
Sustained Simulation
 Performance

123

2013

Michael M. Resch · Wolfgang Bez
Erich Focht · Hiroaki Kobayashi
Yevgeniya Kovalenko Editors

Sustained S
 P eeeerformancerformancerformancerformance

Sustained Simulation Performance 2013

Michael M. Resch • Wolfgang Bez • Erich Focht
Hiroaki Kobayashi • Yevgeniya Kovalenko
Editors

Sustained Simulation
Performance 2013

Proceedings of the joint Workshop on
Sustained Simulation Performance,
University of Stuttgart (HLRS) and Tohoku
University, 2013

123

Editors
Michael M. Resch
Yevgeniya Kovalenko
High Performance Computing Center
Stuttgart (HLRS)
University of Stuttgart
Stuttgart
Germany

Erich Focht
NEC High Performance Computing
Europe GmbH
Stuttgart
Germany

Wolfgang Bez
NEC High Performance Computing
Europe GmbH
Düsseldorf
Germany

Hiroaki Kobayashi
Cyberscience Center
Tohoku University
Sendai
Japan

Front cover figure: Volume renderings of a human Femur, a femoral head and cubes of cancellous bone
micro structure with 1.2mm edge length. The cubes are used as base data to derive continuum mechanical
material properties via direct numerical simulation. Illustration by Ralf Schneider, High Performance
Computing Center Stuttgart, Stuttgart, Germany

ISBN 978-3-319-01438-8 ISBN 978-3-319-01439-5 (eBook)
DOI 10.1007/978-3-319-01439-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947943

Math. Subj. Class. (2010): 68Wxx, 68W10, 68Mxx, 68U20, 76-XX, 86A10, 70FXX, 92Cxx, 65-XX

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

The field of high-performance computing is currently witnessing a significant shift
of paradigm. Ever larger raw number crunching capabilities of modern processors
are in principle available to computational scientist. However, efficiently exploiting
modern processors is getting more and more complex; this is particularly true for
so-called accelerators as GPGPUs or many-cores as the MIC architecture. (GPGPU,
many-cores, and MIC are very common technical terms which are not introduced in
the preface, but in the later chapters).

On the other hand, many areas of computational science have reached a saturation
in terms of problem size. Scientists often do no longer wish to solve larger
problems. Instead they wish to solve smaller problems in a shorter time. The current
architectures, however, are much more efficient for large problems than they are for
the more relevant smaller problems.

This series of workshops focuses on sustained simulation performance,
i.e., high-performance computing for real application use cases, rather than on
peak performance, which is the scope of artificial benchmarks. The series was
established in 2004, initially named Teraflop Workshop, and renamed to Workshop
on Sustained Simulation Performance in 2012. In general terms, the scope of
the workshop series has focussed on issues related to achieving high sustained
performance on all kinds of architectures – from vector systems, to accelerator-
based architectures, to clusters and state-of-the-art MPP systems. Special emphasis
is given to programmer productivity in the setting of current and future trends in
hardware and software developments.

This book presents the results of the 16th and 17th installment of the series.
The 16th workshop was held at the High-Performance Computing Center, Stuttgart,
Germany, in December 2012. The 17th workshop was held in March 2013 at the
headquarters of NEC Corporation in Tokyo, Japan, and organized jointly with the
University of Tohoku, Sendai, Japan.

The topics studied by the contributed papers include analysis and extrapolations
of performance and energy efficiency of modern hardware architectures (Part I),
frameworks and libraries aiming at increasing programmer productivity on future
systems (Part II), and application use-cases studies (Part III).

v

vi Preface

We would like to thank all the contributors of this book and the Sustained
Simulation Performance project. We thank especially Prof. Hiroaki Kobayashi for
the close collaboration over the past years and are looking forward to intensify our
cooperation in the future.

Stuttgart, Germany José Gracia
July 2013 Michael Resch

Contents

Part I Challenges of Modern HPC Systems: Performance
and Energy Efficiency Analysis

Feasibility Study of Future HPC Systems for Memory-Intensive
Applications . 3
Hiroaki Kobayashi
1 Introduction .. 3
2 Design Concept of the Target System . 4
3 Summary.. 10
References . 11

Analysing the Performance Improvements of Optimizations
on Modern HPC Systems . 13
Kazuhiko Komatsu, Toshihide Sasaki, Ryusuke Egawa,
Hiroyuki Takizawa, and Hiroaki Kobayashi
1 Introduction .. 14
2 Performance Differences Among Multiple Modern HPC Systems 15
3 Optimization Methods Widely Used in HPC Codes . 16

3.1 Uses of Temporal Variables . 16
3.2 Loop Distribution . 17
3.3 Loop Unswitching . 17
3.4 Loop-Invariant Code Motion . 17
3.5 Loop Collapsing. 17
3.6 Loop Exchange .. 18
3.7 Uses of Mask Operations . 18
3.8 Loop Unrolling .. 18

4 Performances of Optimizations on Multiple HPC Systems 18
4.1 Experimental Environments . 18
4.2 Performance Improvement of Optimizations

among Multiple HPC Systems . 19
4.3 Analysis of Combination of Optimizations . 22

vii

viii Contents

5 Conclusions .. 24
References . 24

Power Consumption of Kernel Operations . 27
Dmitry Khabi and Uwe Küster
1 Introduction .. 27

1.1 Power Consumption of Computational Node . 27
1.2 Power Measurement . 28
1.3 Kernel Operations .. 30
1.4 Virtual CPU Frequency . 31

2 Electric Power of Processor (Watt, GHz) . 32
2.1 Power Approximation . 32
2.2 Power of Kernel Operations . 33

3 Performance of Processor (Elements per Second, GHz) . 35
3.1 Performance of Kernel Operations . 35
3.2 Performance Approximation . 37

4 Energy Consumption of Kernel Operations (Joule per Element) 39
4.1 Dependencies of Energy and Performance . 39
4.2 Compare Kernel Operations .. 42

5 Outlook . 42
References . 45

Part II Frameworks and Libraries for Simulations
on New-Generation Computing Systems

Lattice Boltzmann Simulations on Complex Geometries . 49
Simon Zimny, Kannan Masilamani, Kartik Jain, and Sabine Roller
1 Introduction .. 50
2 The Lattice Boltzmann Method.. 50
3 Musubi as Part of the APES Framework .. 51
4 Applications on Complex Geometries . 53

4.1 Thrombus Formation in Cerebral Aneurysms . 53
4.2 Spacer Filled Flow Channel in Electrodialysis . 56

5 Scalability and Parallel Efficiency of Fluid Flows
in Complex Geometries . 58

6 Conclusion and Outlook . 61
References . 61

IMD: A Typical Massively Parallel Molecular Dynamics Code
for Classical Simulations – Structure, Applications,
Latest Developments . 63
Johannes Roth
1 Introduction .. 63
2 Classical Molecular Dynamics Simulations . 64

2.1 The Molecular Dynamics Steps . 64

Contents ix

3 Realistic Interactions and potfit . 69
3.1 Long-Range Interactions.. 70

4 Some Examples of Recent Simulations . 70
5 Parallelization . 71
6 Benchmarking IMD . 72
7 Porting IMD to GPUs . 72
8 A Comment on World Records Molecular Dynamics Simulations 74
9 Summary.. 74
References . 75

Evaluation of FastFlow Technology for Real-World Application 77
Kamran Idrees, Mathias Nachtmann, and Colin W. Glass
1 Introduction .. 77
2 Algorithms .. 78

2.1 BasicN2 Algorithm . 78
2.2 MoleculeBlocks Algorithm .. 78

3 Porting CMD to FastFlow . 79
3.1 Parallelization of BasicN2 Algorithm .. 79
3.2 Parallelization of MoleculeBlocks Algorithm . 80

4 Evaluation . 83
4.1 Evaluation Metrics . 83
4.2 Results . 83

5 Conclusions .. 87
References . 88

Storage and Indexing of Fine Grain, Large Scale Data Sets 89
Ralf Schneider
1 Introduction .. 89

1.1 Description of Use Case . 90
1.2 Data Amount, File Numbers and Sizes . 92
1.3 Serial Applications and Fine Grain Data Sets . 93

2 From the Reduction of Input/Output Operations Per Second
(IOPS) Towards a Storage and Indexing Concept for Fine
Grained, Large Scale Data Sets . 94
2.1 Data Storage Concept . 94
2.2 Data Indexing Concept . 95
2.3 Implementation.. 96

3 Implementation of a Parallel Indexing and Packaging
Algorithm by Means of the Proposed Concept . 98

4 Application Results . 100
5 Summary and Outlook . 102
References . 103

x Contents

Part III Computational Engineering Applications
and Multi-Physics Simulations

Direct Numerical Simulations of Film Cooling in a Supersonic
Boundary-Layer Flow on Massively-Parallel Supercomputers 107
Michael Keller and Markus J. Kloker
1 Introduction .. 107
2 Numerical Method . 109

2.1 Governing Equations.. 109
2.2 Spatial Discretization and Time Integration . 110
2.3 Computational Domain, Boundary Conditions

and Initial Condition . 116
2.4 Parallelization . 118

3 Numerical Results . 119
4 Conclusions and Outlook . 126
References . 127

Large Scale Numerics Uncovering New States of Matter . 129
A. Moreno, J.M.P. Carmelo, and A. Muramatsu
1 Introduction .. 130
2 Model and Algorithms . 131
3 Results . 131
References . 136

Towards Simulation of Electrodialytic Sea Water Desalination 137
Kannan Masilamani, Jens Zudrop, and Sabine Roller
1 Introduction .. 137
2 Liquid Mixture Modelling . 140

2.1 Lattice Boltzmann Mixture Modelling .. 140
3 Octree Based Simulations. 142
4 Performance and Applications .. 143
5 Conclusion and Outlook . 146
References . 146

A Regional Climate Model Simulation for EURO-CORDEX
with the WRF Model. 147
Kirsten Warrach-Sagi, Thomas Schwitalla, Hans-Stefan Bauer,
and Volker-Wulfmeyer
1 Introduction .. 147
2 Simulation with WRF-3.1.0 on the NEC Nehalem Cluster 149
3 Simulation with WRF-3.3.1 on the CRAY X6 . 150
4 Results . 151
5 Conclusion .. 153
References . 155

Part I
Challenges of Modern HPC Systems:

Performance and Energy Efficiency
Analysis

Feasibility Study of Future HPC Systems
for Memory-Intensive Applications

Hiroaki Kobayashi

Abstract After the successful launch of K-Computer in Japan, the Japanese
government started a new R&D program entitled “Feasibility Study of Future HPCI
Systems.” In this program, social and scientific demands for HPC in the next
5–10 years will be addressed, and HPC systems that satisfy the demands and key
technologies to develop such systems will be discussed and evaluated. Currently,
three system design teams get involved in this program, and this article present
a HPC project entitled “Feasibility Study of Future HPC Systems for Memory
Intensive Applications,” which is conducted by a team of Tohoku University,
JAMSTEC and NEC.

1 Introduction

Since the first peta-flop/s machine named Roadrunner became the world’s first
TOP500 LINPACK system in 2008, about 30 peta-flop/s systems have been installed
around world; US, Germany, Italy, France, UK, Australia, Russia, China and Japan
only within 4 years. Now the hot topic in the HPC community is when and
where the first exascale system will become available. Although exascale does not
exactly mean exa-flop/s, when taking a look at the trend in sustained LINPACK
performance in TOP500, it takes 12 years from 1 tera-flop/s machine named ASCI
RED developed in US in 1996 to 1 peta-flop/s Roadrunner in 2008 [7]. US, Europe,
China and Japan started several HPC strategic programs for targeting at realization
of exascale systems around 2020.

In Japan, after the successful launch of K-Computer, which was the first
10-peta flop/s LINPACK system in 2011, MEXT (Ministry of Education, Culture,

H. Kobayashi (�)
Tohoku University, Sendai 980-8578, Japan
e-mail: koba@isc.tohoku.ac.jp

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 1,
© Springer International Publishing Switzerland 2013

3

mailto:koba@isc.tohoku.ac.jp

4 H. Kobayashi

Sports, Science and Technology) organized a committee to discuss the HPC policy
of Japan for the next 5- to 10-year research and development on national leading-
supercomputers, and the committee decided to start a program entitled Feasibility
Study of Future HPCI systems last year. The objectives of this program is to

• Discuss future high-end systems capable of satisfying the social and scientific
demands for HPC in the next 5–10 years in Japan, and

• Investigate hardware and software technologies for developing future high-end
systems available around year 2018 that satisfy the social and scientific demands.

After the review and selection of the proposals to this program, three teams,
which are University of Tokyo with Fujitsu (Project Leader: Professor Yutaka
Ishikawa), University of Tsukuba with Hitachi (Project Leader: Professor Mitsuhisa
Sato), and Tohoku University with NEC (Project Leader: Hiroaki Kobayashi),
started the feasibility studies as a 2-year national project.

In this article, we present an overview of our project entitled, “Feasibility Study
of Future HPC Systems for Memory-Intensive Applications.” Section 2 describes our
system design concept with discussing target applications that would be solutions to
several important issues as social and scientific demands around 2020. In addition,
the basic specification and configuration of the system are presented. Section 3
summarizes the current state of the project and its future plan.

2 Design Concept of the Target System

In the last decades, microprocessors for high-end computing systems boost their
flop/s rates by introducing multi- and many-core architectures into the chip design.
However, their off-chip memory throughputs are not improved well, and as a result,
the bytes per flop rate, B/F, which is a ratio of the memory bandwidth to the peak
flop/s is decreasing as shown in Fig. 1 [6]. One exceptional case that keeps B/F
high is the vector processor developed by NEC for its SX supercomputer series.
The latest system of the NEC supercomputer is SX-9, and its processor provides
a 102.4 Gflop/s as a single-core processor with the 256 GB/s memory interface,
resulting in the significant B/F rate of 2.5, compared to 0.5 or lower B/F rates
of modern microprocessors such as IBM power7 [1], Intel Xeon [3] and Fujitsu
SPARC IVfx [4]. However, the vector processor is also facing the memory wall
problem as the vector processor flop/s is also increasing.

The memory bandwidth is a key factor to exploit system peak performance and
make simulation much more efficient and productive runs. As the B/F is decreasing,
it becomes more difficult to feed the necessary data to plenty of arithmetic units on
a chip, resulting in lowering the processing efficiency. Figure 2 shows the attainable
performance of applications on several modern microprocessors as a function of
application B/F rates. An application B/F rate is the memory access intensity of an
application, and shows the amount of memory access in bytes per one floating opera-
tion in its highest cost kernel. In the figure, “Roof Lines” of processors are depicted.

Feasibility Study of Future HPC Systems for Memory-Intensive Applications 5

Fig. 1 Trend in processor peak flop/s and B/F

256.0

128.0

64.0

32.0

16.0

8.0

4.0

2.0

1.0

0.5

Application B/F (Memory Access Intensity)
8 4 2 1 0.5 0.25 0.125 0.063

Str
eam

 BW
 72

.95
GB/s

SX-9 2.5B/F

Str
eam

 BW
 25

6G
B/s

Str
eam

 BW
 17

.6G
B/s

Str
eam

 BW
 17

.0G
B/s

Str
eam

 BW
 34

.8G
B/s

Str
eam

 BW
 58

.61
GB/s

Str
eam

 BW
 10

.0
GB/s

Str
eam

 BW
 43

.3G
B/s

Str
eam

 BW
 64

.7G
B/s

0.03 0.01

For Memory
intensive

applications
For Computation-

intensive applications

Fig. 2 Roofline models of modern microprocessors

6 H. Kobayashi

0.001 0.01 0.1 1 10 100 1000
0.0001

0.001

0.01

0.1

1

10

Required memory capacity [PB]

R
eq

ui
re

d
m

em
or

y
ba

nd
w

id
th

 [B
yt

e/
Fl

op
]

Computation-
intensive

Memory-
intensive

Quantum chemistry
Nuclear physics

MD, Weather
Cosmo physics
particle physics

Structural analysis
Fluid dynamics

Fig. 3 Memory requirements of applications

A flat roof line shows the upper limit of attainable performance of an application
defined by the peak performance of a processor on which the application runs, and a
slant roof line is given by the limitation of memory bandwidth of the processor when
the application B/F is larger than the processor B/F. As the figure suggests, the order
of the processors regarding attainable performance in the case of memory-intensive
applications is quite different from that in the computation-intensive applications.
For memory-intensive applications, the attainable performance is far from peak-
performance of processors when their B/F rates do not match the application
B/F rates.

Unlike LINPACK, sustained performance of many practical applications is
memory-limited, because these applications need a lot of data during operations
in their high cost kernels. According to the application development roadmap
report summarized in Japan in 2012 [5], many important applications in the wide
variety of science and engineering fields need 0.5 B/F or more, as shown in Fig. 3.
Therefore, if we continue to develop high-end computing systems by concentrating
on increasing flop/s rates, simply targeting toward exa-flop/s in 2020, rather than
memory bandwidth, their applicable area are getting limited, i.e., there will be a high
probability that only few % of peak performance of exa-flop/s would be effective in
the execution of practical exascale applications, and lots of arithmetic unites end up
wasted during their execution.

Based on the above observation, in our project, we are much more focusing
on device and architectural technologies to keep high B/F in the design of future
HPC systems for exascale computing of important applications available around
2020. In particular, we will explore the design space of the future HPC systems to
make them more flop/s-efficient and applicable to the wide fields of science and

Feasibility Study of Future HPC Systems for Memory-Intensive Applications 7

S
ci

en
ti

fi
c

pr
ed

ic
ti

on
 f

or

di
sa

st
er

 p
re

ve
nt

io
n

an
d

m
it

ig
at

io
n

Earthquake occurrence

Seismic wave/Tsunami
propagation

PPrediction of
disaster scenarios

Building motion

Assessment of
structural impact

Damage by drifted objects

Damage prediction

Structural damage

Flooded area

Evacuation
prediction

Extreme weather Torrential rain

Fig. 4 Simulation model of compound disaster

engineering, especially satisfying social demands for realizing the safe and com-
fortable society with the HPC technology. To this end, we bring many leading
application researchers into the project for co-design of architectures and applica-
tions, in order to introduce applications viewpoints into the system design, and make
the system highly optimized and friendly in both performance per power/energy
consumption and programming, respectively.

Although many applications need higher B/F rates in their programs, important
memory-intensive applications come from earth sciences and engineering fields.
Especially, after the great East-Japan earthquake in 2011, there is a growing demand
for the prevention and mitigation of natural disaster by large earthquakes and
tsunami in Japan. Therefore, we study the simulation for dealing with compound
disaster, which consists of an underground structure model, an strong motion model,
an tsunami model, and a whole city model, in order to provide useful information
about damage of lands and building, and evacuation guidance after large earthquakes
and tsunami as shown in Fig. 4. In this compound disaster simulation model, the
weather model that simulates typhoon, concentrated heavy rains, and tornado is also
combined as another type of disaster sources that needs to be considered.

In addition to natural disaster analysis as memory-intensive applications, we also
address engineering simulations as our memory-intensive applications, in particular,
high-resolution airplane models for digital flight and multi-physics models for
reliable and efficient turbo machineries for power plant systems, which need
exascale computing as shown in Fig. 5. For these target applications, we investigate
their fundamental simulation models available in 2020, and estimate B/F of their

8 H. Kobayashi

Simulations can reduce both design
cost and design time.
Utilizing the digital design will boost innovations in
industries, enhancing the global competitiveness of
Japanese industries.

Improving reliability, safety and productivity
Providing greener products and energy saving
Feedback to manufacturing

Airplane design Design of turbo machinery
Multi-scale simulations with both macro flows and micro phenomena

Exploring wider design space
Reducing experiments with models

Enabling digital flight
(simulating steady to unsteady phenomenon)
Developing lower noise airplanes
(aerodynamic acoustic analysis)

Developing more efficient turbine
(thermal flow analysis of an entire turbine)
Simulation by multi-physics CFD
(phase - change, erosion/corrosion, cracks)

Concept
design

Simulation
(lower cost)

Experiment
(higher cost) Product

Digital design

Fig. 5 Advanced digital design of airplanes and turbo machineries

high cost kernels, the total amount of the required computation, memory capacity,
and the time limitation to the solution, for the productivity of simulation as basic
requirements when considering the design of the system architecture for future HPC
systems whose design target is around 2018. Table 1 summarizes requirements of
the applications. In the top of the table, applications examined in this project are
presented, and the simulation flow in the dotted box shows compound disaster
analysis. In the bottom of the table, there are two categories for applications:
one is for applications that need very high-resolution models for their single run.
The other is for applications each of which is a collection of several runs of moderate
resolution models with different simulation parameters. The table suggests that all
the applications for disaster analysis and engineering product design need two or
more B/F rates in their high cost kernels, and one to hundreds exascale floating point
operations should be processed less than 10 h down to in 30 min for their simulation
productivity. They also need up to 14 PB for memory space.

After the careful review of these application requirements for exascale comput-
ing, we reached the following basic design concepts:

• Design an advanced vector multi-core architecture optimized not only for long
vectors but also for short vectors with indirect memory access,

• Design a larger computing node connected to larger shared memory at higher B/F
rate, compared to conventional microprocessors and their successors projected,
in order to keep the number of parallel processing nodes required by target
applications as low as possible,

Feasibility Study of Future HPC Systems for Memory-Intensive Applications 9

Table 1 Requirements of target applications for the design of the HPC system

Earthquake occurrence
(RSGDX)

Seismic wave propagation
(Seism3D)

Tsunami runup
(CADMS)

Data assimilation
(CDA)

Global/urban weather
(MSSG)

Aerodynamics
(incompressible flow)

(BCM)

Aerodynamics
(compressible flow)

(BCM)
Aeroacoustics

(BCM-LEE)
Energy device

(Numerical turbine)

Evacuation (MAS)

Drifted object
(DEMIGLACE)

Purpose Application B/F # of floating point
operations (x1018)

required
memory size

Max.
allowed

runtime (hr)

 Super-high
 resolution
 single run

RSGDX 4.50 230 1.5 PB 10

Seism3D 2.14 160 9.6 PB 2

MSSG 4.00 720 175 TB 6

BCM 5.47 1 13.6 TB 0.5

 High-
 resolution
 ensemble run

Comprehensive
disaster prevention 2 5 100 4 PB 2 3

Numerical turbine 2.33 140 163.5 TB 20

Ground vibration
(MMA)

Building vibration
(ADVENTURE Solid)

Coupling simulation

• Design a advanced memory subsystem using innovative 2.5D silicon interposer
and 3D-die stacking technologies to satisfy the requirements of B/F rates of 2 or
more of target applications,

• Design a network system with better local communications, while keeping the
latency of global communication as low as possible,

• Design a hierarchical storage and I/O subsystem that satisfies the requirements
for data assimilation in disaster analysis, and

• Design a system software that provides the standard programming environment,
i.e., LINUX-based system software, but it should be customized for exploiting
the potential of the advanced vector architecture without sacrificing the standard
programming environment.

Figure 6 shows a block diagram of the system designed based on these concepts.
The basic specification of the system is as follows:

• Performance/Socket

– >1 Tflop/s of a peak performance
– >1 TB/s of a memory bandwidth
– >128 GB of memory capacity

• Performance/Node

– Up to 4 sockets/node
– >4 Tflop/s of a node peak performance
– Up to 1 TB of the shared memory

10 H. Kobayashi

Fig. 6 Conceptual design of the target system

The system scale will be decided so as to satisfy the requirements regarding the
time to solution of individual applications after the performance estimation.

The design concepts presented here are very aggressive and challenging, and
we understand that there several obstacles that should be solved before going
into the production of the above system mainly due to cost and power budget in
addition to technological issues, but application designers, architecture designers
and device designer in our project work tightly together to make innovation happen
for realizing highly productive HPC systems that will be expected to became
available around 2018!

3 Summary

This article describes our on-going project for design and development of future
HPC systems, especially suited for memory-intensive applications. Our design is
based on the vector architecture, but many advanced technologies for efficient
processing of short vectors with indirect memory references will be introduced. New
device technologies such as 2.5D interposer and 3D die-stacking for the design of
the memory subsystem, which make the memory subsystem high-bandwidth and
low-power, will aggressively be applied to the system design. For the true holistic
collaboration among applications, architectures and device technologies, we bring
leading researchers and engineers in individual fields nation-wide into the project.
Now we are finalizing the details of the architecture and estimating its performance
by using target applications scaled to exa-level computing, which satisfy the social
demands and make science and engineering breakthrough happen.

Feasibility Study of Future HPC Systems for Memory-Intensive Applications 11

Our design philosophy is to waking up plenty of sleeping floating point units on a
chip by improving memory performance for practical applications, not optimized for
LINPACK. We believe the brute force to exascale computing by simply increasing
the number of simple cores on a chip does not make sense any more for practical
applications in the wide variety of science and engineering. So far, LINPACK
of TOP 500 drives the development of high end systems as their performance
measure, however, many people are now aware of the limitation of LINPACK for
the evaluation of productivity of high-end computing systems [2] We think that
innovative memory system design would be a key to realization of highly productive
HPC systems in the next 5–10 years, and we believe that our approach will open up
the new way to exascale computing. Let’ make the supercomputer for the rest of us
happen, not for LINPACK only!

Acknowledgements Many colleagues get involved in this project, and great thanks go to
Dr. Y. Kaneda and Dr. K. Watanabe of JAMSTEC (Japan Agency for Marine-Earth Science and
Technology) as co-leaders of the application group, Professor M. Koyanagi of Tohoku University
as the leader of the 2.5D/3D device group, and Ms. Y. Hashimoto of NEC as the leader of the NEC
application, system and device design group. This project is supported by MEXT.

References

1. M. Floyd et al. Harnessing the Adaptive Energy Management Features of the POWER7 chip.
In HOT Chips 2010, 2010.

2. M. Flynn et al. Moving from petaflops to petadata. Communications of the ACM, 56:39–42,
2013.

3. Oded Lempel. 2nd Generation Intel* Core* Processor Family: Intel Core i7, i5 and i3. In HOT
Chips 2011, 2011.

4. Takumi Maruyama. SPARC64(TM) Viiifx: Fujitsu’s New Generation Octo Core Processor for
PETA Scale Computing. In HOT Chips 2009, 2009.

5. MEXT HPC Task Force. (in Japanese) Report on Application R&D Roadmap for Exascale
Computing. 2012.

6. S. Momose. Next Generation Vector Supercomputer for Providing Higher Sustained Perfor-
mance. In COOL Chips 2013, 2013.

7. Top 500 Supercomputer Sites. http://www.spec.org/.

http://www.spec.org/

Analysing the Performance Improvements
of Optimizations on Modern HPC Systems

Kazuhiko Komatsu, Toshihide Sasaki, Ryusuke Egawa, Hiroyuki Takizawa,
and Hiroaki Kobayashi

Abstract Recently, there are many types of supercomputing systems being
equipped with vector processors, scalar processors, and accelerators as processing
elements of the systems. Although all kinds of calculations cannot effectively be
performed on one HPC system, a part of calculations can exploit the potential
of a HPC system by considering both the calculations and the system. These
tendencies that each HPC system is designed and suitable for specific fields of
calculations continue in order to achieve higher performance for target HPC codes.
Therefore, even though the same HPC code is executed on multiple HPC systems,
the sustained performances on HPC systems are different. As characteristics of a
HPC code mainly depend on optimization methods, clarifying the performances
by the optimization methods on multiple HPC systems becomes important for
developing performance-portable HPC codes, which can exploit the potential of
every HPC system. By considering both the optimization methods and the HPC
systems, this paper clarifies the performances of the optimization methods on
multiple HPC systems.

K. Komatsu (�) � R. Egawa � H. Kobayashi
Cyberscience Center, Tohoku University/JST CREST, 6-3 Aramaki-aza-aoba, Aoba,
Sendai 980-8578, Japan
e-mail: komatsu@isc.tohoku.ac.jp; egawa@isc.tohoku.ac.jp; koba@isc.tohoku.ac.jp

T. Sasaki
Department of Information and Intelligent Systems, Tohoku University, 6-6-01
Aramaki-aza-aoba, Aoba, Sendai 980-8579, Japan
e-mail: toshihide@sc.isc.tohoku.ac.jp

H. Takizawa
Graduate School of Information Sciences, Tohoku University/JST CREST, 6-6-01
Aramaki-aza-aoba, Aoba, Sendai 980-8579, Japan
e-mail: tacky@isc.tohoku.ac.jp

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 2,
© Springer International Publishing Switzerland 2013

13

mailto:komatsu@isc.tohoku.ac.jp
mailto:egawa@isc.tohoku.ac.jp
mailto:koba@isc.tohoku.ac.jp
mailto:toshihide@sc.isc.tohoku.ac.jp
mailto:tacky@isc.tohoku.ac.jp

14 K. Komatsu et al.

1 Introduction

Due to the rapid advancements in semiconductor technologies, the number of
transistors that can be integrated on a processor is drastically increased. As a large
number of transistors has brought the design space of a processing element wider,
various processor architectures have been developed. For example, recent scalar
processors are equipped with multiple high performance cores and cache memories
with large capacity . In addition, some scalar processors are equipped with graphics
processing cores.

As there are many types of processors, the types of the HPC systems that support
large scale HPC applications have also been increasing [1]. Vector supercomputing
systems employ vector processors and can calculate sets of data elements at
the same time by utilizing its wide sustained memory bandwidth [2, 6]. Scalar
supercomputing systems generally consist of a large number of scalar processors
and can perform parallel calculations by utilizing the massively parallelism of an
application [3]. Accelerator type supercomputing systems have both host processors
and accelerators such as GPUs. It can effectively perform data parallel applications
by exploiting high floating point operations and memory bandwidth of the acceler-
ators. [4, 5].

As each HPC system has its own advantages and disadvantages, the sustained
performances of the same HPC code executed on various HPC systems are different.
If a HPC code is suitable for one HPC system, it can efficiently exploit the potential
of that HPC system. However, if the HPC code is not suitable for the characteristics
of another HPC system, the potential of the HPC system is not effectively utilized.
This is because the characteristics of a HPC code are not always suitable for every
HPC system.

As the characteristics of HPC codes change by optimizations applied to the HPC
codes, the performances of the optimizations on multiple HPC systems should be
clarified for understanding the characteristics of HPC codes. By considering the
performances of the optimizations among multiple HPC systems, performance-
portable HPC codes that exploit the potential of various HPC systems can be
developed.

This paper firstly shows performance differences of the optimization methods
among various HPC systems. Then, to clarify the features and performances of the
optimizations among various HPC systems, the performance of each optimization
method that is widely utilized for many HPC codes is evaluated. By considering
both optimization methods and HPC systems, this paper discusses the performances
of the optimization methods on multiple modern HPC systems.

The rest of this paper is organized as follows. Section 2 shows the performance
differences among multiple platforms through preliminary evaluations of practical
HPC applications. Section 3 briefly describes optimization methods widely applied
to practical HPC applications on multiple HPC systems. Section 4 clarifies the
performances of the optimization methods on various HPC systems through the
evaluations by considering both the optimization methods and HPC systems.
Finally, Sect. 5 gives conclusions of this paper.

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 15

2 Performance Differences Among Multiple Modern HPC
Systems

In this section, performance differences among multiple HPC systems are discussed
using kernels excerpted from practical HPC codes. By using multiple HPC systems
that include a vector supercomputing system and several scalar supercomputing
systems, the preliminary performance evaluations of the practical HPC codes are
conducted. From these results, the performance differences among multiple HPC
systems are shown.

Figure 1 shows the performance improvements of each HPC system by removing
undefined variables from an original kernel of a practical HPC code. The x-axis
indicates the HPC systems used for the preliminary evaluations. The y-axis indicates
the speedup ratio of the optimized code to the original code on each HPC system.
In the original kernel, variables in a loop are assigned only when a branch condition
is true. Otherwise, the variables are not undefined, and then unused. In such a
situation, a compiler cannot generally know whether there is a dependency among
iterations in the loop. By initializing such undefined variables using the same branch
condition before the loop, a compiler can know the dependency among the iterations
and may apply further automatic optimizations.

In Fig. 1, the performance improvements by removing undefined variables can
be observed in Hitachi SR16000 M1 and NEC SX-9. The performances of the
optimized kernel on the other systems are almost the same as the original kernel.
The reason of the same performances is that the compilers of both Fujitsu FX1
and Fujitsu FX10 might successfully detect the independence among the iterations.
Thus, the same performances between the original kernel and the optimized kernel
can be achieved. Generally, as variables should be initialized, the performances by
removing undefined variables are the same or improved.

Figure 2 shows performance improvements by combinations of multiple opti-
mization methods such as a loop collapsing, a loop exchange, an invariant-code
motion, and uses of mask operations. These multiple optimization methods are
applied to a kernel of another practical HPC code. Different form Fig. 1, only NEC
SX-9 achieves about 13 times performance improvements. However, the sustained
performances of the other HPC systems drastically degrade by the optimizations.
Only 10–60 % of the performances compared with the original kernel is obtained.
Although the original kernel and the optimized kernel running on the HPC
systems are the same, the sustained performances are completely different. This
is because the optimized kernel are not always suitable for every HPC systems. By
decomposing the combinations of the optimization methods into each optimization
method and analysing the performance improvements, the optimization methods
should be clarified.

In order to clarify the performances of the optimization methods on the perfor-
mance among multiple HPC systems, the widely used optimization methods for
HPC codes are selected and evaluated in this paper.

16 K. Komatsu et al.

0.9

0.95

1

1.05

1.1

1.15

SX-9 Nehalem
Cluster

FX10 FX1 SR16000 M1Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 o
ve

r t
he

or

ig
in

al
 c

od
e

Fig. 1 Speedup of each HPC system by removing undefined variables

0

2

4

6

8

10

12

14

SX-9 Nehalem
Cluster

FX10 FX1 SR16000 M1Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 o
ve

r t
he

or

ig
in

al
 c

od
e

Fig. 2 Speedup of each HPC system by multiple optimization methods

3 Optimization Methods Widely Used in HPC Codes

In this section, the widely used optimization methods in HPC codes are briefly
described.

3.1 Uses of Temporal Variables

When the same data are utilized multiple times in the same iteration of a loop, the
load instructions of the same data might be performed multiple times. Storing such
reusable data into temporal variables can avoid redundant memory instructions.

However, as the limited registers in a processor are used for temporal variables,
register spilling that some variables are transferred from registers to memory may
occur due to the shortage of the registers. As register spilling causes more memory
accesses, the abuse of temporal variables may cause performance degradation.

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 17

3.2 Loop Distribution

A loop distribution divides a loop into multiple loops with the same loop index.
A loop body is divided into multiple parts of the loop body. A loop distribution
prevents register spilling that easily occurs when a lot of calculations is necessary
in one loop. Furthermore, by dividing a loop body, a loop distribution enhances the
locality of data required in a part of the loop body. Storing the data with high locality
into on-chip memory brings effective uses of on-chip memory.

On the other hand, loop overhead such as checking loopa conditions and loop
controls might cause performance degradation since the number of loops increases
by a loop distribution.

3.3 Loop Unswitching

A loop unswitching moves a conditional branch from inside a loop to outside the
loop. Since a loop unswitching can remove the conditional branch in a loop, a loop
body might be further optimized by a compiler and executed efficiently. However,
as the same loop body is described several times after the conditional branch, the
maintainability of the code decreases.

3.4 Loop-Invariant Code Motion

In order to remove the same calculations among iterations, a loop-invariant code
motion moves loop-independent calculations to outside of a loop. As a loop-
independent code motion can remove the redundant calculations in a loop, the
performance improvement can be expected.

3.5 Loop Collapsing

A loop collapsing makes the length of a loop long by collapsing triple nested loops
into a single nested loop for effective vector and SIMD processing. If the length of a
loop is long enough, the more elements can be calculated at the same time by vector
and SIMD processing.

However, the number of memory accesses in a loop may increase as well as loop
unrolling. It causes low utilization of on-chip memory due to the reduction in the
temporal locality in a loop.

18 K. Komatsu et al.

3.6 Loop Exchange

A loop exchange changes an inner loops with an outer loop. As a loop exchange
changes the order to access data, the locality of reference might be improved,
resulting in efficient memory accesses and uses of on-chip memory.

3.7 Uses of Mask Operations

Conditions of all branches are calculated in advance and the results of the conditions
are stored in a mask array. According to the results of the condition in a loop
body, appropriate calculations are decided. Thus, a compiler tries to perform such
a branch condition using vector and SIMD operations with mask operations. As a
result, as conditional branches are performed by vector and SIMD processing, the
performance improvement can be expected. However, unless such vector and SIMD
processing is performed, the conditional branch in a loop body may drastically
degrade the performance of the calculations.

3.8 Loop Unrolling

Loop unrolling duplicates a loop body with a different loop index, which can reduce
the amount of loop overhead such as checking loop conditions and loop controls.
Moreover, by unrolling the loop body, the number of memory accesses to the same
data used in different iterations can be reduced. In addition, by unrolling the short
length of loops, the automatic vectorization and SIMDization by a compiler can be
enhanced using the outer side of a loop body.

