
Chapter 7
Affinity Based Slotting in Warehouses with
Dynamic Order Patterns

Monika Kofler, Andreas Beham, Stefan Wagner, and Michael Affenzeller

Abstract. There has been a wealth of research on warehouse optimization since the
1960s, and in particular on increasing order picking efficiency, which is one of the
most labor intensive processes in many logistics centers. In the last ten years, affin-
ity based slotting strategies, which place materials that are frequently ordered/picked
together close to each other, have started to emerge. However, the effects of chang-
ing customer demand patterns on warehousing efficiency have not been investigated
in detail. The aim of this chapter is to extend the classic storage location assignment
problem (SLAP) to a multi-period formulation (M-SLAP) and to test and compare
how various allocation rules, and in particular an affinity based policy, perform in
such dynamic scenarios. A first benchmark instance for the M-SLAP is presented.

7.1 Introduction

The storage location assignment problem (SLAP) was first formulated by Haus-
man, Schwarz and Graves [8], who had identified a need for research on the design
and scheduling of automated warehousing systems. Automated warehousing sys-
tems were introduced in the 1950s but became increasingly pervasive in the 1970s.
Hausman et al. [8] also developed a widely-used taxonomy for assignment poli-
cies, distinguishing between dedicated storage, randomized storage and class-based
storage, which are described in detail in Section 7.2.

Frazelle [4] has since shown that the SLAP is NP-Hard. Previous studies mainly
focused on finding optimal solutions for instances of this combinatorial optimization
problem. However, a lack of commonly shared benchmark instances makes compar-
isons between research results very challenging. Researchers either rely on randomly
generated instances or use proprietary data from a real-world warehouse that can not
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be released to the public. Despite this, the main research efforts in this field are still
dominated by the search for best possible solutions. Common SLAP optimization
approaches therefore result in assignments that completely change the - usually ran-
domly slotted - initial assignment. If such a solution should be put into practice, it
would involve extensive re-arrangements akin to filling a warehouse from scratch.
While this is a suitable approach for filling an initially empty warehouse or to deter-
mine the potential for improvement, it can not be implemented easily in an already
operating warehouse. In a real-world scenario the potential efficiency gains should
instead be weighed against the re-arrangement efforts. In this paper we will extend
the classic SLAP formulation for multi-period scenarios, thus allowing an evaluation
of storage assignment strategies under changing conditions, and use an extended ob-
jective function that considers re-arrangement, putaway and order picking efforts.

The chapter is structured as follows: Section 7.2 gives an overview about pre-
vious research on slotting, with a focus on random (7.2.1), turn-over based (7.2.2)
and affinity based (7.2.3) slotting. Since affinity based slotting strategies are a fairly
recent scientific development, a detailed mathematical formulation of the Pick Fre-
quency / Part Affinity (PF/PA) score as one representative of the group is provided
in Section 7.2.4. In Section 7.3 we introduce the multi-period storage location prob-
lem (M-SLAP) and distinguish between re-warehousing, which involves the re-
arrangements of large parts of the warehouse, and healing, which moves only a
small number of goods at a time. To test the effectiveness of various slotting strate-
gies on the M-SLAP, a benchmark dataset has been released, which is described in
Section 7.4. Test configurations and results are given in Section 7.5, followed by a
brief discussion and outlook in Section 7.6.

7.2 Introduction to Slotting

The goal of slotting - also called storage assignment optimization, inventory slotting,
or inventory profiling - is to determine the best place to store each stock keeping unit
(SKU) in a warehouse. Two of the most common incentives for companies to slot
their warehouse include the need to squeeze more SKUs into an already overflowing
warehouse and the desire to reduce overall handling costs and efforts [2]. In many
order picking environments the travel time to retrieve an order has been found to
be the largest component of labor, amounting to 50% or more of total order picking
time [21]. Therefore this study will focus on the reduction of travel efforts, or more
specifically aisle changes, as an approximation of travel time. It should be noted that
other factors, such as load balancing accross warehouse zones, work ergonomics
(e.g. to reduce bending and reaching activity [19]) or pre-consolidation (to reduce
downstream sorting), can also be of importance for a particular scenario.

Generally speaking, slotting is a two-stage process that first assigns a SKU to a
product class and afterwards assigns the class to storage locations within the ware-
house. Within a class the SKUs are usually arranged via a simple policy such as
random or closest location. If there is only a single class, the approach is called
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random storage, which is discussed in more detail in section 7.2.1. Conversely, if the
number of classes equals the number of SKUs, the policy is called dedicated stor-
age. Class-based storage is situated somewhere in between random and dedicated
storage. Choosing the right number of classes, product-to-class assignment strat-
egy and storage locations for each class is dependent on the particular warehousing
scenario, in particular the layout, material handling equipment, routing strategy and
order profile. Detailed reviews of the various storage assignment strategies can be
found in [7] and [3]. The primary literature considered in this paper is also summa-
rized in Table 7.1.

