
Chapter 2
Fast Algorithm of Attribute Reduction Based on
the Complementation of Boolean Function

Grzegorz Borowik and Tadeusz Łuba

Abstract. In this chapter we propose a new method of solving the attribute reduc-
tion problem. Our method is different to the classical approach using the so-called
discernibility function and its CNF into DNF transformation. We have proved that
the problem is equivalent to very efficient unate complementation algorithm. That
is why we propose new algorithm based on recursive execution of the procedure,
which at every step of recursion selects the splitting variable and then calculates
the cofactors with respect to the selected variables (Shannon expansion procedure).
The recursion continues until at each leaf of the recursion tree the easily computable
rules for complement process can be applied. The recursion process creates a binary
tree so that the final result is obtained merging the results in the subtrees. The final
matrix represents all the minimal reducts of a decision table or all the minimal de-
pendence sets of input variables, respectively. According to the results of computer
tests, better results can be achieved by application of our method in combination
with the classical method.

2.1 Introduction

Often in the area of machine learning, artificial intelligence, as well as logic syn-
thesis, we deal with some functional dependencies (for example, in the form of
decision tables), in which not all attributes are necessary, i.e. some of them could
be removed without loss of any information. The problem of removing redundant
input attributes is known as the argument reduction problem. Its applications in the
area of artificial intelligence have been studied by several researchers [22, 26].
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Methods of attribute reduction have proved very useful in many applications.
As an example, a data base containing information about 122 patients with duo-
denal ulcers, treated by highly selective vagotomy, was analyzed by Słowinski and
Sharif [27]. This database contained information needed to classify patients accord-
ing to the long term results of the operation. From 11 attributes describing the pa-
tient’s health state, after reduction it turned out that only 5 of them were enough to
ensure a satisfactory quality of classification.

Such results indicate that application of argument reduction could also be use-
ful in logic synthesis [20], where circuits performance can be presented as truth
tables which are in fact decision tables with two valued attributes, where condition
attributes are in fact input variables, and decision ones are to represent output vari-
ables of the circuit. In the practical application of Boolean algebra the key problem
is to represent Boolean functions by formulas which are as simple as possible. One
approach to this simplification is to minimize the number of variables appearing in
truth table explicitly. Then, the reduced set of input variables is used in other op-
timization algorithms, e.g. logic minimization and logic decomposition. Combined
with other design techniques, argument reduction allows for great size reduction of
implemented circuits [19, 20].

A number of methods for discovering reducts have already been proposed in the
literature [1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 17, 21, 23, 26, 28, 29]. The most popular
Algorithms for Discovering Rough Set Reducts methods are based on discernibility
matrices [26]. Besides mutual information and discernibility matrix based attribute
reduction methods, they have developed some efficient reduction algorithms based
on CI tools of genetic algorithm, ant colony optimization, simulated annealing, and
others [11]. These techniques have been successfully applied to data reduction, text
classification and texture analysis [17].

Interestingly, another potentially very promising area of application of arguments
reduction algorithm is logic systems designing. This is because the novel hardware
building blocks impose limitations on the size of circuits that can be implemented
with them. The concept of argument reduction was introduced and effectively ap-
plied in the balanced decomposition method [16, 24]. Based on redundant variable
analysis of each output of a multi-output Boolean function, parallel decomposition
separates F into two or more functions, each of which has as its inputs and outputs
a subset of the original inputs and outputs. It was proved that parallel decompo-
sition based on argument reduction process plays a very important role in FPGA
based synthesis of digital circuits.

Recently, we have proposed the Arguments/Attributes Minimizer [4] which com-
putes reducts of a set of attributes of knowledge representation in information sys-
tems or reduces the number of input variables in logic systems. The algorithm is
based on unate complementation concept [5]. This chapter extends the results ob-
tained in [4]. Here, we propose new algorithm based on recursive execution of the
procedure, which at every step of recursion selects the splitting variable and then
calculates the cofactors with respect to the selected variables (Shannon expansion
procedure). The recursion continues until, at each leaf of the recursion tree, the eas-
ily computable rules for complement process can be applied. The recursion process
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creates a binary tree so that the final result is obtained merging the results obtained
in the subtrees (merging procedure). The final matrix represents all the minimal
reducts of a decision table or all the minimal dependence sets of input variables,
respectively.

