in that particular case a more accurate statistical approximation is
observed for an unlimited model.
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One can observe that in certain cases the quantile Q0.95(10) is less than the
observed maximum event size, while in certain other cases it exceeds that value..
This is a result of an interplay between the parameters of the fitted GPD, namely
intensity k and time interval s. It should also be remarked that such characteristics
as economic losses resulting from natural disasters are strongly influenced by a
rapid global development of the economic infrastructure and the population
growth. Therefore, it is quite difficult to reliably forecast such characteristics for
long time spans, say beyond 10–15 years. This remark should be kept in mind
when one estimates quantiles of future losses.

Table 4.2 summarizes the results of the analysis of annualized data. The
aggregation of event sizes over one year intervals represents in essence a linear
filtration (smoothing) of the corresponding time series of sizes. That is why the
tails of annualized distributions are as a rule less heavy compared to the tails of
original distributions of marked point processes. This fact can explain higher
values of the form parameter (in terms of its absolute value) of annualized dis-
tributions in Table 4.2 compared to the corresponding form parameters in
Table 4.1. One exception is the case of the economic losses from floods, which can
be explained by a very small sample size in this case: n = 32 (single event losses)
and n = 48 (annualized losses). We remind that the theoretical maximum Mmax of
the GPD distribution with negative form parameter n is expressed as

Mmax ¼ h� s

n
;

and the lesser |n | the larger Mmax is.
One can also note, that the correlation between the high quantile Q0.95(10) and

the maximum observed size is stronger for the annualized data, as it could be
expected.

Table 4.2 Characteristics of annual disasters and form parameter of fitted GPD-law

Lower log-
threshold h (10h)
sample size n

Form parameter
n

Goodness-
of-fit
(p-value)

Maximum
observed
effect, lg(x)
(x)

Quantile
Q0.95(10)
(10Q)

Annual economic
losses from
floods in
USA, in 109 $,
1940–2011
lg(x)

h = 0.4 (2.5) –0.354 ± 0.093 0.90 lg(x) = 1.71
(51.3)

1.66 (45.7)
n = 48

Annual economic
losses from
hurricanes in
USA,
1940–2010 in
106 $, lg(x)

h = 1.5 (31.6) –0.636 ± 0.045 0.48 lg(x) = 5.15
(141,000)

5.09
(123,000)n = 64
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We gave in Chap. 1 theoretical relations (1.3)–(1.4) connecting the sample

maximum M nð Þ
max ¼ max x1; . . .; xnð Þ with the total sum Sn ¼ x1 þ � � � þ xn. We can

as well compare Sn with the sum of k largest observations. The ratio of such sums
for the analyzed catalogs is presented on Figs. 3.27, 3.35, 3.42, 3.50, 3.59, 3.64,
and 3.70. These ratios reflect in a more in detailed manner the contributions of the
rightmost part of tail to the total sum. Let us consider for comparison one par-
ticular value on these curves, namely the ratio of 10 % of the largest observations
to the total sum. One can say, that the higher this ratio, the more events are
concentrated around the tail’s extreme range. Table 4.3 presents a collection of
such ratios for all the considered event catalogs. One can conclude that the highest
concentration of events around the distribution’s tail is observed for the data sets
related to the number of individuals affected by floods (USA), to earthquake
fatalities (Japan) and to the injured by earthquakes (Japan). For these cases, 10 %
of the largest events are responsible for more than 95 % of the total loss. Inter-
mediate values of the event concentration toward the tail’s end (about 60–70 %)
are observed for annualized economic losses from hurricanes (USA), economic
losses from floods (USA) and fatalities from tornadoes (USA). Weak concentra-
tion (40–55 %) is observed for flood fatalities (USA) and annualized economic
losses from floods (USA). It should be noted, that our concentration graphs are in
essence an extended analog of the Pareto principle (or the 80-20 rule): ‘‘for many
phenomena roughly 80 % of the effects come from 20 % of causes’’ (Italian
economist Vilfredo Pareto observed in 1906 that 80 % of the land in Italy was
owned by 20 % of population).

Table 4.3 Ratio of sum of 10 % largest effects to total sum

Ratio of sum of 10 % largest
effects to total sum (%)

Affected in floods, USA, 1995–2011 98
Earthquake fatalities, Japan, 1900–2011 98
Injured in earthquakes, Japan, 1900–2011 94
Annual economic losses from hurricanes in USA, 1940–2010 70
USA, estimated economic losses from floods, 1995–2011 68
USA, perished in tornadoes, 1953–2012 60
USA, perished in floods, 1995–2011 55
Annual economic losses from floods in USA, 1940–2011 40
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