
Chapter 4
Stable Scheduling with Random Processing
Times

Wojciech Bożejko, Paweł Rajba, and Mieczysław Wodecki

Abstract. In this work stability of solutions determined by algorithms based on
tabu search method for a certain (NP-hard) one-machine arrangement problem was
examined. The times of tasks performance are deterministic and they also constitute
random variables of the standard or the Erlang’s schedule. The best results were
obtained when as a criterion to choose an element from the neighborhood convex
combinations of the first and the second moments of the random goal function were
accepted. In this way determined solutions are stable, i.e. little sensitive to parame-
ters random changes.1

4.1 Introduction

Research concerning problems of algorithms arrangement refers mainly to deter-
ministic models. To solve such problems, which belong in the majority of cases
to the strongly NP-hard class, rough algorithms are applied successfully. They are
mainly based on local optimalization methods: simulated annealing, tabu search and
a genetic algorithm. Determined by these algorithms solutions only slightly differ
from best solutions. However, in practice, in the course of a process realisation (ac-
cording to the fixed schedule) it appears very often that certain parameters (e.g. the
task completion time) are different from the initial ones. By the lack of the solutions

Wojciech Bożejko
Institute of Computer Engineering, Control and Robotics,
Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
e-mail: wojciech.bozejko@pwr.wroc.pl

Paweł Rajba · Mieczysław Wodecki
Institute of Computer Science, University of Wrocław, Joliot-Curie 15,
50-383 Wrocław, Poland
e-mail: {pawel.rajba,mwd}@ii.uni.wroc.pl

1 The work was supported by MNiSW Poland, within the grant No. N N514 232237.

R. Klempous et al. (eds.), Advanced Methods and Applications in Computational Intelligence, 61
Topics in Intelligent Engineering and Informatics 6,
DOI: 10.1007/978-3-319-01436-4_4, c© Springer International Publishing Switzerland 2014

62 W. Bożejko, P. Rajba, and M. Wodecki

stability in the fixed schedule there may occur a big mistake, which makes such
a schedule unacceptable. That’s why there is a necessity to construct such models
and methods of their solutions that would take into account potential changes in the
course of parameters process realisation and generate stable solutions.

Problems of arrangements with uncertain data may be solved using methods
based on elements of probability calculus (van den Akker and Hoogeveen [25],
Vondrák [30], Dean [5], Cai [4] or fuzzy sets theories (Prade [22], Itoh and Ishii
[10]). They make it possible to consider uncertainties already at the stage of the
mathematical model construction or directly in algorithms being constructed.

In this work we deal with the one-machine problem of tasks arrangement with
the latest completion times and the minimalisation of the costs sum of tardy tasks.
Times of tasks completion are deterministic and constitute random variables of a
standard or the Erlang’s schedule. On the basis of this problem the resistance to a
random variable of constructive solutions of parameters according to tabu search
metaheuristics is examined. The paper constitutes a continuation of work presented
in Bożejko et al. [2].

4.2 Problem Definition and Method of Its Solution

Algorithms based on the tabu search method have been applied successfully to solve
NP-hard problems of combinatorial optimalization to date. They are simple to be
implemented and comparative results in literature show that determined by these
algorithms solutions only slightly differ from the best ones.

4.2.1 Single Machine Scheduling Problem

In this problem each task from the set J ={1,2, ... ,n} should be performed uninter-
ruptedly on a machine which in any moment can do at most one task. For a task i,
let pi, di,wi be the execution time, the expected completion time and the penalty for
a delay of a task. Such a sequence of tasks’ performance should be determined in a
way that the penalty sum is minimal.

Let Π be a set of permutations of elements from J . For any permutation π∈ Π
by Cπ(i) = ∑i

j=1 pπ(j) we denote the completion time of i-th task] in a permutation
π . Then

Uπ(i) =

{
0, if Cπ(i) ≤ dπ(i),
1, otherwise,

(4.1)

we call the task delay, wπ(i) ·Uπ(i) the penalty for delay and

F(π) =
n

∑
i=1

wπ(i)Uπ(i) (4.2)

the permutation cost.

4 Stable Scheduling with Random Processing Times 63

The problem of Minimization of the Total Weighted of Late jobs (abbrev.
MTWL) consist in determining such a permutation π∗ ∈ Π that

F(π∗) = min{F (β) : β ∈ Π}.

In literature (see [9]) this problem is indicated as 1||∑wiUi and it belongs to the
strongly NP-hard problems class (Karp [13]). Such problems heve been studied for
quite long together with many variations, especially with polynomial computational
complexity.

For the problem 1|pi = 1|∑wiUi (all the processing times are identical) Monma
[17] has presented an algorithm with O(n) complexity. Similarly, for the problem
1|wi = c|∑Ui, (where the cost function factors are identical) there is the Moore
algorithm [18] with O(n lnn) complexity. Lawler [15] has adapted the Moore algo-
rithm to solve the problem 1|pi < p j ⇒ wi ≥ wj|∑wiUi. Problems with the earliest
starting times compose another group ri. Kise et al. [12] have proven that even the
problem of late tasks minimization (1|ri|∑Ui without the cost function weight) is
strongly NP-hard. They have also presented a polynomial algorithm that has com-
putational complexity O(n2) for a particular example, the 1|ri < r j ⇒ di ≤ d j|∑Ui

problem.
If a partial order relation is given on the set of tasks, the MTWL problem is

strongly NP-hard even when the task realization times are unities (Garey and John-
son [6]). Lenstra and Rinnoy Kan [16] have proven that if a partial order relation is
a union of independent chains, the problem is also strongly NP-hard.