On the other hand, as the temporal locality in a loop is reduced, the utilization of
the on-chip memory might become low.

4 Performances of Optimizations on Multiple HPC Systems

4.1 Experimental Environments

From three scientific and engineering applications running on Cyberscience Center,
Tohoku University, three kernels are excerpted from their dominant calculations,
each of which has two versions. One is the original code written in the practical
applications. The other is the optimized code that is applied one or more optimiza-
tion methods described in Sect. 3.

Table 1 indicates the four kernels and the applied optimization methods to the
optimized version of the kernels, whose optimizations are reviewed in Sect. 3.

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 19

Table 1 Four kernels of the
practical applications

of Kernels Optimization method

Kernel1 Uses of temporal variables
Kernel2 Loop distribution
Kernel3 Loop unswitching

Table 2 Node Specification of HPC systems used in the evaluations

Sockets Cores Memory
Peak per per socket BW

HPC System Gflops/s node socket GB/s On-chip memory B/F

NEC SX-9 1676.8 16 1 256 256 KB ADB 2.5
Intel Nehalem EX 289.92 4 8 34.1 256 KB L2/core, 0.47

24 MB shared L3
Fujitsu FX1 41.28 1 4 40 6 MB shared L2 1.0
Fujitsu FX10 236 1 16 85 12 MB shared L2 0.36
Hitachi SR16000 M1 980.48 4 8 128 256 KB L2/core, 0.52

32 MB shared L3

The five HPC systems, whose specifications are shown in Table 2, are utilized
for the evaluations. These HPC systems are classified into a vector system and
scalar systems. NEC SX-9 is a vector parallel supercomputer consisting of a large
symmetric multi-processing (SMP) nodes, each of which has 16 102.4 Gflop/s-
vector processors. The effective uses of an on-chip 256 KB cache named Assignable
Data Buffer (ADB) in NEC SX-9 are a key to exploit the potential of NEC SX-9.
As the main memory and ADB can simultaneously provide data to vector pipelines,
the vector processor can access those data at a high sustained bandwidth.

Intel Nehalem EX cluster, Fujitsu FX1, Fujitsu FX10, and Hitachi SR16000
M1 are scalar parallel supercomputers that are equipped with Nehalem EX,
SPARC64VII, SPARC64IXfx, and Power7 processors, respectively. As shown in
Table 2, these scalar processors also have large on-chip cache memories. On-chip
L2 and/or L3 caches should be used for data with high locality to shorten memory
access latency. Moreover, uses of SIMD instructions are essential to efficiently
process multiple data.

4.2 Performance Improvement of Optimizations
among Multiple HPC Systems

In order to examine the differences of performance improvements by the optimiza-
tion methods on the multiple HPC systems, the speedup ratio of the optimized kernel
to the original kernel on each HPC system are utilized. The speedup ratio is shown
as following equation.

20 K. Komatsu et al.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

SX-9 Nehalem
Cluster

FX10 FX1 SR16000 M1Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 o
ve

r t
he

or

ig
in

al
 c

od
e

Fig. 3 Speedup of each HPC system by uses of temporal variables

SpeedupSystem D TimeOriginal
System

TimeOptimized
System

; (1)

where SpeedupSystem indicates the speedup ratio of the optimized kernel on a HPC

system. TimeOptimized
System and TimeOriginal

System indicate the execution times of the optimized
and original kernels, respectively. By comparing the speedup ratios among multiple
HPC systems, the performance differences can be examined.

Figures 2 and 3 show that the comparisons of the speedup ratios on multiple HPC
systems. The x-axis indicates the HPC systems and the y-axis indicates the speedup
ratios of the optimized kernel to the original kernel on all cores in each system.

Figure 3 shows the speedup ratios of kernel1. In the optimized kernel, a variable
that is loaded from the same array twice in one iteration is stored into a temporal
variable, which may reduce of the number of load instructions. Figure 3 shows
that only NEC SX-9 achieves about 1.9 times performance improvements. As the
memory access latency of NEC SX-9 is larger than those of scalar supercomputing
systems, the second load instruction is issued before the first load instruction is
complete. The use of a temporal variable avoids two load instructions for the same
variable, which could remove the second load instruction. However, the use of a
temporal variable does not contribute to the performance improvements on the scalar
supercomputing systems. This is because the reusable variable is automatically
stored in the large capacity of the cache memory in the scalar processors. Thus,
the explicit use of temporal variables is not necessary for the scalar processors. As a
result, uses of temporal variables are useful for a HPC system whose processor
needs long memory latency when multiple load instructions to the same data issue
in a short period time.

Figure 4 shows the speedup ratios of kernel2. As the large loop body in
the original kernel may cause register spilling, loop distributions are applied to
the optimized kernel. Figure 4 shows that NEC SX-9 achieves about 2.4 times

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 21

0

0.5

1

1.5

2

2.5

3

SX-9 Nehalem
Cluster

FX10 FX1 SR16000 M1Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 o
ve

r t
he

or

ig
in

al
 c

od
e

Fig. 4 Speedup of each HPC system by loop distributions

0
20
40
60
80

100
120

140
160
180

SX-9 Nehalem
Cluster

FX10 FX1 SR16000 M1

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 o
ve

r t
he

or

ig
in

al
 c

od
e

Fig. 5 Speedup of each HPC system by a loop unswitching

performance improvements because the enough number of registers in one iteration
of a loop can be utilized. Furthermore, effective uses of ADB in which more reusable
data can be stored further improve the performance. For Hitachi SR16000 M1,
which has more registers than the other scalar systems, the loop distributions are
effective. Hitachi SR16000 M1 achieves about 10 % performance improvements.
The sustained performances of the other scalar systems, however, degrade due to
the shortage of the registers and increase of the conditions of the loop. The divided
loop bodies are still large for the scalar processors that have fewer registers than
NEC SX-9 and Hitachi SR16000 M1. As a result, loop distributions considering
the appropriate number of registers required for a kernel on each HPC system is
necessary.

Figure 5 shows the performances of the loop unswitching for Kernel 3 among
multiple HPC systems. As a variable used for a branch condition is unchanged inside
a loop, the branch condition can be moved to outside of the loop. Figure 5 shows
that the loop unswitching achieves about 11–158 times performance improvements

22 K. Komatsu et al.

and it is very effective for all HPC systems. For the vector supercomputing
system, removing the branch calculations inside a loop by the loop unswitching
is particularly effective because vector processors are not essentially good at branch
calculations. Since branch conditions in a loop body basically reduce the sustained
performance for every HPC system, a loop unswitching should positively apply if
branches can move to outside of a loop.

4.3 Analysis of Combination of Optimizations

Analysing the optimized kernel that is applied the several optimizations, which is
shown in Sect. 2, the effects of the multiple optimizations are further clarified. In
the optimized kernel, a loop collapsing, a loop exchange, an invariant-code motion,
and uses of mask operations are applied. To investigate the performance of each
optimization and its combinations of these optimizations, the optimized kernel with
the multiple optimizations is decomposed into several kernels, each of which applied
only one optimization or their combinations.

Figure 6 shows the normalized execution times of each optimization and their
combinations. Only one core is used for the evaluation to simplify the experimental
environment. Furthermore, no automatic optimization is applied by a compiler.
Thus, the performance of only the optimization can be examined. From this figure,
most of each optimization and its combinations are effective for all HPC systems.
However, in the case of trying to use mask operations for efficient vector processing
on NEC SX-9, the sustained performance degrades. The reason is that SX-9 vector
extensions that include mask operations are not valid for no automatic optimization
environments. As a result, a branch condition remains in a loop body and it causes
the performance degradation.

Figure 7 shows the normalized execution times of each optimization and their
combinations with the most advanced automatic optimizations by the compilers.
This figure shows that the invariant-code motion in NEC SX-9 also reduces the
sustained performance. By moving the calculations to outside of the loop, these
calculations are performed by the scalar units in the vector processor. As the scalar
unit in NEC SX-9 is not fast as the vector units, the execution time becomes long.
In spite of the reduction in the redundant calculations by the invariant-code motion,
the execution time becomes long when a scalar processing is performed instead of
a vector/SIMD processing.

From Fig. 7, it is clearly shown that uses of the mask operations drastically
degrade the performance in the scalar systems while it achieves higher performance
in the vector system In order to let a compiler to use mask operations and to
perform efficient SIMD processing, the conditional branch using a mask array that
in advance stores whether branches are true or not remains in a loop body. However,
the compilers in these scalar processors cannot generate an expected code that uses
SIMD operations with mask operations. Furthermore, automatic optimizations by

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 23

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

SX9 SPARC64 VII SPARC64 Ixfx Nehalem EX POWER7

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
to

 th
e

ke
rn

el

w
ith

ou
t o

pt
im

iz
at

io
n

No optimization

Loop exchange

Invariant-code motion

Loop exchange, code
motion

Loop exchange, loop
collapsing

Loop exchange, code
motion, loop collapsing
All optimizations

Fig. 6 Speedup by the combinations of the optimization methods without any automatic optimiza-
tions

0.0

11.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

SX9 SPARC64 VII SPARC64 Ixfx Nehalem EX POWER7

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
to

 th
e

ke
rn

el

w
ith

ou
t o

pt
im

iz
at

io
n

No optimization

Loop exchange

Invariant-code motion

Loop exchange, code
motion

Loop exchange, loop
collapsing

Loop exchange, code
motion, loop collapsing

All optimizations

Fig. 7 Speedup by the combinations of the optimization methods with the most advanced
automatic optimizations

the compilers cannot be applied to the code. By applying uses of mask operations,
the automatic loop unrolling cannot be applied. This causes the severe performance
degradation. Therefore, the optimization method such as uses of mask operations
that prevents automatic optimizations by compilers should carefully be treated.

24 K. Komatsu et al.

5 Conclusions

In order to analyse the performance differences of the optimization methods among
multiple HPC systems, this paper evaluates the performances of several optimization
methods that are widely utilized for HPC codes. From the performance evaluations
that compare the sustained performances between the original kernel and the
optimized kernel on each HPC system, the optimization method sometimes degrades
the sustained performance. Although an invariant-code motion basically improves
the sustained performance, the sustained performance may be reduced by a scalar
processing instead of a vector processing in the vector supercomputing system.
The slower scalar units than vector units in a vector processor sometimes cause
performance degradation. Also, uses of mask operations that enhance vector and
SIMD processing of conditional branches using precomputed results might degrade
the sustained performance. Since the codes become complicated by applying the
optimization, a compiler cannot apply automatic optimizations and the sustained
performance is degraded. As the automatic optimizations by a compiler can improve
the sustained performance, the optimization method that prevents automatic opti-
mizations should be avoided. In conclusions, the optimization method should be
applied by carefully considering the performances of the optimization and a HPC
system.

Acknowledgements Authors would like to thank Information Initiative Center, Hokkaido Uni-
versity, Cyberscience Center, Tohoku University, Information Technology Center, University of
Tokyo, and Information Technology Center, Nagoya University for the supercomputing resources
used for the performance evaluation.

This research was partially supported by Grant-in-Aid for Scientific Research (S) #21226018,
Grant-in-Aid for Scientific Research (B) #25280041, and Core Research of Evolutional Science
and Technology of Japan Science and Technology Agency (JST CREST) “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Het-
erogeneous Systems”.

References

1. Top 500 supercomputers sites. http://www.top500.org/.
2. Thomas H. Dunigan Jr., Jeffrey S. Vetter, James B. White III, and Patrick H. Worley.

Performance evaluation of the cray x1 distributed shared-memory architecture. IEEE Micro,
25(1):30–40, January 2005, http://dx.doi.org/10.1109/MM.2005.20.

3. Yukihiro Hasegawa, Jun-Ichi Iwata, Miwako Tsuji, Daisuke Takahashi, Atsushi Oshiyama,
Kazuo Minami, Taisuke Boku, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi Kurokawa, Hikaru
Inoue, Ikuo Miyoshi, and Mitsuo Yokokawa. First-principles calculations of electron states of a
silicon nanowire with 100,000 atoms on the k computer. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
pages 1:1–1:11, 2011, http://doi.acm.org/10.1145/2063384.2063386.

4. Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chandramowlishwaran, Dhairya
Malhotra, Logan Moon, Rahul Sampath, Aashay Shringarpure, Jeffrey Vetter, Richard Vuduc,
Denis Zorin, and George Biros. Petascale direct numerical simulation of blood flow on 200k

http://www.top500.org/
http://dx.doi.org/10.1109/MM.2005.20
http://doi.acm.org/10.1145/2063384.2063386

Analysing the Performance Improvements of Optimizations on Modern HPC Systems 25

cores and heterogeneous architectures. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’10,
pages 1–11, 2010, http://dx.doi.org/10.1109/SC.2010.42.

5. Takashi Shimokawabe, Takayuki Aoki, Tomohiro Takaki, Toshio Endo, Akinori Yamanaka,
Naoya Maruyama, Akira Nukada, and Satoshi Matsuoka. Peta-scale phase-field simulation for
dendritic solidification on the tsubame 2.0 supercomputer. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
pages 3:1–3:11, 2011, http://doi.acm.org/10.1145/2063384.2063388.

6. Takashi Soga, Akihiro Musa, Youichi Shimomura, Ryusuke Egawa, Ken’ichi Itakura, Hiroyuki
Takizawa, Koki Okabe, and Hiroaki Kobayashi. Performance evaluation of nec sx-9 using real
science and engineering applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 28:1–28:12, 2009. http://doi.acm.
org/10.1145/1654059.1654088.

http://dx.doi.org/10.1109/SC.2010.42
http://doi.acm.org/10.1145/2063384.2063388
http://doi.acm.org/10.1145/1654059.1654088
http://doi.acm.org/10.1145/1654059.1654088

Power Consumption of Kernel Operations

Dmitry Khabi and Uwe Küster

Abstract A modern Petascale System consists of millions of different components,
which consume a huge amount of energy. The power rating of each component
depends on the type of the current instructions, executed on cores, memory con-
trollers, network units and other various components. There are a lot of influences
and complicated dependencies between the software, environment and the energy
consumption. The objective of this work is to identify and understand the energy
consumption of processors and memory in the consideration of kernel operations.
Another important goal is to develop the methodology by which the developers and
users could estimate the energy consumption of the different algorithms on different
systems with minimal effort and satisfying accuracy.

1 Introduction

1.1 Power Consumption of Computational Node

To review the assertion that the processor and the memory consume a substantial
part of the energy, we implemented a test bed that we use to measure the electrical
power not only of whole computational node but also of its hardware components.
The workstation with Intel R�Xeon R�Processor E5-2687W was selected for the
analysis. The technical description of the workstation is in Table 1. The hard-
ware components are divided into the six groups Motherboard, CPU+RAM,

D. Khabi (�) � U. Küster
High Performance Computing Center Stuttgart (HLRS), Nobelstraße 19, D-70569 Stuttgart,
Germany
e-mail: khabi@hlrs.de; kuester@hlrs.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 3,
© Springer International Publishing Switzerland 2013

27

mailto:khabi@hlrs.de
mailto:kuester@hlrs.de

28 D. Khabi and U. Küster

Table 1 Technical description of the workstation

Components Description

Motherboard Supermicro R�X9SRA Single Socket R (LGA 2011)
Processor Sandy Bridge E5-2687W (8 cores, 20 M L3-Cache, 3.10 GHz)
Memory 4 � Kingston R�Server Premier 4 GB Module–DDR3 1,600 MHz ECC
Video Simple graphic card (HD5450, 1 GB DDR-3, passive cooling)
Power supply Antec R�EarthWatts EA-450 Platinum 450 W
Hard disc Toshiba R�DT 01ACA100 (1 TB, 72,000 rpm, 32 M Buffer)
CPU-Fan Be Quiet! R�DARK ROCK 2, 135 mm
Chassis Fans (�2) 200 mm Fans (�1) 120 mm Fans
OS Scientific Linux release 6.3 (Carbon), kernel version 2.6.32

Power supply, Hard disk and Fans. The different computational loads were
exerted by three types of tasks:

• no load: No load on the workstation except produced by OS Jitters
• Add: Sum of the elements of two arrays (see Sect. 1.3 for more details)
• copy files: Copy of a large file from one directory to the one other

We changed not only the type of the task and its size to activate the different
hierarchy levels of memory, but also the frequency of the processor. The processor
was set either to the lowest or the highest possible frequencies. The power rating of
the various components of the workstation for different problems is shown in Fig. 1.
The energy consumption of the processor and memory depends on the number of
active cores as well as the frequency. Another factor is the active hierarchy level of
memory. As you can see the processor together with memory modules are the most
significant power consumer.

1.2 Power Measurement

In order to determine the energy consumption of an electrical device, one must
know its electrical power and time of its work. The time of the calculation can
be easily obtained from the performance of the kernel operations. The electric
power (Watt) is given by the product of applied voltage (V) and the electric
current (A) in a DC circuit. The V and A are measured at the power connectors
on the motherboard. The Fig. 2 shows the schematic diagram of the applied power
measurements. The high precision shunts resistors R D 0:01 ˝ are placed in series
with the different hardware components so that the current flows through these. The
analog-digital (A/D) converter records the potential drop at the shunts in time at
high frequency (up to 100 kHz). The A/D converter is installed in the additional
PC (Host). The recorded values can be easily converted into the electrical power
and stored on the hard disc. The voltage level (V) should be also measured for the

Power Consumption of Kernel Operations 29

Fig. 1 The electric power of the workstation components (see Table 1) under various loads

Fig. 2 Schematic diagram for power measurement of processor and memory modules

30 D. Khabi and U. Küster

higher accuracy, because a voltage drop of some percent may occur even when
the current of few amperes is passed through the wire. Unfortunately, the power
consumption of the CPU, memory modules, PCIe and Fans can not be separated
on the Supermicro R�motherboard. We calculate the power consumption of the
processor and the memory modules by subtracting a constant term (10.5 W) from the
measured values.1 The total consumption of the whole workstation is measured with
help of an additional device. This device allows us to record the power consumption
in an AC circuit with the same A/D converter (see appendix for more details). The
high quality of our equipment allows to perform reliable power measurements under
various conditions2 with high accuracy (�relative < ˙1:5%) and time resolution (up
to 100 khz).

1.3 Kernel Operations

In this paper we address four kernel operations that have been considered among
many other in our work:

• Add: Sums of the elements of two arrays that stored in the third array:

ai D bi C ci I 0 � i < length (1)

• Dot product: Computational of scalar product:

dotC D bi � ci I 0 � i < length (2)

• Load AVX: Load the values from cache or memory to the CPU AVX registers
by using the stream instruction mm256_load_pd:

ai� > AVXI � i � length (3)

• Store AVX: Store the values from CPU AVX registers to cache or memory by
using the stream instruction mm256_store_pd:

AVX� > ai I � i � length (4)

1We do not run any calculations on the weak graphics card and the fans run at a constant speed.
We assume that the power consumption of these components is constant. This was also confirmed
with a series of extra tests.
2We vary the number of active cores, frequency and hierarchy levels of memory, on that the
processor operates.

Power Consumption of Kernel Operations 31

Fig. 3 Dependencies
of Frequency and Virtual
Frequency of CPU. The
maximal virtual frequency
of 27.3 GHz is achieved with
eight cores in Turbo mode

Depending on the size of the arrays the different hierarchy levels of memory (L1,
L2, L3 or RAM) can be activated. The size of the arrays is controlled via variable
length. It should be noted, though the processed data fit in cache completely
some memory related instructions will be nevertheless executed by the processor!
The cache coherency policy is in most cases write-back i.e. by write-back
the data is first updated in the cache, and after that the memory controller triggers
a memory update. Furthermore, since the cache policy of the Intel processors is
inclusive, some activity will be registered by other hierarchy levels of memory
even if the data is changed in L1 cache, that is marked as exclusive due to the
coherency protocol. The intrinsic functions and loop unrolling were used in the
implementation of the kernel operations; This gives us a better opportunity to control
the hardware. The kernel operations are parallelized with OpenMP. For setting of
different frequencies we use the package “lib cpufreq” that is available in most
distribution of OS Linux.

1.4 Virtual CPU Frequency

The Intel processor Sandy Bridge gives the user the possibility to operate its
cores with different frequencies. The cores can also operate at different frequen-
cies simultaneously. We don’t use this feature; All cores operate with the same
frequency in all examples, that refers in this paper. For some diagrams we use the
metric virtual CPU frequency instead of CPU frequency. The virtual
frequency depends on the number of active cores and their frequency. For example
if two cores are used for the calculation and each runs with 1.2 GHz, the virtual
frequency is equal to 2.4 GHz. The Fig. 3 shows the dependencies between them.
If all cores operates in Turbo mode, than the frequency of each core is 3.4 GHz.
If only one core is active Turbo frequency is equal to 3.8 GHz.

32 D. Khabi and U. Küster

2 Electric Power of Processor (Watt, GHz)

As mentioned above, we need to know the performance of the kernel operations and
the processor power in order to calculate the energy consumption. In this section
we present electric power approximation model. The benefit of these in comparison
to the existing models is that the values can be obtained with high accuracy via
the analytic formula. And moreover the constants in the formula reflects different
properties of the processors.

2.1 Power Approximation

According to the Intel White Paper for the Pentium R�M processor, that supports
Enhanced Intel SpeedStep Technology, the electric power of it is approximately
proportional to its frequency, and to the square of its voltage [1]:

Power D CV2f (5)

Where C is the capacitance, V is the actual voltage and f is the actual frequency. The
direct use of this formula is not possible in practice. A modern processor changes not
only its voltage and frequency, but also the capacitance depending on the executable
instructions and hardware configuration. In addition, the various components of the
processor operate at different frequencies. For example the L3 cache and its ring
operate always with the nominal frequency (3.1 GHz for E5-2687W). Instead of
the formula (5), we decided to check on the suitability of a new formula for the
approximation of its electric power depending on the frequency.

Power.f /lp D ˛0 lp C ˛3 lp � f � (6)

Where the constants ˛0lp and ˛3lp are to calculate for the different hierarchy levels
of memory (index l), number of active cores (indexp) and selected kernel operation.
The constants ˛0lp and ˛3lp is greater than zero and the exponent � is greater
as one. The constant ˛0 should be equal to the consumption of the processor’s
components, which are independent of the variable frequency. Note, the calculations
at the different hierarchy levels of memory may well affect the both constants. In
our case the power of the memory modules should be also included in ˛0. The term
˛3 � f � reflects the changes in the power consumption depending on the actual
frequency. The exponent � and the constant ˛3 indicates the speed of the increasing
of the power and depends on the processor type, quality of the chip, required voltage
for different frequencies and some other factors. The next question is, how do we
calculate the constants and the exponent of (6)? Using our test bed we can measure
the electric power of the processor and memory modules during the execution of
the kernel operations. We recorded the electric power of the processor and memory

Power Consumption of Kernel Operations 33

modules when the kernel operations rans on up to eight cores with all possible
frequencies and with data in different hierarchy levels of memory (L1, L2, L3,
RAM). After this we composed N linear systems (N D 8 cores � 4 memory levels)
each with n equations and two unknowns. Where nD 16 is the number of possible
frequencies of the processors (the Intel processor E5-2687W can operate by 16
different frequencies: f0 : : : f15):

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 f
�
0

1 f
�
1

: : : : : :

1 f
�
15

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

˛0 lp

˛3 lp

ˇ
ˇ
ˇ
ˇ

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

power0 lp

power1 lp

: : :

power15 lp

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(7)

The values power0 : : : power15 are the measured electric power. These linear
systems are over determined. By using the QR algorithm for a least squares
approach, the constants ˛0 and ˛3 can be found for a selected � for each memory
level l and number of active cores p so that the mean error of the approximation is
equal to zero and the error is minimal. For the choice of the exponent � let us define
the absolute error �abs of the approximation:

�min abs D min
i l p

.poweri lp � .˛0 lp C ˛3 lp � fi �// (8)

�max abs D max
i l p

.poweri lp � .˛0 lp C ˛3 lp � fi �// (9)

i 2 .1:2GH z; 1:3 GH z; : : :/I l 2 .L1; L2; L3; RAM/I p 2 .1 core; ::; 8 cores/ (10)

�max abs � 0 (11)

�min abs � 0 (12)

�abs D �max abs � �min abs (13)

The absolute error �abs is the sum of the two maximum differences (negative and
positive) between measured and approximated power over all cores and four levels
of the memory hierarchy.

2.2 Power of Kernel Operations

The best approximation (within the meaning of �abs) for the kernel Add, can be
achieved with the exponent � D 2:42. In this case, the absolute error of the
approximation is 8.021 Watt.3 The Fig. 4 shows the electric power of the Intel

3The best approximation for the same kernel operation Add on Sandy Bridge Intel i5-2500 (6 M
Cache, up to 3.7 GHz, 4 cores) is by � D 2:7.

34 D. Khabi and U. Küster

Fig. 4 Electric power of kernel operation Add on the Intel processor E5-2687W, when the data is
in L1 cache

Table 2 The power approximation parameter ˛0 and ˛3 for several cases

Cores Mem Add ˛0 ˛3 � Q�abs Load ˛0 ˛3 � Q�abs

1 L1 – 21.3 1.7 2.42 5.23 – 21.3 1.4 2.51 6.92
8 L1 – 30.8 6.8 2.42 5.23 – 29.9 5.1 2.51 6.92
1 L2 – 21.3 1.7 2.42 5.30 – 21.4 1.5 2.51 7.25
8 L2 – 30.8 7.0 2.42 5.30 – 30.5 5.6 2.51 7.25
1 L3 – 25.6 1.8 2.42 6.47 – 24.2 1.46 2.51 7.13
8 L3 – 38.8 7.8 2.42 6.47 – 38.0 6.2 2.51 7.13
1 RAM – 25.5 0.8 2.42 7.89 – 25.2 0.62 2.51 9.69
8 RAM – 50.8 3.4 2.42 7.89 – 44.1 6.0 2.51 9.69

processor E5-2687W with four memory modules (4 � 4GB) depending on the
frequency, when the kernel Add was run on up to 8 cores and the data was in level 1
cache.

The measured values are marked with the dots. The curves shows the approxi-
mated power according to the formula (5) with �D 2.42 for one (red) up to eight
(black) cores. The other curves colors can be easily assigned to the number of active
cores. The power consumption increases with the increase of the frequency and
number of active cores. For some l and p and the kernel operations Add and Load
the constants ˛0 and ˛3 are listed in the Table 2. Additionally the values for Q�abs are
listed. The Q�abs indicates the absolute error only over the corresponding hierarchy
level of memory (for all i and p; l is fixed) in contrast to the �abs that indicates
the error over all memory levels: �abs � Q�abs (for all i , l and p). As expected, the
constant ˛0 is about the same for both kernels. The difference is only considerably
if the data are in RAM. Because the throughput of instructions of kernel Load is

Power Consumption of Kernel Operations 35

Fig. 5 Electric power of kernel operation Add on the Intel processor E5-2687W, when the data is
in L1, L2, L3 caches and in RAM

higher, the power consumption increases faster. This fact is indicated by �. The
Fig. 5 shows the measured and approximated power for all hierarchy levels of
memory.

You can see that the ˛0 and ˛3 differ only slightly for L1 and L2. The constant
term ˛3RAM increases greatly when at least two cores are active.

3 Performance of Processor (Elements per Second, GHz)

In this section we present performance approximation model which has a high
accuracy and is more suitable for our purpose than models as for example described
in [3] and [5].

3.1 Performance of Kernel Operations

The Fig. 6 shows the performance of the kernel operation Add depending on
the level of memory, the frequency and the number of active cores. The metric
Elements per second [109] indicates how many billions of array elements

36 D. Khabi and U. Küster

Fig. 6 Performance of operation Add on the Intel processor E5-2687W, when the data are in L1,
L2, L3 caches and in RAM

ai were calculated in a second. 109 elements, not one, is used in the unit as the
base for the number of elements. We use the same colors as in the power diagrams
to distinguish the number of active cores (red for one core , black for eight cores).
The measured performance is marked with the dots. The curves shows the approxi-
mation of the performance, which is described in the next Sect. 3.2. In contrast to the
memory bandwidth, the cache bandwidth is directly related to the frequency of the
CPU and increases linear, because L1 and L2 caches run at the same frequency as
theirs core. The bandwidth of L3 is almost three times smaller than the nominal one.
This is explained by the fact that the newest Intel processors provide the rings in L3
cache: Each core is connected to the local segment of the L3 cache. The adjacent
segments are connected via ring bus. If the data for the calculation is stored in the
owned segment of L3, it can be immediately delivered to the core. Otherwise the
required data will hop through the ring until it reaches the core. The data in L3
cache is cyclically distributed across all segments, which are connected with each
other over the ring bus.

It is well recognizable that the memory performance is significantly lower than
the cache performance. According to the article “Intel’s Haswell CPU Microarchi-
tecture” [2] and slides presented at Intel Delveloper Forum 2012 [4], the nominal
bandwidth on Sandy Bridge (E5-2687W) of L1 cache is 1216 GiB/s and of L2
and L3 is equal to 811 GiB/s. The bandwidth of DDR3 RAM is only 47.7 GiB/s.
The electrical power, however not substantially differs whether the data processing

Power Consumption of Kernel Operations 37

Fig. 7 Performance approximation of operation Add on the Intel processor E5-2687W according
to the formula (15), if the data are in RAM

takes place in memory or in cache (see Fig. 5). Before we begin with the direct
comparison of energy consumption, we have to approximate the performance data
with an analytic formula.

3.2 Performance Approximation

The performance of the cache increases generally linearly with the frequency. Only
in turbo mode by few active cores you can see a small deviation from the linear
ratio. The reason is not very clear for us. One reason may be the fact that L3 cache
and memory controller running at constant frequency. This could explain smaller
delay when the data in cache and memory are synchronized. Much interest is the
ratio of the performance in RAM. The Fig. 7 shows the performance of the kernel
operation Add if the data are in RAM. The maximal bandwidth is achieved with
five cores. However, the difference to the performance achieved with three and six
core is within the measurement accuracy. The average value of ten independent
measurements differs by about 1 % of the maximum and minimum. The exception
is the performance data for the four cores. In this case, the deflection reached up to
3 %, as can be seen in the diagram; This is the reason, why the blue dots are more
scattered than the others.

The linear approximation of the performance as function of frequency shows
good approximation in case of cache:

perf .f /lp D �0 lp C �1 lp � f (14)

But if the data are stored in RAM, the error is too large. The unsymmetri-
cal utilization of memory channels relative to the number of cores contributes

38 D. Khabi and U. Küster

Fig. 8 Performance approximation of operation Add for eight cores according to the formula (15).
The curves show different results of the approximation in depending on the exponent �.

additional complexity to the approximation of the performance. Known models
of the performance don’t allow to improve their quality of the approximation
to a sufficient extent. The roofline model [3] provides realistic expectations of
performance, that can be achieved with regard to the memory bandwidth limitation
and arithmetic instructions throughput. But the above mentioned aspects are not
considered sufficiently. The same can be said about the ECM performance model
described in [5]. We are still in the process of finding a suitable approximation
formula, which is quit simple and not only approximates the performance with
minimum error, but also reflects the different processes ongoing in the CPU. The
formula should be suitable not only for the kernel operations but also for more
complex algorithms. But for present purposes we use the formula, that approximates
the performance of the kernel operations quit well. The selected formula of the
performance and its important properties are as follows:

perf .f /lp D �max lp

�lp C 1��lp

f
�l p

(15)

lim
f !0

perf .f / D 0 (16)

lim
f!1 perf .f / D �max

�
I � ¤ 0 (17)

The (16) expresses that by reducing of the frequency the performance goes
to zero. The expression (17) means the increasing of the frequency enhances
the performance, that is limited by the maximum bandwidth. The Fig. 8 shows
the approximation of the performance for different exponents �. The error of the
performance approximation for eight cores Q�abs is minimal by � D 2:6 and equal to
7�3 (less than 1 % of the achieved performance).

Power Consumption of Kernel Operations 39

Table 3 The performance approximation parameters �max, � and � for several test cases

Cores Mem Add �max � � Q�abs Load �max � � Q�abs

1 L1 – 1:64 0.14 1.33 0.28 – 3:87 0.14 1.34 0.73
8 L1 – 13:41 0.00 1.00 0.04 – 31:70 0.00 1.00 0.08
1 L2 – 0:54 0.14 1.32 0.08 – 1:53 0.11 1.20 0.32
8 L2 – 4:37 0.00 1.01 0.23 – 12:16 0.00 1.03 0.67
1 L3 – 0:37 0.06 1.12 0.01 – 1:08 0.04 1.07 0.04
8 L3 – 2:76 0.03 1.05 0.06 – 8:54 0.04 1.08 0.25
1 RAM – 0:26 0.14 1.03 0.00 – 0:83 0.19 1.16 0.04
8 RAM – 0:80 0.63 2.60 0.01 – 2:36 0.36 2.23 0.32

Some performance approximation parameters for kernel operations Add and
Load are listed in Table 3. The performance approximation (15) has high accuracy.
Just in case if the data are in the cache and less cores are active, linear approxima-
tion (14) has better accuracy for some frequencies. How it affects the results, can be
seen in the next section.

4 Energy Consumption of Kernel Operations
(Joule per Element)

Once we have calculated the power and the performance of the kernel operations,
we can calculate the dependence between energy consumption of the processor and
memory modules and the achieved performance. Note, the performance increases
due to the increase of frequency.

4.1 Dependencies of Energy and Performance

Figure 9 shows the energy consumption in nanojoules for the calculation of one
element ai of the kernel operation Add. The dots mark the measured values. The
curves shows the approximation of the energy. By the dashed gray curves we
used the linear approximation of the performance. By the bold curves we used the
approximation with function (15). The bold curves are defined on the performance
area that can really be achieved with the processor (over the setting of different
frequencies). The bold curves are continued with the dashed colored curves. These
extrapolate the consumption at higher frequencies that cannot be achieved by the
processor. The extrapolation error is of course unknown.

As you can see, the approximated values match with those measured very well in
the case of calculations on four and more cores. By calculations with less than four
cores the energy consumption’s characteristics remain, although there is relatively

40 D. Khabi and U. Küster

Fig. 9 The curves shows how many nanojoules are consumed by the processor and memory
modules for the calculation of one element ai with the corresponding performance. The data are in
L1 cache

small deviations. The greatest amount of energy consumed by the calculations on
a single core. This is not surprising, since the processor and the memory has many
components that consume a constant amount of energy regardless of the number
of active cores (compare ˛0). The smallest amount of energy consumed by the
calculation with eight cores, while increasing of the performance is not so strongly
affect the energy consumption.

Figure 10 shows the energy consumption in nanojoules depending on the
performance for all hierarchy levels of memory.4 The axes are scaled differently.
What is remarkable is a big difference between different cases:

• If the memory is not active there are big advantages of increasing of frequency
and activation of more cores.

• If the memory is active, there are no apparent advantages of increasing of
frequency to the highest possible. The performance increases very slow and the
energy consumption rises very quickly. The next significant difference is that the
calculation on all eight cores is not optimal, neither for the performance nor for
the consumption of energy.

The Fig. 11 shows the consumption of operation Add with one and eight active
cores for all hierarchy levels of memory. The X and Y axis are in base 2 logarithmic
scale. The differ between the left and right diagrams is, that the consumption of
the rest of the system was considered by adding of 30 W to the constant term
˛0 (see formula (6)). In doing so not only the energy amount was increased for

4If we compare the obtained values to the data from the article [6] we see that the energy
consumption of Sandy Bridge (E5-2687W) and of the previous generation Westmere (Intel XEON
X5670) are within the same order of magnitude.

Power Consumption of Kernel Operations 41

Fig. 10 The curves shows how many nanojoules are consumed by the processor and memory
modules for the calculation of one element a[i] with the corresponding performance

Fig. 11 The left diagram shows the energy consumption in nanojoules of the processor and
memory modules for computing of one element of the operation Add. The right diagram shows
the energy consumption of the processor, memory modules and the rest of the system

the calculation of one element, but also the steepness of the curves was changed;
The minimum values (marked with vertical short lines) of the approximation were
shifted slightly to the right. This means that the optimum frequency (within the
meaning of the energy) became higher. Note, we assume here that the rest of the

42 D. Khabi and U. Küster

Fig. 12 Energy consumption in nanojoules of kernel operations Add, Dot product, Load, Store on
the Intel processor E5-2687W, when the data are in L3 caches and in RAM and all eight cores are
active

system consumes 30 W. In reality, the additional consumption is not necessarily
constant, because at higher consumption, the power supply has higher efficiency.
Also, the cooling system may consume more energy.

