
Chapter 10
Architecture and Design of the HeuristicLab
Optimization Environment

S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer,
S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller

Abstract. Many optimization problems cannot be solved by classical mathematical
optimization techniques due to their complexity and the size of the solution space.
In order to achieve solutions of high quality though, heuristic optimization algo-
rithms are frequently used. These algorithms do not claim to find global optimal
solutions, but offer a reasonable tradeoff between runtime and solution quality and
are therefore especially suitable for practical applications. In the last decades the
success of heuristic optimization techniques in many different problem domains en-
couraged the development of a broad variety of optimization paradigms which often
use natural processes as a source of inspiration (as for example evolutionary algo-
rithms, simulated annealing, or ant colony optimization). For the development and
application of heuristic optimization algorithms in science and industry, mature,
flexible and usable software systems are required. These systems have to support
scientists in the development of new algorithms and should also enable users to ap-
ply different optimization methods on specific problems easily. The architecture and
design of such heuristic optimization software systems impose many challenges on
developers due to the diversity of algorithms and problems as well as the heteroge-
neous requirements of the different user groups. In this chapter the authors describe
the architecture and design of their optimization environment HeuristicLab which
aims to provide a comprehensive system for algorithm development, testing, anal-
ysis and generally the application of heuristic optimization methods on complex
problems.

S. Wagner · G. Kronberger · A. Beham · M. Kommenda · A. Scheibenpflug · E. Pitzer ·
S. Vonolfen · M. Kofler · S. Winkler · V. Dorfer · M. Affenzeller
Heuristic and Evolutionary Algorithms Laboratory, School of Informatics,
Communication and Media, University of Applied Sciences Upper Austria, Softwarepark 11,
4232 Hagenberg, Austria
e-mail: heal@heuristiclab.com

R. Klempous et al. (eds.), Advanced Methods and Applications in Computational Intelligence, 197
Topics in Intelligent Engineering and Informatics 6,
DOI: 10.1007/978-3-319-01436-4_10, c© Springer International Publishing Switzerland 2014

198 S. Wagner et al.

10.1 Introduction

In the last decades a steady increase of computational resources and concurrently
an impressive drop of hardware prices could be observed. Nowadays, very power-
ful computer systems are found in almost every company or research institution,
providing huge processing power on a broad basis which was unthinkable some
years ago. This trend opens the door for tackling complex optimization problems
of various domains that were not solvable in the past. Concerning problem solving
methodologies, especially heuristic algorithms are very successful in that sense, as
they provide a reasonable tradeoff between solution quality and required runtime.

In the research area of heuristic algorithms a broad spectrum of optimization
techniques has been developed. In addition to problem-specific heuristics, particu-
larly the development of metaheuristics is a very active field of research, as these
algorithms represent generic methods that can be used for solving many different
optimization problems. A variety of often nature inspired archetypes has been used
as a basis for new optimization paradigms such as evolutionary algorithms, ant
systems, particle swarm optimization, tabu search, or simulated annealing. Seve-
ral publications show successful applications of such metaheuristics on benchmark
and real-world optimization problems.

However, JÃŒrg Nievergelt stated in his article in 1994 “No systems,
no impact!” [30] and pointed out that well-engineered software systems are a fun-
damental basis to transfer research results from science to industry. Of course, this
statement is also true in the area of heuristic optimization. In order to apply effec-
tive and enhanced metaheuristics on real-world optimization problems, mature soft-
ware systems are required which meet demands of software quality criteria such as
reliability, efficiency, usability, maintainability, modularity, portability, or security.
Although these requirements are well-known and considered in enterprise software
systems, they are not yet satisfactorily respected in the heuristic optimization com-
munity. Most heuristic optimization frameworks are research prototypes and are
funded by national or international research programs. In such scenarios it is very
hard to establish a continuous development process, to take into account many dif-
ferent users, to provide comprehensive support for users, or to reach the maturity
of a software product. Therefore, these systems cannot be easily integrated into an
enterprise environment.

Another major difficulty regarding the design of general purpose heuristic op-
timization software systems is that there is no common model for metaheuristics.
Due to the heterogeneous nature of heuristic optimization paradigms, it is hard to
identify and generalize common concepts which imposes a challenging problem
on software developers. Many existing software frameworks focus on one or a few
particular optimization paradigms and miss the goal of providing an infrastructure
which is generic enough to represent all different kinds of algorithms. The variety of
existing frameworks makes it very difficult for researchers to develop and compare
their algorithms to show advantageous properties of a new approach. A unified soft-
ware platform for heuristic optimization would improve this situation, as it would

10 Architecture and Design of the HeuristicLab Optimization Environment 199

enable algorithm developers to assemble algorithms from a set of ready-to-use com-
ponents and to analyze and compare results in a common framework.

Therefore, the development of high quality and mature heuristic optimization
software systems would lead to a win-win situation for industry and for science. In
this chapter, the authors describe their efforts towards this goal in the development
of the flexible architecture and generic design of the HeuristicLab optimization envi-
ronment. Instead of trying to incorporate different heuristic optimization algorithms
into a common model, HeuristicLab contains a generic algorithm (meta-)model that
is capable of representing not only heuristic optimization but arbitrary algorithms.
By this means HeuristicLab can be used to develop custom algorithm models for
various optimization paradigms. Furthermore, state-of-the-art software engineering
methodologies are used to satisfy additional requirements such as parallelism, user
interaction on different layers of abstraction, flexible deployment, or integration into
existing applications.

10.1.1 Related Work

Modern concepts of software engineering such as object-oriented or component-
oriented programming represent the state of the art for creating complex software
systems by providing a high level of code reuse, good maintainability and a high
degree of flexibility and extensibility (see for example [29, 20, 8, 17]). However,
such approaches are not yet established on a broad basis in the area of heuristic op-
timization, as this field is much younger than classical domains of software systems
(e.g., word processing, calculation, image processing, or integrated development en-
vironments). Most systems for heuristic optimization are one man projects and are
developed by researchers or students to realize one or a few algorithms for solv-
ing a specific problem. Naturally, when a software system is developed mainly for
personal use or a very small, well-known and personally connected user group, soft-
ware quality aspects such as reusability, flexibility, genericity, documentation and a
clean design are not the prime concern of developers. As a consequence, seen from
a software engineering point of view, in most cases these applications still suffer
from a quite low level of maturity.

In the last years and with the ongoing success of heuristic algorithms in sci-
entific as well as commercial areas, the heuristic optimization community started
to be aware of this situation. Advantages of well designed, powerful, flexible and
ready-to-use heuristic optimization frameworks were discussed in several publica-
tions [34, 28, 37, 22, 44, 13, 31], identifying similar requirements as described in
this chapter. Furthermore, some research groups started to head for these goals and
began redesigning existing or developing new heuristic optimization software sys-
tems which were promoted as flexible and powerful white or even black box frame-
works, available and useable for a broad group of users in the scientific as well as
in the commercial domain. In comparison to the systems available before, main ad-
vantages of these frameworks are a wide range of ready-to-use classical algorithms,

200 S. Wagner et al.

solution representations, manipulation operators, and benchmark problems which
make it easy to start experimenting and comparing various concepts. Additionally,
a high degree of flexibility due to a clean object-oriented design makes it easy for
users to implement custom extensions such as specific optimization problems or
algorithmic ideas.

One of the most challenging tasks in the development of such a general purpose
heuristic optimization framework is the definition of an object model representing
arbitrary heuristic optimization paradigms. This model has to be flexible and ex-
tensible to a very high degree so that users can integrate non-standard algorithms
that often do not fit into existing paradigms exactly. Furthermore the model should
be very fine-grained so that a broad spectrum of existing classical algorithms can be
represented as algorithm modules. Then, these modules can serve as building blocks
to realize different algorithm variations or completely new algorithms with a high
amount of reusable code.

Consequently, the question is on which level of abstraction such a model should
be defined. A high level of abstraction leads to large building blocks and a very
flexible system. A lower level of abstraction supports reusability by providing many
small building blocks, but the structure of algorithms has to be predefined more
strictly in that case which reduces flexibility. As a consequence, these two require-
ments are contradictory to some degree.

Taking a look at several existing frameworks for heuristic optimization, it can
be seen that this question has been answered in quite different ways. Several
publications have been dedicated to the comparison and evaluation of common
frameworks for heuristic optimization and show that each of the existing systems
is focused on some specific aspects in the broad spectrum of identified require-
ments [34, 38, 49, 13, 31]. None of the frameworks is able to dominate the others
in all or at least most of the considered evaluation criteria. This indicates that time
is ripe for consolidation. The lessons learned in the development of the different
frameworks as well as their beneficial features should be shared and incorporated
into the ongoing development. As a basis for this process detailed documentation
and comprehensive publications are required which motivate and describe the ar-
chitecture and design as well as the specific features of the systems. Therefore this
chapter represents a step towards this direction and describes the HeuristicLab op-
timization environment in detail and highlights the features that set HeuristicLab
apart from other existing systems.

10.1.2 Feature Overview

In contrast to most other heuristic optimization systems, the development of Heu-
risticLab targets two major aspects: On the one hand HeuristicLab contains a very
generic algorithm model. Therefore HeuristicLab is not only dedicated to some
specific optimization paradigm (such as evolutionary algorithms or neighborhood-
based heuristics) but is capable of representing arbitrary heuristic optimization

10 Architecture and Design of the HeuristicLab Optimization Environment 201

algorithms. On the other hand HeuristicLab considers the fact that users of heuristic
optimization software are in many cases experts in the corresponding problem do-
main but not in computer science or software development. Therefore HeuristicLab
provides a rich graphical user interface which can be used not only to parameterize
and execute algorithms but also to manipulate existing or define new algorithms in a
graphical algorithm designer. Furthermore, the HeuristicLab user interface also pro-
vides powerful features to define and execute large-scale optimization experiments
and to analyse the results with interactive charts. In this way also users who do not
have a profound background in programming can work with HeuristicLab easily.

In general the most relevant features of HeuristicLab can be roughly summarized
as follows:

• Rich Graphical User Interface
A comfortable and feature rich graphical user interface reduces the learning effort
and enables users without programming skills to use and apply HeuristicLab.

• Many Algorithms and Problems
Several well-known heuristic algorithms and optimization problems are already
implemented in HeuristicLab and can be used right away.

• Extensibility
HeuristicLab consists of many different plugins. Users can create and reuse plu-
gins to integrate new features and extend the functionality of HeuristicLab.

• Visual Algorithm Designer
Optimization algorithms can be modeled and extended with the graphical algo-
rithm designer.

• Experiment Designer
Users can define and execute large experiments by selecting algorithms, parame-
ters and problems in the experiment designer.

• Results Analysis
HeuristicLab provides interactive charts for a comfortable analysis of results.

• Parallel and Distributed Computing
HeuristicLab supports parallel execution of algorithms on multi-core or cluster
systems.

10.1.3 Structure and Content

The remaining parts of this chapter are structured as follows: In Section 10.2 the
main user groups of HeuristicLab are identified and their requirements are analyzed.
The architecture and design of HeuristicLab is discussed in Section 10.3. Thereby,
a main focus is put on the presentation of the flexible and generic algorithm model.
Section 10.4 outlines how different metaheuristics can be modeled and Section 10.5
exemplarily describes some optimization problems which are included in Heuristic-
Lab. Finally, Section 10.6 summarizes the main characteristics of HeuristicLab and
concludes the chapter by describing several application areas of HeuristicLab and
future work.

202 S. Wagner et al.

10.2 User Groups and Requirements

Developing a generic software system for heuristic optimization such as Heuristic-
Lab is a challenging task. The variety of heuristic optimization paradigms and the
multitude of application domains make it difficult for software engineers to build a
system that is flexible enough and also provides a large amount of reusable com-
ponents. Additionally, the users of heuristic optimization software systems are also
very heterogeneous concerning their individual skills and demands. As a conse-
quence, it is essential to study the different user groups in detail in order to get a
clear picture of all requirements.

When considering literature on optimization software systems for different
heuristic algorithms, some requirements are repeatedly stated by researchers. For
example in [13], Christian Gagné and Marc Parizeau define the following six
genericity criteria to qualify evolutionary computation frameworks: generic repre-
sentation, generic fitness, generic operations, generic evolutionary model, parame-
ters management, and configurable output. Quite similar ideas can also be found
in [21, 37, 23, 44, 31].

Although most of these aspects reflect important user demands, none of these
publications sketch a clear picture of the system’s target users groups. As a conse-
quence, without a precise picture of the users it is hard to determine whether the
list of requirements is complete or some relevant aspects have been forgotten. Thus,
before thinking about and defining requirements, it is necessary to identify all users.

10.2.1 User Groups

In general, users of a heuristic optimization system can be categorized into three
often overlapping groups: practitioners, trying to solve real-world optimization
problems with classical or advanced heuristics; heuristic optimization experts, an-
alyzing, hybridizing and developing advanced algorithms; and students, trying to
learn about and work with heuristic optimization algorithms and problems. There-
fore, these three groups of users called practitioners, experts and students and their
views on the area of heuristic optimization as well as their individual needs are
described in detail in the following.

10.2.1.1 Practitioners

Practitioners are people who have encountered some difficult (often NP-hard)
optimization problem and who want to get a solution for that problem. Hard op-
timization problems can be found in almost every domain (for example in engi-
neering, medicine, economics, computer science, production, or even in arts), so
this group is huge and very heterogeneous. Due to that heterogeneity, it is not possi-
ble to list all the domains where heuristic optimization algorithms have already been

10 Architecture and Design of the HeuristicLab Optimization Environment 203

successfully applied or even to think of all possible domains in which they might be
applied successfully in the future. Therefore, further refinement and categorization
of the members of this user group is omitted.

Seen from an abstract point of view, practitioners work in a domain usually
not related to heuristic optimization or software engineering. They normally have
very little knowledge of heuristic algorithms but a profound and deep knowledge of
the problem itself, its boundary conditions and its domain. This results in a highly
problem-oriented way of thinking; in this context heuristic optimization algorithms
are merely used as black box solvers to get a solution.

Usually, practitioners want to get a satisfactory solution to their problem as
quickly as possible. Each second spent on computation means that some real-world
system is running in a probably sub-optimal state. To them, time is money, and thus
their number one concern is performance. For example, the operators of a produc-
tion plant are interested in an optimal schedule of operations in order to minimize
tardiness of orders and to deliver on time. Any time a machine breaks down, a new
order is accepted, or the available capacity changes, a new schedule is needed at
once. Each minute production is continued without following an optimized sched-
ule may lead to the wrong operations being chosen for production. This may finally
result in a higher tardiness on some high priority orders causing penalties and a
severe loss of money.

Parallelism and scalability are of almost equal importance. In a production com-
pany the heuristic optimization software system used to compute optimized sched-
ules should be able to provide equally good results, even if business is going well
and there are twice as many production orders to be scheduled. A simple equation
should hold: More computing power should either lead to better results or to the
possibility to solve larger problems. Therefore, it has to be possible to enhance the
optimization system with some additional hardware to obtain better performance.

Next, practitioners require a high level of genericity. Due to the heterogeneous
nature of domains in which optimization problems might arise, a software system
has to support easy integration of new problems. Usually this integration is done
by implementing problem-specific objective functions, custom solution representa-
tions, and a generic way to introduce new operations on these solutions. For ex-
ample, new solution manipulation operators might have to be developed, respecting
some constraints a feasible solution has to satisfy.

Another important aspect is the integration of a heuristic optimization software
system. Usually an optimization system is not a stand-alone application. Data defin-
ing a problem instance is provided by other existing software systems and solutions
have to be passed on to other applications for further processing. For this reason, in
most real-world scenarios heuristic optimization software systems have to be inte-
grated into a complex network of existing IT infrastructure. Well-defined interfaces
and technology for inter-system communication and coupling are necessary.

Finally, due to the highly problem-oriented focus of practitioners, they should
not have to deal with the internals of algorithms. After a problem has been defined
and represented in a heuristic optimization software system, the system should pro-
vide a comprehensive set of classical and advanced optimization algorithms. These

204 S. Wagner et al.

algorithms can be evaluated on the concrete problem at hand and a best performing
one can be chosen as a black box solver for live operation on real-world data.

10.2.1.2 Experts

Experts are researchers focusing on heuristic optimization algorithm engineering.
Their aim is to enhance existing algorithms or develop new ones for various kinds of
problems. Following the concept of metaheuristics, especially problem-independent
modifications of algorithms are of major interest. By this means different kinds of
optimization problems can benefit from such improvements. As a result and in con-
trast to practitioners, experts consider algorithms as white box solvers. For them,
concrete optimization problems are less important and are used as case studies to
show the advantageous properties of a new algorithmic concept, such as robustness,
scalability, and performance in terms of solution quality and runtime. In many cases,
problem instances of well-known benchmark optimization problems, as for exam-
ple the traveling salesman problem or n-dimensional real-valued test functions, are
used. Ideally, a comprehensive set of benchmark problems is provided out of the
box by a heuristic optimization software system.

