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Preface

The past decades demonstrate a spectacular increase of public interest in the
problems of safety and reduction of losses from natural and manmade disasters.
The study of disaster statistics and disaster occurrence is a complicated interdis-
ciplinary field involving an intimate interplay of new theoretical results from
several branches of mathematics, physics, and computer science. Recent progress
in systems of remote sensing, in financial and social measurements, and in data
collecting gives us a possibility to compile data sets suitable for statistical analysis
of disaster damages. The accumulation of factual material relating to various kinds
of natural disasters and the use of advanced recording techniques have expanded
possibilities for the analysis of empirical distributions of disaster characteristics.
This book summarizes recent achievements in the field of statistical analysis of
disaster damages. These approaches largely rely on fundamental results of the
theory of extreme values (Embrechts et al. 1997; Gumbel 1958; Pisarenko and
Rodkin 2010). One should mark the appearance of theoretical and practical tools
for effective studies of natural disasters with the associated practical measures
taken to reduce the losses. The combination of all the above-mentioned factors
results in a considerable progress in natural disaster research. The main focus is on
the occurrence of disasters that can be described by distributions with heavy tails.
A short overview of properties of heavy-tailed distributions is offered. The relation
between the maximum event and the total sum is studied; in the case of heavy-
tailed distributions this relation is unusual: the single maximum event can domi-
nate the total sum. This book contains several recent results in the statistical
analysis of rare large events. We analyze the size distribution of arbitrary nature in
the uppermost range of extremely rare events using a recently developed method
(Pisarenko and Rodkin 2010, 2013). One of the most important results of this study
is the conclusion about instability of the ‘‘maximum possible size’’ parameter, this
parameter is frequently used in seismic risk assessment and in other similar
problems. We suggest an alternative robust way to parameterize the tail of the size
distribution by means of a robust and stable characteristic—the quantiles Qq(s) of
maximum size (e.g., earthquake energy, ground acceleration caused by earth-
quake, victims and economic losses from natural catastrophes, etc.) that will occur
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in a prescribed time interval s. We illustrate our theoretical conclusions by
applying the described technique to different natural disasters. The comparative
study of losses from earthquakes, floods, tornsdoes and hurricanes is presented.
The losses of different types are analyzed: fatalities, number of affected people,
overall economic losses. We also emphasize that the methods used here to
parameterize the distribution’s tail are quite general and are applicable besides the
assessment of natural disaster hazards to all the cases where the contribution of
rare large events is to be estimated.

The book presents an original approach in the field of disaster statistics recently
developed in (Embrechts et al. 1997; Gumbel 1958; Pisarenko and Rodkin 2010).
We analyze empirical data related to several types of natural disasters: earth-
quakes, floods, tornsdoes and hurricanes. The mode of occurrence and statistics of
losses from such disasters are considered in detail.

This book aims primarily at specialists in the field of seismology and seismic
risk, and could also be useful for specialists in other kinds of natural and manmade
disasters. The main statistical results are derived with a mathematical rigor and are
presented here in a form that also makes them accessible to readers with no special
mathematical background. We hope that this monograph will also be useful for
employees of regional and national administrations as well as for a broad class of
readers interested in the problems of natural disasters and their impact on the
society.

This book has the following structure. Chapter 1, the Heavy-Tailed Distribu-
tions and Their Properties provides a general overview of heavy-tailed distribu-
tions and their properties. In Chap. 2, The Stable Approach to the Risk Assessment:
Estimation of Quantiles of Maximum Event we describe the specific properties of
heavy-tailed distributions and the stable approach to the risk assessment based on
the estimation of quantiles of maximum event. We analyze among others the
problem of non-stationarity of natural processes (Sect. 2.2) which is important in
numerous applications. Several statistical tools are suggested for dealing with this
problem. In Sect. 2.4, we adopt our method to the format of aggregated annual
data. Chapter 3 is devoted to the statistical analysis of real catalogs of natural
disasters: earthquakes, floods, tornadoes, and hurricanes. The quantiles Qq(s) are
estimated for each of these catalogs. Finally, in Chap. 4 we discuss the obtained
results and give a comparative overview of the analyzed catalogs.

Moscow, June 2013 V. F. Pisarenko
M. V. Rodkin

vi Preface

http://dx.doi.org/10.1007/978-3-319-01454-8_1
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_3
http://dx.doi.org/10.1007/978-3-319-01454-8_4


References

Embrechts P, Klueppelberg C, Mikosch T (1997) Modelling extremal events. Springer, Berlin
Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York
Pisarenko VF, Rodkin MV (2010) Heavy-tailed distributions in disaster analysis. Springer, New

York
Pisarenko VF, Rodkin MV (2013) The new quantile approach: application to the seismic risk

assessment. In: Rascobic B, Mrdja S (eds) Natural disasters: prevention, risk factors and
management. Nova Publishers, New York, pp 141–174

Preface vii



Acknowledgments

The authors are thankful to Prof. F. Aptikaev for very useful discussions. They are
also grateful to Dr. D. V. Pisarenko who has read the manuscript and gave very
useful remarks.

ix



Contents

1 Heavy-Tailed Distributions and Their Properties . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Stable Approach to the Risk Assessment: Estimation
of Quantiles of Maximum Event . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Non-Stationarity of Natural Processes,

the ‘‘Operational Time’’ Method . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Parametrical Estimation of the Intensity k(t) . . . . . . . . . . . . . . . 20
2.4 Annual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Disaster Statistics for Various Natural Disasters. . . . . . . . . . . 25
3.1 Earthquakes (Energy, Ground Acceleration) . . . . . . . . . . . . . . . 25

3.1.1 The Global Harvard Catalog of Scalar
Seismic Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Estimation of Maximum Peak Ground Acceleration . . . . 31
3.1.3 The Accounting for Inaccuracy of the Estimated

Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Earthquakes, Tsunami (Victims) . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Floods (Victims, Overall Economic Losses) . . . . . . . . . . . . . . . 49

3.3.1 Cautions on the Accuracy of the Flood Damage Data . . . 49
3.4 Tornadoes (Fatalities). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Annual Economic Losses from Floods, USA . . . . . . . . . . . . . . 68
3.6 Annual Economic Losses from Hurricanes, USA. . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi

http://dx.doi.org/10.1007/978-3-319-01454-8_1
http://dx.doi.org/10.1007/978-3-319-01454-8_1
http://dx.doi.org/10.1007/978-3-319-01454-8_1#Bib1
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-01454-8_2#Bib1
http://dx.doi.org/10.1007/978-3-319-01454-8_3
http://dx.doi.org/10.1007/978-3-319-01454-8_3
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec9
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec9
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec10
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Sec10
http://dx.doi.org/10.1007/978-3-319-01454-8_3#Bib1
http://dx.doi.org/10.1007/978-3-319-01454-8_4
http://dx.doi.org/10.1007/978-3-319-01454-8_4


Chapter 1
Heavy-Tailed Distributions and Their
Properties

Abstract We define the heavy-tailed distribution as distribution with infinite
mathematical expectation. For such distributions the standard statistical tools—
sample mean and sample standard deviation—exhibit a high instability. Some
examples illustrating this conclusion are presented. We discuss relations between

the maximum event MðnÞmax ¼ max x1; . . .; xnð Þ and the total sum Sn ¼ x1 þ � � � þ xn

for heavy-tailed distributions. The asymptotical proportionality of MðnÞmax and Sn is
derived for the heavy-tailed Pareto distributions (Eq. (1.18)).

Keywords Heavy tailed distributions � Pareto distribution � Maximum event—
total sum relations

The main focus of our study is made on damages from disasters whose distribution
can be described by power-like laws with a heavy tail. The disasters of this type
typically occur in a very broad range of scales, the rare greatest events being
capable of causing losses comparable with the total loss due to all the other
(smaller) events. The disasters of such a type are the most unexpected ones and
they frequently entail huge losses. One of the most important results of our study is
the conclusion about the instability of the ‘‘maximum possible earthquake’’
parameter Mmax which is frequently used in the seismic risk assessment. Instead of
focusing on the unstable parameter Mmax we suggest a stable and convenient
characteristic Mmax(s) defined as the maximum size of a given phenomenon that
can be recorded over a future time interval s. The random value Mmax(s) can be
described by its distribution function, or equivalently by its quantiles Qq(s), which
are stable, robust characteristics in contrast to Mmax. Besides, if s ? ?, then
Mmax(s) ? Mmax with probability one. The method of calculation of Qq(s) is
exposed below. In particular, we can estimate Qq(s) for, say, q = 90, 95 and 99 %,
as well as for the median (q = 50 %) for any desirable time interval s. Our method
provides an alternative and robust way to parameterize the rightmost tail of the
frequency-size relation. The final goal of our data processing consists in obtaining
a family of quantiles Qq(s) that corresponds to damage (fatalities in a disaster,
economic damage, insurance losses etc.) that will not be exceeded in future s years

V. F. Pisarenko and M. V. Rodkin, Statistical Analysis of Natural Disasters
and Related Losses, SpringerBriefs in Earth Sciences,
DOI: 10.1007/978-3-319-01454-8_1, � The Author(s) 2014
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with a prescribed probability q. This characteristic seems to be particularly useful,
for instance in the insurance business.

It is well known that distributions of some parameters of natural processes
(earthquake energy, economic damage and casualties from natural disasters and
others) are often modeled by power-like laws, such as the Pareto distribution. The
Pareto distribution function and probability density are given as follows:

F xð Þ ¼ 1� h=xð Þb; f xð Þ ¼ b � hb

x1þb
; x � h: ð1:1Þ

If the exponent b of such a distribution is less than unity, b B 1, then the
mathematical expectation of the corresponding random variable is infinite. In this
case, the standard statistical tools, such as sample mean and sample standard
deviation, exhibit a high instability. Such distributions are often called distribu-
tions with heavy tails. It should be noted here that there is no commonly accepted
definition of a heavy tailed distribution. Here we apply this term to distributions
F(x) whose mathematical expectation is infinite:

Ex ¼
Z

xdF xð Þ ¼ 1: ð1:2Þ

Accordingly, the opposite term light tail will designate distributions with finite
expectation.

However there is a wide class of distributions where mathematical expectation
is finite but higher statistical moments are infinite. Such distributions might be
named ‘‘heavy-tailed’’ as well.

One may note that there are alternative definitions of the terms ‘‘heavy tail’’ and
‘‘light tail’’, see Reiss and Thomas (1997), Embrechts et al. (1997).

The Pareto law is a classical example of a heavy tailed distribution provided
that b\= 1. In that case its expectation is infinite, so that the Law of Large
Numbers is inapplicable, and the sample mean and the sample standard deviation
are unstable. In contrast with a more common case of distributions with finite
expectation, the increase of sample size does not improve the accuracy of the
sample mean. The large statistical scatter of values of the sample mean (see e.g.
Osipov 2002) makes this widely used statistical characteristic inadequate for
applications to data sets with heavy tailed distributions. Moreover, its use in such
situations may lead to essential errors and incorrect conclusions. Hereafter we are
giving an illustration to this affirmation.

The total number of fatalities from typhoons, hurricanes and floods in the world
during the period from 1947 till 1960 is about 900,000 (the flood causing the
highest fatality of 1,300,000 occurred in China in 1931). The mean annual fatality
(arithmetic mean) for the period from 1947 till 1960 was X̂ann ¼ 64;300. The mean
annual fatality for the period from 1962 till 1992 is X̂ann ¼ 36;000. These sample
means differ significantly and provide no indication about the probability of such a
super-catastrophic event as the 1931 flood in China.

2 1 Heavy-Tailed Distributions and Their Properties



Let us consider another example: the total number of fatalities from earthquakes
in the world during the period from 1947 till 1970 was about 151,000 (the
earthquake causing the highest death toll of 240,000 occurred in China in 1976).
The mean annual fatality rate (arithmetic mean) for the period from 1947 till 1970
is X̂ann ¼ 6;300. The mean annual fatality rate for the period from 1962 till 1992 is
X̂ann ¼ 18;600. Here again, both sample means give quite an uncertain charac-
teristic of annual fatality, which is a typical indication of a data set with the heavy-
tailed distribution.

Figure 1.1 shows the non-normalized complementary sample distribution
function for: a—annual casualties; b—number of victims in a single event;
c—annual economic losses. These data are taken from the Web site of the US
Geological Survey (http://www.neic.cr.usgs.gov/neis/eqlists). The Pareto law fits
to the middle range and to the extreme events range are shown by dotted lines,
with b = 0.77 ± 0.11 (a); b = 0.73 ± 0.11 (b); b = 0.65 ± 0.16 (c). We can see
that all the three distributions on Fig. 1.1 can be qualified as heavy-tailed.

Below we present some new approaches to the reliable statistical estimation in
the situations where the standard statistical tools fail.

In the statistical analysis of data with heavy-tailed distributions an important

role belongs to the maximum observed event MðnÞmax ¼ max x1; . . .; xnð Þ. It can be
shown that for a data set with a heavy tailed distribution (according to definition

(1.2)) the maximum event MðnÞmax is commensurable with the total sum

Sn ¼ x1 þ � � � þ xn, i.e. MðnÞmax and Sn are of the same order. For example, in the case
of the Pareto distribution with exponent b\ 1 one has:

Fig. 1.1 Non-normalized
complementary sample of
world-wide losses from
earthquakes distribution
function for: a annual
casualties; b casualties for
individual event; c annual
economic losses. The power-
law functions fitting tails are
shown by dotted lines, with
b = 0.77 ± 0.11 (a);
b = 0.73 ± 0.11 (b);
b = 0.65 ± 0.16 (c)

1 Heavy-Tailed Distributions and Their Properties 3
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E
Sn

MðnÞmax

! 1
1� b

; n!1 ð1:3Þ

Conversely, for a data set with a light tailed distribution (in which case the

expectation is finite E|x| \1), the contribution of MðnÞmax in the total sum Sn

decreases with the sample size n:

MðnÞmax

Sn
! 0; n!1 ð1:4Þ

If a sample is characterized by the Pareto distribution with index b, then MðnÞmax

grows with the size of the sample as n1/b. (We would like to emphasize that this

tendency of a non-linear growth of MðnÞmax with the sample size n or, equivalently,
with the observation time span s can be incorrectly interpreted as an evidence of a
non-stationarity in time (Pisarenko and Rodkin 2010). In many cases, the wide-
spread belief that the rate of losses from natural disasters has a clear tendency of
increasing with time is precisely connected with the misinterpretation of this
apparent non-stationarity effect).

