
Chapter 3
The Disaster Statistics for Various
Natural Disasters

Abstract The application of statistical technique exposed in Chap. 2 to some
concrete catalogs of natural processes and related losses are presented: global
catalog of seismic moments; catalog of peak ground acceleration at five sites in
Japan; catalog of victims of earthquakes-tsunamis, Japan; catalog of victims of
floods, USA; catalog of economic losses from floods, USA; catalog of victims
from tornadoes, USA; catalog of economic losses from hurricanes, USA. The
Kolmogorov test is used as a powerful statistical tool for testing hypotheses on
distribution under study. A modification of the Kolmogorov test is presented in the
case of presence of estimated parameters in the hypothetical distribution function.
Main statistical results are summarized in Tables 3.1, 4.1, 4.2 and 4.3.

Keywords Extreme value theory, EVT � Generalized Pareto distribution, GPD �
‘‘Peak-over-threshold’’ method � Intensity of point process � Non-stationarity of
point process � Annual data

3.1 Earthquakes (Energy, Ground Acceleration)

3.1.1 The Global Harvard Catalog of Scalar Seismic
Moments

We use the method described above for the Harvard catalog of seismic moments
within the period from January 1, 1976 to October 31, 2012. We restrict the depth
of epicenters to h B 70 km and magnitudes to mW C 6.25 (or seismic
moments C 2.985 9 1025 dyne-cm). Note that this time interval contains two
recent gigantic earthquakes: December 26, 2004, mW = 9.0 (Sumatra) and March
11, 2011, mW = 9.1 (Japan). To eliminate aftershocks from the catalog, the space–
time window suggested in Knopoff et al. (1982) was used. Scalar seismic moments
Ms were converted into moment magnitude mW by the relation
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mW ¼ 2=3ð Þ � log10 MSð Þ � 16:1ð Þ:

The number of main shocks that has been left after aftershock elimination was
n = 1073.

In order to test the Harvard catalog for stationarity we plotted in Fig. 3.1 the
intensity (main events). We see that the seismic flow can be considered as fairly
stationary. The general view of event flow is shown on Fig. 3.2. It confirms our
conclusion about stationarity, but still there is a slightly increased density of events
in the upper right corner of Fig. 3.2. We have checked this suspicion and plotted
on Fig. 3.3 smoothed by 15-year window intensity of events with mW C 8.0. We
see that indeed there is some distinct increasing of such events in the last
15–20 years. We shall recall this fact later as we estimate quantiles Qq(s).

As we mentioned above, time moments ti of the stationary Poisson process are
uniformly distributed on interval [0; T] for any fixed sample size n. On Fig. 3.4 we
compare the empirical DF of normalized time moments si F̂nðsÞ with uniform DF
(diagonal of the square, F(s) = s). The normalization to the unite interval was
effectuated by s ¼ t � t1ð Þ= t2 � t1ð Þ; t1; t2 are start and end of the catalog. The
standard Kolmogorov test gives the Kolmogorov distance Dn ¼

ffiffiffi

n
p

max jF̂n sð Þ �
F sð Þj ¼ 1:127 which corresponds to p value = 0.16 (probability to exceed Dn

under condition that F̂nðsÞ was generated by theoretical DF F(s)). Since this
p-value (p–v) is more than 0.1, we formally have ground to accept the hypothesis
of stationarity of ti, although the p–v is close to the boundary of rejection 0.1.

Now we apply to the Harvard catalog the statistical analysis exposed above (GPD
fitting). The graph of the sample tail 1 – F(x) is shown on Fig. 3.5. We see that the
tail decays rather slowly, and the recent gigantic earthquakes form a deviation from
the general run. We take a grid of thresholdshj for magnitudes mW and fit both GPD

Fig. 3.1 Intensity (main events, mW C 6.25) of the Harvard catalog smoothed by 10-year time
window
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and exponential distributions (ED) for each hj. The goodness of fit was tested by the
Kolmogorov test. The results are shown on Fig. 3.7. We see that minimum
KD-distance is reached by GPD at h = 6.8 (KD = 0.609). We have estimated by the
simulation method the goodness of this fit with parameters corresponding to

this threshold ðn̂ ¼ �0:163 � 0:046 ; ŝ ¼ 0:540 � 0:055Þ and found out that
p–v= 0.15. So, we took the threshold h ¼ 6:8 and corresponding estimates.
On Fig. 3.6 the extreme part of the tail used for parameter estimation is shown
along with fitted GPD-curve. We can remark that the three largest earthquakes

Fig. 3.2 The time–magnitude diagram of the Harvard catalog (main events, mW C 6.0)

Fig. 3.3 Intensity (main events, mW C 8.0) of the Harvard catalog smoothed by 15-year time
window

3.1 Earthquakes (Energy, Ground Acceleration) 27



occurred in the last decade mW ¼ 8:8; 27.2.2010; mW ¼ 9:0; 26.12.2004; mW ¼ð
9:1;11.3.2011Þmade the approximating GPD-curve to deviate from observations in
the range 8:0�mW � 8:5 (recall Figs. 3.2 and 3.3). One can say that this compro-
mise is chosen in accordance with statistical rules used in our procedure offitting and
corresponds to the best goodness-of-fit possible in this situation.

Fig. 3.5 Sample tail 1 - F(x) of the Harvard catalog: main events, seismic moments,
Ms C 1.26 9 1025 dyne-cm (mW C 6.0)

Fig. 3.4 Empirical DF of normalized time moments of events of the Harvard catalog (main
events, mW C 6.25)
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The number of events exceeding this threshold was n ¼ 324; which is sufficient
for a reliable statistical estimation. Parameter Mmax right end-point of GPDð Þ and
95 % quantile for future 10 years Q0:95 10ð Þ are:

Mmax ¼ h � ŝ=n̂ ¼ 10:11; Q0:95 10ð Þ ¼ 9:13:

On Fig. 3.7 we see that besides of the best fitting point h ¼ 6:8 there is one
more point h ¼ 7:5 whose KD is close to the best one. Let us compare parameters

Fig. 3.6 Harvard catalog, main events, moment magnitudes. The extreme tail 1 – F(x) and
approximating GPD-tail: h = 6.8; n = -0.163; s = 0.540; n = 324

Fig. 3.7 Harvard catalog, main events. The KD-distances for a grid of magnitude-thresholds hj.
Thick line—GPD-fitting; thin line—ED-fitting
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of these two thresholds and demonstrate stability of the quantiles as compared with
traditional parameter Mmax. We have for threshold h ¼ 7:5 following estimates:

n̂ ¼ �0:0597� 0:104; ŝ ¼ 0:347� 0:074; KD ¼ 0:612; n ¼ 82:

Mmax ¼ h � ŝ=n̂ ¼ 13:31; Q0:95 10ð Þ ¼ 9:27:

We see that quantile Q0:95 10ð Þ has increased (due to random errors) insignifi-
cantly by 0.14, whereas Mmax has grown by 3.2! This example demonstrate clearly
the instability of Mmax as compared with QqðsÞ:

Figure 3.8 shows the GPD-quantiles for three different confidence levels q ¼
0:90; 0:95; 0:99 with parameters corresponding to threshold h ¼ 6:8: It is inter-
esting to compare these quantiles with corresponding quantiles estimated on time
interval (1976–2006), that were published in the book (Pisarenko and Rodkin
2010), not containing the great Japan earthquake March 11, 2011. Figure 3.9
shows such comparison for 95 %-quantiles. We see that the later estimates
(1976–2012) provide slightly larger quantiles. This is a reaction on the great Japan
earthquake March 11, 2011. In contrast with the moderate change of quantile
values, change in corresponding Mmax values is much stronger that demonstrates
again a weak stability of this parameter.