Due to the focus on algorithms, one main concern of experts is genericity. A
heuristic optimization software system should offer abilities to integrate new al-
gorithmic concepts easily. There should be as few restrictions in the underlying
algorithm model as possible, enabling the incorporation of techniques stemming
from different areas such as evolutionary algorithms, neighborhood-based search or
swarm systems (hybridization), the flexible modification of existing algorithms, or
the development of new ones. The sequence of operations applied to one or more
solutions during algorithm execution, in other words the algorithm model, should
be freely configurable. Furthermore, experts, similarly to practitioners, demand the
integration of new operations, solution representations and objective functions.

One main task of experts is testing algorithms on different kinds of problems, as
empirical evaluation is necessary to analyze properties of a new algorithm. Thus,
automation of test case execution and statistical analysis play an important role.
Thereby, performance in terms of execution time is usually just of secondary impor-
tance, as time constraints are not that financially critical as they are for practitioners.

In order to get some hints for algorithm improvements, experts have to use vari-
ous tools to obtain a thorough understanding of the internal mechanisms and func-
tionality of an algorithm. Since many heuristic optimization algorithms are very
sensitive to parameters values, a generic way of parameter management is of great
value, owing to the fact that various parameters have to be adjusted from test run to
test run. Furthermore, stepwise algorithm execution and customizable output are the
basis for any in-depth algorithm analysis, in order to get a clearer picture of how an
algorithm is performing and what effect was caused by some parameter adjustment
or structural modification.

Finally, replicability and persistence have to be mentioned: Each algorithm run
has to be reproducible for the sake of later reference and analysis. A persistence

10 Architecture and Design of the HeuristicLab Optimization Environment 205

mechanism is thus an essential means by which a run can be saved at any time
during its execution and can be restored later on.

10.2.1.3 Students

Students entering the area of heuristic optimization are users that are located bet-
ween the two user groups described above. In the beginning, they experiment with
various heuristic optimization techniques and try to solve well-known benchmark
problems. Therefore, a comprehensive set of classical heuristic optimization algo-
rithms and benchmark problems should be provided by a heuristic optimization soft-
ware system.

During several experiments and algorithm runs, students gain more and more in-
sight into the internal functionality of algorithms and the interdependency between
diversification and intensification of the search process. As the mystery of heuris-
tic optimization is slowly unraveled, their view of algorithms changes from black
box to white box. Hence, requirements relevant to experts - such as genericity, pa-
rameter management, automation, or customizable output - become more and more
important to these users as well.

Additionally, when using heuristic optimization techniques and a heuristic opti-
mization software system for the first time, an easy-to-use and intuitive application
programming interface (API) is helpful to reduce the necessary learning effort. Even
more, a graphical user interface (GUI) is extremely advantageous, so that students
do not have to worry about peculiarities of programming languages and frameworks.
Instead, with a GUI they are able to concentrate on the behavior of algorithms on
an abstract level. Especially, studying charts and logs of the internal state of an
algorithm during its execution is very effective to gain a deeper understanding of
algorithm dynamics.

10.2.2 Requirements

Based on the analysis of the three user groups, the following requirements can be
defined for heuristic optimization software systems (some of these requirements
can be found in similar form in [22, 37, 23, 44, 31]). The requirements are listed
alphabetically and the order does not reflect the importance of each requirement.

• Automation
As heuristic algorithms are per se non-deterministic, comparison and evaluation
of different algorithms requires extensive empirical tests. Therefore, a heuristic
optimization software system should provide functionality for experiment plan-
ning, automated algorithm execution, and statistical analysis.

• Customizable Output
In a real-world scenario heuristic optimization never is an end in itself. To enable
further processing of results with other applications, the user has to customize the

206 S. Wagner et al.

output format of a heuristic algorithm. Furthermore, user defined output is also
required by experts to visualize the internal mechanisms of algorithms by logging
internal states such as distribution of solutions in the solution space, similarity of
solutions, or stagnation of the search.

• Generic Algorithm Model
In order to represent different kinds of heuristic optimization algorithms, the
main algorithm model has to be flexible and customizable. It should not be dedi-
cated or limited to any specific heuristic optimization paradigm. Especially, this
aspect should also be kept in mind in terms of naming of classes and methods, so
that users are not irritated or misled by the API.

• Generic Operators
Related to the demand for a generic algorithm model, the operations applied
by a heuristic algorithm should be generic as well. The user has to be able to
implement either problem-specific or generic operations in an easy and intuitive
way. There has to be a standardized interface for all operations and a uniform
way how data is represented, accessed, and manipulated.

• Generic Objective Functions
To enable integration of custom optimization problems, a generic concept of ob-
jective functions has to be available. Users should be able to add custom methods
for quality evaluation easily. The quality evaluation mechanism has to be based
on a clearly defined interface, so that all other operations depending on quality
values - such as selection or heuristic manipulation operations - do not have to
take care of how the quality of a solution is calculated in detail. In that context,
working with the quality of a solution has to be abstracted from the concrete qual-
ity representation. For example, there should be no difference for selection opera-
tions whether the optimization problem is single-objective or multi-objective or a
minimization or maximization problem. Therefore, a generic way of comparing
two solutions is necessary.

• Generic Solution Representations
As users need to integrate custom optimization problems, not only generic ob-
jective functions but also a generic way of solution representation is required.
Ideally, the user should be able to assemble a custom solution representation by
combining different standard data representations such as single values, arrays,
matrices or enumerations of different data types. As an alternative, solution rep-
resentations using complex custom data structures independent of any predefined
ones should also be supported. This requirement has a strong impact on the re-
quirement of generic operators, as crossover or manipulation operators have to
work on solutions directly.

• Graphical User Interface
To pave the way to heuristic optimization for users not so familiar with soft-
ware development or specific programming languages, a heuristic optimization
software system needs to be equipped with a graphical user interface (GUI).
Users should be able to modify or develop algorithms without depending on any

10 Architecture and Design of the HeuristicLab Optimization Environment 207

specific development environment. Furthermore, a GUI is also very helpful for
experimenting and rapid prototyping, as algorithms can be modeled and visual-
ized seamlessly directly within the system.

• Integration
After their development, heuristic optimization algorithms for real-world
optimization problems have to be integrated into some existing information tech-
nology landscape. Hence, a heuristic optimization software system should be
modular to be able to integrate just the parts required in a custom scenario.
Generic communication protocols for the system and its environment are neces-
sary for passing new optimization tasks into and getting results out of the system.

• Learning Effort
Users of a heuristic optimization software system should be able to start to work
with the system quickly. Only little knowledge of programming languages and
just basic skills in programming and software development should be necessary.
The API of a heuristic optimization software system should therefore be intuitive,
easy to understand, and should follow common design practices. Additionally, a
high level user interface should be provided to decouple algorithm and problem
engineering from software development.

• Parallelism
A heuristic optimization software system should be scalable in terms of com-
puting power. Using additional computing resources should either enable the
user to solve larger problems, or to achieve better solution quality. Consequently,
exploitation of parallelism is an important success factor. A heuristic optimiza-
tion software system has to offer a seamless integration of parallelism for de-
velopment and execution of parallel algorithms. Ideally, the user just has to
define which parts of an algorithm should be executed in parallel, without hav-
ing to think about how parallelization is finally done. Due to the duality of
high-performance computing systems (shared memory multi-core CPUs versus
distributed memory cluster or grid systems) parallelization concepts for both
architectures should be provided.

• Parameter Management
Many heuristic optimization algorithms offer several parameters to influence
their behavior. As performance of most algorithms is very sensitive in terms
of parameter values, users need to run an algorithm many times to find an op-
timal configuration. Consequently, a generic parameter management facility is
required to change parameters without needing to modify any program code or
to recompile operators or, even worse, the whole system.

• Performance
Heuristic optimization applications are usually time-critical. Many objective
functions of real-world optimization problems as well as heuristic optimization
algorithms are very expensive in terms of execution time. Thus a heuristic op-
timization software system should support runtime efficient implementation and
execution of algorithms.

208 S. Wagner et al.

• Predefined Algorithms and Problems
To enable solving of optimization problems or comparison of algorithms out of
the box, a heuristic optimization software system has to provide a broad spectrum
of predefined algorithms and problems. Especially, it should be possible to use
parts of existing algorithms and problems as a basis for further development or
hybridization.

• Replicability and Persistence
As experimental evaluation is a substantial task in heuristic algorithm develop-
ment, test runs of algorithms have to be reproducible. Users should be able to
save an algorithm and to restore it later on. The software system should therefore
also enable stopping and saving algorithms during execution at any time. In that
context, random number generators have to be handled with care, depending on
whether an algorithm should be replayed with the same or a different random
number sequence.

10.3 Architecture and Design

In order to fulfill the requirements identified in Section 10.2, the authors work on
the development of an advanced generic and flexible environment for heuristic opti-
mization called HeuristicLab. HeuristicLab has continuously evolved in the last ten
years and three major versions have been developed until now which are referred to
as HeuristicLab 1.x, HeuristicLab 2.x, and HeuristicLab 3.x. In the following, the
previous versions are briefly covered and especially the newest version, Heuristic-
Lab 3.x, is presented in detail.

10.3.1 HeuristicLab 1.x

The development of HeuristicLab 1.x [40, 44] started in 2002 as a programming
project at the Johannes Kepler University Linz, Austria. The main goal of the project
was to develop a generic, extensible and paradigm-independent environment for
heuristic optimization that can be used by researchers in scientific and industrial
projects to develop and compare new optimization algorithms and by students in
lectures and exercises.

Microsoft R© .NET and the C# programming language were chosen as the devel-
opment platform for HeuristicLab 1.x. Reasons for this decision were that Heuris-
ticLab 1.x had a strong focus on a graphical user interface (GUI) right from the start
to enhance usability and to provide a shallow learning curve especially for students.
Consequently, a powerful GUI framework was required that is well integrated into
the runtime environment and provides an authentic look and feel of applications.
Concerning these aspects, back in 2002 the Microsoft R© .NET platform provided

10 Architecture and Design of the HeuristicLab Optimization Environment 209

a more promising approach than other alternatives such as JavaTM or C++1. Other
aspects as for example platform independence were of minor importance as the
developers were always focused on the Windows R© operating system.

Similarly to some other heuristic optimization frameworks such as the Templar
framework described in [21, 22], the main idea of the HeurisiticLab 1.x architec-
ture is to provide a clear separation of problem-specific and problem-independent
parts. A user should be able to develop a new heuristic optimization algorithm and
to test and compare it with several existing optimization (benchmark) problems.
Furthermore, a new problem should be easy to integrate and to solve with existing
algorithms. By this means, this concept leads to a significant level of code reuse,
as heuristic optimization algorithms can be used without any modification to solve
new optimization problem and vice versa.

In order to realize this concept, HeuristicLab 1.x offers two abstract base classes
called Algorithm and Problem from which every new extension, either optimization
algorithm or problem, has to be inherited. Furthermore, another base class Solution
represents data entities that are created and evaluated by problems and manipulated
by algorithms. Any specific solution encoding has to be inherited from that class.
On top of these basic framework classes, the HeuristicLab 1.x GUI layer is located.
It provides two more base classes for visualizing algorithms (AlgorithmForm) and
problems (ProblemForm). These classes represent forms in terms of the Microsoft R©

.NET WinForms framework and are presented in the GUI. As each algorithm is
executed in its own thread, transport objects called Results are used to inform an
AlgorithmForm about the progress of its algorithm by propagating values such as
the actual number of evaluated solutions or the current solution quality. To support
easy integration of new algorithms and problems, HeuristicLab 1.x additionally is
equipped with a plugin mechanism enabling users to add custom extensions without
knowing or even having access to the whole source code. As a summary of the
HeuristicLab 1.x core architecture, Figure 10.1 schematically shows all these basic
classes and their interactions.

As algorithms and problems are loosely coupled to be able to exchange both
parts at will, communication between algorithms and problems is realized by del-
egates (i.e., types representing methods). An algorithm defines method interfaces
it expects in order to be able to do its work (e.g., evaluation operators, manipula-
tion operators, or neighborhood operators). On the other side, a problem provides
implementations of these interfaces. If implementations of all required delegates
are available, a problem can be solved by an algorithm. Linking between delegates
(interfaces) and delegate implementations (operators) is done dynamically at run-
time using code attributes and reflection. The whole application does not have to be
compiled again when integrating new algorithms or problems.

1 It has to be mentioned that today a very powerful and flexible GUI framework and a
comfortable development environment is also available on the JavaTM side in form of the
EclipseTM IDE and the EclipseTM Rich Client Platform. So in fact concerning GUI support
the choice of an appropriate runtime environment would not be that easy today, as both
solutions, JavaTM and Microsoft R© .NET, are well developed and reached a high degree of
maturity.

210 S. Wagner et al.

FrameworkGUI

Algorithm

Solutions

Problem

Results

ProblemForm

AlgorithmForm

cre
ate

s

and e
valuate

s

manipulates

ge
ne

ra
te

s

an
d

st
or

esre
trie
ve
s

manipulates

and controls

manipulates

User

manipulates

ma
nip

ula
tes

info
rms

Fig. 10.1. Interaction of HeuristicLab 1.x classes

Beside this basic object model for representing arbitrary heuristic optimization
algorithms and problems, HeuristicLab 1.x also includes another front-end for batch
execution of algorithms called TestBench. In the HeuristicLab 1.x GUI multiple al-
gorithm and problem configurations can be saved in a comma-separated text format
(CSV) and can be executed in batch mode using the TestBench. This feature is es-
pecially useful for large scale experiments to compare different heuristic optimiza-
tion algorithms. Furthermore, another sub-project called HeuristicLab Grid [42, 43]
offers distributed and parallel batch execution of algorithm runs in a client-server
architecture.

In the past, HeuristicLab 1.x has been intensively and successfully used by the re-
search group of Michael Affenzeller in many research projects as well as in several
heuristic optimization lectures. A broad spectrum of more than 40 plugins provid-
ing different heuristic optimization algorithms and problems has been developed.
For example, various genetic algorithm variants, genetic programming, evolution
strategies, simulated annealing, particle swarm optimization, tabu search, and scatter
search are available. Furthermore, several heuristic optimization (benchmark) prob-
lems - for example, the traveling salesman problem, vehicle routing, n-dimensional
real-valued test functions, the Boolean satisfiability problem, scheduling problems,
or symbolic regression - are provided as plugins. An exemplary screenshot of the
HeuristicLab 1.x GUI is shown in Figure 10.2.

10.3.2 HeuristicLab 2.x

Although HeuristicLab 1.x was extensively used in several research projects and
was continuously extended with new algorithm and problem plugins, the authors
identified a few drawbacks of HeuristicLab 1.x during its development and produc-
tive use. The most important ones of these issues are listed and discussed in the
following:

• Monolithic Plugins
As HeuristicLab 1.x provides a very high level of abstraction by reducing heuris-
tic optimization to two main base classes (Algorithm and Problem), no specific

10 Architecture and Design of the HeuristicLab Optimization Environment 211

Fig. 10.2. Screenshot of HeuristicLab 1.x

APIs for particular optimization paradigms are available. For example, if a new
variant of genetic algorithms is developed that differs from an existing algorithm
in just some small aspects (for example using two different selection schemes for
selecting solutions for reproduction [45]), the whole algorithm has to be provided
in a separate and independent plugin. As more and more algorithms were added
to HeuristicLab 1.x, this situation led to a severe amount of code duplication and
to a significant reduction of maintainability.

• Strict Separation of Algorithms and Problems
HeuristicLab 1.x requires strict separation of algorithms and problems and loose
coupling between these two parts based on delegates. This approach makes it
rather complicated to integrate heuristic optimization algorithms such as tabu
search or hybrid algorithms that contain problem-specific concepts. A tighter
interaction between algorithms and problems should be possible on demand.

• Interruption, Saving and Restoring of Algorithms
The internal state of an algorithm during its execution cannot be persisted in Heu-
risticLab 1.x. As a consequence, it is not possible to interrupt, save and restore
an algorithm during its execution. For example, if an algorithm has to be stopped
because computation resources are temporarily required for some other task, the
whole run has to be aborted and cannot be continued later on. As algorithm runs
might take quite a long time in several application scenarios of heuristic opti-
mization, this behavior turned out to be quite uncomfortable for users.

212 S. Wagner et al.

• Comprehensive Programming Skills
Due to the high level of abstraction, comprehensive programming skills are re-
quired especially for developing new heuristic optimization algorithms; each new
algorithm plugin has to be developed from scratch. There is only little support for
developers in terms of more specialized APIs supporting particular heuristic op-
timization paradigms. Furthermore, also the HeuristicLab API has to be known
to a large extent. It is not possible to assemble algorithms in the GUI dynam-
ically at runtime by defining a sequence of operations without having to use a
development environment for compiling a new plugin.

As a result of these insights, the authors decided in 2005 to redesign and extend
the core architecture and the object model of HeuristicLab. Based on the Microsoft R©

.NET 2.0 platform a prototype was developed (HeuristicLab 2.x) that realized a
more fine-grained way of representing algorithms.