The treatment of heavy-tailed data is often facilitated by using logarithms of
original values. Switching to logarithms (which can be done only when the ori-
ginal numerical values are positive) ensures almost always that all the statistical
moments exist, and hence the Law of Large Numbers and the Central Limit
Theorem are applicable to the sums of logarithms. We are advocating the use of
the logarithmic transform of the original data values as one of the main tools to
prevent complications in the processing of heavy-tailed data sets. As we shall see
later, the use of the logarithmic transform turned to be efficient in all the con-
sidered cases except one (the data set on the fatality of floods in USA from 1995
till 2011).

It should be remarked that if X has the Pareto distribution, then log(X) has
exactly exponential distribution. We shall use this fact below.

Another statistical tool helping to overcome difficulties connected with pro-
cessing heavy tailed data is the order statistics: sample median, sample quantiles,
interquartile range etc. The order statistics can be used also for construction of
confidence intervals. The main statistical tool suggested in this short-monograph
for description of distribution tail—the family of quantiles Qq(s)—is in fact a
continuous analog of the sample ordered statistics. This explains its robustness and
stability.

In our approach we model the sequence of disaster occurrences by well-known
Poisson point process, see Embrechts et al. (1997). The disaster effects can be
different: fatalities and economic losses due to natural catastrophes, earthquake
seismic moments and ground acceleration at a fixed point etc. These effects are
‘‘marks’’ assigned to occurrence times of the point Poisson process. Thus, the
whole construction is called the marked point process. In our applications we shall
model our catalog usually by a stationary Poisson process with intensity k events

4 1 Heavy-Tailed Distributions and Their Properties



per year (but we devote the special section Non-stationarity of natural processes,
‘‘operational time’’ method to the case of non-stationary Poisson processes). The
random number of events in stationary process for T years is a random Poisson
variable with the mean kS. Let us denote the maximum event for this time period
as MT and the total sum as

P
T. We are now going to derive some relations

between MT and
P

T. It is well known (see, e.g., Gumbel 1958) that for distri-
butions with a light, exponential tail MT increases as the logarithm of T:

MT ffi c � log kTð Þ; ð1:5Þ

where c is some constant, whereas
P

T increases as T, in accordance with the CLT:
X

T
ffi kT � bþ f � r � kTð Þ1=2; ð1:6Þ

where f is some standard normal rv, b is the expectation of a single event (here we
assume b [ 0), and r is the standard deviation (std) of a single event. We consider
the ratio R(T) of the total sum to maximum event:

R Tð Þ ¼
X

T
=MT :

It follows from (1.5), (1.6) that

R Tð Þ ffi b=cð Þ � ðT=logðkTÞÞ: ð1:7Þ

Hence it follows that the R(T) ratio increases with T linearly for the cases of
light tail if we disregard the slowly varying log(kT). A quite different behavior of
R(T) appears for heavy-tailed distributions. For such distributions R(T) grows
much slower and can even have a finite expectation (cf. with (1.3)). In other words,
in this case the total and the maximum event become comparable, i.e., the total
sum is determined in a large extent by the single maximum event.

In order to illustrate this assertion, we are going to derive lower and upper
bounds for R(T) corresponding to the Pareto distribution. Taking logarithms and
their expectation we get

E log
X

T
¼ E log R Tð Þ þ E log MT ð1:8Þ

Using Jensen’s inequality for concave functions, we get:

E logR Tð Þ� log ER Tð Þ: ð1:9Þ

As shown in Pisarenko (1998),

½1� ðkTÞ1�1=b � cð1=b; kTÞ�=ð1� bÞ; b 6¼ 1; ð1:10Þ

ER(T) =

logðkTÞ � expð�kTÞ � ðlogkT � 1Þ; b ¼ 1; ð1:11Þ

1 Heavy-Tailed Distributions and Their Properties 5



where c(a; t) is the incomplete gamma function. The function ER(T) is tabulated in
Table 1.1.

If kS ? ?, then in (1.10) the incomplete gamma function c(1/b; kS) tends to
the standard gamma function C(1/b). It is possible to derive an explicit expression
for E log(MT) (Pisarenko 1998):

E log MT ¼ log kTð Þ þ C � Ei �kTð Þ=b½ � ð1:12Þ

where C is the Euler constant (C = 0.577…), and Ei(-kS) is the integral expo-
nential function

Ei xð Þ ¼
Zx

�1

expðzÞ
z

dz; x\0:

Combining Eqs. (1.8)–(1.12), we derive an upper bound on E log RT :

E log
X

T
� log

1� kTð Þ1�1=bc 1=b; kTð Þ
1� b

þ ½log kTð Þ þ c� Ei �kTð Þ�=b: ð1:13Þ

If kS � 1, then (1.13) can be simplified. Keeping only terms growing with
(kT), we get:

E log
X

T
�max 1;

1
b

� �
� log kTð Þ ð1:14Þ

Now we derive a lower bound for E logRS . If b[ 1 then by virtue of the Law
of Large Numbers 1

nRS ? 1/b and we get:

E log
X

T
¼ E log n

1
n

X
T

� �
¼ E log nð Þ þ 1=b ffi log kTð Þ þ 1=b ð1:15Þ

If b\ 1, then we just drop the first term in rhs of (1.8) and get:

Table 1.1 Expectation E R(T) as function of kS and b

b kT (or n)

10 50 100 300 500 1000 ?

3 5.77 17.93 28.8 60.7 85.7 136.6 ?
2 4.6 11.52 16.7 29.7 38.6 55 ?
1.3 3.48 6.55 8.26 11.6 13.5 16.42 ?
1.1 3.1 5.16 6.15 7.85 8.7 9.91 ?
1.0 2.88 4.49 5.18 6.28 6.78 7.48 ?
0.9 2.59 3.81 4.26 4.92 5.2 5.56 10
0.8 2.45 3.29 3.57 3.91 4.04 4.19 4.3
0.6 2.02 2.33 2.4 2.45 2.46 2.48 2.5
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E log
X

T
[ E log MT ¼ log kTð Þ þ C � Ei �kTð Þ=b½ � ð1:16Þ

We can put down (1.15) and (1.16) in one relation that holds true for any b and
disregards terms of lower order:

E log
X

T
�max 1;

1
b

� �
� log kTð Þ ð1:17Þ

We get from (1.14) and (1.17) that asymptotically (as kT !1) up to terms of
lower order for any b:

E log
X

T
¼ max 1;

1
b

� �
� logðkTÞ: ð1:18Þ

Thus, one can say that for b\ 1 random quantities logRS and logMT are
comparable in value and both grow as log(kS)1/b. This fact might be interpreted as
a nonlinear growth of RS and MT at the same rate as (kS)1/b does, since their
logarithms are asymptotically proportional. We recall that both random quantities
have infinite expectations if b\ 1. If b[ 1 then RS increases linearly with T (cf.
with (1.6)), whereas MT increases more slowly, as S1/b. The relation (1.18) holds
true for any probability density that decreases asymptotically as a power.
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Chapter 2
The Stable Approach to the Risk
Assessment: Estimation of Quantiles
of Maximum Event

Abstract The ‘‘peak-over-threshold’’ method is suggested for determination of
the limit distribution of the maximum event in a future time period s, Generalized
Extreme Value Distribution (GEV). This approach is based on the Extreme Value
Theory, EVT. The method of Maximum Likelihood Estimation (MLE) of
unknown parameters is exposed. Several statistical models of the non-stationarity
of point process are studied. A modification of the suggested method for the
aggregated annual data is given.

Keywords Extreme value theory � Generalized Pareto distribution, GPD � ‘‘Peak-
over-threshold’’ method � Intensity of point process � Non-stationarity of point
process � Annual data

2.1 The Method

The problem of statistical characterization of extreme, rare events is reduced to
estimation of quantiles of high level (close to unity) with the estimates based on a
finite sample. We recall that the quantile Qq of level q, 0 \ q \ 1 of a continuous,
monotone distribution function F xð Þ is defined as the root of the equation

F xð Þ ¼ q:

Thus, the quantile q is inverse function with respect to the distribution function
F xð Þ.

The problem of statistical estimation of quantiles of high level is extremely
important for practice. Many applied problems boil down, in fact, to the estimation
of such quantiles. If x1\ x2\. . .\ xn is an ordered sample of iid (independent
identically distributed) random variables with a continuous distribution function
(DF) then the quantile Qq of a fixed level q can be estimated by the kth term of the

V. F. Pisarenko and M. V. Rodkin, Statistical Analysis of Natural Disasters
and Related Losses, SpringerBriefs in Earth Sciences,
DOI: 10.1007/978-3-319-01454-8_2, � The Author(s) 2014
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ordered sample xk (k = entire part of q • n). This estimate is known to be consistent
for fixed q as n!1. The limit distribution of normalized sample quantile

n1=2 xk � Qq

� ��
r

is the standard Gauss distribution; here r2 ¼ F Qq

� �
� 1� F Qq

� �� ��
f 2 Qq

� �
;

f xð Þ ¼ F0 xð Þ—probability density. We stress that the sample quantile tends to its
theoretical analog for any distribution with continuous density whatever heavy tail
is. In particular, the sample median is consistent estimate of the middle point of a
symmetrical distribution (theoretical median) for any tail, whereas the sample
mean (arithmetic mean of the sample values) is consistent only for distributions
with a light tail. It is true that the efficiency of the sample mean is sometimes
higher (e.g. for the Gauss distribution), but not much. For example, the limit
standard deviation of sample mean of the standard Gauss distribution is 1=

ffiffiffi
n
p

,
whereas sample median has limit standard deviation 1:25=

ffiffiffi
n
p

. The gain is not big,
but the median is guaranteed against possible presence of a heavy tail component
in the sample. However, if we try to estimate quantiles of higher levels,
q [ 1� 1=n, the consistency of sample quantiles disappear. But just such levels
are of the most practical interest. For example, suppose that a sample size equal to
n ¼ 500, so 1� 1=n ¼ 0:998, whereas we need the quantile of level q ¼ 0:9999
The estimation of quantiles that are ‘‘out of sample range’’, i.e., for q [ 1� 1=n,
can be effectuated only under some extra assumptions about the distribution in
question. There is no magical technique that would yield reliable results for free.
Rephrasing a financial truth one can say:

There is no free lunch, when it comes to high quantile estimation!

We shall use for this purpose the Limit Theorem of the extreme value theory
(EVT) assuming its validity (see, e.g. Embrechts et al. 1997, Theorem 3.4.13). The
conditions guaranteeing the validity of this Limit Theorem include the regularity
of the original distributions of event sizes in extreme range and boil down to the
existence of a non-degenerate limit distribution of ln ¼ max x1; x2; . . .; xnð Þ after a
proper centering and normalization.

If the Limit Theorem of EVT is valid, then observations exceeding a threshold
h, tends (as both h and sample size n tend to infinity) to the Generalized Pareto
Distribution (GPD). This approach is called sometimes the ‘‘peak over threshold’’
method. The GDP depends on two unknown parameters (n, s):

GPDh xjn; sð Þ ¼ 1� 1þ n=sð Þ � x� hð Þ½ ��1=n; n 6¼ 0;

GPDh xj0; sð Þ ¼ 1� exp � x� hð Þ=sð Þ; n ¼ 0;
ð2:1Þ

here, n is the form parameter �1\n\1ð Þ, s is the scale parameter s [ 0ð Þ . The
domain of definition depends on parameter values:

if n � 0; then x � h;

if n \ 0; then h � x� h� s=n:

10 2 The Stable Approach to the Risk Assessment



We see that for negative n the domain of definition of GPD is limited within a
finite interval. Because of evident finiteness of any possible physical event (e.g.,
energy of earthquake) and of the loss values (e.g., number of fatalities) this case is
mostly expected in an analysis of empirical data on parameters and losses from
natural hazards, but nevertheless, sometimes the unbounded distributions can
model empirical data better.

Suppose, the sample x1; x2; . . .; xnð Þ is result of observations (peaks over a
threshold h) occurred at moments t1; . . .; tn that represent stationary Poisson pro-
cess with intensity k. The sample is observed on time interval �T ; 0½ �, thus the
intensity can be estimated as k ¼ n=T . We assume that the threshold h is high
enough, so that the conditions of the Limit Theorem of EVT are fulfilled, and,
consequently, observations x1; x2; . . .; xnð Þ have GPD distribution (2.18) with some
parameters n ; sð Þ:

We put down the formulae of the Maximum Likelihood Estimates of GPD-
parameters. The GPD-density has form:

f xð Þ ¼ 1
s

1þ n
s

x� hð Þ
� ��1=n�1

:

Thus, the log-likelihood function equals:

L ¼ �n � log sð Þ � 1
n
þ 1

� �Xn

k¼1

log 1þ n
s

xk � hð Þ
� �

:

Now one can find numerically the ML-estimates n̂; ŝ providing maximum to
L. These estimates are proved to be consistent at least for n [ � 1=2 and in that
case the limit distribution of normalized quantities

ffiffiffi
n
p

n̂� n
� 	.

1þ nj j;
ffiffiffi
n
p

ŝ=s� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ nj j

p
; n[ � 0:5

is the standard Gauss distribution. These relations give possibility to construct
confidence intervals for parameters n; s.