Note that even quantiles estimated for time interval before the occurrence of the
great Tohoku earthquake (March 11, 2011, M9) show a quite high probability of
occurrence of M9+ earthquakes. Besides, such events were not registered in Japan
before both during the instrumental period of measurements and even among the
historical earthquakes since 599 year (Usami 1979, 2002; Utsu 1979, 2002).
Moreover, taking into account the considerable fragmentation of the lithosphere in

Fig. 3.8 Harvard catalog, main events. GPD-quantiles Qq(s) of seismic magnitudes for three
different confidence levels q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve) with
parameters corresponding to the threshold h = 6.8
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the Japan region and the absence of extended (approaching 1000 km long) unified
segments of the Benioff zone, the very possibility of occurrence of the
M9+ earthquakes in this region was negated by many seismologists. The occur-
rence of the Great Tohoku 2011 earthquake has confirmed however that our sta-
tistical estimate of possibility of occurrence of such earthquakes Pisarenko et al.
(2010); Pisarenko and Rodkin (2013) was quite correct.

3.1.2 Estimation of Maximum Peak Ground Acceleration

Although the main seismic parameters like b-slope, seismic activity rate and Mmax

can be of considerable interest, estimation of peak ground acceleration, Amax, is of
more practical importance in designing structures and in seismic risk assessment.
The earthquake hazard has been estimated in a variety of ways (Lamarre et al. 1992;
Kijko and Sellevoll 1989, 1992; Campbell 1981; Cornell 1968). The characteriza-
tion of the seismic hazard at a fixed site is usually done through the probability of
non-exceeding various levels of ground acceleration in a certain number of years, i.e.
through the probability distribution function of maximum peak acceleration, for a
given time period T. An equivalent, but perhaps more convenient characteristic of
seismic hazard is furnished by the quantiles of this distribution function (we recall,
that quantile is inverse function of the distribution function). Seismic hazard analysis
involves several unknown parameters and relations: seismic activity rate k,
parameters of magnitude-frequency law, attenuation model (for ground accelera-
tion), source model, soil characteristics, a model for earthquake sequence. Thus, it is
necessary to estimate these parameters and establish step by step the needed

Fig. 3.9 Harvard catalog, main events. 95 % GPD-quantiles Qq(s) derived from data
1976–2012 (thin line) and quantiles Qq(s) for period 1977–2006 (dotted line)
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relations. Statistical and modeling uncertainties should be introduced at each of
these steps. We are going to apply the statistical method exposed in Section II to
evaluation of quantiles of distribution of peak ground acceleration.

We are interested in analysis of peak ground acceleration (PGA) Amax at a
particular site. Suppose this site is located at epicentral distance R from source of
earthquake of magnitude m. In the seismic hazard analysis there are a number of
model relations giving approximate value of Amax as some function of (R, m), see
e.g. Cornell (1968). In most cases these relations have the following general form:

log10 Amaxð Þ ¼ a þ b � m � c � log Rþ dð Þ; ð3:1Þ

where a, b, c, d are some non-negative coefficients, m is magnitude, R is epicentral
distance. Numerous modifications of (3.1) are used, but all of them keep the
general property: monotone increase with m and monotone decrease with R.

Let us consider flow of earthquakes in some space-magnitude window registered
at a certain point. We denote magnitudes and epicentral distances to a fixed point as
m1;R1ð Þ; m2;R2ð Þ; . . .; mn;Rnð Þ; . . . . We suppose that this flow is a stationary ran-

dom process. Then any relation of type (3.1) or any arbitrary function U m;Rð Þ will
provide a stationary random process U m1;R1ð Þ; U m2;R2ð Þ; . . .; U mn;Rnð Þ. . . :.
Thus, if we apply the relation (3.1) to the series m1;R1ð Þ; m2;R2ð Þ; . . .; mn;Rnð Þ; . . . :.
we can consider resulting sequence as a stationary random process. We call it
estimated acceleration. The expression (3.1) differs from the true peak ground
acceleration by a random term e: We discuss this random error below. Our aim is to
study statistical characteristics of the estimated acceleration with the statistical
technique exposed in Chap. 2.

Detailed studies showed that the relation (3.1) is in some contradiction with
empirical data in the near-field zone. In Mahdavian et al. (2005); Aptikaev (2009);
Graizer and Kalkan (2011); Steinberg et al. (1993) it was shown that peak ground
acceleration (PGA) practically does not depend on magnitude in a vicinity of the
earthquake fault zone but depends on the type of the focal mechanism. The size of
this zone D usually varies from a few km to 10 km depending on the magnitude
and can be well scaled according to the empirical law

o log D =om ffi 0:34: ð3:2Þ

To meet the near-field zone data we shall use the Aptikaev’s relation (Lamarre
et al. 1992) where the near-field effects are taken into account:

2:76; q � 1;

log10 Amaxð Þ ¼ 2:76 � 0:55 � log10 qð Þ; 1 � q� 10 ;

3:50 � 1:29 � log10 qð Þ; 10 � q;

ð3:3Þ

where
Amax is estimated peak ground acceleration in cm/s2;
q ¼ R � 10�0:325ðm�5Þ magnitude scaled distance;
R is epicentral distance in km;
m is magnitude.
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Thus, relations (3.1) and (3.3) give logarithm of estimated peak ground
acceleration log10 Amaxð Þ from an earthquake with magnitude m at a site with
epicentral distance R. The results obtained by means of both (3.3) and (3.1) are
compared and discussed in Pisarenko and Rodkin (2013). In this paper we have
derived quantiles of distribution of log10 Amaxð Þ for 4 points on the territory of
Japan islands: Tokyo, Hiroshima, Osaka, and Fukushima (atomic power station
Fukushima Daiichi). These points are shown on Fig. 3.10 where they are marked
as ‘T’, ‘H’, ‘O’, and ‘F’. We have used the earthquake catalog of the Japanese
Meteorological Agency (JMA) over time period 1900–2005.

