
Chapter 4
TLM POWER3:
Power Estimation Methodology for SystemC
TLM 2.0

David Greaves and Mehboob Yasin

Abstract We report on a SystemC add-on library which extends every
SystemC module with non-functional data regarding power consumption and
physical layout and which accumulates and estimates dynamic energy usage.
It supports both phase/mode power modelling and energy-per-transaction logging
for TLM (transactional-level modelling). Wiring energy is computed by counting
bit-level activity within the TLM generic payload. Each leaf component can also
register its physical dimensions to facilitate a wire length estimator that traverses the
SystemC model hierarchy using either full placement or Rent’s rule estimators. It
also supports dynamic voltage islands and inter-chip wiring, where each transaction
can consume energy according to the current supply voltage of the relevant islands
and the nature of the interconnect. We report on basic performance from some
SPLASH-2 benchmarks running on a modelled OpenRISC quad-core platform.

4.1 Introduction

With the current major emphasis on power consumption in electronic design it is
important to be able to obtain power estimates during the architectural exploration
phase. Power consumption is an emergent property arising once hardware and
software have been selected. For results to be numerically accurate, a detailed, net-
level layout of the design is required in the chosen target technology. This level of
detail is inconsistent with rapid prototyping. However, with wiring power becoming

D. Greaves (�)
Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK
e-mail: David.Greaves@cl.cam.ac.uk

M. Yasin
Computer Laboratory, King Faisal University, Al-Ahasa, Saudi Arabia
e-mail: my294@cl.cam.ac.uk

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__4,
© Springer International Publishing Switzerland 2014

53

mailto:David.Greaves@cl.cam.ac.uk
mailto:my294@cl.cam.ac.uk

54 D. Greaves and M. Yasin

Bus/NoC
Comp 1

Target
(DRAM)

Bus/NoC
Com 2

Originator
(CPU)

L1
Cache

Extended DMI record

wr util

account

component

wr energy

next
from addr
to addr

agents

rd latency
op count

Agent record Agent record Agent record Agent record

wr latency

Other Blocks Other BlocksOther Blocks

= confidence switcher
rd util
rd energy

wr util

account

component

wr energy

next

rd util
rd energy

wr util

account

component

wr energy

next

rd util
rd energy

wr util

account

component

wr energy

rd util
rd energy

Fig. 4.1 An example extended DMI record and agent list. An initiator may typically have several
of these active at once for different targets or addressable regions in a target. The TLM return path
is always the same as the forward path and the agent records are incremented for utilisation and
energy in (the active phase of) both directions

the dominant contributor in recent generations of VLSI technology, early indications
of this aspect are becoming more essential. Indicators that are relatively accurate
become useful. Relatively accurate indicators may have unknown linear error factors
in the values they report, but they certainly have the correct polarity in their partial
derivatives, thereby allowing the designer to tell whether a change is better or worse.

TLM modelling using SystemC permits high-performance models to be created.
The greatest performance is facilitated by using the blocking transaction style
with loose timing (L/T) and DMI (direct memory interaction). Using blocking
transactions, interactions between a CPU and a cache, memory or I/O device
are modelled as a simple method invocation with handshaking overheads being
modelled simply by the call and return of the relevant subroutine [3]. The loose
timing method allows a given initiator to hog the modelling workstation for an
extended period of time, called its quantum, and thereby avoid the overhead of
context switching needed to keep transactions and bus cycles strictly in the order
they would really occur. DMI allows an initiator, such as a CPU, to make backdoor
access to the workstation memory used to model the contents of RAMs and
DRAMs, thereby avoiding the overheads of modelling caches and busses or NoCs
(networks on chip). However, previous modelling systems have become highly
inaccurate in terms of reported performance and (especially) power when these
advanced modelling features are enabled.