Table 7.1. Overview of slotting strategies with an emphasis on the Cube per Order Index
(COI) and affinity-based methods such as Order Oriented Slotting (OOS) and Pick Frequency
/ Part Affinity (PF/PA) Slotting

Type Year Citation Method

Random 1996 C. Malmborg [16] Random vs. dedicated storage
Turnover-based 1963 Heskett [9] COI

1976 Kallina and Lynn [10] COI
Affinity-based 1989 Frazelle and Sharp [5] Correlated storage

2005 Garfinkel [6] Correlated storage
2007 Mantel, Schuur, and Heragu [17] OOS
2008 Kim and Smith [11] Improving search
2009 de Ruijter et al. [20] OOS, Parameter tuning
2010 Kofler et al. [13] PF/PA Slotting
2010 Wutthisirisart [24] Minimum Delay Algorithm
2011 Kofler et al. [14] PF/PA Slotting, Healing

Review Articles 2007 Gu, Goetschalckx, and McGinnis [7] Various Approaches
2007 deKoster, Le-Duc, and Roodbergen [3] Various Approaches

Most of the existing scientific studies present results obtained by completely re-
slotting a warehouse according to some assignment strategy, a process commonly
referred to as re-warehousing. Migrating from a randomly slotted warehouse to
class-based storage, changing the number of classes or the class characteristics in
a live operating warehouse is more problematic. Warehouse managers might wish
to implement a target assignment gradually during normal operations, rather than
interrupt the normal workflow to move hundreds of items. In addition, an optimal
storage assignment created by re-warehousing might become outdated before long
due to fluctuations in product demand caused by seasonal variations and product life
cycle characteristics. In this study, we therefore also distinguish between construc-
tion and improvement approaches. Construction algorithms build a feasible slotting
from scratch, assuming that the warehouse is initially empty. On the other hand, im-
provement algorithms try to enhance an existing feasible solution. We will compare
the results of both construction and various improvement strategies, distinguishing
further between greedy and heuristic search methods. The approaches are summa-
rized in Table 7.1 and described in more detail in subsection 7.2.1 to 7.2.3.
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7.2.1 Random Slotting

In the random storage paradigm incoming SKUs are assigned randomly to suitable,
available storage locations. The advantages of random storage are ease of imple-
mentation and balanced picker traffic across the warehouse. On the downside this
may result in longer travel times. Random storage is frequently used in practice and
as a performance baseline in the scientific literature.

7.2.2 Slotting by Turnover Based Metrics

Early attempts to optimize slotting in dedicated storage warehouses were based on
the idea that fast-moving items should be located in easily accessible pick areas.
Heskett extended this simple policy and proposed the cube per order index (COI)
rule [9], which ensures that heavy or fast-moving SKUs are stored in more desirable
locations close to ground level. Kallina and Lynn discussed the implementation of
the COI policy in practice and proved that the COI rule is optimal under certain
conditions [10]. One such condition is that there is no dependency between picked
items in the same tour, which is unfortunately not the case for most order picking
scenarios [7]. Modifications of the COI rule have since been published, which also
consider inventory costs, zoning constraints or work ergonomics [16].

7.2.3 Slotting by Affinity

In order picking environments a picker usually retrieves multiple items per order,
processing the individual order lines according to some routing strategy. Items that
are frequently ordered together are said to be correlated or affine [6]. The idea be-
hind slotting by affinity is that storing affine items close to each other will reduce
the total travel time. Unfortunately this is not universally true for all warehouse sce-
narios and depends on the specific warehouse layout, material handling equipment,
picker routing strategy and order profile. Even if two items are ordered together the
picker will not necessarily pick them in sequence [22]. Moreover, narrow aisles that
do not allow reverse back out or large orders might require a full traversal of the
warehouse anyway. In such scenarios storing by affinity could even have a negative
effect on picking efficiency by causing congestion in aisles were many fast-moving
items are stored together.

Slotting by affinity was first introduced by Frazelle et al., who implemented a
class-based storage strategy called correlated storage [5]. The algorithm starts with
the most popular product and subsequently adds affine items to the class until a ca-
pacity constraint is reached. The generated classes are then placed within the ware-
house according to their total popularity.
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Garfinkel developed a local search improvement heuristic based on 2-exchange
and cyclic exchange with the goal to minimize multi-zone orders. The moves are
evaluated with different correlation measures and the algorithm is benchmarked
against various construction approaches [6]. Kim and Smith introduced a similar
two-phase dynamic slotting heuristic procedure that generates an initial assignment
using a pick frequency measure such as the COI rule and afterwards uses pairwise
interchanges to move affine parts closer to each other [11].

