
Chapter 9
Model-Driven Methodology for the Development
of Multi-level Executable Environments

Fernando Herrera, Pablo Penil, Hector Posadas, and Eugenio Villar

Abstract Electronic system-level (ESL) methodologies have enabled the
development of fast executable system performance models by relying on standard
languages such as SystemC. Recent system-level dynamic, that is, simulation-based
performance estimation techniques have enabled faster assessment of the design
alternatives, and thus the design space exploration (DSE) of complex embedded
systems. In this context, the development of system environment models able to
reflect common and feasible use cases is crucial for achieving efficient and valid
solutions at early design stages. However, such environment modelling can be
as or more complex and costly than the system model development itself. The
adoption of model-driven development (MDD), component-based design (CBD)
and abstraction, can improve the productivity of the environment specification
as it does for system specification. In this chapter, a multi-level model-driven
methodology for the specification of executable environments is presented. The
methodology supports the capture of the environment use cases by relying on
the UML standard language and on standard profiles, i.e. MARTE and UTP, and
uses UML components for a clean separation of system and environment, and of
environment actors. Moreover, a SystemC executable counterpart is automatically
generated from the UML-based environment model, coupling the documental and
performance analysis levels. The approach is able to capture the communication
protocol between system and environment, and also the environment functionality,
which can embed either an abstract stimuli generation model, or actual functionality
of I/O devices. Thus, different abstraction levels are supported in the functional
modeling of the environment.
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9.1 Introduction

Integration capabilities have undergone a continuous growth (from 107 to 109 tran-
sistors) in the last decade, and further integration capabilities are envisaged [4, 14].
These integration capabilities have led to the possibility of producing more complex
embedded systems. However, at the same time, this has involved a major challenge
to overcome the gap between design productivity and integration capability. One
of the main strategies adopted to overcome the design gap is the development
of electronic system-level (ESL) design methodologies [18], where the key initial
activity is system specification. Model-driven development (MDD) methodologies
enable concepts for making specifications simpler and more understandable, which
are major requirements for tackling the design challenge [17]. The usage of
standard languages such as UML [23] provides understandability and portability
of specifications.

After specification, the next task in an ESL design methodology is design space
exploration (DSE) [3, 12, 18]. This activity is crucial for an early assessment of the
optimal design decision, since about 90 % of the overall costs are determined in the
first stages of the design [12].

Due to the high complexity of the systems and to the huge number of design
alternatives, new estimation techniques, such as [8] and native simulation [7, 27],
have been proposed for the assessment of the performance of each feasible design
alternative. These techniques are dynamic, that is, simulation-based and provide
simulation speed-ups of two orders of magnitude with regard to instruction set
simulators [27]. Dynamic techniques require the definition of a stimuli environment.
Performance results greatly depend on this stimulation, and thus on the design
decisions resulting from this assessment. This makes dynamic performance estima-
tion techniques suitable for customized and average optimizations of the systems,
which is interesting in many application domains, e.g. wide consumer market, where
efficient implementations and cost reduction are crucial. However, these techniques
require to enable and facilitate the specification of the system environment as a
set of use cases which comprise common cases and corner cases, to let the user
dimension the system and assign a given quality of service and guarantees on
constraint fulfillment when the system works under both “normal” conditions and
under expected worst-case conditions.

However, the development of an executable stimuli environment which can be
reused and properly linked to the DSE design flow could be easily more costly than
the system specification and the extraction of its executable performance model.
Because of this, the specification of the stimuli environment should also support
design concepts which have been shown useful for system modeling and design.
Adopting an MDD approach for the environment model enables abstraction, and
other benefits, such as the application of code generation toolsets for the automated
extraction of executable counterparts. This way the whole modelling task, and not
only the system specification is covered.
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In this paper, a methodology for the abstract modeling and automatic generation
of an executable counterpart of the multilevel environment of an embedded system is
presented. Specifically, in this methodology, the verification environment is modeled
by using UML [23], MARTE [21] and the UML Testing Profile (UTP) [22]. After
this stimuli environment model has been developed, a code generator enables
the automatic production of an executable SystemC code which reflects all the
information captured in the UML model of the stimuli environment. This SystemC
model can be easily built up with verification functionality.

