
Lecture Notes in Electrical Engineering 265

Jan Haase
 Editor

Models, Methods,
and Tools for
Complex Chip
Design
Selected Contributions from FDL 2012

Lecture Notes in Electrical Engineering

Volume 265

For further volumes:
http://www.springer.com/series/7818

http://www.springer.com/series/7818

Jan Haase
Editor

Models, Methods, and Tools
for Complex Chip Design

Selected Contributions from FDL 2012

123

Editor
Jan Haase
Institute of Computer Technology
Vienna University of Technology
Vienna, Austria

ISSN 1876-1100 ISSN 1876-1119 (electronic)
ISBN 978-3-319-01417-3 ISBN 978-3-319-01418-0 (eBook)
DOI 10.1007/978-3-319-01418-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946029

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This book is the latest contribution to the LNEE series, and it consists of selected
papers presented at the Forum on Specifications and Design Languages (FDL) 2012,
which took place in September 2012 at Vienna University of Technology, Vienna,
Austria.

FDL is a well-established international forum devoted to dissemination of
research results, practical experiences, and new ideas in the application of specifi-
cation, design, and verification languages to the design, modelling, and verification
of integrated circuits, complex hardware/software embedded systems, and mixed-
technology systems. Modelling and specification concepts push the development of
new design and verification methodologies to system level, thus providing a means
for model-driven design of complex information processing systems in a variety
of application domains. One of the principal advantages of FDL is that it brings
together several related thematic areas and gives an opportunity to gain up-to-date
knowledge in many broad areas of the fast evolving field of system design and
verification. In 2012, some additional key areas were covered in the form of special
sessions and tutorials included in the conference program.

This book presents a collection of the best papers from FDL 2012 and covers the
following topic areas:

• Assertion Based Design, Verification and Debug (ABD)
• Language-Based System Design (LBSD)
• Embedded Analog and Mixed-Signal Design (EAMS)
• UML and MDE for Embedded System Specification & Design (UMES)
• Special Sessions of FDL 2012

The papers were selected by the topic area program chairs Dominique Borrione
(responsible for ABD), Martin Radetzki (responsible for LBSD), Christoph Grimm
(responsible for EAMS), and Julio Medina (responsible for UMES).

The chapters of this book present recent and significant research results in
the areas of design and specification languages for embedded systems, SoC, and
integrated circuits. The objective of the book is to serve as a reference text for

v

vi Preface

researchers and designers interested in the extension and improvement of the
application of design and verification languages in the area of embedded systems.

I would like to take this opportunity to thank the members of the program
committee who made a tremendous effort in revising and selecting the best papers
for the conference and the most outstanding among them for this book. I would also
like to thank all the authors for the extra work made in revising and improving their
contributions to the book.

Finally, I would like to express my special thanks to Adam Morawiec and Jinnie
Hinderscheit from ECSI, who made this book possible.

Vienna, Austria, Jan Haase

Contents

1 Formal Plausibility Checks for Environment Constraints 1
Binghao Bao, Jörg Bormann, Markus Wedler,
Dominik Stoffel, and Wolfgang Kunz
1.1 Introduction .. 2
1.2 Circuit Models . 3
1.3 Properties of Circuits . 3
1.4 Environment Constraints . 6

1.4.1 Implementable Constraints . 6
1.4.2 Composability . 8

1.5 Plausibility Checks in Coverage Analysis for Property Sets 9
1.5.1 Complete Interval Property Checking (C-IPC) 10
1.5.2 Plausibility Checks . 11

1.6 Experimental Results. 13
1.7 Conclusions .. 15
References .. 16

2 Efficient Refinement Strategy Exploiting Component
Properties in a CEGAR Process . 17
Syed Hussein S. Alwi, Cécile Braunstein,
and Emmanuelle Encrenaz
2.1 Introduction .. 17
2.2 Our Framework .. 19

2.2.1 Concrete System Definition . 20
2.2.2 Abstraction Definition . 21
2.2.3 Initial Abstraction . 23

2.3 Refinement. 23
2.3.1 Properties of Good Refinement . 23
2.3.2 Negation of the Counterexample.. 24
2.3.3 Ordering of Properties . 27
2.3.4 Filtering Properties . 29

vii

viii Contents

2.4 Experimental Results. 30
2.5 Negation of the Counterexample as a Complementary Strategy . . . 33
2.6 Conclusion and Future Works . 34
References .. 35

3 Formal Specification Level . 37
Rolf Drechsler, Mathias Soeken, and Robert Wille
3.1 Introduction .. 37
3.2 Preliminaries. 40

3.2.1 Unified Modeling Language . 40
3.2.2 Natural Language Processing . 41

3.3 Formal Specification Level . 43
3.4 Mapping Natural Language Specifications

to the Formal Specification Level . 44
3.4.1 Determine the Structure of the Design . 44
3.4.2 Determine the Properties of the Design 45

3.5 Checking Correctness at the Formal Specification Level. 47
3.5.1 Verification of Static Aspects . 47
3.5.2 Invariant Removal . 48
3.5.3 Verification of Dynamic Aspects . 48

3.6 Mapping from Formal Specification Level
to the Electronic System Level . 49

3.7 Tool Support . 49
3.8 Conclusion .. 50
References .. 51

4 TLM POWER3: Power Estimation Methodology
for SystemC TLM 2.0 . 53
David Greaves and Mehboob Yasin
4.1 Introduction .. 53
4.2 Our Approach: TLM POWER3 . 56

4.2.1 Extended Generic Payload: Distance + Hamming 57
4.2.2 Output Reports . 61

4.3 Performance . 62
4.4 Accuracy .. 65
4.5 Conclusion .. 67
References .. 67

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 69
Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers,
and Gerd Ascheid
5.1 Introduction .. 69
5.2 SystemC Simulation Concept. 71
5.3 Related Work . 72
5.4 Process Order Dependency Test . 73

5.4.1 Behavior Observation . 74

Contents ix

5.4.2 Detectable Anomalies . 77
5.4.3 Controlled Scheduling .. 78
5.4.4 PEO Dependency Analysis. 78

5.5 Experiments and Case Studies . 82
5.5.1 Synthetic Tests . 83
5.5.2 SoClib . 85
5.5.3 Parallel Simulation of Mixed-Level Multicore

Platform .. 85
5.6 Conclusion and Outlook . 86
References .. 87

6 A Design and Verification Methodology for Mixed-Signal
Systems Using SystemC-AMS . 89
Yao Li, Ramy Iskander, Farakh Javid, and Marie-Minerve Louërat
6.1 Introduction .. 89
6.2 Unified Platform Architecture . 91

6.2.1 SystemC AMS Extensions . 92
6.2.2 CHAMS Sizing and Biasing Engine .. 93

6.3 Proposed Levels of Abstraction . 96
6.4 Implementation of the Unified Platform . 97

6.4.1 Comparator TDF Module . 99
6.4.2 end_of_elaboration() function . 100
6.4.3 initialize() function . 101
6.4.4 processing() function . 101