The chapter begins with an overview of basic notions of information systems,
functional dependencies, decision tables and reducts. In section 2.2 and 2.3 we dis-
cuss relations between multi-valued logic and decision table systems with respect
to classification of data with missing values. Particularly, it is shown that elimina-
tion of attributes can be easily obtained using standard procedures used in logic
synthesis. New contribution is presented in section 2.4, where we describe how to
apply complementation algorithm and provide new variant of the attribute reduction
process.

2.2 Preliminary Notions

The information system contains data about objects characterized by certain at-
tributes, where two classes of attributes are often distinguished: condition and deci-
sion attributes (in logic synthesis they are usually called input and output variables).
Such an information system is called a decision system and it is usually specified by
a decision table (in logic synthesis it is called a truth table). The decision table de-
scribes conditions that must be satisfied in order to carry out the decisions specified
for them. More formally, an information system is a pair A = (U, A), where U is
a nonempty set of objects (in logic synthesis: minterms) called the universe, and A is
a nonempty set of attributes (variables). If we distinguish in an information system
two disjoint classes of attributes, condition (A) and decision (D) attributes (input
and output variables), where A∩D = /0, then the system is called a decision system
A = (U, A∪D). Any information or decision table defines a function ρ that maps
the direct product of U and A (U and A∪D, respectively) into the set of all values.

The attribute values ρpi = ρ(up,ai) and ρqi = ρ(uq,ai) are called compatible
(ρpi ∼ ρqi) if, and only if, ρpi = ρqi or ρpi = ∗ or ρqi = ∗, where “∗” represents
the case when attribute value is “do not care”. On the other hand, if ρpi and ρqi

are defined and are “different” it is said that ρpi is not compatible with ρqi and is
denoted as ρpi � ρqi. The consequence of this definition is a COM relation defined
as follows:

Let B ⊆ A and up,uq ∈U . The objects p,q ∈ COM(B) if and only if ρ(up,ai)∼
ρ(uq,ai) for every ai ∈ B.

The objects up and uq, which belong to the relation COM(B), are said to be
compatible in the set B. Compatible objects in the set B = A are simply called
compatible.

The compatibility relation of objects is a tolerance relation (reflexive and sym-
metric) and hence it generates compatible classes on the set of objects U .

Compatibility relation allows us to classify objects but the classification classes
do not form partitions on the set U , as it is in the case of indiscernibility relation
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(IND) [9]. COM(B) classifies objects grouping them into compatibility classes, i.e.
U/COM(B), where B ⊆ A.

For the sake of simplicity, collection of subsets U/COM(B) we call r-partition
on U and denote as COM(B).

R-partition can be used as a tool to classify objects of a data table description.
It can be shown that the r-partition concept is a generalization of the ideas of par-
titioning a set into consistent classes and partitioning a set into tolerance classes.
Therefore, partitioning a set U into consistent classes of certain relation R and par-
titioning a set into tolerance classes of a certain relation T can be treated as special
cases of r-partitioning.

R-partition on a set U may be viewed as a collection of non-disjoint subsets of U ,
where the set union is equal U ; and all symbols and operations of partition algebra
are applicable to r-partitions. Therefore, convention used for denoting r-partitions
and their typical operators are the same as in the case of partitions. We assume the
reader’s familiarity with these r-partition concepts which are simple extensions of
partition algebra [18].

Especially the relation less than or equal to holds between two r-partitions Π1

and Π2 (Π1 ≤Π2) iff for every block of Π1, in short denoted by Bi(Π1), there exists
a B j(Π2), such that Bi(Π1)⊆ B j(Π2). If Π1 and Π2 are partitions, this definition
reduces to the conventional ordering relation between two partitions.

The r-partition generated by a set B is the product of r-partitions generated by
the attributes ai ∈ B:

Π(B) =
⋂

i

Π(ai).

If B = {ai1 , . . . ,aik}, the product can be expressed as: Π(B) = Π(ai1) · . . . ·Π(aik).
Let Π1 and Π2 are r-partitions and Π1 ≤Π2. Then a r-partition Π1|Π2, whose el-

ements are blocks of Π2 and whose blocks are those of Π1, is the quotient r-partition
of Π1 over Π2.

Example. For the decision system shown in Table 2.1

Π(a1) = {1,3,5,6,7; 2,4,5; 5,8},

Π(a6) = {1,4,7,8; 2,3,5,6,7},
Π(d) = {1,5; 2,3,4; 6; 7,8}.

