
Chapter 3
Multi-GPU Tabu Search Metaheuristic for the
Flexible Job Shop Scheduling Problem

Wojciech Bożejko, Mariusz Uchroński, and Mieczysław Wodecki

Abstract. We propose a new framework of the distributed tabu search metaheuristic
designed to be executed using a multi-GPU cluster, i.e. cluster of nodes equipped
with GPU computing units. The methodology is designed to solve difficult discrete
optimization problems, such as a job shop scheduling problem, which we introduce
to solve as a case study for the framework designed.

3.1 Introduction

The job shop problem can be briefly presented as follows (see [4]). There is a set of
jobs and a set of machines. Each job consists of a number of operations which have
to be processed in a given order, each one on a specified machine during a fixed time.
The processing of an operation cannot be interrupted. Each machine can process at
most one operation at a time. We want to find a schedule (the assignment of oper-
ations to time intervals on machines) that minimizes the makespan. The job shop
scheduling problem, although relatively easily stated, is strongly NP-hard and it is
considered as one of the hardest problems in the area of combinatorial optimization.

Because of NP-hardness of the problem heuristics and metaheuristics are
recommended as ‘the most reasonable’ solution methods. The majority of these

Wojciech Bożejko
Institute of Computer Engineering, Control and Robotics,
Wrocław University of Technology Janiszewskiego 11-17, 50-372 Wrocław, Poland
e-mail: wojciech.bozejko@pwr.wroc.pl

Mariusz Uchroński
Wrocław Centre of Networking and Supercomputing, Wyb. Wyspańskiego 27,
50-370 Wrocław, Poland
e-mail: mariusz.uchronski@pwr.wroc.pl

Mieczysław Wodecki
Institute of Computer Science, University of Wrocław
Joliot-Curie 15, 50-383 Wrocław, Poland
e-mail: mwd@ii.uni.wroc.pl

R. Klempous et al. (eds.), Advanced Methods and Applications in Computational Intelligence, 43
Topics in Intelligent Engineering and Informatics 6,
DOI: 10.1007/978-3-319-01436-4_3, c© Springer International Publishing Switzerland 2014

44 W. Bożejko, M. Uchroński, and M. Wodecki

methods refer to the makespan minimization. We mention here a few recent stud-
ies: Jain, Rangaswamy, and Meeran [20]; Pezzella and Merelli [28]; Grabowski and
Wodecki [16]; Nowicki and Smutnicki [26]; Bożejko and Uchroński [6]. Heuristics
algorithms based on dispatching rules are also proposed in papers of Holthaus and
Rajendran [18], Bushee and Svestka [10] for the problem under consideration. For
the other regular criteria such as the total tardiness there are proposed metaheuristics
based on various local search techniques: simulated annealing [32], tabu search [2]
and genetic search [25].

Here we propose the new framework of the distributed tabu search metaheuris-
tic designed to solve difficult discrete optimization problems, such as the job shop
problem, using a multi-GPU cluster with distributed memory. We also determine
theoretical number of processors, for which the speedup measure has a maximum
value. We experimentally determine what parallel execution time Tp can be obtained
in real-world installations of multi-GPU clusters (i.e. nVidia Tesla S2050 with a 12-
cores CPU server) for Taillard benchmarks [30] of the job shop scheduling problem,
and compare them with theoretically determined values.

In the theoretical part of the chapter we consider the Parallel Random Access
Machine (PRAM) model of the concurrent computing architecture, in which all pro-
cessors have access to the common, shared memory with the constant access time
O(1). Additionally, we assume that we use the Concurrent Read Exclusive Write
(CREW) model of the access to memory, in which processors can read concurrently
from the same cell of memory, but it is forbidden to write concurrently to the same
memory cell. Such a theoretical model is the most convenient for theoretical analy-
sis, and it is very close to the practical hardware properties of the real GPU devices.
The chapter constitutes a continuation of work presented in Bożejko et al. [5].

3.2 Job Shop Problem

Job shop scheduling problems result from many real-world cases, which means that
they have good practical applications as well as industrial significance. Let us con-
sider a set of jobs J = {1,2, . . . ,n}, a set of machines M = {1,2, . . . ,m} and a set
of operations O = {1,2, . . . ,o}. The set O is decomposed into subsets connected
with jobs. A job j consists of a sequence of o j operations indexed consecutively by
(l j−1+1, l j−1+2, . . . , l j), which have to be executed in this order, where l j = ∑ j

i=1 oi

is the total number of operations of the first j jobs, j = 1, 2, . . . , n, l0 = 0, ∑n
i=1 oi = o.

An operation i has to be executed on machine vi ∈ M without any idleness in time
pi > 0, i ∈O . Each machine can execute at most one operation at a time. A feasible
solution constitutes a vector of times of the operation execution beginning S= (S1,
S2, . . . , So) such that the following constraints are fulfilled

Sl j−1+1 ≥ 0, j = 1,2, . . . ,n, (3.1)

Si + pi ≤ Si+1, i = l j−1 + 1, l j−1 + 2, . . . , l j − 1, j = 1,2, . . . ,n, (3.2)

3 Multi-GPU Tabu Search Metaheuristic 45

Si + pi ≤ S j or S j + p j ≤ Si, i, j ∈ O, vi = v j, i �= j. (3.3)

Certainly, Cj = S j + p j. An appropriate criterion function has to be added to the
above constraints. The most frequent are the following two criteria: minimization of
the time of finishing all the jobs and minimization of the sum of job finishing times.
From the formulation of the problem we obtain C j ≡Clj , j ∈ J .