6.5 Transient Analysis Method . 102
6.6 Experimental Results. 103

6.6.1 Sizing and Biasing Procedure of the Two-Stage
Comparator . 103

6.6.2 Simulation Results of a Two-Stage Pipeline ADC 105
6.7 Conclusion .. 106
References .. 106

7 Configurable Load Emulation Using FPGA and Power
Amplifiers for Automotive Power ICs . 109
Manuel Harrant, Thomas Nirmaier, Christoph Grimm,
and Georg Pelz
7.1 Introduction .. 109
7.2 Related Work . 110
7.3 First Experimental Setup . 111
7.4 Load Modelling for Real-Time Evaluation . 115
7.5 Evaluation of Lamp Model . 119
7.6 Experimental Results. 123
7.7 Conclusion and Outlook . 125
References .. 126

x Contents

8 Model Based Design of Distributed Embedded Cyber
Physical Systems . 127
Javier Moreno Molina, Markus Damm, Jan Haase, Edgar Holleis,
and Christoph Grimm
8.1 Introduction .. 128

8.1.1 Model-Based Design Approach.. 128
8.1.2 Multi-domain Simulation . 129

8.2 Previous Work . 130
8.3 Methodology . 131

8.3.1 Requirements . 132
8.3.2 Functional Model . 132
8.3.3 Hardware/Software Co-design . 133
8.3.4 Deployment . 133

8.4 Models Implementation .. 133
8.4.1 Functional Node Model . 135
8.4.2 Embedded Platform Model. 136
8.4.3 Propagation Model . 137
8.4.4 Network Protocol Stack . 137
8.4.5 Environment Interaction.. 138

8.5 Simulating the Energy Management Application.. 139
8.6 Conclusion and Future Work . 142
References .. 142

9 Model-Driven Methodology for the Development
of Multi-level Executable Environments . 145
Fernando Herrera, Pablo Penil, Hector Posadas, and Eugenio Villar
9.1 Introduction .. 146
9.2 Related and Previous Work . 147
9.3 Environment Modelling Methodology . 149

9.3.1 Environment Structure and Connection to the System.. . . 149
9.3.2 Levels of Abstraction in the Specification

of Environment Behaviour . 157
9.3.3 Modeling Several Scenarios. 158

9.4 Toolset . 158
9.4.1 SystemC Generation .. 159
9.4.2 File Structure Generation.. 159

9.5 SystemC Simulation with the System Performance Model 160
9.6 Example.. 160
9.7 Conclusions .. 162
9.8 Future Work . 162
References .. 163

10 GREEN HOME: The Concept and Study of Grid Responsiveness . . . 165
Slobodanka Tomic, Jan Haase, and Goran Lazendic
10.1 Introduction .. 165
10.2 Home Gateway Functions.. 168
10.3 Demand Response . 169

Contents xi

10.4 Grid Responsiveness Concept . 170
10.4.1 The Day-Ahead Exchange . 171
10.4.2 The Intra-day Exchange .. 172
10.4.3 User Responsiveness . 172

10.5 The Model of Home Activities . 173
10.6 Forecasting of the Uncertainty Level . 174
10.7 The Test Bed . 174
10.8 Conclusions .. 177
References .. 178

11 Polynomial Metamodel-Based Fast Optimization
of Nanoscale PLL Components . 179
Saraju P. Mohanty and Elias Kougianos
11.1 Introduction .. 180
11.2 Proposed Novel Fast Analog/Mixed-Signal Design Flow 181
11.3 Related Prior Research . 184
11.4 Design of PLL Component Circuits . 184

11.4.1 Phase Detector . 185
11.4.2 Loop Filter and Charge Pump. 185
11.4.3 LC Voltage Controlled Oscillator . 185
11.4.4 Frequency Divider . 186

11.5 Proposed Approach for Generation of Fast
and Layout-Accurate Metamodels. 187
11.5.1 Data Sampling . 189
11.5.2 Data Centering . 190
11.5.3 Stepwise Regression . 190
11.5.4 Verification of the Metamodel . 190

11.6 Proposed Metamodel Based Design Optimization 192
11.7 Experimental Results. 193
11.8 Summary, Conclusions, and Future Direction of Research 196
References .. 198

12 Methodology and Example-Driven Interconnect
Synthesis for Designing Heterogeneous Coarse-Grain
Reconfigurable Architectures . 201
Johann Glaser and Clifford Wolf
12.1 Introduction .. 201
12.2 Development of Reconfigurable Hardware . 202

12.2.1 Pre-silicon Phase. 203
12.2.2 Post-silicon Phase . 203

12.3 Design Methodology .. 203
12.3.1 Specification . 204
12.3.2 Application Analysis . 204
12.3.3 Merge . 206
12.3.4 Implementation . 206
12.3.5 Verification .. 206

xii Contents

12.3.6 Post-silicon Phase . 207
12.3.7 Tools. 207

12.4 Interconnect for Reconfigurable Modules. 207
12.4.1 Common Topologies . 207
12.4.2 A Tree Topology .. 208
12.4.3 Analysis of the Tree Topology . 210

12.5 Interconnect Synthesis . 211
12.5.1 Optimization Algorithm .. 212
12.5.2 Implementation Details. 214

12.6 Evaluation of InterSynth . 214
12.6.1 Filter Networks . 215
12.6.2 Logic Networks . 217

12.7 Yosys . 218
12.8 Conclusion .. 218
References .. 220

Contributors

Syed Hussein S. Alwi Université Pierre et Marie Curie Paris 6, LIP6-SOC (CNRS
UMR 7606), Paris, France

Gerd Ascheid Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, Aachen, Germany

Binghao Bao University of Kaiserslautern, Kaiserslautern, Germany

Jörg Bormann University of Kaiserslautern, Germany

Cécile Braunstein Université Pierre et Marie Curie Paris 6, LIP6-SOC (CNRS
UMR 7606), Paris, France

Markus Damm Technische Universität Kaiserslautern, Kaiserslautern, Germany

Rolf Drechsler Group of Computer Architecture, University of Bremen, Bremen,
Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Emmanuelle Encrenaz Université Pierre et Marie Curie Paris 6, LIP6-SOC
(CNRS UMR 7606), Paris, France

Johann Glaser Institute for Computer Technology, Vienna University of Technol-
ogy, Vienna, Austria

David Greaves Computer Laboratory, University of Cambridge, Cambridge, UK

Christoph Grimm Technische Universität Kaiserslautern, Kaiserslautern,
Germany

Jan Haase Vienna University of Technology, Institute of Computer Technology,
Vienna, Austria

Manuel Harrant Infineon Technologies AG, Neubiberg, Germany

Fernando Herrera University of Cantabria, ETSIIT, Santander, Spain

xiii

xiv Contributors

Edgar Holleis Tridonic, Dornbirn, Austria

Ramy Iskander Université Pierre et Marie Curie, LIP6, Paris, France

Farakh Javid Université Pierre et Marie Curie, LIP6, Paris, France

Elias Kougianos Engineering Technology, University of North Texas, Denton, TX,
USA

Wolfgang Kunz University of Kaiserslautern, Kaiserslautern, Germany

Goran Lazendic FTW Forschungszentrum Telekommunikation Wien GmbH,
Austria

Rainer Leupers Institute for Communication Technologies and Embedded Sys-
tems, RWTH Aachen University, Aachen, Germany