Therefore, for the set B = {a1,a6},

Π(B) = Π(a1) ·Π(a6) = {1,7; 3,5,6,7; 4; 2,5; 8; 5},

and the quotient r-parttion Π(B)|Π(d) is

Π(B)|Π(d) = {(1),(7); (3),(5),(6),(7); (4); (2),(5); (8); (5)}.
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Table 2.1. Example of a decision system

a1 a2 a3 a4 a5 a6 d

1 0 0 1 1 0 0 1
2 1 ∗ 2 0 1 1 2
3 0 1 1 0 0 1 2
4 1 2 2 ∗ 2 0 2
5 ∗ 2 2 2 0 1 1
6 0 0 1 1 0 1 3
7 0 1 0 3 2 ∗ 4
8 2 2 2 3 2 0 4

2.3 Elimination of Input Variables

In this section the process of searching and elimination of redundant arguments
is described using concepts of logic systems, however appropriate simplifications
caused by functional dependency features as well as the generalization to the case
of r-partition have been efficiently applied.

An argument x ∈ X is called dispensable in a logic specification of function F
iff Π(X −{x})≤ Π(F), otherwise, i.e. Π(X −{x})� Π(F), an argument is called
indispensable (i.e. an essential variable).

The meaning of an indispensable variable is similar to that of a core attribute,
i.e. these are the most important variables. In other words, no indispensable variable
can be removed without destroying the consistency of the function specification.
Thus, the set of all indispensable arguments is called a core of X and is denoted as
CORE(X).

In order to find the core set of arguments we have to eliminate an input variable
and then verify whether the corresponding partition inequality holds. A key theorem
is stated below to make this procedure more efficient.

First of all we reformulate this problem to apply more useful tools which are
efficiently used in switching theory [18, 19, 20].

A set B = {b1, . . . ,bk} ⊆ X is called a minimal dependences set, i.e. reduct, of
a Boolean function F iff Π(B)≤ Π(F), and there is no proper subset B′ of B, such
that Π(B′)≤ Π(F).

It is evident that an indispensable input variable of function F is an argument of
every minimal dependence set of F .

Now we introduce two basic notions, namely discernibility set and discernibility
function, which help us to construct an efficient algorithm for attribute reduction
process.

Let A = (U, A∪D) be a decision system. Let up,uq (up �= uq) are objects of U ,
such that d ∈ D is a decision attribute and ρ(up,d)� ρ(uq,d). By {cpq}, we denote
a set of attributes called a discernibility set which is defined as follows:

cpq = {ai ∈ A : ρ(up,ai)� ρ(uq,ai)}. (2.1)



30 G. Borowik and T. Łuba

A discernibility function fA for a decision system A is a Boolean function of
m Boolean attributes â1, . . . , âm corresponding to the attributes a1, . . . ,am, defined
by the conjunction of all expressions ∨(ĉpq), where ∨(ĉpq) is the disjunction of all
attributes ĉpq = {â : a ∈ cpq}, 1≤ p < q ≤ n.

A strong relation between the notion of a reduct of function F(RED(X)) and
prime implicant of the monotonic Boolean function fF :

{xi1 , . . . ,xik} ∈ RED(X) iff xi1 ∧·· ·∧ xik is a prime implicant of fF .

was investigated among others by Skowron and Kryszkiewicz [14, 26]:

Example. Using the previously calculated quotient r-parttion Π(B)|Π(d):

Π(B)|Π(d) = {(1),(7); (3),(5),(6),(7); (4); (2),(5); (8); (5)}

we can conclude that the only pairs of objects which should be separated by condi-
tion attributes are shown in the Table 2.2. For each pair up,uq the set of all distin-
guishing attributes is calculated. It is easy to observe that the discerniblity function
expressed in CNF is as

fM = (a2 + a4)(a4 + a5).

Table 2.2. Pairs of objects and corresponding separations

p,q attributes

1,7 {a2,a3,a4,a5}
3,5 {a2,a3,a4}
3,6 {a2,a4}
3,7 {a3,a4,a5}
5,6 {a2,a3,a4}
5,7 {a2,a3,a4,a5}
6,7 {a2,a3,a4,a5}
2,5 {a4,a5}

Transforming CNF into DNF

fM = a4 + a2a5

we conlude that all reducts for DT from Table 2.1 are

• {a1,a4,a6},
• {a1,a2,a5,a6}.