The methodology enables the modeling of the environment actors and the spe-
cific sequences of interface function calls between the system and the environment
actors. This enables to exercise the system, in such a way that depending how
the environment actors couple system interfaces, the concurrency of the system
application can be more or less exploited, which, in general, impacts on the decision
of the optimal mapping to the system platform. It also serves to validate the
concurrency structure of the system. These modeling aspects, and the generation of
the SystemC executable model were introduced in a previous work [11]. This paper
presents the overall methodology, which has been enriched to support additional
features. Specifically, the methodology supports now a simplified description of the
environment, through implicit sequential diagrams. Moreover, a tool-independent
link between the environment model and the files containing the functionality of
the environment has been enabled. Finally, the methodology provides now means to
describe the environment behavior at two abstraction levels, a first one by capturing
an abstract, target independent, description of the environment behavior; and a
second, more detailed level, where the system code, typically legacy code, or I/O
peripheral driver, is considered part of the environment. This is interesting, for
instance, when the system component is use as an input for an automatic synthesis
process [28].

The structure of the chapter is the following one. In Sect. 9.2, related and
previous work will be presented. Section 9.3 presents the methodology for modeling
the environment. Section 9.4 introduces the tooling supporting the environment
modeling methodology. Section 9.5 explains how the SystemC model is simulated
together with the system performance model. Finally, Sect. 9.6 explains how
the methodology has been validated. Sections 9.7 and 9.8 ends with the main
conclusions and future work, respectively.

9.2 Related and Previous Work

Several UML-based methodologies for the modeling of an embedded system
have been proposed. Intuitively, the modeling of the system environment can be
tackled by directly applying the system modeling methodology. However, although
maintaining some homogeneity in the modeling methodology of both environment
and system can be convenient, environment and system modeling have different
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constraints and needs. Moreover, certain distinction and asymmetry is required, for
instance, to let the implementation framework knows what to synthesize or compile.

At MDD level, this has motivated the development of the UTP standard [22].
Despite the relatively long availability of UTP, only a few approaches have tried to
provide support for UTP [15]. In [15] UML and UTP are used for deploying Model-
Based Testing in Resource-Constrained-Real-Time Embedded Systems (RTES-
RC). This paper aims to close this gap and discusses a concise set of UTP artifacts
in the context of model-based testing for RC-RTES. A detailed discussion on the
test artifact generation algorithm is presented, demonstrating the applicability of the
approach in a real-life RC-RTES example. In [16] the integration of executable uses
cases as a supplement to MDD is proposed. It is seen as a model-based approach to
requirements engineering. Specifically, a coloured petri-net model is used to express
user requirements.

SystemC [13] enables the building of executable, platform agnostic validation
environments. SystemC has been widely used for system-level and reusable test
bench development, and it has already enabled the development of advanced
features for supporting verification and debugging. SystemC has been targeted from
several model-based methodologies, focused on the description of a system for
the development of executable performance models. Related to verification, in [2]
formally sound B models are used to verify model refinement, and translated into
SystemC.

The cooperation of fast performance estimation techniques with SystemC has
enabled fast simulation of a complex embedded system including SW and custom
HW parts. In [19], SW parts are simulated with a virtualization environment called
Simics, while SystemC was used for modeling custom HW devices. In [19] the
SystemC kernel is made a slave system of the Simics kernel, and an efficient
technique for check pointing of the SystemC custom HW was presented. In this
approach SystemC is used to model HW devices as an integral part of the system
model

The recent merging of the Open SystemC Initiative (OSCI) with Accelera [1]
makes targeting SystemC even more interesting, once the proposed modeling
environment can benefit from cooperation with other verification approaches, such
as the Universal Verification Methodology (UVM) [30].

Although the methodology proposed here does not preclude its extension for
supporting a verification methodology, the main motivation was to enable a UML-
based, abstract and flexible modeling of the stimuli environment and the automated
generation of a standard and executable counterpart. Much of the features of the
methodology, presented in [11], were necessary to complete the UML/MARTE
COMPLEX modeling and virtual system generation framework [5]. In such a
framework, a UML/MARTE-based methodology [9] enables the development of
an embedded system model, including the main features in terms of impact on
performance. This model can be captured with Papyrus [24], a tool for capturing
UML models, which is fully integrated in Eclipse [6]. A related tool, which
includes model validators, model-to-text generators [10], and the SCoPE native-
based simulation infrastructure [26], enables the automated generation of the



9 Model-Driven Methodology for the Development of Multi-level. . . 149

performance model. Moreover, the additional features shown in this chapter, e.g.
the integration of target-dependent application code as part of the environment, have
been applied to a MDD framework enabling automatic software synthesis for many-
core framework.