It can be proved (Embrechts et al. 1997, Theorem 3.4.13) that if times of
occurrence form a stationary Poisson process and individual sizes are GPD-dis-
tributed then the distribution of maximum Ms ¼ max x t1ð Þ; . . .; x tmð Þð Þ observed on
interval 0; s½ � ; 0� t1; . . .; tm� s; has DF

Us xð Þ ¼ exp �ks 1 þ n=sð Þ � x� hð Þ½ ��1=n
� 	

;

apart from terms of the order exp �ksð Þ which we assume to be negligible.
Our statistical problem consists in estimating quantiles QqðsÞ of maximum Ms

in a future time interval s that we propose as stable robust characteristics of the tail
distribution. The quantiles QqðsÞ are the roots of the following equation:

Us xð Þ ¼ exp �ks 1þ n=sð Þ � x� hð Þ½ ��1=n
� 	

¼ q: ð2:2Þ
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Inverting (2.2) as a function of x depending on parameters q, s we get:

Qq sð Þ ¼ h þ s=nð Þ � a � ksð Þn�1
h i

;

where a ¼ log 1=qð Þ½ ��n

The GPD-distribution includes all types of tails: power-like n[ 0ð Þ, expo-
nential n ¼ 0ð Þ, finite boundary n\ 0ð Þ. If n\ 0, then the rightmost boundary of
GPD-distribution designed as Mmax equals to:

Mmax ¼ h� s=n ð2:3Þ

On Fig. 2.1 we show a set of GPD-tails for negative form parameters n = -0.8;
-0.35; -0.1; -0.01; corresponding scale parameters s ¼ 8:0; 3:5; 1:0; 0:1 and
threshold h = 0; in all cases Mmax ¼ 10. We see that the more absolute value nj j is
the more the tail curvature becomes and the steeper the extreme part of the tail
decreases. The last curve n ¼ �0:01ð Þ practically coincides with the tail graph of
the exponential distribution.

On Fig. 2.2 we show two GPD-densities, corresponding to negative form
parameters n ¼ �0:05 and n ¼ �0:20. It is seen from Eq. (2.3) that the more the
ratio �s=n is, the further to right side Mmax is shifted. The density looks like a duck
beak. This explains instability of the parameter Mmax : small variation of n-estimate
can lead to large excursion of Mmax.

The main difficulty in parameter estimation of GPD consists in the choice of a
proper threshold h. How to cut off the utmost part of the tail for further analysis
and statistical inference about asymptotical tail behavior? We use for this purpose
the Kolmogorov test with corrections for estimated parameters. The Kolmogorov

Fig. 2.1 GPD-tails. Thick line n ¼ �0:01; s ¼ 0:1; intermediate line n ¼ �0:10; s ¼ 1:0; thin
line n ¼ �0:35; s ¼ 3:5 dotted line n ¼ �0:80; s ¼ 8:0; threshold h ¼ 0; in all cases Mmax ¼ 10
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test is a powerful statistical tool, but it needs a representative sample of sufficient
size for fully reliable inference. This condition is not always fulfilled in practice, as
we shall see below, since the limit theorem of EVT demands a sufficiently high
threshold for its validity, and it is left less and less ‘‘peaks over threshold’’ for
higher thresholds. This contradiction needs some compromise, sometimes result-
ing in small size of sample left for GPD-fitting.

The choice of threshold h should satisfy the following restrictions:

1. The threshold h should be high enough, so that the Limit Theorem of EVT
mentioned above can be applied. The Kolmogorov distance KD between a fitted
GPD and the actual sample DF should be small enough. The estimation of
significance level for KD should take into account the fact that the two fitted
GPD-parameters decrease the quantiles of the Kolmogorov distribution (see
Pisarenko et al. 2008).

2. Sample size n of observations exceeding h should be large enough to provide
reliable estimates of n; s and applicability of the Kolmogorov test. Our
numerical experiments showed that it is necessary to have n [ 50� 80
(however, in hard situations of deficit of data we were forced to use samples of
size n ffi 30; of course, in such cases the reliability of statistical estimates is
lowered).

3. If n is negative (positive), then parameter s (as it was shown in Pisarenko and
Rodkin 2010) decreases (increases) with threshold h. Thus, it is reasonable to
use thresholds providing decreasing (increasing) s-estimates. If n ¼ 0 s-esti-
mates should not significantly vary with h.

Fig. 2.2 GPD-densities. Line n = -0.05, s = 1. Dotted line n = -0.20, s = 4
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We use below the restrictions 1–3 to determine the range of h-values suitable
for a proper estimation of parameters of the GPD-distribution fitting the tail of the
studied sample.

2.2 Non-Stationarity of Natural Processes,
the ‘‘Operational Time’’ Method

In this section we consider the problem of non-stationarity of catalogs of natural
disasters and related losses. This aspect is very important for application of sta-
tistical methods to practical problems. Usually, catalogs consist of pairs (t, X),
where t is time of an event (natural catastrophe like earthquake, tornado etc.) and
X is information data about this event: coordinates, size, other characteristics. We
are going to study events relating to a particular region, so coordinates just belong
to this region. Thus, we can consider our catalogs consisting of pairs ti; xið Þ, where
ti is time and xi is size of the i-th event (earthquake magnitude, ground acceler-
ation, number of fatalities, economic loss, etc.). The time occurrences ti are
modeled by a random point process. We shall use as a model the Poisson process
with intensity k (see Embrechts et al. 1997). As to the sizes xi we assume, that they
are random variables (independent of the Poisson process governing occurrences
ti), obeying to a certain (unknown) probability distribution with distribution
function (DF) F xð Þ. The non-stationarity of the catalog can be caused by non-
stationarity of the Poisson process (in this case the intensity is not constant, but

Fig. 2.3 Artificial sample (n = 105) of non-stationary Poisson process with the intensity
k(t) = 0.375, 1900 B t B 1940; k(t) = 1.5, 1940 \ t B 2000. Exponential distribution of effect
sizes: F xð Þ ¼ 1� exp �2:0 � x� 4:5ð Þ½ �; x� 4:5
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depends on t: k tð Þ) and by non-stationarity of the distribution F(x), which results in
dependence of distribution function F xð Þ on time: F x; tð Þ. Of course, both these
types of non-stationarity can occur simultaneously.

Figure 2.3 shows an artificial sample n ¼ 105ð Þ of non-stationary Poisson
process with the intensity k tð Þ:

k tð Þ ¼
0:375 1

year ; 1900� t � 1940

1:5 1
year ; 1940 \ t � 2000

: ð2:4Þ

F xð Þ ¼ 1� exp �2:0 � x� 4:5ð Þ½ �; x � 4:5 ðexponential distributionÞ:

Figure 2.4 shows a sample (n = 300) of non-stationary process with an intensity
growing with time:

k tð Þ ¼ t � 1900ð Þ=25þ 1 ; 1900 � t � 2000 ð2:5Þ

Both figures give a general idea about behavior of intensity, but of course more
rigorous statistical tools are needed for accurate estimation of k(t).

In order to test whether the occurrence times are generated by a stationary
Poisson process (with constant k(t)) we can use following known property of such
processes: the conditional distribution of n time occurrences over time interval (0;
T) under fixed n coincides with uniform distribution of n points on the interval
0; Tð Þ. The uniformity of distribution can be tested by the standard Kolmogorov

test. We take time occurrences on Fig. 2.3 and calculate the Kolmogorov distance
DK ¼

ffiffiffi
n
p

max Fn tð Þ � t=Tj j. Here Fn tð Þ is sample DF of occur-
rencesFn tð Þ ¼ # ti� tð Þ=n, and the maximum is taken over all values of t. We

Fig. 2.4 Artificial sample (n = 300) of non-stationary process with an intensity growing with
time: k tð Þ ¼ t � 1900ð Þ=25þ 1; 1900� t� 2000: Exponential distribution of effect sizes:
F xð Þ ¼ 1� exp �2:0� x� 4:5ð Þ½ �; x� 4:5

2.2 Non-Stationarity of Natural Processes, the ‘‘Operational Time’’ Method 15



get for Fig. 2.3 DK = 2.79 and for Fig. 2.4 DK = 2.11. On Figs. 2.5 and 2.6 we
show corresponding sample Fn tð Þ compared with the uniform DF. These figures
correspond to small p-values: p ¼ 0:00083 (Fig. 2.5) and p = 0.023 (Fig. 2.4).
Thus, hypotheses of stationary should be rejected with very high confidence level.

On Fig. 2.5 one sees a more or less noticeable change of average slope
somewhere near 1940 caused by jump of the intensity at t ¼ 1940. In order to
detect such intensity changes we suggest following procedure. We divide our

Fig. 2.5 Sample Fn tð Þ of occurrence times tj (Fig. 2.3) compared with the uniform DF
(diagonal line)

Fig. 2.6 Sample Fn tð Þ of occurrence times tj (Fig. 2.4) compared with the uniform DF
(diagonal line)
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catalog in two parts: sample S1
t , containing occurrences ti� t; and sample S2

t ;
containing occurrences ti [ t. Now, we test the hypothesis H0 that both samples
are generated by one DF using the standard Kolmogorov–Smirnov test. Varying
t we find t0 giving the least p value. It corresponds to the most distinguishable
samples S1

t0
and S2

t0
. So, one can take point t0 as an appropriate estimate of a sharp

change of intensity. Figure 2.7 shows p-value as function of t. Minimum point t0

corresponds to the date 1940.3.
An alternative way to judge about stationarity is allowed by looking at

cumulative sums of time intervals between adjacent occurrences. If there is a
tendency to increase (or decrease) intervals it often can be observed more or less
clearly on cumulative curves. On Fig. 2.8 we see the cumulative sum of successive
ordered time intervals between occurrences. A visible change of slope (marked by
star) is observed at point 18, corresponding to the same time 1940.3 as minimum
point at Fig. 2.7.

We have considered two examples of violation of stationarity represented by
intensities (2.4)–(2.5). Of course, there are a lot of alternative ways of the viola-
tion. E.g. the intensity k(t) can be a polynomial of the 2nd or higher degree. Each
practical situation needs its concrete study and appropriate statistical modeling. In
our applications to real catalogs we restrict ourselves by intensity models (2.4)–
(2.5) taking into account that non-stationarities in these catalogs can be satisfac-
torily modeled by (2.4)–(2.5), and the use of more sophisticated models are
practically excluded by very limited size of available catalogs.

The non-stationarity of catalogs can be connected often with a range of event
sizes. Say, seismic catalogs are less representative in lower ranges at the first half
of the twentieth century. This fact can be explained by a low level of registration

Fig. 2.7 p-values of K–S test: sample 1 : kð Þ versus sample k þ 1 : nð Þ as function of k. k is the
order number of the kth event. Minimum point (k = 18) corresponds to the date 1940.3
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of small size eartquakes by existed at that time seismic networks. On the other
hand, an evolution in preventive services measures can cause the essential
decrease in fatalities and in loss values from the natural disasters. The latter
tendency competes with a tendency of an loss increase due to the Earth’s popu-
lation growth and increasing value of the technosphere. The use of anti-seismic
construction in some countries (e.g. in Japan) gives

an example of decrease of damages caused by earthquakes. Thus, it would be
reasonable to look at intensity of events exceeding some lower threshold.

Let us consider an artificial example of seismic catalog. Suppose, seismic flow
in the magnitude range M � 4:5 is formed by stationary Poisson time occurrences
t with constant intensity k0 ¼ 5 events per year. But the network registers
earthquakes with random probability of registration p M; tð Þ:

p M; tð Þ ¼ 0:4 �M � 1:4; 1900� t \ 1960;
1; 1960� t � 2000:

ð2:6Þ

Thus, the intensity of evens registered in our catalog is k0 � p M; tð Þ, and the
stationarity is violated. Suppose further, that magnitude distribution is given by the
Gutenberg-Richter law:

F Mð Þ ¼ 1� exp �2:0 � M � 4:5ð Þ½ �; M � 4:5 ð2:7Þ

Thus, the stationarity is guaranteed only for events registered after t = 1960.
Figure 2.9 shows the magnitude-time diagram of our schematic example
(n = 299). Figure 2.10 shows the intensity of three sub-catalogs corresponding to
three lower magnitude thresholds: h1 ¼ 5:0; n ¼ 140; h2 ¼ 5:3; n ¼ 87;
h3 ¼ 6:0; n ¼ 29; intensities were smoothed by moving 40-year time interval.

Fig. 2.8 Cumulative sum of successive time intervals between adjacent occurrences in sample
Fig. 2.3. Point of slope break is marked by star
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We see that for thresholds h1 ¼ 5:0, h2 ¼ 5:3 intensities vary significantly,
whereas for h3 ¼ 6:0 the intensity looks stable.

Suppose, the intensity k of the point process n tð Þ is not constant but vary with
time as arbitrary positive function k tð Þ. If we know k tð Þ, we can transform time
scale and pass to a new time s tð Þ (sometimes, it is called ‘‘operational time’’), so
that the process n t tð Þð Þ is stationary. We can apply to process n t tð Þð Þ our statistical
methods assuming stationarity (in particular, we can estimate desirable quantiles

Fig. 2.9 Magnitude-time diagram of artificial example described by Eqs. (2.6) and (2.7),
n = 299

Fig. 2.10 Intensities of three sub-catalogs corresponding to three lower magnitude thresholds:
h1 ¼ 5:0, n = 140 (upper curve); h2 ¼ 5, n = 87 (middle curve); h3 ¼ 6:0, n = 29 (lower
curve), smoothed by 40-year window
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Qq tð Þ for a future time interval s, and then to return to the original time
t. Important condition: the size distribution of sizes should not depend on time (i.e.
stationarity of the distribution F(x) is assumed). The needed time transformation is
determined as follows. We take inverse function G(.) with respect to g(t)

g tð Þ ¼
Z t

0

k sð Þ ds ð2:8Þ

Then the direct verification shows that point process n G tð Þ½ � is stationary with
intensity one. Let us consider an example.

Suppose,

k sð Þ ¼ as þ b; a [ 0 ð2:9Þ

Then

g tð Þ ¼ at2
�

2þ bt; ð2:10Þ

G tð Þ ¼ b=að Þ2þ2t=a
h i1=2

�b=a ð2:11Þ

We affirm that the process g tð Þ ¼ n½ b=að Þ2þ2t=a
� 	1=2

�b=a� is stationary with

intensity one. Indeed, the mean number of occurrences of the process g(t) on
interval [0, T] equals to mean number of occurrences of the process n(t) on interval

[0, T1], T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=að Þ2þ2T=a

q
� b=a which equals to the integral

ZT1

0

k sð Þds ¼
ZT1

0

asþ bð Þds ¼ aT2
1

2
þ bT1 ¼ T:

The last identity just means that intensity of the process g(t) equals unity.
Though the case examined above when the intensity of events’ flow changes

whereas the DF is stationary appears to be not quite natural it is a reasonable
approach to the historical catalogs of strong earthquakes. The completeness of
such catalogs depends frequently mainly on casual safety of information about
ancient events whereas the DF is rather stationary for a long time because the slow
change in technosphere of the ancient society.