4.2 Compare Kernel Operations

Now we can compare the energy consumption of four different kernels, that are
described in Sect. 1.3. Figure 12 shows how many nanojoules are needed to carry
out these operations. The most expensive and slow is the operation Add. The other
operations consume less energy and are faster. In case of the calculation in level 3
cache the operations Store and Load don’t differ greatly. But in case of the
calculation in memory the operation Store needs much more energy and is slow;
Before the data can be stored it must be read from the memory. The consequence is
that the store access requires two expensive streams from and to the memory.

In case of the calculation in memory the different kernel operations have different
benefits from the increasing of the frequency. While the optimum frequency of Add
is very low, the optimum frequency of the others operation is higher. It shows, that
different algorithms has its own optimum frequency.

5 Outlook

To approximate the power of processor and memory modules we have used the
formula

Power.f /lp D ˛0 lp C ˛3 lp � f � (18)

Power Consumption of Kernel Operations 43

Fig. 13 The constants ˛0 and ˛3 depending on the number of active cores and the hierarchy level
of memory

The constants ˛0 and ˛3 must be computed not only for different algorithms
but also for different hierarchy levels of memory l and number of active cores p.
There are total 2 � jl j � jpj coefficients for all possible cases. If we consider the
dependence of the coefficients for example on p, we can greatly reduce the number
of coefficients. Figure 13 shows this dependence for the kernel operation Add.
As you can see the constants ˛0 and ˛3 are mostly similar in case of L1 and L2.
If the calculation is in cache the constants depends practically linear on the number
of cores. The other interesting fact is that the difference between L3 and L1 and L2
for ˛0 remains constant. Unfortunately, the behaviors of ˛0 and ˛3 for the memory
are more complicated. We are currently considering various approaches to solving
this problem. Furthermore, we expand the range of analyzing kernel operations to
more complex algorithms.

If at the present time the dynamic switching of different frequencies has a number
of barriers, in the future it is possible that this will be one of the keys to more efficient
use of energy than is common today.

Appendix

The scheme of the device, that allows us to record the power consumption in an AC
circuit with the A/D converter is shown in Fig. 14

The recorded voltage and current profiles of a workstation as a function of time
are shown in Fig. 15.

44 D. Khabi and U. Küster

Fig. 14 Schematic diagram of the auxiliary device for the measurement in AC circuit

Fig. 15 The voltage and current characteristics. The measurement was performed with the
frequency of 50 kHz. The power in discrete time can be calculated with the formula: Power D
1
N

PN�1
nD0 V .n/� I.n/, Where N is the number of the measurements

Power Consumption of Kernel Operations 45

Acknowledgements This work has been supported by the CRESTA project that has received
funding from the European Community’s Seventh Framework Programme (ICT-2011.9.13) under
Grant Agreement no. 287703 and by the ExaSolvers project that has received funding from the
German Research Foundation (DFG) as part of the Priority Programme “Software for Exascale
Computing–SPPEXA”.

References

1. Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor - White Paper. ftp://
download.intel.com/design/network/papers/30117401.pdf Intel Corparation (2004)

2. David Kanter, Intel’s Haswell CPU Microarchitecture http://www.realworldtech.com/haswell-
cpu (November 2012)

3. S. Williams, A. Waterman and D. Patterson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures Communications of the ACM, Vol. 52, No. 4. (April 2009),
pp. 65–76, doi:10.1145/1498765.1498785

4. Robert Chappell, Bret Toll, Ronal Singhal, Intel Next Generation Micro Architecture Code-
name Haswell: New Processor Innovations. Presented at IDF (2012)

5. Markus Wittmann, Georg Hager, Thomas Zeiser, Gerhard Wellein. An analysis of energy-
optimized lattice-Boltzmann CFD simulations from the chip to the highly parallel level
arXiv:1304.7664 (April 2013)

6. Daniel Molka, Daniel Hackenberg, Robert Schöne and Matthias S. Müller, Characterizing
the Energy Consumption of Data Transfers and Arithmetic Operations on x86-64 Processors,
Proceeding of the first International Green Computing Conference, (August 2010)

ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
http://www.realworldtech.com/haswell-cpu
http://www.realworldtech.com/haswell-cpu

Part II
Frameworks and Libraries for Simulations

on New-Generation Computing Systems

Lattice Boltzmann Simulations on Complex
Geometries

Simon Zimny, Kannan Masilamani, Kartik Jain, and Sabine Roller

Abstract The need for numerical simulation of fluid flows in highly complex
geometries for medical or industrial applications has increased tremendously over
the recent years. In this context the lattice Boltzmann method which is known to
have a very good parallel performance is well suited. In this publication the lattice
Boltzmann solver Musubi which is a part of the end-to-end parallel simulation
framework APES is described concerning its HPC performance on two possible
applications. The first application is the blood flow through stented aneurysms
including a simple clotting model, the second application is the flow of water
through an industrial spacer geometry. In both cases, a highly complex geometry
with a wide range of spatial scales (�m up to cm) each is used.

S. Zimny (�)
German Research School for Simulation Sciences and RWTH Aachen University,
Schinkelstr. 2a, 52062 Aachen, Germany

University of Siegen, Simulation Techniques and Scientific Computing,
Hölderlinstr. 3, 57068 Siegen, Germany
e-mail: s.zimny@grs-sim.de; simon.zimny@uni-siegen.de

K. Masilamani
University of Siegen, Simulation Techniques and Scientific Computing,
Hölderlinstr. 3, 57068 Siegen, Germany

Siemens AG, Corporate Technology, CT RTC ENC ENT-DE,
Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
e-mail: kannan.masilamani@uni-siegen.de

K. Jain � S. Roller
University of Siegen, Simulation Techniques and Scientific Computing,
Hölderlinstr. 3, 57068 Siegen, Germany
e-mail: kartik.jain@uni-siegen.de; sabine.roller@uni-siegen.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 4,
© Springer International Publishing Switzerland 2013

49

mailto:s.zimny@grs-sim.de
mailto:simon.zimny@uni-siegen.de
mailto:kannan.masilamani@uni-siegen.de
mailto:kartik.jain@uni-siegen.de
mailto:sabine.roller@uni-siegen.de

50 S. Zimny et al.

1 Introduction

In recent years, a wide range of applications require highly intensive numerical
simulation of fluid flow in complex geometries. An efficient numerical scheme
and data structures are required to deploy computation intense large problems on
supercomputers and clusters. The lattice Boltzmann method (LBM) which is highly
suitable for fluid flow simulations in complex geometries is used due to its link-wise
interaction with the geometries. In addition it has a high scalability on large scale
HPC systems due to its simple two step algorithm (Stream and Collide) and implicit
nature.

The collision step is cell local including the computation while the streaming step
requires neighbor information. Since the LBM is suited only for cubic elements, a
well studied octree data structure is employed to approximate complex geometries.
In our APES framework almost perfect load balancing is achieved by space-
filling curve. MPI parallelism is used to communicate between cores. In this
work, we present the performance of our lattice Boltzmann solver Musubi in
APES framework with complex geometry. Two different applications: medical and
electrodialysis are presented which requires simulation with complex geometry.

The remainder of this publication is structured as follows: At first the lat-
tice Boltzmann method (LBM) is introduced (Sect. 2) and its implementation
called Musubi in the end-to-end parallel simulation framework APES is described
(Sect. 3). Based on this two possible applications on highly complex geometries
are presented in Sect. 4. On the one hand simulation results of bloodflow in patient
specific aneurysm geometries including a simple clotting model for simulating the
thrombus formation are shown in Sect. 4.1. On the other hand the flow through a
spacer filled flow channel from electrodialysis process for sea water desalination is
presented in Sect. 4.2. The HPC aspects including the performance and scalability
of Musubi simulating flow in highly complex geometries are shown in Sect. 5.

2 The Lattice Boltzmann Method

The lattice Boltzmann method can be viewed as a special discretization of the
Boltzmann equation [4, 20]. It describes the time evolution of a particle distribution
function (pdf) f on a Cartesian grid. The discretized LBM is an evolution equation
for the pdf’s fi along different directions defined on a discrete set of velocities ei.
The LBM equation using the Bhatnagar Gross Krook (BGK, [1]) approximation for
the collision term reads

fi .x C eiıt; t C ıt/ D fi .x; t/� !.fi .x; t/� f
eq
i .x; t//

„ ƒ‚ …

Collision
„ ƒ‚ …

Streaming

(1)

Lattice Boltzmann Simulations on Complex Geometries 51

where ! is the relaxation parameter with that the collision part relaxes towards
the thermodynamic equilibrium f

eq
i . A common choice for the discretization is the

D3Q19 model with 19 discrete velocities ei in 3 dimensions. The equilibrium pdf
for the D3Q19 model reads

f
eq
i .x; t/ D wi �

�

1C eiu

c2s
� u2

2c2s
C .eiu/

2

2c4s

�

(2)

where � defines the density, u the current velocity, cs the speed of sound and wi
different weights for the 19 discrete velocities ei. The current velocity u and
density � can be calculated locally from the pdf’s by the following equations

� D
nX

iD1
fi .x; t/ (3)

u D 1

�

nX

iD1
fi .x; t/ei: (4)

The LBM algorithm can be decomposed into a streaming and a collision step (see
Eq. 1). The collision is an element-local operation colliding the particle distributions
and converging them towards f eq

i while the streaming step is related to the free flight
of particles and copying of links from adjacent elements to the local ones.

The Boltzmann equation can be related to the Navier-Stokes equation by
choosing two different scalings for the asymptotic expansion. The incompress-
ible equations can be developed by using the diffusive scaling [14] while the
acoustic scaling leads to the isothermal, compressible equations for small density
variations [5]

The WSS can be calculated element-local using the formulation presented by
Krüger et al. [15].

3 Musubi as Part of the APES Framework

The Adaptable Poly-Engineering Simulator (APES) is a framework for simulating
different physics and numerics [17]. The central part of the APES framework is a
central octree based elemental mesh data structure (TreELM) provided as a library to
the different components of the APES suite (see Fig.1). Each element in the octree
is identified uniquely with a treeID holding all information about its position, level
in the octree and by this its parent and children as well as its neighbors treeIDs.
Besides the grid information the TreElm library acts as a central link between the
mesh generator Seeder, the solver components and the post-processor Harvester
(see Fig.2). It provides functionalities like writing of data files which can be used
as restart files or to visualize simulation results, reading configuration files in Lua
format [10] and a generic load balancing.

52 S. Zimny et al.

Fig. 1 APES schematic overview

Seeder Musubi Harvester
STL,

predef.
objects

internal

file format

internal

file format

VTU,

ASCII,
Tecplot

Fig. 2 The workflow in the APES framework

The octree is generated by the Seeder from either predefined spatial objects
(e.g. rectangles, spheres, tubes, etc.) or geometries in STL-format (STereoLithog-
raphy). The Seeder is capable of creating meshes with 220 elements per dimension.
After voxelizing the domain the Seeder uses a flooding algorithm to identify the
simulation domain from the overall octree and the different types of boundaries
are set according to the settings in the configuration file. To make the created
grid available to the solvers in the APES framework the fluid elements and their
additional information is dumped to disc in an efficient parallel way which can be
loaded by the solvers in APES. This ensures that meshes can be used multiple times
and do not have to be generated on the fly.

The solver component Musubi is based on the lattice Boltzmann method
described in Sect. 2 which is known to give very good parallel performance
results using several hundred-thousand cores (see [8, 21] and Sect. 5). It includes
several computing kernels for 2D and 3D simulations using a list-based sparse

Lattice Boltzmann Simulations on Complex Geometries 53

matrix representation [19] of the fluid elements in the octree making the kernels
vectorizable and highly efficient. Besides the kernels for pure fluid flow, Musubi
offers several additional physical models for simulating incompressible fluids, mul-
ticomponent flow and passive scalar transport. To overcome the problems resulting
from cubical elements especially in curved boundaries several higher order bound-
ary conditions for solid [2] and open boundaries like pressure anti-bounce-back [6],
do-nothing outflow [13], extrapolation [13] and non-reflecting boundaries [11] are
provided.

In Musubi simulations using local grid refinement techniques are possible
decreasing the number of elements and by this the workload on complex geometries
where extremely small structures (e.g. stents, porous media or spacer) can be
spatially resolved in rather huge simulation domains.

The post-processing tool of the APES framework is the Harvester. It can read
data files written by the solver components as well as by the Seeder. It is capable of
spatial- and temporal-reductions of the data, post-simulation calculation of physical
quantities and reduction of physical quantities (norms, differences). The resulting
data can be outputed in various common dataformats like VTU or Tecplot.

4 Applications on Complex Geometries

In this section two different numerical simulations on highly complex geometries
are presented. In Sect. 4.1 the blood flow through a stented cerebral aneurysm
including the formation of blood clots in the aneurysm bulge using a simple clotting
model is presented. In Sect. 4.2 the spacer filled flow channel from electrodialysis
process for sea water desalination is presented with the simulation setup used to
perform scaling analysis of Musubi.

4.1 Thrombus Formation in Cerebral Aneurysms

Cerebral aneurysms are saccular extensions of blood vessels in the human brain.
In case of rupture blood leaks from the vessel into the surrounding tissue causing
irreversible damage or even death. Autopsy studies lead to the conclusion that 1–5 %
of the adult population suffer from cerebral aneurysms [3] of which 1 out of 10,000
rupture [18]. Methods to treat cerebral aneurysms are clipping, coiling and the use
of stents. In the clipping method a metal clip is placed at the aneurysm neck to stop
the blood flow into the aneurysm and thus prevents it from rupturing. The main
disadvantage of clipping is that the clip has to be placed using surgical techniques.
Recent developments suggest that endonasal clipping approaches might be possible
but these are only possible for aneurysms located in the path of the nasal cavity.
Another approach is coiling where a metal coil is inserted through the femoral artery

54 S. Zimny et al.

into the aneurysm using a catheter. In case of aneurysms with large aspect ratios
stents are used to keep the coil inside the aneurysm. Besides these two ‘classical’
methods the use of flow diverter stents is becoming more and more popular. Stents
are mesh like tubes which are inserted into the blood vessel to cover the neck of the
aneurysm to change the blood flow properties initiating natural thrombosis in the
aneurysm bulge. Currently the clinicians intuition and experience is the only basis
on choosing the appropriate treatment strategy, once a cerebral aneurysm has been
detected.

Ideally, multiscale numerical simulations on post-treatment flow properties and
clotting dynamics in the aneurysm bulge might support the choice of suitable
treatment strategies in general and flow diverter stents in detail. Due to the high
complexity of the aneurysm and especially the stent geometry blood flow is
simulated using the lattice Boltzmann method, which is proved to be optimal for
large numerical simulations [21]. In addition to the complexity of the geometries the
processes leading to clotting act on a vast set of temporal (�s to weeks) and spatial
scales (Å to dm) making the use of simplification techniques like amplification [9]
necessary.

To simulate the clotting process a simplification of the model proposed by Ouared
et al. [16] and Harrison et al. [7] is used, taking the wall shear stress (WSS) as
clotting initiator into account.

4.1.1 A Model for Thrombus Formation

To resolve the aneurysm with sufficient accuracy the mesh size and such the time
step has to be very small. With a time step in the order of 10�5 s, more than eight
billion iterations have to be performed for simulating a single day in real time. As
mentioned before the upper temporal bound for the clot formation is in the order of
weeks. This leads to the conclusion that simulating the whole process would be far
too expensive even on the largest supercomputers.

To overcome these problems the technique of amplification [9] can be used. The
main idea is to amplify the effect of the long-term process of thrombus formation
and only simulate one or two cardiac cycles for the short-term process of blood flow.
In the present model this can be achieved by e.g. increasing the probability p of an
element to solidify or the growth rate.

As mentioned before the main condition used in the clotting model is the
wall shear stress as an upper threshold. To prevent clots from developing in non-
physical areas like near the outlet and inside the flow itself the proximity [7, 16]
condition is used. This condition allows elements to solidify only in near wall
or already solidified elements, preventing non-physical insulated clot formation
in the bulk of the flow. In case the WSS condition and near-wall condition are
fulfilled for a computational fluid element, it will turn into a solid element with
a given probability p (see Fig.3). After the solidification step the simulation has to

Lattice Boltzmann Simulations on Complex Geometries 55

converged
simulation

check
proximity
condition

check flow
condition

solidify
elements

with prob-
ability p

re-
converge

pass all flow
cond. pass

flow cond.
pass

Fig. 3 The workflow for solidification of fluid elements

re-converge before starting with the next solidification step. This can be handled by
an interval or a convergence criterion.

4.1.2 Simulation Setup

Based on the WSS condition mentioned in Sect. 4.1.1 a blood clotting simulation in
a patient specific stented aneurysm has been performed. The grid size was chosen
to be ıx D 6:5 � 10�5 m resulting in approx. 45 million fluid elements, the time
step to be ıt D 2:89 � 10�5 s the inlet velocity to be uin D 9:435 � 10�2 m/s. Using
the inlet diameter as the characteristic length and the mean velocity umean D uin=2
as the characteristic velocity resulting in a Reynolds number of 50. The density of
blood was set to �blood D 1025 kg/m3 and the kinematic viscosity to be �blood D
3:8 � 10�6 m2/s.

The simulations have been performed on the superMUC at the LRZ-Munich for
approx. 4 h on a full island (8,192 cores) using the Musubi lattice Boltzmann solver.
As mentioned in Sect. 4.1.1 the simulation had to be amplified to reduce the number
of iterations. Therefore the probability for an element was chosen to be constant
p D 1 and the growth rate was amplified by letting only whole elements solidify.
After the convergence of the flow the clotting model was switched on with a wall
shear stress threshold of 1:037 � 10�2 Pa.

4.1.3 Simulation Results

Figure 4 shows the thrombus formation in the aneurysm bulge in terms of solidified
fluid elements (marked in red) for the non-stented (Fig. 4a) and stented (Fig. 4b)
case. As can be seen the amount of solidified fluid elements increases significantly
inside the aneurysm bulge after deployment of the stent. The solidified elements in
the vessel itself are due to gaps between the inserted stent and the vessel wall. The
growth process stopped in these areas as soon as the gaps were filled.

56 S. Zimny et al.

Fig. 4 Differences in the thrombus formation for the non-stented (a) and stented (b) aneurysm

4.2 Spacer Filled Flow Channel in Electrodialysis

There is growing demand to supply mankind with drinkable water. Sea water desali-
nation process is one of the solution to this problem. Among various desalination
processes, electrodialysis is one of the efficient process which uses ion exchange
membranes to separate salt ions from sea water under the influence of an applied
electrical field. This process contains two selective permeable membranes named
as cation exchange membranes (CEM) and anion exchange membranes (AEM)
arranged periodically. When electrical field is applied, ions start separate from
salt water and CEM and AEM allows only cations and anions to pass through
respectively. This results in alternative dilute channels and concentrate channels.
Finally, the desalinated water is collected from dilute channels.

In electrodialysis process, ion exchange membranes are separated by complex
structure named as spacer. This spacer structure act as a mechanical stabilizer.
The design configuration of this spacer structure has a influence on the pressure
drop in the channel which in turn affects the power consumption of electrodialysis
module. It also influence the transport of ions through the membranes. Due to these
facts, the optimization of spacer geometry play a vital role in the development of
electrodialysis module. Figure 5 shows the structure of laboratory scale interwoven
spacer geometry which is used in our simulation and scaling analysis.

4.2.1 Simulation Setup

In this paper, the spacer filled flow channel shown in Fig. 6 is used as a simulation
setup. In the figure, L is the length of the channel, W is the width of the channel
and H is the height of the channel. The height of the channel is four times the
radius of the spacer filament. Figure 6a also shows that the flow is along the
lengthL in x-direction and the channel is periodic along the widthW in z-direction.
The channel walls at y D 0 and y D H are treated as solid walls. In the
laboratory scale, the extent of the spacer sheet is 20 � 10 � 0:04 cm. The channel
with a single spacer element as in Fig. 6 has a dimension 0:2 � 0:2 � 0:04 cm.

Lattice Boltzmann Simulations on Complex Geometries 57

Fig. 5 Structure of a spacer utilized to stabilize the fluid channels of the spacer stack mechanically.
The structure of this spacer has a significant impact on the total energy consumption of the stack

Fig. 6 Schematic layout of the simulation setup with interwoven spacer geometry. (a) Side view
of the channel. (b) Top view of the channel

The distance between two spacer filaments is 0:1 cm. For scaling analysis, the
number of spacer elements along the length is increased by increasing the length
of the channel.

The following boundary conditions are used in this test case: The solid walls at
y D 0 and y D H are treated as simple bounce back boundaries resulting no-slip
on walls. At inlet x D 0, the velocity bounce back boundary is applied [11] and
at outlet x D L, extrapolation outflow boundary condition from Junk et al [12] is
applied.

58 S. Zimny et al.

5 Scalability and Parallel Efficiency of Fluid Flows
in Complex Geometries

This section describes the performance of Musubi with complex spacer geometry
on the Cray XE6 system Hermit at HLRS. The Hermit system provides of 3,552
computing nodes with AMD Interlagos on two sockets where each socket has 16
cores resulting in 32 cores per node. For our performance analysis, up to 1,024
computing nodes or 32,768 cores are used. Only MPI parallelism is considered
here. Both, intranode and internode performance are measured i.e performance
within a single node (up to 32 cores with as many MPI processes) and between
multiple nodes. For scaling analysis, the problem size is increased from a single
spacer element length of 0:2 cm (Zoomed part in Fig. 5) with 66,000 elements to the
laboratory scale spacer length of 20 cm with 66 million elements. In the width of
this channel slice, a periodic boundary is assumed.

In Lattice-Boltzmann codes the measurement of the lattice updates per second
is commonly used to compare the performance. This number of lattice updates per
second (LUPs) will be used in the following part of the paper, as it provides a direct
estimation on how long a given simulation, that requires a certain number of lattice
nodes and time step updates will take. We represent the behavior of the code in
terms of performance per execution unit, that is per node or per core, to get a clearer
impression of the performance independent of the number of used execution units.
An ideal parallel execution is expected to just replicate the serial behavior on each
execution unit. However, the execution performance is influenced by cache usage,
non-computational implementation overheads, vector lengths, communication times
and so on.

In our analysis we used LBM model withD3Q19 layout with the BGK collision
operator. The optimized compute kernel was used and it requires only 150 floating
point operations per element. In our LBM solver, instead of communicating all
probability density functions on the communication surface between the processors,
only the required links of probability density functions are communicated. This
reduces the MPI buffer size and bandwidth driven communication times.

Figure 7a shows the performance per core over the problem size per core for
various number of cores within a single node. We cannot see the cache region
in this figure since smallest problem size i.e. single spacer element with 66,000
elements is above cache limit. Performance almost flattens out but with increase in
problem size the performance drops for smaller number of cores due to frequent
access to slower memory. However, the usage of full node (32 cores) gives better
performance. We achieved a sustained performance of roughly 4.2 % on a full node
and the Hermit system has a theoretical peak performance of 294.4 GFLOPS per
node.

The internode performance map is shown in Fig. 7b with problem size per node in
horizontal axis and performance per node in vertical axis for various total number of
nodes. The performance map combines both, weak scaling and strong scaling. Weak
scaling can be measured by the vertical comparison of points between different lines

Lattice Boltzmann Simulations on Complex Geometries 59

104 105 106 107 108

nElems/proc

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
L
U

P
S/

pr
oc

nPrc 1
nPrc 2
nPrc 4
nPrc 8
nPrc 16
nPrc 32

103 104 105 106 107 108

nElems/node

30

40

50

60

70

80

90

100

M
L
U

P
S/

no
de

nNodes 1
nNodes 8
nNodes 64
nNodes 512
nNodes 1024

a b

Fig. 7 Intranode (a) and Internode (b) performance map with spacer structure

for the node count i.e. fixing the number of elements per node. The closer the points
are located to each other the better the weak scaling. Strong scaling on the other
hand is not as easily seen in the performance map, but can be derived by moving to
the left when increasing the number of nodes. This reduces the number of elements
per process with increasing node counts, as required by strong scaling with a fixed
overall problem size.

In our solver framework, almost perfect computational load balancing is achieved
with the help of space-filling curve i.e there is at most single element difference
between the partitions. However, due to the irregular domain and the large number
of walls in spacer filled channel, the communication surface between different
processes might vary drastically, resulting in a large imbalance of communication
costs. The effect of this load imbalance can be noticed in the performance map
shown in Fig. 7b with a relatively high performance drop for smaller domains per
node.

The steep slope after the cache effect in both models Fig. 7b is supposedly due
to load imbalances in the communication times, caused by the walls of the spacer
geometry. This can be explained with the help of periodic testcase performance
Fig. 8, where the performance flattens out after the cache effect with a small slope.
The main difference between the two simulations is the exactly balanced commu-
nication effort in the one case and a less than optimal balancing for the complex
spacer geometry. This can be resolved using a dynamic load balancing algorithm
to distribute the simulation domain on each processor at runtime according to the
actual load.

From Fig. 7b, it can be seen that weak scaling works fine on different process
counts for all problems, that fit into memory down to the cache-sized problems,
where the communication gets dominant and the performance per node drops down
with a steeper slope.

An explicit plot for weak scaling for two different problem size per node is shown
in Fig. 9a. One with approximately 21,000 elements per node which is below cache

60 S. Zimny et al.

101 102 103 104 105 106 107

nElems/node

0

20

40

60

80

100

120

140

160

180

M
L
U

P
S/

no
de

nNodes 1
nNodes 16
nNodes 128
nNodes 1024

Fig. 8 Internode performance map for periodic cubic simulation domain

101 102

nNodes

0

20

40

60

80

100
a b

M
L
U

P
SP

N

≈21 Thousand Elems/node
≈63 Thousand Elems/node

100 101 102 103 104104103

nNodes

50

60

70

80

90

100

P
ar

al
le
l E

ffi
ci
en

cy
 (
%

)

6.6 Mio Elems
10.6 Mio Elems
16.5 Mio Elems
33.1 Mio Elems
66.2 Mio Elems

Fig. 9 (a) Weak scaling for two different number of elements per node with spacer structure
for different number of nNodes. Ideal weak scaling is a straight line. (b) Strong scaling parallel
efficiency for different problem sizes with spacer structure

and other 63,000 elements per node which almost fit in the cache. In both cases,
weak scaling is almost perfect with only a small drop in the performance for larger
counts of compute nodes.

A dedicated graph for strong scaling is shown in Fig. 9b with number of nodes
on the horizontal axis and parallel efficiency (%) in the vertical axis. Here, testcases
with problem sizes of roughly 6.6, 10.6, 16.5 and 66.2 million elements are used.
Here, with a problem size of 6.6 million elements, the performance drops from 1 to
1,024 nodes because the communication dominates the computation. The peak in
the plots defines the problems which fits in the cache. The largest problem size of
full spacer length with 66.2 Million elements fits into cache for 1,024 nodes. This

Lattice Boltzmann Simulations on Complex Geometries 61

problem requires minimum of four nodes to fit in the memory. Thus our solver can
scale up to full spacer length with efficient usage of 1,024 compute nodes of the
Hermit.

6 Conclusion and Outlook

In this paper, we presented our APES framework and the lattice Boltzmann solver
named MUSUBI. We introduced two different applications: thrombus formation
and electrodialysis. Both applications involve fluid flow simulations with complex
geometry. We presented simulation results of clot formation and scaling results with
spacer geometry. The scaling analysis shows that our code has good scalability
up to thousands of nodes with irregular complex geometry. In the future, we will
investigate on the dynamic load balancing to reduce communication time.

References

1. P L Bhatnagar, EP Gross, and M. Krook. A Model Collision Processes in Gases. I. Small
Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev, 94:
511–525, 1954.

2. M Bouzidi, M Firdaouss, and P Lallemand. Momentum transfer of a Boltzmann-lattice fluid
with boundaries. Physics of Fluids, 13(11):3452–3459, 2001.

3. J L Brisman, J K Song, and D W Newell. Cerebral aneurysms. New England Journal of
Medicine, 355(9):928–939, 2006.

4. C Cercignani. Theory and application of the Boltzmann equation. Elsevier, 1976.
5. S Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annual review of fluid

mechanics, 30(1):329–364, 1998.
6. Irina Ginzburg, Frederik Verhaeghe, and Dominique d’Humieres. Two-relaxation-time Lattice

Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions.
Communications in Computational Physics, 3(2):427–478, 2008.

7. S E Harrison, Smith S M, J. Bernsdorf, D R Hose, and P V Lawford. Application and validation
of the lattice Boltzmann method for modelling flow-related clotting. Journal of biomechanics,
40(13):3023–3028, January 2007.

8. Manuel Hasert, Kannan Masilamani, Simon Zimny, Harald Klimach, Jiaxing Qi,
Jörg Bernsdorf, and Sabine Roller. Complex Fluid Simulations with the Parallel Tree-based
Lattice Boltzmann Solver Musubi. Journal of Computational Science, pages 1–20.

9. A G Hoekstra, A Caiazzo, E Lorenz, J-L Falcone, and B Chopard. Complex automata: Multi-
scale modeling with couples cellular automata. In A G Hoekstra, J Kroc, and P M A Sloot,
editors, Simulating Complex Systems by Cellular Automata, Understanding Complex Systems,
chapter 3, pages 29–57. Springer, 2010.

10. Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua-an
extensible extension language. 1995.

11. Salvador Izquierdo and Norberto Fueyo. Characteristic nonreflecting boundary conditions for
open boundaries in lattice Boltzmann methods. Physical Review E, 78(4), October 2008.

12. M Junk and Z Yang. Outflow boundary conditions for the lattice Boltzmann method. Progress
in Computational Fluid Dynamics, 8:38–48, 2008.

62 S. Zimny et al.

13. M Junk and Z Yang. Pressure boundary condition for the lattice Boltzmann method. Computers
and Mathematics with Applications, 58(5):922–929, September 2009.

14. Michael Junk, Axel Klar, and Li-Shi Luo. Asymptotic analysis of the lattice Boltzmann
equation. Journal of Computational Physics, 210(2):676–704, December 2005.

15. T Krüger and F Varnik. Shear stress in lattice Boltzmann simulations. Physical Review E,
2009.

16. R Ouared and Bastien Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian
rheology and clotting processes. Journal of Statistical Physics, 121(1):209–221, 2005.

17. Sabine Roller, Jörg Bernsdorf, Harald Klimach, Manuel Hasert, Daniel Harlacher, Metin
Cakircali, Simon Zimny, Kannan Masilamani, Laura Didinger, and Jens Zudrop. An Adaptable
Simulation Framework Based on a Linearized Octree. In High Performance Computing on
Vector Systems 2011, pages 93–105. Springer, 2012.

18. Wouter I Schievink. Intracranial aneurysms. New England Journal of Medicine, 336(1):28–40,
1997.

19. M Schulz, M Krafczyk, J. Tölke, and E. Rank. Parallelization strategies and efficiency of CFD
computations in complex geometries using Lattice Boltzmann methods on high-performance
computers. pages 115–122, 2002.

20. S Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University
Press, USA, May 2001.

21. J Zudrop, H Klimach, M Hasert, K Masilamani, and S Roller. A fully distributed CFD
framework for massively parallel systems. cug.org, April 2012.

IMD: A Typical Massively Parallel Molecular
Dynamics Code for Classical Simulations –
Structure, Applications, Latest Developments

Johannes Roth

Abstract We give a short description of IMD, a classical molecular dynamics
package for the simulation of condensed matter. The properties of molecular
dynamics simulations will be given with examples of their implementation in
IMD. We further report on multi-scale simulations with IMD, the determination of
accurate interactions with potfit and the porting of IMD to GPUs.

1 Introduction

Molecular dynamics (MD) simulations on the atomistic level play an important role
today in science and industry. It can be applied – in different ways certainly – from
the statistical mechanics of sub-atomic particles up to the most accurate calculation
of the orbits of planets or the rings of Saturn. Here, however, we will concentrate
on molecular dynamics simulations in condensed matter physics. We start with an
explanation of the components of a molecular dynamics simulations and used that
for the introduction of the implementation of MD in the ITAP Molecular Dynamics
package IMD. For more details see the basic publications [16, 22] and the web-
page imd.itap.physik.uni-stuttgart.de/userguide/imd.html. We will then elaborate
a little about one of the most important parts, namely of the modeling of the
interactions. Since we want to apply MD to atoms where the interaction is mediated
by electrons through metallic, covalent, of ionic bonding, one should solve the
problem by quantum mechanics. The drawback is that this would limit the size of
the simulations from several hundred up to a few thousand atoms, or to some
hundred thousand particles if we use tight-binding methods. Our goal, however, is
to simulate big systems beyond millions of particles for up to �s to be able do deal

J. Roth (�)
Institut für Funktionelle Materalien und Quantentechnologien, Universität Stuttgart,
Stuttgart, Germany
e-mail: johannes@itap.physik.uni-stuttgart.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 5,
© Springer International Publishing Switzerland 2013

63

http://imd.itap.physik.uni-stuttgart.de/userguide/imd.html
mailto:johannes@itap.physik.uni-stuttgart.de

64 J. Roth

with long-range effects. We do not want to discuss the applicability of classical MD
simulations in detail but refer the reader to the Bohr-Oppenheimer approximation.
If applicable, we still have to model the interactions of our sample which can be
done with potfit, a program that fits the forces, energies and stresses of the classical
interactions to quantum mechanical simulations of a database of small samples.

The paper is organized as follows: we start with classical molecular dynamics
simulations, then we introduce potfit. We will further give a number of recent
examples of the application of IMD. Then we will give a short account on
parallelization and benchmarking IMD. We will continue with the attempts to port
IMD to GPUs. We will end with a comment on very big simulations.

2 Classical Molecular Dynamics Simulations

The basic idea of classical molecular dynamics simulations is simple: if there
are N particles, integrate the 3N Newtonian second order equations of motions
or equivalently the 6N Hamiltonian first order system of equations of motion. Since
this is an initial value problem of ordinary differential equations, we have to specify
in the case of point-like particles without internal structure 6N starting values which
are 3N coordinates and 3N velocities or momenta.

2.1 The Molecular Dynamics Steps

In the next sections we will describe the components of a MD simulation. Details of
the different steps can be found in the basic book by Allen and Tildesley [2]. Some
parts like storing data on tapes are quite outdated, but the major ideas presented in
the book are still valid. The examples and features described are those available in
IMD [16, 22].

1. First step: Initial conditions
The coordinates are typically given by the atom positions in the sample under
study. If it is a fluid or gas, the coordinates might be generated by a random
number generator. For a crystal, the coordinates are found in crystallographic
databases or may be determined from real experiments. Often the coordinates are
obtained from model systems for which structural properties or phase diagrams
are to be studied.
Normally, the velocities or momenta of the particles are not known. Thus they
are typically generated with a random number generator. Since random number
generators produce homogeneous distributions of random numbers, they have
to be converted to yield the desired Maxwell-Boltzmann distribution (see for
example [2]). At the same time they are scaled to give the desired temperature
via the equipartition theorem

2Ekin D 3NkBT

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 65

where Ekin is the kinetic energy,N the number of particles, kB is the Boltzmann
factor and T is the instantaneous temperature.

2. Second step: Interactions
For a long time, when computers were expensive and small, these were model
interactions like the Lennard-Jones pair potential. Such interactions are still
applied in statistical mechanics were people are interested in generic features
of interactions. If properties of materials should be studied with high accuracy,
the methods of choice is for example force-matching. Ab-initio calculations are
carried out to obtain forces which are then fitted to obtain a classical interaction
for the MD simulation. This can be done with potfit for example and will be
explained in more detail in Sect. 3. In organic chemistry and soft matter physics
especially standardized two-, three-, and four-body interactions called force-
fields exist for modeling bond lengths, angles, and dihedral angles.

3. Third step: Boundary conditions
The surface to volume ratio is important even for the largest simulations in three
dimensions. Thus one has to specify boundary conditions. If surface effects are
negligible, open or free boundaries are applied, which effectively means that a
cluster of particles is simulated. If surface effects should be avoided, periodic
boundary conditions are applied, which means theat the left and right, upper
and lower and top and bottom surfaces are pairwise identified and if a particle
leaves the box on one side it will enter on the opposite side again. Thus there is
no boundary at all and the simulation box is a torus. In solid state physics and
materials sciences it is often of interest to deform the sample by straining it for
example. This can be done by fixed boundary conditions, where the atoms at the
surface are moved according to a given trajectory or an applied forces. Finally,
there are more advanced boundary conditions, for example the Lees-Edwards
boundary conditions [2] which allow to imprint a flow on the sample without
applying forces.

4. Fourth step: Integrators and linked lists
While there are basically two formulations of the standard equations of motion
for classical particles in a micro-canonical ensemble with constant NVE (N
number of particles, V volume, E total energy), namely the Newtonian and
Hamiltonian, there is an arbitrary number of integrators. The Hamiltonian
equations of motion are

dpi

dt
D �rV.r1; : : : ; rN /

dri

dt
D pi
mi

with the interaction potential V.r1; : : : ; rN / depending on all coordinates ri
and pi the momenta of the N particles. Typically this 6N dimensional system
of differential equations is solved by discretizing the time into steps small
enough that the basic vibrational frequencies and the fastest motions can still
be represented.