The first criterion, the time of finishing all the jobs

Cmax(S) = max
1≤ j≤n

Cl j , (3.4)

corresponds to the problem denoted as J||Cmax in the literature. The second criterion,
the sum of job finishing times

C(S) =
n

∑
j=1

Clj , (3.5)

corresponds to the problem denoted as J||∑Ci in the literature.
Both problems described are strongly NP-hard and although they are similarly

modelled, the second one is found to be harder because of the lack of some specific
properties (so-called block properties, see [26]) used in optimization of execution
time of solution algorithms.

3.2.1 Disjunctive Model

The disjunctive model is most commonly used, however it is very unpractical from
the point of view of efficiency (and computational complexity). It is based on the
notion of disjunctive graph G = (O,U ∪V). This graph has a set of vertices O which
represent operations, a set of conjunctive arcs (directed) which show technological
order of operation execution

U =
n⋃

j=1

l j−1⋃

i=l j−1+1

{(i, i+ 1)} (3.6)

and the set of disjunctive arcs (non-directed) which show possible schedule of oper-
ations execution on each machine

V =
⋃

i, j∈O,i�= j,vi=v j

{(i, j),(j, i)}. (3.7)

A vertex i ∈ O has a weight pi which equals the time of execution of operation
Oi. Arcs have the weight zero. A choice of exactly one arc from the set {(i, j),(j, i)}
corresponds to determining a schedule of operations execution – ‘i before j’ or ‘ j
before i’. A subset W ⊂ V consisting of exclusively directed arcs, at most one from
each pair {(i, j),(j, i)}, we call a representation of disjunctive arcs. Such a represen-
tation is complete if all the disjunctive arcs have determined direction. A complete

46 W. Bożejko, M. Uchroński, and M. Wodecki

representation, defining a precedence relation of jobs execution on the same ma-
chine, generates one solution, not always feasible, if it includes cycles. A feasible
solution is generated by a complete representation W such that the graph G(W) =
(O,U ∪W) is acyclic. For a feasible schedule values Si of the vector of operations
execution starting times S= (S1, S2, . . . , So) can be determined as a length of the
longest path incoming to the vertex i (without pi). As the graph G(W) includes o
vertices and O(o2) arcs, therefore determining the value of the cost function for a
given representation W takes the time O(o2) by using Bellman algorithm of paths
in graphs determination.

3.2.2 Combinatorial Model

In the case of many applications a combinatorial representation of a solution is better
than a disjunctive model for the job shop problem. It is void of redundance, charac-
teristic of the disjunctive graph, that is, the situation where many disjunctive graphs
represent the same solution of the job shop problem. A set of operations O can be
decomposed into subsets of operations executed on a single, determined machine
k ∈ M, Mk = {i ∈ O : vi = k} and let mk = |Mk|. The schedule of operations execu-
tion on a machine k is determined by a permutation πk = (πk(1),πk(2), . . . ,πk(mk))
of elements of the set Mk, k∈M, where πk(i) means such an element from Mk which
is in position i in πk. Let Φn(Mk) be a set of all permutations of elements of Mk. A
schedule of operations execution on all machines is defined as π = (π1,π2, . . . ,πm),
where π ∈ Φn, Φn = Φn(M1)×Φn(M2)× . . .×Φn(Mm). For a schedule π we create
a directed graph (digraph) G(π) = (O,U ∪E(π)) with a set of vertices O and a set
of arcs U ∪E(π)), where U is a set of constant arcs representing the technological
order of operations execution inside a job, and a set of arcs representing an order of
operations execution on machines is defined as

E(π) =
m⋃

k=1

mk−1⋃

i=1

{(πk(i),πk(i+ 1))} (3.8)

Each vertex i ∈ O has the weight pi, each arc has the weight zero. A schedule π
is feasible if the graph G(π) does not include a cycle. For a given π , the terms of
operations’ beginning can be determined in time O(o) from the recurrent formula

S j = max{Si + pi,Sk + pk}, j ∈ O. (3.9)

where an operation i is a direct technological predecessor of the operation j ∈O and
an operation k is a directed machine predecessor of the operation j ∈ O for a fixed
π . We assume S j = 0 for these operations j which have not any technological or
machine predecessors. For a given feasible schedule π the process of determining
the cost function value requires the time O(o), which is thus shorter than for the
disjunctive representation.

3 Multi-GPU Tabu Search Metaheuristic 47

3.3 Flexible Job Shop Problem

Flexible job shop problem constitute a generalization (hybridization) of the classic
job shop problem. In this section, we discuss a flexible job shop problem in which
operations have to be executed on one machine from a set of dedicated machines.
Next, as a job shop problem it also belongs to the strongly NP-hard class. Although
exact algorithms based on a disjunctive graph representation of the solution have
been developed (see Pinedo [29]), they are not effective for instances with more
than 20 jobs and 10 machines.