In HeuristicLab 2.x so-called workbenches represent the basic entities of each
heuristic optimization experiment. A workbench contains three main items in form
of an algorithm, a problem and a solution representation.

In contrast to HeuristicLab 1.x, solution representations are not directly inte-
grated into problems anymore, but are treated as independent objects. As a conse-
quence, manipulation concepts do not have to be provided by each problem but can
be shared, if solutions to a problem are represented in the same way.

Algorithms are no longer represented as single classes inherited from an ab-
stract base class. Instead, each algorithm consists of several operators. Each op-
erator works on either one or more solutions and represents a basic operation (e.g.,
manipulating or evaluating a solution, selecting solutions out of a solution set, or
reuniting different solution sets). Furthermore, an operator may contain and execute
other operators, leading to a hierarchical tree structure. By this means, the develop-
ment of high level operators is possible which represent more complex operations
and can be specialized with more specific operators on demand. For example, a
solution processing operator can be defined that iterates over a solution set and ex-
ecutes an operator on all contained solutions (for example an evaluation operator).
Another example is a mutation operator that executes a manipulation operator on a
solution with some predefined probability. This concept leads to a fine-grained rep-
resentation of algorithms and to better code reuse. Additionally, the strict separation
between problem-specific and problem-independent parts is softened, as operators
are able to access problem-specific information via the workbench.

The main idea of this enhanced algorithm model is to shift algorithm engineering
from the developer to the user level. Complex heuristic optimization algorithms can
be built be combining different operators in the GUI of HeuristicLab 2.x (see for
example Figure 10.3). This aspect is especially important to support users who are
not so well familiar with programming and software development (as for example
many practitioners who are experts in some problem domain but not in software en-
gineering). Furthermore, it also enables rapid prototyping and evaluation of new

10 Architecture and Design of the HeuristicLab Optimization Environment 213

Fig. 10.3. Screenshot of HeuristicLab 2.x

algorithmic concepts, as an algorithm does not have to be implemented and com-
piled as a plugin.

In order to enable interrupting, saving and restoring of algorithms at any time
during execution, a 2-phase commit strategy has been realized. If an algorithm is
stopped during its execution, the actual program flow is located somewhere in the
depths of the operator tree. As operators also may have local status variables, it
has to be assured that the whole operator tree is left in a consistent state, so that
execution can be continued, if the algorithm is restored or restarted again. The actual
iteration that has not been finished yet has to be rolled back. Consequently, each
operator has to keep a local copy of its status variables to be able to restore the last
save state of the last completed (and committed) iteration. At the end of an iteration
(i.e., a single execution of the top level algorithm of a workbench), a commit is
propagated through the whole operator tree indicating that the actual state can be
taken for granted.

All these concepts described above were implemented in the HeuristicLab 2.x
prototype and were evaluated in several research projects showing the advantages
of the new architecture in terms of code reuse, algorithm development time and
flexibility. An overview of these applications can be found in Section 10.6 at the
end of this chapter.

214 S. Wagner et al.

10.3.3 HeuristicLab 3.x

Even though HeuristicLab 2.x contains fundamental improvements compared to
version 1.x and has been extensively used in research projects as well as in lectures
on heuristic optimization, major problems regarding its operator model emerged:
For example, due to the local status variables stored in operators and due to the
nested execution of operators, the implementation of parallel algorithms turned out
to be difficult. Moreover, the 2-phase commit strategy caused a severe overhead
concerning the development of new operators and the required memory.

Therefore, it seemed reasonable to develop a new version called HeuristicLab
3.x (HL3) completely from scratch to overcome limitations due to architectural and
design decisions of previous versions. Although this decision led to starting over the
design and development process again, it offered the essential possibility to build a
thoroughly consistent heuristic optimization software system by picking up ideas of
preliminary projects, integrating novel concepts, and always keeping learned lessons
in mind. In the following, the architecture of HL3 and its object and algorithm model
are presented in detail (cf. [46, 47, 41]).

10.3.3.1 HeuristicLab Plugin Infrastructure

A plugin is a software module that adds new functionality to an existing application
after the application has been compiled and deployed. In other words, plugins en-
able modularity not only at the level of source code but also at the level of object or
byte code, as plugins can be developed, compiled, and deployed independently of
the main application. Due to dynamic loading techniques offered in modern appli-
cation frameworks such as JavaTM or Microsoft R© .NET, a trend towards software
systems can be observed in the last few years that use plugins as main architec-
tural pattern. In these systems the main application is reduced to a basic plugin
management infrastructure that provides plugin localization, on demand loading,
and object instantiation. All other parts of an application are implemented as plug-
ins. Communication and collaboration of plugins is based on extension points. An
extension point can be used in a plugin to provide an interface for other plugins
to integrate additional functionality. In other words, plugins can define extension
points or provide extensions which leads to a hierarchical application structure. By
this approach, very flexible applications can be built, as an application’s functional-
ity is determined just by its plugins. If a comprehensive set of plugins is available,
a huge variety of applications can be developed easily by selecting, combining and
deploying appropriate plugins.

In Section 10.2 genericity has been identified as an essential quality criterion of
heuristic optimization software systems. In order to enable integration of custom
optimization problems and algorithms, main parts of the system such as objective
functions, operators, or solution encodings have to be exchangeable. A high degree
of modularity is required and consequently a plugin-based architecture is also rea-
sonable for a heuristic optimization software system [48].

10 Architecture and Design of the HeuristicLab Optimization Environment 215

Motivated by the benefits of plugin-based software systems especially in the case
of heuristic optimization, plugins are used in HL3 as architectural paradigm as in
the versions HeuristicLab 1.x and 2.x. In contrast to previous versions, a lightweight
plugin concept is implemented in HL3 by keeping the coupling between plugins
very simple: Collaboration between plugins is described by interfaces. The plugin
management mechanism contains a discovery service that can be used to retrieve
all types implementing an interface required by the developer. It takes care of locat-
ing all installed plugins, scanning for types, and instantiating objects. As a result,
building extensible applications is just as easy as defining appropriate interfaces
(contracts) and using the discovery service to retrieve all objects fulfilling a con-
tract. Interfaces that can be used for plugin coupling do not have to be marked by
any specific declaration.

Meta-information has to be provided by each plugin to supply the plugin mana-
gement system with further details. For example, when installing, loading, updat-
ing, or removing a plugin, the plugin infrastructure has to know which files belong
to the plugin and which dependencies of other plugins exist. With this information
the plugin infrastructure can automatically install other required plugins, or disable
and remove dependent plugins, if a base plugin is removed. Hence, it is guaranteed
that the system is always in a consistent state. In the HL3 plugin infrastructure all
plugin-related data is stored in the source files together with the plugin code. Plugin
meta-information is expressed using code annotations instead of separate configu-
ration files, keeping the configuration of the plugin system simple and clean (see
Listing 10.1 for an example).

Additionally, a special kind of plugin is necessary: Some designated plugins,
called application plugins, have to be able to take over the main application flow.
Application plugins have to provide a main method and usually they also offer a
GUI. Due to these application plugins the HeuristicLab plugin infrastructure leads
to a flexible hierarchical system structure. It is possible to have several different
front-ends (applications) within a single system.

Collections Persistence MainForm

WindowsForms

Core Data Parameters

Operators Optimization*Engine

Encodings.* Problems.* Algorithms.*Analysis

GraphVisualization

Tracing/Logging

SelectionRandom

Instances.* Optimizer

ControlExtensions

Optimization Operators

Clients.Common

CodeEditor

Programmable Op.

ViewsModels

*.Views

Ba
se

Co
re

O
pt

im
iza

tio
n

Common, Resources, External Libraries

PluginInfrastructure

Microsoft .NET 4.0

Unit Tests

Fo
un

da
tio

n

Fig. 10.4. Plugin structure of HL3

216 S. Wagner et al.

Figure 10.4 illustrates the plugin structure of HL3 and Listing 10.1 shows the
meta-information of the HeuristicLab Optimizer application plugin as an example.

1 using HeuristicLab.PluginInfrastructure;
2

3 namespace HeuristicLab.Optimizer {
4 [Plugin("HeuristicLab.Optimizer", "3.3.6.7400")]
5 [PluginFile("HeuristicLab.Optimizer-3.3.dll",
6 PluginFileType.Assembly)]
7 [PluginDependency("HeuristicLab.Clients.Common", "3.3")]
8 [PluginDependency("HeuristicLab.Collections", "3.3")]
9 [PluginDependency("HeuristicLab.Common", "3.3")]

10 [PluginDependency("HeuristicLab.Common.Resources", "3.3")]
11 [PluginDependency("HeuristicLab.Core", "3.3")]
12 [PluginDependency("HeuristicLab.Core.Views", "3.3")]
13 [PluginDependency("HeuristicLab.MainForm", "3.3")]
14 [PluginDependency("HeuristicLab.MainForm.WindowsForms", "3.3")]
15 [PluginDependency("HeuristicLab.Optimization", "3.3")]
16 [PluginDependency("HeuristicLab.Persistence", "3.3")]
17 public class HeuristicLabOptimizerPlugin : PluginBase { }
18

19 [Application("Optimizer", "HeuristicLab Optimizer 3.3.6.7400")]
20 internal class HeuristicLabOptimizerApplication : ApplicationBase {
21 public override void Run() {
22 [...]
23 }
24 }
25 }

Listing 10.1. HeuristicLab.Optimizer application plugin

10.3.3.2 Object Model

Based on the plugin infrastructure, a generic object model is provided by HL3 which
is described in detail in this section. Following the paradigm of object-oriented soft-
ware development, the whole HL3 system is represented as a set of interacting ob-
jects. In a logical view these objects are structured in an object hierarchy using the
principle of inheritance. Though, this logical structure is not related to the physical
structure which is defined by the plugins the application consists of. Therefore, the
object hierarchy is spanned over all plugins.

Similarly to the structure of object-oriented frameworks such as the JavaTM or
Microsoft R© .NET runtime environment, a single class named Item represents the
root of the object hierarchy. It has been decided to implement a custom root class
and not to use an existing one of the runtime environment, as it is necessary to
extend the root class with some additional properties and methods which usually
are not available in the root classes of common runtime environments.

Due to the requirement of replicability and persistence, HL3 offers functionality
to stop an algorithm, save it in a file, restore it, and continue it at any later point
in time. Hence, all objects currently alive in the system have to offer some kind of
persistence functionality (also known as serialization). The persistence mechanism
has to be able to handle circular object references, so that arbitrarily complex object
graphs can be stored without any difficulties. To simplify communication with other
systems and to enable integration into an existing IT environment, XML is used as

10 Architecture and Design of the HeuristicLab Optimization Environment 217

a generic way of data representation for storing objects. Additionally, all objects
should offer deep cloning functionality which is also determined by the replicability
and persistence requirement. Seen from a technical point of view, cloning is very
similar to persistence, as cloning an object graph is nothing else than persisting it in
memory.

A graphical user interface is the second requirement which has to be considered
in the design of the basic object model. The user should be able to view and access
all objects currently available at any time, for example to inspect current quality
values, to view some charts, or to take a look at a custom representation of the best
solution found so far2. Nevertheless, the representation of data in a graphical user
interface is a very time consuming task and therefore critical concerning perfor-
mance. Consequently, visualizing all objects per default is not an option. The user
has to be able to decide which objects should be presented in the GUI, and to open
or close views of these objects as needed. Therefore, a strict separation and loose
coupling between objects and views is required.

To realize this functionality, event-driven programming is a suitable approach. If
the state of an objects changes and its representation has to be updated, events are
used to notify all views. In object-oriented programming this design is known as
the observer pattern [14] and is derived from model-view-controller. Model-view-
controller (MVC) is an architectural pattern which was described by Trygve Reen-
skaug for the first time when working together with the Smalltalk group at Xerox
PARC in 1979. It suggests the separation into a model (containing the data), views
(representing the model) and a controller for handling user interactions (events). By
this means, it is assured that the view is decoupled from the model and the control
logic and that it can be exchanged easily. A comprehensive description of MVC is
given by Krasner and Pope in [27].

In HL3 these concepts are used for object visualization. In addition, a strict de-
coupling of objects and views simplifies the development of complex views which
represent compound objects. A view of a complex object containing several other
objects can be composed by adding views of the contained objects. Figure 10.5 out-
lines this structure in a schematic way and Figure 10.6 shows a screenshot of the
HL3 GUI.

As a summary, the basic properties of each HL3 object can be defined as follows:

• Persistence
Objects can be persisted in order to save and restore themselves and all contained
objects.

• Deep Cloning
Objects provide a cloning mechanism to create deep copies of themselves.

• Visualization
Views can be created for each object to represent it in a graphical user interface.

In Figure 10.7 the structure of HL3 objects defined by the basic object model is
shown.
2 Additionally, a graphical user interface is also very helpful for reducing the learning effort

required when starting to work with the system.

218 S. Wagner et al.

ModelViews

Object

Object

Object

View

View

View

represents

represents

represents

containscontains

contains contains

Fig. 10.5. Compound views representing complex objects

Fig. 10.6. Screenshot of HeuristicLab 3.x

10.3.3.3 Algorithm Model

In the previous section, the HL3 object model has been described. It is the basis
for implementing arbitrary objects interacting in HL3. In this section the focus is
now on using this object model to represent heuristic optimization algorithms and
problems.

10 Architecture and Design of the HeuristicLab Optimization Environment 219

ItemView represents

View

View
represents

represents

File,
etc.

stored

Itemcloned

Fig. 10.7. HL3 object model

As stated in the requirements analysis in Section 10.2, the algorithm model of a
heuristic optimization software system has to be very generic. Users have to be able
to implement custom solution representations and objective functions and to realize
individual optimization algorithms. However, the area of heuristic optimization al-
gorithms and problems is very heterogeneous, as many different phenomena (e.g.,
evolution, hill climbing, foraging, or cooling of matter) were used as a source of in-
spiration leading to a broad spectrum of algorithms. These algorithms were applied
in various problem domains including medicine, finance, engineering, economics,
biology, chemistry, and many more.

Furthermore, due to the increase of computational power, many new problem do-
mains are opened up for heuristic algorithms. Today, problems are solved for which
using a (meta-)heuristic algorithm was unthinkable a few years ago because of un-
acceptable execution times. Every year new paradigms of heuristic optimization are
introduced, new hybrid algorithms combining concepts of different optimization
techniques are developed, and new optimization problems are solved. Therefore, di-
versity of algorithms and problems in the area of heuristic optimization is growing
steadily and it can be expected that this trend will continue within the next years.
Hence, developing an algorithm model capable of representing all these different
cases is quite challenging.

For software engineers this reveals an interesting problem: On the one hand, a uni-
form and generic algorithm model is necessary to be able to represent all different op-
timization paradigms. Even more, the model has to be flexible enough to realize new
algorithms that are not even known today and probably will be invented in the future.
On the other hand, heterogeneity in the field of heuristic optimization makes it very
difficult to develop such a generic model, as the different concepts and paradigms of
heuristic optimization can hardly be unified. Although, some efforts were made in the
scientific community to develop common models for subareas of heuristic optimiza-
tion (e.g., for evolutionary algorithms as described in [9]), still there is no common
theoretical model of heuristic optimization algorithms in general.

220 S. Wagner et al.

To solve this challenging task, radical abstraction and meta-modeling are essen-
tial success factors. As it is impossible to foresee which kinds of algorithms and
problems will be implemented in a heuristic optimization software system, abstrac-
tion has to be shifted one level higher. Instead of developing a model from the view-
point of heuristic optimization, the algorithm model has to be able to represent any
kind of algorithm in any domain. By this means, the model turns into an algorithm
meta-model that enables users to quickly build customized models that exactly fit to
their needs.

In order to define such a generic and domain-independent algorithm model, an
algorithm can be represented as an interaction of three parts: It is a sequence of
steps (operations, instructions, statements) describing manipulation of data (input
and output variables) that is executed by a machine (or human). Therefore, these
three components (data, operators, and execution) are the core of the HL3 algorithm
model and are described in detail in the following.

Data Model

Data values are represented as objects according to the HL3 object model. There-
fore, each value can be persisted and viewed. Standard data types such as integers,
doubles, strings, or arrays that do not offer these properties have to be wrapped in
HL3 objects. In imperative programming, variables are used to represent data val-
ues that are manipulated in an algorithm. Variables link a data value with a (human
readable) name and (optionally) a data type, so that they can be referenced in state-
ments. Adapting this concept in the HL3 data model, a variable object stores a name,
a description, and a value (an arbitrary HL3 object). The data type of a variable is
not fixed explicitly but is given by the type of the contained value.

In a typical heuristic optimization algorithm a lot of different data values and
therefore variables are used. Hence, in addition to data values and variables, another
kind of objects called scopes is required to store an arbitrary number of variables.
To access a variable in a scope, the variable name is used as an identifier. Thus, a
variable name has to be unique in each scope the variable is contained.