Yao Li Université Pierre et Marie Curie, LIP6, Paris, France

Marie-Minerve Louërat Université Pierre et Marie Curie, LIP6, Paris, France

Saraju P. Mohanty Computer Science and Engineering, University of North
Texas, Denton, TX, USA

Javier Moreno Molina Technische Universität Kaiserslautern, Kaiserslautern,
Germany

Thomas Nirmaier Infineon Technologies AG, Neubiberg, Germany

Georg Pelz Infineon Technologies AG, Neubiberg, Germany

Pablo Penil University of Cantabria, ETSIIT, Santander, Spain

Hector Posadas University of Cantabria, ETSIIT, Santander, Spain

Christoph Schumacher Institute for Communication Technologies and Embed-
ded Systems, RWTH Aachen University, Aachen, Germany

Mathias Soeken Group of Computer Architecture, University of Bremen, Bremen,
Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Dominik Stoffel University of Kaiserslautern, Kaiserslautern, Germany

Slobodanka Tomic FTW Forschungszentrum Telekommunikation Wien GmbH,
Vienna, Austria

Eugenio Villar University of Cantabria, ETSIIT, Santander, Spain

Markus Wedler University of Kaiserslautern, Kaiserslautern, Germany

Jan Henrik Weinstock Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Contributors xv

Robert Wille Group of Computer Architecture, University of Bremen, Bremen,
Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Clifford Wolf Institute for Computer Technology, Vienna University of Technol-
ogy, Vienna, Austria

Mehboob Yasin Computer Laboratory, King Faisal University, Al-Ahasa, Saudi
Arabia

Chapter 1
Formal Plausibility Checks for Environment
Constraints

Binghao Bao, Jörg Bormann, Markus Wedler, Dominik Stoffel,
and Wolfgang Kunz

Abstract Functional verification of a System-On-Chip (SoC) module requires that
the legal behavior of its environment is modeled as part of the verification IP. In
early stages of the SoC design process so called environment constraints are used
for this purpose. As long as a complete implementation of the environment is not
yet available these constraints restrict the inputs of the device under verification to
reasonable values.

Using such constraints during functional verification, however, imposes a high
risk that legal environment behavior is pruned away. In this case some faulty
behavior of the DUV may not be stimulated, i.e., the constraints may mask a bug.

Since the individual modules of an SoC are usually developed simultaneously it
may not be possible to check the constraints against the environment of a module
before integration. Detecting verification gaps due to overconstrained environment
assumptions at this late stage of the design process, however, requires a step back
into module verification and may compromise project closure.

In order to overcome this bottleneck of the verification flow we suggest two
efficient plausibility checks for constraints that can be conducted without a concrete
implementation of the considered environment. Our experimental results show that
the proposed techniques detect issues that would otherwise remain undetected
at least until module integration. The tests are applicable in both formal and
constrained random verification environments.

B. Bao (�) • M. Wedler • D. Stoffel • W. Kunz
University of Kaiserslautern, Kaiserslautern, Germany
e-mail: bao@eit.uni-kl.de; wedler@eit.uni-kl.de; stoffel@eit.uni-kl.de; kunz@eit.uni-kl.de

J. Bormann
University of Kaiserslautern, Germany
e-mail: Joerg.D.Bormann@web.de

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__1,
© Springer International Publishing Switzerland 2014

1

mailto:bao@eit.uni-kl.de
mailto:wedler@eit.uni-kl.de
mailto:stoffel@eit.uni-kl.de
mailto:kunz@eit.uni-kl.de
mailto:Joerg.D.Bormann@web.de

2 B. Bao et al.

1.1 Introduction

Environment constraints are of major importance for the functional verification of
System-On-Chip modules. Regardless of whether a design is verified using formal
techniques or whether a classical simulation-based verification approach is chosen,
a verification engineer in either case needs to model the environment of the device
under verification (DUV) as well.

Classical directed testbenches constrain the behavior of the environment in a
rather implicit manner by the set of stimuli generated during simulation. More ad-
vanced techniques such as constrained random simulation or formal assertion based
verification require an explicit specification of environment constraints [10, 12].

The holy grail of formal verification is its promise to completely exercise the
entire input, output and state space of a design in order to prove the absence of a
bug. It has been demonstrated that formal property checking, if complemented with
a coverage analysis for the property set [2,3,5,11] reaches this goal with reasonable
verification effort. The coverage analysis identifies specification gaps in cases where
particular input scenarios are not covered by any of the specified properties. Again
environment constraints are used to restrict the analysis to relevant scenarios.

Verifying a design with respect to a constrained environment always bears the
risk of masking bugs. Moreover, such overconstraining is more difficult to detect
than other specification mistakes as it does not show up in a counterexample for
a failing property. In industrial practice the review of constraints is thus taken
very seriously. However, sometimes a collection of environment constraints may
imply subtle consequences that may not be immediately obvious to the verification
engineer. In particular, it may be the case that a collection of fairly simple
constraints, where each individual constraint has a very reasonable intention, turns
out to be problematic when the constraints are applied in their entirety.

Vacuity checking may guarantee that at least one input scenario exists such
that the constraint is satisfied. It is a standard technique in today’s verification
tools to approach overconstraining. However, it may only identify the case where
a constraint cannot be satisfied at all and leaves many other constraint issues
undetected.

In this paper we explore additional plausibility tests for environment constraints
in a SAT-based property checking environment [1, 6–8]. We demonstrate that these
checks can identify critical constraint issues and may guide the user to specify
consistent constraints. We also envision that the presented techniques may likewise
be useful in a constrained random simulation environment as well.

In particular we introduce the notion of implementability and loop-free compos-
ability of constraints. This formalizes the reasonable requirements that there should
exist at least one environment that is able to fulfill the constraints in such a way that
the composition of environment and design is a valid circuit, i.e., the composition
does not contain any combinational loops in its logic.

We demonstrate the effectiveness of our techniques with a case study conducted
in an industrial setting. We analyze constraints for a verification IP specifying the
protocol compliance of an Infineon device for the Flexible Peripheral Interface

1 Formal Plausibility Checks for Environment Constraints 3

(FPI) bus. The formal property checker OneSpin 360 DV [8] is used to check the
properties against the device and to prove the completeness of the verification IP.
The entire verification is conducted under the assumption of a set of environment
constraints. These constraints describe, for example, protocol-compliant behavior
of the bus signals that are inputs to the DUV.

The remainder of the paper is organized as follows: Sects. 1.2 and 1.3 intro-
duce basic formalisms for specifying circuit models and properties. Environment
constraints are introduced in Sect. 1.4. Also, this section introduces checks for
implementability and composability of constraints. These checks are evaluated in
our experiments in Sect. 1.6 before the paper concludes with Sect. 1.7. Furthermore
in Sect. 1.5 we also explore the usability of these checks in coverage analysis for
property sets.