Application of the operational time method to study of seismic regime can be
found in Ogata (1989, 1993).
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2.3 Parametrical Estimation of the Intensity k(t)

The log-likelihood of a realization of event occurrences t1; . . .; tnð Þ in the time
interval [0, T] is given by Vere-Jones (1995) and Ogata (1993):

log L ¼
Xn

k¼1

log k tkð Þ �
ZT

0

k sð Þds ð2:12Þ

Suppose, that the dependence of the intensity k(t) on time can be modeled by
some parametric function. For simplicity of exposition let us take linear function:

k tð Þ ¼ at þ b: ð2:13Þ

Inserting (2.13) into (2.12) we get:

log L a; bð Þ ¼
Xn

k¼1

log atk þ bð Þ � aT2

2
� bT ð2:14Þ

Now we can apply the full machinery of the likelihood methods for to derive
estimators of parameters (a, b). The likelihood equations determining the esti-
mators of maximum likelihood (MLE) are:

oL

oa
¼ � T2

2
þ
Xn

k¼1

tk
atk þ b

¼ 0 ð2:15Þ

oL

ob
¼ �T þ

Xn

k¼1

1
atk þ b

¼ 0 ð2:16Þ

Using these equations we can express parameter a through b:

a ¼ 2 n� bTð Þ
T2

: ð2:17Þ

Inserting (2.17) into (2.16), we get one equation with one unknown parameter
b that should be solved numerically.

Using standard technique of the maximum likelihood estimation (Embrechts

et al. 1997) one can derive standard deviations of MLE â, b̂:

stdðâÞ ¼ a

T2
� w log 1þ wð Þ

1þ w=2ð Þ log 1þ wð Þ � w


 �1=2

; ð2:18Þ

stdðb̂Þ ¼ b

T
� w w=2� 1ð Þ þ log 1þ wð Þ

1þ w=2ð Þ log 1þ wð Þ � w


 �1=2

; ð2:19Þ
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where w ¼ aT=b . In our example shown on Fig. 2.4 where k 1900þ tð Þ ¼
0:04 � t þ 1; 0� t� 100; we got â ¼ 0:034
 0:0056; b̂ ¼ 1:14
 0:26. Similarly
one could use more sophisticated models for k(t) .

Finishing discussion on the non-stationarity we consider a generalization of our
problem, where the intensity depends both on t and on size x in a very general form
given by function k(t, x) In this case the log-likelihood is:

log L t1; x1ð Þ; . . . tn; xnð Þð Þ ¼
Xn

k¼1

log k tk; xkð Þ �
ZT

0

ds

ZM

m

k s; yð Þdy ð2:20Þ

and the second integral represents the intensity of events at time s in the range (m, M),
where registration was effectuated. It should be remarked, that for fixed t the density

k(t, x) is proportional to PDF f t; xð Þ ¼ oF x;tð Þ
ox . Application of the exposed likelihood

technique to numerous problems connected with seismic regime can be found in
Vere-Jones (1995), Ogata (1993) and Lyubushin and Pisarenko (1994, 1998).

2.4 Annual Data

Sometimes statistics of the natural catastrophes are published in form of annual
data. Now we are going to modify the exposed above method for such data.

Suppose, we have a list of sizes (economic losses, fatalities, etc.) representing
yearly figures for N sequential years: x1; . . .; xN Our problem consists in statistical
estimation of quantiles Qq sð Þ of maximum size in question for future s years (now in
contrast to the considered above situation s is an entire number of years). We assume
that the limit theorem (Theorem 3.4.13, Embrechts et al. 1997) is applicable to our
data and there exists such sufficiently high threshold h that distribution of peaks over
this threshold is well approximated by GPD. We denote parameters of this GPD by
n, s, number of peaks by m (m depends on h), and the sample of peaks by

z1; . . .; zm: ð2:38Þ

We shall use ratio m=N as natural estimator of probability p exceeding h in
future observations: p ffi m=N According to our assumption the conditional dis-
tribution of x above h is:

GPDh x n; sjð Þ ¼ 1� 1þ n=sð Þ � x� hð Þ½ ��1=n; x� h: ð2:39Þ

Parameters n, s are estimated by the maximum likelihood method with use of
sample (2.38), and the goodness of fit is tested by the Kolmogorov test taking into
account the presence of two estimated parameters in the distribution function, as it
was remarked earlier. Let us denote s future sizes as X1; . . .;Xs. Here, the sizes are
annual losses. We are interested in distribution of
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Ms ¼ max X1; . . .;Xsð Þ ð2:40Þ

The random value X1 (the annual loss) is less than h with probability 1� pð Þ.
Under condition that X1 [ h (which happens with probability p) its distribution is
governed by GPD (2.39). Thus, for x � h the distribution of X1 equals to

1� pð Þ þ p � GPDh xjn; sð Þ ð2:41Þ

We do not study the distribution of X for range X \ h since this is of no (or very
small) importance for distribution of Ms. So, if X \ h we take X � h. Then dis-
tribution function of X1, denoted as F1 xð Þ, is zero for x \ h and equals to (2.41) for
arguments exceeding h. The distribution function FM xð Þ of the maximum Ms

equals to the sth degree of F1 xð Þ.

FM xð Þ ¼ 0; x\h;
1� pð Þ þ p � GPDh xjn; sð Þ½ �s; x [ h:

ð2:42Þ

We can find the q-level quantile Qq sð Þ of Ms from equation:

FM xð Þ ¼ q ð2:43Þ

It follows from (2.42), that if q [ 1� pð Þs, then

Qq sð Þ ¼ h þ s=nð Þ � 1� q1=s

p

� ��n

�1

" #
ð2:44Þ

For q \ 1� pð Þs the quantile Qq tð Þ is not defined. We could put it conditionally
equal to h (it can be remarked that usually only quantiles of high level are of
interest for risk problems).

If we take instead of F1 xð Þ the exponential distribution with DF 1�
exp �a � x� hð Þð Þ; x � h (we recall that the exponential distribution is the limit
of GPD as n ! 0), then we get:

Qq sð Þ ¼ h� 1=að Þ � log
1� q1=s

p

� �
ð2:45Þ
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Chapter 3
The Disaster Statistics for Various
Natural Disasters

Abstract The application of statistical technique exposed in Chap. 2 to some
concrete catalogs of natural processes and related losses are presented: global
catalog of seismic moments; catalog of peak ground acceleration at five sites in
Japan; catalog of victims of earthquakes-tsunamis, Japan; catalog of victims of
floods, USA; catalog of economic losses from floods, USA; catalog of victims
from tornadoes, USA; catalog of economic losses from hurricanes, USA. The
Kolmogorov test is used as a powerful statistical tool for testing hypotheses on
distribution under study. A modification of the Kolmogorov test is presented in the
case of presence of estimated parameters in the hypothetical distribution function.
Main statistical results are summarized in Tables 3.1, 4.1, 4.2 and 4.3.

Keywords Extreme value theory, EVT � Generalized Pareto distribution, GPD �
‘‘Peak-over-threshold’’ method � Intensity of point process � Non-stationarity of
point process � Annual data

3.1 Earthquakes (Energy, Ground Acceleration)

3.1.1 The Global Harvard Catalog of Scalar Seismic
Moments

We use the method described above for the Harvard catalog of seismic moments
within the period from January 1, 1976 to October 31, 2012. We restrict the depth
of epicenters to h B 70 km and magnitudes to mW C 6.25 (or seismic
moments C 2.985 9 1025 dyne-cm). Note that this time interval contains two
recent gigantic earthquakes: December 26, 2004, mW = 9.0 (Sumatra) and March
11, 2011, mW = 9.1 (Japan). To eliminate aftershocks from the catalog, the space–
time window suggested in Knopoff et al. (1982) was used. Scalar seismic moments
Ms were converted into moment magnitude mW by the relation
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and Related Losses, SpringerBriefs in Earth Sciences,
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mW ¼ 2=3ð Þ � log10 MSð Þ � 16:1ð Þ:

The number of main shocks that has been left after aftershock elimination was
n = 1073.

In order to test the Harvard catalog for stationarity we plotted in Fig. 3.1 the
intensity (main events). We see that the seismic flow can be considered as fairly
stationary. The general view of event flow is shown on Fig. 3.2. It confirms our
conclusion about stationarity, but still there is a slightly increased density of events
in the upper right corner of Fig. 3.2. We have checked this suspicion and plotted
on Fig. 3.3 smoothed by 15-year window intensity of events with mW C 8.0. We
see that indeed there is some distinct increasing of such events in the last
15–20 years. We shall recall this fact later as we estimate quantiles Qq(s).

As we mentioned above, time moments ti of the stationary Poisson process are
uniformly distributed on interval [0; T] for any fixed sample size n. On Fig. 3.4 we
compare the empirical DF of normalized time moments si F̂nðsÞ with uniform DF
(diagonal of the square, F(s) = s). The normalization to the unite interval was
effectuated by s ¼ t � t1ð Þ= t2 � t1ð Þ; t1; t2 are start and end of the catalog. The
standard Kolmogorov test gives the Kolmogorov distance Dn ¼

ffiffiffi
n
p

max jF̂n sð Þ �
F sð Þj ¼ 1:127 which corresponds to p value = 0.16 (probability to exceed Dn

under condition that F̂nðsÞ was generated by theoretical DF F(s)). Since this
p-value (p–v) is more than 0.1, we formally have ground to accept the hypothesis
of stationarity of ti, although the p–v is close to the boundary of rejection 0.1.

Now we apply to the Harvard catalog the statistical analysis exposed above (GPD
fitting). The graph of the sample tail 1 – F(x) is shown on Fig. 3.5. We see that the
tail decays rather slowly, and the recent gigantic earthquakes form a deviation from
the general run. We take a grid of thresholdshj for magnitudes mW and fit both GPD

Fig. 3.1 Intensity (main events, mW C 6.25) of the Harvard catalog smoothed by 10-year time
window
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and exponential distributions (ED) for each hj. The goodness of fit was tested by the
Kolmogorov test. The results are shown on Fig. 3.7. We see that minimum
KD-distance is reached by GPD at h = 6.8 (KD = 0.609). We have estimated by the
simulation method the goodness of this fit with parameters corresponding to

this threshold ðn̂ ¼ �0:163 � 0:046 ; ŝ ¼ 0:540 � 0:055Þ and found out that
p–v= 0.15. So, we took the threshold h ¼ 6:8 and corresponding estimates.
On Fig. 3.6 the extreme part of the tail used for parameter estimation is shown
along with fitted GPD-curve. We can remark that the three largest earthquakes

Fig. 3.2 The time–magnitude diagram of the Harvard catalog (main events, mW C 6.0)

Fig. 3.3 Intensity (main events, mW C 8.0) of the Harvard catalog smoothed by 15-year time
window
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occurred in the last decade mW ¼ 8:8; 27.2.2010; mW ¼ 9:0; 26.12.2004; mW ¼ð
9:1;11.3.2011Þmade the approximating GPD-curve to deviate from observations in
the range 8:0�mW � 8:5 (recall Figs. 3.2 and 3.3). One can say that this compro-
mise is chosen in accordance with statistical rules used in our procedure offitting and
corresponds to the best goodness-of-fit possible in this situation.

Fig. 3.5 Sample tail 1 - F(x) of the Harvard catalog: main events, seismic moments,
Ms C 1.26 9 1025 dyne-cm (mW C 6.0)

Fig. 3.4 Empirical DF of normalized time moments of events of the Harvard catalog (main
events, mW C 6.25)
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The number of events exceeding this threshold was n ¼ 324; which is sufficient
for a reliable statistical estimation. Parameter Mmax right end-point of GPDð Þ and
95 % quantile for future 10 years Q0:95 10ð Þ are:

Mmax ¼ h � ŝ=n̂ ¼ 10:11; Q0:95 10ð Þ ¼ 9:13:

On Fig. 3.7 we see that besides of the best fitting point h ¼ 6:8 there is one
more point h ¼ 7:5 whose KD is close to the best one. Let us compare parameters

Fig. 3.6 Harvard catalog, main events, moment magnitudes. The extreme tail 1 – F(x) and
approximating GPD-tail: h = 6.8; n = -0.163; s = 0.540; n = 324

Fig. 3.7 Harvard catalog, main events. The KD-distances for a grid of magnitude-thresholds hj.
Thick line—GPD-fitting; thin line—ED-fitting
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of these two thresholds and demonstrate stability of the quantiles as compared with
traditional parameter Mmax. We have for threshold h ¼ 7:5 following estimates:

n̂ ¼ �0:0597� 0:104; ŝ ¼ 0:347� 0:074; KD ¼ 0:612; n ¼ 82:

Mmax ¼ h � ŝ=n̂ ¼ 13:31; Q0:95 10ð Þ ¼ 9:27:

We see that quantile Q0:95 10ð Þ has increased (due to random errors) insignifi-
cantly by 0.14, whereas Mmax has grown by 3.2! This example demonstrate clearly
the instability of Mmax as compared with QqðsÞ:

Figure 3.8 shows the GPD-quantiles for three different confidence levels q ¼
0:90; 0:95; 0:99 with parameters corresponding to threshold h ¼ 6:8: It is inter-
esting to compare these quantiles with corresponding quantiles estimated on time
interval (1976–2006), that were published in the book (Pisarenko and Rodkin
2010), not containing the great Japan earthquake March 11, 2011. Figure 3.9
shows such comparison for 95 %-quantiles. We see that the later estimates
(1976–2012) provide slightly larger quantiles. This is a reaction on the great Japan
earthquake March 11, 2011. In contrast with the moderate change of quantile
values, change in corresponding Mmax values is much stronger that demonstrates
again a weak stability of this parameter.