Hierarchical structures are very common in heuristic optimization algorithms.
For example, in an evolutionary algorithm an environment contains several popula-
tions, each population contains individuals (solutions) and these solutions may con-
sist of different solution parts. Moreover, hierarchical structures are not only suitable
for heuristic optimization. In many algorithms complex data structures (also called
compound data types) are assembled from simple ones. As a result, it is reasonable
to combine scopes in a hierarchical way to represent different layers of abstraction.
Each scope may contain any number of sub-scopes which leads to an n-ary tree
structure. For example, a scope representing a set of solutions (population) contains
other scopes that represent a single solution each.

As operators are applied on scopes to access and manipulate data values or sub-
scopes (as described in the next section), the hierarchical structure of scopes also

10 Architecture and Design of the HeuristicLab Optimization Environment 221

has another benefit: The interface of operators does not have to be changed accor-
ding to the layer an operator is applied on. For example, selection operators and
manipulation operators are both applied on a single scope. However, in the case of
selection this scope represents a set of solutions and in the case of manipulation it
stands for a single solution. Therefore, users are able to create as many abstraction
layers as required, but existing operators do not have to be modified. Especially in
the case of parallel algorithms, this aspect is very helpful and will be discussed in
detail later on.

The hierarchy of scopes is also taken into account when accessing variables. If a
variable is not found in a scope, looking for the variable is dedicated to the parent
scope of the current scope. The lookup is continued as long as the variable is not
found and as long as there is another parent scope left (i.e., until the root scope
is reached). Each variable is therefore “visible” in all sub-scopes of the scope that
contains it. However, if another variable with the same name is added to one of the
sub-scopes, the original variable is hidden due to the lookup procedure3.

Operator Model

According to the definition of an algorithm, steps are the next part of algorithms that
have to be considered. Each algorithm is a sequence of clearly defined, unambigu-
ous and executable instructions. In the HL3 algorithm model these atomic building
blocks of algorithms are called operators and are represented as objects. In anal-
ogy to imperative programming languages, operators can be seen as statements that
represent instructions or procedure calls.

Operators fulfill two major tasks: On the one hand, they are applied on scopes to
access and manipulate variables and sub-scopes. On the other hand, operators define
which operators are executed next.

Regarding the manipulation of variables, the approach used in the HL3 opera-
tor model is similar to formal and actual parameters of procedures. Each operator
contains parameters which contain a (formal) name, a description, and a data type
and are used to access and manipulate values. In general, the HL3 operator model
provides two major groups of parameters: value parameters and lookup parameters.
In value parameters the parameter value is stored in the parameter object itself and
can be manipulated directly by the user. They usually represent input parameters
of an operator which have to be set by the user. Lookup parameters do not contain
but refer to a value and are responsible for retrieving the current parameter value
dynamically at runtime. For this purpose an actual name has to be defined in each
lookup parameter which is used in an internal value lookup mechanism to fetch the
current value from the variables stored in the scope tree.

By this means, operators are able to encapsulate functionality in an abstract way:
For example, a simple increment operator contains a single parameter object in-
dicating that the operator manipulates an integer variable. Inside the operator this

3 This behavior is very similar to blocks in procedural programming languages. That is the
reason why the name “scope” has been chosen.

222 S. Wagner et al.

parameter is used to implement the increment operation. After instantiating an in-
crement operator and adding it to an algorithm at run time, the user has to define the
concrete name of the value which should be incremented. This actual name is also
set in the parameter. However, the original code of the operator (i.e., the increment
operation) does not have to be modified, regardless which value is actually incre-
mented. The implementation of the operator is decoupled from concrete variables.
Therefore, the operator can be reused easily to increment any integer value.

Regarding their second major purpose, operators define the execution flow of an
algorithm. Each operator may contain parameters which refer to other operators,
which defines the static structure of an algorithm. When an operator is executed, it
can decide which operators have to be executed next. Hence, complex algorithms
are built by combining operators.

Control operators can be implemented that do not manipulate data, but dynami-
cally define the execution flow. For example, branches can be realized by an operator
that chooses a successor operator depending on the value of a variable in the scope
the branch operator is applied on (cf. if- or switch-statements).

In contrast to scopes, operators are not combined hierarchically, but represent a
graph. An operator used in an upper level of an algorithm can be added as a sub-
operator in a lower level again. Thus, operator references may contain cycles. In
combination with branches, these cycles can be used to build loops (see Section 10.4
for a detailed description of control operators).

As described above, classical concepts of programming such as sequences,
branches, loops, or recursion can be represented in the operator model. Therefore,
the HL3 algorithm model is capable of representing any algorithm that can be de-
scribed in imperative programming languages.

Execution Model

The execution of algorithms is the last aspect which has to be defined in the HL3
algorithm model. Algorithms are represented as operator graphs and are executed
step-by-step on virtual machines called engines. In each iteration an engine performs
an operation, i.e., it applies an operator to a scope. Before executing an algorithm,
each engine is initialized with a single operation containing the initial operator and
an empty global scope.

As the execution flow of an algorithm is dynamically defined by its operators,
each operator may return one or more operations that have to be executed next.
Consequently, engines have to keep track of all operations that wait for execution.
These pending operations are kept in a stack. In each iteration, an engine pops the
next operation from the top of its stack, executes the operator on the scope, and
pushes all returned successor operations back on the stack again in reversed order4.
By this means, engines perform a depth-first expansion of operators. Listing 10.2
states the main loop of engines in pseudo-code.

4 Reversing the order of operations is necessary to preserve the execution sequence, as a stack
is a last-in-first-out queue.

10 Architecture and Design of the HeuristicLab Optimization Environment 223

1 clear global scope // remove all variables and sub-scopes

2 clear operations stack
3 push initial operation // initial operator and global scope

4

5 WHILE NOT operations stack is empty DO BEGIN
6 pop next operation
7 apply operator on scope
8 push successor operations // in reverse order

9 END WHILE

Listing 10.2. Main loop of HL3 engines

Finally, as a summary of the HL3 algorithm model and its three sub-models
(data model, operator model, execution model), Figure 10.8 shows the structure of
all components.

Operators Scopes

Variables

Data

Engine

hostsexecutes

process

contain

contain

contain

Parameters

contain

refer to

refer to

contain

Fig. 10.8. HL3 algorithm model

10.3.3.4 Parallelism

As already pointed out in Section 10.2, short execution time is very important in
many real-world applications of heuristic optimization. In order to increase perfor-
mance, concepts of parallel and distributed computing are used frequently to utilize
multiple cores or even computers and to distribute the work load. In the area of par-
allel heuristic optimization several models of parallelization have been developed
which reflect different strategies. In general, there are two main approaches:

224 S. Wagner et al.

The first approach is to calculate the quality of solutions in parallel. In many
optimization problems, evaluating a solution requires much more runtime than the
execution of solution manipulation operators. As an example consider heuristic op-
timization for production planning or logistics: In that case, evaluating a solution is
done by building a schedule of all jobs or vehicles (for example by using the Giffler-
Thompson scheduling algorithm [15]), whereas a solution manipulation operator
just needs to change permutations5. As another example, heuristic optimization of
data representation or simulation models can be mentioned. In these applications,
evaluating a solution means executing the whole model (i.e., performing the simu-
lation or checking the quality of the model for all training data). In both examples
(and there are many more), evaluating a single solution is independent of all other
solutions. Therefore, quality calculation can be easily executed in parallel which is
called global parallelization [2]. However, the heuristic algorithm performing the
optimization is still executed sequentially.

The second approach is to parallelize heuristic optimization algorithms di-
rectly [2, 6]. By splitting solution candidates into distinct sets, an algorithm can
work on these sets independently and in parallel. For example, parallel multi-start
heuristics are simple representatives of that idea. In a parallel multi-start heuristic
algorithm, multiple optimization runs are executed with different initial solutions in
order to achieve larger coverage of the solution space. Nevertheless, no information
is exchanged between these runs until all of them are finished and the best solu-
tion is determined. In more complex algorithms (e.g., coarse- or fine-grained par-
allel genetic algorithms), information is additionally exchanged from time to time
to keep the search process alive and to support diversification of the search. Hence,
population-based heuristic optimization algorithms are especially well suited for
this kind of parallelization.

Consequently, a heuristic optimization software system should consider paral-
lelization in its algorithm model. It has to provide sequential as well as parallel
blocks, so that all different kinds of parallel algorithms can be represented. Fur-
thermore, the definition of parallel parts in an algorithm has to be abstracted from
parallel execution. By this means, users can focus on algorithm development and do
not have to rack their brains on how parallelism is actually implemented.

In the HL3 algorithm model presented in the previous section, data, operators
and algorithm execution have been separated strictly. Consequently, parallelism can
be integrated by grouping operations into sets that might be executed in parallel. As
an operator may return several operations that should be executed next, it can mark
the successor operations as a parallel group. These operations are then considered to
be independent of each other and the engine is able to decide which kind of parallel
execution should be used. How this parallelization is actually done just depends on
the engine and is not defined by the algorithm.

HL3 offers two engines which implement different parallelization concepts. The
ParallelEngine is based on the Microsoft R© .NET Task Parallel Library (TPL) and

5 This depends on the solution encoding, but variations of permutation-based encoding are
frequently used for combinatorial optimization problems and have been successfully ap-
plied in many applications.

10 Architecture and Design of the HeuristicLab Optimization Environment 225

enables parallel execution on multiple cores. The HiveEngine is based on Heuris-
ticLab’s parallel and distributed computing infrastructure called Hive and provides
parallel execution of algorithms on multiple computers. By this means, the user can
specify the parallelization concept used for executing parallel algorithms by choos-
ing an appropriate engine. The definition of an algorithm is not influenced by that
decision. Additionally, HL3 also contains a SequentialEngine and a DebugEngine
which both do not consider parallelism at all and execute an algorithm sequentially
in every case. These engines are especially helpful for testing algorithms before they
are really executed in parallel.

Based on this parallelization concept, HL3 provides special control operators for
parallel processing. Data partitioning is thereby enabled in an intuitive way due to
the hierarchical structure of scopes. For example, the operator SubScopesProcessor
can be used to apply different operators on the sub-scopes of the current scope in
parallel. Therefore, parallelization can be applied on any level of scopes which en-
ables the definition of global, fine- or coarse-grained parallel heuristic algorithms
(for a detailed description of parallel control operators see Section 10.4).

10.3.3.5 Layers of User Interaction

Working with HL3 on the level of its generic algorithm model offers a high degree
of flexibility. Therefore, this level of user interaction is very suitable for experts who
focus on algorithm development. However, dealing with algorithms on such a low
level of abstraction is not practical for practitioners or students. Practitioners require
a comprehensive set of predefined algorithms which can be used as black box op-
timizers right away. Similarly, predefined algorithms and also predefined problems
are equally important for students, so that they can easily start to experiment with
different algorithms and problems and to learn about heuristic optimization. Conse-
quently, HL3 offers several layers for user interaction that reflect different degrees
of detail [3].

Predefined algorithms are provided that contain entire operator graphs represent-
ing algorithms such as evolutionary algorithms, simulated annealing, hill climbing,
tabu search, or particle swarm optimization. Therefore, users can work with heuris-
tic optimization algorithms right away and do not have to worry about how an al-
gorithm is represented in detail. They only have to specify problem-specific parts
(objective function, solution encoding, solution manipulation) or choose one of the
predefined optimization problems. Additionally, custom views can be provided for
these algorithms that reveal only the parameters and outputs the user is interested
in. By this means, the complexity of applying heuristic optimization algorithms is
significantly reduced.

Between the top layer of predefined solvers and the algorithm model, arbitrary
other layers can be specified that offer algorithm building blocks in different degrees
of detail. For example, generic models of specific heuristic optimization paradigms,
as for example evolutionary algorithms or local search algorithms, are useful for

226 S. Wagner et al.

experimenting with these algorithms. These models also hide the full complexity
and flexibility of the algorithm model from users who therefore can solely con-
centrate on the optimization paradigm. Especially in that case the graphical user
interface is very important to provide a suitable representation of algorithms.

In Figure 10.9 the layered structure of user interaction in HL3 is shown schemat-
ically. Users are free to decide how much flexibility they require and on which level
of abstraction they want to work. However, as all layers are based on the algorithm
model, users can decrease the level of abstraction step by step, if additional flexibil-
ity is necessary in order to modify an algorithm.

Algorithm Model

Specific Models
(Algorithm Building Blocks)

Solvers
(SGA, TS, SA, PSO, …)

S
p

ec
ia

liz
at

io
n

G
en

er
al

iz
at

io
n

Fig. 10.9. Layers of user interaction in HL3

10.3.4 Analysis and Comparison

A comparison of the different versions of HeuristicLab concerning the requirements
defined in Section 10.2 is shown in Table 10.1. A bullet (•) indicates that a require-
ment is fulfilled, a circle (◦) marks requirements which are somehow addressed
but are not satisfactorily fulfilled, and a dot (·) shows requirements which are not
considered.

HeuristicLab 1.x provides a paradigm-independent algorithm model which is
very similar to the model of Templar [21, 22], although it lacks a clean separa-
tion of optimization problems and solution representations. Furthermore, algorithm
runs cannot be interrupted, saved, and restarted. It provides a plugin mechanism that
enables dynamic extension, web-based deployment, and clean integration into other
applications. A broad spectrum of plugins for trajectory-based as well as population-
based metaheuristics and many different optimization problems have been imple-
mented. Furthermore, a bunch of plugins developed in the HeuristicLab Grid project
enables parallel and distributed batch execution. Additionally, GUI components are
integrated into the core framework and enable graphical and interactive configura-
tion and analysis of algorithms.

10 Architecture and Design of the HeuristicLab Optimization Environment 227

Table 10.1. Evaluation and comparison of HeuristicLab

H
eu

ri
st

ic
L

ab
1.

x
H

eu
ri

st
ic

L
ab

2.
x

H
eu

ri
st

ic
L

ab
3.

x

Automation • ◦ •
Customizable Output • • •
Generic Algorithm Model • • •
Generic Operators ◦ • •
Generic Objective Functions ◦ ◦ •
Generic Solution Representations ◦ • •
Graphical User Interface • • •
Integration • • •
Learning Effort • ◦ •
Parallelism ◦ ◦ •
Parameter Management ◦ ◦ •
Performance ◦ ◦ ◦
Predefined Algorithms and Problems • ◦ •
Replicability and Persistence · • •

HeuristicLab 2.x was designed to overcome some of the drawbacks of the previ-
ous version. The main purpose was to combine a generic and fine-grained algorithm
model with a GUI to enable dynamic and interactive prototyping of algorithms. Al-
gorithm developers can use the GUI to define, execute, and analyze arbitrary com-
plex search strategies and do not have to be experienced programmers. Furthermore,
HeuristicLab 2.x also offers support for replicability and persistence, as algorithm
runs can be aborted, saved, loaded and continued. However, HeuristicLab 2.x is a
research prototype and has never been officially released. Therefore, it still contains
some drawbacks concerning performance, stability, usability, learning effort, and
documentation. Additionally, the implementation of parallel metaheuristics is diffi-
cult due to the nested execution of operators and the local status variables which are
used in many operators.

Finally, HL3 fulfills almost all requirements identified so far. Just performance
remains as the last requirement that is still a somehow open issue. Even though HL3
enables parallel execution of algorithms and can therefore utilize multi-core CPUs
or clusters, the runtime performance of sequential algorithms is worse compared to
other frameworks. Reasons for this drawback are the very flexible design of HL3
and the dynamic representation of algorithms. As algorithms are defined as operator
graphs, an engine has to traverse this graph and execute operators step by step.
Of course, this requires more resources in terms of runtime and memory as is the
case when algorithms are implemented as static blocks of code. However, if more
effort has to be put on the evaluation of solutions, the overhead of the HeuristicLab

228 S. Wagner et al.

3.x algorithm model is less critical. This is in fact an important aspect, as most
resources are consumed for the evaluation of the objective function in many real-
world optimization applications. Therefore, the benefits of HeuristicLab 3.x in terms
of flexibility, genericity and extensibility should outweigh the additional overhead.
Furthermore, the efficiency of HeuristicLab 3.x can be easily improved by executing
operators in parallel.

10.4 Algorithm Modeling

In HeuristicLab algorithms are modeled using the operator concept described in
Section 10.3. HeuristicLab offers a wide range of operators that can be used to
model any type of algorithm. Of course because HL is primarily used to implement
metaheuristics, there are a lot of operators which are specially designed for this
kind of algorithms. In the following section, operators are presented that are later
used to build some typical examples of standard heuristic optimization algorithms.
Furthermore, these operators serve as algorithm building blocks for successively
defining more complex parallel and hybrid metaheuristics, showing the flexibility
and genericity of the framework.

10.4.1 Operators

First of all, simple operators are discussed that perform typical tasks required in
every kind of algorithm.

EmptyOperator

The EmptyOperator is the most simple form of an operator. It represents an op-
erator that does nothing and can be compared to an empty statement in classical
programming languages.