9.3 Environment Modelling Methodology

The proposed environment modeling methodology enables a UML-based modeling
of the environment, which can be smoothly integrated in a component-based
methodology [29]. Specifically, it is integrated in methodologies such as COM-
PLEX [5] and PHARAON [25], where the whole system is enclosed in a UML
component, and where different views, in the shape of UML packages are used to
capture the system model. The proposed specification of the environment, as shown
in the following sections, cleanly separates the system information from the model
containing environment actors, their functionality and their interconnection with the
system model.

9.3.1 Environment Structure and Connection to the System

The user can develop the model of the environment at the same abstraction level,
clearly separating the system from the verification environment. Specifically, the
user will enclose all UML modeling elements within a specific view of the model:
the verification view. Figure 9.1 shows an example with the hierarchy of UML ele-
ments used for the modeling of the environment proposed, and which can be taken
as a reference for the following discussion. The verification view is actually a UML
package, typed with the «VerificationView» stereotype, which contains the
model elements which describe the verification environment facilitating a tool-
independent separation of system and verification elements. The verification view
declares the whole set of actors which compose the environment as a set of UML

Fig. 9.1 Several scenarios are supported
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Fig. 9.2 Declaration of environment and test components in the VerificationView

components with the UTP «TestComponent» stereotype applied (Fig. 9.2). An
additional UML component, with the UTP «TestContext» stereotype is used for
the declaration of a verification environment (StimuliCompoUTP in Fig. 9.2). The
internal structure of this component, depicted in the composite diagram in Fig. 9.3,
reflects the interconnection structure of the system and environment component
instances. Environment component instances are captured as UML properties typed
as «TestComponent» components, and the system component instance. The
system component is captured as a UML property typed as the UML component
reflecting the system, and which exports I/O functional interfaces. Notice that this
system component is not in the verification view, but in a view related to the
specification of the system description. This means a dependency, so the verification
view depends on the system views. In addition, the referred system component
must be specified by the UTP «SUT» (System Under Test) stereotype. Through
this scheme a clear separation is established between the system element and the
environment elements.

The composite diagram in Fig. 9.3 also shows the port to port connection. After
this interconnection, the environment components that provide the services required
by the system are stated. Similarly, services provided by the system can be invoked
from the environment modules.

9.3.1.1 Modelling the Behaviour of the Environment: One Scenario

As well as the interconnection between the environment elements and the system,
the proposed methodology supports the specification of the behavior of the en-
vironment. First, the methodology adds a main concept, the scenario. A scenario
models the activity of the different environment components, and their interaction
with the system for a given use case. Several scenarios are possible (see Sect. 3.4).
It means that, while one scenario can involve activity in all the environment
components, each with a specific behavior, a different scenario can model activity
only in some environment actors, with a different behavior. Each scenario can be
described by:
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Fig. 9.3 Environment structure for an EFR vocoder

• Interactions, each interaction between an environment component and the system
is a totally ordered sequence of service calls, which can be synchronous or
asynchronous.

• References to file sets, where the specific functionality is allocated.

A scenario is captured as a UML package stereotyped with the MARTE stereotype
«GaWorkloadBehavior». A scenario package has to be a child element of the
VerificationView package. The methodology does not enforce the use of both
type of functionality. Indeed, the UML/MARTE COMPLEX methodology uses only
interaction diagrams, such a later code generation phase produce templates with
empty functionality. Therefore, filling the functionality is left to the user, as a manual
task. Instead, in the context of the UML/MARTE PHARAON methodology, file
references are included, while interaction diagrams are omitted. In practical terms,
it involves two different environment modelling styles. However, both of them fit to
the more general scheme presented here.