Two previous libraries for SystemC power modelling are TLM POWER2 [6]
and PKtool [13]. Our own library is called TLM POWER3 owing to its direct
reuse of some infrastructure from TLM POWER2, but ideally one might merge
it with PKtool so that the styles and approaches from both previous libraries
are concurrently available. Higher-level approaches might also be included. For
example, the Sesame approach to estimating power consumption uses an abstract
model of execution, based on computational event signatures [8]. A similar higher-
level approach was presented in [10], but built on SystemC.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 55

The TLM POWER2 library for SystemC associated groups of SystemC modules
with a pair of power account records called static and dynamic. The association
was maintained either by inheriting a pw_module parent as well as the standard
sc_module inheritance, or by setting a SystemC attribute to point to the appro-
priate set of accounts.1 TLM POWER2 used the mode/phase approach to power
modelling.

In the mode/phase approach, the consumption of an IP block is determined from
its current state. The state of the block is characterized by both its phase and its
mode. A mode is a particular DPM (Dynamic Power Management) mode (e.g. on,
sleep, off). A phase, basically a functional phase, is characterized by its power and
time duration (e.g. wait, read, compute). The available modes and phases are defined
in a technology/instance file that is inspected by the constructor for the component.
The constructor can nominate a specific file for a specific instance or the kind()
of the component can be looked up and the details set for all instances of that kind
of component. The behavioural model for the block must change mode and phase
explicitly using calls such as

this->update_power(sc_pwr::PW_MODE_ON,
sc_pwr::PW_PHASE_IDLE);

Infact, in the mode/phase approach of TLM POWER2, there is no specific
support for transactional modelling or loose timing. The TLM calls are unannotated
and the SystemC kernel must be advanced for the appropriate period of time while
a component is in a given power mode/phase for the correct energy accumulation to
be logged.

PKtool is another SystemC library for power modelling, but its basic approach
is to count transitions at the net level. Wrappers are provided for all of the
common SystemC datatypes used for modelling wires, such as sc_uint<7>.
When SystemC kernel time advances, the hamming distance of each wrapped type is
computed and added to its transition count. The hamming distance is the number of
bits that have changed value. For energy modelling, only the zero-to-one transition
needs to be considered. A net will consume energy from the supply each time it rises,
according to the standard 1

2CV 2 formula, where C is the net capacitance, which is
proportional to its length. (As explained below, we use the same approach for our
TLM calls, but we then automatically disable it in favour of performance). However,
PKtool library does not help estimate net length, and despite some recent extensions
for TLM modelling, it has no support for the TLM generic payload. Directly relating
the events in the model to the SystemC kernel timestamp cannot support loosely-
timed models which locally run ahead of the kernel.

1We use the word component to denote an sc_module that is so associated.) SystemC augments
every sc_module (or other entity that inherits sc_object) with a key/value space where the
values are void * pointers.

56 D. Greaves and M. Yasin

4.2 Our Approach: TLM POWER3

TLM POWER2 defined physical units for power and energy in the same way
as SystemC itself defines physical units for time. All of the standard arithmetic
operators are overloaded to have the expected behaviour. For instance, a power
multiplied by a time results in an energy. In TLM POWER3, we have added
new physical units for voltage, distance and area, along with the appropriately
overloaded operators. A component can describe its physical size in its constructor
using one of the following TLM_POWER3 calls:

// Set actual dimensions of current component
void set_fixed_dimensions(pw_length x, pw_length y);

// Set additional area of current component
void set_excess_area(pw_area a, float max_aspect_ratio=2.5);

// Select chip/voltage island for current component
// and its children.
void set_chip_name(string chipname, string island);

The former sets the actual dimensions of the current component, leading to a
warning if this is smaller than the sum of its components. The excess_area call
describes the additional area of the current component beyond that of the sum of its
child components. The component is assumed to be flexible in shape from square up
to an oblong of maximum aspect ratio specified. Aspect ratio is, however, ignored
by our provided basic estimator that just sums areas within a component and does
not attempt to give them co-ordinates within the component. Components can be
specified to be placed on different chips or regions of chips but the default is to be on
the same chip/region as their parent. This identifies which wiring crosses between
chips and hence has different dimensions and technology. It can also be used to
exclude logic from the current chip’s dimensions, as is useful for example, when a
DRAM bank model is instantiated inside the DRAM controller rather than exporting
all of the connections (TLM or otherwise) up through the module hierarchy. The
same partitioning approach defines dynamic supply voltage islands where voltage
changes are applied to all members of a chip/region at once.