To get an idea of how an operator implementation looks like in HL, Listing 10.3
shows its implementation. Each operator is inherited from the abstract base class
SingleSuccessorOperator. This base class takes care of aspects that are identical
for all operators (e.g., storing of sub-operators and variable information, persistence
and cloning, and events to propagate changes). Note that the most important method
of each operator is Apply which is called by an engine to execute the operator. Ap-
ply may return an object implementing IOperation which represents the successor
operations. If the operator has no successor operations, null is returned.

10 Architecture and Design of the HeuristicLab Optimization Environment 229

1 public sealed class EmptyOperator : SingleSuccessorOperator {
2 public EmptyOperator() : base() { }
3

4 public override IOperation Apply() {
5 return base.Apply();
6 }
7 }

Listing 10.3. Source code of EmptyOperator

Random

As most heuristic optimization algorithms are stochastic processes, uniformly dis-
tributed high quality pseudo-random numbers are required. For creating random
numbers a single pseudo-random number generator (PRNG) should be used to en-
able replicability of runs. By setting the PRNG’s random seed the produced random
number sequence is always identical for each run; it is therefore useful to create a
single PRNG into the global scope. Although PRNGs are also represented as data
objects and consequently can be stored in variables, it has been decided to imple-
ment a custom operator RandomCreator for this task. Reasons are that it can be
specified for a RandomCreator whether to initialize the PRNG with a fixed random
seed to replay a run or to use an arbitrary seed to get varying runs.

Counter

IntCounter is a basic operator for incrementing integer variables. It increases the
value of a variable in a scope by a specified value. As an example, this operator can
be used for counting the number of evaluated solutions or to increment the actual
iteration number.

As the Counter operator is the first operator that changes a variable, Listing 10.4
shows its implementation to give an impression how the manipulation of variables
in a scope is done. In the constructor two parameters are defined for looking up
the values needed for executing the increment operation. First of all a parameter for
looking up the Value to increment is added as well as a parameter that contains the
value with which the number will be incremented. If there is no Increment variable
defined in the scope a default value of 1 is used. In the Apply method the actual
value of Value and Increment are used. ActualValue automatically translates the for-
mal name into the actual name of the parameter (which e.g. has been specified by
the user in the GUI) and does the parameter lookup on the scope. The ValueLookup-
Parameter uses the locally defined value if it can’t find the name on the scope. If
the ValueParameter can’t find a value for the given name, a new value is created in
the Apply method. Finally, the value is incremented and the successor operation is
executed.

230 S. Wagner et al.

1 public class Counter : SingleSuccessorOperator {
2 public ILookupParameter<IntValue> ValueParameter {
3 get {
4 return (ILookupParameter<IntValue>)Parameters["Value"];
5 }
6 }
7 public IValueLookupParameter<IntValue> IncrementParameter {
8 get {
9 return (IValueLookupParameter<IntValue>)Parameters["Increment"];

10 }
11 }
12

13 public Counter() {
14 Parameters.Add(new LookupParameter<IntValue>("Value",
15 "The value which should be incremented."));
16 Parameters.Add(new ValueLookupParameter<IntValue>(
17 "Increment",
18 "The increment which is added to the value.",
19 new IntValue(1)));
20 }
21

22 public override IOperation Apply() {
23 if (ValueParameter.ActualValue == null)
24 ValueParameter.ActualValue = new IntValue();
25 ValueParameter.ActualValue.Value +=
26 IncrementParameter.ActualValue.Value;
27 return base.Apply();
28 }
29 }

Listing 10.4. Source code of the Counter

Comparator

The Comparator operator is responsible for comparing the values of two variables.
It expects two input variables which should be compared and a comparison op-
eration specifying which type of comparison should be applied (e.g., less, equal,
greater or equal). After retrieving both variable values and comparing them, Com-
parator creates a new Boolean variable containing the result of the comparison and
writes it back into the scope.

ConditionalBranch

The operator ConditionalBranch can be used to model simple binary branches. It
retrieves a Boolean input variable from the scope tree. Depending on the value of
this variable, an operation collection containing the successor operation and addi-
tionally either the first (true branch) or the second sub-operator (false branch) is
returned. Note that do-while or repeat-until loops can be constructed without any
other specific loop operator by combining the operators ConditionalBranch and any
sequence of operations to execute in the body of the loop. Figure 10.10 shows an
operator graph for these two loop structures.

10 Architecture and Design of the HeuristicLab Optimization Environment 231

Conditional
BranchBody

true

false

Empty
Operator

Empty
Operator

Conditional
Branch Body

true

false

Fig. 10.10. Operator graphs representing a while and a do-while loop

StochasticBranch

In heuristic optimization algorithms it is a common pattern to execute operations
with a certain probability (for example mutation of individuals in evolutionary algo-
rithms or post-optimization heuristics in hybrid algorithms). Of course, this could
be realized by using an operator creating a random number into a scope in combina-
tion with the Comparer and ConditionalBranch operators. However, for convenience
reasons the StochasticBranch operator performs this task in one step. It expects a
double variable as an input specifying the probability and a PRNG. When apply-
ing the operator a new random number between 0 and 1 is generated and compared
with the probability value. If the random number is smaller, the true branch (first
sub-operator) or otherwise the false branch (second sub-operator) is chosen.

UniformSubScopesProcessor

HeuristicLab offers operators to navigate through the hierarchy levels of the scope
tree (i.e., to apply an operator on each sub-scope of the current scope). The Uniform-
SubScopesProcessor fulfils this task by returning an operation for each sub-scope
and its first sub-operator. Additionally this operator has a parameter for enabling
parallel processing of all sub-scopes if the engine supports it. This leads to a single
program multiple data style of parallel processing.

SubScopesProcessor

As a generalization of the UniformSubScopesProcessor is the SubScopesProcessor
that returns an operation not only for the first sub-operator and every sub-scope, but
pair sub-operators and sub-scopes together. For each sub-scope there has to be a

232 S. Wagner et al.

sub-operator which is executed on its corresponding sub-scope to enable individual
processing of all sub-scopes.

Selection and Reduction

Seen from an abstract point of view, a large group of heuristic optimization
algorithms called improvement heuristics follows a common strategy: In an initial-
ization step one or more solutions are generated either randomly or using construc-
tion heuristics. These solutions are then iteratively manipulated in order to navigate
through the solution space and to reach promising regions. In this process manip-
ulated solutions are usually compared with existing ones to control the movement
in the solution space depending on solution qualities. Selection splits solutions into
different groups either by copying or moving them from one group to another; re-
placement merges solutions into a single group again and overwrites the ones that
should not be considered anymore.

In the HL algorithm model each solution is represented as a scope and scopes
are organized in a hierarchical structure. Therefore, these two operations, selection
and replacement, can be realized in a straight forward way: Selection operators split
sub-scopes of a scope into two groups by introducing a new hierarchical layer of
two sub-scopes in between, one representing the group of remaining solutions and
one holding the selected ones as shown in Figure 10.11a. Thereby solutions are
either copied or moved depending on the type of the selection operator. Reduction
operators represent the reverse operation. A reduction operator removes the two
sub-scopes again and reunites the contained sub-scopes as shown in Figure 10.11b.
Depending on the type of the reduction operator this reunification step may also
include elimination of some sub-scopes that are no longer required.

Selection

...

R S

... ...

remaining scopes

selected scopes

(a) General principle of selection operators

remaining scopes

selected scopes

Reduction

...

R S

... ...

(b) General principle of reduction operators

Fig. 10.11. Selection and reduction operators

Following this simple principle of selection and reduction of solutions, HL pro-
vides a set of predefined selection and reduction operators that can be used as a basis
for realizing complex selection and replacement schemes.

10 Architecture and Design of the HeuristicLab Optimization Environment 233

Selection Operators

The most trivial form of selection operators are the two operators LeftSelector and
RightSelector which select sub-scopes either starting from the leftmost or the right-
most sub-scope. If the sub-scopes are ordered for example with respect to solution
quality, these operators can be used to select the best or the worst solutions of a
group. If random selection of sub-scopes is required, RandomSelector can be used
which additionally expects a PRNG as an input variable.

In order to realize more sophisticated ways of selection, ConditionalSelector can
be used which selects sub-scopes depending on the value of a Boolean variable
contained in each sub-scope. This operator can be combined with a selection pre-
processing step to create this Boolean variable into each scope depending on some
other conditions.

Furthermore, HL also offers a set of classical quality-based selection schemes
well-known from the area of evolutionary algorithms, as for example fitness pro-
portional selection optionally supporting windowing (ProportionalSelector), linear
rank selection (LinearRankSelector), or tournament selection with variable tour-
nament group sizes (TournamentSelector). Additionally, other individual selection
schemes can be integrated easily by implementing custom selection operators.

Reduction Operators

Corresponding reverse operations to LeftSelector and RightSelector are provided
by the two reduction operators LeftReducer and RightReducer. Both operators do
not reunite sub-scopes but discard either the scope group containing the selected
or the group containing the remaining scopes. LeftReducer performs a reduction
to the left and picks the scopes contained in the left sub-scope (remaining scopes)
and RightReducer does the same with the right sub-scopes (selected scopes). Ad-
ditionally, another reduction operator called MergingReducer is implemented that
reunites both scope groups by merging all sub-scopes.

The following sections show how the described operators are used for designing
a genetic algorithm and simulated annealing.

10.4.2 Modeling Genetic Algorithms

Genetic algorithms [19] are population-based metaheuristics which apply processes
from natural evolution to a population of solution candidates. This includes natural
selection, crossover, mutation and a replacement scheme for updating the old pop-
ulation with the newly generated one. Figure 10.12 gives and overview of a genetic
algorithm.

The genetic algorithm starts with generating a population of solution candidates.
The selection operation then selects individuals based on a certain scheme (e.g., ran-
domly or according to their qualities). In the next two steps the selected individuals

234 S. Wagner et al.

Create Initial
Population

Update
Population

Fitness-
evaluation

Mutation Crossover

Selection

EndTerminate? Yes

No

Fig. 10.12. Overview of a genetic algorithm

are crossed and mutated leading to a new population of solution candidates that then
get evaluated. In the last step the old population gets replaced with the newly gen-
erated one. This procedure is repeated until a termination criterion (e.g., maximum
number of generations) is reached.

In the following it will be outlined how a genetic algorithm can be implemented
using HeuristicLab’s operator graph. Based on the above description, the GA needs
at least the following operators:

• Operator for creating the initial population
• Crossover operator
• Mutation operator
• Fitness evaluation operator
• Selection operator
• Population update method

The first four operators are problem- or encoding-specific operators. As the ge-
netic algorithm should work with all types of encodings and problems which Heu-
risticLab offers, place-holders are used for these operators so that the user can con-
figure which operator should be used. The same concept holds for the selection
operator, though this operator is not specific to a problem or encoding. HL offers
several common selection strategies, crossover and mutation operators which can
be configured by the user and be executed by the placeholders. Before discussing
the population update method, the representation of individuals and populations is
covered in more detail.

Individuals in HL are represented as scopes. Each individual is a subscope con-
taining at least it’s genotype and optionally additional values describing the solution

10 Architecture and Design of the HeuristicLab Optimization Environment 235

candidate (e.g. the quality). The selection operators create two subscopes from the
population. The first subscope contains the old population while the second sub-
scope contains the selected individuals. Crossover operators in HeuristicLab assume
that they are applied to a subscope containing the two indivduals to be crossed.
Therefore a ChildrenCreator is used to divide the selected subscope into groups of
two individuals. To these subscopes the crossover and mutation operators can then
be easily applied. Additionally the two parents have to be removed after a new in-
dividual was generated as they are not needed any more. The population update
method has to delete the subscope of the old population and extract the newly gen-
erated individuals from the second (selected) subscope. Figure 10.13 outlines how
the subscopes change over the course of the selection, crossover, mutation and pop-
ulation update methods.

S0

GS

S1 S2 S3

(a) Initial population

S0

GS

S1

R S

S2 S3S2 S3 S0 S1 S1 S3 S0 S2

(b) Population after selection

S0

S

SG

1 2

S1 S2

3 S

0

S2 SG

G

S1 S0

(c) Population after child creation

S

GS

Sn0 Sn1 Sn2 Sn3

(d) Individual after crossover
and mutation with removed par-
ents

Fig. 10.13. Changes on scope tree during GA execution

Figure 10.13a shows the initial population which is created beneath the root of the
scope tree (Global Scope - GS). Figure 10.13b depicts the scope tree after applying
a selection operator. It shows that the population is now divided into the remaining
(R) and the selected (S) population. The ChildrenCreator operator then introduces
subscopes in the selected subscope that contain two individuals (Figure 10.13c).
After crossover and mutation, the parents are removed with the SubScopesRemover
and the remaining scopes contain the new solutions (Figure 10.13d). After having

236 S. Wagner et al.

generated a new population the old population is removed and the new population
moved back into the global scope to produce the original structure shown in Figure
10.13a. This task is accomplished with the previously described RightReducer.

Figure 10.14 shows the operator graph for generating the offspring in the genetic
algorithm.

Genetic Algorithm Core Logic

Placeholder
(Selector)

SubScopes
Processor

UniformSubScopes
Processor

Children
Creator

Empty
Operator

UniformSubScopes
Processor

Placeholder
(Evaluator)

Placeholder
(Crossover)

Placeholder
(Mutator)

SubScopesRemoverStochastic
Branch

RightReducer

Fig. 10.14. Offspring generation in the genetic algorithm

After the selection operation a SubScopesProcessor is used to apply the Children-
Creator to the selected individuals. An UniformSubScopesProcessor is used to ap-
ply the crossover to each group of parents. After the crossover the StochasticBranch
chooses based on the mutation rate, if the mutation operator should be applied to
the newly generated offspring. After the mutation the parents are removed with the
help of the SubScopesRemover operator. Next a quality is assigned to the offspring
using the Evaluator. The last step of the core logic is to remove the old population
and move the offspring to the global scope.

The algorithm so far represents the steps that one iteration of the GA is made up
of. Figure 10.15 depicts the loop that applies the offspring generation method until
the maximum number of generations is reached as well as the initialization of the
algorithm.

After initializing the random number generator, a variable Generations is created
and added to the results collection. It is incremented by the IntCounter every gener-
ation and should be displayed on the results page of HL to show the progress of the
algorithm. After incrementing Generations, a Comparator is used to check if Gen-
erations has reached it’s allowed maximum. If MaximumGenerations is reached,
the variable Abort is set to true and the ConditionalBranch executes the true branch,
which is empty and therefore the algorithm stops.

10 Architecture and Design of the HeuristicLab Optimization Environment 237

Genetic Algorithm

Random-
Creator

ResultsCollector

Generations

GA Core LogicSolutionsCreator

NumberOfSolutions:
PopulationSize

VariableCreator

Value: Generations

IntCounter

Value: Generations
Increment: 1

Comparator

LeftSide: Generations
RightSide: MaximumGenerations
Comparison: GreaterOrEqual
Result: Abort

ConditionalBranch

Condition: Abort

Fig. 10.15. Initialization and main loop of the genetic algorithm

10.4.3 Modeling Simulated Annealing

As stated in [4], simulated annealing (SA) [24] is commonly said to be the oldest
among the metaheuristics and one of the first algorithms that contained an explicit
strategy to escape from local optima. As greedy local search algorithms head for the
optimum located in the attraction basin of the initial solution, they severely suffer
from the problem of getting stuck in a local optimum. To overcome this problem
many heuristic optimization algorithms use additional strategies to support diversi-
fication of the search. One of these algorithms is simulated annealing which addi-
tionally introduces an acceptance probability. If a worse solution is selected in the
solution space, it is accepted with some probability depending on the quality differ-
ence of the actual (better) and the new (worse) solution and on a parameter called
temperature; to be more precise, the higher the temperature and the smaller the qual-
ity difference, the more likely it is that a worse solution is accepted. In each iteration
the temperature is continuously decreased leading to a lower and lower acceptance
probability so that the algorithm converges to an optimum in the end. A detailed
description of SA is given in Listing 10.5.

SA starts with an initial solution s which can be created randomly or using some
heuristic construction rule. A solution s′ is randomly selected from the neighbor-
hood of the current solution in each iteration. If this solution is better, it is accepted
and replaces the current solution. However, if s′ is worse, it is not discarded imme-
diately but is also accepted with a probability depending on the actual temperature
parameter t and the quality difference. The way how the temperature is decreased
over time is defined by the cooling scheme. Due to this stochastic acceptance crite-
rion the temperature parameter t can be used to balance diversification and intensi-
fication of the search.

238 S. Wagner et al.

1 s ← new random solution // starting point

2 evaluate s
3 sbest ← s // best solution found so far

4 i ← 1 // number of evaluated solutions

5 t ← ti // initial temperature

6

7 WHILE i ≤ maxSolutions DO BEGIN
8 s′ ← manipulate s // get solution from neighborhood

9 evaluate s′
10 i ← i+1
11 q ← quality difference of s and s′
12 IF s′ is better than s THEN BEGIN
13 s ← s′
14 IF s is better than sbest THEN BEGIN
15 sbest ← s
16 END IF
17 END

18 ELSE IF Random(0,1) < e−
|q|
t BEGIN

19 s ← s′
20 END IF
21 t ← ti // calculate next temperature

22 END WHILE
23

24 RETURN sbest

Listing 10.5. Simulated annealing

Figure 10.16 shows the operator graph for generating solutions in simulated
annealing.