Interaction Modeling

Interaction modeling relies on UML interactions, where UML lifelines can rep-
resent either, the system or an environment component. As a prerequisite, the
GaWorkloadBehavior package (scenario package) must comprise a UML
component with the UTP «TestContext» stereotype. Then, this new
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Fig. 9.4 Generalization for
referencing environment
components in the modeling
of each scenario

Fig. 9.5 Sequence diagram for a port to port interaction

«TestContext» component is generalized by the «TestContext» compo-
nent where the environment structure is specified (Fig. 9.3). This«TestContext»
components relation is modelled by an UML generalization (Fig. 9.4). This way, the
component instances reflecting environment components can be accessed and later
on associated to UML lifelines, used for specifying scenario interactions.

A scenario comprises the specification of all the interactions over time between
the system and the environment components. They are described by means of one or
more UML interactions (as child elements of the «TestComponent» component)
which also have the UTP «TestCase» stereotype applied. A scenario description
is complete when all the interactions cover all environment components and their
ports. However, this is not a required condition since a scenario can represent a use
case which might not require an interaction with all system ports. UML interactions
are graphically captured by means of sequence diagrams. Figure 9.5 shows a
sequence diagram capturing the interaction between an environment component and
the system component. A lifeline references the instance of the system component,
while the other lifeline references an instance of one environment component.
Making these references is feasible thanks to the specialization shown in Fig. 9.4.
As well as the lifelines, the interaction contains the set of UML messages exchanged
between the system and the environment component. These messages represent
function calls, as services provided either by the system to the environment or
viceversa.

The different environment components are communicated with the
system by using interfaces and specified by the MARTE stereotype
«ClientServerSpecification» and they contain the functions used for
the component interconnections. The interfaces are included in the model view
«FunctionalView». Depending on the goals of the designer, these interfaces
can represent auxiliary interfaces used for defining functions for validating the
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concurrency and behavior of the system in different use cases. After the system
validation using the stimuli specifications, the designer can develop the environment
interfaces for physical implementation in order to access to the environment actors
which represent peripherals. In this case, these interfaces are the implementation
mechanisms for accessing these peripherals according to predefined functional and
non functional requirements.

The sense of a UML message is captured through its “from” and “to” attributes
(in the diagram, the “to” attribute corresponds to the tip of the arrow). The
sense states whether the system calls a function provided by the environment
(“from=system”) or, on the contrary the environment requires a service provided
by the system (“to=system”).

Two different types of UML messages are used: synchronous messages and asyn-
chronous messages. They enable the specification of synchronous and asynchronous
services. Synchronous services require the return of the function call, e.g. because
the client expects some output data from the service call. However, it might be
interesting to specify service calls which just provide input data for triggering the
service, and which immediately return and let either the system or the environment
component go on executing. A UML synchronous message is represented by a solid
arrow head (as in the two messages from the system to the environment component
in Fig. 9.5). UML asynchronous messages are represented by open arrow heads (as
in the message from the environment component to the system in Fig. 9.5).

The name of the message identifies which function is called. This is required
because an interface can comprise several service functions. In the example of
Fig. 9.5, the environment component first calls the funcSystem service provided by
system component. Next, the system calls the “funcEnvir2” service twice provided
by the environment component. These functions must be part of the interface
accessed through any of the environment component ports. And, as explained, those
interfaces could present more functions, e.g. “funcSystem2” or “funcEnvir1”.

Although the sequence diagram graphically reflects a total order in the exchange
of messages, this information is not contained in the UML interaction. Diagrams
provide a graphical representation, but not all that graphical information is contained
in the UML model. It is required to add this information in a way it can be preserved
in the .uml file read, so available to the toolset around the model, e.g. model
validation or code generation frameworks. For it, in the proposed methodology, a
unique order identifier (“i:”) prefixes the message name, which is part of the UML
model. In this way, a total order in the exchange of messages can be specified
at local level. Local level means the interaction between the system and a single
environment component, which requires two lifelines, as in Fig. 9.5.

The user can specify all the interactions in a compact way. In fact, the messages
of a sequence diagram can refer to functionalities of different ports of the environ-
ment component, and thus of the system. Moreover, one UML interaction can be
used for specifying the interaction of the system with more than one environment
component. In Fig. 9.6 a sequential diagram shows the communication between
the system and two environment components. In principle, in a diagram like this,
the sequence of messages exchanged between the system and one environment
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Fig. 9.6 A sequence diagram stating synchronization conditions between the systems and two
environment components

component is not related to the sequence of messages exchanged between the system
and another environment component. That is, in the example of Fig. 9.6, if the
reader forgets by now the strict labeled boxes, there would be in principle no order
relationships between the messages exchanged between system/envir2 lifelines, and
the messages exchanged between system/envir1 lifelines. That is, the i-th message
of system-envir2 communication might happen before, at the same time, or after the
j-th message of system-envir1 communication.

