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Abstract. In this chapter we present results of empirical research work done on the
data based identification of estimation models for tumor markers and cancer diag-
noses: Based on patients’ data records including standard blood parameters, tumor
markers, and information about the diagnosis of tumors we have trained mathe-
matical models that represent virtual tumor markers and predictors for cancer di-
agnoses, respectively. We have used a medical database compiled at the Central
Laboratory of the General Hospital Linz, Austria, and applied several data based
modeling approaches for identifying mathematical models for estimating selected
tumor marker values on the basis of routinely available blood values; in detail, esti-
mators for the tumor markers AFP, CA-125, CA15-3, CEA, CYFRA, and PSA have
been identified and are discussed here. Furthermore, several data based modeling
approaches implemented in HeuristicLab have been applied for identifying estima-
tors for selected cancer diagnoses: Linear regression, k-nearest neighbor learning,
artificial neural networks, and support vector machines (all optimized using evolu-
tionary algorithms) as well as genetic programming. The investigated diagnoses of
breast cancer, melanoma, and respiratory system cancer can be estimated correctly
in up to 81%, 74%, and 91% of the analyzed test cases, respectively; without tu-
mor markers up to 75%, 74%, and 87% of the test samples are correctly estimated,
respectively.
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6.1 Introduction and Research Goals

In this chapter we present research results achieved within the research center
Heureka!1: Data of thousands of patients of the General Hospital (AKH) Linz, Aus-
tria, have been analyzed in order to identify mathematical models for tumor markers
and tumor diagnoses. We have used a medical database compiled at the blood labo-
ratory of the General Hospital Linz, Austria, in the years 2005 – 2008: 28 routinely
measured blood values of thousands of patients are available as well as several tumor
markers; not all values are measured for all patients, especially tumor marker values
are determined and documented if there are indications for the presence of cancer.

In Figure 6.1 the main modeling tasks addressed in this research work are il-
lustrated: Tumor markers are modeled using standard blood parameters and tumor
marker data; tumor diagnosis models are trained using standard blood values, tumor
marker data, and diagnosis information, and alternatively we also train diagnosis
estimation models only using standard blood parameters and diagnosis information.
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Fig. 6.1. Modeling tasks investigated in this research work: Tumor markers are modeled, and
tumor diagnosis models are trained using standard blood values, diagnosis information, and
optionally tumor marker data

6.1.1 Identification of Virtual Tumor Markers

In general, tumor markers are substances found in humans (especially blood and /
or body tissues) that can be used as indicators for certain types of cancer. There are
several different tumor markers which are used in oncology to help detect the pres-
ence of cancer; elevated tumor marker values can indicate the presence of cancer,

1 Josef Ressel Center for Heuristic Optimization; http://heureka.heuristiclab.com/

http://heureka.heuristiclab.com/
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but there can also be other causes. As a matter of fact, elevated tumor marker val-
ues themselves are not diagnostic, but rather only suggestive; tumor markers can be
used to monitor the result of a treatment (as for example chemotherapy). Literature
discussing tumor markers, their identification, their use, and the application of data
mining methods for describing the relationship between markers and the diagnosis
of certain cancer types can be found for example in [26] (where an overview of clin-
ical laboratory tests is given and different kinds of such test application scenarios as
well as the reason of their production are described), [10], [40], [56], and [57].

We have used data based modeling approaches (including enhanced genetic pro-
gramming as well as other established data mining methods) for identifying mathe-
matical models for estimating selected tumor marker values on the basis of routinely
available blood values; in detail, estimators for the tumor markers AFP, CA-125,
CA15-3, CEA, CYFRA, and PSA have been identified and are analyzed in this chap-
ter. These tumor marker estimation models are also referred to as virtual tumor
markers.

The documented tumor marker values are classified as “normal” (class 0),
“slightly elevated” (class 1), “highly elevated” (class 2), and “beyond plausible”
(class 3); this classification is done according to medical aspects using classification
rules based on medical knowledge. In principle, our goal is to design classifiers for
classifying samples into one of these classes. Still, in the context of the research
work summarized here we have decided to produce classifiers that classify samples
as “normal (belonging to class 0)” or “elevated (belonging to class 1, 2, or 3)”; i.e.,
we here document results for a simplified 2-class-classification problem.

6.1.2 Identification of Tumor Diagnosis Estimators

In addition, information about cancer diagnoses is also available in the AKH
database: If a patient is diagnosed with any kind of cancer, then this is also stored in
the database.

Our goal in the research work described here is to identify estimation models for
the presence of the following types of cancer: Malignant neoplasms in the respira-
tory system (RSC, cancer classes C30–C39 according to the International Statistical
Classification of Diseases and Related Health Problems 10th Revision (ICD-10)),
melanoma and malignant neoplasms on the skin (Mel, C43–C44), and breast cancer
(BC, C50).

Tumor markers are used optionally - on the one hand information about tumor
markers values increases the accuracy of diagnosis estimations, on the other hand
their acquisition is considered expensive and they are therefore not available by
default.

We have applied two modeling methods for identifying estimation models for
tumor markers and cancer diagnoses:

• Several machine learning methods (implemented in HeuristicLab [47]) have been
used for producing classifiers, namely linear regression, k-nearest neighbor clas-
sification, neural networks, and support vector machines.
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• Evolutionary algorithms have been applied for parameter optimization and fea-
ture selection. Feature selection is often considered an essential step in data based
modeling; it is used to reduce the dimensionality of the datasets and often leads
to better analyses. Additionally, each data based modeling method (except plain
linear regression) has several parameters that have to be set before starting the
modeling process. We have used evolutionary algorithms for finding optimal fea-
ture sets as well as optimal modeling parameters for models for tumor markers;
details can be found in [54] and [52], e.g.

• Alternatively, we have applied genetic programming (GP, [28]) using a structure
identification framework described in [4] and [50]. Genetic programming has
been repeatedly used successfully for building formulas that describe the behav-
ior of systems from measured data, see for example [4], [28], [32], or [50].

6.1.3 Organization of This Chapter

This chapter is structured in the following way: In Section 6.2 we give details about
the data basis investigated in the research summarized here, in Section 6.3 we de-
scribe the modeling methods applied for identifying classification models for tumor
data, and in Sections 6.4 and 6.5 we summarize empirical results achieved model-
ing tumor markers and tumor diagnoses using machine learning and evolutionary
algorithms. This chapter is completed by a conclusion given in Section 6.6.

6.2 Data Basis

The blood data measured at the AKH in the years 2005–2008 have been compiled in
a database storing each set of measurements (belonging to one patient): Each sample
in this database contains an unique ID number of the respective patient, the date of
the measurement series, the ID number of the measurement, and a set of parameters
summarized in the Tables 6.1 and 6.2; standard blood parameters are stored as well
as tumor marker values. Patients personal data (e.g. name, date of birth, etc.) where
at no time available to the authors except the head of the laboratory.

In total, information about 20,819 patients is stored in 48,580 samples. Please
note that of course not all values are available in all samples; there are very many
missing values simply because not all blood values are measured during each
examination.

Information about the blood parameters stored in this database and listed in
Table 6.1 can for example be found in [6], [30], [34], [43], and [49].