Noticeably, minimization of the discernibility function is carried out by trans-
forming the conjunctive normal form (in which it is originally constructed) into the
disjunctive normal form and finding a minimum implicant. Such a transformation is
usually time-consuming. Therefore, it is important to look for efficient algorithms
which can handle this task.
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2.4 Computing Minimal Sets of Attributes Using
COMPLEMENT Algorithm

A proposed approach is based on the fact that transformation of a conjunctive nor-
mal form into the disjunctive normal form can be reduced to the task of comple-
mentation of monotone/unate Boolean function which is intimately related to the
concept of a column cover of the binary matrix. The unate complementation was
proposed by Brayton [5], and is used in logic minimization algorithms as unate
recursive paradigm. The unate recursive paradigm exploits properties of unate func-
tions, while performing recursive decomposition. Therefore, to obtain discernibility
function in the minimal DNF we apply the fast complementation algorithm adopted
from Espresso system [5].

To this end, we describe the collection {cpq} from (2.1), of all cpq sets in the
form of the binary matrix M for which an element Mi j is defined as follows:

Mi j =

{
1, if a j ∈ cpqi ,
0, otherwise,

(2.2)

i = 1, . . . , t = CARD({cpq}), j = 1, . . . ,m = CARD(A). Then,

Theorem [5]. Each row i of M, the binary matrix complement of M, corresponds to
a column cover L of M, where j ∈ L if and only if Mi j = 1.

Column cover means that every row of M contains a “1” in some column which
appears in L. The rows of M include the set of all minimal column covers of M.
If M was minimal with respect to containment, then M would precisely represent
the set of all minimal column covers of M.

More precisely, a column cover of binary matrix M is defined as a set L of
columns such that for every i

∑
j∈L

Mi j ≥ 1. (2.3)

Our goal is to select an optimal set L of arguments corresponding to columns of M.
Covers L of M are in one-to-one correspondence with the reduced subsets of argu-
ments, i.e. reducts.

The task of searching the minimal column cover is based on the Shannon expan-
sion of Boolean function f :

f = x j fx j + x j fx j , (2.4)

where fx j , fx j are cofactors of f with respect to splitting variable x j, i.e. the results of
substituting “1” and “0” for x j in f . It is the key to a fast recursive complementation
process.

On the basis of [5] a logic function f is monotone increasing (monotone de-
creasing) in a variable x j if changing x j from 0 to 1 causes all the outputs of f that
change, to increase also from 0 to 1 (from 1 to 0). A function that is either mono-
tone increasing or monotone decreasing in x j is said to be monotone or unate in x j.
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A function is unate (monotone) if it is unate in all its variables. For example, the
function f = x1x2 + x2x3 is unate since it is increasing in x1 and x3, and decreasing
in x2.

An important aspect of the algorithm is that properties of unate functions are
exploited to simplify or terminate the recursion. Unate functions have special prop-
erties which make them especially useful.

Applying the property of unateness the equation (2.4) can be expressed as sim-
plified formulas, i.e. when function is monotone decreasing, then fx j ⊆ fx j , and
therefore

f = x j fx j + fx j (2.5)

and when function is monotone increasing, then fx j ⊇ fx j , and therefore

f = fx j + x j fx j (2.6)

Stating that discernibility function fM is in CNF, proposed approach benefits
from the transformation (2.7), i.e. double complementation of a Boolean function.

∏
k

∑
l

xkl = ∏
k

∑
l

xkl = ∑
k

∏
l

xkl (2.7)

Given that the discernibility function fM representing the CNF is unate, then by
applying De Morgan’s law it can be transformed into F = f M (first complementa-
tion) and then considered as a binary matrix M. Then, each row of M corresponds
to the conjunction of negative literals x j of F , i.e. then Mi j = 1. In fact, the task
of searching the complement of function F , i.e. F , can be reduced to the concept
of searching of a column covers (represented by matrix C) of the binary matrix M
(second complementation).

Given an initial matrix M – the initial cover of a unate Boolean function F , for
simplicity we call the cover of function F – the algorithm recursively splits the
matrix into smaller pieces until, at each leaf of the recursion tree, the easily com-
putable termination rules (described in Subsection 2.4.1) can be applied. If a basic
termination rule applies, then the appropriate cover is returned immediately. If no
basic termination rule applies, the initial cover of F is cofactored by both x j and x j,
and the algorithm is recursively called. Each recursive call returns a complemented
cover, i.e. Fxj and Fxj .