Mantel, Schuur and Heragu created the order oriented slotting (OOS) problem
[17]. They present integer linear programming (ILP) models for two small ware-
house scenarios but also two heuristics for the optimization of larger, real-world in-
stances. Their so-called interaction frequency based quadratic assignment heuristic
(IFH-QAP) forces items that frequently occur in the same order to be close together,
while at the same time ensuring that fast movers are not allocated too far from the
I/O-point. The objective function is based on two measures that are multiplied with
the routing specific distances for each SKU: The popularity of an SKU denotes how
often it was ordered. The interaction frequency of two SKUs equals the number of
orders that contain them both. The impact of each component on the target function
is tuned via a weight parameter, which can be adjusted empirically or automatically
as shown in [20]. Kofler et al. devised the pick frequency / part affinity (PF/PA)
objective function [13], which extends the IFH-QAP heuristic such that one SKU
may be stored in multiple locations throughout the warehouse. Moreover relative
values of interaction frequency and popularity are used to get comparable results,
independent of the time window that is considered for a given order profile.

Another interesting approach that considers SKU affinity is the Minimum Delay
Algorithm (MDA) [24], which was inspired by linear placement algorithms. In this
construction heuristic approach SKUs are placed in a fashion that reduces the delay
(= additional traveling distance) for the other orders.

Due to the similarities between [6], [11], [17] and [13] the PF/PA score is used
exemplarily in this study as a representative of improvement heuristics for affinity-
based slotting. A detailed algorithm description is given in the following section.

7.2.4 Pick Frequency / Part Affinity Score

The pick frequency / part affinity (PF/PA) score was first introduced in [13] and
slightly revised in [14]. The approach combines affinity based storage and storage
by pick frequency. To increase comprehensibility and reproducibility of the results
presented in this study, we provide a full mathematical formulation of the score, as
previously published in [14]. Let’s assume:

S =set of all storage locations sk;

0 < k <= m where m = |S| (7.1)
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dist(sk,sl) =routing specific distance between

storage location sk and sl
(7.2)

In addition to the storage locations that can hold products, at least one input/out-
put location origin must be defined that denotes the shipping dock. The travel times
/ distances between locations are routing-specific.

Usually, the storage locations and the distance matrix need to be determined only
once for a given warehouse and can later be re-used for different problem instances.
Conversely, the following parameters are likely to change over time and need to be
retrieved from the enterprise resource planning or warehouse management system.
Most important, the set P lists all products that are present in a particular assignment.

P =set of all products pi;

0 < i <= n where n = |P| (7.3)

For each product pi we need to know the number of picking orders in which the
product occurs. We use the relative number of orders orderRatio(pi) to get com-
parable scores as results, independent of the time window that is considered from
a given order profile. Similarly, the affinity matrix stores the ratio of all orders in
which a particular product pair occurs together. Finally, the current warehouse as-
signment defines how many products pi are stored at location sk. The set of locations
L(pi) stores all locations of a particular product.

orderRatio(pi) =relative number of orders in

which pi occurs
(7.4)

a f f inity(pi, p j) =relative number of orders in which

products pi and p j occur together
(7.5)

quantity(pi,sk) =number of packing units of

product pi stored at location sk
(7.6)

L(pi) =set of all locations where quantity(pi,s)> 0 (7.7)

The entities defined in 7.3-7.7 can be calculated from order picking histories or
demand forecasts and the current warehouse assignment. We can now define the
objective functions in Equation 7.8 and 7.9.
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PF =
n

∑
i=0

orderRatio(pi)

|L(pi)| · ∑
s∈L(pi)

dist(s,origin) (7.8)

The total pick frequency score (PF), as defined in Equation 7.8, ensures that fre-
quently picked products are placed in more favorable storage locations near the I/O
point. For each product it detects all current storage locations L(pi), calculates their
distance to the origin and weights each distance with the expected number of picks
given the number of previous orders. The picks are uniformly distributed on all stor-
age locations, independent of the actual stored quantities in the different locations.

PA =
n

∑
i=0

n

∑
j=0

a f f inity(pi, p j)

|L(pi)| · |L(p j)|
· ∑

sk∈L(pi)
∑

sl∈L(p j)

dist(sk,sl)
(7.9)

The total part affinity score (PA) takes all pairs of products pi and p j, and re-
trieves all respective storage locations L(pi) and L(p j) from the current assignment.
The distance between each resulting storage location pair is calculated and weighted
with the part affinity divided by the number of location pairs |L(pi)| · |L(p j)|. The
term reduces to zero for products with no part affinity, therefore the calculation can
be sped up by only looking at products p j that have an affinity greater than zero with
a given product pi.