As well as supporting an external table of modes and phases for each in-
stance/kind of component we enable the C model to contain explicit statements of
power and energy. For instance, the constructor (or PVT callback, mentioned later)
for an SRAM of m_bits might contain the following, where the first line creates a
constant power value and the second logs this power in the static power account of
the current component.

pw_power leakage = pw_power(82.0 * m_bits, PW_nW);
set_static_power(leakage);

Rather than just supporting a fixed pair of power accounts, as in TLM POWER2,
our library supports any number of accounts per group of components with the

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 57

first three being nominally used for component static power, component dynamic
power/energy and wiring dynamic energy. For full flexibility, each account can
model both energy and power. Each account has energy as its primary accumulating
representation and the power being a standing value that, form time to time, is
converted to energy debits. Standing power is converted to energy when the standing
power level is changed or at the end of simulation, the energy being the previous
standing power level multiplied by the time since the last standing power change.
An error is raised if the simulation exits at infinite time with a non-zero standing
power level in any account. Energy figures are converted back to average power in
some forms of report.

Our library also supports utilisation and transaction logging for visualisation
purposes. Although this might seem orthogonal, there are some overlaps. One
feature of the PKtool TLM modelling style is that idle power in a component
is not accumulated while a transaction is active, and hence details of component
utilisation are needed for this style of modelling. By recording utilisation we can
apply this correction if desired: it might be very useful to model dynamic power and
clock gating. In addition, when our library generates a VCD (Verilog change dump)
report, it is convenient to have a graphical illustration of the transactions alongside
the energy use bumps.

4.2.1 Extended Generic Payload: Distance + Hamming

Although our library can be used with the standard generic payload, more detail
is captured using our extended version called PW_TLM_PAYTYPE. In TLM 2.0,
sockets are templated types which default to use the standard generic payload,
but we can instead use PW_TLM_PAYTYPE. Rather than explicitly extending
the generic payload, we could have used the generic payload’s own extensions
(and these still work, as used for instance for extended commands such as
load-linked/store conditional), but we chose not to for efficiency reasons. Socket
definitions and calls now look like this (although CPP macros can tidy this up):

// Providing the third template argument to a socket:
tlm_utils::simple_initiator_socket
<mytype, 64, PW_TLM_TYPES> ifetch_socket, data_socket;

// Using the extended payload in the callbacks:
void b_access(PW_TLM_PAYTYPE &trans, sc_time &delay)

The extensions in PW_TLM_PAYTYPE assist with the following details:

1. Deciding which fields are active so that only the correct fields have their
hamming distance processed for wiring power,

2. Establishing the trajectory of the transaction through the system so that traversed
wire length is estimated,

58 D. Greaves and M. Yasin

3. Keeping note of the components encountered so that the correct power and
utilisation accounts can be incremented under DMI,

4. Measuring the variance of metrics so that automated transition to DMI is enabled.

In a generic example, Fig. 4.1, the originator (CPU) will complete the address
field of the payload and, for writes, also the data and byte-enabled fields. Generally,
multi_passthrough TLM sockets are used in complex system models: these
support forwarding the transaction onwards through bus, cache and NoC (network-
on-chip) subsystems. The return path is always the reverse of the forward path owing
to simple stack unwinding associated with method invocation. So intermediate
components forward the payload, perhaps with minor changes (e.g. address space
manipulations at bus bridges or VM units) to the target destination. This target
will reply with a low-cost acknowledgement for a write and with the data for
a read.

Our TLM payload offers an API with three library calls for bus energy modelling.
These are pw_set_origin,pw_log_hop and pw_terminus. Currently mod-
els invoke these on a payload at the beginning, intermediate steps and end of a its
payload trajectory. Rather than manual application, building these invocations into
the TLM convenience sockets would be more convenient (sic).

void pw_set_origin(sc_module *where,
uint flags=0,
bit_transition_tracker *transition_reference=0);

pw_agent pw_log_hop(sc_module *where,
uint flags=0,

bit_transition_tracker *transition_reference=0);
void pw_terminus(sc_module *where);

The first argument where is the this pointer for the current component. This
is used to track the path through the system.