Optimal algorithms of this solution based on the dynamic programming method
were presented by Lawler and Moor [14]; a pseudo-polynomial algorithm with the
computational complexity O(nmin{∑ j p j, max j{d j}}) and based on the branch and
bound method - by Potts [20], Sourd [26] and Wodecki [27]. Exact algorithms make
it possible to determine optimal solutions effectively only if the number of tasks
does not exceed 50 (80 in a multi-processor neighborhood, [27]).

Therefore, in practice only rough algorithms are applied (mainly metaheuristics)
constituting adaptation of algorithms of the problem solution 1||∑wiTi, ([3]). We
can refer to the models and algorithms of Józefowska [11] for a detailed survey on
the models and algorithms developed in this area.

4.3 Problem Description and Preliminaries

Each schedule of jobs can be represented by permutation π =(π(1),π(2), ... ,π(n))
on set J . Let Π denote the set of all such permutations. The total cost of π ∈ Π is

n
∑

i=1
wπ(i)Uπ(i), where Cπ(i) =

i
∑
j=1

pπ(j) is a completion time of the job π(i).

Job π(i) is considered as early one, if it is completed before its due date (i.e.
Cπ(i) ≤ dπ(i)), or tardy if the job is completed after its due date (i.e. Cπ(i) > dπ(i)).

64 W. Bożejko, P. Rajba, and M. Wodecki

Each permutation π ∈Π is decomposed into m (m≤ n) subsequences B1,B2, . . . ,
Bm, called blocks in π , each of them contains the jobs having in common specific
properties, where

1. Bk = (π(fk),π(fk + 1), . . . ,π(lk − 1)),π(lk)), lk−1 + 1 = fk ≤ lk,
k = 1,2, ...,m, l0 = 0, lm = n.

2. All the jobs j ∈ Bk satisfy the following condition:
either

d j ≥Cπ(lk), (C1),
or

d j < Sπ(fk)+ p j, (C2),

where Sπ(fk) is a starting time of the job π(fk), i.e. Sπ(fk) = Cπ(fk) − pπ(fk).
Clearly, each job j ∈ Bk satisfying Condition C1 (or C2) is a early (or tardy)
one in π .

3. Bk is maximal subsequence of π in which all the jobs satisfy either Condition
C1 or Condition C2.

Jobs π(fk) and π(lk) in Bk are the first and last ones, respectively. Note that a
block can contain only one job, i.e. |Bk| = 1, and then fk = lk. Note that all the
blocks are connected "in series" in permutation π . By definition, there exist two
type of blocks implied by either C1 or C2. To distinguish them, we will use the E-
block and T-block notions (or alternatively BE

k and BT
k), respectively (see Figure 4.1).

Example 1. Let us consider the n=10 jobs’ instance that is specified in Table 4.1.

Table 4.1. Data for the instance

i 1 2 3 4 5 6 7 8 9 10
pi 2 3 1 2 3 2 3 3 2 4
di 12 19 12 9 5 1 17 24 19 3
wi 3 1 2 5 3 3 4 2 4 5

Let π = (1,2,3,4,5,6,7,8,9,10). Permutation π contains five blocks, (i.e. m =
5), l1 = 1, f1 = 4, l2 = 5, f2 = 6, l3 = f3 = 7, l4 = f4 = 8, l5 = 9 and f5 = 10.
Blocks B1 = (1,2,3,4), B2 = (5,6), B3 = (7), B4 = (8) and B5 = (9,10). There are:
three E-blocks: B1,B3,B4, and two T-blocks: B2 and B5. These blocks are shown on
Figure 4.1.

Let
Fk(π) = ∑

j∈Bk

wjUj,

be a partial value of the objective associated with the block Bk in π . It is clear that
by the definition of blocks in π , we have

F(π) =
m

∑
k=1

Fk(π).

4 Stable Scheduling with Random Processing Times 65

Fig. 4.1. Blocks in permutation π

It is evident that by Condition C1, for any permutation of jobs within an E-block BE
k

of π , (i.e. in the positions fk, fk + 1, ..., lk − 1, lk of BE
k) , we have

Fk(π) = ∑
j∈BE

k

wjUj = 0. (4.3)

With respect to T-blocks BT
k in π , it should be noticed that by Condition C2, for

any permutation of jobs within BT
k (i.e. in the positions fk, fk + 1, ..., lk − 1, lk of

BT
k), all the jobs are tardy. Therefore, an optimal sequence of the jobs within BT

k of
π can be obtained, using well-known Weighted Shortest Processing Time (WSPT)
rule, proposed by Smith [24]. The WSPT rule creates an optimal sequence of the
jobs in the non-increasing order of the ratios wj/p j.