The resulting multi-objective evaluation function for assignments is computed as
weighted sum of the two objective functions given in Equation 7.8 and 7.9 such that

PF/PA score = α ·PF +β ·PA. (7.10)

PF and PA have different ranges. The parameters α and β can be adjusted au-
tomatically ensure that both factors contribute equally to the objective as proposed
in [20]. We prefer tuning them manually, usually assigning an intentionally higher
weight to α as discussed in [14].

7.3 Multi-period Warehouse Slotting

Both turn-over and affinity based slotting strategies rely on historical SKU order
profiles and/or demand forecasts for decision-making. However, slotting is usually
not a one-off event since SKU demands are subject to change over time. An optimal
storage assignment might become outdated due to demand fluctuations, modifica-
tions to the picking line, infrastructure changes, or variations in the order mix etc.
We therefore propose an extension of the classical SLAP, called the multi-period
storage location assignment problem (M-SLAP).
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The M-SLAP problem formulation was inspired by the field of facility
layout problems (FLP), where researchers face a similar challenge: Changing
material flows between departments during the planning horizon might make
re-arrangements of the departments necessary, in order to keep material handling
costs low. In the so-called dynamic FLP formulation the planning horizon is split
into multiple consecutive periods. Within each period, the estimated flow data is as-
sumed to be constant. The optimization generates a separate layout for each of these
periods, which can be treated as classic, static FLPs. However, re-arrangement costs
caused by layout adjustments between periods of different material flows are con-
sidered in the evaluation of the dynamic layout. An overview of dynamic layout
algorithms can be found in [1].

Likewise, the M-SLAP problem consists of a sequence of warehouse assign-
ments and their associated SKU demand profiles. To evaluate the quality of an M-
SLAP solution the picking effort for a set of picking orders is simulated on each
generated assignment. The objective is to minimize the total travel distance of all
pickers, caused by order picking and (re-)slotting. The aim of this new formula-
tion is to evaluate mid- and long-term stability of warehouse assignments generated
by various slotting approaches. Most important, it should yield a better cost-benefit
analysis of re-slotting effort (= cost) vs. order picking savings (= benefit).

7.3.1 Re-warehousing

Most previous studies focused on achieving optimality in the allocation of SKUs
and often re-ordered the existing layout to a very large degree. This process is com-
monly referred to as re-warehousing. The effort for re-warehousing a real-world lo-
gistics center is considerable and requires the movement of hundreds or thousands
of items, thus blocking personnel and material handling equipment for an extensive
time period. This is why it is conducted infrequently (quarterly, biannually, during
holidays) in practice.

The only study known to us that considers re-warehousing over time was con-
ducted by Neuhäuser and Wehking [18]. In this publication they developed a metric
to determine suitable re-warehousing intervals for the food retail sector, which is
characterized by strong seasonal demand and stock fluctuations. The authors assume
that the optimal target storage zone or class is known for each stock keeping unit at
each point in time, for instance based on COI, and calculate the (weighted) sum of
displaced SKUs over all SKUs as a metric of warehouse entropy. By comparing the
cost of operation in warehouses with high and low entropy and also considering the
re-warehousing costs, they were able to determine suitable re-warehousing intervals
for their scenario in a simulation study. Unfortunately, data and simulation model
are not publicly available, which makes a comparison with the other approaches or
replication of the results difficult.
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7.3.2 Healing

From a warehouse manager’s perspective, achieving ’optimality’ might not be as
important as finding a ’good enough’ slotting that is both robust and requires only
few stock transfers to implement. For instance, experiments in [14] showed that
moving only a limited number of SKUs can significantly reduce the total travel
distances. In this previous study picker travel distances could be reduced by 23%
by moving only 60 pallets. The total distance optimization potential for the problem
instance was over 60%, however this required the movement of 1400 pallets. For
many real-world scenarios it might be more prudent to move only a few SKUs per
day, but iteratively over a longer time period. We refer to this process as healing
[14].

7.3.3 M-SLAP: Optimization and Evaluation

The typical M-SLAP optimization steps are depicted in Figure 7.1 for a single pe-
riod. The result of this chain is a new warehouse assignment, which is used as input
for the next period, plus cost estimates for re-arrangements, order picking and put-
away effort. The total costs of an M-SLAP is the sum over all costs over all periods.

Fig. 7.1. The M-SLAP optimization process for a single period

We explain the individual steps in more detail, starting with the first period:

1. Re-warehousing or healing: This step is optional. In the first period, a
warehouse assignment can either be retrieved from a real-world warehouse
management system or generated via a heuristic (=re-warehousing). In each
subsequent period, either re-warehousing, healing or no action can be con-
ducted. If re-warehousing/healing is performed the re-arrangement effort counts
towards the total costs.