Then, the results are reassembled into a final solution. For the complementation
algorithm, the result is the complement of the initial cover M.

To assemble the final result, the complemented covers are merged using follow-
ing formulas, i.e. for monotone decreasing function

f = f x j
+ x j f x j

(2.8)

and for monotone increasing function

f = x j f x j
+ f x j

(2.9)
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Noticeably, function F is monotone decreasing for all literals, therefore only
equations (2.5) and (2.8) are considered in the presented approach.

2.4.1 Unate Complementation

In the unate complementation algorithm calculations are organized in a top-down
synthesis process to obtain the required final complement of function F . At each
node of the binary recursion tree the splitting variable x j is chosen and both cofactors
Fxj , Fxj are calculated.

In order to identify the splitting variables we choose them among the shortest
terms in F , i.e. the object with the maximum number of “do not care” values. Having
identified the splitting variables, we have to decide the order in which these variables
are processed. This order is made by choosing first the variables that appear most
often in the other terms of F . Such procedure eliminates the largest number of rows
of matrix M in one of the branches of the recursion.

The cofactor with respect to x j is obtained by setting up the j-th column to “0”,
and the cofactor with respect to x j, is obtained by excluding all the rows for which
the j-th element is equal to 1.

Stating that matrix M is the cover function F , the recursion continues until at
each leaf of the recursion tree one of the basic termination rules is encountered:

• The cover of F is empty. A cover is empty if F contains no terms. In this case,
its complement is a tautology. Hence, a cover containing the universal cube [5]
is returned. Then, the resulting cover contains one row of all 0’s.

• F includes the universal cube, i.e. M contains a row of all 0’s. Here, F is a tau-
tology, so its complement is empty. The empty cover is returned (no terms).

• F contains a single term. Here, the complement of F can be computed directly
using De Morgan’s law. After complementation, F contains term(s) of one vari-
able only. Then, corresponding cover is returned.

In each step of the recursive complementation algorithm, termination conditions
are checked; if they are not satisfied, recursion is performed. The complementation
algorithm returns an actual cover (the complement of the initial cover).

Example. The influence of the unate recursive algorithm on the final result of the
attribute reduction process is explained with function fM represented by a following
CNF:

fM = x4x6(x1 + x2)(x3 + x5 + x7)(x2 + x3)(x2 + x7).

Hence, omitting indispensable variables:

f ′M = (x1 + x2)(x3 + x5 + x7)(x2 + x3)(x2 + x7),
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and complementing

F = f ′M = x1x2 + x3x5x7 + x2x3 + x2x7.

Then, the initial cover
x1 x2 x3 x4 x5 x6 x7

M =

⎡

⎢⎢⎣

1 1 0 0 0 0 0
0 0 1 0 1 0 1
0 1 1 0 0 0 0
0 1 0 0 0 0 1

⎤

⎥⎥⎦

In order to identify the splitting variables we choose them among the shortest
terms in F . Here we select the first term, yielding variables x1 and x2. Since the
variable that appears most often in the other terms of F is x2, we decide to choose
this one.

Now we compute the cofactors of F with respect to the variable x2. This is illus-
trated in Fig. 2.1 by two arrows with the common starting point going to different
directions. The current tree has two leaves: the larger represents cofactor Fx2 and the
smaller one represents Fx2 .

The smaller cofactor is the subject to special case resulting in three objects of
the complement, because Fx2 cofactor has only one row. The larger cofactor is again
decomposed yielding cofactor for x1 (left hand side matrix), and for x1 (right hand
side matrix). For the left hand side component we again can apply special case, now
resulting in empty cover – there is a row of all 0’s. Thus, the next step deals with
the right hand side function matrix, which can be expanded onto two matrices, with
easily calculated complements.