66 J. Roth

Today typical choices of the integrators are the modifications of the so-called
Verlet- and leap-frog algorithms. Principally they are inferior to the older Gear-
predictor-corrector algorithms or to Runga-Kutta-type integrators, but they have
many advantages: they require less storage, which is especially useful for
communication on massively parallel supercomputers. Furthermore, they are
similar to so-called symplectic integrators which respect the inherent symmetry
of the equations of motion and are thus more stable even if there nominal
accuracy is lower than that of higher oder integrators. A typical leap-frog
integration scheme looks like this:

Ppi.t C�t=2/ D Ppi.t ��t=2/C fi .t/ ��t
Pri.t C�t/ D Pri.t/C 1

m i
pi .t C�t=2/ ��t

It is called leap frog since the evaluation of positions and coordinates are
shifted by half a time-step. First the force fi .t/ for each particle i is computed
and added to the previous momenta Ppi.t � �t=2/, then the positions Pri.t/ are
updated and the new forces fi .t C�t/ will be calculated.
The most time consuming part of the simulations is the evaluation of the forces.
If the potential V.r1; : : : ; rN / is approximated in the most simple approach by
pair potentials V.ri ; rj / which act between particle i and j , then the complexity
of the algorithm is still O.N2/ and uses 80 % of computation time or more.
If the interactions can be made short-ranged by cutting them off at certain
distance, then it is possible to introduced linked lists for the administration of the
interactions (see [22] for details on IMD.) Typical examples are metals. Long-
range interactions between ions or polar molecules like water have to be treated
in a different way (see Sect. 3.1). For the linked lists the simulation box is divided
into cells with the size of the interaction range. Each atom is assigned to a cell
which can be done by local information only. Each atom can only interact with
its neighbors in the same cell or in neighboring cells due to the cutoff. Together
with actio equal to reactio this leads to 13 partner cells in three dimensions.
Now the complexity of the algorithm is onlyO.N/, and the goal is to reduce the
pre-factor, i.e. the number of particles in each cell. Especially in the case of three-
body interactions V.ri ; rj ; rk/ and many-body interactions this is advisable: the
cells are not used to compute directly to compute the forces but to determine
the interaction partners. If a certain “skin” is added for particles that are close to
interaction, then this list can be recycled and need not be updated at every
time step. Such tables are called Verlet-tables [2] although they were originally
introduced in a different way which had still an order of O.N2/ complexity.

5. Fifth step: Influence from the outside
Up to now we have studied an isolated micro-canonical NVE ensemble.
If constant temperature as in a canonical NVT ensemble or even constant pressure
NPT should be simulated, then the integration scheme has to be modified. Further
extensions are required if the sample is stressed, deformed, or if flow is applied.
Shock waves [13–15] or laser irradiation [19, 20] are other influences which
require special treatment.

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 67

The method of choice to simulate constant temperature is the Noseé-Hoover
thermostat. It can be shown that it leads to a canonical ensemble in limit of
infinitesimal time steps. First the instantaneous temperature T .t/ is determined
by applying the equipartition principle

3

2
NkBT .t/ D

NX

i

p2i
2mi

:

Then system is derived towards the desired temperature T by feedback applied
to the forces:

Ppi D �ri V � 	T pi

where 	 is determined by a new differential equation

P	 D �T

�
T .t/

T
� 1

�

:

The strength of the coupling is determined by the frequency �T which can be
determined from the Einstein frequency and its relation to the average force (for
details see [2]).
The simulation of constant pressure works in a similar way. Here we start from
the pressure equation for the instantaneous hydrostatic pressure P.t/ of an
interacting material:

P.t/ D �kBT CW=V

with density � D N=V , volume V and virial

W D 1

3

NX

i

ri � fi :

The desired pressure P is again achieved by feedback, not applied to positions
and momenta

Pri D ri
mi

C
ri

Ppi D �ri V �
T pi :

The coupling parameter
T is much more difficult to determine than 	i .
In principle it should not alter the frequency spectrum of the simulation. In praxis
a first good choice is to set xiT equal to 	T . Then a few tests with a variation
of the parameter by a magnitude up or down will show if the coupling an will
work correctly. Although the coupling parameters are in principle temperature

68 J. Roth

dependent, we observe that the same parameters can be used at least in the whole
solid range of the phase diagram. The method can easily be extended to constant
stress simulations of solids with uniaxial loading for example.
Intrinsic flow can be simulated by the Lees-Edwards boundary conditions. The
equations of motions should also be modified as given here in two dimensions:

Pxi D pxi
mi

� �yi Pyi D pyi

mi

Ppxi D �rxiV Cmi� Pyi Ppyi D �ryiV

The strength of the flow is determined by � .
6. Sixth step: Data evaluation

MD simulations will directly yield potential and kinetic and thus the total internal
energy by summing over all particles. To compute the free energy is not so trivial
since it is not a mechanical quantity depending on coordinates an momenta.
Methods to compute the free energy are given for example in [2]. Further data
which are directly available are total and local stresses and displacement fields.
Elastic constants can be computed by systematically deforming the sample along
the required modes. Transport coefficients can be obtained from equilibrium
simulations via the Green-Kubo relations or by non-equilibrium simulations, for
example by applying a temperature gradient. Correlation functions are obtained
if the required data are added up during simulations. These and many other
observables are implemented in IMD together with utilities to evaluate them.
Diffraction patterns for example can be calculated from the correlation functions
through fast Fourier transform.

7. Seventh step: Visualization
Many three-dimensional processes that occur in the bulk and dynamical
procedures can only be detected by modern visualization methods. There are
many programs today which allow the direct rendering of atoms like VMD (www.
ks.uiuc.edu/Research/vmd), ovito (www.ovito.org) or MegaMol (svn.vis.uni-
stuttgart.de/trac/megamol) for example. Typically these programs allow to color
code the particles according to selected observables. IMD allows to preselect the
particles to be visualized, for example only those which are at the boundary or
belong to a defect or form a cluster close to a crack surface.
All the visualization programs also allow to produce movies from sequences
of the particle configurations. The movies are especially helpful for the
determination of dynamical processes.

Molecular dynamics simulations can be used to study equilibrium problems,
like structure as a function of pressure and temperature or the stability of grain
boundaries. But they can also be used to determine transport coefficients from
fluctuations like diffusion constants or flip frequencies for example. Beyond that we
run non-equilibrium simulations close to equilibrium, where the relaxation time is
very short. This includes for example the study of plastic deformations, dislocation

www.ks.uiuc.edu/Research/vmd
www.ks.uiuc.edu/Research/vmd
www.ovito.org
http://svn.vis.uni-stuttgart.de/trac/megamol

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 69

motion, crack propagation, shock waves or laser ablation, to name only a few
processes were IMD has been used.

3 Realistic Interactions and potfit

If real properties of materials shall be reproduced with great accuracy it is
unavoidable to use the best available interactions. Typically these are quantum
mechanical ab-initio descriptions. But for mechanical studies for example samples
with several million or hundred million atoms are required which are way beyond
the size that can be simulated by ab-initio methods. Therefore a program was
developed in close relation to IMD named potfit (potfit.sourceforge.net/wiki/
doku.php) [5]. The idea is the following: compute forces, energies, stresses and
so on by ab-initio calculations and fit classical interactions applicable to molecular
dynamics simulations to match them.

The first step is the creation of a database of samples tractable with ab-initio
calculations. This is a crucial step, since the members of the database have to
represent the space of application intended. For example if cracks have to be
simulated, then the database should contain samples with open surfaces, if high
temperatures have to be simulated, then the database should contain samples from
classical high temperature simulations, and so on.

The second step is the selection of the interaction. Currently available are simple
pair interactions, embedded atom potentials and angular dependent potentials for
metals and electrostatic interactions. These have the same format as in IMD. Further
interactions can easily be added.

The third step is the choice of the interaction representation. You can choose
between splines, where you have to specify the number and position of the
supporting points together with the weight, or you can choose a functional form
where then the parameters of the representation are fitted.

The last step is the choice of the fitting method: conjugate gradient methods and
evolutionary algorithms are possible.

The data that can be fitted are forces, energies and stresses, and each variable can
be weighted as desired.

The main problem with the free spline is that it requires data fora good fit
where none are available: especially in crystals atoms are placed at discrete atom
shells with large gaps in between. Even for heavy distortions these gaps cannot
be sampled. Thus the fitted interaction may take a weird shape. But if it is used
in simulations, then the particles will find these intermediate ranges which lead to
strange results.

While force-matching works well for monatomic and binary samples it becomes
less useful for ternary compounds where the fitting space gets too large or the
functional shape of the interactions might not be representative enough of the true
interactions.

potfit.sourceforge.net/wiki/doku.php
potfit.sourceforge.net/wiki/doku.php

70 J. Roth

3.1 Long-Range Interactions

As noted in Sect. 2.1 it is not possible to cutoff long-range Coulombic or dipolar
interactions directly. The most accurate method is the Ewald summation. It cannot
be used for large simulations since its complexity isO.N3=2/. Hierarchical methods,
FFT and multipole methods reachO.N log.n// or close toO.N/, but they typically
do not fit very well into our molecular dynamics scheme with domain decomposition
for parallelization (for details see [16, 22]). Wolf et al. [26] have developed a
method which is applicable to solids and liquids, where the charges are compensated
and thus the interactions fall of fast enough. This method has been implemented in
IMD [7] and applied successfully. If the cutoff complies to certain conditions as
described in [7], then the Wolf summation is an O.N/ method with a cutoff more
than twice the typical cutoff for short-range interactions, and thus rather costly. But
it is still up to three orders of magnitude faster than the pure Ewald summation.

Subsequently we have extended the method to the simulation of induced dipoles
as it is required for oxides. The model of Tangney and Scandalo [23] has been used
for the description of the interaction. Again the implementation has been tested and
applied for several studies of silica, alumina, and magnesia [3,4,7,10]. The original
parameters which where used by Tangney and Scandalo together with the Ewald
summation lead to good results also with the Wolf summation, but there was still an
improvement after re-fitting the parameters directly for the Wolf summation.

For the Tangney and Scandalo model the static polarization and the charges of
the ions are given from literature or from force-matching and are thus constant
during simulation. This is no longer possible if interfaces between metals and metal
oxides shall be simulated since the atoms in the metal are neutral while ionized
in the oxide, and the charge will vary across the interface. Streitz and Mintmire
proposed a model [21] that can deal with this situation. The charges become variable
and are determined by minimization of the chemical potential. While Streitz and
Mintmire compute the chemical potential by inverting a huge matrix which is
rather time consuming and not applicable to large systems, we have implemented a
conjugate gradient algorithm which is much better since we have to find a parabolic
minimum.

The problem with the chemical potential is that it requires a minimization of
the whole system which is very costly on parallel computers. Thus we will have to
use external libraries to tackle this problem. Since the chemical potential will vary
only close to the interface it might be possible to find a more local treatment as for
example in [9] for impurities.

4 Some Examples of Recent Simulations

IMD has been applied to many classical problems of materials sciences and solid
state physics. We will not recall them here. We will rather present some applications
where IMD has been used in a multi-scale environment. One of the older examples

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 71

was a simulation by Büehler et al. [8], where the very complicated and time-
consuming ReaxFF interactions have been calculated on the fly in an molecular
dynamics simulation with IMD. Another application was the determination of the
dynamical structure factor for Mg2Zn11 intermetallics [11]. A long simulation of
the material was run with IMD to produce a trajectory as input of the nMoldyn pro-
gram (dirac.cnrs-orleans.fr/plone/software/nmoldyn) which could then be applied
to obtain the phonon dispersion relations.

Another case was even more complicated. CaCd6 is a material built of clusters
including tetrahedra which show a phase transition from oriented to rotating. First
an accurate interaction was determined by ab-initio calculations and force matching.
Then classical simulations were run with IMD to obtain the energy differences
between different correlated orientations of neighboring tetrahedra. Since MD was
still too slow to study the phase transition directly, the data where used to set
up a Monte-Carlo simulation with the transition energies obtained from the MD
simulations. With Monte-Carlo the behavior of the system could be determine as a
function of temperature and the phase transition could be observed at a temperature
which is compatible with experimental observations [6].

As a last example we want to mention laser ablation simulations. Here the
problem is that the interaction with the laser and the heat conduction is govern by
electronic processes which cannot be described by classical molecular dynamics.
But the fast heat conduction requires huge samples on the other hand. There is a two-
temperature continuum model available with separate temperature for the electrons
and the lattice or atom cores. This model works rather well if solved by finite
difference methods and can predict many properties of laser ablation. However,
it cannot give information on the atomistic level like the creation of defects,
the production of gas and drops, and so on. We have combined the two-temperature
model with MD, thus solving the electronic part with finite differences and the
atomistic part by molecular dynamics simulations [19, 20]. We have been able to
predict melting depths and ablation thresholds. For the simulation of the ablation
plume composition, however, the electronic heat conductivity is still to fast and has
to be switched of. Nonetheless, the results compare rather well to experiments.

5 Parallelization

IMD is parallelized with MPI and domain decomposition as described in [16, 22].
While this scheme works very well for samples with periodic boundary conditions
it has some drawbacks for samples with open surfaces like crack propagation,
indentation, shock waves or laser ablation. A more dynamical load balancing
scheme has not been attempted to be implemented since the load distribution
depends strongly on the kind of simulations. Meanwhile an OpenMP parallelization
level has been added especially for cases where MPI does not work as for Ewald
summation or certain correlation functions in conjunction with Fourier transforms.
It turns out that OpenMP leads to increasing performance only up to four to eight

http://dirac.cnrs-orleans.fr/plone/software/nmoldyn

72 J. Roth

compute cores, depending on the machine. A serious problem is that the compute
cores may change there memory location from thread to thread, which could be
avoided by setting environment variables.

In conclusion we can state that the MPI version yield always the highest
performance, irrespective of shared or distributed memory. We found no case where
OpenMP lead to a big improvement of performance.

6 Benchmarking IMD

IMD was written especially for massively parallel computers. Benchmarks have
been published in [16,22]. Although the numbers have changed, the overall behavior
is still valid [17,18]. This is a nearly perfect weak scaling and a good strong scaling.
Recently this has been confirmed by Cray who tested IMD on the then Top500
machine Jaguar with up to 1:3� 1011 particles and on the HLRS Hermite. If about a
million particles are available per compute unit, then the degradation of performance
is about 10 % up to the full machine. IMD could reach a considerable amount of the
peak performance of the machines without special adaption or libraries.

7 Porting IMD to GPUs

In recent years it has been realized that graphics processing units (GPUs) yield a
huge computing capacity after the advent of CUDA, a language which allows to
program GPUs efficiently, the topic has gained speed. Nvidia, one of the producers
of graphics cards and the creator of CUDA promises speedups up to 100-fold. In
reality the speedups are much lower, often they are much below 10. The are MD
programs that are written especially for GPUs, like HALMD (halmd.org) or HOOMD
(codeblue.umich.edu/hoomd-blue) which are very fast and take heavy advantage
of GPUs, but they are rather specialized for certain purposes. On the other hand,
there are general purpose programs which are very powerful like lammps (http://
lammps.sandia.gov/), GROMACS (www.gromacs.org/) or IMD which are difficult to
port to GPUs since the requirements for different modes of operation can be very
different. Moreover, it is nearly impossible to adapt a given data structure such that
it possesses similar good performance on CPUs and GPUs.

1. Analysis of IMD properties
IMD does not apply external libraries. This is an advantage if compared for
example to pasimodo which relies heavily on external libraries (www.itm.uni-
stuttgart.de/research/pasimodo/pasimodo de.php). It turned out that it is nearly
impossible to port this program to GPUs since the workload is spread quite
homogeneously over all subroutines.
IMD has been analyzed and ported partially by a group in Poland under the
leadership of Rudniki [24]. IMD uses tabulated potentials and none of the special

http://halmd.org
codeblue.umich.edu/hoomd-blue
http://lammps.sandia.gov/
http://lammps.sandia.gov/
www.gromacs.org/
http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_de.php

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 73

functions which are available on GPUs. Thus it cannot take advantage of the
special GPU features. IMD in general has a rather low arithmetic intensity
of computations. There are only 173 instructions per byte fetched. Thus the
performance limits are the low utilizability of the graphics card, redundant
computations and the small number of registers available. There is, however, no
memory bandwidth problem as it is often the case.
The main computation work load in IMD is the force computation which needs
80–98 % of the run time. Thus it is only one single kernel which has to be ported.
After optimization, the force computation kernel requires only slightly more than
50 % of the run time.

2. Adaption of IMD
A thread on the GPU is the computation task of a single atom. A thread block is
a single cell of interacting atoms. The data to be sent are the coordinates, atom
types, embedding energy and derivative in the case of embedded atom potentials.
The received data are forces, energies, virial, and the embedding energy and its
derivative.

3. The algorithm on the GPU
First load the cell number, position, atom count and number and the position
of neighbors. Then each thread block loads the atom data to shared memory.
The threads compute interactions in the same cell. Next prefetch the data of
the neighbor cells, preprocess the non-interacting neighbors. Now the threads
compute the interaction with the neighbors. At last return the results to global
memory.

4. Optimization IMD
The data structure has to be changed from “first atom, next atom” to “first
coordinate”, “second coordinate” and so on to take advantage of the memory
structure on the GPU. Further optimizations are given by sorting for spatial
locality, applying actio equal reactio, computing the interaction matrix first and
summing it up. The atoms are renumbered such that subsequent atoms are close
in space. For the computation with neighboring cells the atoms are renumbered
dynamically. The workflow is changed such that CPU and GPU can work in
parallel.

5. Speedups
The ported IMD code has been tested on several configurations, notably on 24
nodes with 2 AMD 6134 (8 Core) and 2 Nvidia 480 GTX cards, with single node
Intel E 5620 (8 Core) and 2 Tesla C2050, and on single Laki nodes Intel E 5520
(8 Core) and 1 Tesla S1070 card. The raw speedup of about 100x (as predicted
by Nvidia!) is reduced to 7x by geometric constraints. The speedup with respect
to one CPU is 20 to 40x, with respect to the 8 Cores available it is 2.5 to 4x. Tesla
and GTX are similar, and there is no notable difference between consumer and
professional cars which means that CRC control does not play a role.
The speedup is comparable to lammps which is a similar general purpose MD
code. It is certainly inferior to HALMD or HOOMD for the reasons noted above.

74 J. Roth

Up to now only pair interactions and the rather similar embedded atom interac-
tions have been ported. This means that simulations of metals are possible. These
interactions do not require Verlet tables which are a major problem for the porting
to GPUs, since they are realized as pointers in IMD and thus cannot be transferred
to GPUs in a simple manner. Porting further parts of IMD is work in progress.

8 A Comment on World Records Molecular Dynamics
Simulations

Recently the world record for atomistic MD simulations was raised to 4:125� 1012
particles by Vrabec et al. [25]. The previous record stood at 1 � 1012 [12] for about
7 years. If a rather big time step of 1 fs is assumed for the simulation of such a
sample with an edge length of about 5�m, furthermore a typical velocity of sound
of 500 m/s, then the simulation has to last of the order of 1 million time-steps to
allow the sound and thus the information of the local state of the sample to cross
the simulation box once! The simulations, however, were run for 50 time-steps only.
In contrast, the simulations of Abraham et al. [1] in 2002 of a billion atoms were
run for 200,000 time steps, thus allowing sound to cross the sample about 3–4 times
during simulation.

If we look at the size of the samples we find that the only purpose of these records
is to fill up the memory of the supercomputers. Continuing the previous trends we
should have reached about 1� 1014 particles already. So the memory has not grown
as expected. Looking at the velocity of sound we would need at least several hundred
million of time steps which means that we have to run the simulations on the full
machine for up to a year (the simulations of Abraham et al. lasted 4 days, thus size �
time-steps was the same as Vrabec et al.’s 11 years later).

We conclude that MD simulations cannot use the full power of the biggest
supercomputers effectively, since the number of time-steps has to increase in
accordance with the number of processing units (which leads to a larger main
memory). More time-steps can only be achieved by faster processing units with
higher clock rates. GPUs would certainly help to some extent, but they would not
overturn the basic conclusions. Longer time-steps are not applicable, since the size
of the time step is given by the basic vibration frequency of the atoms and thus by
physics.

9 Summary

We have presented the molecular dynamics simulations in general as they are
applied in condensed matter physics. We have introduced potfit to obtain
accurate interactions from ab-initio calculations. A number of recent applications

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical. . . 75

of IMD to multi-scale simulations have been described. We have further reported
the first attempts to port IMD to GPUs.

Although there will be changes in the maintenance, porting and further develop-
ment of IMD in future we are confident that it is a valuable MD simulation package
and will continue to be in future.

References

1. Abraham, F.F., Walkup, R., gao, H., Duchaineau, M., Diaz De La Rubia, T., Seager, M.,
Simulating materials failure by using up to one billion atoms and the world’s fastest computer:
Brittle fracture. Proc. Nat. Acad. Sci 99 5777–5782 (2002).
Abraham, F.F., Walkup, R., gao, H., Duchaineau, M., Diaz De La Rubia, T., Seager, M.,
Simulating materials failure by using up to one billion atoms and the world’s fastest computer:
Work hardening. Proc. Nat. Acad. Sci 99 5783–5787 (2002).

2. Allen, M.P., Tildesley, D.J. Computer simulations of liquids, Oxford University Press 1987.
3. Beck, P., Brommer, P., Roth, J., Trebin, H.-R., Ab initio based polarizable force field generation

and application to liquid silica and magnesia. J. Chem. Phys. 135 234512 (2011).
4. Beck, P., Brommer, P., Roth, J., Trebin, H.-R., Influence of polarizability on metal oxide

propeties studied by molecular dynamics simulations. J. Cond. Matt. 24 485401 (2012).
5. Brommer, P., Gähler, F., Potfit: effective potentials from ab-initio data. Modelling Simul. Mater.

Sci. Eng. 15 295–304 (2007).
6. Brommer, P., Gähler, F., Mihalcovič, M., Ordering and correlation of cluster orientations in

CaCd6, Phil. Mag. 87 2671–2677 (2007).
7. Brommer, P., Beck, P., Chatzopoulos, A., Gähler, F., Roth, J., Trebin, H.-R., Direct Wolf

summation of a polarizable force field for silica. J. Chem. Phys. 132 194109 (2010).
8. Buehler, M.J., Dodson, J., van Duin A.C.T., Meulbroek, P., Goddard, W. A., The Com-

putational Materials Design Facility (CMDF): A powerful framework for multiparadigm
multi-scale simulations, Mat. Res. Soc. Proceedings (Combinatorial Methods and Informatics
in Materials Science), 894, LL3.8 (2006).

9. Elsener A. Politano, O., Derlet, P.M., Van Swygenhoven, H., Mod. Sim. Mat. Sci. Eng. 16
025006 (2008).

10. Hocker, S., Beck, P., Schmauder, S., Roth, J., Trebin, H.-R., Simulation of crack propagation
in alumina with ab initio based polarizable force field. J. Chem. Phys. 136 084707 (2012).

11. Euchner, H., Mihalcovič, M., Gähler, F., Johnson, M.R., Schober, H., Rols, S., Suard, E.,
Bosak, A., Ohhashi, S., Tsai, A.-P., Lidin, S., Pay Gomez, C., Custers, J., Paschen, S.,
de Boissieu, M., Anomalous vibrational dynamics in the Mg2Zn11 phase, Phys. Rev. B 83
144202 (2011).

12. Germann, T.C., Kadau, K., Trillion-atom molecular dynamics becomes reality, Int. J. Mod.
Phys. C 1315–1319 (2007).

13. Roth, J., Shock waves in complex binary solids: Cubic Laves crystals, quasicrystals, and
amorphous solids, Phys. Rev. B 71, 064102 (2005).

14. Roth, J., Shock waves in materials with Dzugutov-potential interactions, Phys. Rev. B 72,
014125 (2005).

15. Roth, J., !-phase and solitary waves induced by shock compression of bcc crystals, Phys. Rev.
B 72, 014126 (2005).

16. Roth, J., Gähler, F., Trebin, H.-R., A molecular dynamics run with 5.180.116.000 particles. Int.
J. Mod. Phys. C 11, 317–322 (2000).

17. Roth, J., Karlin, J., Sartison, M., Kraus̈, A., Trebin, H.-R., Molecular dynamics simulations
of laser ablation in metals: parameter dependence, extended models and double pulses, in
High Performance Computing in Science and Engineering ’12, eds. W.E.Nagel, D.B. Kröner,
M.M. Resch, Springer Heidelberg, 2013, in print.

76 J. Roth

18. Roth, J., Trichet, C., Trebin, H.-R., Sonntag, S., Laser ablation of metals, in High Performance
Computing in Science and Engineering ’10, eds. W.E.Nagel, D.B. Kröner, M.M. Resch,
Springer Heidelberg, 2011, pp. 159–168.

19. Sonntag, S., Roth, J., Gähler, F., Trebin, H.-R., Femtosecond Laser Ablation of Aluminum,
Appl. Surf. Sci. 255 9742 (2009).

20. Sonntag, S., Trichet Paredes, C., Roth, J., Trebin, H.-R., Molecular Dynamics Simulations
of Cluster Distribution from Femtosecond Laser Ablation in Aluminum, Appl. Phys. A 101
559–565 (2011).

21. Streitz, F.H., Mintmire, J.W., Electrostatic potentials for metal-oxide surfaces and interfaces.
Phys. Rev. B 50 11996–12003 (1994).

22. Stadler, J., Mikulla, R., Trebin, H.-R., IMD: A software package for molecular dynamics
studies on parallel computers. Int. J. Mod. Phys. C 8, 1131–1140 (1997).

23. Tangney, P., Scandalo, S., An ab initio parametrized interatomic force field for silica. J. Chem.
Phys. 117 8898–8904 (2002).

24. Tredak, P., Lewinski, B., Ligowski, L., Wejranowski, T.,Rudniki, W.R., Large scale molecular
dynamics simulations of materials on GPU clusters, Preprint

25. Vrabec, J., private communication
26. Wolf, D., Keblinski, P.,Philipot, S.R., Eggebrecht, J., Exact method for the simulation of

Coulombic sysztems by spherically truncated, pairwise r�1 summation. J. Chem. Phys. 110
8254–8282 (1999).

Evaluation of FastFlow Technology
for Real-World Application

Kamran Idrees, Mathias Nachtmann, and Colin W. Glass

Abstract It is challenging to parallelize a real application without the knowledge of
low level modes of parallelism available in the application, such as data parallelism
and task parallelism. Until now, the parallel programming models focus on these low
level modes of a program to exploit parallelism. FastFlow provides an alternative
high level pattern based mechanism to parallelize an application. It provides
pattern specific constructs to parallelize an application, in order to achieve good
parallel performance and ease of programming. FastFlow has been evaluated for
basic kernels. In this paper we evaluate it based on a real-world application from
Molecular Dynamics.

1 Introduction

FastFlow is a C CC library used to parallelize applications efficiently by exploiting
the patterns inherent to applications. It currently targets cache-coherent shared
memory architectures. FastFlow provides high level constructs to explicitly define
the patterns of the applications. FastFlow has been evaluated for basic kernels.
In this paper we evaluate FastFlow based on a Molecular Dynamics (MD) appli-
cation and compare it to an OpenMP [5] implementation.

MD simulates the interactions between molecules [4]. In principle, once the
initial positions and velocities of molecules are provided, the following time pro-
gression of the molecules is deterministic. After the system is initialized, calculation
of forces is done on all molecules in the system. Then, the Newton’s equations

K. Idrees (�) � M. Nachtmann � C.W. Glass
High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
e-mail: idrees@hlrs.de; nachtmann@hlrs.de; glass@hlrs.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 6,
© Springer International Publishing Switzerland 2013

77

mailto:idrees@hlrs.de
mailto:nachtmann@hlrs.de
mailto:glass@hlrs.de

78 K. Idrees et al.

of motion are integrated to advance the positions and velocities of molecules.
The simulation is advanced until the computation of the time evolution of the system
is completed for a specified length of time.

2 Algorithms

We used our in house Molecular Dynamics code CMD, developed for basic research
into High-performance computing. CMD features multiple MD data structures,
algorithms and parallelization strategies and thus allows for quantitative compar-
isons between them. There are two widely used data structures implemented – with
corresponding algorithms – for the computation of interactions between molecules
in the system. Both have been ported to FastFlow and compared to OpenMP.

2.1 BasicN2 Algorithm

In the BasicN2 algorithm, the distance between every pair of molecules in the
domain is computed. For every pair with a distance lower than the cut-off radius, the
interaction is computed. It is a compute intensive and highly data parallel problem.
This algorithm has the compute complexity of O.N2/.

2.2 MoleculeBlocks Algorithm

In the MoleculeBlocks algorithm, the domain is spatially decomposed into cells
(of the size cut-off radius) and then the molecules are distributed among these
cells. In this algorithm, the distances between the molecules are computed only
for intra-cell and neighboring cells. The MoleculeBlocks algorithm therefore
has the compute complexity of O(N). Furthermore, Newton’s 3rd law of motion
is used to reduce the compute effort by half. Figure 1 shows an example of the
MoleculeBlocks algorithm for a 2D domain space. Here the interactions of
molecules of a centered cell are computed with only 4 of its neighbor cells (yellow
colored) instead of all 8 neighbor cells. When the interaction between a pair of
molecules is computed, the resulting force is written to both molecules. Thus, the
centered cell (see Fig. 1) modifies the forces of its molecules and molecules of its
right and lower neighbor cells (yellow colored).

Although the use of Newton’s 3rd law in this algorithm lessens the computational
effort, it raises the requirements regarding synchronization. This is because the
calculated force between a pair of molecules has to be written to the data structure
of both molecules.

Evaluation of FastFlow Technology for Real-World Application 79

Fig. 1 Calculation of interaction between molecules using the MoleculeBlocks algorithm

3 Porting CMD to FastFlow

FastFlow provides powerful constructs to define patterns in an application. The two
most basic constructs are pipeline and farm [1–3], whereas both of these constructs
can be nested with each other. Other constructs include farm and pipeline with
feedback, farm as software accelerator and map.

In a pipeline construct, multiple stages can be added as per requirement.
The output of the first stage is fed to the next stage in the pipeline, which consumes
its input and produce output to be used as input by the next stage and so on. Defining
a pipeline allows for multiple stages to be executed in parallel on different data.

The farm pattern can be thought of as a two or three stage pipeline pattern.
The first stage is an emitter which is used to offload the tasks to the second
stage. The second stage is a set of worker threads which process the tasks assigned to
them. The third stage is called collector and is optional. Either the second stage can
directly store the result in the memory or it can feed its result to the collector, which
is responsible for the reduction (or some similar operation) of the results received.

For the BasicN2 algorithm, we utilized the farm pattern in an accelerator mode.
Similarly for the MoleculeBlocks algorithm, the farm pattern is used in accelerator
mode and synchronization among threads is provided using locking constructs
available in FastFlow.

3.1 Parallelization of BasicN2 Algorithm

In the BasicN2 algorithm, most of the simulation time is spent in the force
calculation routine (e.g. 99.91 % for 68,000 molecules). Therefore, only the force
calculation routine is parallelized. A farm is created with the given number of

80 K. Idrees et al.

Algorithm 1 Pseudo code for Farm creation

i n t main (i n t argc , c h a r �a rgv []) f
/� P a r s i n g o f i n p u t a rgum en t s � i d e n t i f i e s number o f

worker t h r e a d s � /
f f f a r m <> a c c e l e r a t o r (t r u e) ; /� D e c l a r e Fas tF low Farm

i n A c c e l e r a t o r Mode � /
s t d : : v e c t o r<f f n o d e �> workersVector ; /� D e c l a r e v e c t o r

o f Farm worker t h r e a d s � /
/� Add w orke r s t o Farm i n t h e g r i d g e n e r a t o r r o u t i n e � /
g r i d g e n e r a t o r (& t a r g e t e n s e m b l e , SC , &domain , psp ,

&a c c e l e r a t o r , &workersVector) ;
. . .
s t a r t t i m e r = t i m e r () ;
M a i n S i m u l a t i on Loop f

Pre�Force I n t e g r a t i o n () ;
Force �C a l c u l a t i o n (& a c c e l e r a t o r) ; /� P a r a l l e l i z e d

u s i n g farm i n a c c e l e r a t o r mode � /
Pos t �Force I n t e g r a t i o n () ;
. . .

g
e n d t i m e r = t i m e r () ;

r e t u r n 0 ;

worker threads before the simulation is started. The number of threads is controlled
using the command line argument, ‘–num-threads’. The farm is used in the
accelerator abstraction to parallelize only the part of the simulation which computes
forces on molecules.

Once the simulation is started, inside the basicN2 calc forces routine, the farm
is launched and the molecules are divided among its worker threads (by an emitter
thread) to compute the forces acting on them. Each thread computes the forces and
accumulates the potential energy of its molecules. The main thread is frozen to
wait for the worker threads to finish their tasks. Once all threads have finished, a
reduction operation is performed by the main thread to calculate the global sum of
potential energy of all the molecules in the system. To avoid the run-time overhead
of creating the farm again and again, it is not destroyed, but reused in every iteration.
This is done using the wait freezing() method of the farm. Algorithm 1 shows the
pseudo code of creating the farm in accelerator mode and Algorithm 2 shows the
pseudo code of parallelizing the force calculation routine using the farm construct.

3.2 Parallelization of MoleculeBlocks Algorithm

As shown in Table 1, most of the simulation time is spread among the multiple
routines for the MoleculeBlocks algorithm.

Evaluation of FastFlow Technology for Real-World Application 81

Algorithm 2 Use of Farm pattern in BasicN2

vo i d b a s i c N 2 c a l c f o r c e s (vo i d �conta i ner , r e a l �U pot ,
f f f a r m <> �a c c e l e r a t o r) f

bas icN2 �mc = (bas icN2 �) conta i ner ;
r e a l U pot tmp = 0 . ;

i f (a c c e l e r a t o r �>r u n t h e n f r e e z e () < 0) f
e r r o r (” r u n n i n g a c c e l e r a t o r nn ”) ;

g
f o r (i n t i = 0 ; i < num t h reads ; i ++)

a c c e l e r a t o r �>o f f l o a d (mc) ; /� B r o a d c a s t p o i n t e r t o
m ol ecu l e conta i ner t o a l l t h r e a d s � /

a c c e l e r a t o r �>o f f l o a d ((vo i d �) FF EOS) ;
a c c e l e r a t o r �>w a i t f r e e z i n g () ; /� Freeze farm � /

/� R educ t i on O p e r a t i o n f o r g l o b a l sum of P o t e n t i a l Energy � /
f o r (i = 0 ; i < c o n f i g . num t h reads ; i ++)

U pot tmp += U po t w o rke r [i] ;

�U pot += U pot tmp ;
g

Table 1 Profile of CMD Molecule Blocks use case

Routine Time spent on routine (%)

Force calculation 41.74
Kinetic energy calculation 15.36
Pre-force integration 10.43
Post-force integration 4.22
.

Therefore to achieve good speedups, all expensive routines of the simulation are
parallelized. Similar to the parallelization of the BasicN2 algorithm, a FastFlow
farm is created before the actual simulation starts. Then, the main thread launches
the farm inside all of the expensive routines of the simulation. As the farm is
launched, the emitter thread distributes the cells among the worker threads to
perform the parallelization of a task specific to the routine to be parallelized.
After starting the farm, the main thread waits for the worker threads to finish their
tasks, using the wait freezing() routine. The different simulation routines must be
executed serially, however, each routine can be parallelized. Here, the same farm
is reused by all parallel routines. This is done by passing a task-pointer to the
worker (or service) routine of the farm. The pointer points to a structure, which has
a member identifying which routine is currently to be executed in parallel by the
farm (as shown in Algorithm 3). Inside the worker (or service) routine, switch cases

82 K. Idrees et al.

Algorithm 3 Service routine of worker threads in MoleculeBlocks algorithm

c l a s s Worker : p u b l i c f f n o d e f
p u b l i c :

vo i d � svc (vo i d � f f t a s k) f
f f t a s k t � t a s k = (f f t a s k t �) f f t a s k ;
mb t �mc = (mb t �) t a sk �>conta i ner ;
i n t t h r e a d I D = f f n o d e : : g e t m y i d () ;

i f (CALC FORCES == t ask �>r o u t i n e) f
/� T hi s r o u t i n e i s p a r a l l e l i z e d h e r e � /
/� D i s t r i b u t i o n o f m ol ecu l e c e l l s i s

done i n a manner t h a t each t h r e a d
has c o n t i g u o u s c e l l s i n a l l
d i m ens i ons �� i t r e d u c e s t h e
p r o b a b i l i t y o f a t h r e a d t o w a i t
f o r a c q u i r i n g l o c k on n e i g h b o r
c e l l f o r f o r c e c a l c u l a t i o n � /

g
e l s e i f (INTEGRATE PREF == t ask �>r o u t i n e) f

/� T hi s r o u t i n e i s p a r a l l e l i z e d h e r e � /
g
e l s e i f (INTEGRATE POSTF == t ask �>r o u t i n e) f

/� T hi s r o u t i n e i s p a r a l l e l i z e d h e r e � /
g
e l s e i f (CALC E KIN == t ask �>r o u t i n e) f

/� T hi s r o u t i n e i s p a r a l l e l i z e d h e r e � /
g
. . .

r e t u r n GO ON;
g

g ;

are used to determine which routine is currently to be executed. After all threads
have finished computing their current task, the main thread performs a reduction
operation to calculate global parameters of the complete system.