2. Assignment 1: The assignment is then evaluated with the test order profile of
period 1, resulting in a cost estimate for the pick process in this period.
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3. Remove outgoing material: The test order profile should be representative for a
period but does not have to include all pick operations that take place within the
period. It is therefore assumed that all SKUs that are present in period 1 but not
in stock in period 2 will be removed in one step. This is one of the abstractions
of the M-SLAP. However, if the temporal spacing of the periods is very small,
such as a day or an hour, this error becomes negligible. The removal has no
associated costs since they are already considered in the picking process.

4. Likewise, all incoming SKUs that are newly available in period 2 will be added
in one step. A slotting strategy is used to assign the new SKUs to locations,
which can use the order profile as input to calculate intra-period turn-over rates
or PF/PA scores. The result of this step is a new assignment, which is fed into
period 2. The cycle starts over at step 1.

7.4 M-SLAP Benchmark Data

A benchmark instance for the M-SLAP was generated using anonymized data from
the logistics center of an Austrian company in the automotive sector. The data was
taken from the high-rack pallet warehouse, which is operated with man-to-goods
order picking. In order to comply to confidentiality agreements and to make the
dataset more suitable as a benchmark, we simplified the data and environmental
constraints in the following way:

• We assume that the warehouse is rectangular with 12 parallel, two-sided aisles,
which amounts to 24 identical racks. Each rack is 27 pallets deep and 9 levels
high. In total the warehouse can therefore hold 5832 pallets.

• All storage locations are equal, meaning that SKUs can be stored in any location
without additional costs. We assume that only one container size (a euro pallet)
is used throughout the warehouse.

• The SKUs are retrieved from the warehouse with fork lifts. Aisle changes are
the most time-consuming step for this particular scenario, therefore the target
cost value is the number of aisle changes required to pick the orders, slot incom-
ing material or perform re-arrangement operations. We assume that all products
within one aisle are equally easy to reach.

• Each SKU is stored in only one storage location, independent of the stored
amount. There is no mixed storage, meaning that SKUs cannot share a storage
location.

• Storage locations can be empty. Due to inventory changes not all SKUs are in
stock in all periods. However, it is assumed, that all SKUs that are requested in
the test orders of are particular period are in stock in sufficient quantities.

• There is an interim storage area, where incoming/outgoing SKUs are placed,
which is located at the head of the first aisle. The pickers always start from and
return to the interim storage area.
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• One order is picked by one picker (no zoning) in one go (no order splitting or
batching).

• Pickers process the individual positions of an order ascending by aisle index.

The M-SLAP benchmark instance consists of five periods, each of which pro-
vides an initial (random) storage assignment and a 1-month demand forecast. The
entire data set spans one year from December 2010 until December 2011. Over the
year, almost 12,000 different SKUs are stored in the warehouse, however in any
given period only 4,300 to 5,200 pallets are in stock. A detailed overview of the
stock movements is given in Table 7.2 and Figure 7.2 also illustrates the fluctuating
inventory levels.

Table 7.2. Inventory levels and incoming/outgoing SKUs between the periods

Inventory Outgoing Incoming

DEC10 4708 -1316 +1696
MAR11 5088 -1199 +1417
JUN11 5306 -1171 +1080

AUG11 5215 -1061 +1199
DEC11 5353

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

Fig. 7.2. Illustration of the inventory levels per period in the published M-SLAP benchmark
instance

The M-SLAP benchmark instance and best known solutions will be published at
http://dev.heuristiclab.com/trac/hl/core/wiki/AdditionalMaterial.
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7.5 Experimental Setup and Results

7.5.1 Algorithms

All experiments were conducted using HeuristicLab [23], an open source frame-
work for heuristic optimization. We implemented the random and cube per order
index (COI) construction methods. In addition, we employed first improvement lo-
cal search and simulated annealing [12] to optimize a randomly generated initial
warehouse configuration subject to the PF/PA objective.

Simulated annealing (SA) is a metaheuristic that was modeled after the anneal-
ing process in metallurgy. One of the advantages of simulated annealing is that it
offers a strategy to escape from local optima by employing a temperature param-
eter to guide the search. Contrary to greedy search techniques, which only accept
moves that improve the fitness of a solution, SA accepts uphill moves with a certain
probability. As the algorithm proceeds, a step-wise reduction of the temperature ac-
cording to a pre-defined cooling scheme reduces the likelihood that bad moves get
accepted. The simulated annealing algorithm runs were all configured in the fol-
lowing way: Exponential annealing scheme, start temperature 100, end temperature
1E-06, 4 million iterations.