However, use cases may actually require the modeling of these types of
constraints, because the environment itself can also present dependencies, e.g.
among environment components, and thus provoke dependencies between system
interfaces which do not have its origin in the system itself. In the proposed
methodology, the user can specify order relationships among messages exchanged
by different environment components with the system. This is done by using
UML CombinedFragments, shown as boxes in Fig. 9.6. Specifically, in the Fig. 9.6
example, a strict combined fragment is used. The strict combined fragment groups
the execution of the set of messages it covers, so that all covered messages have to
be executed before or after the remaining messages. That is, it defines an atomic
region of messages exchange. Taking the previous discussion into account, the
use of combined fragments adds a higher ordering level to the specification of the
environment, in the sense that all the messages encapsulated in the same combined
fragment are associated with a single and higher order implicit ordering index.
Moreover, it also adds a global ordering since it covers the interaction of the system
with more than one environment component.

For instance, the two combined fragments in Fig. 9.6 state that “1:funcEnvir2”,
envir2 call to “2:funcSystem”, and “1:funcEnvir1” will have an associated higher
order k-th index; and will have to be executed before or after “3:funcSystem”,
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“4:funcEnvir1”, and envir 1 call to “2:funcSystem” messages, with a m-th high order
index. The total order of each local system-environment component interaction,
imposes a total order in the execution of the combined fragments (m < k).
In other words, the bottom combined fragment in Fig. 9.6 has to happen after
the top combined fragment. Local and global ordering has to be coherent, thus
two environment component lifelines cannot impose an order conflict on two
combined fragments (e.g., m < k, m > k). As a result, the methodology enables the
specification of a partial order of messages exchange. A partial order of messages
is specified where there can be order relationships among the messages sequences
exchanged by the system with different components. Specifically, in the Fig. 9.6
diagram, “1:funcEnvir2” and “2:funcSystem” messages, reflecting function calls
among envir2 environment component and the system, will take place before the
“2:funcsystem” call done by envir1 environment component. Similarly, the diagram
in Fig. 9.6 specifies that “3:funcSystem” and “4:funcEnvir1” will take place after
“1:funcEnvir1”.

The methodology also supports another two combined fragments. The “loop”
combined fragment (loop) is used for specifying repetitive subsequences of message
exchange. The “parallel” combined fragment (par) is used to model that certain
groups of services either provided or required by the same environment component
can be executed in parallel.

The features presented up to here enable the specification of a partial order
of service calls in the environment. Formally speaking, this is the most abstract
way to specify time constraints in the environment model. Furthermore, the
proposed methodology enables the association of physical time information with
the environment model. Specifically, the initiation of each service call can be
placed in a specific physical time stamp. In order to specify it, the MARTE
«TimedProcessing» stereotype is used. This stereotype is applied to the UML
message which reflects the service call placed in physical time. The stereotype
provides the attribute “start”, which denotes a UML Time Event, which in turn,
is placed in physical time through a UML Time Expression.

Implicit Interactions

The methodology admits the use of implicit interactions. It is a practical feature
which saves time and complexity in the modeling of common environment models
in a specific domain. Specifically, it means that an environment component will have
a default interaction scheme associated, if no specific UML interaction has been
captured and associated with it. A methodology can define this implicit interaction.
For instance, in a domain space oriented methodology, hard real-time analysis
methodologies will typically assume a reactive environment, and an active system
which does not block because of waiting for environment services, whose response
might be non-predictable and/or unbounded. It is typically modeled through an
interaction scheme with an infinite loop enclosing an incoming asynchronous UML
message. I.e. requested by the system. Therefore, this interaction scheme is a good
implicit interaction candidate for space domain oriented applications.
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Fig. 9.7 File association with a TestComponent

Association of File Sets

The proposed methodology supports the capture within the environment model of a
file set related to an environment component. All the interface functions present in
the interactions of the environment component could find its implementation in the
file set or not. In the former case, this feature enables a fully automated integration of
source code, e.g. previously implemented test benches in SystemC or C/C++, with
the rest of the environment model information. The association is also applicable to
the case of relying on implicit interactions. In such a case, the functions called can be
inferred from the associations or be explicitly captured as environment component
operators. The scenario when this happens is explained later on. As mentioned,
it might also happen that not all the functions associated with the environment
component are found in the associated file artifacts. In such a case, code generators
produce the interface function declarations and the implementation templates.