Tokyo, k = 35.41; u = 139.36;

We have applied the statistical technique exposed in Chap. 2 to the estimated
accelerations calculated from equations (3.3). The Kolmogorov distance KD was
used for to choose the most appropriate threshold value h providing the best fitting
of GPD to the data:

KD ¼ n1=2
h maxjGPDhð x jn̂; ŝÞ � Fnh xð Þj; ð3:4Þ

where Fnh xð Þ is sample stepwise distribution function generated by observations
x1� . . .� xnhð Þ exceeding threshold h:

Fig. 3.10 Japan earthquakes, 1900–2005. Tokyo, Hiroshima, Osaka, and Fukushima (atomic
power station Fukushima Daiichi) are marked as ‘T’, ‘H’, ‘O’, and ‘F’
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0; x � x1;

Fnh xð Þ ¼ r=nh; xr\ x � xrþ1; 1 \ r \ nh;

1; x [ xnh :

Since we use a theoretical GPD with parameters fitted to the data, we cannot
use the standard Kolmogorov distribution tables to find the significance level of the
observed KD. Instead, in order to determine the significance level of a given KD-
distance (3.4), we used a numerically calculated distribution of KD-distances
measured in a simulation procedure with 10,000 GPD-samples and parameters
individually fitted to each sample. This method was suggested in Stephens (1974)
for the Gaussian and the exponential distributions. We use the Kolmogorov dis-
tance to test the GPD distribution fitted to estimated accelerations.

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.11 (upper figure). We see that a monotone decreasing starts some-
where near log10 Amaxð Þ� � 0:2: Since the theoretical GPD-density monotonically
decreases, we have to restrict our analysis by thresholds h [ � 0:2:The KD-distance
as function of h is shown on Fig. 3.11, lower figure. We see that the lowest KD ¼
0:582 (the best fitting) corresponds to the threshold h ¼ 0:5. Its significance level
(p–value) equals to 0.72, so that the sample can be considered as belonging to GPD
distribution (the testing would reject this distribution in the case of very small p–
values, say, p \ 0.10). For this threshold there are nh ¼ 279 observations exceeding
this threshold. We got following estimates of unknown parameters:

n̂ ¼ �0:23 � 0:05; ŝ ¼ 0:52 � 0:06; Q0:90 30ð Þ ¼ 2:3: ð3:5Þ

Maximum of logarithmic estimated accelerations was 2.76 (it cannot be more
because of restriction of estimated acceleration as it is given in equation (3.3)).

Fig. 3.11 Tokio. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)
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Hiroshima, k = 34.39; u = 132.46;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.12, upper figure. We see that a monotone decreasing starts
somewhere near log10 Amaxð Þ� 0:1: We restrict our analysis by thresholds h in the
interval (0.1; 0.9). The KD-distance as function of h is shown on Fig. 3.12, lower
figure. We see that there are 3 thresholds h ¼ 0:6; 0:7; 0:8 with KD close to 0.6.
We prefer to take h ¼ 0:6 since sample size for this threshold (nh = 118) is larger
than others ðnh ¼ 95; nh ¼ 74Þ: Its significance level equals to 0.593, so that the
sample can be considered as belonging to GPD distribution. We got following
estimates of unknown parameters:

n̂ ¼ �0:21 � 0:07; ŝ ¼ 0:46 � 0:08; Q0:90 30ð Þ ¼ 2:1: ð3:6Þ

Maximum of logarithmic estimated accelerations was 2.76 (it cannot be more
because of restriction of estimated acceleration in Eq. (3.3)).

Osaka, k = 34.69; u = 135.50;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.13, upper figure. We see that a monotone decreasing starts some-
where near log10 Amaxð Þ� 0:1.We restrict our analysis by thresholds h in the interval
(0.1; 0.6). The KD-distance as function of h is shown on Fig. 3.13, lower figure. We
see that the best fitting corresponds to the threshold h ¼ 0:1 with KD ¼ 0:62: Its p–
value equals to 0.63, so that the sample can be considered as belonging to GPD
distribution. We got the following estimates of unknown parameters:

n̂ ¼ �0:19 � 0:04; ŝ ¼ 0:50 � 0:04; Q0:90 30ð Þ ¼ 2:1: ð3:7Þ

Maximum of logarithmic estimated acceleration was 2.76 (as above it cannot be
more because of restriction of estimated acceleration in equation (3.3)).

Fig. 3.12 Hiroshima. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)

3.1 Earthquakes (Energy, Ground Acceleration) 35



Fukushima Daiichi, k = 37.4214; u = 141.0325;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.14, upper figure. We see that a monotone decreasing starts
somewhere near log10 Amaxð Þ� 0:2:We restrict our analysis by thresholds h in the
interval (0.0; 0.5). The KD-distance as function of h is shown on Fig. 3.14, lower
figure. We see that the best fitting corresponds to the threshold h ¼ 0 with KD ¼
0:87: Its p-value equals to 0.13, so that the sample still can be considered as
belonging to GPD distribution. We got following estimates of unknown
parameters:

Fig. 3.13 Osaka. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)

Fig. 3.14 Fukushima. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)
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n̂ ¼ �0:29 � 0:03; ŝ ¼ 0:76 � 0:06; Q0:90 30ð Þ ¼ 2:3: ð3:8Þ

Maximum of logarithmic estimated accelerations was 2.63.
The results of estimation of the parameters of GPD distribution fitted to the

estimated acceleration data for the mentioned four sites are summarized in
Table 3.1. In the fifth column the maximum possible values of the estimated
acceleration are shown calculated by formula log(Amax) = h - s/n. Q0.90(30) is
the quantile of level q = 0.90 for the maximum estimated acceleration in a future
time interval of 30 years.

3.1.3 The Accounting for Inaccuracy of the Estimated
Acceleration

The estimated acceleration (3.3) differs from the true acceleration by a random
value e. We assume that

e ¼ e1 þ e2;

where e1, e2 are independent random errors; e1 refers to inaccuracy of the used
relations (3.3) and e2 characterizes the influence of the seismic source mechanism
on the ground acceleration. In accordance with Aptikaev (2009) the random error
of the relation (3.3) has standard deviation std ðe1Þ ¼ 0:18: The distribution of e1

is not critical: we compared on several artificial examples the Gauss distribution
and the uniform distribution and found no essential differences in the estimates of
quantiles QqðsÞ: So, we accept for e1 the Gauss distribution. In order to evaluate
std e2ð Þ: we suppose that all sources in Japan territory can be classified into three
types with following relative frequencies:

normal fault � 15 %;

strike� slip � 20 %;

inverse fault thrustð Þ � 65 %:

ð3:9Þ

These relative frequencies are taken from the regional earthquakes focal
mechanism data Zlobin and Polets (2012), and they reflect the predominance of the
compression tectonic forces in the Japan region. Following Aptikaev (2009) we
assume further that these source types produce correspondingly in the epicentral
zone the following mean peak ground accelerations (PGA):