Let
−→
B T

k denote a T-block of the jobs from BT
k of π ordered by the WSPT rule,

then we have
Fk(π) = ∑

j∈BT
k

wjUj ≥ ∑
j∈−→

B T
k

w jUj =
−→
F k(π). (4.4)

where the jobs from BT
k are ordered in any permutation.

Fundamental Block Properties of the MTWL problem are derived from the fol-
lowing Theorem.

Theorem 4.1. Let π ∈ Π be any permutation with blocks B1,B2, ...,Bm, and let the
jobs of each T-block of π to be ordered according to the WSPT rule. If the permuta-
tion β has been obtained from π by an interchange of jobs that F(β)< F(π), then
in β

(i) at least one job from Bk precedes at least one job from blocks B1,B2, ...,Bk−1,
for some k ∈ {2,3, . . . ,m}, or

(ii) at least one job from Bk succeeds at least one job from blocks Bk+1,Bk+2, ...,Bm

for some k ∈ {1,2, . . . ,m− 1}.

Proof. Without loss of generality and for the simplicity of denotation one can assume
that π(i) = i. Thus π takes the form

π = (1,2, ..., l1, f2, f2 + 1, ..., l2, ..., fk, fk + 1, ..., lk, ..., fm, fm + 1, ...,n),

where

66 W. Bożejko, P. Rajba, and M. Wodecki

Bk = (fk, fk + 1, ..., lk), k = 1,2, ...,m,

and

F(π) =
m

∑
k=1

Fk(π) =
m

∑
k=1

lk

∑
j= fk

w jUj.

Suppose that the theorem is false, and let β be an arbitrary permutation of the fol-
lowing form

β = (x1
1,x

1
2, ...,x

1
t1 ,x

2
1,x

2
2, ...,x

2
t2 , ...,x

k
1,x

k
2, ...,x

k
tk , ...,x

m
1 ,x

m
2 , ...,x

m
tm), (4.5)

where Xk = (xk
1,x

k
2, ...,x

k
tk), k = 1,2, ...,m, is any permutation of (fk, fk + 1, ..., lk),

i.e. any permutation of the jobs from block Bk of π , then it is easy to verify that the
thesis of the theorem does not hold for β .

Now, for permutation β , we have

F(β) =
m

∑
k=1

Fk(β) =
m

∑
k=1

∑
j∈Xk

wjUj.

Since {xk
1,x

k
2, ...,x

k
tk} = { fk, fk + 1, ..., lk} for k = 1,2, ...,m , then

Fk(π) = Fk(β)

whenever the permutations of jobs within both Xk and Bk are the same. Hence, since
the jobs from Xk of β are ordered in any permutation, then, for each T-block

−→
B T

k of
π , using (4.4), we get

Fk(β) = ∑
j∈Xk

wjUj ≥ ∑
j∈−→

B T
k

w jUj =
−→
F k(π),

where the jobs from
−→
B T

k are ordered by the WSPT rule, according to the assumption
of the theorem.

Further, for each E-blocks BE
k of π , using (4.3), we have

Fk(β) = Fk(π) = 0.

Therefore, for each block Bk of π , we get

Fk(β)≥ Fk(π).

Hence, for any permutation β given by (4.5), we get

F(β) =
m

∑
k=1

Fk(β)≥
m

∑
k=1

Fk(π) = F(π),

which contradicts the assumption of the theorem. ��

4 Stable Scheduling with Random Processing Times 67

Note that Theorem 4.1 provides the necessary condition to obtain a permutation β
from π such that F(β)< F(π).

In any permutation of jobs from T-block BE , each job is early in permutation π .
Using this property we present the algorithm of determining the first E-block in π .

Algorithm AE-block
Input: permutation π = (π(1),π(1), ... ,π(n));
Output: subpermutation (E-block) BE = (π(l),π(l + 1), ... ,π(k− 1),π(k));

Let π(l) be the first job in π such, that Cπ(l) ≤ dπ(l);
BE ← π(l); k ← l;
while

∣∣BE
∣∣= k− l+ 1 and k < n do

begin
if (Cπ(k+1) ≤ dπ(k+1)) and
(if (for all π(i) ∈ BE , Cπ(i) ≤ dπ(k+1))) then BE ← BE ∪{π(k+ 1)};
k ← k+ 1

end.

Computational complexity of this algorithm is O(n).
In any permutation of jobs from T-block BT , each job in permutation π is late.

Similarly, like for T-block, on the basis of the above definition, we announce the
algorithm of determining the first T-block in the permutation π .

Algorithm AT-block
Input: permutation π = (π(1),π(1), ... ,π(n));
Output: subpermutation (T-block) BT = (π(v),π(v+ 1), ... ,π(r− 1),π(r));

Let π(t) be the first job in π such, that Cπ(v) > dπ(v).

BT ← π(v); Pf irst ←Cπ(v)− pπ(v); r ← t;
while

∣∣BT
∣∣= r− v+ 1 and r < n do

begin
if Pf irst + pπ(r+1) > dπ(r+1) then BT ← BT ∪{π(r+ 1)};
r ← r+ 1

end.