Figure 9.7 shows how file set association is captured in the proposed method-
ology. Let assume that environment functionality is available in a set of source
files. The file set is modeled as a UML artifact typed by the UML standard stereo-
type «File». These file artifacts are included in the «FunctionalView»
package. These files represent previously created test-benches and, thus, can be
reused in different designs or the user code of the component functionality.

When the environment component functionality is specified by files the corre-
sponding GaWorkloadBehavior package should contain additional
TestComponent components. These TestComponent components are
generalized from the TestComponent defined in VerificationView
package (Fig. 9.8). These new TestComponent have associated the different
files where the functionality of the scenario is implemented. This
file-TestComponent association is modeled by a UML abstraction specified
by the MARTE stereotype «Allocated» (Fig. 9.7).
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Fig. 9.8 TestComponent
generalization

Fig. 9.9 TestComponents as application components

9.3.2 Levels of Abstraction in the Specification of Environment
Behaviour

The proposed environment modeling methodology supports de distinction at the
modeling level between an abstract (target independent) and a target dependent
description of the environment behaviour.

Figure 9.7 exemplifies the modeling of the former case. Then, the model reflects
that the source code linked to the environment model reflects a functional model
of the environment and which can be therefore used for creating an executable
counterpart of the environment model. This is independent from the language.
However, a language such as SystemC is typical of this case, since SystemC is
a language suitable for implementation agnostic models. Moreover, the proposed
methodology supports a system-dependent, and more specifically target dependent,
description of the environment component. The case is show in Fig. 9.9. The idea
is that methodologies, require the consideration of certain application components
as environment components. For instance, in PHARAON methodology, there are
application or platform software components which reflect the software layer for
accessing I/O peripherals. However, it is not interesting to consider them as part of
the system, e.g., for code synthesis effects. However, they can contain C or C++
code reflecting the functionality of the device driver which facilitates and makes
realistic the development of the environment, or that can even enable hardware in
the loop methodologies (enabling the integration of the peripheral hardware, e.g.
a camera, together with its driver, as part of the environment, and the rest of the
system under design).
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A distinctive aspect of this case is that the source code (“C” code in Fig. 9.9
example) is likely target dependent code. E.g., a high-level device driver code used
as part of the test bench will likely make calls to an operative system instance, which
in turn is part of the system under design, and thus such operative system instance
is captured in the system specification. Therefore, this model needs to break the
pure separation of scopes between the environment and the system. As this is not
the general rule in a MDD methodology, it is convenient to mark the environment
components which such access to the system model internals. It is shown in Fig. 9.9,
where the environment component is typed by the «RtUnit» MARTE stereotype,
as well as by the UTP «TestComponent» stereotype.

9.3.3 Modeling Several Scenarios

The proposed methodology supports the modeling of several
GaWorkloadBehavior packages. This enables a set of different stimuli asso-
ciated with different use cases to be captured in a single model. Then, a DSE
exploration can be done for each use case, and the design can be tailored for
a set of use cases. A a wide set of scenarios can be also used for validating a
single design for different use cases. In addition, the methodology provides different
GaWorkloadBehavior packages where the file association is used. This fact
enables the verification of the system with test-bench files (SystemC or C/C++) and
so the verification of the peripheral interfaces for the final implementation. In this
way, both modeling mechanisms can cohabit in the same VerificationView
package which enables the definition of the different design stages in the same
model. In order to specify several scenarios, the user only needs to specify a new
GaWorkloadBehavior package, in turn containing a TestContext com-
ponent. This TestContext component again generalizes the TestContext
component and owns as many interactions as the user requires for describing the
new scenario.