Simulated Annealing Core Logic

Placeholder
(Annealing
Operator)

Placeholder
(Move Generator) SubScopesRemover

UniformSubScopes
Processor

UniformSubScopes
Processor

Placeholder
(Move Evaluator)

ProbabilisticQualityCo
mparator

LeftSide: MoveQuality
RightSide: Quality
Result: isBetter
Dampering: Temperature

ConditionalBranch

Condition: isBetter

Placeholder
(Move Maker)

Fig. 10.16. Solution generation in simulated annealing

10 Architecture and Design of the HeuristicLab Optimization Environment 239

The annealing operator defines the cooling scheme and is modeled with a place-
holder as HL offers different cooling schemes. Concrete operators for placeholders
can be provided by plugins and selected by the user through the GUI. In contrast
to the GA the global scope of the algorithm contains not a population of solution
candidates but only one solution. A UniformSubScopesProcessor is used to apply a
Move Generator to this solution. Move generators are operators that generate a con-
figurable amount of solution candidates for a given solution. A placeholder is used
for the Move Generator again, so that the user can decide how to generate moves.
Each new solution candidate is then evaluated with the Move Evaluator. The Proba-
bilisticQualityComparator calculates whether the current quality has gained a better
quality than the so far found best solution. The operator additionally considers the
current temperature as well as a random number (depicted in Listing 10.5). The
following ConditionalBranch decides based on the result of the ProbabilisticQuali-
tyComparator if the global solution has to be updated. If that is the case the update
is performed by the Move Maker. If all generated solution candidates have been
evaluated, a SubScopesRemover is used to dispose them.

As with genetic algorithms, simulated annealing’s solution generation method is
applied repeatedly and the number of iterations can be defined by the user. Figure
10.17 shows the main loop of the SA algorithm and the initialization operators.

Simulated Annealing

Random-
Creator

ResultsCollector

Temperature
Iterations

SA Core LogicSolutionsCreator

NumberOfSolutions: 1

VariableCreator

Temperature
Iterations

IntCounter

Value: Iterations
Increment: 1

Comparator

LeftSide: Iterations
RightSide: MaximumIterations
Comparison: GreaterOrEqual
Result: Terminate

ConditionalBranch

Condition: Terminate

Fig. 10.17. Initialization and main loop of simulated annealing

After initializing the random number generator, two variables, Temperature and
Iterations, are created and added to the results collection. Temperature is used in
the core algorithm to save the result of the cooling scheme operator as well as for
deciding if the quality of solution candidates is better than the global best solution.
Iterations is incremented after each solution generation phase and is compared to
the maximum number of allowed iterations. If MaximumIterations is reached, the
algorithm is stopped. SolutionsCreator creates only one solution which is used for

240 S. Wagner et al.

generating moves and is continuously improved over the course of the algorithm
execution.

10.5 Problem Modeling

After having defined a set of generic operators in Section 10.4 which build the ba-
sis for every heuristic optimization algorithm, in the next sections the focus is on
problem-specific aspects such as solution encoding, quality evaluation and manip-
ulation operators. Figure 10.18 gives an overview of how problems and encodings
are organized in HL.

Problem

e.g. Vehicle Routing, Quadratic Assignment, Symbolic Regression,...

Encoding

e.g. Permutation, RealVector, Binary,...

Operators

Creators, Crossover, Manipulators, Move Generators,
Move Makers, Particle Operators

Operators

Evaluators, Move Evaluators, Creators, Crossover, Manipulators,
Move Generators, Move Makers, Particle Operators

Fig. 10.18. Problems, encodings and problem/encoding-specific operators in HeuristicLab

HeuristicLab offers a range of already implemented problems. These problems
use encodings to represent solution candidates. Problems and encodings offer vari-
ous operators that a user can choose from. As seen in Section 10.4 algorithms usu-
ally are modeled to allow configuration of certain operators. These placeholders can
be filled with encoding- or problem-specific operators. In addition to the representa-
tion of a solution, encodings usually offer operators for creating solution candidates,
crossover and mutation (Manipulator) operators as well as operators for trajectory-
based metaheuristics (Move Generators and Move Makers) or particle swarm opti-
mization. Problems hold the problem information (e.g. the distance matrix of a TSP)
and offer problem-specific operators. Primarily these operators are the Evaluators

10 Architecture and Design of the HeuristicLab Optimization Environment 241

and Move Evaluators for assigning a fitness value to a solution candidate. Of course
problems can also offer the same operators as the encodings if there is a need for
incorporating problem-specific information.

In the following, three concrete problem implementations in HeuristicLab are
presented in more detail, showing how HL can be used to represent the quadratic
assignment problem, to optimize simulations, or to do genetic programming.

10.5.1 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was introduced in [26] and is a well-
known problem in the field of operations research. It is the topic of many studies,
treating the improvement of optimization methods as well as reporting successful
application to practical problems in keyboard design, facility layout planning and
re-planning as well as in circuit design [18, 7]. The problem is NP hard in general
and, thus, the best solution cannot easily be computed in polynomial time. Many
different optimization methods have been tried, among them popular metaheuristics
such as tabu search [36] and genetic algorithms [10].

The problem can be described as finding the best assignment for a set of facilities
to a set of locations so that each facility is assigned to exactly one location which in
turn houses only this facility. The problem can also model situations in which there
are a greater number of locations available. By introducing and assigning facilities
with no flows a solution indicates which locations are to be selected. Likewise the
problem can also model situations that contain a larger set of facilities by intro-
ducing locations with very high distances. Generally, an assignment is considered
better than another when the flows between the assigned facilities run along smaller
distances.

More formally the problem can be described by an N×N matrix W with elements
wik denoting the weights between facilities i and k and an N ×N matrix D with
elements dxy denoting the distances between locations x and y. The goal is to find
a permutation π with π(i) denoting the location that facility i is assigned to so that
the following objective is achieved:

min
N

∑
i=1

N

∑
k=1

wik ·dπ(i)π(k) (10.1)

A permutation is restricted to contain every number just once, hence, it satisfies
the constraint of a one-to-one assignment between facilities and locations:

∀i,ki �= k ⇔ π(i) �= π(k) (10.2)

The complexity of evaluating the quality of an assignment according to Eq. (10.1)
is O(N2), however several optimization algorithms move from one solution to ano-
ther through small changes, such as by swapping two elements in the permutation.
These moves allow to reduce the evaluation complexity to O(N) and even O(1) if the

242 S. Wagner et al.

previous qualities are memorized [36]. Despite changing the solution in small steps
iteratively, these algorithms can, nevertheless, explore the solution space and inter-
esting parts thereof quickly. The complete enumeration of such a “swap” neighbor-
hood contains N ∗ (N− 1)/2 moves and, therefore, grows quickly with the problem
size. This poses a challenge for solving larger instances of the QAP.

HeuristicLab offers an implementation of the QAP in the form of the Quadratic-
AssignmentProblem plugin that is based on the PermutationEncoding plugin. The
Permutation is used as a representation to the QAP. Besides the solution vec-
tor a QAP solution additionally holds the quality assigned by the QAPEvaluator
operator.

HeuristicLab also provides access to all instances of the Quadratic Assignment
Problem Library (QAPLIB) [5] which is a collection of benchmark instances from
different contributors. According to the QAPLIB website6, it originated at the Graz
University of Technology and is now maintained by the University of Pennsylvania,
School of Engineering and Applied Science. It includes the instance descriptions in
a common format, as well as optimal and best-known solutions or lower bounds and
consists of a total of 137 instances from 15 contributing sources which cover real-
world as well as random instances. The sizes range from 10 to 256 although smaller
instances are more frequent. Despite their small size these instances are often hard
to solve so a number of different algorithms have emerged [36, 35, 10].

The QuadraticAssignmentProblem class in HeuristicLab extends from the Sin-
gleObjectiveHeuristicOptimizationProblem class provided by the HeuristicLab 3.3
framework. Besides support for single and multi objective problems HeuristicLab
also distinguishes between problems and heuristic optimization problems. IProb-
lem specifies that each problem has to hold a list of operators that can be queried.
Problems are therefore responsible for discovering encoding and problem specific
operators that algorithms can retrieve and use. IHeuristicOptimizationProblem de-
fines that a heuristic optimization problem has to contain at least parameters for an
evaluator and a solution creator that an algorithm can use to create and evaluate so-
lution candidates. ISingleObjectiveHeuristicOptimizationProblem further specifies
that the evaluator has to be an ISingleObjectiveEvaluator in contrast to an IMulti-
ObjectiveHeuristicOptimizationProblem that requires an IMultiObjectiveEvaluator
which generates multiple fitness values.

The QAP itself holds the matrices for the distances between the locations and the
weights between the facilities. These are parameters that are used by the QAPEval-
uator to compute the fitness value of a solution candidate. The plugin also provides
move evaluators such as the QAPSwap2MoveEvaluator that evaluates the quality of
a swap move. This move evaluator has a special method that allows to compute the
move quality in O(1) as described in [36]. It requires that the complete swap neigh-
borhood is evaluated each iteration and that the move qualities from the previous
iteration, as well as the previously selected move are remembered. The Quadrati-
cAssigmentProblem class also implements interfaces which allow to parameterize it
with benchmark instances from various libraries. As described above the QAPLIB is

6 http://www.seas.upenn.edu/qaplib/

http://www.seas.upenn.edu/qaplib/

10 Architecture and Design of the HeuristicLab Optimization Environment 243

already integrated in HeuristicLab, but as the QAP is a generalization of the Travel-
ing Salesman Problem (TSP) it can be parameterized with problems from the accor-
ding benchmark instance library TSPLIB[33]. For this purpose the problem class
acts as an IProblemInstanceConsumer for QAPData and TSPData. Figure 10.19
shows a screenshot of the QAP implementation in HL with the chr12a problem
instance loaded from the QAPLIB.

Fig. 10.19. QAP in HeuristicLab showing a QAPLIB instance. The layout of the locations is
obtained by performing multi-dimensional scaling on the distances matrix.

10.5.2 Simulation-Based Optimization

The optimization of simulation parameters has been discussed before [12, 11], how-
ever there is still a lack of widely available ready-to-use optimization systems that
can be employed to perform the optimization task. Some simulation frameworks
come with optimizers such as OptQuest [16] included, but even in this case the in-
cluded optimizer might not be well suited to solve the given problem. The cause for
this can be found in the no free lunch theorem [50] which states that no algorithm
can outperform any other algorithm on all problems. Due to the high heterogeneity
of the actual simulation models and the meaning of their parameters, the problems
can be of many different natures. In one case there might be only a single opti-
mal solution that can be obtained through a basic local search algorithm, but in
other cases the model response might be more complex and different strategies are

244 S. Wagner et al.

required with different levels of diversification and intensification. In any case, the
more solutions that need to be evaluated, the longer the optimization process will
last. The selection of a suited optimization method and suited algorithm parameters
is therefore crucial to find good parameters for the given simulation model.

Generally, two different cases of simulation-based optimization can be identified.
In the first case the simulation model acts as a fitness function, it will take a num-
ber of parameters and calculate the resulting fitness value. In the second case, the
optimization problem occurs within the simulation model itself. For example, the
simulation of a production facility might require to solve a scheduling problem to
determine the best order of job executions which in turn requires the integration of
an optimization approach. HeuristicLab has been used in both cases [32, 39] suc-
cessfully, but while the first case has been generalized and abstracted as shown in
this work, the second case still requires a tighter coupling with the simulation model.
The generalization and abstraction of the second case is a topic for future work.

External Evaluation Problem

Simulation-based optimization in HeuristicLab has been integrated in the form of
the ExternalEvaluationProblem. As the name implies it assumes the evaluation is
taking place in another application. This problem has no predefined representation
or operators, instead the user can customize the problem according to his or her
needs. If the actual simulation-based optimization tasks can be represented by a set
of real-valued parameters, the RealVectorEncoding plugin and its operators can be
added to the problem. If instead the parameters are integer values, the IntegerVec-
torEncoding plugin can be used to create and modify the solutions. Both encodings
can also be combined if the problem parameters are mixed. A screenshot of the prob-
lem configuration view is given in Figure 10.20. In the following the parameters of
this problem are explained.

BestKnownQuality and BestKnownSolution: These parameters are used and updated
by certain analyzers and remember the best quality that has been found so far as well
as the corresponding best solution.
Cache: Together with the appropriate evaluation operator this parameter can be used
to add an evaluation cache. The cache stores already seen configurations and their
corresponding quality so that these need not be simulated again.
Clients: Contains a list of clients in the form of communication channels. At least
one must be specified, but the list can contain multiple channels if the simulation
model is run on multiple machines.
Evaluator: This operator is used to collect the required variables, packs them into a
message, and transmits them to one of the clients. If the cached evaluator is used the
cache will be filled and the quality of previously seen configurations will be taken
directly from the cache.
Maximization: This parameter determines if the received quality values should be
maximized or minimized.

10 Architecture and Design of the HeuristicLab Optimization Environment 245

Operators: This list holds all operators that can modify and process solutions such
as for example crossover and mutation operators. Any operator added to the list can
be used in an algorithm and certain algorithms might require certain operators to
work.
SolutionCreator: This operator is used to create the initial solution, typically it ran-
domly initializes a vector of a certain length and within certain bounds.

Interoperability

The representation of solutions as scope objects which contain an arbitrary number
of variables and the organization of scopes in a tree provides an opportunity for inte-
grating a generic data exchange mechanism. Typically, an evaluator is applied on the
solution scope and calculates the quality based on some variables that it would ex-
pect therein. The evaluator in the ExternalEvaluationProblem will however collect a
user specified set of variables in the solution scope, and adds them to the Solution-
Message. This message is then transmitted to the external application for evaluation.
The evaluation operator then waits for a reply in form of the QualityMessage which
contains the quality value and which can be inserted into the solution scope again.
This allows to use any algorithm that can optimize single-objective problems in
general to optimize the ExternalEvaluationProblem. The messages in this case are
protocol buffers7 which are defined in a .proto file. The structure of these messages
is shown in Listing 10.6.

The protocol buffer specification in form of the message definitions is used by
a specific implementation to generate a tailored serializer and deserializer class for
each message. The format is designed for very compact serialized files that do not
impose a large communication overhead and the serialization process is quick due
to the efficiency of the specific serialization classes. Implementations of protocol
buffers are provided by Google for JavaTM, C++, and Python, but many developers
have provided open source ports for other languages such as C#, Clojure, Objective
C, R, and many others8. The solution message buffer is a so called “union type”,
that means it provides fields for many different data types, but not all of them need
to be used. In particular there are fields for storing Boolean, integers, doubles, and
strings, as well as arrays of these types, and there is also a field for storing bytes.
Which data type is stored in which field is again customizable. HeuristicLab uses
a SolutionMessageBuilder class to convert the variables in the scope to variables
in the solution message. This message builder is flexible and can be extended to
use custom converters, so if the user adds a special representation to HeuristicLab
a converter can be provided to store that representation in a message. By default, if
the designer of an ExternalEvaluationProblem would use an integer vector, it would
be stored in an integer array variable in the solution message. The simulation model
can then extract the variable and use it to set its parameters. The protocol buffer

7 http://code.google.com/p/protobuf
8 http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

http://code.google.com/p/protobuf
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

246 S. Wagner et al.

is also extensible in that new optional fields may be added at a later date. Finally,
transmission to the client is also abstracted in the form of channels. The default
channel is based on the transmission control protocol (TCP) which will start a con-
nection to a network socket that is opened by the simulation software. The messages
are then exchanged over this channel.

Parallelization and Caching

If the required time to execute a simulation model becomes very long, users might
want to parallelize the simulation by running the model on multiple computers.
In HeuristicLab this is easily possible through the use of the parallel engine. The
parallel engine allows multiple evaluation operators to be executed concurrently
which in turn can make use of multiple channels defined in the Clients parame-
ter. It makes use of the TaskParallelLibrary in Microsoft R© .NET which manages
the available threads for efficient operations. To further speed up the optimiza-
tion the user can add aforementioned EvaluationCache and the respective evaluator.
The cache can be persisted to a file or exported as a comma-separated-values (CSV)
file for later analysis [32].

10.5.3 Genetic Programming

HeuristicLab includes an implementation of tree-based genetic programming and
and extensive support for symbolic regression and classification. This implementa-
tion will be described in the following sections.