Computational complexity of the above algorithm is O(n).
Considering in turn, jobs in permutation π (beginning from π(1)) and applying

respectively algorithm AE-block or AT-block, we will break π into E and T blocks.
Computational complexity of this break is O(n).

4.3.1 The Tabu Search Method

Rough algorithms are used mainly to solve NP-hard problems of discrete optimiza-
tion. Solutions determined by these algorithms are found to be fully satisfactory
(very often they differ from the best known solutions approximately less than a few

68 W. Bożejko, P. Rajba, and M. Wodecki

percent). One of realizations of constructive methods of these algorithms is tabu
search, whose basic elements are

• movement – a function which transforms one task into another,
• neighborhood – a subset of acceptable solutions set,
• tabu list – a list which contains attributes of a number of examined solutions.

Let π ∈ Π be a starting permutation, LT S a tabu list and π∗ the best solution
found so far.

Algorithm Tabu Search (TS)
1 repeat
2 Determine the neighborhood N (π) of permutation π ;
3 Delete from N (π) permutations forbidden by the list LTS;
4 Determine a permutation δ ∈ N (π), such that
5 F(δ) = min{F(β) : β ∈ N (π)};
6 if (F(δ)< F(π∗)) then
7 π∗ := δ ;
8 Place attributes δ on the list LTS;
9 π := δ
10 until (the completion condition).

4.3.2 Movement and Neighborhood

Let us notice that Theorem 1 provides the necessary condition to obtain a permuta-
tion β from π such that F(β)< F(π).

Let B = [B1,B2, ... ,Bv] be an ordered partition of the permutation π ∈ Π into
blocks. If a job π(j) ∈ Bi (Bi ∈ B), therefore existang moves, which can improve
goal function value, consist in reordering a job π(j) before the first or after the last
job of this block. Let M b f

j and M a f
j be sets of such moves (obviously M b f

1 =

M a f
v =�). Therefore, the neighborhood of the permutation π ∈ Π has the form of

M (π) =
n⋃

j=1

M b f
j ∪

n⋃

j=1

M a f
j . (4.6)

The neighborhood of the π is a set of permutations

N (π) = {m(π) : m ∈M (π)}. (4.7)

To prevent from arising cycle too quickly (returning to the same permutation after
some small number of iterations of the algorithm), some attributes of each move are
saved on so-called tabu list (list of the prohibited moves). This list is served as a
FIFO queue.

4 Stable Scheduling with Random Processing Times 69

By implementing an algorithm from the neighborhood permutations whose at-
tributes are on the tabu list LTS are removed.

Generally, in our algorithm, for the given initial permutation, we identify the
blocks (if there is more than one partition of the permutation into blocks, any of
them can be used), and order the jobs of each T-block according to the WSPT rule.
Then, for the resulting (basic) permutation π , we calculate F(π), create the set of
moves ME , compound move v̂, and the permutation πv̂. Next, the search process of
algorithm is repeated for the new initial permutation πv̂ until a given number of iter-
ations is reached. According to the philosophy of tabu search, the compound move
cannot contain the single moves with a status tabu; these moves are not allowed.

4.3.3 The Tabu Moves List

To prevent a cycle from arising some attributes of each movement are put on the list
of tabu moves.

In our algorithm we use the cyclic tabu list defined as a finite list (set) LT S with
length LengthT containing ordered triplets. The list LT S is a realization of the short-
term search memory. If a move v = (x,y) is performed on permutation π , then, a
triplet (π(x),y,F(πv)) is added to LT S. If the compound move v̂ is performed, then
the triplet corresponding to each move from v̂ is added to the tabu list. Each time
before adding a new element to LT S, we must remove the oldest one. With respect
to a permutation π , a move v = (x,y) is forbidden i.e. it has tabu status, if there is a
triplet (r,s,φ) in LT S such that π(x) = r, y = s, and F(πv)≥ φ .

As mentioned above, our algorithm uses a tabu list with dynamic length. This
length is changed, as the current iteration number iter of algorithm increases, using
a “pick“ that can be treated as a specific disturbance (diversification).

This kind of tabu list was employed on those very fast tabu search algorithms pro-
posed by Grabowski and Wodecki, where it was successfully applied to the classical
flow shop and job shop problems [7, 8]. Here, we extend this component of algo-
rithm in the original form [7], to the problem considered. In this tabu list, length
LengthT is a cyclic function shown in Figure 4.2, and defined by the expression

LengthT =

⎧
⎨

⎩

LT S, if W (l)< iter ≤W (l)+ h(l),

LT S+ψ , if W (l)+ h(l)< iter ≤W (l)+ h(l)+H,

where l = 1,2, ... is the number of the cycle, W (l) = ∑l
s=1 h(s− 1)+ (l − 1)×H

(here h(0) = 0). Further, H is the width of the pick equal to ψ , and h(l) is the
interval between the neighbour pick equal to 3×LTS. If LengthT decreases, then
a suitable number of the oldest elements of tabu list LT S is deleted and the search
process is continued. The LT S and ψ are tuning parameters which are to be chosen
experimentally.