Table 3.1 Statistical estimates of GPD parameters fitted to the estimated acceleration data

h nh n h - s/
n

Q0.90

(30)
p-value of
GPD

Tokyo 0.5 279 -0.23 ± 0.05 2.76 2.3 0.72
Hiroshima 0.6 118 -0.21 ± 0.07 2.79 2.1 0.69
Osaka 0.1 462 -0.19 ± 0.04 2.73 2.1 0.63
Fukushima 0 544 -0.29 ± 0.03 2.62 2.3 0.13
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log10 Að Þ ¼ 2:65;

log10 Að Þ ¼ 2:76;

log10 Að Þ ¼ 2:95:

ð3:10Þ

We have used here the mean PGA value log10 Að Þ ¼ 2:76 valid for a totality of
earthquakes with different types of focal mechanisms instead of that typical of strike-
slip events and equal to 2.80 Aptikaev (2009). It gives us a possibility to use a simpler
scheme of taking into account the difference of mean PGA values in the cases of
different focal mechanisms. If we knew the source mechanism for each earthquake in
our catalog we could take this information into account, but since it is unknown for
the JMA catalog (at least for the first half of this catalog), we have to model the
influence of the source mechanism by an additional random term e2. The mean value
of random variable taking values (3.10) with probabilities (3.9) is * 2.76 and
standard deviation is 0.15. Thus, we can accept that std of e2 is 0.15. We suppose that
the distribution of e2 is the Gaussian as well. Then the error (e1 ? e2) has standard
deviation 0.23. Thus, we can assume that the maximum estimated acceleration
analyzed in the previous section differs from the true maximum ground acceleration
by a random Gaussian error with zero mean and std = 0.23. So, we have to take into
account the influence of this random error on the quantile Qq(s). We have done it by a
simulation procedure, adding a random Gaussian rv with std = 0.234 to the GPD-
random variable with estimated parameters (see Table 3.1) and repeating this
operation 10,000 times. Figure 3.15 shows the quantiles Qq sð Þ: both with error term
e = (e1 ? e2) (heavy curves) and without it (light curve) for all four points under
analysis. We see that the accounting for errors is practically reduced to an increase of
the undisturbed quantile by one std of the error.

The quantile Qq sð Þ is a final result of our statistical technique. It is a robust and
meaningful characteristic of the seismic hazard.

It should be remarked that the estimation of the peak ground acceleration
depends in a large extent on the used relation of type (3.1) or (3.3) connecting the
log-acceleration with magnitude and distance. We have used the relation (3.3) due
to Aptikaev (2009) that does not take into account the regional or local features
connected with soil properties. Of course, relation taking into account regional and
geological pecularities of the site would be preferable. So, our results exposed
above might be considered as preliminary estimation of real acceleration and
illustration of our statistical method for this problem.

3.2 Earthquakes, Tsunami (Victims)

In this section we shall use revised and extended version of the catalog of
earthquake victims in Japan composed by Utsu (1979, 2002). The catalog includes
as well victims of tsunami, caused by earthquakes, and covers time period
1900–2012. It contains two types of data: fatalities and the injured.
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(a) Fatalities
The catalog contains fatality data of 73 earthquakes. Figure 3.16 shows general
view of these data. The maximum fatality (142,807) occurred at 1923, Tokio. Such
high number can be explained by gigantic fires that struck old houses and struc-
tures existed at that time. So, if one is interested only in possibilities of similar
disasters in the future this observation, perhaps, could be eliminated from the
sample, but we left it nevertheless, counting for the robustness of our method.
Looking at Fig. 3.16 we see that the intensity of events visually slightly decreases
with time, although this effect is not very strong. Perhaps, this decrease can be
explained by more safe modern structure and more effective preventive measures.
It should be noted that this effect competes with the expected increase in a number
of fatalities because of the natural growth of population.

Fig. 3.15 GPD-quantiles
Q0.90(s) of estimated
acceleration both with error
term e = (e1 ? e2) (heavy
curves) and without it (light
curves) for all four points
under analysis. From top to
bottom: Tokyo, Hiroshima,
Osaka, Fukushima
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As it was mentioned above for the stationary Poisson process time moments ti
are uniformly distributed on interval [0; T]. On Fig. 3.17 we compare the
empirical DF of normalized time moments si F̂nðsÞ with uniform DF (F(s) = s;
0 B s B 1). The standard Kolmogorov test gives the Kolmogorov distance
Dn =

ffiffiffi

n
p

max | F̂nðsÞ� F(s)| = 1.004 which corresponds to p-value = 0.23
(probability to exceed Dn under condition that F̂nðsÞ was generated by theoretical

Fig. 3.16 The fatality events of the catalog of earthquake victims (Japan) composed by Utsu,
1900–2012

Fig. 3.17 Catalog of earthquake victims, Japan, 1900–2012. The empirical distribution function
Fn(s)) of normalized occurrence times sj compared with the uniform distribution function
(diagonal line)
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DF F(s). Since this p-value (p–v) is not sufficiently small (more than 0.1), we can
accept the hypothesis of stationarity of ti:

Now we consider the fatalities figures. The tail graph is shown on Fig. 3.18. We
see that on the whole the tail 1- F(x) has power-like behavior with appreciable
irregularities. So, it is reasonable to take logarithms and to analyze log(x). The
concentration of victims in the extreme range of the catalog is very high: it turns
out that 10 % of the most disastrous events are responsible for 98 % of the total
number of perished. Even if we exclude maximum fatality case (142, 807 occurred
at 1923, Tokio) 10 % of the most disastrous events would make up 83 % of the
total number of perished.

On Fig. 3.20 the cumulative sums of log-fatalities are shown. In spite of some
local fluctuations the trend on the whole looks like a linear function. There are
some deviations, but they have no definite tendency. So, we accept the hypothesis
of stationarity of this catalog.

Now we apply to our catalog the statistical analysis exposed above. We take a
grid of thresholds hj for log(x) and fit both GPD and ED for each hj. The goodness
of fit is measured by the Kolmogorov distance. The results are shown on Fig. 3.21.
We see that minimum KD-distance 0.665 is reached for GPD-approach at
h = 0.45. The GPD fitting includes estimation of two parameters (n, s), whereas
the standard Kolmogorov testing assumes no unknown parameter. For this reason
we cannot use directly the standard p–v from tables of the Kolmogorov distribu-
tion. In order to calculate p–v we used the simulation method as we mentioned
above. The best fit of GPD-distribution for h = 0.45 (n = -0.260 ± 0.111;
s = 1.657 ± 0.430) provides p–v = 0.433, which allows to accept the GPD.
Figure 3.19 shows the extreme part of the tail used for parameter estimation along

Fig. 3.18 Catalog of earthquake victims, Japan, 1900–2012. The tail graph of fatalities
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with fitted GPD-curve. We see that observations exhibit some irregular oscillations
around the approximating GPD-curve, but on the whole the fitting is satisfactory.