Synchronization in the force-calculation routine (in order to avoid race condi-
tions) is performed by pthread locks. The pthread mutex trylock routine is used to
acquire the locks on the two cells between which the molecular interactions are to
be computed. The use of this non-blocking lock acquiring routine avoids deadlocks
among threads. If a thread acquires the lock on a cell and it does not get the lock on
its neighbor cell, it releases the acquired lock.

Evaluation of FastFlow Technology for Real-World Application 83

4 Evaluation

The CMD BasicN2 algorithm is evaluated for the problem size of 68,000 molecules,
whereas the CMD MoleculeBlocks algorithm is evaluated for the problem size of
1,000,000 molecules. Both codes are compiled with GCC 4.7.2. Furthermore, for
the FastFlow implementation, threads are pinned with the following mapping: main
thread to core 0, emitter thread to core 1, worker threads to cores 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, and 0, respectively (hyperthreading).

4.1 Evaluation Metrics

Execution Time

This is the total time spent in the simulation loop of CMD, which incorporates
7–8 routines. The execution time is averaged over 10 independent simulation
runs. The benchmark results show the average values and standard deviations of
the execution time.

Speedup

This is the speedup of the simulation loop when executed in parallel. It is the ratio
between the average serial execution time and the average parallel execution time
of the simulation loop.

4.2 Results

Execution Time

BasicN2 Algorithm

The benchmark for the BasicN2 execution time is shown in Fig. 2. It compares
the execution time of CMD BasicN2 parallelized with FastFlow and OpenMP.
We can see that the OpenMP version is slightly faster than the FastFlow version
for small numbers of threads (as shown in Table 2). But as the number of threads is
increased, we achieve almost the same execution time.

84 K. Idrees et al.

1

2

4

8

 16

 32

1 2 4 8 16

E
xe

uc
tio

n
T

im
e

(S
ec

on
ds

)

Number of Threads

Execution Time of CMD(BasicN2) for OpenMP and FastFlow

FastFlow
OpenMP

Linear Scaling

Fig. 2 Execution time of BasicN2 algorithm with FastFlow and OpenMP

Table 2 Averaged measured execution times and standard deviation for the BasicN2 and
MoleculeBlocks algorithms implemented with FastFlow (FF) and OpenMP, respectively

BasicN2 MoleculeBlocks

FF OpenMP FF OpenMP
cores time (s) time (s) time (s) time (s)

1 22.819 ˙ 0.011 22.126 ˙ 0.008 2.335 ˙ 0.002 2.364 ˙ 0.003
2 11.435 ˙ 0.026 11.132 ˙ 0.025 1.442 ˙ 0.004 1.659 ˙ 0.031
3 7.978 ˙ 0.012 7.443 ˙ 0.013 1.090 ˙ 0.002 1.252 ˙ 0.113
4 5.985 ˙ 0.021 5.631 ˙ 0.054 0.926 ˙ 0.001 1.088 ˙ 0.027
5 4.802 ˙ 0.014 4.621 ˙ 0.003 0.819 ˙ 0.001 0.903 ˙ 0.008
6 3.993 ˙ 0.006 3.885 ˙ 0.005 0.923 ˙ 0.005 0.849 ˙ 0.001
7 3.417 ˙ 0.006 3.337 ˙ 0.007 0.792 ˙ 0.001 0.753 ˙ 0.001
8 2.997 ˙ 0.008 2.921 ˙ 0.006 0.759 ˙ 0.002 0.745 ˙ 0.002
9 2.667 ˙ 0.010 2.598 ˙ 0.007 0.733 ˙ 0.001 0.697 ˙ 0.017
10 2.399 ˙ 0.008 2.340 ˙ 0.003 0.681 ˙ 0.003 0.691 ˙ 0.013
11 2.234 ˙ 0.001 2.190 ˙ 0.001 0.671 ˙ 0.001 0.648 ˙ 0.001
12 2.064 ˙ 0.001 2.022 ˙ 0.001 0.720 ˙ 0.004 0.673 ˙ 0.001

MoleculeBlocks Algorithm

The benchmark for the MoleculeBlocks execution time is shown in Fig. 3. It
compares the execution time of CMD MoleculeBlocks parallelized with FastFlow
and OpenMP. We can see that the FastFlow version is faster than the OpenMP
version for up to 5 worker threads (single NUMA Node on RGU Cluster has
6 cores). The FastFlow implementation uses a farm in accelerator mode. It has
two additional threads (main and emitter thread) compared to OpenMP. FastFlow
utilizes one core for the main thread, whereas the first worker thread is mapped to
the same core as the emitter thread (hyperthreading). So for 5 worker threads the
FastFlow implementation utilizes one complete NUMA node of the utilized RGU

Evaluation of FastFlow Technology for Real-World Application 85

 0.125

 0.25

 0.5

 1

 2

 4

 1 2 4 8 16

E
xe

uc
tio

n
T

im
e

(S
ec

on
ds

)

Number of Threads

Execution Time of CMD(MoleculeBlocks) for OpenMP and FastFlow

FastFlow
OpenMP

Linear Scaling

Fig. 3 Execution time of MoleculeBlocks algorithm with FastFlow and OpenMP

 0.25

 0.5

1

2

4

8

1 2 4 8 16

E
xe

uc
tio

n
T

im
e

(S
ec

on
ds

)

Number of Threads

Execution Time of FastFlow implementation of CMD(Molecule Blocks) on Hermit Cluster

FastFlow
Linear Scaling

Fig. 4 Execution time of MoleculeBlocks algorithm with FastFlow with cut-off radius D 3

cluster (6 cores per NUMA node, 12 per node). As the number of worker threads is
increased beyond 5, the OpenMP version performs slightly better than the FastFlow
version.

By increasing the cut-off radius, we can control the computation to communi-
cation ratio and hence can explore the behavior of the parallel implementations in
more detail. Figure 4 shows a benchmark for the execution time of MoleculeBlocks
algorithm with the cut-off radius of 3.

Speedup

BasicN2 Algorithm

The benchmark for the speedup of BasicN2 is shown in Fig. 5. We observe almost
the same speedup with FastFlow as we do with OpenMP.

86 K. Idrees et al.

 0.5

1

2

4

8

 16

1 2 4 8 16

S
pe

ed
up

Number of Threads

Speedup of CMD(BasicN2) for OpenMP and FastFlow

FastFlow
OpenMP

Linear Scaling

Fig. 5 Speedup of BasicN2 algorithm with FastFlow and OpenMP

 0.5

1

2

4

8

 16

1 2 4 8 16

S
pe

ed
up

Number of Threads

Speedup of CMD(Molecule Blocks) for OpenMP and FastFlow

FastFlow
OpenMP

Linear Scaling

Fig. 6 Speedup of MoleculeBlocks algorithm with FastFlow and OpenMP

MoleculeBlocks Algorithm

The benchmark for the speedup of MoleculeBlocks is shown in Fig. 6. We observe
that the FastFlow version is significantly faster on a Single NUMA node (as shown
in Table 2). However, beyond a single NUMA node, the OpenMP version is slightly
faster. Figure 7 shows the benchmark for the speedup of the MoleculeBlocks
algorithm with the cut-off radius of 3.

Evaluation of FastFlow Technology for Real-World Application 87

1

2

4

8

 16

1 2 4 8 16

S
pe

ed
up

Number of Threads

Speedup of FastFlow implementation of CMD(Molecule Blocks) on Hermit Cluster

FastFlow
Linear Scaling

Fig. 7 Speedup of FastFlow implementation of MoleculeBlocks algorithm with cut-off
radius D 3

5 Conclusions

With both algorithms, BasicN2 and Molecule Blocks, we have observed very similar
speedups when comparing FastFlow and OpenMP implementations. However, there
is still a need to efficiently map the threads to the cores when using FastFlow on
Shared Memory Multiprocessor (SMP) systems. In an SMP system with more than
a single Non-Uniform Memory Access (NUMA) node, like the RGU cluster, the
placement of a thread and the data it accesses can have a severe impact on the
performance of an application. This is because in SMP with NUMA nodes, each
NUMA node has its separate memory interface. Therefore, if a thread is pinned to
one NUMA node while the data it access is located on another, it has high memory
access latency, compared to data residing on the same NUMA node. This effect
is apparent in Figs. 3 and 6. As we understand, there are plans to implement
an automatic efficient data mapping in FastFlow. The MD use case could profit
significantly from such a mapping. Further developments of increasingly high level
patterns are also planned by the developers. The presented MD MoleculeBlocks use
case would benefit especially from a high level stencil pattern. The implementation
of this pattern should include implicit synchronization strategies, when an elemental
function accesses neighbor elements. In this way, more efficient synchronization
schemes could be achieved.

Acknowledgements This work was funded by the EU Project Paraphrase.

88 K. Idrees et al.

References

1. Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Massimo
Torquati. Accelerating sequential programs using fastflow and self-offloading. arXiv preprint
arXiv:1002.4668, 2010.

2. Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Fastflow: high-
level and efficient streaming on multi-core. Programming Multi-core and Many-core Computing
Systems, Parallel and Distributed Computing, 2012.

3. Marco Aldinucci, Marco Danelutto, and Massimo Torquati. Fastflow tutorial. arXiv preprint
arXiv:1204.5402, 2012.

4. Michael P Allen. Introduction to molecular dynamics simulation. Computational Soft Matter:
From Synthetic Polymers to Proteins, 23:1–28, 2004.

5. Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

Storage and Indexing of Fine Grain, Large Scale
Data Sets

Ralf Schneider

Abstract In this work a storage scheme for fine grain data sets, which are large in
absolute size as well as in file number, is presented. It is meant to deal in parallel
with data arising from simulation tasks utilizing high performance computing
systems for the independent parallel execution of several thousand serial tasks,
resulting in large data sets of terabyte size spread over hundreds of thousands or
even millions of files.

First of all a short introduction is given to the problem of the multiple parallel
execution of serial programs on high performance computing systems. This leads
to the description of the idea how to realize a data storage and indexing concept
to handle fine grain, large scale data sets. Afterwards the implementation in form
of a FORTRAN 2003 library is presented along with the use cases evaluated in the
results section.

1 Introduction

When speaking of large data sets in high performance computing two major
categories are separated in this work:

1. Coarse grain data sets arising from large integrated parallel simulations on large
grids generating several terabytes (TB) of result data aggregated in only a few
files.

2. Fine grain data sets arising from tasks where small, independent, mostly serial
simulations are carried out several thousand times. Even though the amount of
data generated by these tasks is the same as in the first category there is the

R. Schneider (�)
High Performance Computing Center Stuttgart, Nobelstraße 19, 70569 Stuttgart, Germany
e-mail: schneider@hlrs.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 7,
© Springer International Publishing Switzerland 2013

89

mailto:schneider@hlrs.de

90 R. Schneider

significant difference that the data are spread over hundred thousands of files
each heaving a size of only several megabytes (MB) up to a few Gigabytes (GB).

Typical simulations which generate data of the first category are for example CFD-
Simulations of transient processes or multiphysics simulations like Fluid-Structure-
Interaction. The codes which are utilized to carry out these simulations are typically
highly parallel codes which are optimized to run in a nearly ideal manner on high
performance computers.

The tasks which generate data sets of the second category are namely parametric
studies, optimization tasks or, as in the case of the presented work, procedures from
which functional dependencies between different physical scales are derived [1, 2].

The first basic characteristic of these tasks is in most cases, that not only a
single simulation code takes part in the analysis of the given problem but multiple
programs, which are not closely integrated, are utilized in a kind of process chain
to derive the desired simulation result. The second characteristic is that the process
chain is executed ten thousands up to millions of times with different input data
where each execution produces its own set of output data organized in files of small
size.

If a fine grain data set has to be post processed after its creation which means
reorganized, scanned for certain data or simply being moved for the sake of feature
extraction, process evaluation or data backup certain problems arise resulting from
the given data set layout in combination with the performance parameters of modern
high performance storage systems like Lustre.1 The aim of this paper is to discuss
these problems and describe a possible solution for them with help of a parallel
storage and indexing scheme for fine grain data sets resulting from large scale
simulations utilizing high performance computers.

1.1 Description of Use Case

Since the ideas presented in this work grew during the development of a simulation
task for the calculation of continuum material data for micro-structured materials
and because this task is used in this work as a prototype for the generation of fine
grain data sets its basic implementation principles are described in this section.

As shown in Fig. 1 the basis for a single instance of the process chain is a high
resolution volume data set from which in the first step a FE-Geometry of its internal
micro-structure is extracted along with definitions of different load case scenarios.
In the second step the mechanical response of the generated geometry due to the
different load cases is evaluated by means of the FE-Package FMPS.2 From the
output data produced by the load case simulations and collected during the third

1For detailed information see www.lustre.org
2FMPS is provided by Dr. Hans Wüstenberg and LASSO Ingenieurgesellschaft mbH

www.lustre.org

Storage and Indexing of Fine Grain, Large Scale Data Sets 91

Fig. 1 Process chain to extract continuum material data of micro-structured materials by direct
numerical simulation

step of the process chain, the effective material properties of the extracted micro
structure are calculated.

The effective material data derived by this process describe the behavior of the
micro-structure enclosed by the initial volume data in a way that the complete
volume can now be discretized on the continuum mechanical scale by only
one homogeneous, brick shaped finite element with 8 nodes. In other words, the
generated material data can be utilized in continuum mechanical FE-simulations so
enabling a very detailed local structural analysis in very short time and with very
less computational effort.

The question why the described process chain has to be executed ten or hundred
thousands of times is answered in Fig. 2 where a data set of a human femoral head
is shown along with several samples of micro structure extracted from it. Since
human bone tissue is a naturally growing material it can be easily imagined that
no matter how the shown data are decomposed into base data sets for the process
chain described above no two data sets can be found which contain the same micro-
structure. This means if the complete data set of the femoral head is decomposed in

92 R. Schneider

a

b

Fig. 2 Decomposition of a high resolution volume data set of a human femoral head into sub-
volumes of 1:2mm edge length

a grid of sub-volumes like shown in Fig. 2 the process chain has to be executed on
each sub-volume to derive its effective material data. In this way the complete field
of continuum material data for the femoral head can be calculated.

1.2 Data Amount, File Numbers and Sizes

The volume data set of a human femoral head as shown in Fig. 2 is stored in one
file which requires 20 GB of storage space. During step 1 of the process chain
sub-volumes of the desired size are directly loaded from this file by the geometry
extraction tool. This tool then generates one model file which contains the FE-
geometry description of the micro structure enclosed in the considered sub-volume
along with the 24 load case description files which are necessary to evaluate the
mechanical behavior of the micro-structure. Additionally a description of the sub-
volume is generated which consists out of two files, describing the location of the
sub-volume under consideration with respect to the decomposition of the volume
data set of the complete femoral head.

Storage and Indexing of Fine Grain, Large Scale Data Sets 93

Table 1 Domain count, data amount, file count and average
file sizes for decompositions of the femoral head data set in
sub-volumes of 0:6 and 1:2mm edge length

Edge length 0:6mm 1:2mm

Domain count 169,344 21,168
Data amount [GB] 6,503.5 5,445.0
File count 4,570,470 607,650
Average file size [MB] 1.42 8.96

Subsequently the model and load case files are loaded by the FE-Package FMPS
to simulate the mechanical response of the micro-structure, generating 4 files which
contain the collected results of all 24 load case simulations.

The calculation of the effective material properties is afterwards carried out
during step 3 loading the four result files of the preceding step, generating two result
files containing the effective material data for the selected sub-volume. In summary
35 files are generated as a minimum during the execution of a single instance of the
process chain including a log and a monitor file.

The domain numbers, data amount, file numbers and average file sizes resulting
from a decomposition of the femoral head data set into sub-volumes of 0:6 and
1:2mm edge length respectively are given in Table 1.

It should be noted that the total file size given in Table 1 cannot be derived by
multiplication of the total domain number by 35 since not all sub-volumes contain
micro structure. This is due to the fact, that the spherical shaped structure of the
femoral head is contained in a cube shaped data set.

1.3 Serial Applications and Fine Grain Data Sets

To give an idea of the problems arising, when operating with serial applica-
tions on fine grain data sets, the execution times of the archiving algorithm tar3

were measured for two representative data sets on the HLRS Cray-XE6 system.
The parameters of the file sets along with the results of the measurements are given
in Table 2. It can be seen that the number of processed files per second as well as
the data rate in GB/s are somewhat far away from the numbers which are reported
for modern Lustre file systems [3]. This is explainable by the fact, that Lustre is
designed to be accessed from high performance computers with thousands of cores
in parallel ideally operating on coarse grain data sets.

Tests with other single core applications, carried out during the development
the described simulation process, showed the same results as tar. Thus it can be
stated that the dominating factor for the execution time of single core applications

3http://www.gnu.org/software/tar/tar.html

http://www.gnu.org/software/tar/tar.html

94 R. Schneider

Table 2 I/O performance of
tar archiving a fine grain data
set generated by the described
simulation process

Edge length 0:6mm 1:2mm

Domain count 4,096 512
Data amount [GB] 265 230
Average data [GB/Domain] 0.0647 0.449
File count 167,952 20,994
Walltime 18:48:52 02:06:26
Minimal file size [MB] 16�6 16�6

Average file size [MB] 1.6 11.2
Maximal file size [MB] �65 �500
Data rate [Files/s] 2.48 2.77
Data rate [GB/s] 0.004 0.03

operating on fine grain data sets is the number of files which can be processed per
second by a single core.

Furthermore the tests showed that this number depends on the application, the
data set layout, the workload other users introduce to the file system and the
variation of the file size within the data set but that the dependency is in the range of
less than one order of magnitude.

2 From the Reduction of Input/Output Operations Per
Second (IOPS) Towards a Storage and Indexing Concept
for Fine Grained, Large Scale Data Sets

When the development of the simulation process described in the previous section
was started relatively little attention was payed to its I/O parameters. This changed
once the number of tasks executed in parallel was raised to larger numbers. The
first problem related to I/O which came up was the overloading of the Lustre
Meta-Data server. This problem was induced by the number of files generated by a
single instance of the material data calculation. E.g. one single load case simulation
generated six files at this implementation stage which in addition were partially
ASCII formatted.

This problem is also known from other centers and applications. Shipman
et al. [3] reports from problems with an access pattern to a single input file which
was initially done by a serial application. Once the application was parallelized
the same access pattern was done by all parallel processes which also lead to an
overloading of the Meta-Data servers.

2.1 Data Storage Concept

To overcome this problem the first optimization task was to reduce the number of
files generated by the process to take load from the Meta-Data server. The solution

Storage and Indexing of Fine Grain, Large Scale Data Sets 95

for this task is based on the idea that data stored in an I/O system should rather be
organized according to their data type than in logical or semantic groups. Taking
again the example of the load case simulations this means that the simulation data
which consist basically out of lists of integer and floating point numbers and some
character data are stored in only three files. One file containing 8 Byte Integer data
like external node numbers, external element numbers and element connectivity
lists, a second file containing all 8 Byte Floating point data like node coordinates
and element results and a third file containing all the needed ASCII data.

This storage technique has two major advantages. The first is the reduction of
file create and open operations during creation and read back of the data and the
second is the reduction of read operations. Since the three files are now used to store
the data from all 24 load case simulations the data can be loaded back to memory
by the following application with only three unformatted read operations. Because
the data are now organized the same way in both, the memory and the I/O system
we will call them streams in the following, so referring to either the files located on
the I/O system or the data arrays located in memory.

2.2 Data Indexing Concept

To make the proposed storage concept applicable in a universal way, what is of
course needed is a technique to transfer the parameters of the data chunks contained
in the streams to a successive application. For that purpose an indexing concept was
developed whose basic principles are:

1. No semantic information about the stored data should be included
2. Only positional and data type information should be included
3. It should be possible to group information
4. The operations extension, combination, inclusion and split should be possible

The idea behind the first two principles is to keep the index itself small and fast
to handle since the number of items tracked by it is supposed to grow very fast.
The parameters actually needed to describe a data item within a stream are its data
type so specifying the corresponding stream, its size and its starting position within
the stream.

The third and fourth principle are conditional upon the intention to enable
the creation and extension of a coarse grain data set whilst preserving the fine
granularity of the included data by means of the indexing scheme. For that purpose it
has to be possible to organize the index in a tree like structure to be able to imitate
the structure of a file system’s directory tree.

In summary the concepts stated above led to an indexing scheme based on two
entities one being used to hold the actual parameters of an indexed item, called a
leaf and another being used to structure the indexed items called a branch. From
the implementation’s point of view one leaf is a set of three 64 Bit integer numbers

96 R. Schneider

together with an item that identifies the leaf. A branch like a directory in a file system
has to be a recursive structure which can but has not to contain an arbitrary number
of leaves and other branches.

2.3 Implementation

The implementation of the indexing scheme is done in FORTRAN 2003. The
derived data types which represent the proposed leaf and branch entities are declared
as follows:

Type tLeaf

Character(Len=pd_mcl) :: desc

Integer(Kind=1) :: dat_ty

Integer(Kind=pd_ik) :: dat_no
Integer(Kind=pd_ik) :: lbound

End Type tLeaf

Type tBranch

Character(Len=pd_mcl) :: desc

Integer(Kind=pd_ik) :: no_branches
Integer(Kind=pd_ik) :: no_leaves

Type(tBranch), Dimension(:), Pointer :: branches => null()
Type(tLeaf) , Dimension(:), Pointer :: leaves => null()

Type(tStreams), Allocatable :: streams

End Type tBranch

To couple the data storage concept with the indexing concept and to enable the
streams to either being represented as Arrays of basic data type in memory or as
files on the I/O system a third derived data type called tStreams has to be introduced.
It is declared as stated below.

Type tStreams

Integer(Kind=pd_ik) , Dimension(no_streams) :: dim_st

Character(len=pd_mcl), Dimension(no_streams) :: stream_files
Logical , Dimension(no_streams) :: ifopen
Integer , Dimension(no_streams) :: units

Integer(kind=1), Dimension(:), pointer :: int1_st => null()
Integer(kind=2), Dimension(:), pointer :: int2_st => null()
Integer(kind=4), Dimension(:), pointer :: int4_st => null()
Integer(kind=8), Dimension(:), pointer :: int8_st => null()
Real(kind=8) , Dimension(:), pointer :: real8_st => null()
Character , Dimension(:), pointer :: char_st => null()

End type tStreams

Storage and Indexing of Fine Grain, Large Scale Data Sets 97

Fig. 3 Example for the data organization of a simulation mesh using the proposed storage and
indexing scheme

The data type is only used as an attribute to tBranch and is not intended to be used
for the declaration of stand alone variables. To give an idea to the reader how the
data types can be used, the storage and indexing of a simulation result is shown in
Fig. 3.

To enable the structural operations proposed in the previous section the following
subroutines exist in the current implementation:

• raise_tree

Initialize the root of an index structure
• raise_branch

Initialize a branch
• raise_leaves

Initialize a leaf
• add_branch_to_branch

Add a branch to an existing branch (extend the attribute branches by one element)
• add_leaf_to_branch

Add a leaf to an existing branch (extend the attribute leaves by one element)
• include_branch_into_branch

Include an existing index structure to another one

98 R. Schneider

3 Implementation of a Parallel Indexing and Packaging
Algorithm by Means of the Proposed Concept

In this section the MPI4 parallel implementation of an indexing and packaging
algorithm for fine grain data sets, produced by the simulation process presented
in Sect. 1.1, is described.

The implementation was mainly driven by the idea to avoid as much MPI
communication as possible. Since the massive I/O operations of a packaging
algorithm were expected to slow down the performance of the process it was
aimed to reduce other performance critical operations to a minimum. To pursue this
objective the developed index and storage concept is perfectly fitted. By separating
the indexing and storage of the data set the algorithm can be divided into six
independent phases including start up and finalization. The operations done in every
phase are described below and marked with corresponding names in the algorithm
flow chart depicted in Fig. 4.

• Phase 0: Initialization The application is initialized which means the steering
parameters are loaded by process 0 and broadcasted to the other processes. In this
phase a local index is initialized by every process.

• Phase 1: indexing
During that phase each process traverses independently from its partners a
portion of the data set. In the considered use case the work distribution between
the processes is chosen to be of even portions. This can be done since load
inbalance isn’t considered to be much of problem due to the fact, that the number
of work packages (directories) is much higher than the number of processes.

• Phase 2: Offset communication and local index correction
Once the indexing is finished the so called offset communication and local index
correction has to be done. This simply means that each process except the last
one communicates the size of the data indexed by it to its successors. After
having received all index sizes from its predecessors each process sums up the
received data to a local offset. Now the local index can be corrected by traversing
it and adding the local offset to the attribute lbound of each leaf so creating a
distributed global index.

• Phase 3: Storage
In this phase at first each process opens the global archive files for direct access
by means of MPI-I/O. Then the work packages already assigned to the process
during phase 1 are cycled again but this time all indexed data are in sequence
loaded to memory and being written to the global archive files by MPI-I/O direct
access.

• Phase 4: Global index combination
After heaving stored all indexed data process 0 gathers the local indicees from its
partners and combines them to a global index.

4MPI – Message-Passing Interface: http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Storage and Indexing of Fine Grain, Large Scale Data Sets 99

Fig. 4 Implementation of a MPI parallel packaging algorithm for fine grain data sets

• Phase 5: Finalization
In this phase all processes are terminated after process 0 having stored the global
index on disc.

Even though it was originally developed especially for the given data set structure
it can be stated that the presented implementation led to certain principles which
are of general purpose for the development of parallel packaging algorithms for fine
grain data sets.

100 R. Schneider

Fig. 5 Walltimes and Speedup for MPI packaging of the representative data set with 1:2mm
decomposition

1. To reduce I/O system workload it is of advantage to use a hashed directory
structure. In that way each parallel process can calculate the direct path to a
certain directory without having to ask a master process or do operations like
directory listings affecting the I/O system.

2. Indexing and storage of the data should be split into separate phases with a
concentrated communication phase in between and one at the end. In that way
the necessity of a index coherence protocol can be avoided which means inter
process communication isn’t necessary during indexing and storage phase.

3. By fully using each process’s memory for the aggregation of several elements of
the fine grain data set a big amount of write operations can be avoided so taking
load of the I/O system and better using the characteristics of HPC I/O systems to
efficiently write big I/O buffers.

4 Application Results

In this section the application details of the presented implementation are discussed.
The performance of the implementation was evaluated on Hermit the HLRS
Cray-XE6 system,5 using the representative data sets described in Sect. 1.3. In addi-
tion the packaging of data sets produced by production runs of the material data
calculation process for decompositions in 0:6 and 1:2mm cubes is analyzed. The
results for the performance tests are given in Fig. 5 for the 1:2mm decomposition
and in Fig. 6 for the 0:6mm decomposition.

5http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

http://www.hlrs.de/systems/platforms/cray-xe6-hermit/

Storage and Indexing of Fine Grain, Large Scale Data Sets 101

Fig. 6 Walltimes and Speedup for MPI packaging of the representative data set with 0:6mm
decomposition

In Fig. 5 the walltime for the MPI parallel packaging of the representative
dataset with 1:2mm decomposition is shown, executed with 8, 16, 32 and 64 AMD
Interlagos compute cores placed on 1, 2, 4, or 8 compute nodes. The execution with
the same number of cores but placed on different numbers of nodes was done to
evaluate whether limitations in terms of I/O bandwidth per node exist.

As can be seen in Fig. 5 for the sake of pure speedup it can be beneficial to
run the application on less than 32 cores per node which of course wouldn’t be
done for real applications where saving absolute walltime has the highest priority.
Regarding the I/O bandwidth per node especially by the measurement taken with 64
cores it is shown that this limit isn’t reached for data sets of the evaluated structure
otherwise a speedup has to occur when increasing the node count from 4 to 8.
An additional evidence for this statement was given by a second test carried out
during the development of the application where every process wrote to its own
set of archive files and the communication of the serialized local indicees was not
executed. In this test the I/O bandwidth per node was approximately two times the
one compared to the current implementation.

Although not finished from the analysis done so far it can already be said
that an additional performance increase should be possible by optimizing the MPI
communication of the serialized headers which isn’t done in an optimal way by
the current implementation. For that reason the evaluation shown in Fig. 6 for
the 0:6mm decomposition was done without the communication of the serialized
indicees to better reveal the I/O behavior in the walltime measurements.

Looking at Fig. 6 the first feature to notice is again that no significant speedup
could be gained spreading 16, 32 or 64 processes across more than the minimal
number of compute nodes.

102 R. Schneider

Table 3 I/O performance of
MPI parallel packaging of
fine grain data sets resulting
from material data
calculations of a human
femoral head with 0:6 and
1:2mm decomposition

Edge length 0:6mm 1:2mm

Domain count 169,334 21,168
Data amount [GB] 6,503.5 5,445.0
Average data [GB/Domain] 0.0384 0.257
File count 4,570,470 607,650
Walltime 02:59:42 02:01:34
No. of cores 256 512
No. of nodes 16 16
Minimal file size [MB] 16�6 16�6

Average file size [MB] 1.42 8.96
Maximal file size [MB] �65 �500
Data rate [Files/s] 423.9 83.3
Data rate [GB/s] 0.603 0.747

By comparing the speedup numbers to the ones of the 1:2mm decomposition a
significant improvement can be noticed. Where this improvement actually comes
from which means why smaller files can be processed more efficiently than bigger
ones couldn’t be finally tracked down but is currently under evaluation.

In Table 3 the performance numbers for the packaging of two data sets resulting
from real applications of the material data calculation process described in Sect. 1.1
are shown. Again one data set resulted from a decomposition of a femoral head
micro-CT with 0:6mm domain edge length and the other one from a decomposition
of the same micro-CT with 1:2mm domain edge length.

It can be seen that the data set resulting from the 1:2mm decomposition was
packed within approximately 2 h using 512 cores on 16 nodes. The data set with
the 0:6mm decomposition was packed in approximately 3 h using 256 cores on
16 nodes. Although above stated differently, this core reduction per node was
done because of a memory problem which again resulted from the not optimal
implementation of the serialized header communication and combination.

As an overal result it can be stated, that we are quite satisfied with the direction
the performance results of the current implementation are pointing at. Especially if
one extrapolates the numbers given in Table 2 for the tar algorithm to data sets of
sizes as the ones given in Table 3. It would never be feasible to pack the full 0:6mm
data set with tar within approximately 3 weeks.

5 Summary and Outlook

In the first part of this work it was shown that the handling of fine grain data sets,
as they are produced by parametric studies or other workflow like mechanisms
executed on high performance computers, can not be done in a convenient way by
serial applications. This was demonstrated by the application of tar to data sets of a
representative fine grain structure.

Storage and Indexing of Fine Grain, Large Scale Data Sets 103

In the second part a storage and indexing concept was proposed which is
supposed to solve the addressed problems. Afterwards the initial implementation
of the indexing scheme by means of FORTRAN 2003 as well as the realization of
MPI-parallel indexing and packaging application is described.

In the results section the performance evaluation of the implemented algorithm
is shown for its application to representative data sets as well as the results of the
application to real life data originating from a use case presented in the first part.

Although the performance reached by the current implementation is already in
reasonable regions, e.g. the application of the algorithm to a representative data set
with 1.6 MB average file size was executed on 256 cores with over 50 % efficiency
per core, some aspects of the application need improvement.

The first point to focus on is the usage of a final communication step which has
been noticed to be very inefficient. An improvement would be to send the serialized
indicees right after the indexing step to the first process. With that process not
involved in indexing and packaging it can collect, combine and store the global
index while its partners do the data storage.

The second point which is supposed to result in a performance gain especially
for fine grain data sets with an average file size way below the per core memory
amount is the aggregation of data during the storage phase for collective write
operations. Before this strategy is implemented, although it has in other projects
[4] already been proven to be effective, it should of course be finally understood due
to what effect the performance penalty for data sets with bigger average file size is
induced.

The third point to be analyzed regards the storage scheme of the data. Here the
imitation of a well known storage scheme like ustar6 or the usage of the HDF57

library should be considered if recovery of the archive from index or archive
corruption is an issue.

References

1. Rauhut, G., Schweiger, S., in High Performance Computing in Science and Engineering’
04, ed. by Krause, E., Jäger, W., Resch, M. Potential Energy Surfaces of Unusual Double
Proton Transfer Reactions, (Springer Berlin Heidelberg 2005), pp. 323–331, doi: 10.1007/3-
540-26589-9 30

2. Schneider, R,. Hindenlang, U., Resch, M.: Identification of Anisotropic Elastic Material
Properties from Micro-Fem Simulations for Natural Materials. inSiDE, 7 No. 2 pp. 12–19,
(2009)

3. Shipman, G., M., et al.: Lessons Learned in Deploying the World’s Largest Scale Lustre File
System, Proceedings of the Cray User Goup conference (CUG 2010), Edinburgh, Great Britain,

6http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4039999&tag=1
7http://www.hdfgroup.org/HDF5/

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4039999&tag=1
http://www.hdfgroup.org/HDF5/

104 R. Schneider

May 24–27 2010 https://cug.org/5-publications/proceedings attendee lists/CUG10CD/pages/
11-program/final program/CUG10 Proceedings/pages/authors/11-15Wednesday/13A-Shipman-
paper.pdf

4. MoLcnik, J., Novak, M., Focht, E., in High Performance Computing on Vector Systems 2011,
ed by Resch, M., et al. I/O Forwarding for Quiet Clusters, (Springer Berlin Heidelberg 2011),
pp. 21–39, doi: 10.1007/978-3-642-22244-3 2

https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/11-program/ final_program/CUG10_Proceedings/pages/authors/11-15Wednesday/13A-Shipman-paper.pdf

Part III
Computational Engineering Applications

and Multi-Physics Simulations

Direct Numerical Simulations of Film Cooling
in a Supersonic Boundary-Layer Flow
on Massively-Parallel Supercomputers

Michael Keller and Markus J. Kloker

Abstract Future rocket-nozzle extensions have to be thermally protected by a film
of cooling gas. Here, the cooling film is generated by wall-parallel cooling-gas
injection through a backward facing step. In a first step, a generic laminar flat-plate
boundary-layer flow with external Mach number 2.6 and zero streamwise pressure
gradient is used, where air is employed as hot and cooling gas. Direct numerical
simulations are performed allowing for the reliable detection of any enhanced
laminar-flow instability. Using compact finite differences or compact data filtering,
tridiagonal sets of equations have to be solved employing the pipelined Thomas
algorithm in order to compute various spatial derivatives or low-pass filtered data.
In contrast to the NEC-SX8/9 vector machines with few, powerful compute nodes
the solution of this tridiagonal systems turned out to be a major bottleneck on the
massively parallel Cray-XE6 system. In order to avoid processor idling fully explicit
and sub-domain compact finite differences are implemented and applied to the wall-
parallel cooling-gas injection problem. The numerical results and performance data
on the CRAY-XE6 system are compared to the regular, globally compact finite-
difference scheme.

1 Introduction

Typically, a gain in power output of rocket engines is achieved by increasing
thrust-chamber pressure and temperature resulting in heat loads that exceed the
temperature limits of today’s available materials. According to Haidn [6] power
levels of up to 30GW are achieved for solid rocket engines and up to 20GW for

M. Keller (�) � M.J. Kloker
Institute of Aerodynamics and Gas Dynamics, Pfaffenwaldring 21, 70550 Stuttgart, Germany
e-mail: keller@iag.uni-stuttgart.de; kloker@iag.uni-stuttgart.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 8,
© Springer International Publishing Switzerland 2013

107

mailto:keller@iag.uni-stuttgart.de
mailto:kloker@iag.uni-stuttgart.de

108 M. Keller and M.J. Kloker

liquid rocket engines. Hence, in addition to the ongoing progress in the field of
material science innovative and efficient cooling strategies have to be developed
in order to protect the thermally highly loaded regions of combustion chambers
and rocket nozzles of next-generation space-transportation systems from thermal
failure. For instance, the nozzle extension of Vulcain 2, ESA’s Ariane 5 main engine,
is protected by several cooling systems (Winterfeldt et al. [19]). Regenerative and
dump cooling systems are used, where the wall is cooled by convection. In addition,
film-cooling is applied by wall-parallel injection of the collected turbine-exhaust
gas through a backward-facing-step ring. Other cooling techniques used in rocket
engines are ablative cooling, which is often found in solid rocket boosters, and
radiative cooling (Haidn [6]). In general, film cooling is suited for active thermal
protection systems, since it allows for an adjustment during flight and, thus, is
also applicable to external-surface cooling of super- and hypersonic vehicles during
reentry or cruise. Note that throughout literature the terminology with respect to
film cooling is inconsistent. Here, we are referring to the procedure where a gaseous
cooling film is established by wall-normal or wall-parallel injection through discrete
holes or slits (the first is also called effusion cooling). Sometimes, this is also
referred to as curtain cooling, because a thin film is covering the surface. Please
note that surfaces, which are wetted with a liquid (propellant) that evaporates and,
thus, provides cooling are not considered.