70 W. Bożejko, P. Rajba, and M. Wodecki

Fig. 4.2. Dynamic tabu list

4.4 Stochastic Processing Times

In literature there has been explored a problem of arrangement with random times
tasks, mainly with a normal or a uniform distribution (van den Akker Hoogeveen
[25]) and an exponential one (Pinedo [19]).

We consider a set of n jobs J = {1,2, . . . ,n} to be processed on a single machine.
The job processing times p̃i (i = 1,2, . . . ,n) are independent random variables. Then
for a determined sequence of occurring tasks in a permutation π the completion time
of a task performance C̃π(i) = ∑i

j=1 p̃π(j is a random variable. Random variables are

delays Ũπ(i) = 0 when C̃π(i) ≤ dπ(i) and Ũπ(i) = 1 when C̃π(i) > dπ(i) as well as the
goal function

F̃ (π) =
n

∑
i=1

wπ(i)Ũπ(i). (4.8)

In the tabu search (TS) algorithm selecting the best element from an environment
(instruction 5) is comparable with the goal function values. As (4.8) is a random
variable we replace it with a convex combination of the expected value and the
standard deviation

W (π) = c ·E(F̃ (π))+ (1− c) ·D(F̃(π)) (c ∈ [0,1]). (4.9)

In the probabilistic version of an algorithm in a place of a goal function F (in-
structions 5 and 6) there should be placed a function W defined in (4.9).

4 Stable Scheduling with Random Processing Times 71

4.4.1 Normal Distribution

Let’s assume that the times of tasks performance p̃i, i∈J are independent random
variables with a normal distribution with an average mi and a standard deviation
σ i i.e. p̃i ∼ N(mi,σi). Then, the time of completion of a task performance C̃i (per-
formed as i-th in a sequence) is a random variable with a normal distribution with

an average m(i) = ∑i
j=1 m j and a standard deviation σ (i) =

√
∑i

j=1 σ2
j .

The delay of a task Ũi (according to (4.6)) is also a random variable whose ex-
pected value is:

E(Ũi) = ∑
x

x∗P(Ũi = x) = 0 ∗P(C̃i ≤ di)+ 1 ∗P(C̃i > di) = 1−Φ(δ i),

where Φ is a cumulative distribution function of a normal distribution N(0,1), and a

parameter δ i = di−m(i)

σ (i) .
In that case, the expected value of a goal function (4.8) equals

E(F̃ (π)) = E(
n

∑
i=1

wi ∗Ũi) =
n

∑
i=1

wi ∗E(Ũi) =
n

∑
i=1

wi ∗ (1−Φ(δ i)). (4.10)

It’s easy to notice that E(Ũ2
i) = 1−Φ(δ i), therefore

D2(Ũi) = E(Ũ2
i)− (E(Ũi)

2 = Φ(δ i)(1−Φ(δ i)). (4.11)

Making use of (4.8) and (4.11) we get

D2(F̃ (π)) =
n

∑
i=1

wiΦ(δ i)(1−Φ(δ i))+ 2 ∑
i< j

wiwjcov(Ũi,Ũ j).

In line with the covariance definition

cov
(

Ũi, Ũ j

)
= E
(

Ũi,Ũ j

)
−E
(

Ũi

)
E
(

Ũj

)
=

E
(

Ũi,Ũ j

)
− (1−Φ

(
δ i))(1−Φ

(
δ j)) .

It’s possible to prove easily that the expected value

E(Ũi,Ũ j) = (1−Φ(δ i))(1−Φ(γ j)),

where γ j = 1√
1−ρ2

(
d j−m(j)

σ (j) −ρ di−m(i)

σ (i)

)
and ρ2 = (σ (i))2

(σ (j))2 . Thus,

cov
(

Ũi, Ũ j

)
=
(
1−Φ

(
δ i))(1−Φ

(
γ j))− (1−Φ

(
δ i))(1−Φ

(
δ i))=

(
1−Φ

(
δ i))(Φ

(
δ i)−Φ

(
γ j)) .

72 W. Bożejko, P. Rajba, and M. Wodecki

Summarizing the goal function variance

D2 (F (π)) =
n

∑
i=1

wiΦ
(
δ i)(1−Φ

(
δ i))+ 2 ∑

i< j
wiwjcov

(
Ũi, Ũ j

)
=

n

∑
i=1

wiΦ
(
δ i)(1−Φ

(
δ i))+ 2 ∑

i< j

wiwj[
(
1−Φ

(
δ i))(Φ

(
δ i)−Φ

(
γ j))]. (4.12)

Therefore, to calculate the value W (π) determined in (4.9), (4.10) and (4.12) should
be used.

4.4.2 The Erlang’s Distribution

Let’s assume that the time of tasks’ performance has the Erlang’s distribution p̃i ∼
E (αi,λ), i ∈ J. Then, the time of completing the task execution (in a permutation
π = (1,2, . . . ,n)) C̃i = ∑i

j=1 p̃ j ∼ E (α1 + . . .+αi,λ).
Let Fi(x) = Fp̃1+...+ p̃i(x) be the cumulative distribution function of the time of

completion of the i-th task C̃i execution. The expected value

E(Ũi) = 0 ·P(C̃i ≤ di)+ 1 ·P(C̃i > di) = 1−Fi(di)

and

E(F̃ (π)) = E

(
n

∑
i=1

wiŨi

)
=

n

∑
i=1

wiE
(

Ũi

)
=

n

∑
i=1

wi(1−Fi(di)). (4.13)

It’s easy to observe that E(Ũ2
i) = 1−Fi(di), that’s why a variance

D2(Ũi) = D2(
n

∑
i=1

wiŨi) = E(Ũ2
i)− (E(Ũi))

2 = Fi(di)(1−Fi(di)).