1.2 Circuit Models

In this paper we model the behavior of sequential circuits by binary-encoded finite
state machines and corresponding Kripke models. A finite state machines (FSM)
M = (I,O,S,S0,δ ,λ) consists of a set of input values I, a set of output values O, a
state set S with a subset S0 ⊂ S of initial states, and two functions δ : I ×S → S and
λ : I × S → O called state transition function and output function, respectively. An
FSM M with I ⊂ B

n,O ⊂ B
m,S ⊂ B

k and B = {0,1} is called binary-encoded. In
this case δ and λ are multi-output Boolean functions and may be represented by a
Boolean network.

Similarly, a Kripke model K = (S,S0,T,A,L) is a finite state transition structure
with a state set S, initial state set S0 ⊂ S, a state transition relation T ⊂ S× S, a set
of atomic formulas A and a labeling function L : A → 2S.

An FSM can be converted into a corresponding Kripke model where the
information about inputs and outputs becomes part of the state information, i.e.,
the states of the Kripke model are triples ŝ = (i,o,s). For better readability, we also
simply use the symbol s to denote the state of a Kripke model if we do not care
about its individual components. In the sequel we only consider Kripke models that
are derived from a corresponding FSM. Sometimes we are interested in specifying
or observing the internal signals of the Boolean networks representing the transition
or output function of a binary-encoded FSM. In this case, we may assume the states
of the corresponding Kripke model to be labeled accordingly. We use both models
interchangeably depending on which is more convenient in a particular context.

1.3 Properties of Circuits

The front-end of a property checker computes circuit models from the description
of a design given in some hardware description language. Both, the model and the
design, describe the behavior of a DUV in its entirety.

4 B. Bao et al.

By contrast, properties focus on a particular aspect of the design behavior
and describe the corresponding behavior in a concise way. The restriction of
the individual property to a particular scenario results in more compact formal
specifications that are also easier to comprehend and maintain. In this paper we
use a property checking technique called interval property checking [11]. This
variant of SAT-based property checking conducts unbounded proofs for safety
properties formulated in terms of design signals within a bounded time interval.
Conceptually, interval properties can be viewed as LTL safety properties Gp where
p is a formula that combines atomic formulas using only the Boolean connectives
and the operator X .

The formula p of such an interval property characterizes a set of finite state
sequences. By contrast the safety property Gp characterizes infinite state sequences,
also referred to as traces.

We use state predicates η(s) to characterize state sets and state sequence
predicates σl(s0, . . . ,sl) of length l to characterize sets of state sequences πl =
(s0, . . . ,sl). If the length l of a sequence predicate matters we also call it an
l-sequence predicate. State predicates can be considered as 0-sequence predicates.
Both types of predicates can be defined using the input, state and output variables
of the FSM or the corresponding state variables of the Kripke model. If only input
variables of the FSM are used we call the corresponding predicate an input predicate
or input trigger. Similarly, output predicates are defined using only output variables,
and state predicates only depend on state variables (of the FSM). Predicates that
only evaluate the value of a single state variable v, input variable i or output
variable o are called elementary state predicates and are denoted by v(s), i(s)
and o(s), respectively. We allow every l-sequence predicate πl to be applied to
m-sequences πm = (s0, . . . ,sm) with m ≥ l. In this case the predicate is evaluated
on the l-prefix πl := (s0, . . . ,sl) of πm, and the tail sequence (sl+1, . . . ,sm) remains
unrestricted. This guarantees that the usual Boolean operators ∨, ∧, ¬ and ⇒ are
also applicable to sequence predicates that may possibly have different lengths. The
maximum length lmax of the operands to these operators then determines the length
of the resulting predicate. Sequence predicates can also be shifted in time using the
next operator with

next(σl ,n)((s0,s1, . . . ,sn−1, sn,sn+1, . . . ,sn+l))

:= σl((sn,sn+1, . . . ,sn+l)).

Using this operator we can define a concatenation operation � for l-sequence
predicates:

σl � σk := σl ∧next(σk, l)

The predicate σl � σk characterizes k+ l-sequences πk+l = (s0, . . . ,sl , . . . ,sk+l)
where sl is evaluated as ending state of σl and starting state of σk. Non-overlapping

1 Formal Plausibility Checks for Environment Constraints 5

concatenation can be expressed using the special l-sequence predicate anyl(πl) that
evaluates to true for every sequence πl , as follows:

σl ⊕ σk := σl � any1 � σk

To conclude the introduction of sequence predicates it should be noted that
every sequence predicate can be defined using elementary state predicates, the next
operator and the Boolean connectives defined on sequence predicates. It is even
sufficient to apply the next operator only directly to the elementary state predicates.
Such a representation of a sequence predicate σl is called a timed normal form.

If v and v′ are state variables we write σl [v ← v′] for the sequence predicate that
is derived from σl by substitution of every occurrence of v by v′. If substitution
is only performed for a particular state sk of the sequence we write σl [v(sk) ←
v′(sk)]. Substitution with constants yields the co-factors σl(πl)|v(sk)

:= σl [v(sk)← 1]
and σl(πl)|¬v(sk)

:= σl [v(sk) ← 0]. This allows us to quantify out particular state
variables v at a particular timepoint k ∈ {0 . . . l} from a sequence predicate σl . We
write ∀v(sk)

: σl to denote the sequence predicate

(∀v(sk)
: σl)(πl) := σl(πl)|v(sk)

∧σl(πl)|¬v(sk)
.

As a short notation for quantifying out the state variable v at every timepoint k ∈
{0 . . . l} we write

(∀v(πl)
: σl)(πl) := (∀v(s0) . . .∀v(sl)

: σl)(πl).

Similarly, the existential quantifiers ∃v(sk) : σl and ∃v(πl) : σl can be defined.
The characteristic function of the transition relation T (s0,s1) of a Kripke model is

an important 1-sequence predicate for property checking. It can be used to determine
state sequences that correspond to valid paths in the Kripke model. Such paths are
characterized by the l-sequence predicate ispath:

ispathl(πl) := (
l⊙

i=1

T)(πl) =
l∧

i=1

T (si−1,si).

Note that the starting state s0 of an l-sequence satisfying the ispath predicate is
not restricted to initial states of the Kripke model. Therefore, ispath is useful for
proving the unbounded validity of the safety property

Gσl :=
∧

t≥0

next(σl , t)

specified by σl . If ispathl ⇒ σl is a tautology then Gσl is valid unboundedly. This
check for tautology can be conducted effectively using a satisfiability (SAT) solver.
For simplifying notations we sometimes omit the operator G if it is clear from the
context that the corresponding safety property of σl is considered.

6 B. Bao et al.

1.4 Environment Constraints

So far we used sequence predicates only to describe the intended behavior of a
circuit. In practice, circuits are rarely designed to work in any arbitrary environment.
The communication of a circuit with its environment is usually restricted by some
sort of protocol. In order for a circuit to show its intended behavior we need
to assume that the environment complies with this protocol. For modeling legal
environment behavior by environment constraints we also use sequence predicates.
Such constraints need to be selected carefully in order to ensure that they can
actually be fulfilled by the environment and that they do not overconstrain the
design.

This is of particular interest when different portions of a design are developed by
different IP providers and the final environment for the design is not known prior to
the integration phase. At that stage of the project it is often too late if inconsistent
environment constraints for the individual modules are detected and the required
changes may cause a project to fail or miss its deadline.