The second argument is the flags that denote which fields in the payload are
active. They can also encode bidirectional data busses and multiplexed address-data
busses. When the physical nets of busses are re-used the transition count increases
but there are fewer busses (e.g. the high order address bits might be mostly static
on a dedicated address bus but are not if the same wires carry multiplexed address
and data). Most flags are sticky and apply to subsequent hops that do not change
that flag. In particular, if the flags argument is zero for the next hop then nothing has
changed and the next hop has the same properties as the previous hop.

The third argument is a bus reference. Every transaction is considered to
take place over a bus and a bus is a generic set of wires modelled with a
bit_transition_tracker. Wires present (i.e. payload fields) that are not
used consume no energy, so it is not important to customise the instance of a bus
to its use (e.g. the bus from CPU to memory has address and write data whereas
the return bus has just read data). The bus reference is needed so as to check which
physical nets are transitioning with respect to their previous value.

We could integrate a layout package to estimate wiring lengths in detail.
Currently we use the Rentian approach of [4] that provides a simple estimate

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 59

of average connection length in a well-placed implementation according to α.A
1
2

where A is the area of the lowest common parent component to the source and
destination of the signal and α is typically 0.3. The capacitance per unit length
of nets for on-chip and off-chip wiring is read from a configuration file (we use
0.3 pF/mm).

TLM 2.0 defined a DMI record called tlm::tlm_dmi which stores the
start and end addresses and access times for a region of memory that can be
accessed via a fast backdoor mechanism: the client simply reads from the raw
host memory that contains the memory contents. In addition, the target has a
callback called invalidate_direct_mem_ptr whereby this record can be
retracted. However, using this DMI mechanism bypasses the target model and also
all intermediate bus components, including caches, so their utilisation and energy
accounts cannot be updated directly during DMI accesses. In TLM POWER3, we
make the forward trajectory of a TLM DMI-allowed call instantiate a chain of
account records that contain the energy and utilisation and account number for each
intermediate agent and the target. The energy and utilisation are also updated on the
return transit of the thread. (For non-blocking calls, the updates are just made on
the significant protocol phases.) At the initiator we augment the DMI record with a
count of the number of DMI calls made (scaled by the relative size of the transaction
if the payload burst size is varying). Aperiodically (e.g. at end of L/T quantum), and
on DMI invalidate, the count field is reset with the appropriate credits being made
to the utilisation and energy accounts of each referenced component. The invalidate
DMI callback also performs such a flush and frees the agent list. Operations such as
store conditionals must not use DMI, so can be used as flush points.

An alternative to building the agent records is to write DMI energy to a ‘slush
fund’ account where it will appear (correctly) in the total for the system/subsystem
but (incorrectly) in the slush fund of the originator of such transactions instead of the
consuming component (which is ensured by our agent records). We would perhaps
use account number 4 in each component for this purpose.

The energy and power figures in a call to the library can either be pre or post
supply voltage scaling, where the former are multiplied by the supply voltage
squared at the point of logging and the former are not scaled. Given that a component
(sc_module) inherits our pw_module_base, transaction energy logging in a
component can be as simple as:

m_read_energy_op = pw_energy(5.0 +
1.5e-5 * m_bits, pw_energy_unit::PW_pJ);

m_read_energy_op *= get_current_vcc_squared();
this->record_energy_use(m_read_energy_op /*, 1*/);
this->record_utilisation(sc_time(1, sc_us), delay);

where the first line would typically be in the component’s constructor, the second
would be in the constructor or in the PVT (process/voltage/temperature) recalculate
callback. The third line actually logs the energy and can specify an alternative
account to the default of ‘1’. Multiplying by the supply voltage squared on every
logging event is slow, and hence pre-computing this in the PVT method is preferred.