Now we are able to calculate the quantiles QqðsÞ which are the final goal of our
estimation. Figure 3.22 shows the GPD-quantiles for 3 different confidence levels
q = 0.90; 0.95; 0.99. It should be remarked that for very small s the quantiles

Fig. 3.19 Catalog of earthquake victims, Japan, 1900–2012. The extreme tail 1 –
F(y) (y = log(x), x—number of dead) and approximating GPD-tail: h = 0.45; n = -0.260;
s = 1.657; n = 44

Fig. 3.20 Catalog of earthquake victims, Japan, 1900–2012. The cumulative sums of log-
fatalities
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takes zero values and have small jumps equal to exp(-ks) which is the probability
that there is no event on the interval [0; s].

It is interesting to calculate ‘‘maximum possible size’’, i.e. the rightmost limit
Mmax of the GPD for log(x):

Mmax = h - s/n = 6.83 (this corresponds to 6,800,000 fatalities).

Fig. 3.21 Catalog of earthquake victims, Japan, 1900–2012. The KD-distances for a grid of log-
thresholds hj. Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.22 Catalog of earthquake victims, Japan, 1900–2012. The GPD-quantiles for three
different confidence levels q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Such gigantic figure appears to be unreal, it hardly can be used as a useful
statistical characteristic of real fatalities and has little practical value. In the same
time the quantile Q0.95(10) = 5.66 (460,000) looks quite realistic. This compari-
son shows once more stability of the quantiles QqðsÞ with respect to the ‘‘maxi-
mum possible size’’ parameter.

(b) The injured
The catalog contains numbers of injured in 131 earthquakes. Figure 3.23 shows
these numbers in time. The maximum number (103,733) occurred at 1923, Tokio.
As we mentioned above such high number of dead and injured can be explained by
gigantic fires. Looking at Fig. 3.23 we see that the intensity of events visually
slightly increases with time, although this effect is not very strong. Perhaps, this
increase can be explained by more attentive registration of events with minor
number of injured.

On Fig. 3.24 we compare the empirical DF of normalized time moments si

F̂nðsÞ with uniform DF. We see that there is a certain down deviation of the
empirical DF from the diagonal, which testifies that the visual effect of an intensity
increase is real. The Kolmogorov distance Dn = 2.048 corresponds to p–
v = 0.0005 which makes us to reject the hypothesis of stationarity of the catalog.
Looking at Fig. 3.23 we can suspect that the non-stationarity is caused by weaker
events. In order to check this suspicion we tried several lower thresholds. The
resulting intensities smoothed by 15-year time window are shown on Fig. 3.25.
We see that the evident non-stationary intensity of the original catalog (h = 0)
decreases with growing h and practically vanishes at h = 400. This threshold
seems high (it is left only 23 observations above this threshold), but, fortunately,
just this threshold provides the best GPD-fitting, as we shall see below.
The empirical DF of normalized event times for h = 400 is shown on Fig. 3.26.

Fig. 3.23 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012
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The Kolmogorov distance KD = 1.21 which corresponds to p–v = 0.11. This
value is on the border of acceptance, but still more than 0.10 and we can accept
with some reservation the hypothesis of the stationarity of the event times for
h = 400. Now we check for stationarity the distribution of injured. Figure 3.27
shows the cumulative sums of log(xj), xj—numbers of injured. We see that

Fig. 3.24 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
empirical distribution function Fn(t) of normalized occurrence times tj compared with the uniform
distribution function (diagonal line)

Fig. 3.25 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012.
Intensities for four thresholds from bottom to top: h1 = 1 (n1 = 131); h2 = 10 (n2 = 78);
h3 = 100 (n3 = 44); h4 = 400 (n4 = 23), smoothed by 15-year time window
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deviations from a straight line are not significant, and we can accept the hypothesis
of the stationarity of distribution of injured. So, we accept the hypothesis of the
stationarity of this catalog.

The tail graph of injured is shown on Fig. 3.28. We see that on the whole the
tail 1– F(x) has power-like behavior with possible increasing inclination. So, it is
reasonable to take logarithms and to analyze log(x). Figure 3.30 shows the

Fig. 3.26 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
empirical DF of normalized event times for h = 400. The empirical distribution function Fn(s) of
normalized occurrence times sj compared with the uniform distribution function (diagonal line)

Fig. 3.27 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
cumulative sums of log(xk), xk—numbers of injured
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contribution of the p-fraction of the largest events to the total sum. We see that
10 % of the most disastrous events are responsible for 94 % of the total number of
injured. Such sample can be characterized as sample with a strong concentration.
Figure 3.29 shows the extreme part of the tail used for parameter estimation along
with fitted GPD-curve. We see that the GPD-approximation is on the whole sat-
isfactory in spite of some oscillations.

Fig. 3.28 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
tail graph 1–F(x)

Fig. 3.29 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
extreme tail 1–F(y) (y = log(x), x—number of injured by earthquake) and approximating GPD-
tail: h = 0.55; n = -0.374; s = 1.860; n = 99
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The Kolmogorov test for a grid of thresholds is shown on Fig. 3.31. The best fit
of GPD-distribution under h = 0.55 (n = -0.374 ± 0.063; s = 1.86 ± 0.30)
provides p–v = 0.69, which supports GPD-distribution.

Now we are able to calculate the quantiles QqðsÞ. Figure 3.32 shows the GPD-
quantiles for 3 different confidence levels q = 0.90; 0.95; 0.99. Again we see
jumps for very small s corresponding to absence of events on time interval [0; s.]

Fig. 3.30 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
contribution of the p-fraction of the most deadly events to the total death toll

Fig. 3.31 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
KD-distances for a grid of log-thresholds hj. Thick line—GPD-fitting; thin line—ED-fitting
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The ‘‘maximum possible size’’ (rightmost limit Mmax of the GPD) is:

Mmax ¼ h� s=n ¼ 5:52 ðthis corresponds to 330,000 injured personsÞ

This is much more than the quantile Q0.95(10) = 4.81 (65,000).

3.3 Floods (Victims, Overall Economic Losses)

3.3.1 Cautions on the Accuracy of the Flood Damage Data

Flood damage estimates are reported in many different ways, and are subject to a
wide variety of errors. Estimates come from federal, state, or county level gov-
ernment officials. Some inaccuracies and mistakes in the data are inevitable,
damages are often underreported. Besides, different definitions of term ‘‘flood’’ are
used. One of the most critical discrepancies of these data occurs with storm surge
related flooding caused by tropical cyclones. Coastal flooding caused by storm
surge is not counted in the figures of the flood damage data used below. The record
season of 2005, with hurricanes Katrina and Rita, were undoubtedly enormous
flooding events. However, the damages associated with hurricane Katrina were
largely due to storm surge, and not fresh water flooding (associated to rainfall).
Therefore, the annual figure of $51B for water year 2005, although much higher
than any other year, does not account for most of the flooding produced by Katrina.
On the other hand, the damages from hurricanes that we shall analyze below,

Fig. 3.32 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
GPD-quantiles for three different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve);
0.99 (upper curve)
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include the hurricane Katrina with $108B damage, which contributed in $141B of
annual US hurricane damage, 2005.