Many approximate algorithms, chiefly metaheuristic, have been proposed (i.e.
tabu search of Dauzère-Pérès and Pauli [12] and Mastrolilli and Gambardella [24]).
Many authors have proposed a method of assigning operations to machines and then
determining sequence of operations on each machine. This approach was followed
by Brandimarte [8] and Pauli [27]. These authors solved the assignment problem
(i.e., using dispatching rules) and next applied metaheuristics to solve the job shop
problem. Genetic approaches have been adopted to solve the flexible job shop prob-
lem, too. Recent works are those of Jia et al. [21], Kacem et al. [22], Pezzella et al.
[23] and Bożejko et al. [7]. Gao et al. [14] proposed the hybrid genetic and variable
neighborhood descent algorithm for this problem.

3.3.1 Problem Formulation

The flexible job shop problem (FJSP), also called the general job shop problem
with parallel machines, can be formulated as follows. Let J = {1,2, . . . ,n} be a
set of jobs which have to be executed on machines from the set M = {1,2, . . . ,m}.
There exists a partition of the set of machines into types, so-called nests – subsets
of machines with the same functional properties. A job constitutes a sequence of
some operations. Each operation has to be executed on a dedicated type of machine
(from the nest) within a fixed time. The problem consists in the allocation of jobs
to machines of dedicated type and in determining the schedule of jobs execution on
each machine to minimize the total jobs finishing time. The following constraints
have to be fulfilled:

(i) each job has to be executed on only one machine of a determined type at a
time,

(ii) machines cannot execute more than one job at a time,
(iii) there are no idle times (i.e., the job execution must not be broken),
(iv) the technological order has to be obeyed.

Let O = {1,2, . . . ,o} be the set of all operations. This set can be partitioned
into sequences corresponding to jobs, where the job j ∈ J is a sequence of
o j operations, which have to be executed in an order on dedicated machines
(i.e., in the so-called technological order). Operations are indexed by numbers

48 W. Bożejko, M. Uchroński, and M. Wodecki

(l j−1 + 1, . . . , l j−1 + o j) where l j = ∑ j
i=1 oi is the number of operations of the first j

jobs, j = 1,2, . . . ,n, where l0 = 0 and o = ∑n
i=1 oi.

The set of machines M = {1,2, . . . ,m} can be partitioned into q subsets of the
same type (nests) where the i-th (i = 1,2, . . . ,q) type M i includes mi machines
which are indexed by numbers (ti−1 + 1, . . . , ti−1 +mi), where ti = ∑i

j=1 m j is the
number of machines in the first i types, i= 1,2, . . . ,q, where t0 = 0 and m=∑q

j=1 m j.
An operation v ∈O has to be executed on machines of the type μ(v), i.e., on one

of the machines from the set (nest) M μ(v) in time pv j, where j ∈ M μ(v).
Let

Ok = {v ∈O : μ(v) = k} (3.10)

be a set of operations executed in the k-th nest (k = 1,2, . . . ,q). A sequence of
operations sets

Q = (Q1,Q2, . . . ,Qm), (3.11)

such that for each k = 1,2, . . . ,q

Ok =

tk−1+mk⋃

i=tk−1+1

Qi and Qi∩Q j = /0, i �= j, i, j = 1,2, . . . ,m, (3.12)

we call an assignment of operations from the set O to machines from the set M (or
shortly, machine workload).

A sequence (Qtk−1+1,Qtk−1+2, . . . ,Qtk−1+mk) is an assignment of operations to
machines in the i-th nest (shortly, an assignment in the i-th nest). In a special case a
machine can execute no operations; then a set of operations assigned to be executed
by this machine is an empty set.

If the assignment of operations to machines has been completed, then the optimal
schedule of operations execution determination (including a sequence of operations
execution on machines) leads to the classic scheduling problem solving, that is, the
job shop problem (see Section 3.2 and Grabowski and Wodecki [16]).

Let K = (K1,K2, . . . ,Km) be a sequence of sets where Ki ∈ 2O i
, i = 1,2, . . . ,m (in

a particular case elements of this sequence can be empty sets). By K we denote the
set of all such sequences. The number of elements of the set K is 2|O1| ·2|O2| · . . . ·
2|Om|.

If Q is an assignment of operations to machines, then Q ∈K (of course, the set
K includes also sequences which are not feasible; that is, such sequences do not
constitute assignments of operations to machines).

For any sequence of sets K = (K1,K2, . . . ,Km) (K ∈K) by Πi(K) we denote the
set of all permutations of elements from Ki. Thereafter, let

π(K) = (π1(K),π2(K), . . . ,πm(K)) (3.13)

be a concatenation of m sequences (permutations), where πi(K) ∈ Πi(K). Therefore

π(K) ∈ Π(K) = Π1(K)×Π2(K)×, . . . ,Πm(K). (3.14)

3 Multi-GPU Tabu Search Metaheuristic 49

It is easy to observe that, if K = (K1,K2, . . . ,Km) is an assignment of operations
to machines, then the set πi(K) (i = 1,2, . . . ,m) includes all permutations (possible
sequences of execution) of operations from the set Ki on the machine i. Further, let

Φ = {(K,π(K)) : K ∈ K ∧ π(K) ∈ Π(K)} (3.15)

be a set of pairs where the first element is a sequence set and the second – a con-
catenation of permutations of elements of these sets. Any feasible solution of the
FJSP is a pair (Q,π(Q)) ∈ Φ where Q is an assignment of operations to machines
and π(Q) is a concatenation of permutations determining the operations execution
sequence which are assigned to each machine fulfilling constraints (i)–(iv). By Φ◦
we denote a set of feasible solutions for the FJSP. Of course, there is Φ◦ ⊂ Φ.