10.5.3.1 Symbolic Expression Tree Encoding

The central part of our implementation of tree-based GP is the symbolic expres-
sion tree encoding. It defines the structure of individuals and provides problem-
independent classes that can be reused for GP problems. All standard methods for
tree creation, manipulation, crossover and compilation are located in the encoding
and therefore a newly implemented problem just has to provide concrete symbols
and methods to evaluate solution candidates. For example, in the case of a symbolic
regression problem, the evaluator calculates the error of the model predictions and
uses an interpreter to calculate the output of the formula for each row of the dataset.

Any algorithm that uses recombination and mutation operators to generate new
solution candidates, for instance a genetic algorithm (GA), can be used to solve any
problem using the symbolic expression tree encoding for instance a symbolic regres-
sion problem. A specialized algorithm for genetic programming with reproduction
and crossover probability is not yet provided but is planned to be added soon.

10 Architecture and Design of the HeuristicLab Optimization Environment 247

1 message SolutionMessage {
2 message IntegerVariable {
3 required string name = 1;
4 optional int32 data = 2;
5 }
6 message IntegerArrayVariable {
7 required string name = 1;
8 repeated int32 data = 2;
9 optional int32 length = 3;

10 }
11 //... similar sub-messages omitted for brevity ...

12 message RawVariable {
13 required string name = 1;
14 optional bytes data = 2;
15 }
16 required int32 solutionId = 1;
17 repeated IntegerVariable integerVars = 2;
18 repeated IntegerArrayVariable integerArrayVars = 3;
19 repeated DoubleVariable doubleVars = 4;
20 repeated DoubleArrayVariable doubleArrayVars = 5;
21 repeated BoolVariable boolVars = 6;
22 repeated BoolArrayVariable boolArrayVars = 7;
23 repeated StringVariable stringVars = 8;
24 repeated StringArrayVariable stringArrayVars = 9;
25 repeated RawVariable rawVars = 10;
26 }
27

28 message QualityMessage {
29 required int32 solutionId = 1;
30 required double quality = 2;
31 }

Listing 10.6. Definition of the generic interface messages

10.5.3.2 Symbolic Expression Trees

The most important interfaces of the symbolic expression tree encoding are:
ISymbolicExpressionTree, ISymbolicExpressionTreeNode, and ISymbol.

The structure of a tree is defined by linked nodes, and the semantic is defined
by symbols attached to these nodes. The SymbolicExpressionTree represents trees
and provides properties for accessing the root node, getting its length and depth,
and iterating all tree nodes. Every node of a tree can be reached beginning with the
root node as the ISymbolicExpressionTreeNode provides properties and methods
to manipulate its parent, its subtrees and its symbol. A GP solution candidate is

248 S. Wagner et al.

Fig. 10.20. Example of a simulation-based optimization problem configuration in Heuristic-
Lab 3.3 with multiple bounds shown for each dimension of an integer parameter vector. The
first column denotes the minimum value, the second column the maximum value, and the
step size can be given in the third column.

therefore simply created by building a tree by linking tree nodes beginning with the
root node.

The root node of a tree always contains the ProgramRootSymbol and must have
a child node with the StartSymbol. This convention is necessary to support ADFs
which are defined as additional sub-trees of the root node. The root node of ADF
definitions contains a DefunSymbol (cf. Section 10.5.3.4).

10.5.3.3 Symbols and Grammars

In addition to the structure of a tree, symbols and grammars are necessary for indi-
vidual creation. A symbol defines the semantic of a tree node (how it is interpreted)
and specifies a minimum and maximum arity; terminal symbols have a minimum
and maximum arity of zero. The set of available symbols must be defined with a
grammar from which the set of valid and well-formed trees can be derived. We have
chosen to implement this by defining which Symbols are allowed as child symbol of

10 Architecture and Design of the HeuristicLab Optimization Environment 249

other symbols, and at which position they are allowed. For example, the first child
of a conditional symbol must either be a comparison symbol or a Boolean function
symbol.

Problem-specific grammars should derive from the base class for grammars
which is provided by the encoding and define the rules for allowed tree structures.
The initialization of an arithmetic expression grammar is shown in Listing 10.8.
The statements in lines 1–10 create the symbols and add them to lists for easier
handling. Afterwards the created symbols are added to the grammar (lines 12–13)
and the number of allowed subtrees is set to two for all function symbols (lines 14–
15). Terminal symbols do not have to be configured, because the number of allowed
subtrees is automatically set to zero. The last lines define which symbols are allowed
at which position in the tree. Below the StartSymbol all symbols are allowed (lines
16 and 17) and in addition, every symbol is allowed under a function symbol (Lines
18–21).

1 <expr> := <expr> <op> <expr> | <terminal>
2 <op> := + | - | / | *
3 <terminal> := variable | constant

Listing 10.7. Backus-Naur Form of an arithmetic grammar defining symbolic expression
trees to solve a regression problem.

Default grammars are implemented and pre-configured for every problem which
can be solved by GP. These grammars can be modified within the GUI to change
the arity of symbols or to enable and disable specific symbols.

A typical operator for tree creation first adds the necessary nodes with the Root-
Symbol and the StartSymbol and afterwards uses one of the allowed symbols re-
turned by the Grammar as the starting point for the result producing branch. This
procedure is recursively applied to extend the tree until the desired size is reached.
In addition, the crossover and mutation operators also adhere to the rules defined by
the grammar so during the whole algorithm run only valid and well-formed trees are
produced.

10.5.3.4 Automatically Defined Functions

The GP implementation of HeuristicLab also supports automatically defined func-
tions (ADFs). ADFs are program subroutines that provide code encapsulation and
reuse. They are not shared between individuals but have to be evolved separately in
individuals, either by crossover or mutation events and are numbered according to
their position below the tree root. The Defun tree node and symbol define a new

250 S. Wagner et al.

1 var add = new Addition();
2 var sub = new Subtraction();
3 var mul = new Multiplication();
4 var div = new Division();
5 var constant = new Constant();
6 var variableSymbol = new Variable();
7 var allSymbols = new List<Symbol>()
8 {add,sub, mul,div,constant,variableSymbol};
9 var funSymbols = new List<Symbol>()

10 {add,sub,mul,div};
11

12 foreach (var symb in allSymbols)
13 AddSymbol(symb);
14 foreach (var funSymb in funSymbols)
15 SetSubtreeCount(funSymb, 2, 2);
16 foreach (var symb in allSymbols)
17 AddAllowedChildSymbol(StartSymbol, symb);
18 foreach (var parent in funSymbols) {
19 foreach (var child in allSymbols)
20 AddAllowedChildSymbol(parent, child);
21 }

Listing 10.8. Source code for the configuration of the ArithmeticGrammar formally defined
in Listing 10.7.

Fig. 10.21. Creation of an ADF in an artificial ant program. The dashed lines indicate the cut
points in the tree from which the ADF is created.

subroutine and are used next to the StartSymbol directly below the ProgramRoot-
Symbol. ADFs can be called through the InvokeFunction symbol from point in the
symbolic expression tree, except from ADFs with a lower index to prevent infinite
recursions and non-stopping programs.

10 Architecture and Design of the HeuristicLab Optimization Environment 251

ADFs are created during algorithm execution either by the subroutine creator or
by the subroutine duplicator. The subroutine creator moves a subtree of an individ-
ual into a subroutine and inserts an InvokeFunctionTreeNode instead of the original
subtree. Furthermore, ADFs can have an arbitrary number of arguments that are
used to parameterize the subroutines. An example for creating an ADF with one ar-
gument is shown in Figure 10.21. On the left hand side the original tree describing
an artificial ant program is displayed. Additionally, two cut points for the ADF ex-
traction are indicated by dashed lines. The subtree between the cut points is added
beneath a DefunTreeNode displayed as the newly defined ADF ADF0 and as a re-
placement an InvokeFunctionTreeNode is inserted. The subtree below the second
cut point is left unmodified and during interpretation its result is passed to ADF0 as
the value of ARG0.

Architecture altering operators for subroutine and argument creation, duplica-
tion, and deletion are provided by the framework. All of these work by moving
parts of the tree to another location, either in the standard program execution part
(below the StartTreeNode) or into an ADF (below the DefunTreeNode). For exam-
ple, the subroutine deletion operator replaces all tree nodes invoking the affected
subroutine by the body of the subroutine itself and afterwards deletes the subroutine
from the tree by removing the DefunTreeNode. All architecture altering operators
can be called in place of mutation operators as described by Koza, however in con-
trast to mutation operators, architecture altering operators preserve the semantics of
the altered solution.

The combination of architecture altering operators and tree structure restrictions
with grammars is non-trivial as grammars must be dynamically adapted over time.
Newly defined ADFs must be added to the grammar; however, the grammar of each
single tree must be updated independently because ADFs are specific to trees. This
has led to a design where tree-specific grammars contain dynamically extended rules
and extend the initially defined static grammar. The combination of the tree-specific
grammar and the static grammar defines the valid tree structures for each solution
and also for its child solutions because grammars must be inherited by child solu-
tions. If ADFs are not allowed the tree-specific grammar is always empty because
no symbols are dynamically added during the run.

Architecture manipulating operators automatically update the tree-specific gram-
mar correctly by altering the allowed symbols and their restrictions. This mecha-
nism allows to implement crossover and mutation operators without special cases
for ADFs.

10.5.3.5 Symbolic Regression

In this section the implementation for evaluating symbolic regression models repre-
sented as symbolic expression trees is described. Symbolic regression is frequently
used as a GP benchmark task for testing new algorithmic concepts and ideas. If
symbolic regression is applied to large real-world datasets with several thousand
data rows, performance as well as memory efficiency becomes an important issue.

252 S. Wagner et al.

Dataset

GP - Tree Interpreter Evaluator Online
Calculator FitnessCompiler

Fig. 10.22. Workflow for calculating the fitness of symbolic regression models

The main concepts for the symbolic regression evaluation in HeuristicLab are
streaming and lazy evaluation provided by constructs of the Microsoft R© .NET
framework. Figure 10.22 depicts how the symbolic expression trees are passed
through different operators for fitness value calculation, which is explained in the
following sections.

Interpretation of Trees

Evaluators for symbolic regression calculate the error of the predicted values of the
model and the actual target values. To prevent the allocation of large double arrays
we implemented an interpreter for symbolic regression models that yields a lazy
sequence of predicted values for a given model, a dataset and a lazy sequence of row
indexes. As a preparatory step the interpreter first compiles the model represented
as a symbolic expression tree down to an array of instructions. This preparation
can be done in a single pass over all nodes of the tree so the costs are rather small
and the linear instruction sequence can be evaluated much faster. First of all the
nodes of the original tree are scattered on the heap, while the instruction array is
stored in a continuous block of memory. Additionally, the instructions have a small
memory footprint as they consist of a single byte for the operation code (opcode),
a byte for the number of arguments of the function and an object reference which
can hold additional data for the instruction. As a result the instruction array is much
more cache friendly and the number of cache misses of tree interpretation can be
reduced. Another benefit of the compilation step is that simple static optimizations
for instance constant folding can be applied.

The interpretation of the instruction array is implemented with a simple recur-
sive Evaluate method containing a large switch statement with handlers for each
opcode. Listing 10.9 shows an excerpt of the evaluation method with the handlers
for the opcodes for addition, division and variable symbols. The recursive evaluation
method is rather monolithic and contains all necessary code for symbol evaluation.
This goes against fundamental OO design principles, however, the implementation
as a single monolithic switch loop with recursive calls is very efficient as no virtual
calls are necessary, the switch statement can be compiled down to a relative jump
instruction, and the arguments are passed on the runtime stack which again reduces
cache misses.

10 Architecture and Design of the HeuristicLab Optimization Environment 253

1 double Evaluate(Dataset ds, State state) {
2 var curInstr = state.NextInstruction();
3 switch (curInstr.opCode) {
4 case OpCodes.Add: {
5 double s = Evaluate(dataset, state);
6 for (int i = 1; i < curInstr.nArgs; i++) {
7 s += Evaluate(dataset, state);
8 }
9 return s;

10 }
11 // [...]
12 case OpCodes.Div: {
13 double p = Evaluate(dataset, state);
14 for (int i = 1; i < curInstr.nArgs; i++) {
15 p /= Evaluate(dataset, state);
16 }
17 if (curInstr.nArgs == 1) p = 1.0 / p;
18 return p;
19 }
20 // [...]
21 case OpCodes.Variable: {
22 if (state.row < 0 || state.row >= dataset.Rows)
23 return double.NaN;
24 var varNode = (VariableTreeNode)curInstr.dynamicNode;
25 var values = ((IList<double>)curInstr.iArg0)
26 return values[state.row];
27 }
28 }
29 }

Listing 10.9. Excerpt of the evaluation method for symbolic regression models showing han-
dlers for the addition, division and variable opcodes.

An alternative design would be to implement a specific evaluation method in each
symbol class. This would be the preferable way regarding readability and maintain-
ability. However, with this alternative design a costly indirect virtual call would be
necessary for each node of the tree and for each evaluated row of the dataset.

In addition to the recursive interpreter, HeuristicLab also provides an interpreter
implementation that compiles symbolic expression trees to linear code in interme-
diate language (IL) using the Reflection.Emit framework which can be executed
directly by the Microsoft R© .NET CLR. This interpreter is useful for large datasets
with more than 10,000 rows as the generated IL code is further optimized and sub-
sequently compiled to native code by the framework JIT-compiler. The drawback
is that the JIT-compiler is invoked for each evaluated tree and these costs can be
amortized only when the dataset has a large number of rows.

254 S. Wagner et al.

Interpretation of ADFs

The interpreter must be able to evaluate trees with ADFs with a variable number
of arguments. The instruction for calling ADF uses the Call opcode and contains
the index of the called ADF and the number of arguments of the ADF. The code
fragment for the interpretation of ADFs and function arguments is shown in Listing
10.10. First the interpreter evaluates the subtrees of the Call opcode and stores the
results. Next the interpreter creates a stackframe which holds the current program
counter and the argument values. Stackframes are necessary to support ADFs that
subsequently call other ADFs and recusive ADFs. After the stackframe has been
created the interpreter jumps to the first instruction of the ADF. When an argument
symbol is encountered while interpreting the ADF instructions the interpreter ac-
cesses the previously calculated argument values which are stored in the top-most
stackframe and returns the appropriate value. This approach to ADF interpretation
using precalculated argument values is only possible because symbolic regression
expressions do not have side effects. Otherwise, the interpreter would have to jump
back to the subtrees of the call symbol for each encountered ARG opcode. At the
end of the ADF definition the interpreter deletes the top-most stackframe with Re-
moveStackFrame and continues interpretation at the point after the subtrees of the
just evaluated Call opcode.

Online Evaluation of Programs

The first step for the evaluation of programs is to obtain the dataset on which the
trees have to be evaluated on and to calculate the rows that should be used for fitness
evaluation. If all samples are to be used, the rows are streamed as an Enumerable
beginning with the start of the training partition until its end. Otherwise, the row
indices to evaluate the tree on, are calculated and yielded by the selection sampling
technique [25].

The row indices, together with the dataset and the individual are passed to the
interpreter that in fact returns a sequence of numbers. Until now no memory is allo-
cated (except the space required for the iterators) due to the streaming capabilities of
the interpreter and the way of calculating row indices. But the whole streaming ap-
proach would by pointless if the estimated values of the interpreter were stored in a
data structure for fitness calculation. Therefore, all fitness values must be calculated
on the fly which is done by OnlineCalculators. Such calculators are provided for
the mean and the variance of a sequence of numbers and for calculation metrics bet-
ween two sequences such as the covariance and the Pearson’s R2 coefficient. Further
error measures are the mean absolute and squared error, as well as scaled ones, the
mean absolute relative error and the normalized mean squared error. OnlineCalcula-
tors can be nested; for example the MeanSquaredErrorOnlineCalculator just calcu-
lates the squared error between the original and estimated values and then passes

10 Architecture and Design of the HeuristicLab Optimization Environment 255

1 // [...]
2 case OpCodes.Call: {
3 // evaluate subtrees
4 var argValues = new double[curInstr.nArgs];
5 for (int i = 0; i < curInstr.nArgs; i++) {
6 argValues[i] = Evaluate(dataset, state);
7 }
8 // push on argument values on stack
9 state.CreateStackFrame(argValues);

10

11 // save the pc
12 int savedPc = state.ProgramCounter;
13 // set pc to start of function
14 state.PC = (ushort)curInstr.iArg0;
15 // evaluate the function
16 double v = Evaluate(dataset, state);
17

18 // delete the stack frame
19 state.RemoveStackFrame();
20

21 // restore the pc => evaluation will
22 // continue at point after my subtrees
23 state.PC = savedPc;
24 return v;
25 }
26 case OpCodes.Arg: {
27 return state.GetStackFrameValue(curInstr.iArg0);
28 }
29 // [...]

Listing 10.10. Code fragment for the interpretation of ADFs and function arguments

the result to the MeanAndVarianceOnlineCalculator. The code of the MeanAnd-
VarianceOnlineCalculator is presented in Listing 10.11 and in the Add method it
can be seen how the mean and variance are updated, when new values are added.