The cooling film can be generated by wall-parallel injection through a backward
facing step (e.g. Aupoix et al. [1], Juhany and Hunt [9], and Konopka et al. [11]),
through porous materials (e.g. Gühlhan and Braun [5]), or through discrete holes and
spanwise slits. The latter has been investigated, among others, by Linn and Kloker,
see [13–15]. Direct numerical simulations of effusion cooling in laminar super-
and hypersonic boundary layers were used to analyze the effects of geometric and
gas-dynamic parameters, such as hole spacing, hole arrangement, Mach number,
Reynolds number, blowing rate, inclination angle, compound angle, and wall-
temperature condition. From a cooling-performance point of view, slits are better
than holes when imposing the same total mass flux, and staggered hole rows are
better than aligned rows. Also, a small spanwise spacing is preferable in order
to generate a more homogeneous cooling film. It was furthermore demonstrated
that an inclination angle and compound angle as well as the wall-temperature
condition – isothermal, adiabatic or radiative-adiabatic – strongly affect the cooling
performance. The results for an isothermal, cooled wall (short-duration shock-
wave experiments) differ from the results with a radiative-adiabatic wall (flight
condition) and a transfer of the results is therefore difficult. Experimental studies
have been performed by Heufer and Olivier, see e.g. [7, 8]. They investigated the
effects of spanwise slits and discrete holes as well as the influence of blowing
rate, Mach number, Reynolds number, various cooling gases, and flow acceleration.
A comparison of the numerical results of Linn and Kloker with the experimental
findings of Heufer and Olivier for a laminar Mach-2.67 boundary layer with
an isothermal, cool wall showed good agreement. Numerical investigations have

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 109

also been performed by Dahmen et al., e.g. [4], using a multi-resolution finite-
volume solver in order to develop multi-scale techniques for highly resolved vortical
structures.

The applied numerical method is based on a high-order compact finite difference
scheme [2,3,10,12]. The use of compact finite differences requires the solution of a
tridiagonal set of equations. This is done by the Thomas algorithm [2, 3]. However,
the spatial coupling of each derivative inhibits a parallelization and pipelining is
commonly used [16]. Yet, moving the DNS code from a vector computer with few,
powerful compute nodes to a massively-parallel supercomputer with thousands of
processors shows that pipelining soon reaches its limit. Thus, other methods have
to be developed and implemented allowing for an “independent solution” of the
tridiagonal set of equations. Two approaches are presented: First, a sub-domain
compact finite-difference scheme is introduced, where explicit finite differences
in several fashions are used at the sub-domain boundaries to compute the exterior
derivatives of the pure compact finite differences. Secondly, inside the sub-domain
explicit finite differences of up to 8th-order are implemented in order to drop the
solution of a tridiagonal set of equations. The explicit, the sub-domain compact,
and the globally compact finite-difference schemes are applied to the numerical
simulation of the film-cooling problem with wall-parallel cooling-gas injection.

The paper is organized as follows: Sect. 2 describes the governing equations
and the numerical method. It contains an overview of the spatial discretization for
the explicit, sub-domain compact, and globally compact finite-difference scheme.
The numerical results for the wall-parallel cooling-gas injection into a supersonic
laminar boundary-layer flow are presented in Sect. 3. Finally, Sect. 4 summarizes
the main findings and contains some concluding remarks.

2 Numerical Method

A time-accurate direct numerical simulation (DNS) is used to compute the flow
quantities. DNS solve the governing equations without turbulence modeling and
allow for reliable detection of any enhanced laminar-flow instability leading to
self-excited unsteadiness (by grown numerical background noise). The present
simulations are carried out on block-structured Cartesian grids.

2.1 Governing Equations

The governing equations are the continuity equation, the three-dimensional com-
pressible Navier-Stokes equations and the energy equation, in the following written
in dimensionless vectorized form:

110 M. Keller and M.J. Kloker

@�

@t
C r � .�v/ D 0 ; (1)

@ .�v/

@t
C r � .�vv/C rp D 1

Re1
� rσ and (2)

@ .�e/

@t
C r � .p C �e/v D 1

.� � 1/Pr Re1 M21
r � .#rT /C 1

Re1
r � .σv/ ;

(3)

where

σ D �

�
�rv C rvT

� � 2

3
.r � v/ I

�

(4)

describes the viscous stresses, and

e D cv � T C 1

2

�

u2 C v2 C w2
�

(5)

is the internal energy per mass unit. The governing equations are non-dimensionali-
zed with the reference length L? D .�?1 � Re1/=.�?1 � u?1/ and the freestream
values of velocity, density, temperature, viscosity and conductivity at the inflow.
Note that the pressure is non-dimensionalized by

�

�?1u?1
2
�

. Air is treated as a
non-reacting, calorically perfect gas with constant Prandtl number Pr D 0:71 and
constant specific-heat ratio � D cp=cv D 1:4. The set of equations is closed by
the equation of state p D .�T /=.� M21/. Sutherland’s law is used to calculate
the dynamic viscosity � as a function of temperature [18]. In these equations,
v D .u; v;w/T represents the velocity vector, p labels the pressure, � indicates
the density, T is the temperature, and t denotes the time. The non-dimensional
parameters are the Mach number M1, the Prandtl number P r and the Reynolds
number Re1. The latter is defined as Re1 D �

�?1 � u?1 � L?� = �

�?1
�

and set to
Re1 D 105. I is the identity matrix. The subscript 1 refers to freestream values
and the asterisk ? labels dimensional quantities. The governing equations are solved
using the in-house Fortran code NS3D [2, 3].

2.2 Spatial Discretization and Time Integration

By default, the code uses compact finite differences of up to 6th-order for the
spatial discretization in streamwise and wall-normal direction [2, 3]. This requires
the solution of a tridiagonal set of equations, which is carried out by the Thomas
algorithm. This algorithm is very efficient and essentially consists of a forward loop
and a backward loop in order to obtain the solution of the linear system of equations.
Blocking MPI communication is needed, since the backward-loop computation

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 111

Fig. 1 MPI communication after one Runge-Kutta sub-step (black lines) for a test case with 64
MPI tasks in streamwise direction

depends on the results of the forward loop. In order to reduce the idle time, the
algorithm is pipelined. Up to 21 or 25 derivatives have to be computed in streamwise
and wall-normal direction, respectively. Thus, after the first-loop computation of
the first derivative CPU 1 starts working on the first-loop computation of the
subsequent derivative, instead of waiting for the results of the backward loop. The
pipelining technique is a valuable means and perfectly suited for vector machines
with few, powerful compute nodes. However, it is not efficient enough if the system
of equations is distributed over a large number of CPUs. Figure 1 illustrates the
MPI communication after one Runge-Kutta sub-step on the massively parallel
CRAY-XE6 system for a test case with 64 MPI tasks in streamwise direction.
The communication is visualized by the black lines using the CRAY-Apprentice2

performance-analysis tool. Despite pipelining the processors spend a lot of time
idling, since they have to wait for the results of the backward loop.

In order to decrease the dead time and properly harvest the potential of a
massively parallel system the tridiagonal set of equations has to be split up and
solved independently by each MPI task. Hence, a sub-domain compact scheme is
developed and implemented into the code. In addition, explicit finite differences
of up to 8th-order are implemented. The latter even avoids the solution of the
tridiagonal set of equations at all, but has some shortcomings that are demonstrated
later.

Using the established 6th-order compact scheme the first and second deriva-
tives .0

j ;
00
j / of an arbitrary flow variable at grid point j are computed by the

following equation:

˛
�

0
j�1; 00

j�1
	

C ˇ
�

0
j ;

00
j

	

C �
�

0
jC1; 00

jC1
	

D
1

q

�

aj�2 C bj�1 C cj C djC1 C ejC2
�

: (6)

112 M. Keller and M.J. Kloker

1 2 3 4 5 6 nxnx5 nx4 nx3 nx2 nx1

sub−domain A sub−domain B sub−domain C

)*

*)

compact FD stencil (O6)

explicit FD stencil (O8)

Fig. 2 Finite-difference stencils for the sub-domain compact scheme using one ghost point at each
sub-domain boundary (j D nx of sub-domain A and j D 1 of sub-domain C). The black solid
circles mark the derivatives 0 and 00, the white circles indicate the functional values

Applying explicit finite differences of 8th-order the first and second derivatives are
given by:

0

j ;
00

j D
1

q

�

aj�4 C bj�3 C cj�2 C dj�1 C ej C f jC1 C gjC2 C hjC3 C ijC4

�

:

(7)

Due the higher order a larger stencil is required. The minor diagonals and the
coupling have vanished. Near physical domain boundaries one-sided and biased
stencils of reduced order (�4) are used for both schemes (not shown).

The numerical procedure of the sub-domain compact scheme is illustrated
in Fig. 2. Compact finite differences of 6th-order are used within the full sub-
domain. Out of the sub-domain boundaries explicit finite differences of 8th-order are
employed replacing the outermost derivative of the compact finite-difference stencil.
As shown at the bottom of Fig. 2 this results in a one-sided compact finite-difference
stencil. In order to compute virtually every derivative j D 1 to j D nx by a central
compact finite difference at least one ghost point (j D nx of sub-domain A and
j D 1 of sub-domain C) is needed. It is computed by the special, biased compact
finite-difference indicated by the asterisk. In contrast to the regular compact finite-
difference scheme the tridiagonal set of equations can now be computed separately
for each MPI task. Using one ghost point is the default setting in the NS3D code.
However, an option with zero and two ghost points, respectively, is also tested.

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 113

Of course, the mathematical properties of the sub-domain compact versions are not
identical to the globally compact scheme. The question is how far the derivatives
palpably couple, and thus how significant the suppression of full coupling is, see
below. Note that the physical domain boundaries are treated identically to the
globally compact scheme.

According to [2, 10] an analysis of the modified wavenumber allows for an
accurate evaluation of the numerical properties of the finite differences in a model
setting. For that purpose a spatially periodic wave given by D eikx is considered.
In this equation i D p�1 is the imaginary unit and k, which is real, represents
the wavenumber. The analytically obtained first derivative is .@=@x/ana D 0

ana D
ik , and the second derivative reads .@2=@x2/ana D 00

ana D �k2 . Introducing
k? D k�x yields:

k? D �i�x
0
ana

and k?2 D ��x2

00
ana

: (8)

Using the numerically determined derivatives of Eqs. 6 and 7 results in the definition
of the modified wavenumber:

k?mod D �i�x
0
num

and k?2mod D ��x2

00
num

I (9)

k� D 0 corresponds to a wave with an infinitesimal fine grid resolution nw D 1.
Here, nw D 2�=k? indicates the number of grid points per wave length. k� D �

represents the least resolved wave with two points per wave length (wiggle mode,
nw D 2). The modified wavenumber is complex for non-symmetric finite-difference
stencils. A deviation in the real part represents an amplitude error in the first
derivative, whereas the imaginary part causes a phase shift in the first derivative.
Recall that the latter results in an amplitude error in the solution of the (convective)
transport-equation part of the flow equations, which is zero with symmetric (central)
stencils, because the imaginary part of the wavenumber is zero.

Symmetric finite-difference stencils are used to compute the first derivatives of
the viscous terms and the second derivatives. Note that a Laplace formulation is
used for the computation of the viscous terms, i.e. second derivatives are used
where possible. The corresponding coefficients of Eqs. 6 and 7 are given in Tables 1
and 2 indicated by the label D0. Numerical damping for high k? is needed for
the computation of the first derivatives of the convective terms. To that end non-
symmetric, alternating finite differences are used [10]. Three different schemes with
varying damping properties are implemented and labeled by D1, D2, D3, where D1
provides the least and D3 the highest damping, respectively. The coefficients for the
forward-biased stencils are given in Tables 1 and 2. The backward-biased stencils
follow by reversing the order of the right-hand side coefficients, and changing the
sign: a (backward) D �e (forward) in Table 1, for example [10].

The damping properties of the alternating back- and forward biased explicit
finite differences are chosen such that they have similar damping properties as

114 M. Keller and M.J. Kloker

Table 1 Finite-difference coefficients of Eq. 6 for the first and second derivatives using the 6th-
order compact scheme after [3]

D0 (0) D1 (0) D2 (0) D3 (0) D0 (00)

˛ 1/5 1/5 1/5 1/5 2/15
ˇ 3/5 3/5 3/5 3/5 11/15
� 1/5 1/5 1/5 1/5 2/15
a �1 0 2 7 3
b �28 �9 �9 �18 48
c 0 �11 �15 �36 �102
d 28 19 19 38 48
e 1 1 3 9 3
q 60 h 30 h 30 h 30 h 60 h2

Order O6 O6 O6 O6 O6

Table 2 Finite-difference coefficients of Eq. 7 for the first and second derivatives using the 8th-
order explicit scheme

D0 (0) D1 (0) D2 (0) D3 (0) D0 (00)

a 3 �7.335153682 �2.741751740 0.703299239 �9
b �32 29.775732900 2.319851354 �18.272059460 128
c 168 �41.075603620 51.846886800 121.538754800 �1,008
d �672 �33.775732900 �6.319851354 14.272059460 8,064
e 0 �961.178485400 �1,156.210270000 �1,302.484108000 �14,350
f 672 1,310.224267100 1,337.680149000 1,358.272059000 8,064
g �168 �377.075603620 �284.153113200 �214.461245200 �1,008
h 32 93.775732900 66.319851350 45.727940540 128
i �3 �13.335153682 �8.741751740 �5.296700761 9
q 840 h 840 h 840 h 840 h 5,040 h2

Order O8 O8 O8 O8 O8

the respective compact finite differences (Im.k?mod;expl/ D Im.k?mod;comp/ at k? D
0:5; 1:0; 1:5 and � , see [3, 10]). Figure 3a shows the real part of the modified
wavenumber for the explicit and compact finite differences. Despite its higher
order, the explicit scheme deviates earlier from the exact solution. Compared to
the compact scheme, the explicit scheme is slightly less robust and a higher grid
resolution is required for badly resolved waves. Figure 3 also contains the biased
compact stencil used for the computation of the first derivatives at the ghost points.
Due to the explicit influence, the aliasing limit (k? at Re.k?mod/ D max, Fig. 3a)
is slightly decreased. The imaginary part of the modified wavenumber is given in
Fig. 3b. It illustrates the properties of the D1, D2 and D3 scheme, and of the biased
stencil for the outermost ghost points. The latter has a small (unwanted) imaginary
part only.

The explicit, the sub-domain compact, and the globally compact scheme are used
to compute the derivative of a test function .x/ D sin.kx/ with k D 1; 2; 4 and
8. This corresponds to waves with a grid resolution of nw D 30; 15; 7:5 and 3:75
(k? ' 0:209; 0:419; 0:838 and 1:676), respectively, on sub-domains with lengths

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 115

k*k*

R
e(

k* m
od

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0 exact
exp 08 (D0-D3)
comp O6 (D0-D3)
ghost O6

k*

Im
(k

* m
od

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ghost O6, D0

D3

D1

a b

D2

Fig. 3 Real part (a) and imaginary part (b) of the modified wavenumber for the explicit and
compact schemes. The one-sided compact finite difference stencil used for the computation of
the derivatives at the ghost points is also included and indicated by the black solid lines

of 2� and 30 points each. The analytical derivative reads 0
ana.x/ D k cos.kx/.

Figure 4 illustrates the numerical error (0
num.x/ � 0

ana.x/). Note that the func-
tion (0

num.x/ � 0
ana.x/) inherits the corresponding wavenumber of .x/, since

0
num.x/ D Re.kmod/ cos.kx/ � Im.kmod/ sin.kx/ D A cos.kx � '/ and 0

ana.x/ D
k cos.kx/; hence .0

num � 0
ana/ 	 cos.kx � '/. For centered finite differences kmod

is real and it holds .0
num � 0

ana/ D .q � 1/k cos.kx/, with q D kmod=k � 1.
Due to the higher order of the explicit scheme a smaller error is observed for the
well resolved waves (k? ' 0:209; 0:419), with the relative error being about
10�8 or 10�6, respectively. However, as the number of points per wave length is
reduced the error of the explicit scheme is larger than the error of the (sub-domain)
compact scheme, which later deviates from the exact solution (cf. Fig. 3a). Using
the sub-domain compact scheme an additional error at the sub-domain boundaries
is introduced. However, this additional error is remarkably small. As mentioned
above three different versions are implemented, where two, one or zero ghost points
are used at the sub-domain boundaries. Compared to the regular, globally compact
finite-difference scheme, the sub-domain compact scheme without ghost points
shows expectedly the largest additional error (orange line). It can be significantly
reduced by using ghost points for the derivatives. This marginally increases the
computational cost, but results in a significant weakening of the explicit influence at
the sub-domain boundaries. Thus, the version with one ghost point is chosen as the
default setting in the NS3D code.

For 3-d simulations the derivatives in spanwise direction can be computed by
means of a Fourier-spectral discretization, due to the assumed periodicity of the
flow field. Alternatively, compact finite differences of 6th-order can be used. The
classical explicit 4th-order Runge-Kutta procedure is applied for the integration in
time. The fundamentals of the code can be found in [2, 3, 10, 14].

116 M. Keller and M.J. Kloker

x

φ’
nu

m
 -

φ’
an

a

0π 1π 2π 3π 4π
-5.0E-07

-2.5E-07

0.0E+00

2.5E-07

5.0E-07

expl O8
comp O6
sd comp, 0 ghp
sd comp, 1 ghp
sd comp, 2 ghp

nw = 30

x

φ’
nu

m
 -

φ’
an

a

0π 1π 2π 3π 4π
-3.0E-05

-1.5E-05

0.0E+00

1.5E-05

3.0E-05
nw = 15

x

φ’
nu

m
 -

φ’
an

a

0π 1π 2π 3π 4π
-2.0E+00

-1.0E+00

0.0E+00

1.0E+00

2.0E+00
nw = 3.75

x

φ’
nu

m
 -

φ’
an

a

0π 1π 2π 3π 4π
-6.0E-03

-3.0E-03

0.0E+00

3.0E-03

6.0E-03
nw = 7.5

Fig. 4 Numerical error .0

num.x/� 0

ana.x//; .x/ D sin.kx/ with k D 1; 2; 4 and 8

2.3 Computational Domain, Boundary Conditions and Initial
Condition

The wall-parallel cooling-gas injection is realized by means of a splitter plate,
separating a boundary-layer flow from a cool Poiseuille flow, see Fig. 5a. The 2-d
simulations are performed for a generic laminar boundary-layer flow over a flat
plate with zero pressure gradient. The freestream Mach number, temperature and
pressure are given by M1 D 2:6, T1 D 500K and p1 D 0:14 bar, respectively.
These values are consistent with the experiments conducted at the shock wave
laboratory of RWTH Aachen University. The experiments are performed for a
turbulent boundary-layer flow, being in progress in the numerical work not shown
here. Figure 5a illustrates a sketch of the computational domain. Note that the spatial
resolution (Fig. 5b) has been chosen extremely fine, neither requested by the flow
physics nor the highly accurate code: A benchmark simulation, from the viewport
of parallelization was to be generated.

A self-similarity solution of boundary-layer theory provides the flow variables
prescribed at the boundary-layer inflow (x0=D D �12:9, y=D > 0). Note that all
length scales are presented in terms of the slit diameter D D 2mm. At the outflow,
xN =D D 27:3, all flow quantities are computed using a 2nd-order extrapolation.
Due to the supersonic flow regime, a special damping zone to suppress reflections is
not needed. At the wall (y=D D 0 and y=D D �1), the no-slip, no-penetration
boundary conditions are imposed on the velocity components. The pressure is
calculated according to @p=@yjw D 0 and the density is computed from the equation
of state. The wall is assumed to be isothermal with Tw D 293K (short-duration
shock-wave experiments). Note that thermal conduction within the wall is neglected

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 117

y

D
xNxcx0

x

δ(x)

y0

yM

uoo

a b

Fig. 5 Computational domain (a) and grid stretching in wall-normal direction (b)

in this study. At the freestream boundary (yM), all flow variables are computed such
that the gradient along spatial characteristics is zero, except for the pressure, which
is computed from the equation of state. In wall-normal direction the computational
domain extends to a height of yM=D D 8:8. This corresponds to approximately
30 boundary layer thicknesses ı99 (taken at the inflow). The grid is equidistant in
streamwise direction. In wall-normal direction the grid is equidistant within the
channel (�1 < y=D < 0), for y=D > 0 a 3rd-order polynomial grid stretching
is used (Fig. 5b). The origin of the coordinate system is placed at the plate’s end,
which corresponds to a distance from the leading edge of 85:0mm.

The cooling channel has a length of 12:9 D and a height of D D 2mm. At
its inflow (x0=D D �12:9, �1 < y=D < 0) the pressure is set to pc=p1 D
1:1 (case A), pc=p1 D 2:2 (case B) and pc=p1 D 3:3 (case C), respectively.
The temperature is given by Tc D 293K. The wall-normal velocity component
is assumed to be zero, whereas the streamwise velocity component is extrapolated
from the downstream interior (subsonic flow). Finally, the density is computed from
the equation of state. Note that M D 1 cannot be exceeded within the channel,
since u is extrapolated and no throat is used (D D const). The Reynolds number
of the channel flow is Rec D .�c � uc �D/ = .�c/ � 5;140 for case A, Rec �
11;640 for case B, and Rec � 17;840 for case C, respectively, where the subscript
c indicates the area-averaged values at the cooling-channel inflow. The thickness
of the splitter plate corresponds to one step size in wall-normal direction �y. The
setup is a tentative ansatz for the investigation of wall-parallel cooling-gas injection.

The number of grid points used is 5;000.x/ � 2;125.y/ D 10:625 106. The
domain is disjoint in 2;500 blocks with 50.x/ � 85.y/ D 4;250 grid points
each. The simulations are performed on the CRAY-XE6 system at the Federal
High Performance Computing Center Stuttgart. The system provides a total of
3;552 compute nodes/113;664 cores resulting in a theoretical peak performance of
about one PFlop/s. Two AMD Opteron processors (Interlagos) with 16 cores each
represent one compute node. Using all 32 cores on one compute node yields a total
number of 79 compute nodes for the simulations.

An overview of the simulation parameters is given in Table 3.

118 M. Keller and M.J. Kloker

Table 3 Simulation parameters

Freestream Mach number M
1

2:600 [–]
Freestream temperature T

1

1:000 [–] 500:0K
Freestream pressure p

1

0:106 [–] 0:140 bar
Wall temperature Tw 0:586 [–] 293:0K
Slit diameter D 0:085 [–] 2:0mm
Distance from the leading edge xc 3:614 [–] 85:00mm
Inlet pressure ratio pc=p1

(case A) 1:1 [–] 0:145 bar
Inlet pressure ratio pc=p1

(case B) 2:2 [–] 0:308 bar
Inlet pressure ratio pc=p1

(case C) 3:3 [–] 0:462 bar
Cooling gas temperature Tc 0:586 [–] 293:0K
Nx � Ny 5;000 � 2;125 [points]
�x 0:68 � 10�3 [–]
�y0 ��yM 0:10 � 10�3 � 1:56 � 10�3 [–]
�t 0:11 � 10�3 [–]
y0 � yM �0:085� 0:75 [–]
x0 � xN , 2:525� 5:94 [–]

2.4 Parallelization

The NS3D code uses a hybrid parallelization of both MPI (domain decomposition
in streamwise and wall-normal direction) and OpenMP (spanwise direction, if
applicable). A performance comparison of the explicit, sub-domain compact, and
compact scheme is shown in Fig. 6. It illustrates the speedup and parallel efficiency,
respectively, for a strong and weak-scaling test with 512 MPI tasks in streamwise
direction. The term strong scaling refers to simulations, where the total domain
size remains constant, whereas the domain size per processor is decreasing with
increasing number of processors. For the weak scaling the total domain size
increases, whereas the domain size per processor is kept constant. The speedup
is defined as SU D t0=tn. Here, t0 is the reference time for a run with 32 MPI
tasks (one compute node) and tn refers to the computational time using n MPI
tasks. The parallel efficiency is given as E D t0=.n tn/. As mentioned above
processor idling occurs, when compact finite differences are used, due to the use of
the Thomas algorithm. For a large number of MPI tasks this results in significant
performance losses. In contrast, using the sub-domain compact or the explicit
scheme a high parallel efficiency is obtained. Due to cache effects a super-linear
speedup is observed for the strong-scaling test.

For the present simulations (cf. Sect. 2.3) a specific CPU time (time per time step,
grid point, and CPU) of 14:9 �s is measured when using the compact scheme. For
the sub-domain compact scheme the specific CPU time reduces to 7:9 �s. Since no
tridiagonal set of equations has to be solved for the explicit scheme the specific CPU
time further reduces to 5:8 �s.

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 119

Fig. 6 Speedup of a strong-scaling test (a) and parallel efficiency of a weak-scaling test (b). The
values in brackets indicate the number of grid points in x- and y-direction, respectively, for each
sub-domain

3 Numerical Results

The explicit, sub-domain compact, and compact finite-difference schemes are
applied to the wall-parallel cooling-gas injection problem. If not stated otherwise,
the results of the sub-domain compact scheme are presented.

Figure 7 illustrates a Schlieren-type visualization of cases A–C using the
computed density gradient j 5 �j D p

.@�=@x/2 C .@�=@y/2. The wall-normal
velocity distribution is shown in Fig. 8. Due to the relatively low pressure at the
channel inflow for case A, a weak expansion of the boundary-layer flow can be
observed for y=D > 0. This is indicated by the slightly negative wall-normal
velocity component. In contrast, cases B and C are characterized by a shock wave
emanating from the trailing edge of the splitter plate (positive wall-normal velocity
component) for y=D > 0. Due to the high pressure within the cooling channel,
an expansion of the cooling gas occurs for x=D > 0 and y=D < 0, leading
to a defection of the boundary-layer flow. Within the cooling-gas layer a wave
train develops. The trailing-edge expansion wave is reflected at the lower wall and
converted into an oblique shock wave. The latter is a again reflected at the shear-
layer edge and converted into an expansion wave. The characteristic wave pattern
depends on the channel-inflow pressure. For case C a self-excited unsteadiness
develops, showing vortical structures in the shear-layer region.

A snapshot of the shear-layer vortices is shown in Fig. 9. They are visualized by
means of numerical Schlieren and spanwise vorticity !z D .@v=@x/� .@u=@y/. The
vortices originate from the upper side of the splitter plate, where an unsteady recir-
culation region develops. Apparently, the vortices are a mixture of the early-stage
mushroom-shaped Rayleigh-Taylor instability mainly based on density gradients,
and the early-stage wave-like Kelvin-Helmholtz instability governed by shear, i.e.
velocity gradients.

120 M. Keller and M.J. Kloker

Fig. 7 Snapshot of the Schlieren-type visualization for cases A–C. The insets are illustrated in
Figs. 9 and 11, respectively. The red dot indicates the position of the time signal presented in Fig. 10

Fig. 8 Snapshot of the wall-normal velocity distribution for cases A–C. The black solid line
indicates the splitter plate

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 121

Fig. 9 Snapshot of the shear-layer vortices for case C visualized by means of numerical
Schlieren (a) and spanwise vorticity (b)

x/D

|u
|m

ax
(y

)

-4 -2 0 2 4 6 8 10

10-6

10-4

10-2

100b

t / T0

v

0 1 2 3 4 5

-0.03

0.00

0.03

a

Fig. 10 (a) Temporal evolution of the wall-normal velocity component for case C at position
x=D D 7 and y=D D 0:25 (cf. red dot in Fig. 7). (b) Downstream development of the maximum
(over y) u-velocity for the vortex-shedding frequency of case C

Figure 10a shows the temporal evolution of the wall-normal velocity component
at position x=D D 7 and y=D D 0:25. The position is indicated by the red dot in
Fig. 7. A dominant frequency of 280 kHz can be identified for the vortex shedding.
The streamwise development of the maximum u-velocity (over y) for this particular
frequency is illustrated in Fig. 10b. A significant increase is observed at the trailing
edge of the splitter plate indicating that the instability originates from this region.

The impingement region of the trailing-edge expansion wave for case C is
presented in Fig. 11. It illustrates a snapshot of the small, unsteady separation
bubble developing at the lower wall. The fluid is strongly accelerated and, thus,
the gradients at the wall are increased. As the wall-normal resolution is decreased
by a factor of 5, wiggles appear (Fig. 11b) without additional filtering. Using the
explicit scheme the simulation even blows up, which indicates that it is slightly
less robust than the (sub-domain) compact scheme, where the computation was
completed successfully. Keep in mind that the boundary treatment is different with
the explicit scheme: Two more points near the wall have to be computed by special
finite-difference stencils without biasing and, thus, numerical damping.

The Mach number and temperature distribution for cases A–C is shown in
Figs. 12 and 13. Due to the strong expansion wave emanating from the splitter-
plate edge for cases B and C, the temperature of the cooling gas decreases, while
simultaneously the Mach number increases for x=D > 0. This is also illustrated

122 M. Keller and M.J. Kloker

Fig. 11 Snapshot of the unsteady separation bubble for case C visualized by means of streamlines
and numerical Schlieren. (a) Standard resolution in wall-normal direction �yref , (b) �y D 5�yref

Fig. 12 Snapshot of the Mach number distribution for cases A–C. The black solid line indicates
the splitter plate and the black dashed line represents the boundary layer thickness ı D 0:99u

1

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 123

Fig. 13 Snapshot of the temperature distribution for cases A–C. The black solid line indicates the
splitter plate

in Fig. 14, where the u-velocity, density and temperature profiles at x=D D �4
and x=D D 10 are shown, respectively. The profiles of case C are averaged in time
over five fundamental periods. As mentioned above the Mach number cannot exceed
unity within the channel with the used setup. Since the temperature is also nearly
fixed (isothermal walls, constant cooling-gas temperature at the channel inflow),
the maximum u-velocity within the cooling channel is approximately the same for
all cases. However, the density increases resulting in an increasing mass flux as
the channel-inflow pressure is increased. Figure 14 also contains the results for
the explicit and compact scheme. All curves show a perfect agreement. Negligible
differences can be observed for case C in the region of the unsteady shear-layer
(position x=D D 10).

Figure 15 illustrates the instantaneous u-velocity, density and temperature
profiles of case C at x=D D 10 for the explicit, sub-domain compact, and globally
compact scheme, respectively. In contrast to the time-averaged profiles presented
in Fig. 14 the local results within the unsteady shear layer can differ, especially
between the explicit and the (sub-domain) compact scheme due to different phases at
the sensing station caused by the differing uncontrolled numerical background noise
serving as the seed for the developing structures. Note that the smooth distribution
for �0:8 � y=D � 0:3 for the explicit scheme is a consequence of not cutting
through a vortex. Globally, the results are the same as can be seen from Fig. 16.

124 M. Keller and M.J. Kloker

ρ
1.0 2.0 3.0 4.0 5.0

expl
comp
sd comp

u

y/
D

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

0.0

1.0
x/D = -4

u

y/
D

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

0.0

1.0
x/D = 10

T

0.4 0.6 0.8 1.0

T

0.4 0.6 0.8 1.0

case A
case B
case C

ρ
1.0 2.0 3.0 4.0 5.0

Fig. 14 u-velocity, density and temperature profiles at x=D D �4 (top) and x=D D 10 (bottom)
for the explicit, sub-domain compact, and compact scheme. The results for case C are averaged in
time over five fundamental periods

u

y/
D

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

0.0

1.0
x/D = 10

T
0.4 0.6 0.8 1.0

ρ
1.0 2.0 3.0 4.0 5.0

expl
comp
sd comp

Fig. 15 Snapshot of the u-velocity, density and temperature profiles for case C at x=D D 10 for
the explicit, sub-domain compact, and compact scheme

The downstream development of the pressure along the centerline of the cooling
channel y=D D �0:5 is presented in Fig. 17a. Again, the results for case C are
averaged in time over five fundamental periods. The figure illustrates that cases B
and C are underexpanded, since the pressure at the end of the orifice is much
higher than the pressure of the surrounding boundary-layer flow. For case A a

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 125

Fig. 16 Snapshot of the temperature distribution for case C for the explicit, sub-domain compact,
and compact scheme

x/D

p y/
D

 =
 -

0.
5

-4 -2 0 2 4 6 8 10

0.1

0.2

0.3
case A
case B
case C

a

x/D

dT
/d

y|
w

-4 -2 0 2 4 6 8 10

-5

0

5
b

Fig. 17 Downstream development of the pressure along the channel centerline (a) and of the
temperature gradient at the wall (b). The results for case C are averaged in time over five
fundamental periods

matched flow condition is observed. The temperature gradient at the wall .@T=@y/jw

is shown in Fig. 17b. The quantity is directly proportional to the wall-heat flux
Pq D ��.@T=@y/jw, where � is constant for all cases, since isothermal walls are
used. Negative values of .@T=@y/jw indicate a heat flux from the wall into the
fluid, which means that wall is cooled. This is observed for cases B and C in the
impingement region of the expansion wave. In general, increasing the channel-
inflow pressure results in an underexpanded cooling-gas injection, which leads to a
decrease of the cooling-gas temperature. Thus, the wall-heat flux decreases, which
is beneficial in this respect.

126 M. Keller and M.J. Kloker

4 Conclusions and Outlook

Film cooling in a generic laminar supersonic boundary-layer flow with external
Mach number 2.6 and zero streamwise pressure gradient is investigated by means of
direct numerical simulations. The cooling film is generated by wall-parallel cooling-
gas injection through a backward facing step, where air is employed as hot and
cooling gas.

Three cases with different channel-inflow pressure ratios are analyzed resulting
in matched and underexpanded cooling-gas injection scenarios. For the underex-
panded flow condition a characteristic supersonic wave pattern can be observed.
Due to the expansion of the cooling gas, the main flow is deflected and an
oblique shock is generated at the trailing edge. Within the cooling-gas layer a wave
train develops. The expansion wave is reflected at the wall and converted into an
oblique-shock wave. Due to the cooling-gas expansion, the cooling-gas temperature
decreases significantly and the Mach number increases. The characteristic wave
pattern depends on the channel-inflow pressure. For the case with the highest
channel-inflow pressure ratio an undesirable, eventually film dissolving, self-excited
unsteadiness develops, showing vortices in the shear-layer region. They are a
mixture of wave-like Kelvin-Helmholtz structures (based on velocity gradients) and
mushroom-like Rayleigh-Taylor vortices (governed by density gradients).

The applied numerical scheme is based on finite differences. Using compact finite
differences tridiagonal sets of equations have to be solved employing the pipelined
Thomas algorithm in order to compute various spatial derivatives. In contrast to the
NEC-SX8/9 vector machines with few, powerful compute nodes the solution of this
tridiagonal system turned out to be a major bottleneck on the massively parallel
Cray-XE6 system when using a large number of MPI tasks. Hence, in order to
avoid processor idling fully explicit and sub-domain compact finite differences are
implemented. The solution of the tridiagonal set of equations can now be obtained
separately for each sub-domain, or even becomes obsolete in case of the explicit
finite differences. This results in a high parallel efficiency for a large number of MPI
tasks and, thus, a significant decrease of compute time. The numerical results for the
wall-parallel cooling gas injection showed a very good agreement between the three
different finite-difference schemes, if all give a solution. The compact scheme is
much more robust and can be used with a somewhat coarser grid. Thus, the sub-
domain compact scheme is our method of choice.