In Table 6.2 we list those tumor markers that are available in the AKH database
and have been used within the research work described here; in detail, we have
analyzed data of the following tumor markers:
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Table 6.1. Patient data collected at AKH Linz in the years 2005 – 2008: Blood parameters
and general patient information

Parameter Description Unit Plausible Number of
Name Range Available

Values

ALT Alanine transaminase, a transaminase enzyme; U/l [1; 225] 29,202
also called glutamic pyruvic transaminase (GPT)

AST Aspartate transaminase, an enzyme also called U/l [1; 175] 29,201
glutamic oxaloacetic transaminase (GOT)

BSG1 Erythrocyte sedimentation rate; the rate at which mm [0; 50] 10,201
red blood cells settle / precipitate within 1 hour

BUN Blood urea nitrogen; measures the amount of mg/dl [1; 150] 28,995
nitrogen in the blood (caused by urea)

CBAA Basophil granulocytes; type of leukocytes G/l [0.0; 0.2] 21,184
CEOA Eosinophil granulocytes; type of leukocytes G/l [0.0; 0.4] 21,184
CH37 Cholinesterase, an enzyme kU/l [2; 23] 7,266
CHOL Cholesterol, a component of cell membranes mg/dl [40; 550] 14,981
CLYA Lymphocytes; type of leukocytes G/l [1; 4] 21,188
CMOA Monocytes; type of leukocytes G/l [0.2; 0.8] 21,184
CNEA Neutrophils; most abundant type of leukocytes G/l [1.8; 7.7] 21,184
CRP C-reactive protein, a protein; inflammations cause mg/dl [0; 20] 22,560

the rise of CRP
FE Iron ug/dl [30; 210] 6,792
FER Ferritin, a protein that stores and transports iron ng/ml [10; 550] 2,428

in a safe form
GT37 γ-glutamyltransferase, an enzyme U/l [1; 290] 29,173
HB Hemoglobin; a protein that contains iron and g/dl [6; 18] 29,574

transports oxygen
HDL High-density lipoprotein; this protein enables the mg/dl [25; 120] 7,998

transport of lipids with blood
HKT Hematocrit; the proportion of red blood cells % [25; 65] 29,579

within the blood volume
HS Uric acid, also called urate mg/dl [1; 12] 24,330

KREA Creatinine; a chemical by-product produced in mg/dl [0.2; 5.0] 29,033
muscles

LD37 Lactate dehydrogenase (LDH); an enzyme that can U/l [5; 744] 28,356
be used as a general marker of injuries to cells

MCV Mean corpuscular / cell volume; the average size fl [69; 115] 29,576
(i.e., volume) of red blood cells (=μm3)

PLT Thrombocytes, also called platelets; irregularly- G/l [25; 1,000] 29,579
shaped cells that do not have a nucleus

RBC Erythrocytes, red blood cells; the most abundant T/l [2.2; 8.0] 29,576
type of blood cells that transport oxygen

TBIL Bilirubin; the yellow product of the heme mg/dl [0; 5] 28,565
catabolism

TF Transferrin; a protein, delivers iron mg/dl [100; 500] 2,017
WBC Leukocytes, also called white blood cells (WBCs); G/l [1.5; 50] 29,585

cells that help the body fight infections
or foreign materials

AGE The patient’s age years [0; 120] 48,580
SEX The patient’s sex f/m 48,580
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Table 6.2. Patient data collected at AKH Linz in the years 2005 – 2008: Selected tumor
markers

Marker Unit Normal Elevated Plausible Number of
Name Range Range Range Available Values

AFP IU/ml [0.0; 5.8] ]5.8; 28] [0.0; 90] 5,415
CA 125 U/ml [0.0; 35.0] ]35.0; 80] [0.0; 150] 3,661
CA 15-3 U/ml [0.0; 25.0] ]25.0; 50.0] [0.0; 100.0] 6,944

CEA ng/ml [0.0; 3.4] ]3.4; 12.0] [0.0; 50.0] 12,981
CYFRA ng/ml [0.0; 3.3] ]3.3; 5.0] [0.0; 10.0] 2,861
PSA ng/ml [0.0; 2.5] (age ≤ 50) ]2.5; 10.0] (age ≤ 50) [0.0; 20.0] 23,130

[0.0; 2.5] (age 51–60) ]2.5; 10.0] (age 51–60)
[0.0; 2.5] (age 61–70) ]2.5; 10.0] (age 61–70)
[0.0; 2.5] (age ≥ 71) ]2.5; 10.0] (age ≥ 71)

• AFP: Alpha-fetoprotein (AFP, [36]) is a protein found in the blood plasma; dur-
ing fetal life it is produced by the yolk sac and the liver. In humans, maximum
AFP levels are seen at birth; after birth, AFP levels decrease gradually until adult
levels are reached after 8 to 12 months. Adult AFP levels are detectable, but usu-
ally rather low.
For example, AFP values of pregnant women can be used in screening tests
for developmental abnormalities as increased values might for example indicate
open neural tube defects, decreased values might indicate Down syndrome. AFP
is also often measured and used as a marker for a set of tumors, especially en-
dodermal sinus tumors (yolk sac carcinoma), neuroblastoma, hepatocellular car-
cinoma, and germ cell tumors [17]. In general, the level of AFP measured in
patients often correlates with the size / volume of the tumor.

• CA 125: Cancer antigen 125 (CA 125) ([55]), also called carbohydrate antigen
125 or mucin 16 (MUC16), is a protein that is often used as a tumor marker that
may be elevated in the presence of specific types of cancers, especially recurring
ovarian cancer [39]. Still, its use in the detection of ovarian cancer is contro-
versial, mainly because its sensitivity is rather low (as documented in [41], only
79% of all ovarian cancers are positive for CA 125) and it is not possible to detect
early stages of cancer using CA 125.
Even though CA 125 is best known as a marker for ovarian cancer, it may also
be elevated in the presence of other types of cancers; for example, increased val-
ues are seen in the context of cancer in fallopian tubes, lungs, the endometrium,
breast and gastrointestinal tract.

• CA 15-3: Mucin 1 (MUC1), also known as cancer antigen 15-3 (CA 15-3), is a
protein found in humans; it is used as a tumor marker in the context of monitoring
certain cancers [38], especially breast cancer. Elevated values of CA 15-3 have
been reported in the context of an increased chance of early recurrence in breast
cancer [25].

• CEA: Carcinoembryonic antigen (CEA; [22], [23]) is a protein that is in hu-
mans normally produced during fetal development. As the production of CEA
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usually is stopped before birth, it is usually not present in the blood of healthy
adults. Elevated levels are seen in the blood or tissues of heavy smokers; per-
sons with pancreatic carcinoma, colorectal carcinoma, lung carcinoma, gastric
carcinoma, or breast carcinoma, often have elevated CEA levels. When used as a
tumor marker, CEA is mainly used to identify recurrences of cancer after surgical
resections.

• CYFRA: Fragments of cytokeratin 19, a protein found in the cytoskeleton, are
found in many places of the human body; especially in the lung and in ma-
lign lung tumors high concentrations of these fragments, which are also called
CYFRA 21-1, are found. Due to elevated values in the presence of lung cancer
CYFRA is often used for detecting and monitoring malign lung tumors. Elevated
CYFRA values have already been reported for several different kinds of tumors,
especially for example in stomach, colon, breast, and ovaries. The use of CYFRA
21-1 as a tumor marker has for example been discussed in [31].