The source for calculating the mean squared error of an individual is shown in
Listing 10.12, where all the parts described are combined. First the row indices
for fitness calculation are generated and the estimated and original values obtained
(lines 1-3). Afterwards these values are enumerated and passed to the OnlineMean-
SquaredErrorEvaluator that in turn calculates the actual fitness.

256 S. Wagner et al.

1 public class OnlineMeanAndVarianceCalculator {
2 private double oldM, newM, oldS, newS;
3 private int n;
4

5 public int Count { get { return n; } }
6 public double Mean {
7 get { return (n > 0) ? newM : 0.0; }
8 }
9 public double Variance {

10 get { return (n > 1) ? newS / (n-1) : 0.0; }
11 }
12

13 public void Reset() { n = 0; }
14 public void Add(double x) {
15 n++;
16 if(n == 1) {
17 oldM = newM = x;
18 oldS = newS = 0.0;
19 } else {
20 newM = oldM + (x - oldM) / n;
21 newS = oldS + (x - oldM) * (x - newM);
22

23 oldM = newM;
24 oldS = newS;
25 }
26 }
27 }

Listing 10.11. Source code of the MeanAndVarianceOnlineCalculator.

1 var rows = Enumerable.Range(0,trainingEnd);
2 var estimated = interpreter.GetExpressionValues(tree,
3 dataset, rows).GetEnumerator();
4 var original = dataset.GetDoubleValues(targetVariable,
5 rows).GetEnumerator();
6 var calculator = new OnlineMSECalculator();
7

8 while(original.MoveNext() & estimated.MoveNext()) {
9 calculator.Add(original.Current, estimated.Current);

10 }
11 double meanSquaredError = calculator.MeanSquaredError;

Listing 10.12. Source code for calculating the mean squared error between the original values
and the estimated values of an individual.

10 Architecture and Design of the HeuristicLab Optimization Environment 257

10.6 Conclusion

The main goal of this chapter was to describe the architecture and design of the
HeuristicLab optimization environment which aims at fulfilling the requirements of
three heterogeneous user groups, namely practitioners, heuristic optimization ex-
perts, and students. Three versions of HeuristicLab, referred to as HeuristicLab 1.x,
HeuristicLab 2.x, and HeuristicLab 3.x, have been implemented by the authors since
2002 which were discussed in this chapter. By incorporating beneficial features of
existing frameworks as well as several novel concepts, especially the most recent
version, HeuristicLab 3.x, represents a powerful and mature framework which can
be used for the development, analysis, comparison, and productive application of
heuristic optimization algorithms. The key innovations of HeuristicLab can be sum-
marized as follows:

• Plugin-Based Architecture
The concept of plugins is used as the main architectural pattern in HeuristicLab.
In contrast to other monolithic frameworks, the HeuristicLab main application
just provides a lightweight plugin infrastructure. All other parts are implemented
as plugins and are loaded dynamically at runtime. This architecture offers a high
degree of flexibility. Users can easily integrate custom extensions such as new
optimization algorithms or problems by developing new plugins. They do not
need to have access to all the source code of HeuristicLab or to recompile the
whole application. Furthermore, the modular nature of the plugin-based archi-
tecture simplifies the integration into existing software environments, as only the
plugins required in a specific optimization scenario have to be deployed.

• Generic Algorithm Model
As there is no unified model for all different heuristic optimization techniques
in general, a generic algorithm model is implemented in HeuristicLab that is
not restricted to a specific heuristic optimization paradigm. Any kind of algo-
rithm can be represented. To achieve this level of flexibility, algorithms are not
implemented as static blocks of code but are defined as operator graphs which
are assembled dynamically at runtime. Users can define custom algorithms by
combining basic operators for different solution encodings or optimization prob-
lems provided by several plugins, or they can add custom operators to inte-
grate specific functionality. Consequently, not only standard trajectory-based or
population-based heuristic optimization algorithms but also generic or problem-
specific extensions as well as hybrid algorithms can be easily realized.

• Graphical User Interface
As practitioners, students, and also in some cases heuristic optimization experts
might not have comprehensive programming skills, a suitable user interface is
required to define, execute, and analyze algorithms. Consequently, a graphical
user interface (GUI) is integrated in HeuristicLab. According to the model-view-
controller pattern, each HeuristicLab object (e.g., operators, variables, or data
values) can provide a view to present itself to the user. However, as graphical
visualization of objects usually is a performance critical task, these views are

258 S. Wagner et al.

shown and updated on demand. Furthermore, the GUI reduces the required learn-
ing effort significantly. Similarly to standard software products, it enables users
to apply heuristic optimization algorithms immediately.

• Parallelism
Last but not least parallel execution of algorithms is also respected in Heuristic-
Lab. Dedicated control operators can be used to define parts of an algorithm that
should be executed in parallel. These operators can be used anywhere in an al-
gorithm which enables the definition of parallel heuristic optimization methods,
as for example global, coarse-grained, or fine-grained parallel GAs. However,
how parallelization is actually done does not depend on the operators but is de-
fined when executing an algorithm by choosing an appropriate execution engine.
Several engines are provided in HeuristicLab to execute parallel algorithms for
example using multiple threads on a multi-core CPU or multiple computers con-
nected in a network.

Since 2002 all versions of HeuristicLab have been extensively used in the
research group “Heuristic and Evolutionary Algorithms Laboratory (HEAL)” of
Michael Affenzeller for the development of enhanced evolutionary algorithms as
well as in several research projects and lectures. The broad spectrum of these appli-
cations is documented in numerous publications and highlights the flexibility and
suitability of HeuristicLab for the analysis, development, test, and productive use of
metaheuristics. A comprehensive description of the research activities of the group
can also be found in the book “Genetic Algorithms and Genetic Programming -
Modern Concepts and Practical Applications” [1].

However, the development process of HeuristicLab has not come to an end so
far. As it is very easy to apply and compare different algorithms with Heuristic-
Lab, it can be quickly identified which heuristic algorithms and which correspond-
ing parameter settings are effective for a certain optimization problem. In order to
systematically analyze this information, the authors plan within the scope of the re-
search laboratory “Josef Ressel-Centre for Heuristic Optimization (Heureka!)”9 to
store the results of all algorithm runs executed in HeuristicLab in a large database.
The ultimate goal of this optimization knowledge base is to identify correlations
between heuristic optimization algorithms and solution space characteristics of op-
timization problems. This information will provide essential clues for the selection
of appropriate algorithms and will also encourage the development of new enhanced
and hybrid heuristic optimization algorithms in order to solve problems for which
no suitable algorithms are known yet.

Acknowledgements. The work described in this chapter was done within the Josef Ressel-
Centre HEUREKA! for Heuristic Optimization sponsored by the Austrian Research Pro-
motion Agency (FFG). HeuristicLab is developed by the Heuristic and Evolutionary Algo-
rithm Laboratory (HEAL)10 of the University of Applied Sciences Upper Austria. It can be

9 http://heureka.heuristiclab.com
10 http://heal.heuristiclab.com/

http://heureka.heuristiclab.com
http://heal.heuristiclab.com/

10 Architecture and Design of the HeuristicLab Optimization Environment 259

downloaded from the HeuristicLab homepage11 and is licensed under the GNU General Pub-
lic License.

References

1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic
Programming - Modern Concepts and Practical Applications. In: Numerical Insights.
CRC Press (2009)

2. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on
Parallel and Distributed Computing. Wiley (2005)

3. Arenas, M.G., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß,
M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós,
J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

4. Blum, C., Roli, A., Alba, E.: An introduction to metaheuristic techniques. In: Alba, E.
(ed.) Parallel Metaheuristics: A New Class of Algorithms, Wiley Series on Parallel and
Distributed Computing, ch. 1, pp. 3–42. Wiley (2005)

5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – A quadratic assignment problem
library. Journal of Global Optimization 10(4), 391–403 (1997),
http://www.opt.math.tu-graz.ac.at/qaplib/

6. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer (2001)
7. de Carvalho Jr., S.A., Rahmann, S.: Microarray layout as quadratic assignment problem.

In: Proceedings of the German Conference on Bioinformatics (GCB). Lecture Notes in
Informatics, vol. P-83 (2006)

8. Cox, B.J.: Planning the software industrial revolution. IEEE Software 7(6), 25–33
(1990), http://www.virtualschool.edu/cox/pub/PSIR/

9. DeJong, K.A.: Evolutionary Computation: A Unified Approach. In: Bradford Books.
MIT Press (2006)

10. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of
the quadratic assignment problem. Computers & Operations Research 35(3), 717–736
(2008), Part Special Issue: New Trends in Locational Analysis,
http://www.sciencedirect.com/science/article/pii/
S0305054806001341, doi:10.1016/j.cor.2006.05.004

11. Fu, M., Glover, F., April, J.: Simulation optimization: A review, new developments,
and applications. In: Proceedings of the 2005 Winter Simulation Conference, pp. 83–
95 (2005)

12. Fu, M.C.: Optimization for simulation: Theory vs. practice. Informs J. on Comput-
ing 14(3), 192–215 (2002),
http://www.rhsmith.umd.edu/faculty/mfu/fu_files/fu02.pdf

13. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: Princi-
ples and case-study. International Journal on Artificial Intelligence Tools 15(2), 173–194
(2006)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

15. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems.
Operations Research 8(4), 487–503 (1960)

11 http://dev.heuristiclab.com/

http://www.opt.math.tu-graz.ac.at/qaplib/
http://www.virtualschool.edu/cox/pub/PSIR/
http://www.sciencedirect.com/science/article/pii/S0305054806001341
http://www.sciencedirect.com/science/article/pii/S0305054806001341
http://www.rhsmith.umd.edu/faculty/mfu/fu_files/fu02.pdf
http://dev.heuristiclab.com/

260 S. Wagner et al.

16. Glover, F., Kelly, J.P., Laguna, M.: New advances for wedding optimization and simula-
tion. In: Farrington, P.A., Nembhard, H.B., Sturrock, D.T., Evans, G.W. (eds.) Proceed-
ings of the 1999 Winter Simulation Conference, pp. 255–260 (1999),
http://citeseer.ist.psu.edu/glover99new.html

17. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley (2004)

18. Hahn, P.M., Krarup, J.: A hospital facility layout problem finally solved. Journal of In-
telligent Manufacturing 12, 487–496 (2001)

19. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press
(1975)

20. Johnson, R., Foote, B.: Designing reusable classes. Journal of Object-Oriented Program-
ming 1(2), 22–35 (1988)

21. Jones, M.S.: An object-oriented framework for the implementation of search techniques.
Ph.D. thesis, University of East Anglia (2000)

22. Jones, M.S., McKeown, G.P., Rayward-Smith, V.J.: Distribution, cooperation, and hy-
bridization for combinatorial optimization. In: Voß, S., Woodruff, D.L. (eds.) Optimiza-
tion Software Class Libraries. Operations Research/Computer Science Interfaces Series,
vol. 18, ch. 2, pp. 25–58. Kluwer (2002)

23. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving Objects: A general
purpose evolutionary computation library. In: EA 2001, Evolution Artificielle, 5th Inter-
national Concerence in Evolutionary Algorithms, pp. 231–242 (2001)

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

25. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms,
vol. 2. Addison-Wesley (1997)

26. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica, Journal of the Econometric Society 25(1), 53–76 (1957),
http://cowles.econ.yale.edu/P/cp/p01a/p0108.pdf

27. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1(3), 26–49 (1988)

28. Lenaerts, T., Manderick, B.: Building a genetic programming framework: The added-
value of design patterns. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.)
EuroGP 1998. LNCS, vol. 1391, pp. 196–208. Springer, Heidelberg (1998)

29. McIlroy, M.D.: Mass produced software components. In: Naur, P., Randell, B. (eds.)
Software Engineering: Report of a conference sponsored by the NATO Science Commit-
tee, pp. 138–155 (1969)

30. Nievergelt, J.: Complexity, algorithms, programs, systems: The shifting focus. Journal
of Symbolic Computation 17(4), 297–310 (1994)

31. Parejo, J.A., Ruiz-Cortes, A., Lozano, S., Fernandez, P.: Metaheuristic optimization
frameworks: A survey and benchmarking. Soft Computing 16(3), 527–561 (2012)

32. Pitzer, E., Beham, A., Affenzeller, M., Heiss, H., Vorderwinkler, M.: Production fine
planning using a solution archive of priority rules. In: Proceedings of the IEEE 3rd Inter-
national Symposium on Logistics and Industrial Informatics (Lindi 2011), pp. 111–116
(2011)

33. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on Comput-
ing 3, 376–384 (1991)

34. Ribeiro Filho, J.L., Treleaven, P.C., Alippi, C.: Genetic-algorithm programming environ-
ments. IEEE Computer 27(6), 28–43 (1994)

35. Stützle, T.: Iterated local search for the quadratic assignment problem. European Journal
of Operational Research 174, 1519–1539 (2006)

http://citeseer.ist.psu.edu/glover99new.html
http://cowles.econ.yale.edu/P/cp/p01a/p0108.pdf

10 Architecture and Design of the HeuristicLab Optimization Environment 261

36. Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel Com-
puting 17, 443–455 (1991)

37. Voß, S., Woodruff, D.L.: Optimization software class libraries. In: Voß, S., Woodruff,
D.L. (eds.) Optimization Software Class Libraries. Operations Research/Computer Sci-
ence Interfaces Series, vol. 18, ch. 1, pp. 1–24. Kluwer (2002)

38. Voß, S., Woodruff, D.L. (eds.): Optimization Software Class Libraries. Operations Re-
search/Computer Science Interfaces Series, vol. 18. Kluwer (2002)

39. Vonolfen, S., Affenzeller, M., Beham, A., Wagner, S., Lengauer, E.: Simulation-based
evolution of municipal glass-waste collection strategies utilizing electric trucks. In: Pro-
ceedings of the IEEE 3rd International Symposium on Logistics and Industrial Informat-
ics (Lindi 2011), pp. 177–182 (2011)

40. Wagner, S.: Looking Inside Genetic Algorithms. Schriften der Johannes Kepler Uni-
versität Linz, Reihe C: Technik und Naturwissenschaften. Universitätsverlag Rudolf
Trauner (2004)

41. Wagner, S.: Heuristic optimization software systems - Modeling of heuristic optimiza-
tion algorithms in the HeuristicLab software environment. Ph.D. thesis, Johannes Kepler
University, Linz, Austria (2009)

42. Wagner, S., Affenzeller, M.: HeuristicLab Grid - A flexible and extensible environment
for parallel heuristic optimization. In: Bubnicki, Z., Grzech, A. (eds.) Proceedings of
the 15th International Conference on Systems Science, vol. 1, pp. 289–296. Oficyna
Wydawnicza Politechniki Wroclawskiej (2004)

43. Wagner, S., Affenzeller, M.: HeuristicLab Grid. - A flexible and extensible environment
for parallel heuristic optimization 30(4), 103–110 (2004)

44. Wagner, S., Affenzeller, M.: HeuristicLab: A generic and extensible optimization envi-
ronment. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.)
Adaptive and Natural Computing Algorithms, pp. 538–541. Springer, Heidelberg (2005)

45. Wagner, S., Affenzeller, M.: SexualGA: Gender-specific selection for genetic algorithms.
In: Callaos, N., Lesso, W., Hansen, E. (eds.) Proceedings of the 9th World Multi-
Conference on Systemics, Cybernetics and Informatics (WMSCI 2005), vol. 4, pp. 76–
81. International Institute of Informatics and Systemics (2005)

46. Wagner, S., Kronberger, G., Beham, A., Winkler, S., Affenzeller, M.: Modeling of heuris-
tic optimization algorithms. In: Bruzzone, A., Longo, F., Piera, M.A., Aguilar, R.M., Fry-
dman, C. (eds.) Proceedings of the 20th European Modeling and Simulation Symposium,
pp. 106–111. DIPTEM University of Genova (2008)

47. Wagner, S., Kronberger, G., Beham, A., Winkler, S., Affenzeller, M.: Model driven rapid
prototyping of heuristic optimization algorithms. In: Quesada-Arencibia, A., Rodrígue,
J.C., Moreno-Diaz Jr., R., Moreno-Diaz, R. (eds.) 12th International Conference on
Computer Aided Systems Theory EUROCAST 2009, vol. 2009, pp. 250–251. IUCTC
Universidad de Las Palmas de Gran Canaria (2009)

48. Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Beham, A., Braune, R., Affenzeller,
M.: Benefits of plugin-based heuristic optimization software systems. In: Moreno Díaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp.
747–754. Springer, Heidelberg (2007)

49. Wilson, G.C., McIntyre, A., Heywood, M.I.: Resource review: Three open source sys-
tems for evolving programs - Lilgp, ECJ and Grammatical Evolution. Genetic Program-
ming and Evolvable Machines 5(1), 103–105 (2004)

50. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997)

	Architecture and Design of the HeuristicLab Optimization Environment
	10.1 Introduction
	10.2 User Groups and Requirements
	10.3 Architecture and Design
	10.4 Algorithm Modeling
	10.5 Problem Modeling
	10.6 Conclusion
	References