Here we propose two plausibility checks for the environment constraints of a
module that can be checked without a concrete environment at hand.

1.4.1 Implementable Constraints

It is a reasonable requirement for a sequence predicate σl that is to be used as
environment constraint for a circuit model M that at least one environment must
exist that can fulfill the constraint. In other words, we need to ensure that an
FSM ME (modelling the environment) exists that satisfies σl . This environment
model computes the inputs to the DUV using the DUV’s outputs and possibly
also internal signals from the DUV that are used to specify σl . In addition it
may use additional free inputs to model non-determinism in the constraint. If such
a model ME exists we call the constraint σl implementable. For implementable
constraints one may generate a most-general implementation that can exhibit every
behavior that is not explicitly forbidden by the constraint. In the literature such an
implementation is also known as can-do object [9]. Another way to derive such an
implementation is to apply the synthesis techniques of [4].

In our context we are only interested in the existence of an environment
constraint’s implementation. For typical constraints encountered in practice this
question can be decided without a full-blown synthesis of can-do objects. In the
sequel we will develop such a test.

As an example of a non-implementable environment constraint consider the
sequence predicate i = next(o) for an input i and an output o of M. For the
environment ME , i is an output and o is an input. Unless the output is constant,
the constraint models a precognitive, i.e., non-causal, environment that obviously
does not exist.

1 Formal Plausibility Checks for Environment Constraints 7

Checking that an arbitrary sequence predicate is implementable is a non-trivial
task. To simplify this task we restrict the syntax of the language used to specify the
environment constraints σl such that only causal constraints can be formulated. An
input i may be restricted by a basic constraint of the form

ci(πl) := i(sl)�σ i
l (πl), � ∈ {⇒,⇐,=}.

This guarantees that the input i does not depend on future values of a signal trace.
Moreover, we assume that only input and output variables are used to express the
basic constraints ci. In the sequel we only consider constraints σl that are specified
as Boolean expressions over the basic constraints ci.

The individual constraints ci are, obviously, implementable and thus causal.
However, this does not guarantee that σl is also implementable. To see this, consider
the state predicate i ⇐ o1 ∧ i ⇒ ¬o2 which places two constraints on the input i
depending on two current outputs o1,o2 of the module. This restricts o1,o2 such
that always one of these outputs has to take the value 1. However, the outputs of
the module are inputs to its environment and cannot be controlled by any circuit
implementing the environment. Thus, the constraint is not implementable.

In order to guarantee implementability we check whether the constraint σl can be
fulfilled regardless of the output sequence generated by the module and regardless of
the previous inputs that have been asserted. This yields the following QBF formula
in terms of the output variables o1, . . . ,on and the inputs variables i1, . . . , im used in
the timed normal form of σl:

∀o j(πl), j=1,...,n∀ih(πl−1),h=1,...,m∃ih(sl),h=1,...m :

σl(s0, . . . ,sl)

The constraint σl is implementable if the above QBF formula is a tautology.
The intuition behind this formula is the following. In order for the environment
constraint σl to be implementable it is necessary that the outputs of the environment
(i.e., the outputs of the DUV) are in a causal functional relationship with the inputs
of the environment (i.e., the outputs of the DUV). This is the case if for every
combination of DUV output l-sequence and DUV input l − 1-sequence (“history”)
there exists a (“current”) DUV input complying with the constraint. (No future time
references are allowed in the constraint.) A construction of a circuit corresponding to
and implementing the constraint can be found in [2]. To disprove implementability
it is thus sufficient to check the following formula for satisfiability:

∃o j(πl), j=1,...,n∃ih(πl−1),h=1,...,m∀ih(sl),h=1,...m :

¬σl(s0, . . . ,sl)

We solve this formula by explicit elimination of the inner universal quantifier and
a propositional SAT solver. In our application this is feasible because most often σl

is merely a conjunction of basic constraints where an input in state sl only depends

8 B. Bao et al.

on a very limited number of other inputs. The negation, ¬σl , is thus a disjunction of
the negated basic constraints. We group the inputs with respect to the dependency
relation induced by the basic constraints such that no dependency between inputs of
different groups exists. In this case we may individually quantify the inputs for each
group and consider their disjunction as final formula to be treated by the SAT solver.

1.4.2 Composability

We model a design under verification and its environment based on finite state
machines. Properties describe the behavior of a system only at discrete synchronous
time points (usually with reference to a clock signal) and in steady-state conditions.
A property checker for this kind of properties cannot verify asynchronous behavior
that results from combinational loops. In order to ensure that our environment
constraints only model environments whose implementation is compatible with this
computational model and verification technique we need to exclude combinational
loops between the environment and the DUV.

Therefore, the second plausibility test for environment constraints that we sug-
gest considers the composition of the module with a hypothetical implementation
of the constraint and makes sure that no combinational loops are created by this
composition. (It is obviously only applicable to implementable constraints.)

At a first glance, it seems appealing to require that every implementation of an
environment constraint could be safely composed with our module. However, it
turns out that this requirement is too strict. Consider a module with inputs i1, i2
and an output o. Assume a combinational dependency between o and i2 but not
between o and i1. Consider the environment constraint i1 = o. Every environment
connecting i1 with o implements the constraint. Under all such environments only
those are composable that do not connect i2 and o. Obviously this is not an issue of
the constraint that is not talking about i2 at all.

Instead of considering all implementations of the constraint we may resort to an
existential requirement. In this case we would require that at least one environment
for the module exists such that it implements the constraint and does not produce
any combinational loops in the composition with the module M. However, this may
cause problems as well. To see this consider the constraint x1 = y for a 2-input AND
gate with inputs x1, x2 and output y. In this case the constraint can be implemented
by connecting the output y with the input x1. This leads to a combinational loop in
the composition. Certainly this implementation in some sense is the most reasonable
implementation of the constraint and we would like to forbid this type of con-
straint to prevent the resulting combinational loops. However, there are alternative
implementations. For example the circuit producing a constant zero output for x1

also turns out to be a valid implementation of the constraint. Additionally, this
implementation does not produce a combinational loop with the AND gate.

The requirement that only a single implementation of a constraint be composable
with the module M without combinational loops is, therefore, too weak. To rule

1 Formal Plausibility Checks for Environment Constraints 9

out over-constraining implementations like the constant-zero implementation for
the above mentioned constraint we take a look at most-general implementations.
A most-general implementation of a constraint, also referred to as can-do object [9],
is a circuit that can produce every behavior that is not explicitly forbidden by
the constraint. Note that neither the constant-zero implementation of the previous
example nor the implementation connecting o and i2 in the earlier example are
such most-general implementations because they restrict behavior that is definitely
allowed by the respective constraints.

It turns out that most-general implementations are well suited for the definition
of loop-free composable constraints:

Definition 1. An implementable constraint α is called loop-free composable with
a module M if a most-general implementation Mα of α exists that can be composed
with M without introducing combinational loops.