• PSA: Prostate-specific antigen (PSA; [7], [45]) is a protein produced in the
prostate gland; PSA blood tests are widely considered the most effective test
currently available for the early detection of prostate cancer since PSA is often
elevated in the presence of prostate cancer and in other prostate disorders. Still,
the effectiveness of these tests has also been considered questionable since PSA
is prone to both false positive and false negative indications: According to [45],
70 out of 100 men with elevated PSA values do not have prostate cancer, and 25
out of 100 men suffering from prostate cancer do not have significantly elevated
PSA.

As already mentioned, information about cancer diagnoses is also available in
the AKH database: If a patient is diagnosed with any kind of cancer, then this is
also stored in the database. All cancer diagnoses are classified according to the In-
ternational Statistical Classification of Diseases and Related Health Problems 10th
Revision (ICD-10) system.

In this research work we concentrate on diagnoses regarding the following types
of cancer: Malignant neoplasms in the respiratory system (RSC, cancer classes C30–
C39 according to ICD-10), melanoma and malignant neoplasms on the skin (Mel,
C43–C44), and breast cancer (BC, C50).

6.3 Modeling Approaches

In this section we describe the modeling methods applied for identifying estimation
models for cancer diagnosis: On the one hand we apply hybrid modeling using ma-
chine learning algorithms (linear regression, neural networks, the k-nearest neighbor
method, support vector machines) and evolutionary algorithms for parameter opti-
mization and feature selection (as described in Section 6.3.5), on the other hand
apply use genetic programming (as described in Section 6.3.6).
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All these machine learning methods have been implemented using the Heuris-
ticLab framework [47], a framework for prototyping and analyzing optimization
techniques for which both generic concepts of evolutionary algorithms and many
functions to evaluate and analyze them are available. HeuristicLab is developed by
the Heuristic and Evolutionary Algorithm Laboratory2 and can be downloaded from
the HeuristicLab homepage3. HeuristicLab is licensed under the GNU General Pub-
lic License4.

6.3.1 Linear Modeling

Given a data collection including m input features storing the information about N
samples, a linear model is defined by the vector of coefficients θ1...m. For calculating
the vector of modeled values e using the given input values matrix u1...m, these input
values are multiplied with the corresponding coefficients and added: e = u1...m ∗ θ .
The coefficients vector can be computed by simply applying matrix division. For
conducting the test series documented here we have used an implementation of the
matrix division function: θ = InputValues\TargetValues. Additionally, a constant
additive factor is also included into the model; i.e., a constant offset is added to
the coefficients vector. Theoretical background of this approach can be found in
[33].

6.3.2 kNN Classification

Unlike other data based modeling methods, k-nearest neighbor classification [16]
works without creating any explicit models. During the training phase, the samples
are simply collected; when it comes to classifying a new, unknown sample xnew, the
sample-wise distance between xnew and all other training samples xtrain is calculated
and the classification is done on the basis of those k training samples (xNN) showing
the smallest distances from xnew.

In the context of classification, the numbers of instances (of the k nearest neigh-
bors) are counted for each given class and the algorithm automatically predicts that
class that is represented by the highest number of instances (included in xNN). In the
test series documented in this chapter we have applied weighting to kNN classifica-
tion: The distance between xnew and xNN is relevant for the classification statement,
the weight of “nearer” samples is higher than that of samples that are “further away”
from xnew. In this research work we have varied k between 1 and 10.

2 http://heal.heuristiclab.com/
3 http://dev.heuristiclab.com/
4 http://www.gnu.org/licenses/gpl.txt

http://heal.heuristiclab.com/
http://dev.heuristiclab.com/
http://www.gnu.org/licenses/gpl.txt
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6.3.3 Artificial Neural Networks

For training artificial neural network (ANN) models, three-layer feed-forward neu-
ral networks with one linear output neuron were created applying backpropagation
(using gradient descent optimization); theoretical background and details can for
example be found in [37] (Chapter 11, “Neural Networks”). In the tests documented
in this chapter the number of hidden (sigmoidal) nodes hn has been varied from 5 to
100; the learning rate as well as the momentum were also varied, the range of these
parameters was set to [0.01 - 0.5]. We have applied ANN training algorithms that
use internal validation sets, i.e., training algorithms use 30% of the given training
data as validation data and eventually return those network structures that perform
best on these internal validation samples.

6.3.4 Support Vector Machines

Support vector machines (SVMs) are a widely used approach in machine learning
based on statistical learning theory [46]. The most important aspect of SVMs is that
it is possible to give bounds on the generalization error of the models produced, and
to select the corresponding best model from a set of models following the principle
of structural risk minimization [46].

In this work we have used the LIBSVM implementation described in [12], which
is used in the respective SVM interface implemented for HeuristicLab; here we
have used Gaussian radial basis function kernels with varying values for the cost
parameters c (c ∈ [0,512]) and the γ parameter of the SVM’s kernel function (γ ∈
[0,1]).

6.3.5 Hybrid Modeling Using Machine Learning Algorithms and
Evolutionary Algorithms for Parameter Optimization and
Feature Selection

An essential step in data mining and machine learning is (especially when there are
very many available features / variables) the selection of subsets of variables that
are used for learning models. On the one hand, simpler models (i.e., models that
use fewer variables and have simpler structures) are preferred over more complex
ones following Occam’s law of parsimony [8] that states that simpler theories are
in general more favorable; on the other hand, simpler models are less likely to be
prone to overfitting ([4], [29]).

So-called forward approaches iteratively add variables that are essentially impor-
tant for improving the quality of the achievable models, while backward elimination
methods initially use all variables and iteratively eliminate those that show the least
statistical significance. Early variable selection algorithms were published several
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decades ago (such as, e.g., [18]). Since then, numerous variable selection algorithms
have been developed, many of them relying on the concept of mutual information
([11], [13], [14], [20], [21], [42], [44]). An overview of well-established variable
selection methods can be found for example in [15], the use of variable selection
methods in cancer classification in [35].

Unlike these variable selection methods, we here use an evolutionary algorithm
that is able to simultaneously optimize variable selections and modeling parameters
with respect to specific machine learning algorithms. The main advantages of this
approach are on the one hand that variable selection is not necessary as a separate
step in the data mining process, on the other hand variable selections and modeling
parameter settings are automatically optimized for the modeling algorithm at hand.
Parsimony pressure is realized by incorporating the size of sets of selected variables
into the fitness function that is used for evaluating solution candidates.

Given a set of n features F = { f1, f2, . . . , fn}, our goal here is to find a subset F ′ ⊆
F that is on the one hand as small as possible and on the other hand allows modeling
methods to identify models that estimate given target values as well as possible.
Additionally, each data based modeling method (except plain linear regression) has
several parameters that have to be set before starting the modeling process.