60 D. Greaves and M. Yasin

new confidence<T, N>()

lost
confidence

Confidence Switcher
Measure

metric

constructoruser thread entry

user thread exit

bool measure needed();

T get_average();

T record_measurement(T m);

Fig. 4.2 General use pattern for the ‘confidence switcher’ component that first accumulates and
then provides a mean value for a metric based on aperiodic measurements while raising an
exception if accuracy is lost

Account one is the default intra-component dynamic energy account. The log
of the utilisation itself takes the busy duration and an extra, optional second
argument which is the advance over kernel simulation time needed for accurate
rendering when loosely-timed. The ‘this->’ prefix would either be missed out,
but preferable is is to replace it with the agent handle returned from log_hop
call. This applies the energy and utilisation debits to the current component but also
inserts their values in the agent list (if one is being constructed) so that they are
accounted when subsequent calls are replaced with DMI.

Using standard TLM 2.0, an initiator will start using DMI when calling
get_direct_mem_ptr on the initiating socket after a transaction instantiates
a valid, local DMI record. Typically the initiator has no knowledge of the accuracy
of the latency figures in its DMI record: naively, these will just be the result of the
first call (which could be much slower owing to cache misses etc.). We provide and
use a ‘confidence switcher’ to ensure DMI is employed with fairly accurate values
for latency as well as energy and utilisation in an extended DMI record.

The confidence switcher (Fig. 4.2) is a simple library component designed to
capture the value of a presumed-stationary statistic using a relatively small number
of costly trials. It has internal state and three user methods and is parametrised by
an integer N (default is 1,000) that averages a generic statistic over the second
N measurements and then reports that average from then onwards while making
pseudo-random occasional further measurements (with mean spacing every 1/N) to
check that the mean value has not significantly changed. The first N measurements
are not included in the average to avoid start-up transients. This gives a performance
boost of approximately N times in the overhead of this measurement. A change
by more than 1% and more than 2/N is considered significant and this raises
an SC_ERROR or SC_WARNING according to another construction parameter.
Confidence switchers are used as much as possible, both in the POWER3 library
and by the user models. They can record bit transition density counts, latency times
and and power and energy units.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 61

Fig. 4.3 Part of an example textual report file where a large number of separate components have
been included. The grand total account is clipped off the bottom of this figure

4.2.2 Output Reports

Several kinds of report can be generated with the TLM_POWER3 library. These
cover power consumption, utilisation and physical layout.

The library will automatically add up the power and energy used globally, but
further detail on individual sub-systems can also be reported by selecting other
points in the hierarchy to trace and passing the associated component as an argument
to a power trace function. Each item traced generates either a fresh set of accounts
that include that item and all of its children, or that item alone, or a fresh set of
totals for each component (i.e. for that item alone and recursively for all its children
separately).

Energy consumption and average power are primarily reported in a plain text file
emitted at the end of simulation (or at other user request dump points). An example
is shown in Fig. 4.3. This file can also be written in spreadsheet-friendly SYLK
(SYmbolic Link) form. As mentioned, utilisation, energy and transaction activity
reports are available in VCD form. The VCD generator can also output in a gnuplot-
friendly multi-column file format. Figure 4.4 shows an example VCD plot. The L/T
(loosely-timed) approach can upset the normal SystemC VCD report format owing
to temporal decoupling (events are logged in their actual simulation order rather than
their nominal correct order) but our VCD writer corrects this by writing the events
to a circular RAM buffer whose temporal extent is greater than the L/T quantum.
This also enables sensible energy plots to be made: energy events would be like
Dirac pulses if rendered directly and cumulative energy plots are not especially
informative, but our VCD writer implements a single-pole low-pass filter for the

62 D. Greaves and M. Yasin

Fig. 4.4 An example VCD trace showing static, dynamic and wiring power consumption for a
RADIX sort. The cores operate mainly from cache but exchange data between rounds

energy events so that they appear like exponentially-decaying pulses. Alternatively,
in another mode, it reports the flat average power given by the last energy quantum
divided by the time to the next-logged quantum on that account. Physical layout is
currently printed as a text file which just reports which components are inside which
others and the resulting area for each component. A graphical plot in .svg form is
being implemented.