A naive way of checking loop-free composability as defined above would
explicitly generate the most-general implementation. (Note that this would be
possible with the synthesis techniques of [9].) However, as we are interested in
combinational dependencies rather than exact functionality of these implemen-
tations we may resort to a much simpler structural analysis conducted on the
original constraints. In this analysis we again benefit from the restriction of our
constraint language. We simply extract the combinational dependencies from the
basic constraints ci(πl) used in our framework. Every pair of inputs and outputs
that occurs with the same temporal offset of the next operator is considered as a
potential combinational dependency. (Due to the causality of the basic constraints
there cannot be any other such dependencies.) The dependencies derived from the
constraint in this way are added to the signal dependency graph for the inputs and
outputs of the circuit model M of the DUV. The resulting dependency graph for
the system is then analyzed for loops. Note that in cases where the model of the
DUV is not yet available because formal specification and design are developed
in parallel one may refer to the properties of the design and conduct a similar
analysis as for the constraint to generate a signal dependency graph. In either
case an acyclic extended dependency graph guarantees the existence of a safe
environment.

1.5 Plausibility Checks in Coverage Analysis
for Property Sets

The quality of property sets in formal property checking can be measured by
different coverage metrics. Some of these coverage metrics assess whether the
functional behavior of the design under verification is fully captured by the property
set. Usually the coverage analysis is conducted on the individual modules rather
than the entire SoC design either due to the computational complexity, or due to the
limitation of applied design/verification methodology. On account of this, reactive

10 B. Bao et al.

environment constraints are also needed for the coverage analysis for property sets
in order to restrict the analysis to relevant scenarios.

In this section we explore the usability of the plausibility checks presented in
Sect. 1.4 in a setting where Complete Interval Property Checking (C-IPC) [2, 11]
is used as basic property checking approach for SoC modules. In this approach,
a set of safety properties is called a complete specification or simply complete if
it uniquely describes the design [2, 3]. Although our approach is presented in the
context of C-IPC, it can be used also with other coverage analysis methods applying
environment constraints.

1.5.1 Complete Interval Property Checking (C-IPC)

Complete Interval Property Checking is a SAT-based property checking tech-
nique [2, 8, 11] that guarantees that a given property set P = {p1, . . . , pn} uniquely
determines the output behavior of a particular device under verification. The
properties pi describe the temporal behavior of the signals s1,s2, . . . ,s j of a device.
In order to analyze completeness of a property set independently of a concrete
implementation we can map the properties onto a second set of fresh signal variables
s′1, . . . ,s

′
j and denote this by P′ = {p′1, . . . , p′n}.

In addition, a module also carries so called determination conditions that specify
under which circumstances a particular input or output has to be uniquely deter-
mined. For example, a data signal on a bus may be guarded by a valid flag and only
needs to be determined if this flag is asserted. We consider determination conditions
for both inputs and outputs and refer to them as determination assumptions and
determination requirements of the DUV, respectively. A determination condition ds

for a signal s is a property that evaluates to true whenever the signal s needs to be
determined.

In particular, we assume determination assumptions di and determination re-
quirements do to be specified for each input i and each output o. By default we
assume di = do = true for all ports i,o of the device, i.e., we assume all inputs to be
determined at every point in time and require the same for the outputs. However, the
verification engineer may overwrite these default values by weaker conditions. For
checking the validity of a determination condition ds we will use two independent
copies s and s′ for each signal used within ds. The property Ds := (ds ∨ ds′) ⇒
(s = s′) indicates whether a signal s is determined. With this notation we can
precisely define how the determination conditions should be interpreted:

Definition 2. A property p completely specifies a module M with respect to
determination assumptions di1 , . . . ,din and determination requirements do1 , . . . ,dom

iff the following property is a tautology:

n∧

j=1

Dij ∧ p∧ p′ ⇒
m∧

j=1

Do j . (1.1)

1 Formal Plausibility Checks for Environment Constraints 11

If p =
∧k

j=1 p j completely specifies a module M then the property set
P = {p1, . . . , pk} is called a complete property set with respect to the determination
conditions di j ,do j .

Note that for the default determination conditions di = do = true this definition
states that any two modules satisfying all the properties need to be sequentially
equivalent.

In practice, verification of an SoC module needs to consider so called environ-
ment constraints that model the behavior of a realistic environment for a DUV. In
this work, we model such restrictions by reactive constraints that evaluate previous
and current outputs of the device to determine ranges of valid values for the inputs
to the device.

By replacing Eq. 1.1 in Definition 2 with Eq. 1.2 we obtain a criterion for
checking completeness of a module with respect to its (reactive) environment
constraints.

c∧ c′ ∧
n∧

j=1

Dij ∧ p∧ p′ ⇒
m∧

j=1

Do j (1.2)

Note that c in this equation denotes the conjunction of all environment constraints.

1.5.2 Plausibility Checks

When every module is verified completely with respect to the default determination
conditions and no constraints are applied, the completeness results for the modules
guarantee sequential equivalence of alternative implementations. However, as soon
as we add environment constraints to the completeness analysis, things become
more complicated. It is obvious that the completeness results for the property
set are not trustable anymore when we apply environment constraints that violate
plausibility checks presented in Sect. 1.4 to the completeness analysis. Recall that
in this case the potential overconstraining may mask bugs in the design as well as
verification gaps in property sets.

Yet for all that, using a constraint passing the plausibility checks cannot
guarantee that the completeness results are valid. We illustrate this by means of
an example.

Consider a D-flipflop M with a data input x and a data output y. We assume
that M is used in an environment where the output y is connected with the input x
via an inverter. To verify the D-flipflop with regard to this environment we may
use an environment constraint c := (x = ¬y). With this constraint the output y
of M is uniquely determined even for the property p := G(true) that does not
restrict the behavior of D-flipflop at all. The constraint c := (x = ¬y) is, obviously,
implementable, e.g., by the inverter. Thanks to the D-flipflop, it is also loop-free
composable with M. However, the property set {p} is not a complete description of
the D-flipflop’s behavior.

12 B. Bao et al.

In the context of completeness analysis we extend the implementability check to
consider the determination assumptions together with the environment constraints.
We will see that this is an important aspect. For ease of explanation we group
the determination assumptions with environment constraints into an assumption of
completeness.

As the first step let us reconsider the example above. The constraint c is im-
plementable, however, together with the implicitly taken determination assumption
dx = true of module M this constraint already determines the output y of the module
under verification M, i.e., it holds

c′ ∧ c∧ (x = x′)⇒ (y = y′).

Every valid implementation of this assumption of completeness thus has to ensure
that its input y is determined. This is obviously impossible as a circuit does not have
control over its inputs. The determination of a module’s outputs like y is always in
the responsibility of the module itself. If the module does not determine this output
then the assumption of completeness does not determine it either.

The test for implementability of constraints as developed in Sect. 1.4.1 solves a
QBF satisfiability problem that ensures the existence of a current input for every
history of the inputs and every history of the output including the current value.
The assumption of completeness can be handled in the same manner except that
two versions of signals need to be considered. In the assumption of completeness
of our example this would require that for every value of y and every value of y′
corresponding values of x and x′ need to be found such that the assumption of
completeness

c(x,y)∧ c′(x′,y′)∧ x = x′

is fulfilled. For y �= y′ this is obviously unsatisfiable. Therefore, the assumption of
completeness for the flipflop is not implementable. A reasonable way to resolve this
issue would be to remove the assumption that the input is determined, i.e., to allow
for using the flipflop in an undetermined environment. In this case the assumption
of completeness would consist of the two versions of only the constraint c and
obviously would be implementable. Note that under this corrected assumption of
completeness the completeness checker would detect that the trivial property p
leaves the output undetermined.

