
Chapter 1
Heavy-Tailed Distributions and Their
Properties

Abstract We define the heavy-tailed distribution as distribution with infinite
mathematical expectation. For such distributions the standard statistical tools—
sample mean and sample standard deviation—exhibit a high instability. Some
examples illustrating this conclusion are presented. We discuss relations between

the maximum event MðnÞmax ¼ max x1; . . .; xnð Þ and the total sum Sn ¼ x1 þ � � � þ xn

for heavy-tailed distributions. The asymptotical proportionality of MðnÞmax and Sn is
derived for the heavy-tailed Pareto distributions (Eq. (1.18)).

Keywords Heavy tailed distributions � Pareto distribution � Maximum event—
total sum relations

The main focus of our study is made on damages from disasters whose distribution
can be described by power-like laws with a heavy tail. The disasters of this type
typically occur in a very broad range of scales, the rare greatest events being
capable of causing losses comparable with the total loss due to all the other
(smaller) events. The disasters of such a type are the most unexpected ones and
they frequently entail huge losses. One of the most important results of our study is
the conclusion about the instability of the ‘‘maximum possible earthquake’’
parameter Mmax which is frequently used in the seismic risk assessment. Instead of
focusing on the unstable parameter Mmax we suggest a stable and convenient
characteristic Mmax(s) defined as the maximum size of a given phenomenon that
can be recorded over a future time interval s. The random value Mmax(s) can be
described by its distribution function, or equivalently by its quantiles Qq(s), which
are stable, robust characteristics in contrast to Mmax. Besides, if s ? ?, then
Mmax(s) ? Mmax with probability one. The method of calculation of Qq(s) is
exposed below. In particular, we can estimate Qq(s) for, say, q = 90, 95 and 99 %,
as well as for the median (q = 50 %) for any desirable time interval s. Our method
provides an alternative and robust way to parameterize the rightmost tail of the
frequency-size relation. The final goal of our data processing consists in obtaining
a family of quantiles Qq(s) that corresponds to damage (fatalities in a disaster,
economic damage, insurance losses etc.) that will not be exceeded in future s years

V. F. Pisarenko and M. V. Rodkin, Statistical Analysis of Natural Disasters
and Related Losses, SpringerBriefs in Earth Sciences,
DOI: 10.1007/978-3-319-01454-8_1, � The Author(s) 2014

1



with a prescribed probability q. This characteristic seems to be particularly useful,
for instance in the insurance business.

It is well known that distributions of some parameters of natural processes
(earthquake energy, economic damage and casualties from natural disasters and
others) are often modeled by power-like laws, such as the Pareto distribution. The
Pareto distribution function and probability density are given as follows:

F xð Þ ¼ 1� h=xð Þb; f xð Þ ¼ b � hb

x1þb
; x � h: ð1:1Þ

If the exponent b of such a distribution is less than unity, b B 1, then the
mathematical expectation of the corresponding random variable is infinite. In this
case, the standard statistical tools, such as sample mean and sample standard
deviation, exhibit a high instability. Such distributions are often called distribu-
tions with heavy tails. It should be noted here that there is no commonly accepted
definition of a heavy tailed distribution. Here we apply this term to distributions
F(x) whose mathematical expectation is infinite:

Ex ¼
Z

xdF xð Þ ¼ 1: ð1:2Þ

Accordingly, the opposite term light tail will designate distributions with finite
expectation.

However there is a wide class of distributions where mathematical expectation
is finite but higher statistical moments are infinite. Such distributions might be
named ‘‘heavy-tailed’’ as well.

One may note that there are alternative definitions of the terms ‘‘heavy tail’’ and
‘‘light tail’’, see Reiss and Thomas (1997), Embrechts et al. (1997).

The Pareto law is a classical example of a heavy tailed distribution provided
that b\= 1. In that case its expectation is infinite, so that the Law of Large
Numbers is inapplicable, and the sample mean and the sample standard deviation
are unstable. In contrast with a more common case of distributions with finite
expectation, the increase of sample size does not improve the accuracy of the
sample mean. The large statistical scatter of values of the sample mean (see e.g.
Osipov 2002) makes this widely used statistical characteristic inadequate for
applications to data sets with heavy tailed distributions. Moreover, its use in such
situations may lead to essential errors and incorrect conclusions. Hereafter we are
giving an illustration to this affirmation.

The total number of fatalities from typhoons, hurricanes and floods in the world
during the period from 1947 till 1960 is about 900,000 (the flood causing the
highest fatality of 1,300,000 occurred in China in 1931). The mean annual fatality
(arithmetic mean) for the period from 1947 till 1960 was X̂ann ¼ 64;300. The mean
annual fatality for the period from 1962 till 1992 is X̂ann ¼ 36;000. These sample
means differ significantly and provide no indication about the probability of such a
super-catastrophic event as the 1931 flood in China.
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Let us consider another example: the total number of fatalities from earthquakes
in the world during the period from 1947 till 1970 was about 151,000 (the
earthquake causing the highest death toll of 240,000 occurred in China in 1976).
The mean annual fatality rate (arithmetic mean) for the period from 1947 till 1970
is X̂ann ¼ 6;300. The mean annual fatality rate for the period from 1962 till 1992 is
X̂ann ¼ 18;600. Here again, both sample means give quite an uncertain charac-
teristic of annual fatality, which is a typical indication of a data set with the heavy-
tailed distribution.