The fitness of feature selection F ′ and training parameters with respect to the cho-
sen modeling method is calculated in the following way: We use a machine learning
algorithm m (with parameters p) for estimating predicted target values est(F ′,m, p)
and compare those to the original target values orig; the coefficient of determina-
tion (R2) function is used for calculating the quality of the estimated values. Ad-
ditionally, we also calculate the ratio of selected features |F ′|/|F|. Finally, using a
weighting factor α , we calculate the fitness of the set of features F ′ using m and p as

f itness(F ′,m, p) = α ∗ |F ′|/|F|+(1−α)∗ (1−R2(est(F ′,m, p),orig)). (6.1)

As an alternative to the coefficient of determination function we can also use a
classification specific function that calculates the ratio of correctly classified sam-
ples, either in total or as the average of all classification accuracies of the given
classes (as for example described in [50], Section 8.2): For all samples that are to
be considered we know the original classifications origCl, and using (predefined or
dynamically chosen) thresholds we get estimated classifications estCl(F ′,m, p) for
estimated target values est(F ′,m, p). The total classification accuracy cak(F ′,m, p)
is calculated as

ca(F ′,m, p) =
|{ j : estCl(F ′,m, p)[ j] = origCl[ j]}|

|estCl| (6.2)

Class-wise classification accuracies cwca are calculated as the average of all classi-
fication accuracies for each given class c ∈C separately:

ca(F ′,m, p)c =
|{ j : estCl(F ′,m, p)[ j] = origCl[ j] = c}|

|{ j : origCl[ j] = c}| (6.3)
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cwca(F ′,m, p) =
∑c∈C ca(F ′,m, p)c

|C| (6.4)

We can now define the classification specific fitness of feature selection F ′ using m
and p as

f itnessca(F
′,m, p) = α ∗ |F ′|/|F |+(1−α)∗ (1− ca(F′,m, p)) (6.5)

or

f itnesscwca(F
′,m, p) = α ∗ |F ′|/|F|+(1−α)∗ (1− cwca(F′,m, p)). (6.6)

In [5], for example, the use of evolutionary algorithms for feature selection op-
timization is discussed in detail in the context of gene selection in cancer classi-
fication; in [53] we have analyzed the sets of features identified as relevant in the
modeling of tumor markers AFP and CA15-3.

We have now used evolutionary algorithms for finding optimal feature sets as
well as optimal modeling parameters for models for tumor diagnosis; this approach
is schematically shown in Figure 6.2. A solution candidate is here represented as
[s1,...,n p1,...,q] where si is a bit denoting whether feature Fi is selected or not and p j

is the value for parameter j of the chosen modeling method m. This rather simple
definition of solution candidates enables the use of standard concepts for genetic
operators for crossover and mutation of bit vectors and real valued vectors: We use
uniform, single point, and 2-point crossover operators for binary vectors and bit flip
mutation that flips each of the given bits with a given probability. Explanations of
these operators can for example be found in [19] and [24].

In the test series described later in Section 6.5 we have used strict offspring selec-
tion [1] which means that individuals are accepted to become members of the next
generation if they are evaluated better than both parents. Standard fitness evalua-
tion as given in Equation 6.1 has been used during the execution of the evolutionary
processes, and classification specific fitness evaluation as given in Equation 6.6 has
been used for selecting the solution candidate eventually returned as the algorithm’s
result.

6.3.6 Genetic Programming

We have also applied a classification algorithm based on genetic programming (GP)
[28] using a structure identification framework described in [4] and [50], in com-
bination with an enhanced, hybrid selection scheme called offspring selection ([1],
[2], [3]). In the left part of Figure 6.3 we show the overall GP workflow including
offspring selection, in the right part the here used strict version of OS is depicted;
we have used the GP implementation in HeuristicLab.
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Full medical data set
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Fig. 6.2. A hybrid evolutionary algorithm for feature selection and parameter optimization in
data based modeling

In addition to splitting the given data into training and test data, the GP based
training algorithm implemented in HeuristicLab has been designed in such a way
that a part of the given training data is not used for training models and serves
as validation set; in the end, when it comes to returning classifiers, the algorithm
returns those models that perform best on validation data. This approach has been
chosen because it is assumed to help to cope with over-fitting; it is also applied in
other GP based machine learning algorithms as for example described in [9].

We have used the following parameter settings for our GP test series: The muta-
tion rate was set to 20%, gender specific parents selection [48] (combining random
and roulette selection) was applied as well as strict offspring selection [1] (OS, with
success ratio as well as comparison factor set to 1.0). The functions set described in
[50] (including arithmetic as well as logical ones) was used for building composite
function expressions.

The following parameter settings have been used in our GP test series:

• Single population approach; the population size was set to 700
• Mutation rate: 15%
• Varying maximum formula tree complexity
• Parents selection: Gender specific [48], random & roulette
• Offspring selection [1]: Strict offspring selection (success ratio as well as com-

parison factor set to 1.0)
• One-elitism
• Termination criteria:

– Maximum number of generations: 1000; this criterion was not reached in the
tests documented here, all executions were terminated via the

– Maximum selection pressure [1]: 555
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Fig. 6.3. The GP cycle [32] including offspring selection. Flowchart for embedding a simpli-
fied version of offspring selection into the GP based machine learning process.

• Function set: All functions (including arithmetic as well as logical ones) as de-
scribed in [50]

In addition to splitting the given data into training and test data, the GP based
training algorithm implemented in HeuristicLab has been implemented in such a
way that a part of the given training data is not used for training models and serves
as validation set; in the end, when it comes to returning classifiers, the algorithm
returns those models that perform best on validation data. This approach has been
chosen because it is assumed to help to cope with over-fitting; it is also applied in
other GP based machine learning algorithms as for example described in [9].

6.4 Empirical Study: Identification of Models for Tumor
Markers

In this section we summarize empirical results previously described in [51].

6.4.1 Data Preprocessing

Before analyzing the data and using them for training classifiers for tumor markers
we have preprocessed the data available in the AKH data base:

• All variables have been linearly scaled to the interval [0;1]: For each variable
vi, the minimum value mini is subtracted from all contained values and the
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result divided by the difference between mini and the maximum plausible value
maxplaui; all values greater than the given maximum plausible value are replaced
by 1.0.

• All samples belonging to the same patient with not more than one day difference
with respect to the measurement data have been merged. This has been done in
order to decrease the number of missing values in the data matrix. In rare cases,
more than one value might thus be available for a certain variable; in such a case,
the first value is used.

• Additionally, all measurements have been sample-wise re-arranged and clustered
according to the patients’ IDs. This has been done in order to prevent data of
certain patients being included in the training as well as in the test data.

Before modeling algorithms can be used for training classifiers, we have com-
piled separate data sets for each analyzed target tumor marker tmi: First, all samples
containing measured values for tmi are extracted. Second, all variables are removed
from the resulting data set that contain values in less than 80% of the remaining
samples. Third, all samples are removed that still contain missing values. This pro-
cedure results in a specialized data set dstmi for each tumor marker tmi. In Table
6.3 we summarize statistical information about all resulting data sets for the markers
analyzed here5; the numbers of samples belonging to each of the defined classes are
also given for each resulting data set.