For the same reason introduced at the beginning of Sect. 1.4.2, we also need
to exclude the combinational loops induced by the assumption of completeness
during completeness checking. As we only consider implementable assumptions of
completeness, we may resort to a most-general implementation of the conditions and
take the combinational dependencies from there. To analyze combinational loops,
we may take the method presented in Sect. 1.4.2. However, unlike in the analysis of
a pure constraint, the method is here performed on two sets of variables from two
modules M and M′ (copy of M), respectively.

1 Formal Plausibility Checks for Environment Constraints 13

1.6 Experimental Results

The plausibility checks for environment constraints developed in this work have
been successfully evaluated in an industrial setting. As a case study we consider a
formal specification of a master interface for Infineon’s Flexible Peripheral Intercon-
nect (FPI) bus. The specification ensures compliance of a particular implementation
with the FPI bus protocol. This protocol is quite similar to the industry’s standard
AMBA bus protocol. It includes features like pipelining of transactions to improve
the throughput of the bus.

The main task of the considered master interface is to adapt a particular processor
interface for reading and writing information from/to peripherals to the particular
FPI bus protocol. Each interface transaction of the processor is mapped onto a
respective protocol transaction on the bus. Due to the pipelining features of the
protocol the interface may handle two concurrent requests from the processor.

An industrial design of such an FPI bus master interface has been completely
verified by applying the OneSpin 360 DV interval property checker with its extended
features for completeness checking. Completeness of the specification was derived
under an environment constraint composed of 72 basic constraints involving 36
signals.

The inputs and outputs of the considered design can be grouped into two
categories. The first group is used in the communication with the processor while
the other group forms the actual interface to the bus.

After thorough review of the environment constraint for the DUV by the verifi-
cation and design teams the verification engineer was convinced that the constraint
precisely captures the required environment behavior under which the DUV was
supposed to meet its specification.

However, the plausibility checks developed in this work revealed two serious
issues that may easily have masked a bug if they had remained undetected. For the
check the dependency relation between signals referred to by the constraint was used
to decompose it into nine groups of basic constraints referring to pairwise disjoint
sets of signals. The plausibility checks were individually applied to each group. In
one of the groups two bugs were detected. This group still has a source code size of
about 30 lines.

This explains why under these circumstances the subtle interdependencies
detected by the plausibility checks have been overlooked by the verification team.
By contrast, our fully automatic plausibility checks analyzed each group within
190 ms using less than 95 MB of memory on an Intel Core i7 CPU 860 at 2.8 GHz
with 8 GB of RAM.

In the case of the above-mentioned issues the code fragments that caused
the plausibility tests to fail stem from distant locations within the constraint
specification. This is true even though the verification engineer put significant effort
into ordering the basic constraints in such a way that expressions referring to similar
sets of signals are located close to each other.

14 B. Bao et al.

Fig. 1.1 Pseudo-code related to the first bug

Fig. 1.2 Possible solution to the first bug

In the sequel we use a pseudo-code notation to illustrate the nature of the
identified issues within our constraints. For reasons of space we only present the
relevant subexpressions that actually form the bug.

The first issue identified by the plausibility checks is related to the ready_i
signal in the FPI bus. Figure 1.1 illustrates two subexpressions of the corresponding
constraint that introduce an issue regarding implementability.

Within these code snippets the suffix ‘i’ indicates that a signal is an input of the
DUV, whereas the suffix ‘o’ identifies outputs.

The code fragment states that whenever the FPI bus is in the idle state, at the next
time point the ready signal of the bus should have the Boolean value ‘1’. The latter
indicates that there must be a master or a slave in the system selected to drive the
bus signals. Furthermore, the second part of the code fragment considers the case
that the DUV itself is selected to drive the bus. In this case the ready_i signal should
actually correspond to the value of ready_o provided by the DUV.

In turns out that this constraint fails within the implementability check. A
counterexample shows that for the present time point, whenever the previous value
of bus_is_idle_i is logic ‘1’, and the DUV is driving the bus, and the value of
ready_o is logic ‘0’, no value for the signal ready_i is available to satisfy the
constraint. Actually, this constraint has the subtle consequence that if at a previous
time point the bus is in the idle state and at present the DUV is selected to drive the
bus, the ready_o must be ‘1’.

Note that this implication of the constraint is actually one of the verification goals
for the DUV, i.e., the constraint would have masked cases where this requirement
is not fulfilled. To resolve the problem we use a cascaded if-then-else structure to
formulate the constraint as listed in Fig. 1.2.

The second issue of our constraints was discovered by the loop-free composabil-
ity check specified in Sect. 1.4.2. The pseudo code in Fig. 1.3 illustrates a constraint

1 Formal Plausibility Checks for Environment Constraints 15

Fig. 1.3 Pseudo code related to the second bug

to the input grant_i. It states that whenever the DUV is active and locks the request
line the arbiter should grant this request immediately. The output active_o is not a
part of the protocol. With this signal the DUV may indicate whether it still needs
the bus or whether the bus could be put into a power saving mode. It should be
connected to a power management unit in the environment of DUV. This unit
may then determine whether the bus is in use by some other system components
and otherwise assert additional signals to set the bus in the sleep mode as well.
Obviously, the above constraint introduces a combinational dependency between
active_o and grant_i. Unfortunately, these two signals are also in a combinational
relationship in the circuit model of the DUV. Hence, the constraint causes a
combinational loop with the DUV. This combinational loop may overconstrain the
design because the verification tool can only consider the steady-state behavior
caused by this loop.

Further investigation of the constraint reveals that the signal active_o is not
necessary to formulate the constraint. The request line of the design can only be
locked if the design is active at the same time. This relationship between the outputs
should be checked by the verification IP of the module and not be implied from
the environment constraint. Removing the active_o signal from the constraint is
therefore a possible solution in this case.

1.7 Conclusions

In this paper we presented a set of formal plausibility tests for environment
constraints of a verification IP. The tests can be applied in early stages of the design
and verification process where a complete model of the environment may not yet
be available. In current design and verification flows the issues identified with our
tests are usually detected in the integration phase and then require backtracking to
the module verification phase. We envision our technique to remove a bottleneck in
the verification and design process.

We check automatically whether a constraint is implementable at all and whether
a general implementation may introduce combinational loops with the design.
This identifies cases where a constraint overconstrains the DUV. Obviously any
constraint violating this requirement is erroneous.

Even for a constraint of moderate size with a few dozens up to even a few
hundreds of lines of code detecting flaws of this kind by manual code review is
tedious and error-prone and an automatic technique as proposed in this work is
highly desirable.

16 B. Bao et al.

Our experimental results indicate that the tests are very efficient in terms of
computational complexity. The tests revealed two serious issues in environment
constraint of an industrial verification IP. If undetected such issues could easily mask
severe design bugs.