4.3 Performance

We examined the performance of the first two testbench programs in the Splash-2
suite [14]. These are a radix sort and a L/U matrix decomposition that can run on
1–16 cores. We compiled the Splash-2 programs to run bare metal supported by the
standard linux libc and our own implementation of pthreads and a Simics/ANL
(parmacs) shim layer [5]. Our testbench uses four OpenRISC processor cores [11]
in verilated or fast ISS forms wrapped to use TLM 2.0 blocking calls served by
an un-cached instance of DRAMSIM2 [9]. The cores log 250 pJ per instruction
and run at 200 MHz unless paused waiting for other cores (50 mW core power).
Each core has separate I and D L1 caches that included 17 RAMs each (tag and
data for 8-way set associative and a write buffer). Each Core, Cache and each of
the other components shown in Fig. 4.5 is a separately-annotated SystemC module
that also inherits a TLM_POWER3 base and communication between them is
completely with blocking TLM 2.0 calls. There are 16 SystemC modules in 3
levels of hierarchy. The individual RAMs had dimensions and power consumption
computed according to the equations in Table 4.1 which were formed from our own
regression of 45 nm CACTI runs [12].

Table 4.2 shows that simply taking the four-core ISS and putting it inside
SystemC TLM degrades the performance by about ten-to-one owing to SystemC
kernel overhead (gprof reveals major costs (more than 20% of execution time) are

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 63

SystemC

TLM 2.0 Transaction Library

busmux64.cpp

uart64_cbg.cpp
xterm

stdin/
stdout

dram.64_cbgcpp

ELF
loader

ELF’
machine

code
DRAM Controler

I/O DEVICE

TLM POWER3 Library

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

U. Maryland
DRAMSIM2

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

DATA BUS 64 Bits 200 MHz

CONSISTENCY
 BUS

Net-level
connections

GCC
toolchain

Splash-2 Parmacs

Fig. 4.5 Reference hardware platform for experiments (Quad-core OPENrisc with U. Maryland
DRAM simulator)

.
Table 4.1 Interpolated
CACTI 45 nm RAM
parameter equations

Property Model equation Unit

Area 13,359 + 40*bits squm
Read energy 5+1.5E −5 pJ per bit
Write energy 10+3.0E −5 pJ per bit
Access time 0.21+3.E −4× (bits)0.5 ns

Leakage power 82 nW per bit

.
Table 4.2 Simulation performance using GCC 4.43 on Intel x86_64 3 GHz/6,000 BogoMips,
8 GB RAM (no paging) SystemC-2.2.0

Figure 4.6 name Configuration Instructions/s Ratio

Not plotted Fast ISS – No SystemC 11 ×106 1.0
Unannotated model L/T = min, POWER3 = off 1 ×106 0.1
Unannotated model L/T = max, POWER3 = off 4 ×106 0.4

DMI enabled L/T = max, POWER3 = off 7 ×106 0.7
POWER3 L/T = max, POWER3 = on 0.5 ×106 0.05

POWER3 + HOPS L/T = max, POWER3 = on + hops 0.3 ×106 0.03
POWER3 + HOPS+XITIONS L/T = max,

POWER3 = on + hops + hamming
0.2 ×106 0.02

64 D. Greaves and M. Yasin

Fig. 4.6 Relative simulation performance of approximately-timed (left-hand side) and loose-
timed (right-hand side) TLM Model (2 cores, running SPLASH-2 Radix Sort n = 100) with various
configurations

in sc_core::sc_simcontext::crunch(bool) and b_transport. This
degradation occurs with and without the inclusion of caches but the performance of
the modelled system then changes as expected (i.e. program completes much faster
with caches). The next lines in Table 4.2 are taken from Fig. 4.6 which plots the
performance with and without DMI with respect to the L/T quantum keeper value.
Using DMI and a maximal L/T quantum, so that the SystemC kernel is only entered
during bus and mutex contention, restores some of the performance.