Note that even quantiles estimated for time interval before the occurrence of the
great Tohoku earthquake (March 11, 2011, M9) show a quite high probability of
occurrence of M9+ earthquakes. Besides, such events were not registered in Japan
before both during the instrumental period of measurements and even among the
historical earthquakes since 599 year (Usami 1979, 2002; Utsu 1979, 2002).
Moreover, taking into account the considerable fragmentation of the lithosphere in

Fig. 3.8 Harvard catalog, main events. GPD-quantiles Qq(s) of seismic magnitudes for three
different confidence levels q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve) with
parameters corresponding to the threshold h = 6.8
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the Japan region and the absence of extended (approaching 1000 km long) unified
segments of the Benioff zone, the very possibility of occurrence of the
M9+ earthquakes in this region was negated by many seismologists. The occur-
rence of the Great Tohoku 2011 earthquake has confirmed however that our sta-
tistical estimate of possibility of occurrence of such earthquakes Pisarenko et al.
(2010); Pisarenko and Rodkin (2013) was quite correct.

3.1.2 Estimation of Maximum Peak Ground Acceleration

Although the main seismic parameters like b-slope, seismic activity rate and Mmax

can be of considerable interest, estimation of peak ground acceleration, Amax, is of
more practical importance in designing structures and in seismic risk assessment.
The earthquake hazard has been estimated in a variety of ways (Lamarre et al. 1992;
Kijko and Sellevoll 1989, 1992; Campbell 1981; Cornell 1968). The characteriza-
tion of the seismic hazard at a fixed site is usually done through the probability of
non-exceeding various levels of ground acceleration in a certain number of years, i.e.
through the probability distribution function of maximum peak acceleration, for a
given time period T. An equivalent, but perhaps more convenient characteristic of
seismic hazard is furnished by the quantiles of this distribution function (we recall,
that quantile is inverse function of the distribution function). Seismic hazard analysis
involves several unknown parameters and relations: seismic activity rate k,
parameters of magnitude-frequency law, attenuation model (for ground accelera-
tion), source model, soil characteristics, a model for earthquake sequence. Thus, it is
necessary to estimate these parameters and establish step by step the needed

Fig. 3.9 Harvard catalog, main events. 95 % GPD-quantiles Qq(s) derived from data
1976–2012 (thin line) and quantiles Qq(s) for period 1977–2006 (dotted line)
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relations. Statistical and modeling uncertainties should be introduced at each of
these steps. We are going to apply the statistical method exposed in Section II to
evaluation of quantiles of distribution of peak ground acceleration.

We are interested in analysis of peak ground acceleration (PGA) Amax at a
particular site. Suppose this site is located at epicentral distance R from source of
earthquake of magnitude m. In the seismic hazard analysis there are a number of
model relations giving approximate value of Amax as some function of (R, m), see
e.g. Cornell (1968). In most cases these relations have the following general form:

log10 Amaxð Þ ¼ a þ b � m � c � log Rþ dð Þ; ð3:1Þ

where a, b, c, d are some non-negative coefficients, m is magnitude, R is epicentral
distance. Numerous modifications of (3.1) are used, but all of them keep the
general property: monotone increase with m and monotone decrease with R.

Let us consider flow of earthquakes in some space-magnitude window registered
at a certain point. We denote magnitudes and epicentral distances to a fixed point as
m1;R1ð Þ; m2;R2ð Þ; . . .; mn;Rnð Þ; . . . . We suppose that this flow is a stationary ran-

dom process. Then any relation of type (3.1) or any arbitrary function U m;Rð Þ will
provide a stationary random process U m1;R1ð Þ; U m2;R2ð Þ; . . .; U mn;Rnð Þ. . . :.
Thus, if we apply the relation (3.1) to the series m1;R1ð Þ; m2;R2ð Þ; . . .; mn;Rnð Þ; . . . :.
we can consider resulting sequence as a stationary random process. We call it
estimated acceleration. The expression (3.1) differs from the true peak ground
acceleration by a random term e: We discuss this random error below. Our aim is to
study statistical characteristics of the estimated acceleration with the statistical
technique exposed in Chap. 2.

Detailed studies showed that the relation (3.1) is in some contradiction with
empirical data in the near-field zone. In Mahdavian et al. (2005); Aptikaev (2009);
Graizer and Kalkan (2011); Steinberg et al. (1993) it was shown that peak ground
acceleration (PGA) practically does not depend on magnitude in a vicinity of the
earthquake fault zone but depends on the type of the focal mechanism. The size of
this zone D usually varies from a few km to 10 km depending on the magnitude
and can be well scaled according to the empirical law

o log D =om ffi 0:34: ð3:2Þ

To meet the near-field zone data we shall use the Aptikaev’s relation (Lamarre
et al. 1992) where the near-field effects are taken into account:

2:76; q � 1;

log10 Amaxð Þ ¼ 2:76 � 0:55 � log10 qð Þ; 1 � q� 10 ;

3:50 � 1:29 � log10 qð Þ; 10 � q;

ð3:3Þ

where
Amax is estimated peak ground acceleration in cm/s2;
q ¼ R � 10�0:325ðm�5Þ magnitude scaled distance;
R is epicentral distance in km;
m is magnitude.
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Thus, relations (3.1) and (3.3) give logarithm of estimated peak ground
acceleration log10 Amaxð Þ from an earthquake with magnitude m at a site with
epicentral distance R. The results obtained by means of both (3.3) and (3.1) are
compared and discussed in Pisarenko and Rodkin (2013). In this paper we have
derived quantiles of distribution of log10 Amaxð Þ for 4 points on the territory of
Japan islands: Tokyo, Hiroshima, Osaka, and Fukushima (atomic power station
Fukushima Daiichi). These points are shown on Fig. 3.10 where they are marked
as ‘T’, ‘H’, ‘O’, and ‘F’. We have used the earthquake catalog of the Japanese
Meteorological Agency (JMA) over time period 1900–2005.

Tokyo, k = 35.41; u = 139.36;

We have applied the statistical technique exposed in Chap. 2 to the estimated
accelerations calculated from equations (3.3). The Kolmogorov distance KD was
used for to choose the most appropriate threshold value h providing the best fitting
of GPD to the data:

KD ¼ n1=2
h maxjGPDhð x jn̂; ŝÞ � Fnh xð Þj; ð3:4Þ

where Fnh xð Þ is sample stepwise distribution function generated by observations
x1� . . .� xnhð Þ exceeding threshold h:

Fig. 3.10 Japan earthquakes, 1900–2005. Tokyo, Hiroshima, Osaka, and Fukushima (atomic
power station Fukushima Daiichi) are marked as ‘T’, ‘H’, ‘O’, and ‘F’
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0; x � x1;

Fnh xð Þ ¼ r=nh; xr\ x � xrþ1; 1 \ r \ nh;

1; x [ xnh :

Since we use a theoretical GPD with parameters fitted to the data, we cannot
use the standard Kolmogorov distribution tables to find the significance level of the
observed KD. Instead, in order to determine the significance level of a given KD-
distance (3.4), we used a numerically calculated distribution of KD-distances
measured in a simulation procedure with 10,000 GPD-samples and parameters
individually fitted to each sample. This method was suggested in Stephens (1974)
for the Gaussian and the exponential distributions. We use the Kolmogorov dis-
tance to test the GPD distribution fitted to estimated accelerations.

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.11 (upper figure). We see that a monotone decreasing starts some-
where near log10 Amaxð Þ� � 0:2: Since the theoretical GPD-density monotonically
decreases, we have to restrict our analysis by thresholds h [ � 0:2:The KD-distance
as function of h is shown on Fig. 3.11, lower figure. We see that the lowest KD ¼
0:582 (the best fitting) corresponds to the threshold h ¼ 0:5. Its significance level
(p–value) equals to 0.72, so that the sample can be considered as belonging to GPD
distribution (the testing would reject this distribution in the case of very small p–
values, say, p \ 0.10). For this threshold there are nh ¼ 279 observations exceeding
this threshold. We got following estimates of unknown parameters:

n̂ ¼ �0:23 � 0:05; ŝ ¼ 0:52 � 0:06; Q0:90 30ð Þ ¼ 2:3: ð3:5Þ

Maximum of logarithmic estimated accelerations was 2.76 (it cannot be more
because of restriction of estimated acceleration as it is given in equation (3.3)).

Fig. 3.11 Tokio. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)
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Hiroshima, k = 34.39; u = 132.46;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.12, upper figure. We see that a monotone decreasing starts
somewhere near log10 Amaxð Þ� 0:1: We restrict our analysis by thresholds h in the
interval (0.1; 0.9). The KD-distance as function of h is shown on Fig. 3.12, lower
figure. We see that there are 3 thresholds h ¼ 0:6; 0:7; 0:8 with KD close to 0.6.
We prefer to take h ¼ 0:6 since sample size for this threshold (nh = 118) is larger
than others ðnh ¼ 95; nh ¼ 74Þ: Its significance level equals to 0.593, so that the
sample can be considered as belonging to GPD distribution. We got following
estimates of unknown parameters:

n̂ ¼ �0:21 � 0:07; ŝ ¼ 0:46 � 0:08; Q0:90 30ð Þ ¼ 2:1: ð3:6Þ

Maximum of logarithmic estimated accelerations was 2.76 (it cannot be more
because of restriction of estimated acceleration in Eq. (3.3)).

Osaka, k = 34.69; u = 135.50;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.13, upper figure. We see that a monotone decreasing starts some-
where near log10 Amaxð Þ� 0:1.We restrict our analysis by thresholds h in the interval
(0.1; 0.6). The KD-distance as function of h is shown on Fig. 3.13, lower figure. We
see that the best fitting corresponds to the threshold h ¼ 0:1 with KD ¼ 0:62: Its p–
value equals to 0.63, so that the sample can be considered as belonging to GPD
distribution. We got the following estimates of unknown parameters:

n̂ ¼ �0:19 � 0:04; ŝ ¼ 0:50 � 0:04; Q0:90 30ð Þ ¼ 2:1: ð3:7Þ

Maximum of logarithmic estimated acceleration was 2.76 (as above it cannot be
more because of restriction of estimated acceleration in equation (3.3)).

Fig. 3.12 Hiroshima. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)
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Fukushima Daiichi, k = 37.4214; u = 141.0325;

The histogram of estimated accelerations calculated in accordance with (3.3) is
shown on Fig. 3.14, upper figure. We see that a monotone decreasing starts
somewhere near log10 Amaxð Þ� 0:2:We restrict our analysis by thresholds h in the
interval (0.0; 0.5). The KD-distance as function of h is shown on Fig. 3.14, lower
figure. We see that the best fitting corresponds to the threshold h ¼ 0 with KD ¼
0:87: Its p-value equals to 0.13, so that the sample still can be considered as
belonging to GPD distribution. We got following estimates of unknown
parameters:

Fig. 3.13 Osaka. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)

Fig. 3.14 Fukushima. The
histogram of estimated
accelerations (3.3) (upper
figure). The KD-distance as
function of h (lower figure)
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n̂ ¼ �0:29 � 0:03; ŝ ¼ 0:76 � 0:06; Q0:90 30ð Þ ¼ 2:3: ð3:8Þ

Maximum of logarithmic estimated accelerations was 2.63.
The results of estimation of the parameters of GPD distribution fitted to the

estimated acceleration data for the mentioned four sites are summarized in
Table 3.1. In the fifth column the maximum possible values of the estimated
acceleration are shown calculated by formula log(Amax) = h - s/n. Q0.90(30) is
the quantile of level q = 0.90 for the maximum estimated acceleration in a future
time interval of 30 years.

3.1.3 The Accounting for Inaccuracy of the Estimated
Acceleration

The estimated acceleration (3.3) differs from the true acceleration by a random
value e. We assume that

e ¼ e1 þ e2;

where e1, e2 are independent random errors; e1 refers to inaccuracy of the used
relations (3.3) and e2 characterizes the influence of the seismic source mechanism
on the ground acceleration. In accordance with Aptikaev (2009) the random error
of the relation (3.3) has standard deviation std ðe1Þ ¼ 0:18: The distribution of e1

is not critical: we compared on several artificial examples the Gauss distribution
and the uniform distribution and found no essential differences in the estimates of
quantiles QqðsÞ: So, we accept for e1 the Gauss distribution. In order to evaluate
std e2ð Þ: we suppose that all sources in Japan territory can be classified into three
types with following relative frequencies:

normal fault � 15 %;

strike� slip � 20 %;

inverse fault thrustð Þ � 65 %:

ð3:9Þ

These relative frequencies are taken from the regional earthquakes focal
mechanism data Zlobin and Polets (2012), and they reflect the predominance of the
compression tectonic forces in the Japan region. Following Aptikaev (2009) we
assume further that these source types produce correspondingly in the epicentral
zone the following mean peak ground accelerations (PGA):

Table 3.1 Statistical estimates of GPD parameters fitted to the estimated acceleration data

h nh n h - s/
n

Q0.90

(30)
p-value of
GPD

Tokyo 0.5 279 -0.23 ± 0.05 2.76 2.3 0.72
Hiroshima 0.6 118 -0.21 ± 0.07 2.79 2.1 0.69
Osaka 0.1 462 -0.19 ± 0.04 2.73 2.1 0.63
Fukushima 0 544 -0.29 ± 0.03 2.62 2.3 0.13
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log10 Að Þ ¼ 2:65;

log10 Að Þ ¼ 2:76;

log10 Að Þ ¼ 2:95:

ð3:10Þ

We have used here the mean PGA value log10 Að Þ ¼ 2:76 valid for a totality of
earthquakes with different types of focal mechanisms instead of that typical of strike-
slip events and equal to 2.80 Aptikaev (2009). It gives us a possibility to use a simpler
scheme of taking into account the difference of mean PGA values in the cases of
different focal mechanisms. If we knew the source mechanism for each earthquake in
our catalog we could take this information into account, but since it is unknown for
the JMA catalog (at least for the first half of this catalog), we have to model the
influence of the source mechanism by an additional random term e2. The mean value
of random variable taking values (3.10) with probabilities (3.9) is * 2.76 and
standard deviation is 0.15. Thus, we can accept that std of e2 is 0.15. We suppose that
the distribution of e2 is the Gaussian as well. Then the error (e1 ? e2) has standard
deviation 0.23. Thus, we can assume that the maximum estimated acceleration
analyzed in the previous section differs from the true maximum ground acceleration
by a random Gaussian error with zero mean and std = 0.23. So, we have to take into
account the influence of this random error on the quantile Qq(s). We have done it by a
simulation procedure, adding a random Gaussian rv with std = 0.234 to the GPD-
random variable with estimated parameters (see Table 3.1) and repeating this
operation 10,000 times. Figure 3.15 shows the quantiles Qq sð Þ: both with error term
e = (e1 ? e2) (heavy curves) and without it (light curve) for all four points under
analysis. We see that the accounting for errors is practically reduced to an increase of
the undisturbed quantile by one std of the error.