6.4.2 Test Series and Results

All machine learning mentioned in Section 6.3 have been applied using several dif-
ferent parametrizations; for each modeling method we also give relevant parameter
settings, namely the number of neighbors k for kNN learning (k ∈ {1,3,5,10}), the
number of nodes n in the hidden layer of ANNs (n ∈ {10,25,50,100}), the γ value
for SVMs (γ ∈ {0.001,0.01,0.05,0.1,0.5,1,8}), and the maximum tree size s (i.e.,
the number of nodes in formula trees) for GP (s ∈ {25,50,100,150}). Five-fold
cross-validation [27] training / test series have been executed; this means that the
available data are separated in five (approximately) equally sized, complementary
subsets, and in each training / test cycle one data subset is chosen as used as test and
the rest of the data as training samples. The classifiers learned using training data
are evaluated on training as well as on test data; in the following Tables 6.4 – 6.9
we give statistics about the quality on the produced classifiers, namely the average
classification accuracies (as the average of correct sample classifications) and their
standard deviations on training as well as on test data.

5 Please note that the number of total samples and the number of samples in class 0 for the
PSA data set differ from the numbers stated in [51]; the here given numbers are the correct
ones.
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Table 6.3. Overview of the data sets compiled for selected tumor markers

Marker Input Variables Total Distribution of Samples
Name Samples Class 0 Class 1 Class 2 Class 3

AFP AGE, SEX, ALT, AST, BUN, 2,755 2146 454 64 91
CH37, GT37, HB, HKT, (77.9%) (16.5%) (2.32%) (3.3%)
KREA, LD37, MCV, PLT,
RBC, TBIL, WBC

CA 125 AGE, SEX, ALT, AST, BUN, 1,053 532 143 84 294
CRP, GT37, HB, HKT, HS, (50.5%) (13.6%) (8.0%) (27.9%)
KREA, LD37,MCV, PLT,
RBC, TBIL, WBC

CA 15-3 AGE, SEX, ALT, AST, BUN, 4,918 3,159 1,011 353 395
CBAA,CEOA, CLYA, CMOA, (64.2%) (20.6%) (7.2%) (8.0%)
CNEA, CRP,GT37, HB, HKT,
HS, KREA, LD37, MCV,
PLT, RBC, TBIL, WBC

CEA AGE, SEX, ALT, AST, BUN, 5,567 3,133 1,443 492 499
CBAA, CEOA, CLYA, CMOA, (56.3%) (25.9%) (8.8%) (9.0%)
CNEA, CRP, GT37, HB, HKT,
HS, KREA, LD37, MCV,
PLT, RBC, TBIL, WBC

CYFRA AGE, SEX, ALT, AST, BUN, 419 296 37 36 50
CH37, CHOL, CRP, CYFS, (70.6%) (8.8%) (8.6%) (11.9%)
GT37, HB, HKT, HS, KREA,
MCV, PLT, RBC, TBIL, WBC

PSA AGE, SEX, ALT, AST, BUN, 2,366 1,145 779 249 193
CBAA, CEOA, CHOL, CLYA, (48.4%) (32.9%) (10.5%) (8.2%)
CMOA, CNEA, CRP, GT37,
HB, HKT, HS, KREA, LD37,
MCV, PLT, RBC, TBIL, WBC



110 S.M. Winkler et al.

Table 6.4. Classification results for AFP

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.8356 (± 0.009) 0.8221 (± 0.018)
kNN 1 1.0000 (± 0.000) 0.7659 (± 0.026)

3 1.0000 (± 0.000) 0.7790 (± 0.031)
5 1.0000 (± 0.000) 0.7974 (± 0.037)

10 1.0000 (± 0.000) 0.8061 (± 0.041)
ANN 10 0.8625 (± 0.014) 0.8215 (± 0.045)

25 0.8608 (± 0.029) 0.8239 (± 0.049)
50 0.8564 (± 0.017) 0.8548 (± 0.020)

100 0.8642 (± 0.014) 0.8217 (± 0.049)
SVM 0.01 0.7846 (± 0.012) 0.7826 (± 0.067)

0.05 0.8301 (± 0.015) 0.8137 (± 0.048)
0.1 0.8490 (± 0.009) 0.8107 (± 0.054)
0.5 0.9057 (± 0.011) 0.8075 (± 0.043)

1 0.9426 (± 0.009) 0.7998 (± 0.039)
8 1.0000 (± 0.000) 0.7773 (± 0.045)

GP 25 0.771 (± 0.014) 0.7735 (± 0.028)
50 0.7884 (± 0.014) 0.7681 (± 0.014)

100 0.7985 (± 0.026) 0.7739 (± 0.037)

Table 6.5. Classification results for CA125

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.7243 (± 0.022) 0.5913 (± 0.071)
kNN 1 1.0000 (± 0.000) 0.5611 (± 0.070)

3 1.0000 (± 0.000) 0.5449 (± 0.074)
5 1.0000 (± 0.000) 0.5560 (± 0.062)

10 1.0000 (± 0.000) 0.5680 (± 0.084)
ANN 10 0.7941 (± 0.049) 0.5342 (± 0.073)

25 0.7707 (± 0.184) 0.6275 (± 0.071)
50 0.7601 (± 0.034) 0.5851 (± 0.059)

100 0.7661 (± 0.048) 0.5993 (± 0.047)
SVM 0.01 0.7140 (± 0.024) 0.5594 (± 0.081)

0.05 0.7663 (± 0.023) 0.5503 (± 0.080)
0.1 0.8054 (± 0.015) 0.5239 (± 0.080)
0.5 0.9180 (± 0.017) 0.5357 (± 0.068)

1 0.9905 (± 0.003) 0.5607 (± 0.063)
8 1.0000 (± 0.000) 0.5548 (± 0.103)

GP 25 0.7194 (± 0.017) 0.6810 (± 0.081)
50 0.7474 (± 0.022) 0.6677 (± 0.067)

100 0.7628 (± 0.014) 0.6344 (± 0.048)
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Table 6.6. Classification results for CA 15-3

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.7533 (± 0.017) 0.7069 (± 0.020)
kNN 1 1.0000 (± 0.000) 0.6495 (± 0.030)

3 1.0000 (± 0.000) 0.6767 (± 0.029)
5 1.0000 (± 0.000) 0.6905 (± 0.032)

10 1.0000 (± 0.000) 0.7028 (± 0.029)
ANN 10 0.7920 (± 0.008) 0.7127 (± 0.022)

25 0.8000 (± 0.027) 0.7007 (± 0.028)
50 0.7878 (± 0.008) 0.6997 (± 0.012)

100 0.7866 (± 0.040) 0.6974 (± 0.009)
SVM 0.01 0.7252 (± 0.017) 0.7077 (± 0.039)

0.05 0.7700 (± 0.010) 0.7236 (± 0.034)
0.1 0.8089 (± 0.006) 0.7181 (± 0.034)
0.5 0.9405 (± 0.001) 0.6843 (± 0.026)

1 0.9874 (± 0.001) 0.7135 (± 0.078)
8 1.0000 (± 0.000) 0.6433 (± 0.031)

GP 25 0.7348 (± 0.012) 0.7167 (± 0.036)
50 0.7327 (± 0.009) 0.7163 (± 0.039)

100 0.7504 (± 0.011) 0.7302 (± 0.030)

Table 6.7. Classification results for CEA

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.6847 (± 0.020) 0.6566 (± 0.053)
kNN 1 1.0000 (± 0.000) 0.5877 (± 0.009)