The effect of compiling with our power library with various configurations is
reported at the bottom three lines of the table (and in further plots). It gives roughly
a factor of two slow down and the logging of hops does not make it much worse
(penultimate line). Implementing hamming distance computations under control
of confidence switchers where with N = 1,000 causes a further rough factor of 2
performance degradation. Performance can perhaps be improved upon, but it is not
overly bad. Interestingly, the degradation was much worse in an early version where
the island voltage was squared at every use rather than recomputing the transaction
energies just on each PVT change.

Figure 4.7 shows the measured power consumption of the processor (excluding
DRAM) on a real Linux workstation as three identical runs of the RADIX
benchmark were executed, the third one using only one CPU core. A 0.05 Ω resistor
was put in series with the 12 V supply to the processor and its voltage drop and
output voltage were logged at 60 Hz to record the energy consumption. Figure 4.8
shows the total power plot when the same C program was run on the SystemC
model. Some differences in general shape are obvious and need investigation.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 65

Voltage

20 V

Power

0 W

50 W

100W

150 W

200 W

15 V

10 V

5 V

0V
Current

Ten Seconds

Fig. 4.7 Splash RADIX benchmark: probed processor power consumption. Two runs using two
cores followed by one run on a single core. The end region of each run is the checking phase.
Spikes are other unix processes on the dual-core workstation (Intel Pentium D 3 GHz)

Fig. 4.8 Splash RADIX benchmark: TLM POWER3 total power consumption: we see one run
using two cores followed by one run using a single core. No unix operating system was present

4.4 Accuracy

To explore the general accuracy of our library we used three simple test programs to
generate calibration data and used this data to predict results for a fourth program.
Each of the four programs could be run with one to six threads. We measured the
CPU energy use and execution time on a 2.4 GHz AMD Phenom X6 1045T six-core
chip, as plotted in Figs. 4.9 and 4.10 respectively. This chip has 64 KB I + D caches
per core as well as a dedicated 512 MB L2 cache per core and a shared 6 MB L3
cache. The tests could all run within the L3 cache so DRAM power did not need
to be included. The test programs were respectively a memory-bound program with
disjoint regions that each fit within the dedicated caches of a core, a memory-bound
program with a moderate amount of inter-core churn and a CPU-bound program.
Using a multivariate regression spreadsheet within Libre Office the coefficients in
Table 4.3 were determined. These were then used to calibrate the SystemC models
using the POWER3 library to predict the power consumption and performance of
other programs. Such a program was the SPLASH-2 RADIX benchmark, run with
between one and six cores and plotted as the final six results.

In each test the total amount of work was increased linearly with the number of
cores. The energy used can be seen to grow roughly linearly as well but the execution
time only grows when the cores contend for cache lines. The final six results
show good agreement between measured and predicted values (within 30%) which
is acceptable for high-level architectural exploration. We cannot expect perfect
prediction since the programs were compiled for OpenRISC during simulation and

66 D. Greaves and M. Yasin

Fig. 4.9 Measured and modelled energy consumption for four tests each with one to six cores
where coefficients from the first three tests were used to predict energy in the fourth

Fig. 4.10 Measured and modelled execution time for four tests each with one to six cores where
coefficients from the first three tests were used to predict execution time for the fourth

.
Table 4.3 Energy debits
obtained from curve fitting
between simulation and
measurement over 24 runs
with 1–6 cores in use: CPU &
Caches only (DRAM
excluded)

Operation Energy

Instruction 1 nJ
L1 + L2 I cache miss 50 nJ

L1 + L2 D cache miss 15 uJ
L2 cache snoop read 4 mJ

L2 cache consistency evict 7 mJ

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 67

for x86-64 during measurement. We have recently implemented a more-detailed
model of AMD’s hyper-transport system and Hammer cache protocols and will
report more comprehensively in another paper.

4.5 Conclusion

Our framework provides an easy-to-use power estimation add on to SystemC TLM
modelling. The use of the confidence switcher to dynamically disable detailed
modelling is novel. The user may easily alter the system structure in radical ways,
changing cache size, bus layout and so on. Standard ELF binaries can be easily
generated with GCC/binutils tool chain. We also have a MIPS64 SMP system based
around the same components. Because wiring power is becoming a dominant aspect
it is important to include it in rapid exploration tools.