In this section we shall use the data of the International Disaster Database
(www.emdat.be/). The data consist of three types of flood losses in USA, 1900-
2011: fatalities, numbers of affected by flood and estimated economic losses from
flood.

(a) Fatalities

The catalog contains fatality data of 99 floods. Figure 3.33 shows general view of
these data. Looking at Fig. 3.33 we see that the intensity of events sharply
increases since 1995. Perhaps, this increase can be explained by more careful
registration of victims in later times. On Fig. 3.34 the intensity of events is shown
for 1995–2011. We see a stable behavior of the event flow. So, we shall use below
data from 1995 onwords.

On Fig. 3.35 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The deviations from diagonal are small. The Kolmogorov
distance KD = 0.633 corresponds to p–value = 0.82. Since this p-value (p–v) is
considerably more than 0.1, we can accept the hypothesis of stationarity of ti:

Now we consider the fatalities figures. The tail graph is shown on Fig. 3.36. The
tail decrease goes rather gradually at the middle range (which is typical of the Pareto
distribution), but accelerates at x [ 15, approaching the exponential tail behavior.
Thus, it is not clear, whether the log-transformation of data is appropriate? KD-
distances, characterizing goodness of fit are shown on Fig. 3.38 for a grid of
thresholds. We see that the original data have been fitted by ED much better
(h = 100.45 = 2.5; n = 41; KD = 0.836; p–v = 0.22) than logarithms
(h = 100.7 = 5; n = 32; KD = 1.515; p–v = 0.0004). Thus, we use the original
data for further processing. Figure 3.39 shows the contribution of the p-fraction of

Fig. 3.33 The fatality events of the catalog of flood victims, USA, 1900–2011
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the most deadly events to the whole death toll. We see that 10 % of the most deadly
events are responsible for 55 % of the death toll. Such a sample can be characterized
as a sample with a weak concentration. Figure 3.37 shows the extreme part of the tail
used for parameter estimation along with fitted exponential curve. We see that
behavior of the extreme part of sample tail is rather unstable, and an exponential
curve gives the best possible approximation in this complicated situation. The p-
value 0.22 is not too high, but still it gives the ground to accept the ED.

Fig. 3.34 The intensity of floods with fatalities, USA, 1995–2011, smoothed by 5-year time
window

Fig. 3.35 Flood fatalities, USA, 1995–2011. The empirical DF of normalized event times si

F̂nðsÞ
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On Fig. 3.40 the cumulative sums of fatalities for 1995–2011 (n = 61) are
shown. In spite of some local fluctuations the trend on the whole looks like a linear
function. If there are some deviations they seem to be insignificant. So, we accept
the hypothesis of the stationarity of this catalog. Now we are able to calculate the
quantiles QqðsÞ, using ED fitting. Figure 3.41 shows the ED-quantiles for three
different confidence levels q = 0.90; 0.95; 0.99.

Fig. 3.36 Flood fatalities, USA, 1995–2011. The tail graph 1–F(x)

Fig. 3.37 Flood fatalities, USA, 1995–2011. The extreme tail 1–F(x), and approximating EXP-
tail exp[-a�(x–h)]; h = 0.45; a = 0.108; n = 41
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(b) Affected by floods
Affected people, as defined in EM-DAT, are people who require immediate
assistance during a period of emergency, including displaced or evacuated people.
The catalog contains numbers of affected in 95 floods, 1970–2011. Figure 3.42
shows these numbers in time. The maximum number (11,000,148) occurred at

Fig. 3.38 Flood fatalities, USA, 1995–2011. The KD-distances for a grid of log-thresholds hj.
Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.39 Flood fatalities, USA, 1995–2011. The contribution of the p-fraction of the most
deadly events to the whole death toll
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09.06.2008. Looking at Fig. 3.42 we see that the intensity of events sharply
increases at 1995, which coincides with mentioned above behavior of flood
fatalities. On Fig. 3.43 the intensity of events is shown for 1995–2011. We see a
stable behavior of the event flow. So, we have used the data from 1995 onwards.

On Fig. 3.44 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The deviations from diagonal are relatively small. The

Fig. 3.40 Flood fatalities, USA, 1995–2011. The cumulative sums of fatalities for 1995–2011
(n = 61) are shown

Fig. 3.41 Flood fatalities, USA, 1995–2011. ED-quantiles for three different confidence levels:
q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Kolmogorov distance Dn = 0.692 corresponds to p-value = 0.72. Since this p-
value (p–v) is more than 0.1, we can accept the hypothesis of stationarity of ti:

Now we consider the figures of affected by floods. The tail graph is shown on
Fig. 3.45. We see that on the whole the tail 1 – F(x) has power-like behavior with
one outlier (maximum event May 09, 2008 with 11,000,148 affected). So, it is
reasonable to take logarithms and to analyze log(x). Figure 3.47 shows the con-
tribution of the p-fraction of the largest events to the total sum. We see that 10 %
of the most disastrous events are responsible for 97.7 % of the total number of
affected. This is a tail with ‘‘strong concentration’’.

Fig. 3.42 Affected in floods, USA, 1995–2011. Time–event size diagram

Fig. 3.43 Affected in floods, USA, 1995–2011. The intensity of events for 1995–2011,
smoothed by 10-year time window
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The Kolmogorov test for a grid of thresholds is shown on Fig. 3.48. We see that
minimum KD-distance 0.567 is reached at h = 2.7 by GPD. Using the simulation
method we got p–v = 0.665, which allows us to accept GPD-distribution
(h = 2.7; n = -0.182 ± 0.113; s = 1.205 ± 0.302). Figure 3.46 shows the
extreme part of the tail used for parameter estimation along with fitted GPD-curve.
We see that the approximation is more or less satisfactory.

Fig. 3.44 Affected in floods, USA, 1995–2011. The empirical DF F̂nðsÞ of normalized event
times si

Fig. 3.45 Affected in floods, USA, 1995–2011. The tail graph 1 – (Fx)
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Now we are able to calculate the quantiles QqðsÞ. We use for these quantiles
GPD-distribution as providing the best fitting. Figure 3.49 shows GPD-quantiles
for three different confidence levels q = 0.90; 0.95; 0.99.

The ‘‘maximum possible size’’ (rightmost limit Mmax of the GPD) is:

Mmax ¼ h� s=n ¼ 9:31ð2 � 109peoplesÞ:

Fig. 3.46 Affected in floods, USA, 1995–2011. The extreme tail 1 – F(y) (y = log(x), x—
number of affected in flood) and approximating GPD-tail: h = 2.7; n = -0.182; s = 1.205;
n = 52

Fig. 3.47 Affected in floods USA, 1995–2011. The contribution of the p-fraction of the most
disastrous events to the total sum of affected

3.3 Floods (Victims, Overall Economic Losses) 57



Again, we can say that such gigantic figure hardly has a practical value. In the
same time the quantile Q0.95(10) = 7.25 (17.7 � 106 peoples) looks quite realistic.