3 1.0000 (± 0.000) 0.5979 (± 0.017)
5 1.0000 (± 0.000) 0.6006 (± 0.022)

10 1.0000 (± 0.000) 0.6115 (± 0.034)
ANN 10 0.7526 (± 0.025) 0.6556 (± 0.030)

25 0.7681 (± 0.026) 0.6393 (± 0.039)
50 0.7486 (± 0.010) 0.6555 (± 0.044)

100 0.7459 (± 0.005) 0.6625 (± 0.039)
SVM 0.001 0.7277 (± 0.012) 0.6461 (± 0.054)

0.01 0.6758 (± 0.014) 0.6470 (± 0.061)
0.05 0.7432 (± 0.008) 0.6417 (± 0.048)

0.1 0.7904 (± 0.003) 0.6373 (± 0.043)
0.5 0.9321 (± 0.011) 0.6030 (± 0.034)

1 0.9788 (± 0.008) 0.5813 (± 0.026)
8 1.0000 (± 0.000) 0.5508 (± 0.014)

GP 25 0.6791 (± 0.034) 0.6532 (± 0.007)
50 0.6854 (± 0.009) 0.6686 (± 0.014)

100 0.6874 (± 0.005) 0.6772 (± 0.008)
150 0.6822 (± 0.005) 0.6828 (± 0.011)
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Table 6.8. Classification results for CYFRA

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.7957 (± 0.020) 0.7061 (± 0.076)
kNN 1 1.0000 (± 0.000) 0.6372 (± 0.048)

3 1.0000 (± 0.000) 0.6445 (± 0.111)
5 1.0000 (± 0.000) 0.6586 (± 0.119)

10 1.0000 (± 0.000) 0.6965 (± 0.106)
ANN 10 0.7590 (± 0.014) 0.7139 (± 0.073)

25 0.7639 (± 0.037) 0.7134 (± 0.080)
50 0.8304 (± 0.045) 0.7087 (± 0.079)

100 0.7768 (± 0.035) 0.7303 (± 0.048)
200 0.7969 (± 0.051) 0.7160 (± 0.055)

SVM 0.001 0.7063 (± 0.039) 0.6727 (± 0.058)
0.01 0.7195 (± 0.025) 0.7041 (± 0.071)
0.05 0.8269 (± 0.015) 0.7206 (± 0.073)
0.1 0.8585 (± 0.069) 0.7229 (± 0.056)
0.5 0.9988 (± 0.002) 0.6985 (± 0.059)

1 1.0000 (± 0.000) 0.6634 (± 0.092)
8 1.0000 (± 0.000) 0.7088 (± 0.086)

GP 25 0.7565 (± 0.033) 0.6763 (± 0.069)
50 0.7708 (± 0.025) 0.6520 (± 0.056)

100 0.7865 (± 0.039) 0.6563 (± 0.050)

Table 6.9. Classification results for PSA

Modeling Classification accuracy (μ ± σ )
method Training Test

LinReg 0.6403 (± 0.014) 0.5858 (± 0.026)
kNN 1 1.0000 (± 0.000) 0.5365 (± 0.037)

3 1.0000 (± 0.000) 0.5420 (± 0.029)
5 1.0000 (± 0.000) 0.5517 (± 0.018)

10 1.0000 (± 0.000) 0.5622 (± 0.021)
ANN 10 0.6507 (± 0.043) 0.5840 (± 0.018)

25 0.6327 (± 0.014) 0.5828 (± 0.014)
50 0.6456 (± 0.016) 0.5718 (± 0.013)

100 0.6462 (± 0.017) 0.5786 (± 0.018)
200 0.6661 (± 0.016) 0.5808 (± 0.016)

SVM 0.001 0.5882 (± 0.027) 0.5536 (± 0.052)
0.01 0.6403 (± 0.016) 0.5913 (± 0.022)
0.05 0.6813 (± 0.011) 0.5672 (± 0.018)
0.1 0.7331 (± 0.005) 0.5740 (± 0.015)
0.5 0.9286 (± 0.012) 0.5600 (± 0.026)

1 0.9903 (± 0.003) 0.5499 (± 0.021)
8 0.9996 (± 0.001) 0.5351 (± 0.024)

GP 25 0.6857 (± 0.090) 0.6527 (± 0.077)
50 0.7176 (± 0.080) 0.6746 (± 0.080)

100 0.7071 (± 0.029) 0.6730 (± 0.039)
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6.5 Empirical Study: Identification of Models for Tumor
Diagnoses

In this section we summarize empirical results previously described in [52].

6.5.1 Data Preprocessing

Before analyzing the data and using them for training data-based tumor diagnosis
estimators we have preprocessed the available data:

• All variables have been linearly scaled to the interval [0;1]: For each variable
vi, the minimum value mini is subtracted from all contained values and the re-
sult divided by the difference between mini and the maximum plausible value
maxplaui; all values greater than the given maximum plausible value are replaced
by 1.0.

• All samples belonging to the same patient with not more than one day difference
with respect to the measurement data have been merged. This has been done in
order to decrease the number of missing values in the data matrix. In rare cases,
more than one value might thus be available for a certain variable; in such a case,
the first value is used.

• Additionally, all measurements have been sample-wise re-arranged and clustered
according to the patients’ IDs. This has been done in order to prevent data of
certain patients being included in the training as well as in the test data.

Before starting the modeling algorithms for training classifiers we had to compile
separate data sets for each analyzed target tumor ti: First, blood parameter measure-
ments were joined with diagnosis results; only measurements and diagnoses with a
time delta less than a month were considered. Second, all samples containing mea-
sured values for ti are extracted. Third, all samples are removed that contain less
than 15 valid values. Finally, variables with less than 10% valid values are removed
from the data base.

This procedure results in a specialized data set dsti for each tumor marker ti. In
Table 6.10 we summarize statistical information about all resulting data sets for the
markers analyzed here; the numbers of samples belonging to each of the defined
classes are also given for each resulting data set.

6.5.2 Test Series and Results

Five-fold cross-validation [27] training / test series have been executed; this
means that the available data are separated in five (approximately) equally sized,
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complementary subsets, and in each training / test cycle one data subset is chosen is
used as test and the rest of the data as training samples.

In this section we document test accuracies (μ ,σ ) for the investigated cancer
types; we here summarize test results for modeling cancer diagnoses using tumor
markers (TMs) as well as for modeling without using tumor markers. Linear model-
ing, kNN modeling, ANNs, and SVMs have been applied for identifying estimation
models for the selected tumor types, genetic algorithms with strict OS have been ap-
plied for optimizing variable selections and modeling parameters; standard fitness
calculation as given in Equation 6.1 has been used by the evolutionary process, the
classification specific one as given in Equation 6.6 has been used for selecting the
eventually returned model. The probability of selecting a variable initially was set to
30%. Additionally, we have also applied simple linear regression using all available
variables. Finally, genetic programming with strict offspring selection (OSGP) has
also been applied.