3.3.2 Graph Models

Any feasible solution Θ = (Q,π(Q)) ∈ Φ◦ (where Q is an assignment of opera-
tions to machines and π(Q) determines the operations execution sequence on each
machine) of the FJSP can be presented as a directed graph with weighted vertices
G(Θ) = (V ,R ∪E (Θ)) where V is a set of vertices and R∪E (Θ) is a set of arcs
with:

1) V = O ∪{s,c}, where s and c are additional (fictitious) operations which rep-
resent ‘start’ and ‘finish’, respectively. A vertex v ∈ V \ {s,c} possesses two
attributes:

• λ (v) – a number of machines on which an operation v ∈ O has to be exe-
cuted,

• pv,λ (v) – a weight of vertex which equals the time of operation v ∈ O execu-
tion on the assigned machine λ (v).

Weights of additional vertices ps = pc = 0.
2)

R=
n⋃

j=1

⎡

⎣
o j−1⋃

i=1

{(
l j−1+i, l j−1+i+1

)}∪{(s, l j−1+1
)}∪{(l j−1+o j,c

)}]
. (3.16)

A set R includes arcs which connect successive operations of the job, arcs from
vertex s to the first operation of each job and arcs from the last operation of each
job to vertex c.

3)

E (Θ) =
m⋃

k=1

|Ok |−1⋃

i=1

{(πk(i),πk(i+ 1))} . (3.17)

50 W. Bożejko, M. Uchroński, and M. Wodecki

It is easy to notice that arcs from the set E (Θ) connect operations executed on
the same machine (πk is a permutation of operations executed on the machine
Mk, that is, operations from the set Ok).

Arcs from the set R determine the operations execution sequence inside jobs (a
technological order) and arcs from the set E (π) the operations execution sequence
on each machine.

Remark 1. A pair Θ = (Q,π(Q)) ∈ Φ is a feasible solution for the FJSP if and
only if the graph G(Θ) does not include cycles.

A sequence of vertices (v1,v2, . . . ,vk) in G(Θ) such that an arc (vi,vi+1)∈R∪E (Θ)
for i = 1,2, . . . ,k− 1, we call a path from vertex v1 to vk. By C(v,u) we denote the
longest path (called a critical path in a Operational Research issues) in the graph
G(Θ) from the vertex v to u (v,u ∈ V) and by L(v,u) we denote a length (sum of
vertex weights) of this path.

It is easy to notice that the time of all operations execution Cmax(Θ) related with
the assignment of operations Q and schedule π(Q) equals the length L(s,c) of the
critical path C(s,c) in the graph G(Θ). A solution of the FJSP amounts to determin-
ing a feasible solution Θ = (Q,π(Q)) ∈ Φ◦ for which the graph connected with
this solution G(Θ) has the shortest critical path, that is, it minimizes L(s,c).

Let C(s,c) = (s,v1,v2, . . . ,vw,c), vi ∈O (1≤ i≤w) be a critical path in the graph
G(Θ) from the starting vertex s to the final vertex c. This path can be divided into
subsequences of vertices

B = (B1,B2, . . . ,Br), (3.18)

called blocks in the permutations on the critical path C(s,c) (Grabowski [15],
Grabowski and Wodecki [16]) where:

(a) a block is a subsequence of verticesfrom the critical path including successive
operations executed directly one after another,

(b) a block includes operations executed on the same machine,
(c) a product of any two blocks is an empty set,
(d) a block is a maximum (according to the inclusion) subset of operations from the

critical path fulfilling constraints (a)–(c).

Next, only these blocks are considered for which |Bk|> 1, i.e., non-empty blocks.
If Bk (k = 1,2, . . . ,r) is a block on the machine Mi (i = 1,2, . . . ,m) from the nest t
(t = 1,2, . . . ,q), then we shall denote it as follows

Bk = (πi(a
k),πi(a

k + 1), . . . ,πi(b
k − 1),πi(b

k)), (3.19)

where 1≤ ak < bk ≤ |Qi|. Operations π(ak) and π(bk) in the block Bk are called the
first and the last, respectively. In turn, a block without the first and the last operation
we call an internal block. The definitions given are presented in Figure 3.1.

In the work of Grabowski [15] there are theorems called elimination criteria of
blocks in the job shop problem.

3 Multi-GPU Tabu Search Metaheuristic 51

s c π (a
k
) π (b

k
)

k-th block

k-th internal block

...

C(s,π (a
k
)) C(π (b

k
),c)

Fig. 3.1. Blocks on the critical path

Theorem 1 ([15]). Let B = (B1,B2, . . . ,Br) be a sequence of blocks of the critical
path in the acyclic graph G(Θ), Θ ∈ Φ◦. If the graph G(Ω) is feasible (i.e., it
represents a feasible solution) and if it is generated from G(Θ) by changing the
order of operations execution on some machine and Cmax(Ω) < Cmax(Θ) then in
the G(Ω):

(i) at least one operation from a block Bk, k ∈ {1,2, . . . ,r} precedes the first element
π(ak) of this block, or

(ii)at least one operation from a block Bk, k ∈ {1,2, . . . ,r} occurs after the last
element π(bk) of this block.