(c) Estimated damages caused by floods in USA

The catalog contains estimated economic loss data of 78 floods in USA,
1900–2011 (indexed to 2011) in millions of USA $. Figure 3.50 shows general

Fig. 3.48 Affected in floods USA, 1995–2011. The KD for a grid of log-thresholds. Thick line—
GPD-fitting; thin line—ED-fitting

Fig. 3.49 Affected in floods USA, 1995–2011. GPD-quantiles for three different confidence
levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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view of these data. Looking at Fig. 3.50 we see that the intensity of events sharply
increases since 1995 (shown by vertical line on the Figure), which is consistent
with behavior of data on fatalities and affected. Again, we shall analyze data only
from 1995 onwards.

On Fig. 3.51 the intensity of events is shown for 1995–2011. We see a stable
behavior of the event flow with a weak decrease to the end of interval.

On Fig. 3.52 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The Kolmogorov distance Dn = 1.062 corresponds to

Fig. 3.50 Estimated economic losses from floods, USA, 1995–2011, in 106 $ (adjusted to 2011).
Time–event size diagram

Fig. 3.51 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The intensity of
events, smoothed by 10-year time window
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p-value = 0.21. Since this p-value is more than 0.1, we can accept the hypothesis
of stationarity of ti:

Now we consider the loss figures. The tail graph is shown on Fig. 3.53. The tail
decrease goes rather gradually which is typical for the Pareto distribution. So, we
take logarithms for further analysis. KD-distances, characterizing goodness of fit

Fig. 3.52 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The empirical DF
F̂nðsÞ of normalized time moments s

Fig. 3.53 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The tail
graph 1 – F(x)
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are shown on Fig. 3.55 for a grid of thresholds. The threshold h = 1.9 provides the
best fitting for GPD (KD = 0.501; n = -0.486 ± 0.091; s = 1.129 ± 0.286).

Figure 3.56, shows the contribution of the p-fraction of the most costly events
to the whole sum of losses. We see that 10 % of the most deadly events are
responsible for 68 % of the total loss. Such sample can be characterized as sample

Fig. 3.54 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The extreme tail
1 – F(y) (y = log(x), x—loss in 106 USD) and approximating GPD-tail: h = 1.9; n = –0.486;
s = 1.129; n = 32

Fig. 3.55 Estimated economic losses from floods, USA, 1995–2011, in 106 $. KD-distances for
a grid of log-thresholds. Thick line—GPD-fitting; thin line—ED-fitting
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with a ‘‘moderate concentration’’. Figure 3.54 shows the extreme part of the tail
used for parameter estimation along with fitted GPD-curve. We see that the
approximation is quite satisfactory.

Now we calculate the quantiles QqðsÞ, using GPD fitting. Figure 3.57 shows the
GPD-quantiles for three different confidence levels q = 0.90; 0.95; 0.99.

Fig. 3.56 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The contribution
of the p-fraction of the most costly events to the total sum of all losses

Fig. 3.57 Estimated economic losses from floods, USA, 1995–2011, in 106 $. GPD-quantiles
for three different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper
curve)
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3.4 Tornadoes (Fatalities)

In this section we shall use the data of tornado fatalities displayed in the Internet
(http://en.wikipedia.org/wiki/
List_of_North_American_tornadoes_and_tornado_outbreaks#1900.E2.80.931919
). The data consist of fatality numbers of 249 tornadoes, USA, 1900–2012. Fig-
ure 3.58 shows general view of these data. Looking at Fig. 3.58 we see that the
intensity of events depends on their values. On Fig. 3.59 the intensity of events is
shown for two thresholds: h1 = 1 (n1 = 249) and h2 = 10 (n2 = 143). We see that
the threshold h2 provides event flow with rather stable intensity whereas there are
n = 143 events exceeding this threshold.

On Fig. 3.60 we compare the empirical distribution functions Fð1Þn1 ðxÞ, Fð2Þn2 ðxÞ of
normalized time moments corresponding to these two thresholds with uniform DF.

The deviations of Fð1Þn1 ðxÞ from diagonal are large (corresponding KD = 3.69; p–

v = 3 � 10-12), whereas the deviations of Fð2Þn2 ðxÞ are much smaller (corresponding
KD = 1.08; p–v = 0.20). Since the last p–v is more than 0.1 we can accept the
hypothesis of stationarity of time moments ti for events exceeding h2 = 10.

Now we check stationarity of the fatalities xj exceeding h2 = 10. Figure 3.61
shows the cumulative sums of log10(xj). Somewhere near tj = 60 (corresponding
to May 09, 1953) we can distinguish a small but clear decrease of slope. In order to

clarify the situation we plotted two sample DF: Gð1Þm1 ðxÞ and Gð2Þm2ðxÞ, relating to
t B May 09, 1953, (m1 = 60) and to t [ May 09, 1953 (m2 = 83) correspond-
ingly, see Fig. 3.62. We see that distribution functions differ quite definitely, in
particular in the middle range. The Kolmogorov–Smirnov distance (KSD)

KSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

m1 þ m2

r

max G 1ð Þ
m1

xð Þ � G 2ð Þ
m2

xð Þ
�

�

�

�

Fig. 3.58 Tornado fatalities, USA, 1900–2012. Time–event size diagram
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equals to 3.02 which corresponds to p–v = 1 � 10-8. So, we have to use for the
further analysis only 83 data observed after May 09, 1953.

The tail graph is shown on Fig. 3.63. The tail is typical of the Pareto distribution.
So, we use logarithmically transformed data. KD-distances, characterizing goodness
of fit are shown on Fig. 3.65 for a grid of thresholds. We see that the original data

Fig. 3.59 Tornado fatalities, USA, 1900–2012. The intensities smoothed by 40-year time window
for two lower thresholds: h1 = 1 (n = 249), upper curve; h2 = 10 (n = 143), lower curve

Fig. 3.60 Tornado fatalities, USA, 1900–2012. Two empirical distribution functions Fð1Þn1
ðxÞ,

Fð2Þn2
ðxÞ of normalized time moments corresponding to thresholds h1 = 1 (n = 249), lower curve;

h2 = 10 (n = 143), upper curve
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have been fitted by both distributions (ED and GPD) almost identically for thresh-
olds h = 1.3 – 1.35. The form parameter of GPD for these thresholds was found to
be practically zero (*10-8). Thus, GPD and ED in this case are practically identical.
The best fit corresponds to the threshold h = 1.3; n = 53. The parameter of expo-
nential distribution a = 2.75 ± 0.38. As we remarked above, the exponential dis-
tribution for log(x) means the Pareto distribution for original x with parameter

Fig. 3.61 Tornado fatalities, USA, 1900–2012. The cumulative sums of log10(xk), xk—number
of dead. The arrow indicates slope break (at time 09.05.1953)