The same random initial solution was used for all improvement algorithms to
make the results comparable. The algorithms could be configured with two different
move generators:

• Random Swap Move Generator: Generates one 2-swap move that switches the
content of two random locations in the warehouse.

• Sampling Swap Move Generator: Generates n 2-swap moves, sorts them by qual-
ity and returns the best move.

We also varied the α and β parameters in the PF/PA objective function. Setting
α = 1 and β = 0 results in a turnover-based objective function similar to COI. Set-
ting α = 0 and β = 1 results in an optimization of part affinity only, which reduces
the within-order distances but does not consider SKU turnover rates. Finding a good
trade-off between placement by part affinity and placement by retrieval frequency
is unfortunately not trivial. The parameters α and β can be adjusted automatically
to ensure that both factors contribute equally to the objective as proposed in [20].
However, we found that empirically sampling the parameters produced better results
as described in detail in [13]. We fixed β = 1 and conducted tests for α ∈ {1, 2, 3, ...
20, 30, 40, 50, 60 70, 80, 90, 100}. For the investigated scenario a setting of α = 10
and β = 1 was found to be most effective. All optimization runs were conducted
in a high performance computing environment on an 8-core machine with 2x Intel
Xeon CPU, 2.5 Ghz and 32GB memory.
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7.5.2 Results

7.5.2.1 Re-warehousing

First we employed re-warehousing on each period separately to assess the maxi-
mum optimization potential. As shown in Table 7.3 and Figure 7.3, optimizing by
part affinity alone (PA) did not produce very good results, only reducing the to-
tal travel distance by 11% to 21%, depending on the observed period, compared
to an initial random slotting. Although part affinity slotting optimizes the number
of aisle changes within an order, the placement relative to the shipping dock is not
optimized. Conversely, the optimization potential for turn-over based or mixed ap-
proaches is quite large and reduced the number of aisle changes in picking by up
to 97%.

Table 7.3. Re-warehousing with different slotting strategies can reduce the pick effort (given
in aisle changes) significantly

Random PA COI PF PF/PA

Dec 10 9,878 8,746 218 248 214
Mar 11 17,024 13,386 452 474 440
Jun 11 12,672 10,500 410 454 416

Aug 11 15,138 12,080 372 402 352
Dec 11 16,596 14,030 602 618 572

The COI construction heuristic and simulated annealing with pick frequency (PF)
as target performed equally well, which is not surprising, since no weight informa-
tion was available for the data set. In this case, slotting by COI and slotting by pick
frequency reduce to the same objective function. A properly parameterized simu-
lated annealing run with the pick frequency objective therefore converged towards
the quality obtained with the COI construction heuristic. The combined PF/PA slot-
ting performed marginally better than turnover based slotting (PF, COI) in all peri-
ods except one.

Although the improvements seem vast, all of the above approaches require a
complete re-warehousing, meaning that no SKU is on its initial place in the target
assignment. Table 7.4 lists the re-warehousing efforts to move all SKUs from their
initial positions in the random slotting scenario to the respective target assignments,
as generated by the different approaches. The re-warehousing effort assessment was
conducted under idealized conditions, assuming that the two forklifts work in tan-
dem and buffer the pallets in the intermediate storage area. Each forklift retrieves a
pallet that needs to be moved to a different aisle, brings it to the intermediate storage
area, picks up a waiting pallet and moves it to its target aisle, where - it is assumed -
the next pallet is already waiting for transport to the intermediate storage area. Thus
the fork lifts never run empty.
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Fig. 7.3. Re-warehousing potential in each period: The number of picker aisle changes can be
reduced by up to 97% compared to the initial random slotting, if a complete re-arrangement
is conducted. (Data from Table 7.3)

Table 7.4. Number of aisle changes required to re-arrange the assignments from table 7.3

PA COI PF PF/PA

Dec 10 75,506 57,786 75,436 75,734
Mar 11 81,612 63,594 81,944 81,716
Jun 11 85,078 67,646 86,030 85,558

Aug 11 83,326 65,298 83,930 84,158
Dec 11 86,022 68,166 85,618 86,262

Table 7.4 shows that re-warehousing with PF, PA and PF/PA require approxi-
mately the same amount of effort in terms of aisle changes to realize the new as-
signment. Realizing a COI slotting is ’cheaper’ but nevertheless the involved effort
cannot be redeemed quickly. In each period we utilize an order picking preview of
roughly one month. If we interpolate this data, it would take roughly five months
for a complete COI re-warehousing to pay off - that is, if the order profiles do not
change in the meantime. In the Section 7.5.2.2 we will therefore discuss a more ef-
ficient way to increase order picking efficiency by simply switching to a different
putaway strategy for incoming SKUs.