9.4 Toolset

The environment modeling methodology presented is partially supported by a
toolset which relies on Eclipse and Papyrus. Specifically, two code generation
tools have been separately implemented up to now. The first generator produces
a SystemC counterpart from the ULM interactions. The second one, implements
the generation of the file structure from the model. These generators have been
written in the standard Model-to-Text (M2T or MTL) language [20], to improve
its portability across different model-to-text transformation engines.
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9.4.1 SystemC Generation

The code generation is in charge of producing all the SystemC code reflecting
the structure of components and concurrency present in the UML/UTP/MARTE
environment model. It also produces the service calls fulfilling the partial order
specified in the environment model by means of sequential diagrams. The generator
does not produce functional code, whose insertion is left to the user. However, in
order to enable the production of an executable environment model from the first
moment after the generation, void functions with debugging printouts are produced.
This permits a fast initial check of the SystemC code produced and provides a basis
for indicating to the user where to insert functional code.

Code generation is actually done in two phases. First a model-to-text transformer
translates the UML environment model into a set of macros. A specific front-
end of the SCoPE simulation framework provides the SystemC translation for
these macros. The SCoPE framework enables the compilation of a dynamic library
(instead of a static executable file) for each scenario. In this way, the approach
is modular at executable level, in the sense that each scenario of the SystemC
environment has its own .so file, separated from the .so files of the system executable
model itself. The generator basically maps all verification views to a single SystemC
module (thus there is no UML environment component module mapping). The
code generator produces at least one SystemC process containing a sequence of
channel accesses for each environment component. This sequence fulfils all the
order constraints specified through the sequence diagrams, as explained in Sect. 9.3.

9.4.2 File Structure Generation

The other implemented code generator enables the generation of the file structure.
In order to characterize an application component, the files whose functionality
is implemented, the interfaces required/provided and the component’s functions
should be specified. With this information, the code generator creates the application
files (.c/cpp and .h). These files include the declaration of the functions provided
by the application component through its interfaces and the other functions specified
in the model as internal component functions. The functions of the application
environment component can be associated with a specific file in order to specify that
a function has to be included in this file. Otherwise, the code generator produces two
additional files, apart from the files specified in the model, one which includes the
declaration of the functions of the interfaces provided by the component and another
file which includes the internal functions of the component. Then, by using a UML
comment, the programming language is annotated (Figs. 9.7 and 9.9).

In addition, the second generator enables the generation of the makefiles required
for the compilation of the environment components with the rest of the application
in order to be executed in the simulation tool. This feature enables the designer to
focus on the functionality implementation and not on the infrastructure required for
the simulation tool execution.
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9.5 SystemC Simulation with the System Performance Model

The system simulation infrastructure used (SCoPE+) works on top of the SystemC
kernel. Time advance, buses and peripherals have been developed using the standard
SystemC features. As a result, no kernel synchronizations between the system
simulation kernel and the environment kernel are required, which contrasts with
other approaches such as. However, direct use of SystemC environments is not
possible since both parts rely on different models of computation.

On the one side, the system model uses a client-server component-based
communication, based on function calls. Each time a client component requires a
service, it calls a function that is implemented and provided by another provider
component. Under this perspective, the data transferred among components are the
input and output arguments of the functions of component interfaces. Each function
called by a client component means sending input arguments to server components
and, if output arguments are expected, they are sent from the m server component
to the client component. On the other side, the SystemC environment relies on
interfaces based on transfers which use SystemC channels. These channels receive
packaged data and provide different communication semantics: blocking/non block-
ing, with/without memory, etc.

Interconnection wrappers are used to adapt each channel of the SystemC envi-
ronment to each function in the system interface. In these wrappers, communication
accesses are divided into two steps: a request step, where the input arguments are
sent, and a response step, where output arguments return to the calling task. In
the meantime, the calling task is blocked, waiting for the response. This approach
models the blocking nature of function calls. Additionally, data transfers are
packaged by copying the arguments of each function call in a buffer that is sent
through the SystemC channel as a single unit.

9.6 Example

The suitability of this methodology has been demonstrated through the development
of environment models for an EFR vocoder example. The interrelation between the
environment components and the system has been specified in two different ways,
by using the UML interactions and by means of the files. The SystemC code was
automatically extracted from the environment and simulated with the executable
performance model, automatically extracted from the UML/MARTE model of the
system, after requiring only the injection of the functional code.