To illustrate the merging operation of the unate recursive process, consider the
actions taken at the nodes x7, x1, x2. Applying formula (2.8) at the nodes x7, x1, x2

we calculate following complements, denoted C7, C1, C2:

C7 = x7 · [0 0 1 0 0 0 0]+ /0 = [0 0 1 0 0 0 1]

C1 = x1 · [0 0 1 0 0 0 1]+ /0 = [1 0 1 0 0 0 1]

C2 = x2 ·
⎡

⎣
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎤

⎦+[1 0 1 0 0 0 1] =

⎡

⎢⎢⎣

0 1 1 0 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 0 1
1 0 1 0 0 0 1

⎤

⎥⎥⎦

Resulted complement C2 together with indispensable variables x4 and x6 repre-
sents the following reducts:

• {x2,x3,x4,x6},
• {x2,x4,x5,x6},
• {x2,x4,x6,x7},
• {x1,x3,x4,x6,x7}.
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Fig. 2.1. Complementation scheme of F = x1x2 +x3x5x7 +x2x3 +x2x7

This agrees with the result that can be obtained applying fundamental transfor-
mations of Boolean algebra:

fM = (x1 + x2)(x3 + x5 + x7)(x2 + x3)(x2 + x7),

hence, performing the multiplication and applying absorption law

(x1 + x2)(x3 + x5 + x7)(x2 + x3)(x2 + x7) =

(x2 + x1)(x2 + x3)(x2 + x7)(x3 + x5 + x7) =

(x2 + x1x3x7)(x3 + x5 + x7) =

x2x3 + x2x5 + x2x7 + x1x3x7

we obtain the same set of reducts.
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2.5 Experimental Results

Many computer data mining systems were developed. In particular, the well-known
Rough Set Exploration System elaborated at the University of Warsaw. The system
implements many advanced procedures. Some algorithms of RSES have also been
embedded in the even more famous ROSETTA system located in the Biomedical
Center in Sweden [31, 32].

ROSE2 (Rough Sets Data Explorer) is a software implementing basic elements of
the rough set theory and rule discovery techniques. It has been developed at the Lab-
oratory of Intelligent Decision Support Systems of the Institute of Computing Sci-
ence in Poznań, basing on fourteen-year experience in rough set based knowledge
discovery and decision analysis. All computations are based on rough set fundamen-
tals introduced by Z. Pawlak [22] with some modifications proposed by Słowiński
and Ziarko [30].

These tools were used to compare them with the presented synthesis metod (Ta-
ble 2.3). Experiments performed show that despite many efforts directed to the de-
signing of an effective tools for attribute reduction, existing tools are not efficient.

The confirmation of this supposition are experiments with the system RSES. Our
research has shown that this system cannot process data tables with large number of
indeterminacy. An important example from the literature is trains database. Apply-
ing the new method we generate 689 reducts, however RSES 333 only (not selecting
the option “Do not discern with missing values”). While running the system with the
option “Do not discern with missing values” selected it ends up after several hours
of computation yielding “Not enough memory” message. Note, that not selecting
the option the tool takes into account missing values when calculating the discerni-
bility matrix, which yields a result that is different from the set of all minimal sets
of attributes.

Another example confirming the absolute superiority of the proposed method is
kaz function. It is the binary function of 21 arguments, used when testing advanced
logic synthesis tools. RSES calculates all the 5574 reducts within 70 minutes. In

Table 2.3. Results of analysis the proposed method in comparison to RSES data mining
system

database attributes instances RSES compl. method

house 17 232 1s 187ms
breast-cancer-wisconsin 10 699 2s 823ms

kaz 22 31 70min 234ms
trains 33 10 out of memory (5h 38min) 6ms

agaricus-lepiota-mushroom 23 8124 29min 4min 47s
urology 36 500 out of memory (12h) 42s 741ms

audiology 71 200 out of memory (1h 17min) 14s 508ms
dermatology 35 366 out of memory (3h 27min) 3min 32s
lung-cancer 57 32 out of memory (5h 20min) 111h 57min
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comparison, the new procedure developed and implemented by the authors calcu-
lates the set of all reducts in 234ms.

Presented method was additionally proved on the typical databases of medicine,
i.e. audiology database, dermatology database, urology database, breast cancer
database and lung cancer database. Table 2.3 shows the computation time for all
the minimum sets of attributes.

The experiments performed confirm that logic synthesis algorithms developed
for the design of digital systems are much more effective than currently used algo-
rithms in data mining systems.

Undoubtedly, in logic synthesis systems and hardware realizations we are almost
always looking for these sets of arguments (reducts) which are both: minimal and
least. However, the decision systems depend on all the minimal sets of attributes.
For example, when considering a reduct of the least cardinality, it can include an at-
tribute that its implementation is actually expensive. In particular, when we consider
calculations for a medical diagnosis, it may be a parameter which express compli-
cated or expensive examination, or a test which may have a negative impact on the
health of the patient and it is not possible to carry out. Therefore, the reducts of
higher cardinality could be sometimes easier to be applied/used in practice.