The quantile Qq sð Þ is a final result of our statistical technique. It is a robust and
meaningful characteristic of the seismic hazard.

It should be remarked that the estimation of the peak ground acceleration
depends in a large extent on the used relation of type (3.1) or (3.3) connecting the
log-acceleration with magnitude and distance. We have used the relation (3.3) due
to Aptikaev (2009) that does not take into account the regional or local features
connected with soil properties. Of course, relation taking into account regional and
geological pecularities of the site would be preferable. So, our results exposed
above might be considered as preliminary estimation of real acceleration and
illustration of our statistical method for this problem.

3.2 Earthquakes, Tsunami (Victims)

In this section we shall use revised and extended version of the catalog of
earthquake victims in Japan composed by Utsu (1979, 2002). The catalog includes
as well victims of tsunami, caused by earthquakes, and covers time period
1900–2012. It contains two types of data: fatalities and the injured.
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(a) Fatalities
The catalog contains fatality data of 73 earthquakes. Figure 3.16 shows general
view of these data. The maximum fatality (142,807) occurred at 1923, Tokio. Such
high number can be explained by gigantic fires that struck old houses and struc-
tures existed at that time. So, if one is interested only in possibilities of similar
disasters in the future this observation, perhaps, could be eliminated from the
sample, but we left it nevertheless, counting for the robustness of our method.
Looking at Fig. 3.16 we see that the intensity of events visually slightly decreases
with time, although this effect is not very strong. Perhaps, this decrease can be
explained by more safe modern structure and more effective preventive measures.
It should be noted that this effect competes with the expected increase in a number
of fatalities because of the natural growth of population.

Fig. 3.15 GPD-quantiles
Q0.90(s) of estimated
acceleration both with error
term e = (e1 ? e2) (heavy
curves) and without it (light
curves) for all four points
under analysis. From top to
bottom: Tokyo, Hiroshima,
Osaka, Fukushima
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As it was mentioned above for the stationary Poisson process time moments ti
are uniformly distributed on interval [0; T]. On Fig. 3.17 we compare the
empirical DF of normalized time moments si F̂nðsÞ with uniform DF (F(s) = s;
0 B s B 1). The standard Kolmogorov test gives the Kolmogorov distance
Dn =

ffiffiffi
n
p

max | F̂nðsÞ� F(s)| = 1.004 which corresponds to p-value = 0.23
(probability to exceed Dn under condition that F̂nðsÞ was generated by theoretical

Fig. 3.16 The fatality events of the catalog of earthquake victims (Japan) composed by Utsu,
1900–2012

Fig. 3.17 Catalog of earthquake victims, Japan, 1900–2012. The empirical distribution function
Fn(s)) of normalized occurrence times sj compared with the uniform distribution function
(diagonal line)
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DF F(s). Since this p-value (p–v) is not sufficiently small (more than 0.1), we can
accept the hypothesis of stationarity of ti:

Now we consider the fatalities figures. The tail graph is shown on Fig. 3.18. We
see that on the whole the tail 1- F(x) has power-like behavior with appreciable
irregularities. So, it is reasonable to take logarithms and to analyze log(x). The
concentration of victims in the extreme range of the catalog is very high: it turns
out that 10 % of the most disastrous events are responsible for 98 % of the total
number of perished. Even if we exclude maximum fatality case (142, 807 occurred
at 1923, Tokio) 10 % of the most disastrous events would make up 83 % of the
total number of perished.

On Fig. 3.20 the cumulative sums of log-fatalities are shown. In spite of some
local fluctuations the trend on the whole looks like a linear function. There are
some deviations, but they have no definite tendency. So, we accept the hypothesis
of stationarity of this catalog.

Now we apply to our catalog the statistical analysis exposed above. We take a
grid of thresholds hj for log(x) and fit both GPD and ED for each hj. The goodness
of fit is measured by the Kolmogorov distance. The results are shown on Fig. 3.21.
We see that minimum KD-distance 0.665 is reached for GPD-approach at
h = 0.45. The GPD fitting includes estimation of two parameters (n, s), whereas
the standard Kolmogorov testing assumes no unknown parameter. For this reason
we cannot use directly the standard p–v from tables of the Kolmogorov distribu-
tion. In order to calculate p–v we used the simulation method as we mentioned
above. The best fit of GPD-distribution for h = 0.45 (n = -0.260 ± 0.111;
s = 1.657 ± 0.430) provides p–v = 0.433, which allows to accept the GPD.
Figure 3.19 shows the extreme part of the tail used for parameter estimation along

Fig. 3.18 Catalog of earthquake victims, Japan, 1900–2012. The tail graph of fatalities
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with fitted GPD-curve. We see that observations exhibit some irregular oscillations
around the approximating GPD-curve, but on the whole the fitting is satisfactory.

Now we are able to calculate the quantiles QqðsÞ which are the final goal of our
estimation. Figure 3.22 shows the GPD-quantiles for 3 different confidence levels
q = 0.90; 0.95; 0.99. It should be remarked that for very small s the quantiles

Fig. 3.19 Catalog of earthquake victims, Japan, 1900–2012. The extreme tail 1 –
F(y) (y = log(x), x—number of dead) and approximating GPD-tail: h = 0.45; n = -0.260;
s = 1.657; n = 44

Fig. 3.20 Catalog of earthquake victims, Japan, 1900–2012. The cumulative sums of log-
fatalities
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takes zero values and have small jumps equal to exp(-ks) which is the probability
that there is no event on the interval [0; s].

It is interesting to calculate ‘‘maximum possible size’’, i.e. the rightmost limit
Mmax of the GPD for log(x):

Mmax = h - s/n = 6.83 (this corresponds to 6,800,000 fatalities).

Fig. 3.21 Catalog of earthquake victims, Japan, 1900–2012. The KD-distances for a grid of log-
thresholds hj. Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.22 Catalog of earthquake victims, Japan, 1900–2012. The GPD-quantiles for three
different confidence levels q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Such gigantic figure appears to be unreal, it hardly can be used as a useful
statistical characteristic of real fatalities and has little practical value. In the same
time the quantile Q0.95(10) = 5.66 (460,000) looks quite realistic. This compari-
son shows once more stability of the quantiles QqðsÞ with respect to the ‘‘maxi-
mum possible size’’ parameter.

(b) The injured
The catalog contains numbers of injured in 131 earthquakes. Figure 3.23 shows
these numbers in time. The maximum number (103,733) occurred at 1923, Tokio.
As we mentioned above such high number of dead and injured can be explained by
gigantic fires. Looking at Fig. 3.23 we see that the intensity of events visually
slightly increases with time, although this effect is not very strong. Perhaps, this
increase can be explained by more attentive registration of events with minor
number of injured.

On Fig. 3.24 we compare the empirical DF of normalized time moments si

F̂nðsÞ with uniform DF. We see that there is a certain down deviation of the
empirical DF from the diagonal, which testifies that the visual effect of an intensity
increase is real. The Kolmogorov distance Dn = 2.048 corresponds to p–
v = 0.0005 which makes us to reject the hypothesis of stationarity of the catalog.
Looking at Fig. 3.23 we can suspect that the non-stationarity is caused by weaker
events. In order to check this suspicion we tried several lower thresholds. The
resulting intensities smoothed by 15-year time window are shown on Fig. 3.25.
We see that the evident non-stationary intensity of the original catalog (h = 0)
decreases with growing h and practically vanishes at h = 400. This threshold
seems high (it is left only 23 observations above this threshold), but, fortunately,
just this threshold provides the best GPD-fitting, as we shall see below.
The empirical DF of normalized event times for h = 400 is shown on Fig. 3.26.

Fig. 3.23 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012
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The Kolmogorov distance KD = 1.21 which corresponds to p–v = 0.11. This
value is on the border of acceptance, but still more than 0.10 and we can accept
with some reservation the hypothesis of the stationarity of the event times for
h = 400. Now we check for stationarity the distribution of injured. Figure 3.27
shows the cumulative sums of log(xj), xj—numbers of injured. We see that

Fig. 3.24 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
empirical distribution function Fn(t) of normalized occurrence times tj compared with the uniform
distribution function (diagonal line)

Fig. 3.25 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012.
Intensities for four thresholds from bottom to top: h1 = 1 (n1 = 131); h2 = 10 (n2 = 78);
h3 = 100 (n3 = 44); h4 = 400 (n4 = 23), smoothed by 15-year time window
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deviations from a straight line are not significant, and we can accept the hypothesis
of the stationarity of distribution of injured. So, we accept the hypothesis of the
stationarity of this catalog.

The tail graph of injured is shown on Fig. 3.28. We see that on the whole the
tail 1– F(x) has power-like behavior with possible increasing inclination. So, it is
reasonable to take logarithms and to analyze log(x). Figure 3.30 shows the

Fig. 3.26 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
empirical DF of normalized event times for h = 400. The empirical distribution function Fn(s) of
normalized occurrence times sj compared with the uniform distribution function (diagonal line)

Fig. 3.27 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
cumulative sums of log(xk), xk—numbers of injured
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contribution of the p-fraction of the largest events to the total sum. We see that
10 % of the most disastrous events are responsible for 94 % of the total number of
injured. Such sample can be characterized as sample with a strong concentration.
Figure 3.29 shows the extreme part of the tail used for parameter estimation along
with fitted GPD-curve. We see that the GPD-approximation is on the whole sat-
isfactory in spite of some oscillations.

Fig. 3.28 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
tail graph 1–F(x)

Fig. 3.29 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
extreme tail 1–F(y) (y = log(x), x—number of injured by earthquake) and approximating GPD-
tail: h = 0.55; n = -0.374; s = 1.860; n = 99
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The Kolmogorov test for a grid of thresholds is shown on Fig. 3.31. The best fit
of GPD-distribution under h = 0.55 (n = -0.374 ± 0.063; s = 1.86 ± 0.30)
provides p–v = 0.69, which supports GPD-distribution.

Now we are able to calculate the quantiles QqðsÞ. Figure 3.32 shows the GPD-
quantiles for 3 different confidence levels q = 0.90; 0.95; 0.99. Again we see
jumps for very small s corresponding to absence of events on time interval [0; s.]

Fig. 3.30 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
contribution of the p-fraction of the most deadly events to the total death toll

Fig. 3.31 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
KD-distances for a grid of log-thresholds hj. Thick line—GPD-fitting; thin line—ED-fitting
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The ‘‘maximum possible size’’ (rightmost limit Mmax of the GPD) is:

Mmax ¼ h� s=n ¼ 5:52 ðthis corresponds to 330,000 injured personsÞ

This is much more than the quantile Q0.95(10) = 4.81 (65,000).

3.3 Floods (Victims, Overall Economic Losses)

3.3.1 Cautions on the Accuracy of the Flood Damage Data

Flood damage estimates are reported in many different ways, and are subject to a
wide variety of errors. Estimates come from federal, state, or county level gov-
ernment officials. Some inaccuracies and mistakes in the data are inevitable,
damages are often underreported. Besides, different definitions of term ‘‘flood’’ are
used. One of the most critical discrepancies of these data occurs with storm surge
related flooding caused by tropical cyclones. Coastal flooding caused by storm
surge is not counted in the figures of the flood damage data used below. The record
season of 2005, with hurricanes Katrina and Rita, were undoubtedly enormous
flooding events. However, the damages associated with hurricane Katrina were
largely due to storm surge, and not fresh water flooding (associated to rainfall).
Therefore, the annual figure of $51B for water year 2005, although much higher
than any other year, does not account for most of the flooding produced by Katrina.
On the other hand, the damages from hurricanes that we shall analyze below,

Fig. 3.32 The injured by earthquakes. Catalog of earthquake victims (Japan), 1900–2012. The
GPD-quantiles for three different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve);
0.99 (upper curve)
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include the hurricane Katrina with $108B damage, which contributed in $141B of
annual US hurricane damage, 2005.

In this section we shall use the data of the International Disaster Database
(www.emdat.be/). The data consist of three types of flood losses in USA, 1900-
2011: fatalities, numbers of affected by flood and estimated economic losses from
flood.

(a) Fatalities

The catalog contains fatality data of 99 floods. Figure 3.33 shows general view of
these data. Looking at Fig. 3.33 we see that the intensity of events sharply
increases since 1995. Perhaps, this increase can be explained by more careful
registration of victims in later times. On Fig. 3.34 the intensity of events is shown
for 1995–2011. We see a stable behavior of the event flow. So, we shall use below
data from 1995 onwords.

On Fig. 3.35 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The deviations from diagonal are small. The Kolmogorov
distance KD = 0.633 corresponds to p–value = 0.82. Since this p-value (p–v) is
considerably more than 0.1, we can accept the hypothesis of stationarity of ti:

Now we consider the fatalities figures. The tail graph is shown on Fig. 3.36. The
tail decrease goes rather gradually at the middle range (which is typical of the Pareto
distribution), but accelerates at x [ 15, approaching the exponential tail behavior.
Thus, it is not clear, whether the log-transformation of data is appropriate? KD-
distances, characterizing goodness of fit are shown on Fig. 3.38 for a grid of
thresholds. We see that the original data have been fitted by ED much better
(h = 100.45 = 2.5; n = 41; KD = 0.836; p–v = 0.22) than logarithms
(h = 100.7 = 5; n = 32; KD = 1.515; p–v = 0.0004). Thus, we use the original
data for further processing. Figure 3.39 shows the contribution of the p-fraction of

Fig. 3.33 The fatality events of the catalog of flood victims, USA, 1900–2011
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the most deadly events to the whole death toll. We see that 10 % of the most deadly
events are responsible for 55 % of the death toll. Such a sample can be characterized
as a sample with a weak concentration. Figure 3.37 shows the extreme part of the tail
used for parameter estimation along with fitted exponential curve. We see that
behavior of the extreme part of sample tail is rather unstable, and an exponential
curve gives the best possible approximation in this complicated situation. The p-
value 0.22 is not too high, but still it gives the ground to accept the ED.