Changing the order of operations in any block does not generate a solution with
lower value of the cost function. At least one operation from any block should be
moved before the first or after the last operation of this block to generate a solution
(graph) with smaller weight of the critical path. We use this property to reduce the
neighborhood size, i.e., do not generate solutions with greater values (compared to
the current solution) of the cost function.

3.4 Determination of the Cost Function

Both in classic job shop problem presented in the Section 3.2 and in flexible job shop
problem from the Section 3.3 the method of the cost function calculation is similar
because operations of machines assignment (in the flexible job shop problem) leads
us to consider a number of job shop problems. Therefore, taking into consideration
the constraints (3.1)–(3.3) presented in Section 3.2, it is possible to determine the
time moments of job completion Cj , j ∈O and job beginning S j, j ∈O in time O(o)
on the sequential machine using the recurrent formula

S j = max{Si + pi,Sk + pk}, j ∈ O. (3.20)

where an operation i is a direct technological predecessor of the operation j ∈ O
and an operation k is a directed machine predecessor of the operation j ∈ O . The
determination procedure of S j, j ∈ O from the recurrent formula (3.20) should be
initiated by an assignment S j = 0 for those operations j which do not possess any

52 W. Bożejko, M. Uchroński, and M. Wodecki

technological or machine predecessors. Next, in each iteration an operation j has to
be chosen for which:

1. the execution beginning moment S j has not been determined yet, and
2. these moments were determined for all its direct technological and machine

predecessors; for such an operation j the execution beginning moment can be
determined from (3.20).

It is easy to observe that the order of determining S j times corresponds to the index
of the vertex of the graph G(π) connected with an operation j after the topological
sorting of this graph. The method mentioned above is in fact a simplistic sequential
topological sort algorithm without indexing of operations (vertices of the graph). If
we add to this algorithm an element of indexing vertices, for which we calculate S j

value, we obtain a sequence which is the topological order of vertices of the graph
G(π). Now, we define layers of the graph collecting vertices (i.e., operations) for
which we can calculate S j in parallel, as we have calculated starting times for all
machine and technological predecessors of operations in the layer.

Definition 3.1. The layer of the graph G(π) is a subsequence of the sequence of ver-
tices ordered by the topological sort algorithm, such that there are no arcs between
vertices of this subsequence.

Now we show another approach to determine cost function value, which is more
time-consuming, but cost-optimal. First, we need to determine the number of layers
d of the graph G(π).

Theorem 2. For a fixed feasible operations order π for the J||Cmax problem, the
number of layers from Definition 3.1 of the graph G(π) can be calculated in time

O(log2 o) on the CREW PRAMs with O
(

o3

logo

)
processors.

Proof. Here we use the graph G∗(π) with additional vertex 0. Let B = [bi j] be an
incidence matrix for the graph G∗(π), i.e., bi j = 1, if there is an arc i, j in the graph
G∗(π), otherwise bi j = 0, i, j = 1,2, . . . ,o. The proof is given in three steps.

1. Let us calculate the longest paths (in the sense of the number of vertices) in
G∗(π). We can use the algorithm classic parallel Bellman-Ford algorithm in this
step in the time O(log2 o) and CREW PRAMs with O(o3/ logo) processors.

2. We sort distances from the vertex 0 to each vertex in an increasing order. Their
indexes, after having been sorted, correspond to the topological order of ver-
tices. This takes the time O(logo) and CREW PRAMs with o+ 1 = O(o) pro-
cessors, using parallel merge sort algorithm. We obtain a sequence Topo[i],
i = 0,1,2, . . . ,o.

3. Let us assign each element of the sorted sequence to one processor, without
the last one. If the next value of the sequence (distance from 0) Topo[i+ 1],
i= 0,1, . . . ,o−1 is the same as Topo[i] considered by the processor i, we assign
c[i]← 1, and c[i]← 0 if Topo[i+1] �= Topo[i]. This step requires the time O(1)
and o processors. Next, we add all values c[i], i = 0,1, . . . ,o− 1. To make this

3 Multi-GPU Tabu Search Metaheuristic 53

step we need the time O(logo) and CREW PRAMs with O(o) processors. We
get d = 1+∑o−1

i=0 c[i] because there is an additional layer connected with exactly
one vertex 0.

The most time- and processor-consuming is Step 1. We need the time O(log2 o) and

the number of processors O
(

o3

logo

)
of the CREW PRAMs.

Theorem 3. For a fixed feasible operations order π for the J||Cmax problem, the
value of cost function can be determined in time O(d) on O(o/d)-processor CREW
PRAMs where d is the number of layers of the graph G(π).

Proof. Let Γk, k = 1,2, . . . ,d be the number of calculations of the operations’ finish-
ing moment Ci, i = 1,2, . . . ,o in the k-th layer. Certainly, ∑d

i=1 Γi = o. Let p be the
number of processors used. The time of computations in a single layer k after having
divided calculations into �Γi

p � groups, each group containing (at most) p elements,

is �Γi
p � (the last group cannot be full). Therefore, the total computation time in all d

layers equals ∑d
i=1�Γi

p � ≤ ∑d
i=1(

Γi
p +1) = o

p +d. To obtain the time of computations
O(d)we should use p = O(o

d) processors.

This theorem provides a cost-optimal method of parallel calculation of the cost func-
tion value for the classic job shop problem with the makespan criterion. We will use
it to determine the cost function value for the flexible job shop problem, after fixing
of the operations-to-machines assignment.