7.5.2.2 Putaway

Since a complete re-warehousing is very time-consuming, the second set of exper-
iments focused on the effect that different putaway strategies for incoming goods
have on an existing layout. We used the assignments generated with random, COI
or PF/PA slotting for the first period in Section 7.5.2.1 as starting point and ob-
served how the warehouse performance develops when newly arriving SKUs are
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slotted randomly or according to COI. In these experiments we do not only consider
the order picking efforts but also the putaway efforts for newly arriving SKUs be-
tween two periods. Re-warehousing efforts, on the other hand, are not considered,
because they have already been investigated in the previous section.

Table 7.5. How the quality (= number of aisle changes) of an initial random, COI or PF/PA
slotted warehouse develops over time when random or COI slotting strategies are used for
incoming material

Rand-Rand Rand-COI COI-Rand COI-COI PF/PA-Rand PF/PA-COI

DEC 10 9,878 9,878 218 218 214 214
PUT1 18,716 12,214 24,766 18,612 20,920 14,890

MAR 11 17,868 13,642 15,058 6,578 12,782 6,996
PUT2 14,978 14,284 17,344 16,182 17,412 16,944

JUN 11 13,408 10,308 11,404 5,582 10,502 5,592
PUT3 11,860 8,998 12,420 9,690 13,166 10,820

AUG 11 14,868 10,654 12,076 5,696 11,422 5,802
PUT4 11,774 11,504 12,750 12,638 14,626 14,580

DEC 11 15,370 11,826 13,648 8,208 14,208 8,018
Total 128,720 103,308 119,684 83,404 115,256 83,860

0

20000

40000

60000

80000

100000

120000

140000

Rand-Rand Rand-COI COI-Rand COI-COI PF/PA-Rand PF/PA-COI

Effect of slotting strategies over time

DEC 11

PUT4

AUG 11

PUT3

JUN 11

PUT2

MAR 11

PUT1

DEC 10

Aisle changes

Fig. 7.4. Effects of putaway slotting strategies on an initial assignment (Illustration of Ta-
ble 7.5)

Table 7.5 and Figure 7.4 summarize the results and illustrate how random slot-
ting can defragment a warehouse after a while. For instance, in December 2010
almost 10,000 aisle changes are required to fulfill the demand forecast on a ran-
domly slotted warehouse but less than 220 on a recently PF/PA or COI slotted
warehouse. However after one year of random putaway for incoming SKUs the
effect of re-warehousing has almost evaporated for the COI-Rand and PF/PA-Rand



138 M. Kofler et al.

scenarios. The total annual number of aisle changes for these scenarios are 115,256
and 119,684, which amounts to a relative improvement of 10.5% and 7% com-
pared to Rand-Rand. Most importantly, the initial re-warehousing efforts (cf. Sec-
tion 7.5.2.1, Table 7.4) are not yet included in these numbers. If these are considered
as well, COI-Rand and PF/PA-Rand actually perform worse than Rand-Rand. The
conclusion is, that re-warehousing once per year does not pay off for this M-SLAP
benchmark if random slotting is employed for putaway during the year.

Before the second set of results with COI as putaway stategy is discussed, we
would like to point out a singularity of the test data set. We claim that order pick-
ing is the most effort-intensive process in the warehouse, yet the putaway effort in
Table 7.5 is frequently larger than the picking effort. This can be easily explained:
As discussed in Section 7.4 the available benchmark data only provides a 1-month
demand forecast for each period and not all picking orders between the snapshots.
The intervals between periods range between two and four months, therefore the
pick efforts are roughly twice to four times as large in reality.

Figure 7.4 illustrates the same results as a graph, showing pick and putaway
efforts in turns. One interesting result that the graph shows very well is that the
putaway efforts between period 1 and period 2 (PUT1) are much larger for well
slotted warehouses than for a randomly slotted warehouse. This can be explained
in the following way: Both the COI construction heuristic and the PF/PA slotting
algorithm will result in assignments where all the best locations are occupied with
SKUs. An illustration of this effect can be seen in Figure 7.5 for a warehouse where
the effort is calculated as distance (in meters) from the shipping dock.

We consider this overfitting, because all SKUs drift towards the good storage
locations, and the less desirable storage locations are left empty. For incoming ma-
terial, this means that hardly any storage locations are available, even if the newly
arriving SKU has a very high pick frequency. Therefore, putaway efforts are very
large directly after COI or PF/PA re-warehousing.