Fig. 3.34 The intensity of floods with fatalities, USA, 1995–2011, smoothed by 5-year time
window

Fig. 3.35 Flood fatalities, USA, 1995–2011. The empirical DF of normalized event times si

F̂nðsÞ
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On Fig. 3.40 the cumulative sums of fatalities for 1995–2011 (n = 61) are
shown. In spite of some local fluctuations the trend on the whole looks like a linear
function. If there are some deviations they seem to be insignificant. So, we accept
the hypothesis of the stationarity of this catalog. Now we are able to calculate the
quantiles QqðsÞ, using ED fitting. Figure 3.41 shows the ED-quantiles for three
different confidence levels q = 0.90; 0.95; 0.99.

Fig. 3.36 Flood fatalities, USA, 1995–2011. The tail graph 1–F(x)

Fig. 3.37 Flood fatalities, USA, 1995–2011. The extreme tail 1–F(x), and approximating EXP-
tail exp[-a�(x–h)]; h = 0.45; a = 0.108; n = 41
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(b) Affected by floods
Affected people, as defined in EM-DAT, are people who require immediate
assistance during a period of emergency, including displaced or evacuated people.
The catalog contains numbers of affected in 95 floods, 1970–2011. Figure 3.42
shows these numbers in time. The maximum number (11,000,148) occurred at

Fig. 3.38 Flood fatalities, USA, 1995–2011. The KD-distances for a grid of log-thresholds hj.
Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.39 Flood fatalities, USA, 1995–2011. The contribution of the p-fraction of the most
deadly events to the whole death toll
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09.06.2008. Looking at Fig. 3.42 we see that the intensity of events sharply
increases at 1995, which coincides with mentioned above behavior of flood
fatalities. On Fig. 3.43 the intensity of events is shown for 1995–2011. We see a
stable behavior of the event flow. So, we have used the data from 1995 onwards.

On Fig. 3.44 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The deviations from diagonal are relatively small. The

Fig. 3.40 Flood fatalities, USA, 1995–2011. The cumulative sums of fatalities for 1995–2011
(n = 61) are shown

Fig. 3.41 Flood fatalities, USA, 1995–2011. ED-quantiles for three different confidence levels:
q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Kolmogorov distance Dn = 0.692 corresponds to p-value = 0.72. Since this p-
value (p–v) is more than 0.1, we can accept the hypothesis of stationarity of ti:

Now we consider the figures of affected by floods. The tail graph is shown on
Fig. 3.45. We see that on the whole the tail 1 – F(x) has power-like behavior with
one outlier (maximum event May 09, 2008 with 11,000,148 affected). So, it is
reasonable to take logarithms and to analyze log(x). Figure 3.47 shows the con-
tribution of the p-fraction of the largest events to the total sum. We see that 10 %
of the most disastrous events are responsible for 97.7 % of the total number of
affected. This is a tail with ‘‘strong concentration’’.

Fig. 3.42 Affected in floods, USA, 1995–2011. Time–event size diagram

Fig. 3.43 Affected in floods, USA, 1995–2011. The intensity of events for 1995–2011,
smoothed by 10-year time window
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The Kolmogorov test for a grid of thresholds is shown on Fig. 3.48. We see that
minimum KD-distance 0.567 is reached at h = 2.7 by GPD. Using the simulation
method we got p–v = 0.665, which allows us to accept GPD-distribution
(h = 2.7; n = -0.182 ± 0.113; s = 1.205 ± 0.302). Figure 3.46 shows the
extreme part of the tail used for parameter estimation along with fitted GPD-curve.
We see that the approximation is more or less satisfactory.

Fig. 3.44 Affected in floods, USA, 1995–2011. The empirical DF F̂nðsÞ of normalized event
times si

Fig. 3.45 Affected in floods, USA, 1995–2011. The tail graph 1 – (Fx)
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Now we are able to calculate the quantiles QqðsÞ. We use for these quantiles
GPD-distribution as providing the best fitting. Figure 3.49 shows GPD-quantiles
for three different confidence levels q = 0.90; 0.95; 0.99.

The ‘‘maximum possible size’’ (rightmost limit Mmax of the GPD) is:

Mmax ¼ h� s=n ¼ 9:31ð2 � 109peoplesÞ:

Fig. 3.46 Affected in floods, USA, 1995–2011. The extreme tail 1 – F(y) (y = log(x), x—
number of affected in flood) and approximating GPD-tail: h = 2.7; n = -0.182; s = 1.205;
n = 52

Fig. 3.47 Affected in floods USA, 1995–2011. The contribution of the p-fraction of the most
disastrous events to the total sum of affected
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Again, we can say that such gigantic figure hardly has a practical value. In the
same time the quantile Q0.95(10) = 7.25 (17.7 � 106 peoples) looks quite realistic.

(c) Estimated damages caused by floods in USA

The catalog contains estimated economic loss data of 78 floods in USA,
1900–2011 (indexed to 2011) in millions of USA $. Figure 3.50 shows general

Fig. 3.48 Affected in floods USA, 1995–2011. The KD for a grid of log-thresholds. Thick line—
GPD-fitting; thin line—ED-fitting

Fig. 3.49 Affected in floods USA, 1995–2011. GPD-quantiles for three different confidence
levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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view of these data. Looking at Fig. 3.50 we see that the intensity of events sharply
increases since 1995 (shown by vertical line on the Figure), which is consistent
with behavior of data on fatalities and affected. Again, we shall analyze data only
from 1995 onwards.

On Fig. 3.51 the intensity of events is shown for 1995–2011. We see a stable
behavior of the event flow with a weak decrease to the end of interval.

On Fig. 3.52 we compare the empirical DF of normalized time moments si:

F̂nðsÞ with uniform DF. The Kolmogorov distance Dn = 1.062 corresponds to

Fig. 3.50 Estimated economic losses from floods, USA, 1995–2011, in 106 $ (adjusted to 2011).
Time–event size diagram

Fig. 3.51 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The intensity of
events, smoothed by 10-year time window
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p-value = 0.21. Since this p-value is more than 0.1, we can accept the hypothesis
of stationarity of ti:

Now we consider the loss figures. The tail graph is shown on Fig. 3.53. The tail
decrease goes rather gradually which is typical for the Pareto distribution. So, we
take logarithms for further analysis. KD-distances, characterizing goodness of fit

Fig. 3.52 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The empirical DF
F̂nðsÞ of normalized time moments s

Fig. 3.53 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The tail
graph 1 – F(x)
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are shown on Fig. 3.55 for a grid of thresholds. The threshold h = 1.9 provides the
best fitting for GPD (KD = 0.501; n = -0.486 ± 0.091; s = 1.129 ± 0.286).

Figure 3.56, shows the contribution of the p-fraction of the most costly events
to the whole sum of losses. We see that 10 % of the most deadly events are
responsible for 68 % of the total loss. Such sample can be characterized as sample

Fig. 3.54 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The extreme tail
1 – F(y) (y = log(x), x—loss in 106 USD) and approximating GPD-tail: h = 1.9; n = –0.486;
s = 1.129; n = 32

Fig. 3.55 Estimated economic losses from floods, USA, 1995–2011, in 106 $. KD-distances for
a grid of log-thresholds. Thick line—GPD-fitting; thin line—ED-fitting
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with a ‘‘moderate concentration’’. Figure 3.54 shows the extreme part of the tail
used for parameter estimation along with fitted GPD-curve. We see that the
approximation is quite satisfactory.

Now we calculate the quantiles QqðsÞ, using GPD fitting. Figure 3.57 shows the
GPD-quantiles for three different confidence levels q = 0.90; 0.95; 0.99.

Fig. 3.56 Estimated economic losses from floods, USA, 1995–2011, in 106 $. The contribution
of the p-fraction of the most costly events to the total sum of all losses

Fig. 3.57 Estimated economic losses from floods, USA, 1995–2011, in 106 $. GPD-quantiles
for three different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper
curve)
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3.4 Tornadoes (Fatalities)

In this section we shall use the data of tornado fatalities displayed in the Internet
(http://en.wikipedia.org/wiki/
List_of_North_American_tornadoes_and_tornado_outbreaks#1900.E2.80.931919
). The data consist of fatality numbers of 249 tornadoes, USA, 1900–2012. Fig-
ure 3.58 shows general view of these data. Looking at Fig. 3.58 we see that the
intensity of events depends on their values. On Fig. 3.59 the intensity of events is
shown for two thresholds: h1 = 1 (n1 = 249) and h2 = 10 (n2 = 143). We see that
the threshold h2 provides event flow with rather stable intensity whereas there are
n = 143 events exceeding this threshold.

On Fig. 3.60 we compare the empirical distribution functions Fð1Þn1 ðxÞ, Fð2Þn2 ðxÞ of
normalized time moments corresponding to these two thresholds with uniform DF.

The deviations of Fð1Þn1 ðxÞ from diagonal are large (corresponding KD = 3.69; p–

v = 3 � 10-12), whereas the deviations of Fð2Þn2 ðxÞ are much smaller (corresponding
KD = 1.08; p–v = 0.20). Since the last p–v is more than 0.1 we can accept the
hypothesis of stationarity of time moments ti for events exceeding h2 = 10.

Now we check stationarity of the fatalities xj exceeding h2 = 10. Figure 3.61
shows the cumulative sums of log10(xj). Somewhere near tj = 60 (corresponding
to May 09, 1953) we can distinguish a small but clear decrease of slope. In order to

clarify the situation we plotted two sample DF: Gð1Þm1 ðxÞ and Gð2Þm2ðxÞ, relating to
t B May 09, 1953, (m1 = 60) and to t [ May 09, 1953 (m2 = 83) correspond-
ingly, see Fig. 3.62. We see that distribution functions differ quite definitely, in
particular in the middle range. The Kolmogorov–Smirnov distance (KSD)

KSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

m1 þ m2

r
max G 1ð Þ

m1
xð Þ � G 2ð Þ

m2
xð Þ

�� ��

Fig. 3.58 Tornado fatalities, USA, 1900–2012. Time–event size diagram
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equals to 3.02 which corresponds to p–v = 1 � 10-8. So, we have to use for the
further analysis only 83 data observed after May 09, 1953.

The tail graph is shown on Fig. 3.63. The tail is typical of the Pareto distribution.
So, we use logarithmically transformed data. KD-distances, characterizing goodness
of fit are shown on Fig. 3.65 for a grid of thresholds. We see that the original data

Fig. 3.59 Tornado fatalities, USA, 1900–2012. The intensities smoothed by 40-year time window
for two lower thresholds: h1 = 1 (n = 249), upper curve; h2 = 10 (n = 143), lower curve

Fig. 3.60 Tornado fatalities, USA, 1900–2012. Two empirical distribution functions Fð1Þn1
ðxÞ,

Fð2Þn2
ðxÞ of normalized time moments corresponding to thresholds h1 = 1 (n = 249), lower curve;

h2 = 10 (n = 143), upper curve
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have been fitted by both distributions (ED and GPD) almost identically for thresh-
olds h = 1.3 – 1.35. The form parameter of GPD for these thresholds was found to
be practically zero (*10-8). Thus, GPD and ED in this case are practically identical.
The best fit corresponds to the threshold h = 1.3; n = 53. The parameter of expo-
nential distribution a = 2.75 ± 0.38. As we remarked above, the exponential dis-
tribution for log(x) means the Pareto distribution for original x with parameter

Fig. 3.61 Tornado fatalities, USA, 1900–2012. The cumulative sums of log10(xk), xk—number
of dead. The arrow indicates slope break (at time 09.05.1953)

Fig. 3.62 Tornado fatalities, USA, 1900–2012. Two sample DF: Gð1Þm1
ðxÞ and Gð2Þm2ðxÞ, relating to

t B May 09, 1953, (m1 = 60), right curve, and to t [ May 09, 1953 (m2 = 83), left curve
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b = a/log(10) = 1.19 ± 0.17. We see that the tail of tornado victims is close to a
heavy one (expectation is finite, but variance is infinite). Taking into account that the
confidence interval for parameter b

1:19 � 0:17; 1:19 þ 0:17ð Þ

Fig. 3.63 Tornado fatalities, USA, 1953–2012, threshold h C 10, n = 83. The tail function 1 –
F(x). Approximating line is the same as on Fig. 3.64

Fig. 3.64 Tornado fatalities, USA, 1953–2012. The extreme tail 1 – F(y) (y = log(x), x—
number of dead) and approximating EXP-tail exp[-a�(y - h)]; h = 1.3; a = 2.754; n = 53
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contains the true parameter value only with probability 84 % (it is valid for the
Gauss distribution), one cannot exclude possibility that the true b \ 1, i.e. the tail
is really heavy.

Figure 3.66 shows the contribution of the p-fraction of the most deadly events
to the whole death toll. We see that 10 % of the most deadly events are responsible

Fig. 3.65 Tornado fatalities, USA, 1953–2012. KD-distances for a grid of log-thresholds. Thick
line—GPD-fitting; thin line—ED-fitting

Fig. 3.66 Tornado fatalities, USA, 1953–2012, threshold h C 10. The contribution of the p-
fraction of the most deadly events to the total death toll
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for 60 % of the death toll. Such sample can be characterized as sample with a
‘‘weak concentration’’. Figure 3.64 shows the extreme part of the tail used for
parameter estimation along with fitted ED-curve. We see that the approximation is
more or less satisfactory.

Now we are able to calculate the quantiles QqðsÞ. Figure 3.67 shows the ED-
quantiles for 3 different confidence levels q = 0.90; 0.95; 0.99.