3.5 Data Broadcasting

Here we propose a solution method to the flexible job shop problem in the dis-
tributed computing environments, such as multi-GPU clusters. Tabu search algo-
rithm is executed in concurrent working threads, as in multiple-walk model of par-
allelization [1] (MPDS,Multiple starting Point Different Strategies in the Voß [31]
classification of parallel tabu search metaheuristic). Additionally, MPI library is
used to distribute calculations among GPUs (see Fig. 3.2). GPU devices are used
for concurrent cost function calculations as it was mentioned in the Section 3.4.

Now let us consider a single cycle of the MPI data broadcasting, multi-GPU
computations and batching up of the results obtained. Let us assume that the single
communication procedure between two nodes of a cluster takes the time Tcomm, the
time of sequential tabu search computations is Tseq and the computations time of

parallel tabu search is Tcalc =
Tseq

p (p is the number of GPUs). Therefore, the total
parallel computations time of the single cycle is

Tp = 2Tcomm log2 p+Tcalc = 2Tcomm log2 p+
Tseq

p
.

54 W. Bożejko, M. Uchroński, and M. Wodecki

TS thread – GPU 1

TS thread – GPU 2

TS thread …

TS thread – GPU p

MPI multi-GPU

TS thread – GPU 1

TS thread – GPU 2

TS thread …

TS thread – GPU p

MPI multi-GPU

…

MPI

Fig. 3.2. Skeleton of the Multi-Level Tabu Search metaheuristic

Fig. 3.3 Scheme of the two
levels parallelization model.
Flexible job shop problem
is converted into a number
of classic job shop prob-
lems and distributed among
GPU devices. Results are
collected and converted
into flexible job shop prob-
lem, etc.

 Flexible
Job Shop

Job Shop
Cmax
GPU

Job Shop
Cmax
GPU

Job Shop
Cmax
GPU

Job Shop
Cmax
GPU

Job Shop
Cmax
GPU

Job Shop
Cmax
GPU

Flexible
Job Shop

…

…

…

…

…

…

In case of using more processors, the parallel computing time
(

Tseq
p

)
decreases,

whereas the time of communication (2Tcomm log p) increases. We are looking for
such a number of processors p (let us call it p∗) for which Tp is minimal. By calcu-

lating ∂Tp
∂ p = 0 we obtain

2Tcomm

p ln2
− Tseq

p2 = 0 (3.21)

and then

p = p∗ =
Tseq ln2
2Tcomm

, (3.22)

which provides us with an optimal number of processors p∗ which minimizes the
value of the parallel running time Tp.

The fraction of communication time is O(log2 p) in this tree-based data broad-
casting method, therefore this is another situation than for linear-time broadcasting
(discussed in [3]), for which the overall communication and calculation efficiency is
much lower. On the other hand the linear-time broadcasting is similar to described
by Brooks’ Law [9] for project management, i.e. the expected advantage from

3 Multi-GPU Tabu Search Metaheuristic 55

splitting development work among n programmers is O(n) but the communications
cost associated with coordinating and then merging their work is O(n2).

3.6 Solution Method

Considered flexible job shop problem has been solved with a tabu search method. In
each step of the tabu search method the neighbourhood of operations to machines
assignment is generated (see Fig. 3.3). Each element of the neighbourhood gener-
ated in this way is a feasible solution of a classic job shop problem and its goal
function is calculated in order to find the best solution from the neighbourhood. The
value of cost function is determined on GPU. MPI library has been used for the com-
munication implementation. The proposed tabu search method uses multiple point
single strategy which means that MPI processes begins from different starting solu-
tions using the same search strategy. For each MPI process one GPU is assigned for
accelerating the goal function determination. For the best solution from neighbour-
hood TSAB algorithm is executed and solution obtained with this algorithm used
as base solution in the next iteration. Also, after a number of iterations, the best
solution with corresponding tabu list is broadcasted among MPI processes and each
MPI process continues calculation from this solution. The best solution interchange
between processors guarantees different search paths for each processor.

3.6.1 GPU Implementation Details

In our Multi-GPU tabu search metaheuristic for the flexible job shop problem we
adopt the Floyd-Warshall algorithm for the longest path computation between each
pair of nodes in a graph (see the proof of the theorem 2). The main idea of the
algorithm can be formulated as follows. Find the longest path between nodes υi and
υ j containing the node υk. It consist of a sub-path from υi to υk and a sub-path υk

to υ j. This idea can be formulated with the following formula

d(k)
i j = max{d(k−1)

i j ,d(k−1)
ik + d(k−1)

k j }, (3.23)

where d(k)
i j is the longest path from υi to υ j such that all intermediate nodes on the

path are in set υ1, . . . ,υk. Figure 3.4 shows CUDA implementation of the longest
path computation between each pair of nodes. The CUDA kernel (Figure 3.5) is in-
voked o times, where o is the number of nodes in the graph. At the k-th iteration,
the kernel computes two values for each pair of nodes in the graph: the direct dis-
tance between them and the indirect distance through the node υk. The larger of
the two distances is written back to the distance matrix. The final distance matrix
reflects the lengths of the longest paths between each pair of nodes. The inputs of
the CUDA kernel constitutes the number of the graph nodes, path distance matrix
and the iteration (step) number.