Thus,

D2(F̃ (π)) =
n

∑
i=1

wi (Fi(di)(1−Fi(di)))+ 2 ∑
i< j

wiwjcov(Ũi,Ũ j),

The covariance cov(Ũi,Ũ j) between variables Ũi and Ũ j is calculated according to
the formulae

cov(Ũi,Ũ j) = E(ŨiŨ j)−E(Ũi)E(Ũ j).

Finally,

D2(F̃ (π)) =
n

∑
i=1

wi(Fi(di)(1−Fi(di)))+

4 Stable Scheduling with Random Processing Times 73

2 ∑
i< j

wiwj(FI+ SI− (1−Fi(di))(1−Fj(d j))), (4.14)

where

FI =
∫ d j

di

∫ ∞

d j−x
fi(x) f j(y)dydx, and SI =

∫ ∞

d j

∫ ∞

0
fi(x) f j(y)dydx.

As a result, in order to calculate the value of a function W (π) determined in (4.9)
the formulae (4.13) and (4.14) should be applied.

4.5 The Algorithms’ Stability

In this section we shall introduce a certain measure which let us examine the in-
fluence of the change of tasks’ parameters on the goal function value (4.2) i.e. the
solution stability.

Let δ = ((p1,w1,d1), . . . ,(pn,wn,dn)) be an example of data (deterministic) for
the MTWL problem. By D(δ) we denote a set of data generated from δ by a dis-
turbance of times of tasks performance. A disturbance consists in changing these
times on random determined values. Disturbed data γ ∈ D(δ) take the form of
γ = ((p′1,w1,d1), . . . ,(p′n,wn,dn)), where the time of execution p′i (i = 1, . . . ,n) is a
realization of a random variable p̃i in the Erlang’s distribution E (λ ,αi) (see Section
4.4.2), and thel expected value is E p̃i = pi.

Let A = {A D , Ã N } where A D i Ã N is the deterministic and the proba-
bilistic algorithm respectively (i.e. solving examples with deterministic or random
times of tasks’ performance) for the MTWL problem. By πδ we denote a solution
(a permutation) determined by the algorithm A for a data δ . Then, let F (A ,πδ ,ϕ)
be the cost of tasks’ execution (4.2) for the example ϕ in a sequence determined by
a solution (a permutation) πδ determined by the algorithm A for data δ . Then,

Δ(A ,δ ,D(δ)) =
1

|D(δ)| ∑
ϕ∈D(δ)

F (A ,πδ ,ϕ)−F (A D ,πϕ ,ϕ)
F (A D ,πϕ ,ϕ)

,

we call the solution stability πδ (of an example δ) determined by the algorithm A
on the set of disturbed data D(δ).

Because in our studies on the πϕ determining as the starting solution in the A
algorithm (tabu search) we have adopted πδ , we have

F (A ,πδ ,ϕ)−F (A ,πϕ ,ϕ)≥ 0 .

Let Ω be a set of deterministic examples for the problem of tasks’ arrangement.
The stability rate of the algorithm A on the set Ω is defined in the following way:

S(A ,Ω) =
1
|Ω | ∑

δ∈Ω
Δ(A ,δ ,D(δ)). (4.15)

74 W. Bożejko, P. Rajba, and M. Wodecki

In the following section we will present numerical experiments that allow com-
parisons of the deterministic stability coefficient S(A D ,Ω) with the probabilistic
stability coefficient S(Ã N ,Ω).

4.6 The Calculation Experiments

Presented in this work algorithms were examined on many examples. The de-
terministic data were generated randomly (for a problem 1||∑wiTi (see [27]))
For a fixed number of tasks n (n = 40,50,100,150, . . .,500,1000) we have de-
termined n tuples (pi,wi,di), i = 1,2, . . . ,n, where the processing time pi and the
cost wi are the realization of a random variable with a uniform distribution, re-
spectively from the range [1,100] and [1,10]. Similarly, the critic lines are drawn
from the range [P(1− T F − RDD/2,P(1− T F + RDD/2] depending on the pa-
rameters RDD (relative range of due dates) and T F (average tardiness factor) from
the set {0.2,0.4,0.6,0.8,1.0}, whereas P = ∑n

i=1 pi. For every couple of parame-
ters RDD,T F (there are 25 such couples) 5 examples have been generated. The
whole deterministic data setΩ contains 1500 examples (125 for every n). On the
basis of each example of deterministic data (pi,wi,di), i = 1,2, . . . ,n, an example of
probabilistic data (p̃i,wi,di) was determined, where p̃i is a random variable (with the
normal/standard or the Erlang’s schedule) representing the time of task performance
(detailed description in Section 4.4.2). The set we denote by Ω̃ .