The benefit of rapidly exploring design options using SystemC was advocated
in [1], but having performance predictions without power predictions is no longer
acceptable. A fairly-detailed TLM model with power annotation was constructed
by [2] for a PowerPC-based SoC. The activity for individual test transactions was
extracted from VCD files and entered into a database. This approach can be applied
in our framework to generate the individual transaction energies. Power estimation
is also being performed for AMS (analog and mixed signal) subsystems within the
SystemC framework [7].

We plan to further refine our API and library and release it for download.
Including the log_hop operations inside the convenience sockets would be
sensible. Also, further support for power islands might be needed, but currently we
can use our chip number concept with zero volt supply setting to disable static power
in regions. Further work will be to integrate back-annotation flows from real layouts
and compare these with the Rentian approach. We would also like to extract net-
level activity from the Verilated models to gain additional insight and confidence.

Acknowledgements We thank Matthieu Moy for providing the TLM POWER2 base platform.

References

1. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: Mparm: exploring the multi-
processor SoC design space with SystemC. J. VLSI Signal Process. Syst. 41, 169–182 (2005)

2. Dhanwada, N.: A power estimation methodology for SystemC transaction level models. In:
Proceedings of CODES-ISSS, Jersey City, pp. 142–147 (2005)

3. Ghenassia, F.: Transaction-Level Modeling with SystemC: TLM Concepts and Applications
for Embedded Systems. Springer, Secaucus (2006)

4. Greenfield, D., Moore, S.W.: Fractal communication in software data dependency graphs. In:
SPAA’08: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures, Munich, pp. 116–118. ACM, New York (2008)

68 D. Greaves and M. Yasin

5. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: a full system simulation platform. Computer
35(2), 50–58 (2002)

6. Moy, M.: Mini power-aware TLM-platform. http://www-verimag.imag.fr/~moy/?Mini-Power-
Aware-TLM-Platform (2010)

7. Pêcheux, F., El Abidine, K.Z., Greiner, A.: Early power estimation in heterogeneous designs
using SoCLib and SystemC-AMS. In: Proceedings of the 20th International Conference
on Integrated Circuit and System Design: Power and Timing Modeling, Optimization and
Simulation, PATMOS’10, Grenoble, pp. 252–252. Springer, Berlin/Heidelberg (2011)

8. Piscitelli, R., Pimentel, A.D.: A signature-based power model for MPSoC on FPGA. VLSI
Des. 2012, 6:6–6:6 (2012)

9. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: Dramsim2: a cycle accurate memory system
simulator. Comput. Archit. Lett. 10(1), 16–19 (2011)

10. Streubuhr, M., Rosales, R., Hasholzner, R., Haubelt, C., Teich, J.: ESL power and performance
estimation for heterogeneous mpsocs using SystemC. In: Specification and Design Languages
(FDL), 2011 Forum on, Oldenburg, pp. 1–8 (2011)

11. Tandon, J.: The openrisc processor: open hardware and linux. Linux J. 2011(212) (2011)
12. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A comprehensive

memory modeling tool and its application to the design and analysis of future memory
hierarchies. In: Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA’08, Beijing, pp. 51–62. IEEE Computer Society, Washington (2008)

13. Vece, G.B., Conti, M.: Power estimation in embedded systems within a SystemC-based design
context: the PKtool environment. In: Seventh Workshop on Intelligent Solutions in Embedded
Systems, Ancona, pp. 179–184 (2009)

14. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs: characteriza-
tion and methodological considerations. SIGARCH Comput. Archit. News 23, 24–36 (1995)

http://www-verimag.imag.fr/~ moy/?Mini-Power-Aware-TLM-Platform
http://www-verimag.imag.fr/~ moy/?Mini-Power-Aware-TLM-Platform

	4 TLM POWER3: Power Estimation Methodologyfor SystemC TLM 2.0
	4.1 Introduction
	4.2 Our Approach: TLM POWER3
	4.2.1 Extended Generic Payload: Distance+Hamming
	4.2.2 Output Reports

	4.3 Performance
	4.4 Accuracy
	4.5 Conclusion
	References