56 W. Bożejko, M. Uchroński, and M. Wodecki

1 extern "C" void FindPathsOnGPU(const int &o, int *graph)

2 {

3 int *graphDev;

4 const int dataSize = (o+1)*(o+1)*sizeof(int);

5 const int size=(int)(log((double)o)/log(2.0));

6 dim3 threads(o+1);

7 dim3 blocks(o+1);

8 cudaMalloc((void**) &graphDev, dataSize);

9 cudaMemcpy(graphDev, graph, dataSize, cudaMemcpyHostToDevice);

10 for (int iter=1; iter <= size+1; ++iter)

11 {

12 for(int k=0; k<=o; ++k)

13 {

14 PathsKernel<<<blocks, threads>>>(o, graphDev, k);

15 cudaThreadSynchronize();

16 }

17 }

18 cudaMemcpy(graph, graphDev, dataSize, cudaMemcpyDeviceToHost);

19 cudaFree(graphDev);

20 }

Fig. 3.4. CUDA implementation of computing the longest path in a graph

1 __global__ void PathsKernel(const int o, int *graph, const int i)

2 {

3 int x = threadIdx.x;

4 int y = blockIdx.x;

5 int k = i;

6 int yXwidth = y * (o+1);

7

8 int dYtoX = graph[yXwidth + x];

9 int dYtoK = graph[yXwidth + k];

10 int dKtoX = graph[k*(o+1) + x];

11

12 int indirectDistance = dYtoK + dKtoX;

13 int max = 0;

14 int tmp = 0;

15

16 if(dYtoK !=0 and dKtoX !=0)

17 {

18 tmp = indirectDistance;

19 if(max < tmp)

20 max = tmp;

21 }

22 if(dYtoX < max)

23 {

24 graph[yXwidth + x] = max;

25 }

26 }

Fig. 3.5. CUDA kernel

3.6.2 Computational Experiments

Parallel multi–GPU algorithm for solving flexible job shop problem was coded in C
(CUDA) and MPI library. The proposed algorithm was run on the Tesla S2050 GPU

3 Multi-GPU Tabu Search Metaheuristic 57

and tested on the benchmark problems taken from Brandimarte [8] and Hurink [19].
The GPU was installed on the server based on the Intel Core i7 CPU X980 processor
working under 64-bit Linux Ubuntu 10.04 operating system. Figure 3.6 and Table
3.1 report the comparison of speedup obtained for MPI+CUDA implementation on
the Tesla S2050 GPU. For Tables 3.1 and 3.2 a particular column means:

• o – number of operations in considered flexible job shop problem instance,
• sCPU – speedup value calculated for sequential CPU time,
• sGPU – speedup value calculated for sequential GPU time (for one GPU thread).

The speedup value is given by the following formula:

s =
Tseq

Tpar
, (3.24)

where Tseq is the calculations time of the sequential algorithm and Tpar is the calcu-
lations time of the parallel algorithm.

The obtained results show that the usage of parallel goal function computation
method for computations acceleration in metaheuristics which solves flexible job
shop problem results in shorter calculation time for the number of operations greater
than 120 (bdata) and 200 (edata). The use of the parallel algorithm for goal function
calculation in tabu search method results in about 2.5x (bdata) and 2.9x (edata)
absolute speedup (in comparison with the sequential algorithm run on CPU) and

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250 300

sp
ee

du
p

o

edata
bdata

Fig. 3.6. Speedup for Brandimarte (bdata) and Hurink (edata)test instances

58 W. Bożejko, M. Uchroński, and M. Wodecki

over 120x orthodox speedup (i.e. comparing with the sequential algorithm run on
single GPU core, calculated for Mk01-Mk06 instances) for the flexible job shop
problem instances with 200 and 300 operations.

Table 3.1. Speedup for MPI+CUDA implementation obtained on Tesla S2050 GPU

instance o sCPU sGPU

Mk01 60 0.18 11.32
Mk02 60 0.19 12.53
Mk03 120 1.15 122.38
Mk04 120 0.46 34.20
Mk05 60 0.63 47.70
Mk06 150 1.12 121.33
Mk07 100 0.57 -
Mk08 200 2.52 -
Mk09 200 2.65 -
Mk10 300 2.61 -

Table 3.2. Speedup for MPI+CUDA implementation obtained on Tesla S2050 GPU

instance n×m o sCPU

la01-05 10×5 50 0.2247
la06-10 15×5 75 0.2806
la11-15 20×5 100 0.4377
la16-20 10×10 100 0.7891
la21-25 15×10 150 0.9579
la26-30 20×10 200 1.4203
la31-35 30×10 300 2.9453
la36-40 15×15 225 1.6201

3.7 Conclusion

In this chapter we propose a framework designed to solve difficult problems of com-
binatorial optimization in distributed parallel architectures without shared memory,
such as clusters of nodes equipped with GPU units (i.e. multiu-GPU clusters). The
methodology can be especially effective for large instances of hard to solve opti-
mization problems, such as flexible scheduling problems as well as discrete routing
and assignment problems.

3 Multi-GPU Tabu Search Metaheuristic 59

References

1. Alba, E.: Parallel Metaheuristics. A New Class of Algorithms. Wiley & Sons Inc. (2005)
2. Armentano, V.A., Scrich, C.R.: Tabu search for minimizing total tardiness in a job shop.