Figure 9.3 shows the structure of a first environment model developed for
simulating a full-duplex transmission operation mode. In this use case, the coder and
the decoder functionalities of the vocoder are stimulated independently (and thus
potentially at the same time) and they have to exhibit concurrent behavior able to
attend to coding and decoding services at the same time. This model is composed of
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Fig. 9.10 Modeling of order constraint for remote closed loop modeling

four environment components. In this way, independent threads stimulate the coder
and decoder within the vocoder, and the collection of coded audio (transmission)
also runs independently of the collection of the decoder output (speaker output).

In order to show the usage of more than one scenario, the environment with the
structure shown in Fig. 9.3 was extended to support a second scenario, specifying a
remote close loop use case. In principle, this could also be done with the structure
shown with the addition of some functionality for emulating channel effects. The
only additional requirement to cover the specification needs of “scenario2” was the
ability to specify that the service for transmitting the i-th coded frame should always
be called before the reception of the corresponding i-th received frame, reflecting the
same coded frame but corrupted by the channel effect after traversing the remote
closed loop. Notice that since different components (and processes) are inferred for
transmitter and receiver, and since the receiver can directly read from a file with the
coded and corrupted frames, the ordering constraint is required to model the actual
causality existing between the i-th coded frame sent and the corresponding received
frame after traversing the remote loop.

Figure 9.10 shows the sequence diagram which reflects the interaction of
transmitter and receiver with the system. Two strict combined fragments are used to
reflect the aforementioned order condition, which will impose an order relationship
in the test-bench generation. The combined fragments cover lifelines from both
the transmitter and from the receiver environment components. Notice that the
null activity of one environment component while the other is attending to a
service is explicitly modeled. The sequence diagram in Fig. 9.10 also illustrates
the usage of synchronous and asynchronous messages for modeling synchronous
and asynchronous service calls. In fact, the EFR Vocoder uses the asynchronous
transmit service since the vocoder can go on coding frames after the coded audio
frame is delivered to the transmitter. However, the vocoder uses a synchronous call
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for the services to be called since the decoder cannot work without having received
the output parameter of the received function, that is, the received audio frame.

The scenario “scenario3” (Fig. 9.1) is part of a test-bench collection to be used
for checking the vocoder system. In this case, it is not necessary to specify the
interactions for functionality description; only the capture of the different files
in the model is required. The infrastructure for system simulation (makefiles) is
automatically obtained for the SCoPE+ simulation.

Finally, the scenario “scenario4” (Fig. 9.1) specifies the target dependent source
code (Fig. 9.9) of the different device drivers for the code synthesis process.
The makefiles generated included all the information required for compiling the
application in the target board (cross compiler, flags. . . ).

9.7 Conclusions

Support for MDD and related tools in the specification of a stimuli environment
is necessary for the development of performance models for complex embedded
systems. It enables fast model development and efficient design decisions in the
DSE phase. This paper describes a methodology for UML/MARTE/UTP modeling
of an environment which supports the specification of the main environment actors
and their interconnection with the system; the specification of the interaction of
environment components with the system as partially ordered sequences of service
calls; and the specification of several scenarios for reflecting different use cases.
In addition, the methodology enables the capture of the files which implement
the functionality of test-benches for system simulation in different scenarios. This
avoids modeling the environment-system interactions in order to take advantage
of the previously implemented test-benches. Moreover, the methodology enables
the specification of peripheral interfaces to be developed for the final system
implementation which, by using the simulation, enables the verification of the
interface’s functionality required for the final system synthesis implementation.

Tools support the generation of the SystemC code and the makefiles infrastruc-
ture for execution in the simulation tool.

9.8 Future Work

Some methodological aspects have still not been implemented in a specific tool.
Specifically, there is no support for the generation of the function calls sequence
which defines the behavior of an application environment component in a specific
scenario. This generator would generate the complete, ordered sequence of function
calls established between the system and the environment application component.
This sequence of call functions would be included in a file. This file is automatically
generated. However, it is possible to define where these function calls should be
allocated in a specific file that has previously been captured in the model. In order
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to do so, a UML operation should be specified in the corresponding application
environment component. Then, this operation is associated with a file artifact. In this
way, the sequence of function calls which composes the communication statements
are specified in the body of this function allocated in the file artifact. Finally, a
complete framework which integrates all the code generators and enables all the
environment specification and simulations is still to be implemented.

Additionally, the environment modeling methodology could be extended. A
natural extension of this work consists in the addition of verification capabilities,
by using further UTP stereotypes for the specification of assertions, supported by an
extension of the validation tool.
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