By initiating of each algorithm the starting permutation was the natural permuta-
tion π = (1,2, . . . ,n). In addition, the following parameters were used:

• the length of list of tabu moves: lnn,
• the maximal number of iterations of an algorithm (the completion condition):

n/2 or n,
• in the formula (4.9) parameter c = 0.8.
• dynamic parameters of tabu list: h = �n/4�, H = �n/10�, LTS = �√(n)� and

ψ = �√(n/4)�.
Calculations of the deterministic algorithm A D were made on the examples from
the set Ω , whereas the probabilistic algorithm ˜A N (normal distribution) and Ã E
(Erlang’s distribution) on examples from the set Ω̃ .

First of all, the quality designated by the algorithms solutions was examined. In
order to do that, for every solution of the example of deterministic data designated
by algorithm A = {A D ,Ã N ,Ã E } relative error was calculated

ε(A) =
FA −F ∗

F ∗ , (4.16)

where FA is a value of a solution set by the algorithm A, and F ∗ a value of the so-
lution set by a very good algoritm presented in the work [28]. The average relative
error (for every set of data) was presented in Table 4.2. According to the expecta-
tions, the best appeared to be a deterministic algorithm A D (for every group of data

4 Stable Scheduling with Random Processing Times 75

the mean error equals 6%)). The error for the two left Ã N and Ã E algorithms is
similar and equals 11% and 12% respectively.

In order to examine the algorithms stability (i.e. the determination of parameter’s
value (4.15)) for each example of deterministic data from the set Ω , 100 examples
of disturbed data were generated (the way of generating is described in Section 4.5).
Each of these examples was solved by the algorithm A D . On the basis of these cal-
culations the stability rates of all three algorithms were determined. The comparable
results are presented in Table 4.2. After completing n iterations the average stability
rate of an algorithm S(A D ,Ω) = 0.36, and the probabilistic coefficient(for times
with the Erlang’s schedule) S(Ã E ,Ω) = 0.07.

It means that the disturbance of a solution determined by an algorithm A D
causes worsening of the goal function value on average by about 36%. In case of
the algorithm A D the worsening equals on average only 7%. As a result, we can
state that the average deviation of the deterministic algorithm is about 5 bigger than
the average deviation of the probabilistic algorithm. For the algorithm A N (with
times with the normal distribution) the rate S(˜A N ,Ω) = 0.24. It means it’s smaller
than the rate of the deterministic algorithm, however, nearly 4 times bigger than the
probabilistic algorithm Ã E . The maximal mistake of an algorithm Ã E does not
exceed 41%, and the deterministic algorithm A D equals over 124%. Calculations
for a bigger number of iterations were made as well. The stability rate of algorithms
improved slightly. The n number of iterations of the algorithm based on the tabu

Table 4.2. Algorithms’ deviation ε(A) and stability S(A ,Ω))

n
Algorithm A D Algorithm Ã N Algorithm Ã E

(deterministic) (normal distribution) (Erlang’s distribution)

Deviation Stability Deviation Stability Deviation Stability

40 0.03 0.62 0.08 0.26 0.05 0.08

50 0.01 0.34 0.07 0.30 0.011 0.07

100 0.04 0.53 0.09 0.19 0.08 0.06

150 0.06 0.31 0.11 0.17 0.09 0.09

200 0.05 0.28 0.07 0.28 0.12 0.09

250 0.03 0.30 0.06 0.11 0.09 0.06

300 0.08 0.36 0.14 0.26 0.28 0.07

350 0.06 0.27 0.09 0.18 0.08 0.02

400 0.05 0.32 0.16 0.25 0.15 0.08

450 0.07 0.25 0.05 0.21 0.06 0.09

500 0.11 0.17 0.16 0.26 0.16 0.07

1000 0.14 0.48 0.16 0.36 0.17 0.09

Average 0.06 0.36 0.11 0.24 0.12 0.15

76 W. Bożejko, P. Rajba, and M. Wodecki

search method is very small. Due to this fact, the average time of calculations of
one example, on a personal computer with a processor Pentium 2.6 GHz, does not
exceed one second.

The calculational experiments proved explicitly that solutions determined by the
probabilistic algorithm with times of tasks performance with the Erlang’s distribu-
tion are the most stable.

4.7 Conclusion

In this work we presented a method of modelling uncertain data by means of random
variables with the normal and the Erlang’s distribution. The Erlang’s distribution, as
much better than other ones, represents times of tasks performance which in the
course of realization are exposed to change (extending). Algorithms based on the
tabu search method were presented for solving a certain single machine problem of
tasks arrangement. The calculations experiments proved that an algorithm in which
times of tasks performance are random variables with the Erlang’s distribution is
very stable. The relative average deviation for disturbed data by a small number of
iterations and a short calculation time does not exceed 7%.