International Journal of Production Economics 63(2), 131–140 (2000)
3. Bożejko, W.: A new class of parallel scheduling algorithms, pp. 1–280. Wroclaw Uni-

versity of Technology Publishing House (2010)
4. Bożejko, W.: On single-walk parallelization of the job shop problem solving algorithms.

Computers & Operations Research 39, 2258–2264 (2012)
5. Bożejko, W., Uchroński: Distributed Tabu Search Algorithm for the Job Shop Problem.

In: Proceedings of the 14th International Asia Pacific Conference on Computer Aided
System Theory, Sydney, Australia, February 6-8 (2012)

6. Bożejko, W., Uchroński, M.: A Neuro-tabu Search Algorithm for the Job Shop Prob-
lem. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2010, Part II. LNCS, vol. 6114, pp. 387–394. Springer, Heidelberg (2010)

7. Bożejko, W., Uchroński, M., Wodecki, M.: Parallel Meta2heuristics for the Flexible Job
Shop Problem. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 395–402. Springer, Heidelberg
(2010)

8. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations Research 41, 157–183 (1993)

9. Brooks Jr., F.P.: The Mythical Man-Month, anniversary edn. Addison-Wesley, Reading
(1995)

10. Bushee, D.C., Svestka, J.A.: A bi-directional scheduling approach for job shops. Inter-
national Journal of Production Research 37(16), 3823–3837 (1999)

11. Crainic, T.G., Toulouse, M., Gendreau, M.: Parallel asynchronous tabu search in mul-
ticommodity locationallocation with balancing requirements. Annals of Operations Re-
search 63, 277–299 (1995)

12. Dauzère-Pérès, S., Pauli, J.: An integrated approach for modeling and solving the general
multiprocessor job shop scheduling problem using tabu search. Annals of Operations
Research 70(3), 281–306 (1997)

13. Flynn, M.J.: Very highspeed computing systems. Proceedings of the IEEE 54, 1901–
1909 (1966)

14. Gao, J., Sun, L., Gen, M.: A hybrid genetic and variable neighborhood descent algorithm
for flexible job shop scheduling problems. Computers & Operations Research 35, 2892–
2907 (2008)

15. Grabowski, J.: Generalized problems of operations sequencing in the discrete production
systems. Monographs, vol. 9. Scientific Papers of the Institute of Technical Cybernetics
of Wrocław Technical University (1979)

16. Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the job shop prob-
lem. In: Rego, C., Alidaee, B. (eds.) Adaptive Memory and Evolution, Tabu Search and
Scatter Search. Kluwer Academic Publishers, Dordrecht (2005)

17. Hanafi, S.: On the Convergence of Tabu Search. Journal of Heuristics 7, 47–58 (2000)
18. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: further developments.

Production Planning and Control 11, 171–178 (2000)
19. Hurink, E., Jurisch, B., Thole, M.: Tabu search for the job shop scheduling problem with

Multi-purpose machine, Oper. Res. Spektrum 15, 205–215 (1994)
20. Jain, A.S., Rangaswamy, B., Meeran, S.: New and stronger job-shop neighborhoods: A

focus on the method of Nowicki and Smutnicki (1996). Journal of Heuristics 6(4), 457–
480 (2000)

60 W. Bożejko, M. Uchroński, and M. Wodecki

21. Jia, H.Z., Nee, A.Y.C., Fuh, J.Y.H., Zhang, Y.F.: A modified genetic algorithm for dis-
tributed scheduling problems. International Journal of Intelligent Manufacturing 14,
351–362 (2003)

22. Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective evolu-
tionary optimization for flexible job-shop scheduling problems. IEEE Transactions on
Systems, Man, and Cybernetics, Part C 32(1), 1–13 (2002)

23. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the Flexible Job-schop
Scheduling Problem. Computers & Operations Research 35, 3202–3212 (2008)

24. Mastrolilli, M., Gambardella, L.M.: Effective neighborhood functions for the flexible job
shop problem. Journal of Scheduling 3(1), 3–20 (2000)

25. Mattfeld, D.C., Bierwirth, C.: An efficient genetic algorithm for job shop scheduling with
tardiness objectives. European Journal of Operational Research 155(3), 616–630 (2004)

26. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling 8(2), 145–159 (2005)

27. Pauli, J.: A hierarchical approach for the FMS schduling problem. European Journal of
Operational Research 86(1), 32–42 (1995)

28. Pezzella, F., Merelli, E.: A tabu search method guided by shifting bottleneck for the
job-shop scheduling problem. European Journal of Operational Research 120, 297–310
(2000)

29. Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice-Hall, Englewood Cliffs
(2002)

30. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Opera-
tional Research 64, 278–285 (1993)

31. Voß, S.: Tabu search: Applications and prospects. In: Du, D.Z., Pardalos, P.M. (eds.) Net-
work Optimization Problems, pp. 333–353. World Scientific Publishing Co., Singapore
(1993)

32. Wang, T.Y., Wu, K.B.: An eficient configuration generation mechanism to solve job shop
scheduling problems by the simulated annealing. International Journal of Systems Sci-
ence 30(5), 527–532 (1999)

	Multi-GPU Tabu Search Metaheuristic for the Flexible Job Shop Scheduling Problem
	3.1 Introduction
	3.2 Job Shop Problem
	3.3 Flexible Job Shop Problem
	3.4 Determination of the Cost Function
	3.5 Data Broadcasting
	3.6 Solution Method
	3.7 Conclusion
	References