Future investigations will account for main flow turbulence and 3-d cooling
channels, and are aimed at identifying ineffective cooling setups. If the domain
decomposition in streamwise and wall-normal direction of the present 2-d simu-
lations is kept constant (2,500 MPI tasks), and if all 32 cores on each compute
node are then used for OMP communication in spanwise direction, a total amount
of 80,000 cores would have to be used. This corresponds to roughly 70% of the
whole system and, thus, a computation would be difficult due to long queuing times.
Therefore, only four OMP threads will be used, which, according to Fig. 18, results
in the best performance for the NS3D code. The figure illustrates a comparison of

Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer. . . 127

32
M

PI
/ 1

O
M

P
**

)

16
M

PI
/2

O
M

P

8
M

PI
/ 4

O
M

P

4
M

PI
/ 8

O
M

P

2
M

PI
/ 1

6
O

M
P

*)

t [
s]

0

2000

4000

6000

Fig. 18 MPI vs. OMP communication on one single compute node for a 3-d test problem with a
total domain size of 320.x/�100.y/�128.z/, 2,000 time steps. ?Mixed MPI/OMP communication
using 160.x/ � 100.y/ � 128.z/ grid points per MPI task. ??Pure MPI communication using
10.x/� 100.y/ � 128.z/ grid points per MPI task

OMP versus MPI communication, where a given three-dimensional test problem
with 320.x/ � 100.y/ � 128.z/ grid points is distributed on one compute node
using pure MPI or mixed MPI/OMP communication. Note that the case with
pure OMP communication could not be computed due to memory problems. The
figure demonstrates that the best performance is obtained for a mixed MPI/OMP
distribution with eight MPI tasks and four OMP threads, respectively, probably
due to the NUMA-node architecture. However, using more OMP threads is just
marginally slower indicating that the use of 16 or even 32 OMP threads is viable.

Due to geometrical requirements it is also planned to implement a domain
decomposition in spanwise direction using MPI communication. Furthermore, the
sub-domain compact approach is going to be applied to the numerical filtering
procedure in streamwise and wall-normal direction allowing to reduce the spatial
resolution, and eventually leading to less costly large-eddy simulations where
appropriate. Here, also a tridiagonal set of equations has to be solved, since a
compact filter of 10th-order is used [17].

Acknowledgements This work was funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft) in the framework of the Collaborative Research Center SFB/TRR 40:
Fundamental technologies for the development of future space-transport-system components under
high thermal and mechanical loads. Computational resources were kindly provided by the Federal
High Performance Computing Center Stuttgart (HLRS) within project LAMTUR.

References

1. Aupoix, B., Mignosi, A., Viala, S., Bouvier, F., Gaillard, R.: Experimental and Numerical
Study of Supersonic Film Cooling. AIAA J. 36/6, 915–923 (1998) doi: 10.2514/2.495

2. Babucke, A., Linn, J., Kloker, M.J., Rist, U.: Direct Numerical Simulation of Shear Flow
Phenomena on Parallel Vector Computers. In: M. Resch et al. (eds) High Performance
Computing on Vector Systems, 229–247 (2003) doi: 10.1007/3-540-35074-8 16

3. Babucke, A.: Direct Numerical Simulation of Noise Generation Mechanisms in the Mixing
Layer of a Jet. PhD Thesis, University of Stuttgart, Germany (2009)

128 M. Keller and M.J. Kloker

4. Dahmen, W., Gotzen, T., Müller, S.: Numerical Simulation of Cooling Gas Injection Using
Adaptive Multiscale Techniques. V European Conference on Computational Fluid Dynamics,
Lisbon, Portugal (2010)

5. Gülhan, A., Braun, S.: An Experimental Study on the Efficiency of Transpiration Cool-
ing in Laminar and Turbulent Hypersonic Flows. Exp. Fluids 50/3, 509–525 (2011) doi:
10.1007/s00348-010-0945-6

6. Haidn, O.J.: Advanced Rocket Engines. In: Advances on Propulsion Technology for High-
Speed Aircraft, 6-1–6-40 (1992)

7. Heufer, K.A., Olivier, H.: Experimental Study of Active Cooling in 8 Laminar Hypersonic
Flows. In: Gülhan A. (eds) RESPACE - Key Technologies for Reusable Space Systems,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 98 132–150 (2008) doi:
10.1007/978-3-540-77819-6 8

8. Heufer, K.A., Olivier, H.: Experimental and Numerical Study of Cooling Gas Injection in
Laminar Supersonic Flow. AIAA J. 46/11, 2741–2751 (2008) doi: 10.2514/1.34218

9. Juhany, K.A., Hunt, M.L.: Flowfield Measurement in Supersonic Film Cooling Including the
Effect of Shock-Wave Interaction. AIAA J. 32/3, 578–585 (1994) doi: 10.2514/3.12024

10. Kloker, M.: A Robust High-Resolution Split-Type Compact FD Scheme for Spatial Direct
Numerical Simulation of Boundary-Layer Transition. Appl. Sci. Res. 59, 353–377 (1998)

11. Konopka, M., Meinke, M., Schröder, W.: Large Eddy Simulation of Supersonic Film Cooling at
Finite Pressure Gradients. In: W.E. Nagel et al. (eds) High Performance Computing in Science
and Engineering ’11, 353–369 (2011) doi: 10.1007/978-3-642-23869-7 26

12. Lele, S.K.: Compact Finite Difference Schmes with Spectral-like Resolution. J. Comput. Phys.
103, 16–42 (1992)

13. Linn, J., Kloker, M.J.: Numerical Investigations of Film Cooling. In: Gülhan A. (eds)
RESPACE - Key Technologies for Reusable Space Systems, Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, 98 151–169 (2008) doi: 10.1007/978-3-540-77819-
6 9

14. Linn, J., Kloker, M.J.: Effects of Wall-Temperature Conditions on Effusion Cooling in a Mach-
2.67 Boundary Layer. AIAA J. 49/2, 299–307 (2011) doi:10.2514/1.J050383

15. Linn, J.: Numerical Investigations of Film Cooling in Laminar Supersonic and Hypersonic
Boundary-Layer Flows (Numerische Untersuchungen zur Filmkühlung in laminaren Über- und
Hyperschallgrenzschichtströmungen). PhD Thesis, University of Stuttgart, Germany (2011)

16. Povitsky, A., Morris, P.: A Higher-Order Compact Method in Space and Time Based on
Parallel Implementation of the Thomas Algorithm. J. Comput. Phys. 161, 182–203 (2000)
doi:10.1006/jcph.2000.6497

17. Visbal, M.R., Gaitonde, D.V.: On the use of High-Order Finite Difference Schemes on
Curvilinear and Deforming Meshes. J. Comput. Phys. 181, 155–185 (2002)

18. White, F.M.: Viscous Fluid Flow. McGraw-Hill (1991)
19. Winterfeldt, L., Laumert, B., Tano, R., James, P., Geneau, F., Blasi, R., Hagemann, G.:

Redesign of the Vulcain 2 Nozzle Extension. 41st AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, AIAA Paper 2005–4536, Tucson, AZ, USA (2005)

Large Scale Numerics Uncovering New States
of Matter

A. Moreno, J.M.P. Carmelo, and A. Muramatsu

Abstract While in condensed matter systems the constituents are well known,
namely electrons, neutrons and protons, their interplay may give rise to unexpected
states of matter. In this contribution we concentrate on strongly correlated electrons
in one dimension driven out of equilibrium. This requires in principle, the solution
of Schrödinger’s equation dealing with a space of states, whose dimension increases
exponentially with the number of electrons. Implementing an algorithm that requires
only polynomially increasing computational resources, namely the time-dependent
density matrix renormalization group (t-DMRG), we show that an electron injected
into the system, fractionalizes in several portions, some of them carrying charge but
no spin, and others carrying the spin and partial charge, in spite of the electron being
an elementary particle in isolation. The characterization of such a fractionalization
of charge and spin was made possible by the access to HPC plattforms with large
memory processors.

A. Moreno (�)
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart,
Germany
e-mail: moreno@itp3.uni-stuttgart.de

J.M.P. Carmelo
Center of Physics, University of Minho, Campus Gualtar, P-4710-057 Braga, Portugal

Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart,
Germany

Beijing Computational Science Research Center, Beijing, 100084, China
e-mail: carmelo@fisica.uminho.pt

A. Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart,
Germany

Beijing Computational Science Research Center, Beijing, 100084, China
e-mail: mu@theo3.physik.uni-stuttgart.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 9,
© Springer International Publishing Switzerland 2013

129

mailto:moreno@itp3.uni-stuttgart.de
mailto:carmelo@fisica.uminho.pt
mailto:mu@theo3.physik.uni-stuttgart.de

130 A. Moreno et al.

1 Introduction

Condensed matter systems are composed of very well known particles, namely elec-
trons, protons and neutrons. Furthermore, their physical properties are determined
solely by the Coulomb interaction. In spite of this apparent simplicity, condensed
matter systems display an enormous spectrum of physical phenomena, like super-
conductivity, superfludity, and magnetism. In recent years, new phenomena like
supersolidity [1] and superconductivity in iron compounds [2], and new states of
matter like non-abelian states [3], topological insulators [4], or spin liquids [5],
together with electronic systems in one dimension [6] became the center of attention
in the discussion of exotic forms of matter [7].

In this contribution we concentrate on one-dimensional (1D) quantum systems,
where recent experimental advances allowed to access phenomena like spin-charge
separation and charge fractionalization [6]. At low energies these systems are well
described by the Luttinger Liquid (LL) theory [8] that predicts two independent
excitations carrying either only charge (holons) or only spin (spinons) and prop-
agating with different velocities, and hence, spin-charge separation. Experimental
evidences of its existence have been observed in quasi-1D organic conductors [9],
semiconductor quantum wires [10], and quantum chains on semiconductor sur-
faces [11]. The LL theory also predicts the fractionalization of injected charge into
two chiral modes (left- and right-going) [12], a phenomenon recently confirmed
experimentally [13]. Along the experimental advances also theoretical progress
was recently achieved pertaining extensions beyond the LL limit by incorporating
nonlinearity of the dispersion, leading to qualitative changes in the spectral function
[14–16] and relaxation processes of 1D electronic systems [17].

Here we review work where we showed that fractionalization of charge and spin
beyond the forms described by LL theory takes place when a spin-1/2 fermion is
injected into a strongly correlated 1D system, namely the t-J model [18]. By study-
ing the time evolution of the injected wavepacket at different wavevectors k, using
time-dependent density matrix renormalization group (t-DMRG) [19, 20] different
regimes were obtained. When k is close to the Fermi wavevector kF , the known
features from LL theory like spin-charge separation and fractionalization of charge
into two chiral modes result. On increasing k, a further fractionalization of charge
and spin appears, in forms that depend on the strength of the exchange interaction J
or the density n. Their dynamics can be understood at the supersymmetric (SUSY)
point J D 2t in terms of charge and spin excitations of the Bethe-Ansatz solution
[21, 22]. For the region of the phase diagram [23, 24], where the ground state
corresponds to a repulsive LL, two qualitatively different regimes are identified:
one regime with vs > vc and another where vs < vc . Here vc.s/ is the velocity
of the excitations mainly carrying charge (spin). For vs > vc and k > kF the
spin excitation starts to carry a fraction of charge that increases with k while vc
corresponds to a wavepacket carrying only charge. For vs < vc and k > kF the
situation is reversed and the fastest charge excitation carries a fraction of spin that
increases with k while the wavepacket with vs carries almost no charge, i.e. in this
case spin fractionalizes.

Large Scale Numerics Uncovering New States of Matter 131

2 Model and Algorithms

The Hamiltonian of the 1D t-J model is as follows,

H D �t
X

i;�

�

Qc�i;� QciC1;� C h.c.
	

C J
X

i

�

Si � SiC1 � 1

4
niniC1

�

; (1)

where the operator Qc�i;� (Qci;�) creates (annihilates) a fermion with spin � D", # on
the site i . They are not canonical fermionic operators since they act on a restricted
Hilbert space without double occupancy. Si D Qc�i;˛σ˛ˇ Qci;ˇ is the spin operator and

ni D Qc�i;� Qci;� is the density operator.
We study the time evolution of a wavepacket, corresponding to a fermion

with spin up injected into the ground state, by means of t-DMRG [19, 20], that
extends the DMRG method [25, 26] originally developed for the ground-state of
quasi-one dimensional systems in equilibrium, to the solution of the time dependent
Schrödinger’s equation. A review of the original method and later advances can be
found in review articles by U. Schollwöck [27, 28].

The state of a gaussian wavepacket j i centered at x0, with width�x and average
momentum k0, is created by the operator �" applied onto the ground state jGi:

j i

�

"jGi D
X

i

'i Qc�i"jGi; (2)

with

'i D Ae�.xi�x0/2=2�x eik0xi : (3)

A is fixed by normalization. The time evolved state j .�/i by the Hamiltonian
(1) determines the spin (s) and charge (c) density relative to the ground state as
a function of time � measured in units of 1=t („ D 1),

�˛.xi ; �/
 h .�/jni˛ j .�/i � hGjni˛jGi; (4)

where ˛ D s; c, nic D ni" Cni#, and nis D ni" �ni#. Most of the numerical results
were carried out on systems with L D 160 lattice sites, using 600 DMRG vectors
(this translates into errors of the order of 10�4 in the spin and charge density up to
times of 50=t) and�x D 5 lattice sites (which corresponds to a width �k 	 0:06�

in momentum space).

3 Results

We discuss first the time evolution of a wavepacket at the SUSY point J D 2t , since
here we will be able to identify the different portions in which the wavepacket splits
on the basis of the Bethe-Ansatz solution.

132 A. Moreno et al.

0

 10

 20

 30

 40

 50

-40 -20 0 20 40 60 80

T
im

e

Space

-0.01

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09Fig. 1 Time evolution of
�c.xi ; �/ for a wavepacket
initially at x D 0, with
momentum k D 0:7� , at
density n D 0:6, and J D 2t .
Charge fractionalizes into
four wavepackets, one to the
left(P1) and the rest(P2 , P3,
P4) to the right. P1 and P3
have the same charge and
speed but opposite velocities

Figure 1 shows the time evolution of �c.xi ; �/ for a density of n D 0:6 (n

N=L, with N the number of fermions). The momentum of the injected fermion is
k D 0:7� , i.e. midway between kF D 0:3� and the zone boundary. The charge (i.e.
�c) splits into four fractions, one portion traveling to the left and the rest doing so to
the right. A splitting into chiral modes is expected in the frame of LL theory [12],
where for an injected right-going fermion, a splitting Q.˙/

˛ D .1 ˙ K˛/=2 (where
K˛ is the so-called LL parameter and ‘C’ (‘�’) corresponds to the right (left)
propagating part) is predicted. The amount of charge (i.e. the integral of the
wavepacket over its extension) corresponding to the portion denoted P1 is Q.�/

c

	 0:1 which agrees well with the prediction of LL theory, since for the parameters
in this case, Kc 	 0:8 [24]. However, at long enough times, a further splitting of
the right-going charge is observed (wavepackets Pi with i D 2; 3; 4), beyond the
prediction of the LL theory.

Figure 2 displays both �c.xi ; �/ (full line) and �s.xi ; �/ (dashed line) for different
values of the initial momentum of the injected wavepacket. The arrows indicate the
direction of motion of each packet. As opposed to �c , �s does not split. In an SU(2)
invariant system Ks D 1 [8], and hence Q.�/

s D 0, i.e. no left propagating part is
expected for the spin density. Moreover, part of the charge (P4) is accompanying the
spin, such that spin-charge separation does not appear to be complete. The amount
of charge accompanying the spin increases as the momentum of the injected fermion
approaches the zone boundary. These results make already evident that injecting a
fermion at a finite distance from the Fermi energy leads to fractionalization of charge
beyond the expectations from the LL theory.

In order to understand the new forms of fractionalization that go beyond the LL
frame, we consider the excitations corresponding to one-particle addition processes,
whose energies can be obtained from the Bethe-Ansatz solution [16, 29]. When
adding an electron with momentum k, the single particle excitation energy is given
by !.k/ D ��c.qc/ � �s.qs/, where �c.qc/ and �s.qs/ are the dispersion relations

Large Scale Numerics Uncovering New States of Matter 133

0

0.02

0.04

0

0.02

0.04

ρ α
(x

,τ
)

-50 0 50 100

x

0

0.02

0.04

k=0.35π

k=0.50π

k=0.70π

P
1

P
2

P
3

P
4

Q
c

Q
c

Q
c

(-)

(-)

(-)

Fig. 2 Charge (�c.xi ; �/, full line) and spin (�s.xi ; �/, dashed line) densities for J D 2t , n D 0:6,
at time � D 40, for different values of the momentum of the injected fermion

of the excitations for charge and spin, respectively, and the momenta are related to
the momentum of the incoming particle as follows: k D ˙2kF � qc � qs , where
qc 2 Œ�qFc; qFc�, and qs 2 Œ�qFs; qFs�, with qFc D � � 2kF and qFs D � � kF the
pseudo-Fermi momenta for the excitations for charge and spin, respectively [22].

Figure 3 displays the velocities obtained from t-DMRG for the different wave-
packets (symbols) compared to those obtained from Bethe-Ansatz (full lines), as
a function of the momentum of the injected fermion. The velocity of each Pi is
extracted by measuring the position of the maximum of the packet at the most
convenient time, i.e., at that time where we can resolve Pi and the spreading of one
packet does not destroy the other packets. The wavepackets P1 (triangles) and P3
(squares) have opposite directions, but the same speed and charges Q.�/

c ' Q
.C/
c3 ,

where the charges for the .C/ branch are labelled by an index corresponding to the
respective wavepackets. The velocity of the wavepacket P4 (circles) agrees almost
perfectly with the one corresponding to spin excitations. Its determination is best
since it is the fastest wavepacket, such that it can be easily discerned from the rest.
The velocity of the remaining wavepacket,P2 (diamonds), is more difficult to assess,
since it overlaps at the beginning with other ones. Nevertheless, its velocity closely
follows the one of charge excitations. The wavepackets just described deliver a
direct visualization of the excitations appearing in the Bethe-Ansatz solution, where
only two different kind of particles are involved: the c and s pseudoparticles with
their associated bands. The excitation associated with spin involves one hole in the
c band with fixed momentum qFc and one hole in the s band with momentum qs ,
where qs D ˙2kF � qFc � k [22]. In fact, the velocities of P1 and P3 correspond to
the group velocity at both pseudo-Fermi momenta ˙qFc. Furthermore, as shown in
Fig. 3, the velocity of those fractions is independent of the momentum of the injected

134 A. Moreno et al.

k
F

π/2 3π/4 π

k

-1

0

1

2

υ
(k

)
υ

Fc

-υ
Fc

Fig. 3 Full lines: derivatives v˛.k/ D @�˛.k/=@k of the dispersions obtained by the Bethe-Ansatz
solution. The symbols correspond to the velocities of the different wavepackets identified in Fig. 2:
triangles(P1), diamonds(P2), squares(P3) and circles(P4). The orange horizontal lines stand for
the Fermi velocity vFc D @�c.qFc/=@q given by the Bethe-Ansatz solution

fermion, in agreement with the picture given by Bethe-Ansatz. The dispersion of
the hole in the s-band gives rise to the velocity displayed by the red line in Fig. 3.
Similarly, the c line (black line in Fig. 3) involves one hole in the s band with fixed
momentum qFs and one hole in the c band with momentum qc determined in terms
of k by qc D ˙2kF � qFs � k. Using the same argument as for the s line we can
associate the P2 packet (diamonds) with the c pseudoparticle. However, in this case
we cannot observe wavepackets associated with spin and velocities corresponding
to the group velocity at the pseudo-Fermi momenta ˙qFs. We understand this as due
to the fact that Ks D 1, by analogy to what we observe in the Kc D 1 case. On the
SUSY point this case is reached in the limit of vanishing density, where the system
can be described by a Fermi gas. Hence, fractionalization is absent in this limit.

Next we depart from the SUSY point and examine how fractionalization takes
place in the region of the phase diagram where the ground state corresponds to a LL
withKc < 1. As shown in Fig. 4, essentially the same features are observed as at the
SUSY point both for J > 2t and J < 2t . In all the cases shown in Fig. 4, where the
velocity of spin excitations (vs) remains higher than that of charge excitations (vc)
in most parts of the Brillouin zone, spin does not fractionalize, as opposed to charge,
so that the interpretation derived from Bethe-Ansatz remains valid over an extended
region of the phase diagram: charge splits into four portions of which one travels
with the spin wavepacket, and two have the same speed but opposite group velocity
which does not depend on the momentum of the injected fermion. It is tempting to
assign those excitations to states at a pseudo-Fermi surface for charge excitations.

In summary, we have shown through the time evolution of an injected spin-
full fermion onto the t-J model, that charge and spin fractionalization occurs
beyond the predictions of the Luttinger liquid theory. A comparison with results
from Bethe-Ansatz allowed to identify charge and spin excitations that split into

Large Scale Numerics Uncovering New States of Matter 135

0

0.01

0.02

0.03

0.04

0

0.01

0.02

0.03

0.04

ρ α
(x

,τ
)

-50 0 50 10 0

x

0

0.01

0.02

J=1.5t, k=0.55π, τ=35

J=1.75t, k=0.60π, τ = 40

J=2.25t, k=0.70π, τ = 40

Fig. 4 Fractionalized wavepackets for different values of J=t away from the SUSY point, at a
density n D 0:6. As in the SUSY case, charge fractionalizes into four pieces, while spin does not,
and carries an appreciable amount of charge

components at high and low energies. The components at high energy reveal the
dispersion �c and �s of charge and spin excitations, respectively. The components at
low energy have a velocity that does not depend on the momentum of the injected
fermion and are very well described by states at the pseudo-Fermi momenta of
the charge excitation. This picture can be extended to a wide region in the phase
diagram of the t-J model as long as the ground state corresponds to Kc < 1, and
vs > vc . In this region fractionalization is observed only in the charge channel.
However, for vc > vs , a region that develops for J=t below 	1.5, the spin density
shows fractionalization [18]. All over, the fastest excitation is accompanied by
the complementary one, such that spin-charge separation is for them only partial.
The other fractions present an almost complete spin-charge separation.

Acknowledgements A. M. and A. M. acknowledge support by the DFG through SFB/TRR
21. A. M. and J. M. P. C. thank the hospitality and support of the Beijing Computational
Science Research Center, where part of the work was done. J. M. P. C. thanks the hospitality
of the Institut für Theoretische Physik III, Universität Stuttgart, and the financial support by the
Portuguese FCT both in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and under
SFRH/BSAB/1177/2011, the German transregional collaborative research center SFB/TRR21,
and Max Planck Institute for Solid State Research. A. M. thanks the KITP, Santa Barbara, for
hospitality. This research was supported in part by the National Science Foundation under Grant
No. NSF PHY11-25915. We are very grateful to HLRS (Stuttgart) and NIC (Jülich) for providing
the necessary supercomputer resources.

136 A. Moreno et al.

References

1. Balibar, S.: The enigma of supersolidity. Nature 464 pp. 176–182, (2010)
2. Mazin, I.: Superconductivity gets an iron boost. Nature 464 pp. 183–186, (2010)
3. Stern, A.: Non-Abelian states of matter. Nature 464 pp. 187–193, (2010)
4. Moore, C.: The birth of topological insulators. Nature 464 pp. 194–198, (2010)
5. Balents, L.: Spin liquids in frustrated magnets. Nature 464 pp. 199–208, (2010)
6. Deshpande, V. V., Bockrath, M., Glazman, L. I., and Yacoby, A.: Electron liquids and solids in

one dimension. Nature 464 pp. 209–216, (2010)
7. Csontos, D.: Exotic matter. Nature 464 pp. 175, (2010)
8. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004).
9. T. Lorenz, M. Hofmann, M. Gruninger, A. Freimuth, G. S. Uhrig, M. Dumm, and M. Dressel,

Nature 418, 614 (2002).
10. O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin,

L. N. Pfeiffer, and K. W. West, Science 308, 88 (2005).
11. C. Blumenstein, J. Schäfer, S. Mietke, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey,

R. Matzdorf, and R. Claessen, Nature Phys. 7, 776 (2011).
12. K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61, 16397 (2000).
13. H. Steinberg, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, B. I. Halperin, and K. L. Hur,

Nature Phys. 4, 116 (2008).
14. A. Imambekov and L. I. Glazman, Science 323, 228 (2009).
15. A. Shashi, L. I. Glazman, J.-S. Caux, and A. Imambekov, Phys. Rev. B 84, 045408 (2011).
16. J. M. P. Carmelo, K. Penc, and D. Bozi, Nucl. Phys. B 725, 421 (2005); 737, 351 (2006).
17. G. Barak, H. Steinberg, L. N. Pfeiffer, K. W. West, L. Glazman, F. von Oppen, and A. Yacoby,

Nature Phys. 6, 489 (2010).
18. A. Moreno, A. Muramatsu, and J. M. P. Carmelo, Phys. Rev. B 87, 075101 (2013).
19. S. R. White and A. E. Feiguin, Phys. Rev. Lett 93, 076401 (2004).
20. A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theor. Exp. P04005

(2004).
21. P. A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991).
22. P. A. Bares, J. M. P. Carmelo, J. Ferrer, and P. Horsch, Phys. Rev. B 46, 14624 (1992).
23. M. Ogata, M. Luchini, S. Sorella, and F. Assaad, Phys. Rev. Lett 66, 2388 (1991).
24. A. Moreno, A. Muramatsu, and S. R. Manmana, Phys. Rev. B 83, 205113 (2011).
25. S. R. White, Phys. Rev. Lett 69, 2863 (1992).
26. S. R. White, Phys. Rev. B 48, 10345 (1993).
27. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
28. U. Schollwöck, Ann. Phys. 326, 96 (2011).
29. J. M. P. Carmelo, L. M. Martelo, and K. Penc, Nucl. Phys. B 737, 237 (2006).

Towards Simulation of Electrodialytic Sea Water
Desalination

Kannan Masilamani, Jens Zudrop, and Sabine Roller

Abstract Electrodialyis is a process engineering technique in which electro-
chemical potentials are used to separate different substances. It has been used in a
couple of engineering application areas for many years already. Recently, sea water
desalination by an electrodialytic process became of interest, as the concept offers
a very efficient way for the generation of drink water from sea water. Although
this way of drink water generation is known to be energetic efficient, the basic
mechanisms in a desalination plant are not well known. In this paper we describe
our approach to integrated, multiphysics simulation of such a process. We focus
on the hydrodynamic part of a desalination stack and present a scalable simulation
environment for mass transfer and hydrodynamics by means of a multicomponent
Lattice Boltzmann method. Performance measurements on state of the art for
realistic simulation setups on supercomputers are presented.

1 Introduction

Scarcity of drink water is a continuously growing problem in many country sides.
For this reason desalination of sea water is attracting a lot of notice in the last
years. A number of different process engineering techniques have been developed

K. Masilamani (�)
Siemens AG, Corporate Technology, CT RTC ENC ENT-DE, Günther-Scharowsky-Str. 1, 91058
Erlangen, Germany

Simulationstechnik und wissenschaftliches Rechnen, University of Siegen, Hölderlinstr.3, 57076
Siegen, Germany
e-mail: kannan.masilamani@uni-siegen.de

J. Zudrop � S. Roller
Simulationstechnik und wissenschaftliches Rechnen, University of Siegen, Hölderlinstr.3, 57076
Siegen, Germany
e-mail: jens.zudrop@uni-siegen.de; sabine.roller@uni-siegen.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 10,
© Springer International Publishing Switzerland 2013

137

mailto:kannan.masilamani@uni-siegen.de
mailto:jens.zudrop@uni-siegen.de
mailto:sabine.roller@uni-siegen.de

138 K. Masilamani et al.

Fig. 1 Simplified structure of a desalination stack in two dimensions. A periodic arrangement
of anion-exchange-membrane (AEM), diluate channel, cathion-exchange-membrane (CEM) and
concentrate channel is embedded between anode and cathode. The sea water is fed in the diluate
channel. After removing the ions, drink water can be extracted at the end of the diluate channel

to achieve the production of drink water from sea water. However, in addition to the
drink water production itself economical aspects are of great importance, especially
as prices for fossile energies are also continuously growing. From that point of view,
process enegineering techniques with the highest energetic efficiency are a desired
goal.

In the last years electrodialysis became a potential candidate for an efficient
sea water desalination process. A conceptual structure of a electrodialysis stack is
shown in Fig. 1. It consists of a periodic arrangement of anion-exchange-membranes
(AEM), diluate channel, cathion-exchange-membranes (CEM) and concentrate
channels. The stack is surronded by anode and cathode. AEM and CEM are
semi-permeable membranes which allow only anions/cathions to pass through the
membrane. By the electric potential (due to the voltage drop between anode and
cathode) the ions of sea water, fed in the diluate channel, start to separate and move
through the semi-permeable membranes, AEM and CEM respectively. After the
separation of ions from sea water, desalinated water can be extracted at the end of
diluate channel. To produce water that is drinkable by humans, sea water has to
pass the desalination stack several times before the amount of salts is reduced to a
acceptable level.

From the technical point of view, some additional complications arise. To
stabilize the fluid channels (i.e. diluate and concentrate channel) mechanically,
additional spacer structures have to be added to the channels. This strucutre is
an interwoven mesh which allows the water to pass through the channel, while
separating the membranes next to the fluid channel. Figure 2 shows a potential
structure of such a spacer.

Towards Simulation of Electrodialytic Sea Water Desalination 139

Fig. 2 Structure of a spacer utilized to stabilize the fluid channels of the spacer stack mechanically.
The structure of this spacer has a significant impact on the total energy consumption of the stack

The energy consumption of the system in mainly influenced by two aspects:

• Energy consumption of pumps to press the sea water through the desalination
stack

• Electric energy consumption to sustain the electric potential across the desalina-
tion stack

The first point is mainly influenced by the structure of the spacer geometry, as
the structure (and the inflow parameters like Reynolds number) determine the
pressure loss along a fluid channel and therefore the necessary work of the pumps.
Furthermore, the structure of the spacer influences the mixing of sea water in the
channel and may increase or decrease the ion separation process in the channel.

In this paper we focus on efficient simulations of the mass transport and
hydrodynamics in the spacer filled fluid channel by means of a Lattice Boltzmann
method. The paper is organized as follows: In Sect. 2 we describe the mathematical
model together with the Lattice Boltzmann model we used for the numerical
simulations. In Sect. 3 we describe our Octree based implementation. Section 4
shows performance results on modern, state of the art HPC systems for realistic
simulation setups. We conclude in Sect. 5 and give an outlook to future work in this
research area.

140 K. Masilamani et al.

2 Liquid Mixture Modelling

The physical processes in the spacer filled fluid channels mainly two phenomena:

• Mass transport, with external driving forces due to the electric potential
• Hydrodynamics at low Mach number (i.e. in the incompressible regime)

Our partial differential equation based model is based on a momentum equation for
the mixture of water and ions (i.e. u represents the velocity field of the mixture)

@tu C .u � r/u D rp C ��u C F (1)

and an additional mass transport equation for each substance (where ni denotes the
number density of substance i and w the molar averaged velocity of the mixture)

@tni C r � niw D �rJi (2)

modelling the behavior of each substance with respect to the mixture reference
frame. The model is closed by the so-called Maxwell-Stefan model for the diffusive
fluxes Ji . The Maxwell-Stefan diffusion

r�i C Fi D
X

l¤i

1

Di;ln
.�iJl � �lJi / (3)

determines the interaction of the different substances with each other and takes
into account chemical and electrical potentials. We used the following variables in
the Maxwell-Stefan formulation: The molar concentration �i for substance i , Di;l

the diffusivities between species i and l and n the total molar concentration of the
mixture. External driving forces for the mixtures or each substance separately are
taken into account by F or Fi respectively.

The upper equations are relatively complex due to its nonlinear behavior and the
fact that the number of partial differential equations is proportional to the number
of species in the system. Furthermore, the spacer geometry is complex. Due to this
reasons Lattice Boltzmann methods are a potential candidate for such simulation
tasks. The next chapter briefly describes the Lattice Boltzmann model which we
used for the simulations.

2.1 Lattice Boltzmann Mixture Modelling

Lattice Boltzmann Methods (LBM) are gas kinetic methods used to simulate
the behavior of incompressible fluids. The methods can be seen as a particular
discretization of the Boltzmann equation by integration along the characteristics,
restriction to a lattice with integer positions (i.e. x; x C 1; � � �) and restriction to a

Towards Simulation of Electrodialytic Sea Water Desalination 141

finite number of velocities in phase space (e.g. ck with k D 0; � � � ; 8 for the D2Q9
model). The usual LBM formulation (for a single substance) is given by:

fk.x C ck; t C 1/ D fk.x; t/C �
�

f
eq
k .x; t/ � fk.x; t/

�

„ ƒ‚ …

C
„ ƒ‚ …

S

f eq represents the equilibrium distribution. Due to the structure of the LBM it can
be subdivided into a collision and streaming step, i.e. C and S . The moments of f
are related to the macroscopic fluid variables, e.g.

u D
X

k

ckfk:

The incompressible Navier-Stokes equation is recovered in the asymptotic limit of
vanishing grid size. The so-called relaxation parameter � is directly related to the
fluid’s kinematic viscosity �.

In case of a mixture of multiple substances the Lattice Boltzmann method
recovering Eqs. 1–3 becomes more complex. The model is based on [2, 3] and
considers a probability density function f i for each substance i . The interaction of
the different substances is taken into account by a modified eqilibrium distribitution
function f i;eq. On the continuous level the model for substance i reads

@tf
i
k .x; t/C ck � rxf

i
k .x; t/ D �

�

f i;eq � f i
k

�

(4)

The equilibrium function is given by

f
i;eq
k D !k�k

�

ski C 1

c2s

�

ck � ui;�
� C 1

2c4s

�

ck � ui;�
�2 � 1

2c2s

�

ui;� � ui;�
�
�

(5)

and the modified velocity ui;� of species i by

ui;� D ui C
X

l

Bi;l

B
i�l .ul � ui / (6)

For further details and tuning of the constants in the upper equilibrium and the
velocity ui;� we refer again to [2]. This kinetic scheme is able to resolve mass
transport and hydrodynamics at the same time in a single scheme, while keeping
the simple structure of a stream and collide algorithm.

A discretization of the upper continuous equation can be achieved by integration
along the characteristics. At the end an explicit algorithm (similar to the original
stream and collide mechanism) can be obtained. For further details we refer to [3].
However, when compared to the “usual” Lattice Boltzmann model there is one
major difference. In each collision step a cell local linear equation system has to be

142 K. Masilamani et al.

Fig. 3 Quadtree with breadth-first numbering scheme for the elements (left) and its tree represen-
tation with space-filling curve linearization of the leaf elements (right)

solved (to obtain the macroscopic velocities). It should be emphasized that the linear
equation system is well-posed, its size corresponds to the number of substances and
can be solved within each element alone. Therefore, this step has no negative impact
on the scalablity of the method.

The next section describes the Octree based computational framework on which
our implementation of the upper method is based.

3 Octree Based Simulations

As pointed out in the previous section, Lattice Boltzmann methods rely on a
cartesian voxelization of the computational domain. Our implementation relies on
an Octree representation of the mesh [1]. We equip the hierarichal datastructure
with a breadth-first numbering scheme for the elements and a linearization of the
elements by a space filling curve. A two-dimensional quadtree with the breadth-first
numbering is shown in Fig. 3. Please notice, that we store only leaf elements of the
tree (which represent the actual fluid elements of the mesh).

The domain decomposition relies on an equal distribution of elements to the
processes by cutting the linearized list of elements into parts of equal size. It worth
emphasizing that our approach is completely parallel in the following sense: We
avoid O.p/ algorithms (where p denotes the number of processes), instead we rely
on fast alogrithms leading to O.log.p//. Furthermore, a specific processes does not
require knowledge about all other processes, which would lead to O.p/ memory
consumption. In our current implementation we store the first and last element IDs
(integer) for each rank and all ranks, however this can be easily overcome be making
use of a distributed datastructure, once the memory overhead becomes to large.

A large problem of modern parallel software is often the IO. Most often it is not
scalable enough and might hinder to run very large simulations. In our framework
we achieve a fully parallel IO by using prefix summations with complexity
O.log.p//.

Towards Simulation of Electrodialytic Sea Water Desalination 143

The features of the Octree based mesh are encapsulated in a library (including
the construction of computing stencils, neighbor element search and build up of
communication patterns), such that the Lattice Boltzmann solver is focussing on
implementations of method specific routines. The performance of our multicompo-
nent Lattice Boltzmann solver is presented in the next section.

4 Performance and Applications

This section describes the performance of Musubi with complex spacer geometry
on the Cray XE6 system Hermit at HLRS. The Hermit system provides of 3,552
computing nodes with AMD Interlagos on two sockets where each socket has 16
cores resulting in 32 cores per node. For our performance analysis, up to 1,024
computing nodes or 32,768 cores are used. Only MPI parallelism is considered
here. Both, intranode and internode performance are measured i.e. performance
within a single node (up to 32 cores with as many MPI processes) and between
multiple nodes. For scaling analysis, the problem size is increased from a single
spacer element length of 0:2 cm (Zoomed part in Fig. 2) with 66,000 elements to the
laboratory scale spacer length of 20 cm with 66 million elements. In the width of
this channel slice, a periodic boundary is assumed.