References

1. Beasley, J.E.: OR-Library: distributing test problems by electronic qmail. Journal of the
Operational Research Society 41, 1069–1072 (1990),
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

2. Bożejko, W., Rajba, P., Wodecki, M.: Arrangement Algorithms Stability with Probabilis-
tic Parameters of Tasks. In: Proceedings of the 14th International Asia Pacific Conference
on Computer Aided System Theory, Sydney, Australia, February 6-8 (2012)

3. Bożejko, W., Grabowski, J., Wodecki, M.: Block approach-tabu search algorithm for sin-
gle machine total weighted tardiness problem. Computers & Industrial Engineering 50,
1–14 (2006)

4. Cai, X., Zhou, X.: Single machine scheduling with expotential processing times and
general stochastic cost functions. Journal of Global Optimization 31, 317–332 (2005)

5. Dean, B.C.: Approximation algorithms for stochastic scheduling problems. PhD thesis,
MIT (2005)

6. Garey, M.R., Johnson, D.S.: Scheduling tasks with nonuniform deadlines on two proces-
sor. Journal of ACM 23, 461–467 (1976)

7. Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the permutation flow
shop problem with makespan criterion. Computers and Operations Research 31, 1891–
1909 (2004)

8. Grabowski, J., Wodecki, M.: A very fast tabu search algorithm the job shop problem.
In: Rego, C., Alidaee, A. (eds.) Metaheuristic Optimization via Memory and Evolu-
tion; Tabu Search and Scatter Search, pp. 117–144. Kluwer Academic Publishers, Boston
(2005)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

4 Stable Scheduling with Random Processing Times 77

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and ap-
proximation in deterministic sequencing and scheduling. Annals of Discrete Mathemat-
ics 5, 287–326 (1979)

10. Itoh, T., Ishii, H.: Fuzzy due-date scheduling problem with fuzzy processing times. Int.
Trans. Oper. Res. 6, 639–647 (1999)

11. Józefowska, J.: Just-in-time scheduling. Springer, Berlin (2007)
12. Kise, H., Ibaraki, T., Mine, H.: A solvable case of the one-machine scheduling problem

with ready times and due times. Operations Research 26, 121–126 (1978)
13. Karp, R.M.: Reducibility among Combinatorial Problems. In: Millerand, R.E., Thatcher,

J.W. (eds.) Complexity of Computations, pp. 85–103. Plenum Press, NY (1972)
14. Lawler, E.L., Moore, J.M.: A Functional Equation and its Applications to Resource Al-

location and Sequencing Problems. Management Science 16, 77–84 (1969)
15. Lawler, E.L.: A "pseudopolinomial" algorithm for sequencing jobsto minimize total tar-

diness. Annals of Discrete Mathematics 1, 331–342 (1977)
16. Lenstra, J.K., Rinnoy Kan, A.H.G.: Complexity results for scheduling chains on a single

machine. European Journal of Operational Research 4, 270–275 (1980)
17. Monma, C.I.: Linear-time algorithms for scheduling on parallel processor. Operations

Research 30, 116–124 (1982)
18. Moore, J.M.: An n-job, one machine sequencig algorithm for minimizing the number of

late jobs. Menagement Science 15, 102–109 (1968)
19. Pinedo, M.: Stochastic scheduling with release dates. Operation Research 31, 559–572

(1983)
20. Potts, C.N., Van Wassenhove, L.N.: A Branch and Bound Algorithm for the Total

Weighted Tardiness Problem. Operations Research 33, 177–181 (1985)
21. Potts, C.N., Van Wassenhove, L.N.: Algorithms for Scheduling a Single Machine to Min-

imize the Weighted Number of Late Jobs. Management Science 34(7), 843–858 (1988)
22. Prade, H.: Using fuzzy set theory in a scheduling problem. Fuzzy Sets and Systems 2,

153–165 (1979)
23. Sahni, S.K.: Algorithms for Scheduling Independent Jobs. J. Assoc. Comput. Match. 23,

116–127 (1976)
24. Smith, W.E.: Various Optimizers for Single-Stage Production. Naval Research Logist

Quartely 3, 59–66 (1956)
25. Van den Akker, M., Hoogeveen, H.: Minimizing the number of late jobs in a stochastic

setting usinga chance constraint. Journal of Scheduling 11, 59–69 (2008)
26. Sourd, F., Kedad-Sidhoum, S.A.: A faster branch-and-bound algorithm for the earliness-

tardiness scheduling problem. Journal of Scheduling 11, 49–58 (2008)
27. Wodecki, M.: A Branch-and-Bound Parallel Algorithm for Single-Machine Total

Weighted Tardiness Problem. J. Adv. Manuf. Tech. 37(9-10), 996–1004 (2008)
28. Wodecki, M.: A block approach to earliness-tardiness scheduling problems. Advanced

Manufacturing Technology 40, 797–807 (2009)
29. Villareal, F.J., Bulfin, R.L.: Scheduling a Single Machine to Minimize the Weighted

Number of Tardy Jobs. IEE Trans. 15, 337–343 (1983)
30. Vondrák, J.: Probabilistic methods in combinatorial and stochastic optimization. PhD

thesis, MIT (2005)

	Stable Scheduling with Random Processing Times
	4.1 Introduction
	4.2 Problem Definition and Method of Its Solution
	4.3 Problem Description and Preliminaries
	4.4 Stochastic Processing Times
	4.5 The Algorithms’ Stability
	4.6 The Calculation Experiments
	4.7 Conclusion
	References