Figure 7.6 also summarizes the results of Table 7.5 but aggregates the putaway
and pick efforts. Once again, it should be noted that the total order picking efforts
over the entire year are larger since only forecasts for five months were available.
It can be seen that an initial random slotting benefits most from a switch to COI
slotting. Also, COI-COI and PF/PA-COI yield the overall best results, but one would
have to consider if the initial re-warehousing efforts required would be worth the
additional efforts. In Section 7.5.2.3 we therefore use healing strategies as another
measure to improve the annual warehouse efficiency without the prohibitive costs
of re-warehousing.

7.5.2.3 Healing

In the last set of experiments we investigated how conducting a small number of
healing moves at the beginning of a period can impact the total warehouse perfor-
mance. The goal of this additional step is to address changing demand patterns and
re-slot SKUs already present in the warehouse according to the demand forecast
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Fig. 7.5. In this illustration, the storage locations in a bird’s eye view of a warehouse are
colored according to the pick frequency of the assigned SKUs. The white locations indicate
empty storage locations or locations with SKUs that are never ordered. An initial random
slotting (left) is compared to an (turnover) optimized slotting (right). In the optimized assign-
ment, all the closest locations to the shipping dock in the upper left are occupied.
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for the upcoming period. These experiments therefore implement the full M-SLAP
process as described in Section 7.3.3 and illustrated in Figure 7.1.

We used two of the scenarios presented in the previous section as a starting point:

• Rand-Rand: The first period was slotted randomly and a random slotting strategy
was used for putaway between subsequent periods.

• Rand-COI: Once again, the first period was slotted randomly, but putaway was
conducted with the COI strategy between periods.

A local search algorithm was started at the beginning of period 2-5 to find 50
good 2-swap moves. In each of the 50 iterations the best of 10,000 randomly gen-
erated moves was applied. The re-arrangement effort was once again considered in
the total efficiency assessment.
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Fig. 7.7. Warehousing efforts for the Rand-Rand scenario from Section 7.5.2.2 without (left)
and with healing (right)

Figure 7.7 shows the results for the Rand-Rand scenario with and without heal-
ing. It can be seen that healing reduced the number of aisle changes in order picking
by 20%. However, the total improvement is only 7% compared to a scenario without
healing, because the cleanup swaps require some effort themselves and the putaway
effort rises slightly. This can be attributed to the overfitting phenomenon described
in the previous section: Due to healing fewer ’good’ storage locations will be avail-
able for putaway.

This effect is even more pronounced in the Rand-COI scenario as depicted in Fig-
ure 7.8. Once again, the order picking effort could be significantly reduced (-19%)
compared to the same scenario without healing. However, simultaneously the
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putaway effort increases by 13% and when the healing effort is considered the total
gain amounts to less than 1%.
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Fig. 7.8. Warehousing efforts for the Rand-COI scenario from Section 7.5.2.2 without (left)
and with healing (right)

The presented experiments are not extensive enough to offer guidance for the
‘best’ M-SLAP strategy, not even for the given scenario. However, they illustrate
clearly that focusing solely on pick efficiency improvements offers a very biased
warehouse efficiency assessment, especially if real-world warehouses should be op-
timized during on-going operations.

7.6 Conclusion and Outlook

In this paper we introduced a multi-period formulation of the classic storage loca-
tion assignment, called M-SLAP, and released a first benchmark instance for the
problem. The M-SLAP consists of multiple planning periods with different inven-
tory levels and SKU demand patterns. A new objective function does not only assess
order picking efforts but also considers re-arrangement and putaway efforts over all
periods. Some preliminary results for the benchmark instance were given, illustrat-
ing how different initial slottings (random, COI and PF/PA) develop over time given
a random or COI putaway strategy. Moreover, the impact of conducting a small
number of healing moves in each period was investigated. First results indicate that
considering only order picking efforts is a very limited view on the problem. More-
over, the dynamic change of demand patterns over time makes it even more crucial
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to consider re-arrangement efforts and putaway efforts. In dynamic warehousing
scenarios an ’optimal’ slotting can degenerate very quickly, therefore the effort in-
vested into re-arrangements must be weighed against both robustness and efficiency
gains.

We plan to conduct comprehensive tests on the presented M-SLAP instance to
find algorithms and reference settings that perform well on such a dynamic sce-
nario. We also hope to encourage other researchers to model and optimize M-SLAP
instances, since we believe that the dynamic multi-stage scenario offers many new
algorithmic challenges and also facilitates transfer of research results into practice.
Finally, we are currently conducting M-SLAP tests in the real-world logistics center
of a project partner, combining putaway, re-warehousing and healing strategies to
find a balanced strategy that is both practical as well as ’optimal’.

Acknowledgements. This paper is an updated and extended version of [15]. The work de-
scribed in this chapter was done within the Josef Ressel-Centre HEUREKA! for Heuristic
Optimization sponsored by the Austrian Research Promotion Agency (FFG). HeuristicLab is
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