Figure 1.1 shows the non-normalized complementary sample distribution
function for: a—annual casualties; b—number of victims in a single event;
c—annual economic losses. These data are taken from the Web site of the US
Geological Survey (http://www.neic.cr.usgs.gov/neis/eqlists). The Pareto law fits
to the middle range and to the extreme events range are shown by dotted lines,
with b = 0.77 ± 0.11 (a); b = 0.73 ± 0.11 (b); b = 0.65 ± 0.16 (c). We can see
that all the three distributions on Fig. 1.1 can be qualified as heavy-tailed.

Below we present some new approaches to the reliable statistical estimation in
the situations where the standard statistical tools fail.

In the statistical analysis of data with heavy-tailed distributions an important

role belongs to the maximum observed event MðnÞmax ¼ max x1; . . .; xnð Þ. It can be
shown that for a data set with a heavy tailed distribution (according to definition

(1.2)) the maximum event MðnÞmax is commensurable with the total sum

Sn ¼ x1 þ � � � þ xn, i.e. MðnÞmax and Sn are of the same order. For example, in the case
of the Pareto distribution with exponent b\ 1 one has:

Fig. 1.1 Non-normalized
complementary sample of
world-wide losses from
earthquakes distribution
function for: a annual
casualties; b casualties for
individual event; c annual
economic losses. The power-
law functions fitting tails are
shown by dotted lines, with
b = 0.77 ± 0.11 (a);
b = 0.73 ± 0.11 (b);
b = 0.65 ± 0.16 (c)
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E
Sn

MðnÞmax

! 1
1� b

; n!1 ð1:3Þ

Conversely, for a data set with a light tailed distribution (in which case the

expectation is finite E|x| \1), the contribution of MðnÞmax in the total sum Sn

decreases with the sample size n:

MðnÞmax

Sn
! 0; n!1 ð1:4Þ

If a sample is characterized by the Pareto distribution with index b, then MðnÞmax

grows with the size of the sample as n1/b. (We would like to emphasize that this

tendency of a non-linear growth of MðnÞmax with the sample size n or, equivalently,
with the observation time span s can be incorrectly interpreted as an evidence of a
non-stationarity in time (Pisarenko and Rodkin 2010). In many cases, the wide-
spread belief that the rate of losses from natural disasters has a clear tendency of
increasing with time is precisely connected with the misinterpretation of this
apparent non-stationarity effect).

The treatment of heavy-tailed data is often facilitated by using logarithms of
original values. Switching to logarithms (which can be done only when the ori-
ginal numerical values are positive) ensures almost always that all the statistical
moments exist, and hence the Law of Large Numbers and the Central Limit
Theorem are applicable to the sums of logarithms. We are advocating the use of
the logarithmic transform of the original data values as one of the main tools to
prevent complications in the processing of heavy-tailed data sets. As we shall see
later, the use of the logarithmic transform turned to be efficient in all the con-
sidered cases except one (the data set on the fatality of floods in USA from 1995
till 2011).

It should be remarked that if X has the Pareto distribution, then log(X) has
exactly exponential distribution. We shall use this fact below.

Another statistical tool helping to overcome difficulties connected with pro-
cessing heavy tailed data is the order statistics: sample median, sample quantiles,
interquartile range etc. The order statistics can be used also for construction of
confidence intervals. The main statistical tool suggested in this short-monograph
for description of distribution tail—the family of quantiles Qq(s)—is in fact a
continuous analog of the sample ordered statistics. This explains its robustness and
stability.

In our approach we model the sequence of disaster occurrences by well-known
Poisson point process, see Embrechts et al. (1997). The disaster effects can be
different: fatalities and economic losses due to natural catastrophes, earthquake
seismic moments and ground acceleration at a fixed point etc. These effects are
‘‘marks’’ assigned to occurrence times of the point Poisson process. Thus, the
whole construction is called the marked point process. In our applications we shall
model our catalog usually by a stationary Poisson process with intensity k events
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per year (but we devote the special section Non-stationarity of natural processes,
‘‘operational time’’ method to the case of non-stationary Poisson processes). The
random number of events in stationary process for T years is a random Poisson
variable with the mean kS. Let us denote the maximum event for this time period
as MT and the total sum as

P
T. We are now going to derive some relations

between MT and
P

T. It is well known (see, e.g., Gumbel 1958) that for distri-
butions with a light, exponential tail MT increases as the logarithm of T:

MT ffi c � log kTð Þ; ð1:5Þ

where c is some constant, whereas
P

T increases as T, in accordance with the CLT:
X

T
ffi kT � bþ f � r � kTð Þ1=2; ð1:6Þ

where f is some standard normal rv, b is the expectation of a single event (here we
assume b [ 0), and r is the standard deviation (std) of a single event. We consider
the ratio R(T) of the total sum to maximum event:

R Tð Þ ¼
X

T
=MT :

It follows from (1.5), (1.6) that

R Tð Þ ffi b=cð Þ � ðT=logðkTÞÞ: ð1:7Þ

Hence it follows that the R(T) ratio increases with T linearly for the cases of
light tail if we disregard the slowly varying log(kT). A quite different behavior of
R(T) appears for heavy-tailed distributions. For such distributions R(T) grows
much slower and can even have a finite expectation (cf. with (1.3)). In other words,
in this case the total and the maximum event become comparable, i.e., the total
sum is determined in a large extent by the single maximum event.

In order to illustrate this assertion, we are going to derive lower and upper
bounds for R(T) corresponding to the Pareto distribution. Taking logarithms and
their expectation we get

E log
X

T
¼ E log R Tð Þ þ E log MT ð1:8Þ

Using Jensen’s inequality for concave functions, we get:

E logR Tð Þ� log ER Tð Þ: ð1:9Þ

As shown in Pisarenko (1998),

½1� ðkTÞ1�1=b � cð1=b; kTÞ�=ð1� bÞ; b 6¼ 1; ð1:10Þ

ER(T) =

logðkTÞ � expð�kTÞ � ðlogkT � 1Þ; b ¼ 1; ð1:11Þ
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where c(a; t) is the incomplete gamma function. The function ER(T) is tabulated in
Table 1.1.

If kS ? ?, then in (1.10) the incomplete gamma function c(1/b; kS) tends to
the standard gamma function C(1/b). It is possible to derive an explicit expression
for E log(MT) (Pisarenko 1998):

E log MT ¼ log kTð Þ þ C � Ei �kTð Þ=b½ � ð1:12Þ

where C is the Euler constant (C = 0.577…), and Ei(-kS) is the integral expo-
nential function

Ei xð Þ ¼
Zx

�1

expðzÞ
z

dz; x\0:

Combining Eqs. (1.8)–(1.12), we derive an upper bound on E log RT :

E log
X

T
� log

1� kTð Þ1�1=bc 1=b; kTð Þ
1� b

þ ½log kTð Þ þ c� Ei �kTð Þ�=b: ð1:13Þ

If kS � 1, then (1.13) can be simplified. Keeping only terms growing with
(kT), we get:

E log
X

T
�max 1;

1
b

� �
� log kTð Þ ð1:14Þ

Now we derive a lower bound for E logRS . If b[ 1 then by virtue of the Law
of Large Numbers 1

nRS ? 1/b and we get:

E log
X

T
¼ E log n

1
n

X
T

� �
¼ E log nð Þ þ 1=b ffi log kTð Þ þ 1=b ð1:15Þ

If b\ 1, then we just drop the first term in rhs of (1.8) and get:

Table 1.1 Expectation E R(T) as function of kS and b

b kT (or n)

10 50 100 300 500 1000 ?

3 5.77 17.93 28.8 60.7 85.7 136.6 ?
2 4.6 11.52 16.7 29.7 38.6 55 ?
1.3 3.48 6.55 8.26 11.6 13.5 16.42 ?
1.1 3.1 5.16 6.15 7.85 8.7 9.91 ?
1.0 2.88 4.49 5.18 6.28 6.78 7.48 ?
0.9 2.59 3.81 4.26 4.92 5.2 5.56 10
0.8 2.45 3.29 3.57 3.91 4.04 4.19 4.3
0.6 2.02 2.33 2.4 2.45 2.46 2.48 2.5
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E log
X

T
[ E log MT ¼ log kTð Þ þ C � Ei �kTð Þ=b½ � ð1:16Þ

We can put down (1.15) and (1.16) in one relation that holds true for any b and
disregards terms of lower order:

E log
X

T
�max 1;

1
b

� �
� log kTð Þ ð1:17Þ

We get from (1.14) and (1.17) that asymptotically (as kT !1) up to terms of
lower order for any b:

E log
X

T
¼ max 1;

1
b

� �
� logðkTÞ: ð1:18Þ

Thus, one can say that for b\ 1 random quantities logRS and logMT are
comparable in value and both grow as log(kS)1/b. This fact might be interpreted as
a nonlinear growth of RS and MT at the same rate as (kS)1/b does, since their
logarithms are asymptotically proportional. We recall that both random quantities
have infinite expectations if b\ 1. If b[ 1 then RS increases linearly with T (cf.
with (1.6)), whereas MT increases more slowly, as S1/b. The relation (1.18) holds
true for any probability density that decreases asymptotically as a power.
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