In Lattice-Boltzmann codes the measurement of the lattice updates per second
is commonly used to compare the performance. This number of lattice updates per
second (LUPs) will be used in the following presentation, as it provides a direct
estimation on how long a given simulation, that requires a certain number of lattice
nodes and time step updates will take. We represent the behavior of the code in
terms of performance per execution unit, that is per node or per core, to get a clearer
impression of the performance independent of the number of used execution units.
An ideal parallel execution is expected to just replicate the serial behavior on each
execution unit. However, the execution performance is influenced by cache usage,
non-computational implementation overheads, vector lengths, communication times
and so on.

Our solver framework ensures almost perfect computational load balancing with
the help of space-filling curve i.e. there is at most single element difference between
the partitions. However, due to the irregular domain and the large number of walls in
spacer filled channel, the communication surface between different processes might
vary drastically, resulting in a large imbalance of communication costs. The effect
of this load imbalance can be noticed in the performance map shown in Fig. 4b with
a relatively high performance drop for smaller domains per node.

First, the performance runs of the single-fluid and multi-species LBM are
performed using a single node with 32 cores, depicted in Fig. 4a. In both models
a D3Q19 layout with a BGK-like collision operator is used. Streaming and collision
steps are solved at each time step for both models. However, the multi-species
LBM model used in this work requires the solution of an additional cell local
linear equation system, increasing the required number of floating point operations

144 K. Masilamani et al.

105 106 107 108

Problem size

10

12

14

16

18

20

22

G
F
L
O

P
S

single-fluid nPrc 32
multi-fluid nPrc 32

102 103 104 105 106 107 108

nElems/node

0

5

10

15

20

25

30

M
L
U

P
S/

no
de

nNodes 1
nNodes 8
nNodes 64
nNodes 512
nNodes 1024

a b

Fig. 4 Full node performance of single fluid and multi-species LBM model with spacer struc-
tureIntranode (a) and internode (b) perfromance map with spacer structure

per lattice update. The single fluid solver requires only about 150 floating point
operations, while a simulation with 3 species requires with 850 operations more
than just a factor of 3 more operations.

In our LBM solver, instead of communicating all probability density functions
on the communication surface between the processors, only the required links of
probability density functions are communicated. This reduces the MPI buffer size
and bandwidth driven communication times. In Fig. 4a, We cannot see the cache
region since smallest problem size i.e. single spacer element with 66,000 elements
is above cache limit. The Hermit system has a theoretical peak performance of 294.4
GFLOPS per node. We achieved a sustained performance of roughly 4.2 % on a full
node with single-fluid LBM and 7.2 % with multi-species LBM.

The internode performance map is shown in Fig. 4b with problem size per node in
horizontal axis and performance per node in vertical axis for various total number of
nodes. The performance map combines both, weak scaling and strong scaling. Weak
scaling can be measured by the vertical comparison of points between different lines
for the node count i.e. fixing the number of elements per node. The closer the points
are located to each other the better the weak scaling. Strong scaling on the other
hand is not as easily seen in the performance map, but can be derived by moving to
the left when increasing the number of nodes. This reduces the number of elements
per process with increasing node counts, as required by strong scaling with a fixed
overall problem size.

The steep slope after the cache effect in both models Fig. 4b is supposedly due
to load imbalances in the communication times, caused by the walls of the spacer
geometry. This can be explained with the help periodic testcase performance Fig. 5,
where the performance flattens out after the cache effect with a small slope. The
main difference between the two simulations is the exactly balanced communication
effort in the one case and a less than optimal balancing for the complex spacer
geometry. This can be resolved using a dynamic load balancing algorithm to

Towards Simulation of Electrodialytic Sea Water Desalination 145

102 103 104 105 106 107

nElems/node

0

5

10

15

20

25

M
F
L
U

P
S/

no
de

nNode 128

Fig. 5 Performance of the multi-species LBM implementation on the Hermit system on 128 nodes
with periodic cubic simulation domain

10 1 10 2 10 3 10 4

nNodes

0

5

10

15

20

25

M
L
U

P
SP

N

≈21 Thousand Elems/node
≈63 Thousand Elems/node

100 101 102 103 104

nNodes

40

50

60

70

80

90

100

P
ar

al
le

lE
ffi

ci
en

cy
(%

)

6.6 Mio Elems
10.6 Mio Elems
16.5 Mio Elems
33.1 Mio Elems
66.2 Mio Elems

a b

Fig. 6 (a) Weak scaling for two different number of elements per node with spacer structure
for different number of nNodes. Ideal weak scaling is a straight line. (b) Strong scaling parallel
efficiency for different problem sizes with spacer structure

distribute the simulation domain on each processor at runtime according to the
actual load.

From Fig. 4b, it can be seen that weak scaling works fine on different process
counts for all problems, that fit into memory down to the cache-sized problems,
where the communication gets dominant and the performance per node drops down
with a steeper slope.

An explicit plot for weak scaling for two different problem size per node is shown
in Fig. 6a. Here, 21,000 elements per node fit into the cache and 63,000 elements is
above the cache limit. Figure shows that weak scaling is almost perfect with only a
small drop in the performance for larger counts of compute nodes.

146 K. Masilamani et al.

A dedicated graph for strong scaling is shown in Fig. 6b with number of nodes
on the horizontal axis and parallel efficiency (%) in the vertical axis. Here, testcases
with problem sizes of roughly 6.6, 10.6, 16.5 and 66.2 million elements are used.
Here, with a problem size of 6.6 million elements, the performance drops from 1
node to 1,024 nodes because the communication dominates the computation. The
peak in the plots defines the problems which fits in the cache. The performance
efficiency of multi-species LBM for large problem sizes with 1,024 nodes is less
than for smaller problem sizes because it did not fit into the cache and is at the local
performance minimum immediately after leaving the cache instead. Hence, to fit the
problem with full spacer length into cache, compute nodes of roughly 2 or 3 times
more than 1,024 nodes are required. Otherwise, the problem size per node should
be increased to gain higher performance levels in the region where the influence of
the communication is negligible.

5 Conclusion and Outlook

In this paper, we presented the multi-species lattice Boltzmann method for liquid
mixture modeling to simulate the transport of ions and mixture in the spacer filled
flow channel in electro-dialytic process. We implemented this model in our lattice
Boltzmann solver framework and presented the performance of our implementation
for mixture with three species flow with complex spacer geometry. The scaling
analysis shows that we can scale up to thousand of cores and can simulate full length
laboratory scale spacer. In the future, we will investigate on the special boundaries
for mixture diffusive fluxes to treat membranes. Regarding the performance, the
dynamic load balancing to reduce communication time will be investigated

Acknowledgements This work was funded by the German Federal Ministry of Education and
Research (Bundesministerium für Bildung und Forschung, BMBF) in the framework of the HPC
software initiative in the project HISEEM.

References

1. S. Roller, J. Bernsdorf, H. Klimach, M. Hasert, D. Harlacher, M. Cakircali, S. Zimny,
K. Masilamani, L. Didinger, J. Zudrop: An Adaptable Simulation Framework Based on a
Linearized Octree. In: M. Resch, X. Wang, W. Bez, E. Focht, H. Kobayashi, S. Roller (eds.)
High Performance Computing on Vector Systems 2011, Springer Berlin Heidelberg 2012

2. J. Zudrop, S. Roller., P. Asinari: A Lattice Boltzmann scheme for liquid mixtures - Part I: Model
and analysis. submitted to Phys. Rev. E (2013)

3. J. Zudrop, S. Roller., P. Asinari: A Lattice Boltzmann scheme for liquid mixtures - Part II:
Discretization and numerics. submitted to Phys. Rev. E (2013)

A Regional Climate Model Simulation
for EURO-CORDEX with the WRF Model

Kirsten Warrach-Sagi, Thomas Schwitalla, Hans-Stefan Bauer,
and Volker-Wulfmeyer

Abstract In order to provide high-resolution ensembles and comparisons of
regional climate simulations, the World Climate Research Program (WCRP)
initiated the COordinated Regional climate Downscaling Experiment (CORDEX).
CORDEX is performed in preparation of the fifth assessment report of the
Intergovernmental Panel on Climate Change (IPCC AR5) (Giorgi et al., WMO
Bull 58:175–183, 2009). Verification runs for CORDEX are performed for most
continents for a 20-year period (1989–2009) driven by ERA-interim data from
the European Centre for Medium Range Weather Forecast (ECMWF). For Europe
(EURO-CORDEX, http://www.euro-cordex.net) an ensemble of regional climate
model simulations from 1989 to 2008 on 0:11ı, 0:22ı and 0:44ı has been completed
in May 2012. The University of Hohenheim contributed to EURO-CORDEX with
a simulation with Weather Research and Forecast (WRF) model on the CRAY XE6
of the High Performance Computing Center Stuttgart (HLRS) of the University of
Stuttgart. The model consists of a spatial grid of 424*412*54 grid cells and is run
with a timestep of 60 s on 1,280 processors. Three-hourly output of the atmospheric
and terrestrial variables is written to daily netcdf-files each of the size of 8.5 GB. The
simulations’ set up is described and a comparison of the results to an observational
precipitation data set for Germany is shown.

1 Introduction

The application of numerical modeling for climate projections is an important task
in scientific research since they are the most promising means to gain insight in pos-
sible future climate changes. The quality of the prepared global projections has been

K. Warrach-Sagi (�) � T. Schwitalla � H.-S. Bauer � Volker-Wulfmeyer
Institut für Physik und Meteorologie, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart,
Germany
e-mail: Kirsten.Warrach-Sagi@uni-hohenheim.de; thomas.schwitalla@uni-hohenheim.de;
hans-stefan.bauer@uni-hohenheim.de; volker.wulfmeyer@uni-hohenheim.de

M.M. Resch et al. (eds.), Sustained Simulation Performance 2013,
DOI 10.1007/978-3-319-01439-5 11,
© Springer International Publishing Switzerland 2013

147

http://www.euro-cordex.net
mailto:Kirsten.Warrach-Sagi@uni-hohenheim.de
mailto:thomas.schwitalla@uni-hohenheim.de
mailto:hans-stefan.bauer@uni-hohenheim.de
mailto:volker.wulfmeyer@uni-hohenheim.de

148 K. Warrach-Sagi et al.

continuously improved in recent years, enabled by more powerful supercomputers
as well as advanced numerical and physical schemes (e.g. [20, 22, 23]). During the
last two decades, various regional climate models (RCM) have been developed and
applied for simulating the present and future climate of Europe. First of all, the
performance of the RCMs to successfully reproduce the observed regional climate
characteristics within the last decades was extensively assessed. Within the EU
projects ENSEMBLES and PRUDENCE, ensemble simulations of RCMs forced
with ERA-40 reanalysis data were executed and analyzed with a grid resolution of
the order of 50 km [7, 8]. It was found that these models were able to reproduce the
pattern of temperature distributions reasonably well but a large variability was found
with respect to the simulation of precipitation. The performance of the RCMs was
strongly dependent on the quality of the boundary forcing, namely if precipitation
was due to large-scale synoptic events. Additionally, summertime precipitation was
subject of significant systematic errors as models with coarse grid resolution have
difficulties to simulate convective events. This resulted in deficiencies with respect
to simulations of the spatial distribution and the diurnal cycle of precipitation.
Correspondingly, the 50-km resolution RCMs were hardly capable of simulating the
statistics of extreme events such as flash floods. The results of ENSEMBLES and
PRUDENCE are in accordance with a variety of studies of RCMs at the order of 25–
50 km (e.g., [1,10,18,19]). Due to these reasons, RCMs with higher grid resolution
of 10–20 km were developed and extensively verified, e.g. in southwest Germany
[13, 14]. While still inaccuracies of the coarse forcing data were transferred to
the results, these simulations indicated a gain from high resolution due to better
resolution of orographic effects. These include an improved simulation of the
spatial distribution of precipitation and wet day frequency and extreme values of
precipitation. However, three major systematic errors remained: the windward-lee
effect [13], phase errors in the diurnal cycle of precipitation [3], and precipitation
return values, especially on longer return periods [14]. In order to provide high-
resolution ensembles and comparisons of regional climate simulations, the World
Climate Research Program (WCRP) initiated the COordinated Regional climate
Downscaling EXperiment (CORDEX) has been initiated. CORDEX is performed
in preparation of the fifth assessment report of the Intergovernmental Panel on
Climate Change (IPCC AR5) [15]. Within WRFCLIM project of the University of
Hohenheim at HLRS a verification run for Europe was performed with the Weather
Research and Forecasting (WRF) model [22] for a 20-year period (1989–2009) on
the NEC Nehalem Cluster at a grid resolution of approx. 12 km with CORDEX
simulation requirements. Precipitation and soil moisture results of this simulation
were analysed [16,26] and due to the results in the beginning of 2012 the simulation
was repeated with an updated version of WRF on the CRAY X6 at HLRS. This
simulation was completed in April 2012 and is currently under evaluation e.g. within
the EURO-CORDEX (www.euro-cordex.net) ensemble of regional climate models
(e.g. [25]). In the future regional climate projection runs (1950–2100) will be forced
with the latest global climate model runs (CMIP5 data) in the frame of CORDEX,
which currently become available to the regional climate modeling community.

http://www.euro-cordex.net

A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model 149

Within this context the objectives are to

• Provide high resolution (12 km) climatological data to scientific community
• Support of quality assessment and interpretation of the regional climate projec-

tions for Europe through the contribution to the climate projection ensemble for
Europe (EURO-CORDEX) for the next IPCC (International Panel of Climate
Change) report.

Generally, three forcing conditions for the formation of precipitation in mid-
latitude terrains with complex orography and land-surface heterogeneity can be
distinguished [28]: (1) strongly-forced conditions, e.g., due to the presence of
a surface front; (2) weakly-forced conditions, no surface front but upper-level
instabilities, e.g., due to the presence of an upper-level trough and advection of
potential vorticity; (3) air mass convection: no strongly-forced or weakly forced
conditions, likelihood of convection is increased equivalent to potential temperature
advection in combination with thermally-induced slope and valley flows. The
importance of surface forcing increases from (1) to (3) but, during summertime,
the interaction of all three forcing mechanisms is responsible for the development
of specific convergence lines resulting in a complex distribution of precipitation
([2,6,21], and [28]). The results demonstrated that a substantial increase of forecast
skill can be achieved if the models are operated at convection-permitting resolution
without the need of the parameterization of deep convection. The first downscaling
experiment to the convection permitting scale within WRFCLIM on the NEC
Nehalem Cluster [26] shows, that regional climate modeling benefits from this
resolution, too, as similar systematic errors are present such as the windward-lee-
effect in orographic terrain.

2 Simulation with WRF-3.1.0 on the NEC Nehalem Cluster

The results of this climate simulation with WRF Version 3.1.0 are published by
Warrach-Sagi et al. [26] and Greve et al. [16]. Here a summary of the model set-up
and some results are given. Version 3.1.0 of the WRF model has been applied to
Europe on a rotated latitude-longitude grid with a horizontal resolution of 0:11ı and
with 50 vertical layers up to 20 hPa with the land surface model NOAH [4, 5]. The
model domain (red frame in Fig. 1) covers the area specified in CORDEX. ERA-
interim forcing data is available at approx. 0:75ı, and WRF was applied, one-way
nested, in a double nesting approach on 0:33ı (black frame in Fig. 1) and 0:11ı. In an
additional experiment for summer 2007, when the Convective and Orographically-
induced Precipitation Study (COPS) [28] took place, a third domain with 0:0367ı
(�4 km) resolution was nested into the 0:11ı domain (white frame in Fig. 1), and
a convection permitting simulation was performed. The ERA-interim data set is
the latest ECMWF global atmospheric multi-decadal reanalysis using a 6-h 4D-
Var data assimilation system. Dee et al.[9] give a detailed description and analysis.
At the time of the beginning of the CORDEX simulations, ERA-interim data was
available from 1989 to 2008. The WRF simulation was carried out from 1989 to

150 K. Warrach-Sagi et al.

Fig. 1 Domain of WRF for CORDEX Europe on a rotated grid with 0:33ı (black frame), 0:11ı

resolution (red frame) and 0:0367ı (white frame)

2008, forced with 6-hourly analysis data at the lateral boundary and daily sea surface
temperatures- both from ERA-interim. WRF was compiled at HLRS with PGI 9.04
with openMPI libraries. This is because PGI is twice as fast as gfortran and since
ifort compilation is not suggested by WRF staff. At 0:11ı the EURO-CORDEX
model domain covered 450*450*54 grid boxes (Fig. 1, red box) and the model was
run with a time step of 60 s from 1989 to 2008. For the simulation 20 nodes were
requested (160 cores), the raw output data was about 80 TB. Within 24 h on the
NEC Nehalem Cluster it was possible to simulate 2.5 months. The whole simulation
(including waiting time between restarts) took � 8 months and � 800,000 CPU hours.

For the convection permitting simulation experiment a domain of 800*800*54
grid boxes of approx. 4 km horizontal resolution was nested in the EURO-CORDEX
model domain (white frame in Fig. 1). A simulation with a model time step of 20 s
was run from 15th Mai to 1st September 2007. The simulation took 1 month on the
NEC Nehalem Cluster.

3 Simulation with WRF-3.3.1 on the CRAY X6

Precipitation and soil moisture results of this simulation were analysed [16, 26] and
due to the results in the beginning of 2012 the simulation was repeated with an
updated version of WRF (Version 3.3.1) on the CRAY X6 at HLRS. WRF was

A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model 151

Fig. 2 Map of Germany, the evaluation area from Warrach-Sagi et al. [26] of SW-Germany and
NE-Germany are indicated by a red and orange frame

compiled at HLRS with PGI 11 with openMPI 1.4. This simulation was carried out
for the 0:11ı domain (red frame in Fig. 1) without nesting to an intermediate grid
but a 30 grid box wide boundary. The simulation of the 480*468*54 grid boxes with
a 60 s model time step was run from 1987 to 2009 on 40 nodes (1,280 cores), within
24 h 5 months were simulated. Within 3 months the simulation was completed and
approx. 90 TB of raw output data were produced. This simulation was completed
in April 2012 and is currently under evaluation e.g. within the EURO-CORDEX
(www.euro-cordex.net) ensemble of regional climate models [25].

4 Results

For Germany (Fig. 2), the German Weather Service (DWD) processed a consistent
1 km2 gridded dataset of daily precipitation (REGNIE D Regionalisierung von
Niederschlagsdaten) from 1961 to 2009. REGNIE is generated from about 1,200
precipitation measurement stations interpolated on a 1 � 1 km2 grid over Germany.
During the interpolation, also the station elevation and exposition are considered.
Richter [24] gives the climatological (1961–1990) monthly mean undercatch of the

http://www.euro-cordex.net

152 K. Warrach-Sagi et al.

Fig. 3 Mean summer precipitation for 1989–2008 from the REGNIE data (left) and the difference
of the WRF 3.1.0 simulation to REGNIE on the 0:11ı grid (right)

german precipitation gauges used in the REGNIE data. It is between 5.6 % in July
in very protected locations below 1,000 m in southern Germany up to 33.5 % in
February below 700 m at non-protected gauges in eastern Germany. The annual
mean precipitation between 1961 and 2009 varied between 584 mm in 1976 and
1,005 mm in 2002. Figure 3 shows the mean summer precipitation for 1989–2008
from the REGNIE data and the difference of the WRF 3.1.0 simulation to REGNIE
on the 0:11ı grid. A wet bias is seen in the northern half of Germany, especially in
the coastal areas. Further the so called windward-lee effect is seen at the mountain
ranges, i.e. a wet bias in the windward side and a dry bias on the lee side of the
mountain ranges. This is especially obvious in the black forest region in southwest
Germany. For hydrologists e.g. it is important that the precipitation is simulated
in the correct river catchment. Systematic biases in precipitation amounts may be
corrected (e.g. [12]), but it is problematic, if the rain falls in the wrong catchments,
and catchments e.g. devide at the top of mountain ranges. From Fig. 4 it can be seen
that this windward-lee effect vanishes in a convection permitting simulation, but a
dry bias is visible.

For EURO-CORDEX WRF-3.3.1 was applied at 0:11ı resolution forced with
ERA-Interim data at the lateral boundaries. Figure 5 shows the mean summer (JJA)
and winter (DJF) precipitation from 1989 to 2008 for Germany.

In comparison with the WRF-3.1.0 simulation in summer the mean bias over
Germany was reduced, but in the south the simulation with WRF-3.3.1 is wetter.

A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model 153

49º30'N

JJA 2007, REGNE JJA 2007, WRF JJA 2007, WRF

49ºN

48º30'N

47º30'N

48ºN

49º30'N

49ºN

48º30'N

47º30'N

48ºN

8ºE
.5 1 1.
5 2 2.
5 3 4 5 63.5 4.
5 5.5

9ºE

Precipitation [mm/d]

10ºE 11ºE

49º30'N

49ºN

48º30'N

47º30'N

48ºN

8ºE 9ºE 10ºE 11ºE8ºE 9ºE 10ºE 11ºE

Fig. 4 Summer mean precipitation in 2007 from REGNIE (left), WRF-3.1.0 at 0:11ı (middle) and
WRF-3.1.0 at 0:37ı (right)

In summer the bias is highest, however, in this season a lot of local convection
induced precipitation occurs. The lowest precipitation bias is simulated in autumn
(not shown). The evaluation of the WRF-3.3.1 simulation is ongoing, mainly in the
ensemble evaluation within EURO-CORDEX (e.g. [25] evaluated the simulation of
heat waves in Europe).

5 Conclusion

The natural deviation of boundaries from global models from the true state due to
model physics and assumed initial conditions, inconsistent physics between global
and regional models, and the poor representation of orography and the heterogeneity
of land-surface-vegetation properties in RCMs at 10–50 km resolution result in a
large gap in our knowledge concerning regional impacts of climate change [11, 17]
due to a reduced skill of regional simulations of feedback processes between the
land-surface and the atmospheric boundary layer as well as of clouds and precip-
itation development. Doherty et al. [11], who summarized the research needs that
shall follow IPCC AR4 and the new Strategic Plan of the World Weather Research
Program (WMO [27]) come to consistent conclusions concerning the promotion
of research in two areas: (1) High-resolution, advanced mesoscale atmospheric
ensemble modeling, and (2) high-resolution variational data assimilation, e.g., for
testing and improving regional climate models in weather forecast mode. The scope
of the WRFCLIM project, is to investigate in detail the performance of regional
climate projections with WRF in the frame of EURO-CORDEX at 12 km down to
simulations at the convection permitting scale within the DFG funded Research Unit
1695. The main objectives of the convection permitting simulations of WRFCLIM
are as follows:

154 K. Warrach-Sagi et al.

Fig. 5 The mean summer (JJA, top panels) and winter (DJF, bottom panels) precipitation from
1989 to 2008 for Germany from REGNIE (left, interpolated to the model grid) and the difference
between the WRF-3.3.1 simulation and REGNIE

A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model 155

• Replace the convection parameterization by the dynamical simulation of the
convection chain to better resolve the processes of the specific location and actual
weather situation physically.

• Gain of an improved spatial distribution and diurnal cycle of precipitation
through better land-surface-atmosphere feedback simulation and a more realistic
representation of orography to support the interpretation of the 12 km climate
simulations for local applications e.g. in hydrological and agricultural manage-
ment.

Special attention will be paid to the land-surface-vegetation-atmosphere feed-
back processes. Further, the model will be validated with high-resolution case
studies applying advanced data assimilation to improve the process understanding
over a wide range of temporal scales. This will also address whether the model is
able to reasonably represent extreme events.

Acknowledgements Kirsten Warrach-Sagi thanks the German Science Foundation for her fund-
ing within the frame of the integrated research project PAK 346/FOR 1695 Structure and function
of agricultural landscapes under global climate change – Processes and projections on a regional
scale. Further we acknowledge the REGNIE data from the German Weather Service. The authors
thank the HLRS staff for the permission and support of the simulations on the High Performance
Computer in Stuttgart. The simulations were carried out in collaboration with the WESS (Water
and Earth System Science) Consortium funded by the BMBF and UFZ Leipzig.

References

1. Beniston, M., D.B. Stephenson, O.B. Christensen, C.A.T. Ferro, C. Frei, S. Goyette,
K. Halsnaes, T. Holt, K. Jylhü, B. Koffi, J. Palutikoff, R. Schöll, T. Semmler, and K. Woth,
2007: Future extreme events in European climate; an exploration of Regional Climate Model
projections. Climatic Change 81, 71–95.

2. Behrendt, A., S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick,
M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar,
H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, 2011: Observation of Convection
Initiation Processes with a Suite of State-of-the-Art Research Instruments during COPS IOP8b.
COPS Special Issue of the Q. J. R. Meteorol. Soc. 137, 81–100, DOI:10.1002/qj.758.

3. Brockhaus, P., D. Lüthi, and C. Schär, 2008. Aspects of the Diurnal Cycle in a Regional Climate
Model. Meteorol. Z., 17 (4), 433–443.

4. Chen, F., and J. Dudhia, 2001a. Coupling an advanced landsurface/ hydrology model with the
penn state NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon
Weather Rev, 129, 569–585.

5. Chen, F. and J. Dudhia,2001b. Coupling an advanced landsurface/ hydrology model with the
penn state NCAR MM5 modeling system. Part II: Preliminary model validation. Mon Weather
Rev, 129, 587–604.

6. Corsmeier, U., N. Kalthoff, Ch. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger,
F. Aoshima, J. Handwerker, Ch. Kottmeier, H. Mahlke, St. Mobbs, G. Vaughan, J. Wickert,
and V. Wulfmeyer, 2011: Driving processes for deep convection over complex terrain: A multi-
scale analysis of observations from COPS-IOP 9c. COPS Special Issue of the Q. J. R. Meteorol.
Soc. 137, 137–155, DOI:10.1002/qj.754.

156 K. Warrach-Sagi et al.

7. Christensen, J.H., and O.B. Christensen, 2007: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century. Climatic Change 81,
7–30.

8. Christensen, J.H., T.R. Carter, M. Rummukainen and G. Amanatidis, 2007: Evaluating the
performance and utility of regional climate models: the PRUDENCE project. Climatic Change
81, 1–6.

9. Dee, D.P. et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597.

10. Déqué, M., D.P. Rowell, D. Lüthi, F. Giorgi, J.H. Christensen, B. Rockel, D. Jacob,
E. Kjellström, M. De Castro, and B. van den Hurk, 2007: An intercomparison of regional
climate simulations for Europe: assessing uncertainties in model projections. Climatic Change
81, 53–70.

11. Doherty, S.J., S. Bojinski, A. Henderson-Sellers, K. Noone, D. Goodrich, N.L. Bindoff,
J.A. Church, K.A. Hibbard, T.R. Karl, L. Kajfez-Bogataj, A.H. Lynch, D.E. Parker,
I.C. Prentice, V. Ramaswamy, R.W. Saunders, M.S. Smith, K. Steffen, T.F. Stocker,
P.W. Throne, K.E. Trenberth, M.M. Verstraete, and F.W. Zwiers, 2009: Lessons learned from
IPCC AR4: Scientific Developments Needed to Understand, predict and respond to climate
change. Bull. Amer. Meteor. Soc., 90, 497–513.

12. Ehret, U., E. Zehe, V.Wulfmeyer, K. Warrach-Sagi, J. Liebert, 2012: HESS Opinions - Should
we apply Bias Correction to Global and Regional Climate Model Data? Hydrol. Earth Syst.
Sci. Discuss. 9, 5355–5387.

13. Feldmann, H., B. Früh, G. Schädler, H.-J. Panitz, K. Keuler, D. Jacob, and P. Lorenz, 2008.
Evaluation of the Precipitation for South-western Germany from High Resolution Simulations
with Regional Climate Models. Meteorologische Zeitschrift 17, 455–465.

14. Früh, B., H. Feldmann, H.-J. Panitz, G. Schädler, D. Jacob, P. Lorenz, and K. Keuler, 2010:
Determination of precipitation return values in complex terrain and their evaluation. J. Climate
23, 2257–2274. doi: 10.1175/2009JCLI2685.1.

15. Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional
level: The CORDEX framework. WMO Bulletin 58, 175–183.

16. Greve, P., K. Warrach-Sagi and V. Wulfmeyer, 2013: Evaluating Soil Water Content in a WRF-
NOAH Downscaling Experiment. J. Applied Met. and Climatol., submitted.

17. IPCC, 2007: Climate change 2007: The physical science basis. Solomon, S., D. Qin,
M. Manning, L. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller (eds.), Cambridge
University Press, Cambridge, 996pp.

18. Jacob, D., L. Bähring, O.B. Christensen, J.H. Christensen, S. Hagemann, M. Hirschi,
E. Kjellström, G. Lenderink, B. Rockel, C. Schär, S.I. Seneviratne, S. Somot, A. van Ulden,
and B. van den Hurk, 2007: An intercomparison of regional climate models for Europe: Design
of the experiments and model performance. PRUDENCE special issue, Climatic Change, 81,
Supplement 1, May 2007.

19. Jaeger, E.B., I. Anders, D. Lüthi, B. Rockel, C. Schär, and S. I. Seneviratne, 2008: Analysis of
ERA40-driven CLM simulations for Europe. Meteorol. Z. 17, 349–367.

20. Morrison, H. and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics
scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and
numerical tests. J. Climate, 21, 3642–3659.

21. Schwitalla, T., H.-S. Bauer, V. Wulfmeyer, and F. Aoshima, 2011: High-resolution simulation
over central Europe: Assimilation experiments with WRF 3DVAR during COPS IOP9c.
Q. J. R. Meteorol. Soc. 137, 156–175, DOI:10.1002/qj.721.

22. Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang,
W. Wang, and J.G. Powers, 2008: A description of the Advanced Research WRF version 3.
NCAR Tech Note, TN-475CSTR, 113pp.

23. Thuburn, T.: Some conservation issues for dynamical cores of NWP and climate models.
J. Comp. Phys., 227 (2008), 3715–3730.

24. Richter D. (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen
Messfehlers des Hellmann-Nie-derschlagsmessers. Berichte des Deutschen Wetterdienstes
194: 93 pp

A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model 157

25. Vautard, R., A. Gobiet, D. Jacob, M. Belda, A. Colette, M. Deque, J. Fernandez,
M. Garcia-Diez, K. Goergen, I. Guettler, T. Halenka, K. Keuler, S. Kotlarski, G. Nikulin,
M. Patarcic, M. Suklitsch, C. Teichmann, K. Warrach-Sagi, V. Wulfmeyer and P. Yiou, 2013:
The simulation of European heat waves from an ensemble of regional climate models within
the EURO-CORDEX project, Climate Dynamics, 10.1007/s00382-013-1714-z.

26. Warrach-Sagi, K., T. Schwitalla, V. Wulfmeyer and H.-S. Bauer, 2013: Evaluation of a
CORDEX-Europe simulation with WRF: precipitation in Germany, Climate Dynamics, DOI
10.1007/s00382-013-1727-7

27. WMO, 2010: Strategic plan for implementation of WMO’s World Weather Research Programm
2009–2017. World Meteorological Organization, Geneva, Switzerland. Available online at:
http://www.wmo.int/pages/prog/arep/wwrp/new/documents/final WWRP SP 6 Oct.pdf.

28. Wulfmeyer, V., A. Behrendt, Ch. Kottmeier, U. Corsmeier, C. Barthlott, G.C. Craig,
M. Hagen, D. Althausen, F. Aoshima, M. Arpagaus, H.-S. Bauer, L. Bennett,
A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo,
M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant,
T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann,
N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C.N. Long, F. Madonna, S. Mobbs,
B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M.W. Rotach, H. Russchenberg,
T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D.D. Turner, J. van Baelen, S. Vogt,
H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, 2011: The Convective
and Orographically Induced Precipitation Study (COPS): The Scientific Strategy, the Field
Phase, and First Highlights. COPS Special Issue of the Q. J. R. Meteorol. Soc. 137, 3–30,
DOI:10.1002/qj.752.

http://www.wmo.int/pages/prog/arep/wwrp/new/documents/final_WWRP_SP_6_Oct.pdf

	Preface
	Contents
	Part I Challenges of Modern HPC Systems: Performance and Energy Efficiency Analysis
	Feasibility Study of Future HPC Systems for Memory-Intensive Applications
	1 Introduction
	2 Design Concept of the Target System
	3 Summary
	References

	Analysing the Performance Improvements of Optimizations on Modern HPC Systems
	1 Introduction
	2 Performance Differences Among Multiple Modern HPC Systems
	3 Optimization Methods Widely Used in HPC Codes
	3.1 Uses of Temporal Variables
	3.2 Loop Distribution
	3.3 Loop Unswitching
	3.4 Loop-Invariant Code Motion
	3.5 Loop Collapsing
	3.6 Loop Exchange
	3.7 Uses of Mask Operations
	3.8 Loop Unrolling

	4 Performances of Optimizations on Multiple HPC Systems
	4.1 Experimental Environments
	4.2 Performance Improvement of Optimizations among Multiple HPC Systems
	4.3 Analysis of Combination of Optimizations

	5 Conclusions
	References

	Power Consumption of Kernel Operations
	1 Introduction
	1.1 Power Consumption of Computational Node
	1.2 Power Measurement
	1.3 Kernel Operations
	1.4 Virtual CPU Frequency

	2 Electric Power of Processor (Watt, GHz)
	2.1 Power Approximation
	2.2 Power of Kernel Operations

	3 Performance of Processor (Elements per Second, GHz)
	3.1 Performance of Kernel Operations
	3.2 Performance Approximation

	4 Energy Consumption of Kernel Operations (Joule per Element)
	4.1 Dependencies of Energy and Performance
	4.2 Compare Kernel Operations

	5 Outlook
	References

	Part II Frameworks and Libraries for Simulations on New-Generation Computing Systems
	Lattice Boltzmann Simulations on Complex Geometries
	1 Introduction
	2 The Lattice Boltzmann Method
	3 Musubi as Part of the APES Framework
	4 Applications on Complex Geometries
	4.1 Thrombus Formation in Cerebral Aneurysms
	4.1.1 A Model for Thrombus Formation
	4.1.2 Simulation Setup
	4.1.3 Simulation Results

	4.2 Spacer Filled Flow Channel in Electrodialysis
	4.2.1 Simulation Setup

	5 Scalability and Parallel Efficiency of Fluid Flows in Complex Geometries
	6 Conclusion and Outlook
	References

	IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical Simulations – Structure, Applications, Latest Developments
	1 Introduction
	2 Classical Molecular Dynamics Simulations
	2.1 The Molecular Dynamics Steps

	3 Realistic Interactions and potfit
	3.1 Long-Range Interactions

	4 Some Examples of Recent Simulations
	5 Parallelization
	6 Benchmarking IMD
	7 Porting IMD to GPUs
	8 A Comment on World Records Molecular Dynamics Simulations
	9 Summary
	References

	Evaluation of FastFlow Technology for Real-World Application
	1 Introduction
	2 Algorithms
	2.1 BasicN2 Algorithm
	2.2 MoleculeBlocks Algorithm

	3 Porting CMD to FastFlow
	3.1 Parallelization of BasicN2 Algorithm
	3.2 Parallelization of MoleculeBlocks Algorithm

	4 Evaluation
	4.1 Evaluation Metrics
	4.2 Results

	5 Conclusions
	References

	Storage and Indexing of Fine Grain, Large Scale Data Sets
	1 Introduction
	1.1 Description of Use Case
	1.2 Data Amount, File Numbers and Sizes
	1.3 Serial Applications and Fine Grain Data Sets

	2 From the Reduction of Input/Output Operations Per Second (IOPS) Towards a Storage and Indexing Concept for Fine Grained, Large Scale Data Sets
	2.1 Data Storage Concept
	2.2 Data Indexing Concept
	2.3 Implementation

	3 Implementation of a Parallel Indexing and Packaging Algorithm by Means of the Proposed Concept
	4 Application Results
	5 Summary and Outlook
	References

	Part III Computational Engineering Applications and Multi-Physics Simulations
	Direct Numerical Simulations of Film Cooling in a Supersonic Boundary-Layer Flow on Massively-Parallel Supercomputers
	1 Introduction
	2 Numerical Method
	2.1 Governing Equations
	2.2 Spatial Discretization and Time Integration
	2.3 Computational Domain, Boundary Conditions and Initial Condition
	2.4 Parallelization

	3 Numerical Results
	4 Conclusions and Outlook
	References

	Large Scale Numerics Uncovering New States of Matter
	1 Introduction
	2 Model and Algorithms
	3 Results
	References

	Towards Simulation of Electrodialytic Sea Water Desalination
	1 Introduction
	2 Liquid Mixture Modelling
	2.1 Lattice Boltzmann Mixture Modelling

	3 Octree Based Simulations
	4 Performance and Applications
	5 Conclusion and Outlook
	References

	A Regional Climate Model Simulation for EURO-CORDEX with the WRF Model
	1 Introduction
	2 Simulation with WRF-3.1.0 on the NEC Nehalem Cluster
	3 Simulation with WRF-3.3.1 on the CRAY X6
	4 Results
	5 Conclusion
	References