Table 6.10. Overview of the data sets compiled for selected cancer types

Cancer Input Variables Total Samples in Missing
Type Samples Class 0 Class 1 Values

AGE, SEX, AFP, ALT, AST,
Breast BSG1, BUN, C125, C153, 706 324 382 46.67%
Cancer C199, C724, CBAA, CEA, (45.9%) (54.1%)

Melanoma CEOA, CH37, CHOL, CLYA, 905 485 420 47.79%
CMOA, CNEA, CRP, CYFS, (53.6%) (46.4%)

Respira- FE, FER, FPSA, GT37, HB,
tory HDL, HKT, HS, KREA, LD37, 2,363 1,367 996 44.76%
System MCV, NSE, PLT, PSA, PSAQ, (57.9%) (42.1%)
Cancer RBC, S100, SCC, TBIL, TF,

TPS, WBC

In all test series the maximum selection pressure [1] was set to 100, i.e., the
algorithms were terminated as soon as the selection pressure reached 100. The pop-
ulation size for genetic algorithms optimizing variable selections and modeling pa-
rameters was set to 10, for GP the population size was set to 700. In all modeling
cases except kNN modeling regression models have been trained, the threshold for
classification decisions was in all cases set to 0.5 (since the absence of the specific
tumor is represented by 0.0 in the data and its presence by 1.0).
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Table 6.11. Modeling results for breast cancer diagnosis

Using TMs Not using TMs
Modeling Method Test accuracies Test accuracies

μ σ μ σ
LR, full features set 79.32% 1.06 70.63% 1.28
OSGA + LR, α = 0.0 81.78% 0.21 73.13% 0.36
OSGA + LR, α = 0.1 81.49% 1.18 72.66% 0.14
OSGA + LR, α = 0.2 81.44% 0.37 71.40% 0.57
OSGA + kNN, α = 0.0 79.21% 0.78 74.22% 2.98
OSGA + kNN, α = 0.1 78.99% 0.57 75.55% 0.87
OSGA + kNN, α = 0.2 78.33% 1.04 74.50% 0.20
OSGA + ANN, α = 0.0 81.41% 1.14 75.60% 2.47
OSGA + ANN, α = 0.1 80.19% 1.68 72.38% 6.08
OSGA + ANN, α = 0.2 79.37% 1.17 70.54% 6.10
OSGA + SVM, α = 0.0 81.23% 1.10 73.90% 2.36
OSGA + SVM, α = 0.1 80.46% 1.80 72.19% 0.94
OSGA + SVM, α = 0.2 77.43% 3.55 71.89% 0.70
OSGP, ms = 50 79.72% 1.80 75.32% 0.45
OSGP, ms = 100 75.50% 4.95 71.63% 2.75
OSGP, ms = 150 79.20% 6.60 75.75% 2.16

Table 6.12. Modeling results for melanoma diagnosis

Using TMs Not using TMs
Modeling Method Test accuracies Test accuracies

μ σ μ σ
LR, full features set 73.81% 3.39 71.09% 4.14
OSGA + LR, α = 0.0 72.45% 4.69 72.36% 2.30
OSGA + LR, α = 0.1 74.73% 2.35 72.09% 4.01
OSGA + LR, α = 0.2 73.85% 2.54 72.70% 2.02
OSGA + kNN, α = 0.0 68.77% 2.38 71.00% 1.97
OSGA + kNN, α = 0.1 71.33% 0.27 70.21% 3.41
OSGA + kNN, α = 0.2 67.33% 0.31 69.65% 3.14
OSGA + ANN, α = 0.0 74.78% 1.63 69.17% 2.97
OSGA + ANN, α = 0.1 73.81% 2.23 71.82% 0.61
OSGA + ANN, α = 0.2 74.12% 1.03 71.40% 0.49
OSGA + SVM, α = 0.0 69.72% 7.57 68.87% 4.78
OSGA + SVM, α = 0.1 71.75% 4.88 68.22% 1.88
OSGA + SVM, α = 0.2 61.48% 3.99 63.20% 2.09
OSGP, ms = 50 71.24% 9.54 74.89% 3.66
OSGP, ms = 100 69.91% 5.20 65.16% 13.06
OSGP, ms = 150 71.79% 4.31 70.13% 3.60
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Table 6.13. Modeling results for respiratory system cancer diagnosis

Using TMs Not using TMs
Modeling Method Test accuracies Test accuracies

μ σ μ σ
LR, full features set 91.32% 0.37 85.97% 0.27
OSGA + LR, α = 0.0 91.57% 0.46 86.41% 0.36
OSGA + LR, α = 0.1 91.16% 1.18 85.80% 0.45
OSGA + LR, α = 0.2 89.45% 0.37 85.02% 0.15
OSGA + kNN, α = 0.0 90.98% 0.84 87.09% 0.46
OSGA + kNN, α = 0.1 90.01% 2.63 87.01% 0.83
OSGA + kNN, α = 0.2 90.16% 0.74 86.92% 0.81
OSGA + ANN, α = 0.0 90.28% 1.63 85.97% 4.07
OSGA + ANN, α = 0.1 90.99% 1.97 85.82% 4.52
OSGA + ANN, α = 0.2 88.64% 1.87 87.24% 1.91
OSGA + SVM, α = 0.0 89.03% 1.38 83.12% 3.79
OSGA + SVM, α = 0.1 89.91% 1.58 86.25% 0.79
OSGA + SVM, α = 0.2 88.33% 1.94 84.66% 2.06
OSGP, ms = 50 89.58% 2.75 85.98% 5.74
OSGP, ms = 100 90.44% 3.02 86.54% 6.02
OSGP, ms = 150 89.58% 3.75 87.97% 5.57

In Table 6.14 we summarize the effort of the modeling approaches applied in
this research work: For the combination of GAs and machine learning methods we
document the number of modeling executions, and for GP we give the number of
evaluated solutions (i.e., models).

For the combination of genetic algorithms with linear regression, kNN modeling,
ANNs, and SVMs (with varying variable ratio (vr) weighting factors) as well as GP
with varying maximum tree sizes ms we give the sizes of selected variable sets,
and (where applicable) also k, hn, c, and γ . Obviously there are different variations
in the parameters identified as optimal by the evolutionary process: The numbers of
variables used as well as the neural networks’ hidden nodes vary to a relatively small
extent, e.g., whereas especially the SVMs’ parameters (especially the c factors) vary
very strongly.

Table 6.14. Effort in terms of executed modeling runs and evaluated model structures

Modeling Modeling executions
Method vr f w = 0.0 vr f w = 0.1 vr f w = 0.2

μ σ μ σ μ σ
LR 3260.4 717.8 2339.6 222.6 2465.2 459.2
kNN 2955.3 791.8 3046.0 362.4 3791.3 775.9
ANN 3734.0 855.9 3305.0 582.6 3297.0 475.9
SVM 2950.0 794.8 2846.0 391.4 3496.7 859.8

Modeling Evaluated solutions (models)
Method ms = 50 ms = 100 ms = 150

μ,σ μ,σ μ,σ
OSGP 1483865.0, 1999913.3, 2238496.7,

674026.2 198289.1 410123.6
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Table 6.15. Optimized parameters for linear regression