The importance of calculating the minimum reducts is explained on simple de-
cision table representing the results of medical examination and diagnosis for the
seven patients (Tab. 2.4).

Table 2.4. Example of a decision system

exam1 exam2 exam3 exam4 exam5 exam6 exam7 exam8 diagnosis

p1 1 1 1 1 1 0 0 0 d3
p2 0 1 1 1 1 1 0 1 d3
p3 1 1 2 1 0 0 0 0 d3
p4 0 1 1 0 0 0 0 0 d1
p5 0 0 0 1 0 0 1 0 d2
p6 0 1 1 1 0 1 0 0 d3
p7 0 1 2 1 0 0 0 1 d3

The use of such data involves the induction of decision rules. Based on the rules
induced the initial decisions of patient’s health status are made. For Table 2.4 deci-
sion rules induced with Rough Set Exploration System [32] are as follows:

• (exam2 = 1)&(exam4 = 1)⇒ (diagnosis = d3),
• (exam4 = 1)&(exam7 = 0)⇒ (diagnosis = d3),
• (exam3 = 1)&(exam4 = 1)⇒ (diagnosis = d3),
• (exam1 = 1)⇒ (diagnosis = d3),
• (exam5 = 1)⇒ (diagnosis = d3),
• (exam6 = 1)⇒ (diagnosis = d3),
• (exam8 = 1)⇒ (diagnosis = d3),
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• (exam3 = 2)⇒ (diagnosis = d3),
• (exam4 = 0)⇒ (diagnosis = d1),
• (exam1 = 0)&(exam3 = 1)&(exam6 = 0)⇒ (diagnosis = d1),
• (exam1 = 0)&(exam2 = 1)&(exam6 = 0)&(exam8 = 0)⇒ (diagnosis = d1),
• (exam1 = 0)&(exam6 = 0)&(exam7 = 0)&(exam8 = 0)⇒ (diagnosis = d1),
• (exam3 = 1)&(exam5 = 0)&(exam6 = 0)⇒ (diagnosis = d1),
• (exam2 = 0)⇒ (diagnosis = d2),
• (exam3 = 0)⇒ (diagnosis = d2),
• (exam7 = 1)⇒ (diagnosis = d2),
• (exam1 = 0)&(exam4 = 1)&(exam6 = 0)&(exam8 = 0)⇒ (diagnosis = d2).

On the basis of the rule (exam2 = 1)&(exam4 = 1)⇒ (diagnosis = d3) it can
be concluded that the patient whose all eight examinations are “1” should be di-
agnosed with d3. However, the rule (exam7 = 1)⇒ (diagnosis = d2) suggests the
diagnosis d2. This situation means that in order to make a correct diagnosis addi-
tional examination should be performed.

In fact, we may find that some of the tests are expensive or difficult to be car-
ried out. However, reduction of attributes can enable the elimination of troublesome
examinations. For example, after reducing the attributes in this example decision
system we get following minimum sets of attributes:

• {exam1,exam4,exam6,exam8},
• {exam1,exam6,exam7,exam8},
• {exam3,exam4},
• {exam3,exam5,exam6},
• {exam4,exam7},
• {exam2,exam4},
• {exam1,exam3,exam6},
• {exam1,exam2,exam6,exam8}.

For example, if exam4 is difficult to be performed, we can choose a set (reduct)
that does not include this examination, i.e. {exam3,exam5,exam6}. It is worth not-
ing that the choice of the smallest set of attributes is not always a good option and it
is important to calculate all the minimal sets of attributes. Selection of the set with
greater number of attributes can cause that elements included are easier to be put
into practice.

2.6 Conclusion

The argument reduction problem is of a great importance in logic synthesis. It is
the basis of some functional transformations, such as parallel decomposition [24].
Combined with some other design techniques it allows us to reduce the size of im-
plemented circuits.

In this chapter we have described an important problem of attribute reduction.
This concept, originating from artificial intelligence (namely the theory of rough
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sets), helps to deal with functional dependencies having redundant input attributes.
We have presented a new exact algorithm for attribute reduction which is based
on the unate complementation task. Experimental results which have been obtained
using this approach proved that it is a valuable method of processing the databases.
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