3.5 Annual Economic Losses from Floods, USA

In this section we analyze the annual flood damage data compiled by the US
National Weather Service (www.flooddamagedata.org). We take the time period
1903–2011. The time series of flood damages in log-scale is shown on Fig. 3.68.
The damage is measured in $109 (adjusted to 2011). We see that behavior of the
time series noticeably changes its character somewhere near 1940. This conclusion
is supported by the graph of cumulative sums of log-damage shown on Fig. 3.69.
A more or less stable trend is established only after 1940. Thus, we took for further
analysis the time period 1940–2011. The sample tail 1 – F(x) of these data is
shown on Fig. 3.70. We see rather moderate power-like decreasing (straight line at
the extreme range). Figure 3.72 shows the contribution of the p-fraction of the
most costly years to the total damage. We see that 10 % of the most costly years
are responsible only for 40 % of the total damage. Such sample can be charac-
terized as sample with a ‘‘weak concentration’’. Figure 3.71 shows the extreme
part of the tail used for parameter estimation along with fitted GPD-curve. We see
that the approximation is quite satisfactory.

Fig. 3.67 Tornado fatalities, USA, 1953–2012, threshold h C 10. The ED-quantiles for three
different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Now we apply GPD-fitting to peaks over thresholds h. The resulting KD-
distances characterizing goodness-of-fit are shown on Fig. 3.73. The best GPD-
fitting occurs at h = 0.4 (n = 48; n = -0.354 ± 0.093; s = 0.541 ± 0.126; p–
v = 0.90). The Q-quantiles in log-scale given by Eq. (2.44) are shown on
Fig. 3.74.

Fig. 3.68 The time series of annual flood damages in log-scale, USA, 1903–2011. The damage
is in $109 (adjusted to 2011)

Fig. 3.69 Annual flood damages in the USA 1903–2011. The cumulative sums of log-damages
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3.6 Annual Economic Losses from Hurricanes, USA

In this section we analyze the annual hurricane damage data published in Blake
and Gibney (2011). We take the time period 1940–2010. The time series of hur-
ricane damages in log-scale is shown on Fig. 3.75. The damage is measured in

Fig. 3.70 Annual flood damages in the USA 1940–2011. The sample tail 1 – F(x)

Fig. 3.71 Annual flood damages in the USA 1940–2011. The extreme tail 1 – F(x) and
approximating GPD-tail: h = 0.4; n = -0.354; s = 0.541; n = 48
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$106 (adjusted to 2010). We see that the time series does not exhibit non-sta-
tionarity. This conclusion is supported by the graph of cumulative sums of log-
damage shown on Fig. 3.76. A more or less stable trend supports assumption of
stationarity. The sample tail 1 – F(x) of these data is shown on Fig. 3.77. We see
irregular decreasing with some fluctuations. Figure 3.79 shows the contribution of
the p-fraction of the most costly years to the total damage. We see that 10 % of the

Fig. 3.72 Annual flood damages in the USA 1940–2011. The contribution of the p-fraction of
the costliest events to the total sum

Fig. 3.73 Annual flood damages in the USA 1940–2011. KD-distances for a grid of log-
thresholds. Thick line—GPD-fitting; thin line—ED-fitting
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most costly years are responsible for 70 % of the total damage. Such sample can
be characterized as sample with a ‘‘moderate concentration’’. Figure 3.78 shows
the extreme part of the tail used for parameter estimation along with fitted GPD-
curve. We see that the approximation is satisfactory although there are certain
deviations.

Fig. 3.74 Annual flood damages in the USA 1940–2011. The GPD-quantiles for three different
confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)

Fig. 3.75 The time series of annual hurricane damages in log-scale, USA, 1940–2010. The
damage is in $106 (adjusted to 2010)
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Now we apply GPD-fitting to peaks over thresholds h. The resulting
KD-distances characterizing goodness-of-fit are shown on Fig. 3.80. The best
fitting occurs at h = 1.5 (n = 64; n = -0.636 ± 0.045; s = 2.368 ± 0.352;
p–v = 0.48). The Q-quantiles in log-scale given by Eq. (2.44) are shown on
Fig. 3.81.

Fig. 3.76 Annual hurricane damages in the USA 1940–2010. The cumulative sums of log-
damages

Fig. 3.77 Annual hurricane damages in the USA 1940–2010. The sample tail 1 – F(x)
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Fig. 3.78 Annual hurricane damages in the USA 1940–2010. The extreme tail 1 – F(y)
(y = log(x), x—annual hurricane damage) and approximating GPD-tail: h = 1.5; n = -0.636;
s = 2.368; n = 64

Fig. 3.79 Annual hurricane damages in the USA 1940–2010. The contribution of the p-fraction
of the costliest years to the total sum
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Fig. 3.80 Annual hurricane damages in the USA 1940–2010. KD-distances for a grid of log-
thresholds. Thick line—GPD-fitting; thin line—ED-fitting

Fig. 3.81 Annual hurricane damages in the USA 1940–2010. The GPD-quantiles for three
different confidence levels: q = 0.90 (lower curve); 0.95 (middle curve); 0.99 (upper curve)
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Chapter 4
Discussion and Conclusions

We have demonstrated on several data sets related to natural disasters of various
nature that using logarithms of the original observations is more appropriate for
fitting of heavy tails. By doing so, power-like tails (in particular those obeying the
Pareto law with an arbitrary index) are transformed into exponential tails, and the
corresponding GPD form parameter becomes non-positive. Zero value of the GPD
form parameter corresponds to the exponential tail, whereas its negative values
correspond to a distribution with a finite end point Mmax. Tails heavier than any
power-like tail are not frequently encountered in practice, so for the log-trans-
formed data it is sufficient to consider GPDs with non-positive indexes. Thus, the
peak-over-threshold distributions of log-sizes of events are best approximated by
the GPD with a negative parameter (see Tables 4.1, 4.2). The density function of
such distributions takes very small values at the approach of its final point Mmax,
which results in a ‘‘duck beak’’ shape, see Fig. 2.2. For instance, the limit behavior
of probability density function of earthquake magnitudes taken from the Harvard

catalog is best approximated by the following power law: Mmax � xð Þ�1�1=nffi
Mmax � xð Þ5:14. This fact explains in particular the origin of unstable statistical

estimates of the parameter Mmax: smalls changes in earthquake magnitudes can
result in significant fluctuations of the corresponding estimates of Mmax. In con-
trast, estimates of the integral parameter Qs qð Þ are typically stable and robust, as
we have demonstrated above.

We would like to emphasize that a reliable estimation of quantiles of levels
q [ 1� 1=n can be obtained only with some additional assumptions on the
behavior of the distribution’s tail. Sometimes, such assumptions can be made on
the basis of physical processes behind the studied phenomena. Here we have used
for this purpose certain theorems of the extreme value theory (EVT). In our case,
these EVT based assumptions boil down to assuming a regular behavior of the tail
1� F mð Þ of the distribution of sizes of events in the vicinity of its rightmost point
Mmax. It should be noted that the assumptions regarding the asymptotic behavior of
the distribution’s tail cannot equally apply to all practical cases, and they should be
supported by additional information for each particular studied phenomenon. In
fact, the EVT suggests a statistical methodology for the extrapolation of quantiles

V. F. Pisarenko and M. V. Rodkin, Statistical Analysis of Natural Disasters
and Related Losses, SpringerBriefs in Earth Sciences,
DOI: 10.1007/978-3-319-01454-8_4, � The Author(s) 2014
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beyond the data range; whether such an extrapolation is justified should be thor-
oughly investigated in each particular case. In our view, the EVT provides us with
the best statistical approach to this problem.

Application of the EVT to different extreme events data is reduced to fitting of
the GPD to the tail of the corresponding distribution of event sizes or their log-
arithms. According to the EVT, the Generalized Pareto Distribution is the only
possible limit distribution for the ‘‘peaks over threshold’’ events. GPD is a flexible
two-parametric family of densities with well-known statistical properties. In cer-
tain cases however, even the GPD fails to reasonably approximate the distribu-
tion’s tail. This may happen in a case when the Limit Theorem of the EVT is
inapplicable to a particular data set, since the behavior of the sample’s DF in the
extreme range cannot be described by a single asymptotic function. For example, it
may switch from a power-law like behavior for a certain range of values to an
exponential one for the next range of values. In such cases, we have no well
defined criteria to choose the value of the threshold for ‘‘the peaks over threshold’’
method, and the application of the exposed approach is not recommended.

Tables 4.1 and 4.2 summarize the main characteristics of the natural disasters
analyzed above, together with the parameters of the corresponding fitted GPDs.
The first column of Table 4.1 we indicates whether the log-transform was applied
to the original values. The third column contains the estimates of the form
parameter of the GPD. In two cases the form parameter is null, which corresponds
to the exponential distribution (exponential distribution is the limit case of the
GPD when n ! 0). In all the other presented cases, the form parameter estimates
are negative, which indicates the finiteness of the corresponding distributions.

In the fourth column we give the p values which represent the probability to
exceed the discrepancy between the observed and the fitted distributions, also
known as, the Kolmogorov distance. We consider that if the p value is less than 0.1
one has grounds to reject the fitted curve). One can see that the GPD approximates
reasonably well the extreme parts of the distribution’s tail for all the considered
catalogs of natural disasters. Only in one case (fatalities from floods in USA,
1995–2011) the p value is less than 0.4 which indicates a poor quality of fit. There
are two cases (economic losses resulting from floods in USA) when the p value
equals 0.90 which corresponds to a very close approximation.

As discussed above, the absolute value |n | indicates the steepness of decrease of
the extreme part of the distribution’s tail. According to Tables 4.1 and 4.2, the
steepest extreme tails are observed for the economic losses produced by floods and
hurricanes, whereas the corresponding fatality and the injured/affected distribu-
tions have, as a rule, smaller parameter |n|, which corresponds to a slower decay of
the tail. As was previously noted, the (unlimited) exponential distribution of
log(x) corresponds to the (unlimited) Pareto distribution of x. This situation
occurred once (the last row of Table 4.1) for the case of tornado related fatalities in
USA. It is obvious that the maximum number of fatalities in any disaster is limited,
however in that particular case a more accurate statistical approximation is
observed for an unlimited model.
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One can observe that in certain cases the quantile Q0.95(10) is less than the
observed maximum event size, while in certain other cases it exceeds that value..
This is a result of an interplay between the parameters of the fitted GPD, namely
intensity k and time interval s. It should also be remarked that such characteristics
as economic losses resulting from natural disasters are strongly influenced by a
rapid global development of the economic infrastructure and the population
growth. Therefore, it is quite difficult to reliably forecast such characteristics for
long time spans, say beyond 10–15 years. This remark should be kept in mind
when one estimates quantiles of future losses.

Table 4.2 summarizes the results of the analysis of annualized data. The
aggregation of event sizes over one year intervals represents in essence a linear
filtration (smoothing) of the corresponding time series of sizes. That is why the
tails of annualized distributions are as a rule less heavy compared to the tails of
original distributions of marked point processes. This fact can explain higher
values of the form parameter (in terms of its absolute value) of annualized dis-
tributions in Table 4.2 compared to the corresponding form parameters in
Table 4.1. One exception is the case of the economic losses from floods, which can
be explained by a very small sample size in this case: n = 32 (single event losses)
and n = 48 (annualized losses). We remind that the theoretical maximum Mmax of
the GPD distribution with negative form parameter n is expressed as

Mmax ¼ h� s

n
;

and the lesser |n | the larger Mmax is.
One can also note, that the correlation between the high quantile Q0.95(10) and

the maximum observed size is stronger for the annualized data, as it could be
expected.

Table 4.2 Characteristics of annual disasters and form parameter of fitted GPD-law

Lower log-
threshold h (10h)
sample size n

Form parameter
n

Goodness-
of-fit
(p-value)

Maximum
observed
effect, lg(x)
(x)

Quantile
Q0.95(10)
(10Q)

Annual economic
losses from
floods in
USA, in 109 $,
1940–2011
lg(x)

h = 0.4 (2.5) –0.354 ± 0.093 0.90 lg(x) = 1.71
(51.3)

1.66 (45.7)
n = 48

Annual economic
losses from
hurricanes in
USA,
1940–2010 in
106 $, lg(x)

h = 1.5 (31.6) –0.636 ± 0.045 0.48 lg(x) = 5.15
(141,000)

5.09
(123,000)n = 64
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We gave in Chap. 1 theoretical relations (1.3)–(1.4) connecting the sample

maximum M nð Þ
max ¼ max x1; . . .; xnð Þ with the total sum Sn ¼ x1 þ � � � þ xn. We can

as well compare Sn with the sum of k largest observations. The ratio of such sums
for the analyzed catalogs is presented on Figs. 3.27, 3.35, 3.42, 3.50, 3.59, 3.64,
and 3.70. These ratios reflect in a more in detailed manner the contributions of the
rightmost part of tail to the total sum. Let us consider for comparison one par-
ticular value on these curves, namely the ratio of 10 % of the largest observations
to the total sum. One can say, that the higher this ratio, the more events are
concentrated around the tail’s extreme range. Table 4.3 presents a collection of
such ratios for all the considered event catalogs. One can conclude that the highest
concentration of events around the distribution’s tail is observed for the data sets
related to the number of individuals affected by floods (USA), to earthquake
fatalities (Japan) and to the injured by earthquakes (Japan). For these cases, 10 %
of the largest events are responsible for more than 95 % of the total loss. Inter-
mediate values of the event concentration toward the tail’s end (about 60–70 %)
are observed for annualized economic losses from hurricanes (USA), economic
losses from floods (USA) and fatalities from tornadoes (USA). Weak concentra-
tion (40–55 %) is observed for flood fatalities (USA) and annualized economic
losses from floods (USA). It should be noted, that our concentration graphs are in
essence an extended analog of the Pareto principle (or the 80-20 rule): ‘‘for many
phenomena roughly 80 % of the effects come from 20 % of causes’’ (Italian
economist Vilfredo Pareto observed in 1906 that 80 % of the land in Italy was
owned by 20 % of population).

Table 4.3 Ratio of sum of 10 % largest effects to total sum

Ratio of sum of 10 % largest
effects to total sum (%)

Affected in floods, USA, 1995–2011 98
Earthquake fatalities, Japan, 1900–2011 98
Injured in earthquakes, Japan, 1900–2011 94
Annual economic losses from hurricanes in USA, 1940–2010 70
USA, estimated economic losses from floods, 1995–2011 68
USA, perished in tornadoes, 1953–2012 60
USA, perished in floods, 1995–2011 55
Annual economic losses from floods in USA, 1940–2011 40
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