Problem Instance, Variables used
vr weighting μ σ

BC, α = 0.0 16.6 2.10
TM α = 0.1 11.8 1.50

α = 0.2 6.4 0.60
BC, α = 0.0 9.6 1.15
no TM α = 0.1 8.8 0.58

α = 0.2 6.4 1.20

Mel, α = 0.0 16.6 0.55
TM α = 0.1 12.2 0.84

α = 0.2 9.2 4.09
Mel, α = 0.0 10.8 1.79
no TM α = 0.1 8.8 2.28

α = 0.2 8.2 1.92

RSC, α = 0.0 17.2 2.95
TM α = 0.1 13.4 2.51

α = 0.2 9.0 2.55
RSC, α = 0.0 16.0 4.64
no TM α = 0.1 9.6 0.89

α = 0.2 8.6 3.21

Table 6.16. Optimized parameters for kNN modeling

Problem Instance, Variables used k
vr weighting μ σ μ σ

BC, α = 0.0 18.2 2.20 9.8 2.10
TM α = 0.1 14.0 3.60 12.6 4.60

α = 0.2 11.0 1.80 11.2 3.00
BC, α = 0.0 14.4 1.67 11.2 1.64
no TM α = 0.1 14.0 2.45 13.8 3.11

α = 0.2 11.8 0.84 18.8 1.10

Mel, α = 0.0 15.6 1.82 17.8 2.86
TM α = 0.1 16.4 1.34 14.4 5.90

α = 0.2 13.6 1.67 19.4 1.34
Mel, α = 0.0 15.0 1.58 14.2 1.10
no TM α = 0.1 10.4 1.52 18.2 1.64

α = 0.2 9.6 1.14 16.8 2.05

RSC, α = 0.0 14.6 1.67 20.0 0.00
TM α = 0.1 13.6 1.67 16.8 6.06

α = 0.2 10.4 1.52 12.8 3.90
RSC, α = 0.0 15.6 2.79 15.2 1.64
no TM α = 0.1 12.2 1.10 10.6 1.82

α = 0.2 10.2 2.95 13.2 2.95

Table 6.17. Optimized parameters for ANNs

Problem Instance, Variables used hn
vr weighting μ σ μ σ

BC, α = 0.0 17.0 1.20 75.6 20.80
TM α = 0.1 14.8 3.40 51.0 5.80

α = 0.2 11.0 0.80 35.8 13.00
BC, α = 0.0 12.6 1.41 82.4 23.46
no TM α = 0.1 12.2 0.89 70.8 26.40

α = 0.2 11.2 1.10 68.2 14.58

Mel, α = 0.0 19.6 2.19 56.8 13.31
TM α = 0.1 12.8 2.28 61.0 2.55

α = 0.2 15.6 5.18 51.2 6.98
Mel, α = 0.0 15.4 2.51 68.6 14.24
no TM α = 0.1 8.2 1.64 59.8 3.83

α = 0.2 8.0 1.00 58.6 5.81

RSC, α = 0.0 13.4 3.44 64.6 10.97
TM α = 0.1 11.2 2.28 68.2 6.69

α = 0.2 8.2 1.64 60.2 13.92
RSC, α = 0.0 13.2 2.28 71.2 12.38
no TM α = 0.1 12.2 2.05 70.6 12.99

α = 0.2 11.6 2.19 64.4 14.24
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Table 6.18. Optimized parameters for SVMs

Problem Instance, Variables used C γ
vr weighting μ σ μ σ μ σ

BC, α = 0.0 21.6 3.50 101.50 92.30 0.05 0.06
TM α = 0.1 18.8 3.50 12.44 13.85 0.09 0.01

α = 0.2 16.0 2.00 64.79 67.59 0.04 0.01
BC, α = 0.0 15.6 1.83 47.16 12.63 0.05 0.05
no TM α = 0.1 15.4 1.10 22.50 25.88 0.07 0.04

α = 0.2 13.0 2.65 8.14 10.09 0.07 0.04

Mel, α = 0.0 13.0 4.53 166.23 236.61 0.27 0.25
TM α = 0.1 10.8 3.42 204.74 210.43 0.18 0.19

α = 0.2 4.2 2.95 123.08 44.14 0.26 0.20
Mel, α = 0.0 21.4 6.95 116.21 196.73 0.41 0.30
no TM α = 0.1 19.8 1.64 492.73 8.10 0.48 0.41

α = 0.2 14.4 3.29 310.17 208.60 0.36 0.35

RSC, α = 0.0 21.2 8.50 183.54 95.38 0.27 0.26
TM α = 0.1 14.6 1.14 74.56 67.98 0.09 0.10

α = 0.2 11.2 3.83 37.55 68.31 0.45 0.35
RSC, α = 0.0 13.4 4.10 23.14 31.91 0.35 0.25
no TM α = 0.1 12.4 3.21 144.73 96.79 0.19 0.08

α = 0.2 12.4 3.21 376.66 206.84 0.09 0.10

Table 6.19. Number of variables used by models returned by OSGP

Problem Instance, Variables used by returned model
maximum tree size ms μ σ

BC, ms = 50 9.0 2.74
TM ms = 100 9.6 1.34

ms = 150 17.8 0.45
BC, ms = 50 10.5 0.71
no TM ms = 100 10.0 1.41

ms = 150 11.5 0.71

Mel, ms = 50 10.2 2.05
TM ms = 100 10.0 2.55

ms = 150 12.0 2.00
Mel, ms = 50 8.0 1.58
no TM ms = 100 8.8 0.84

ms = 150 11.4 3.36

RSC, ms = 50 7.8 2.05
TM ms = 100 12.0 2.35

ms = 150 12.0 1.22
RSC, ms = 50 9.4 3.91
no TM ms = 100 12.2 2.17

ms = 150 13.6 3.13

6.6 Conclusion

We have described the data based identification of mathematical models for the tu-
mor markers AFP, CA-125, CA15-3, CEA, CYFRA, and PSA as well as selected
tumors, namely breast cancer, melanoma, and respiratory system cancer. Data col-
lected at the General Hospital Linz, Austria have been used for creating models that
predict tumor marker values and tumor diagnoses; several different techniques of
applied statistics and computational intelligence have been applied, namely linear
regression, kNN learning, artificial neural networks, support vector machines (all
optimized using evolutionary algorithms), and genetic programming.

On the one hand, it seems that none of the methods used here produced the best
results for all modeling tasks; in two cases (AFP and CYFRA) ANNs produced
models that perform best on test data, in all remaining four cases (CA-125, CA15-3,
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CEA, and PSA) extended genetic programming has produced best results. Addition-
ally, we here see that in those modeling cases, for which GP found best results, these
best results (produced by GP) are significantly better than those produced by other
methods; for the other two modeling tasks, results found by linear regression were
almost quite as good as the best ones (trained used ANNs). I.e., for those medical
modeling tasks described here, GP performs best among those techniques that are
able to identify nonlinearities (ANNs, SVMs, GP). Furthermore, we also see that
GP results show less overfitting than those produced using other methods.

On the other hand, the investigated diagnoses of breast cancer, melanoma, and
respiratory system cancer can be estimated correctly in up to 81%, 74%, and 91%
of the analyzed test cases, respectively; without tumor markers up to 75%, 74%,
and 88% of the test samples are correctly estimated, respectively. Linear modeling
performs well in all modeling tasks, feature selection using genetic algorithms and
nonlinear modeling yield even better results for all analyzed modeling tasks. No
modeling method performs best for all diagnosis prediction tasks.
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