Fig. 3.62 Tornado fatalities, USA, 1900–2012. Two sample DF: Gð1Þm1
ðxÞ and Gð2Þm2ðxÞ, relating to

t B May 09, 1953, (m1 = 60), right curve, and to t [ May 09, 1953 (m2 = 83), left curve
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b = a/log(10) = 1.19 ± 0.17. We see that the tail of tornado victims is close to a
heavy one (expectation is finite, but variance is infinite). Taking into account that the
confidence interval for parameter b

1:19 � 0:17; 1:19 þ 0:17ð Þ

Fig. 3.63 Tornado fatalities, USA, 1953–2012, threshold h C 10, n = 83. The tail function 1 –
F(x). Approximating line is the same as on Fig. 3.64

Fig. 3.64 Tornado fatalities, USA, 1953–2012. The extreme tail 1 – F(y) (y = log(x), x—
number of dead) and approximating EXP-tail exp[-a�(y - h)]; h = 1.3; a = 2.754; n = 53
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contains the true parameter value only with probability 84 % (it is valid for the
Gauss distribution), one cannot exclude possibility that the true b \ 1, i.e. the tail
is really heavy.

Figure 3.66 shows the contribution of the p-fraction of the most deadly events
to the whole death toll. We see that 10 % of the most deadly events are responsible

Fig. 3.65 Tornado fatalities, USA, 1953–2012. KD-distances for a grid of log-thresholds. Thick
line—GPD-fitting; thin line—ED-fitting

Fig. 3.66 Tornado fatalities, USA, 1953–2012, threshold h C 10. The contribution of the p-
fraction of the most deadly events to the total death toll
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for 60 % of the death toll. Such sample can be characterized as sample with a
‘‘weak concentration’’. Figure 3.64 shows the extreme part of the tail used for
parameter estimation along with fitted ED-curve. We see that the approximation is
more or less satisfactory.

Now we are able to calculate the quantiles QqðsÞ. Figure 3.67 shows the ED-
quantiles for 3 different confidence levels q = 0.90; 0.95; 0.99.

3.5 Annual Economic Losses from Floods, USA

In this section we analyze the annual flood damage data compiled by the US
National Weather Service (www.flooddamagedata.org). We take the time period
1903–2011. The time series of flood damages in log-scale is shown on Fig. 3.68.
The damage is measured in $109 (adjusted to 2011). We see that behavior of the
time series noticeably changes its character somewhere near 1940. This conclusion
is supported by the graph of cumulative sums of log-damage shown on Fig. 3.69.
A more or less stable trend is established only after 1940. Thus, we took for further
analysis the time period 1940–2011. The sample tail 1 – F(x) of these data is
shown on Fig. 3.70. We see rather moderate power-like decreasing (straight line at
the extreme range). Figure 3.72 shows the contribution of the p-fraction of the
most costly years to the total damage. We see that 10 % of the most costly years
are responsible only for 40 % of the total damage. Such sample can be charac-
terized as sample with a ‘‘weak concentration’’. Figure 3.71 shows the extreme
part of the tail used for parameter estimation along with fitted GPD-curve. We see
that the approximation is quite satisfactory.

Fig. 3.67 Tornado fatalities, USA, 1953–2012, threshold h C 10. The ED-quantiles for three
different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Now we apply GPD-fitting to peaks over thresholds h. The resulting KD-
distances characterizing goodness-of-fit are shown on Fig. 3.73. The best GPD-
fitting occurs at h = 0.4 (n = 48; n = -0.354 ± 0.093; s = 0.541 ± 0.126; p–
v = 0.90). The Q-quantiles in log-scale given by Eq. (2.44) are shown on
Fig. 3.74.

Fig. 3.68 The time series of annual flood damages in log-scale, USA, 1903–2011. The damage
is in $109 (adjusted to 2011)

Fig. 3.69 Annual flood damages in the USA 1903–2011. The cumulative sums of log-damages
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3.6 Annual Economic Losses from Hurricanes, USA

In this section we analyze the annual hurricane damage data published in Blake
and Gibney (2011). We take the time period 1940–2010. The time series of hur-
ricane damages in log-scale is shown on Fig. 3.75. The damage is measured in

Fig. 3.70 Annual flood damages in the USA 1940–2011. The sample tail 1 – F(x)

Fig. 3.71 Annual flood damages in the USA 1940–2011. The extreme tail 1 – F(x) and
approximating GPD-tail: h = 0.4; n = -0.354; s = 0.541; n = 48
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$106 (adjusted to 2010). We see that the time series does not exhibit non-sta-
tionarity. This conclusion is supported by the graph of cumulative sums of log-
damage shown on Fig. 3.76. A more or less stable trend supports assumption of
stationarity. The sample tail 1 – F(x) of these data is shown on Fig. 3.77. We see
irregular decreasing with some fluctuations. Figure 3.79 shows the contribution of
the p-fraction of the most costly years to the total damage. We see that 10 % of the

Fig. 3.72 Annual flood damages in the USA 1940–2011. The contribution of the p-fraction of
the costliest events to the total sum

Fig. 3.73 Annual flood damages in the USA 1940–2011. KD-distances for a grid of log-
thresholds. Thick line—GPD-fitting; thin line—ED-fitting
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most costly years are responsible for 70 % of the total damage. Such sample can
be characterized as sample with a ‘‘moderate concentration’’. Figure 3.78 shows
the extreme part of the tail used for parameter estimation along with fitted GPD-
curve. We see that the approximation is satisfactory although there are certain
deviations.

Fig. 3.74 Annual flood damages in the USA 1940–2011. The GPD-quantiles for three different
confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)

Fig. 3.75 The time series of annual hurricane damages in log-scale, USA, 1940–2010. The
damage is in $106 (adjusted to 2010)
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Now we apply GPD-fitting to peaks over thresholds h. The resulting
KD-distances characterizing goodness-of-fit are shown on Fig. 3.80. The best
fitting occurs at h = 1.5 (n = 64; n = -0.636 ± 0.045; s = 2.368 ± 0.352;
p–v = 0.48). The Q-quantiles in log-scale given by Eq. (2.44) are shown on
Fig. 3.81.

Fig. 3.76 Annual hurricane damages in the USA 1940–2010. The cumulative sums of log-
damages

Fig. 3.77 Annual hurricane damages in the USA 1940–2010. The sample tail 1 – F(x)
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Fig. 3.78 Annual hurricane damages in the USA 1940–2010. The extreme tail 1 – F(y)
(y = log(x), x—annual hurricane damage) and approximating GPD-tail: h = 1.5; n = -0.636;
s = 2.368; n = 64

Fig. 3.79 Annual hurricane damages in the USA 1940–2010. The contribution of the p-fraction
of the costliest years to the total sum
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Fig. 3.80 Annual hurricane damages in the USA 1940–2010. KD-distances for a grid of log-
thresholds. Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.81 Annual hurricane damages in the USA 1940–2010. The GPD-quantiles for three
different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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