The technique is applicable in both formal and constrained random simulation-
based verification environments.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Proceedings of the International Design Automation
Conference (DAC), New Orleans, LA, USA, pp. 317–320 (1999)

2. Bormann, J.: Vollständige Verifikation. Dissertation, Technische Universität Kaiserslautern
(2009)

3. Claessen, K.: A coverage analysis for safety property lists. In: Proceedings of the International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 139–145. IEEE
Computer Society, Austin, Texas, USA (2007)

4. Langer, J., Heinkel, U.: High level synthesis using operation properties. In: Proceedings of
Forum on Specification Design Languages (FDL 2009), Sophia Antipolis, France, pp. 1–6
(2009)

5. Lee, T.C., Hsiung, P.A.: Mutation coverage estimation for model checking. In: Automated
Technology for Verification and Analysis (ATVA), Taipei, Taiwan (2004)

6. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Pro-
ceedings of the International Conference on Computer Aided Verification (CAV), Copenhagen,
Denmark (2002)

7. Nguyen, M.D., Thalmaier, M., Wedler, M., Bormann, J., Stoffel, D., Kunz, W.: Unbounded
protocol compliance verification using interval property checking with invariants. IEEE Trans.
Comput. Aided Des. 27(11), 2068–2082 (2008)

8. Onespin Solutions GmbH: Germany. OneSpin 360MV. http://www.onespin-solutions.com
9. Schickel, M., Nimbler, V., Braun, M., Eveking, H.: On consistency and completeness of

property sets: exploiting the property-based design process. In: Proceedings of Forum on
Design Languages, Darmstadt, Germany (2006)

10. Spear, C.: SystemVerilog for Verification: A Guide to Learning the Testbench Language
Features. Springer, Dordrecht, New York (2008)

11. Urdahl, J., Stoffel, D., Bormann, J., Wedler, M., Kunz, W.: Path predicate abstraction by
complete interval property checking. In: Proceedings of the International Conference on
Formal Methods in Computer-Aided Design (FMCAD), Lugano, Switzerland, pp. 207–215
(2010)

12. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer, New York (2006)

http://www.onespin-solutions.com

Chapter 2
Efficient Refinement Strategy Exploiting
Component Properties in a CEGAR Process

Syed Hussein S. Alwi, Cécile Braunstein, and Emmanuelle Encrenaz

Abstract Embedded systems are usually composed of several components and in
practice, these components generally have been independently verified to ensure
that they respect their specifications before being integrated into a larger system.
Therefore, we would like to exploit the specification (i.e. verified CTL properties)
of the components in the objective of verifying a global property of the system.
A complete concrete system may not be directly verifiable due to the state explosion
problem, thus abstraction and eventually refinement process are required. In this
paper, we propose a technique to select properties in order to generate a good
abstraction and reduce refinement iterations. We have conducted several preliminary
experimentations which show that our approach is promising in comparison to other
abstraction-refinement techniques implemented in VIS [1].

2.1 Introduction

The embedded systems correspond to the integration into the same electronic circuit,
a huge number of complex functionalities performed by several heterogeneous
components. Current SoC (System on Chips) contain multiple processors executing
numerous cooperating tasks, specialized co-processors (for particular data treatment
or communication purposes), Radio-Frequency components, etc. These systems
are usually submitted to safety and robustness requirements. Depending on their
application domains, their failure may induce serious damages and catastrophic
consequences.

Therefore, it is important to ensure, during their design phase, their correctness
with respect to their specifications. Errors found late in the design of these systems

S.H.S. Alwi (�) • C. Braunstein • E. Encrenaz
Université Pierre et Marie Curie Paris 6, LIP6-SOC (CNRS UMR 7606),
4, place Jussieu, 75005 Paris, France
e-mail: syed-hussein.alwi@lip6.fr; cecile.braunstein@lip6.fr; emmanuelle.encrenaz@lip6.fr

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__2,
© Springer International Publishing Switzerland 2014

17

mailto:syed-hussein.alwi@lip6.fr
mailto:cecile.braunstein@lip6.fr
mailto:emmanuelle.encrenaz@lip6.fr

18 S.H.S. Alwi et al.

is a major problem for electronic circuit designers and programmers as it may delay
getting a new product to the market or cause failure of some critical devices that are
already in use. System verification using formal methods such as model checking
guarantees a high level of quality in terms of safety and reliability while reducing
financial risk.

The main challenge in model checking is dealing with the state space combina-
torial explosion phenomenon. A strategy to overcome the state explosion problem is
by performing abstraction. A method for the construction of an abstract state graph
of an arbitrary system automatically was first proposed by Graf and Saidi [2] using
Pvs theorem prover. Here, the abstract states are generated from the valuations of a
set of predicates on the concrete variables. The construction approach is automatic
and incremental.

In 2000, an interesting abstraction-refinement methodology called counterexam-
ple guided abstraction refinement (CEGAR) was proposed by Clarke and al. [3]. The
abstraction was done by generating an abstract model of the system by considering
only the variables that possibly have a role in verifying a particular property. In this
technique, the counterexample provided by the model-checker in case of failure is
used to refine the system.

Several tools using counterexample-guided abstraction refinement technique,
like those implemented in the VIS model-checker, have been developed such as
SLAM, a software model-checker by Microsoft Research [4], BLAST (Berke-
ley Lazy Abstraction Software Verification Tool), a software model-checker for
C programs [5] and VCEGAR (Verilog Counterexample Guided Abstraction
Refinement), a hardware model-checker which performs verification at the RTL
(Register Transfer Language) level [6]. However, relying on counterexamples
generated by the model checker as the only source for refinement may not be
conclusive.

Recently, a CEGAR based technique that combines precise and approximated
methods within one abstraction-refinement loop was proposed for software ver-
ification [7]. This technique uses predicate abstraction and provides a strategy
that interleaves approximated abstraction which is fast to compute and precise
abstraction which is slow. The result shows a good compromise between the number
of refinement iterations and verification time.

An alternative method to get over the state explosion problem is the compo-
sitional strategy. The strategy is based on the assume-guarantee reasoning where
assumptions are made on other components of the systems when verifying one
component. Several works have manipulated this technique notably in [8] where
Grumberg and Long described the methodology using a subset of CTL in their
framework and later in [9] where Henzinger and al. presented their successful
implementations and case study regarding this approach.

Xie and Browne have proposed a method for software verification based
on composition of several components [10]. Their main objective is developing
components that could be reused with certitude that their behaviors will always
respect their specification when associated in a proper composition. Therefore,

2 Efficient Refinement Strategy Exploiting Component Properties 19

temporal properties of the software are specified, verified and packaged with the
component for possible reuse. The implementation of this approach on software
has been successful and the application of the assume-guarantee reasoning has
considerably reduced the model checking complexity. A comprehensive approach
to model-check component-based systems with abstraction refinement technique
that uses verified properties as abstractions has been presented in [11].

In [12], Peng, Mokhtari and Tahar have presented a possible implementation of
assume-guarantee approach where the specifications are in ACTL. Moreover, they
managed to perform the synthetisation of the ACTL formulas into Verilog HDL
behavior level program. The synthesized program can be used to check properties
that the system’s components must guarantee. Since, there have been other works
on construction of components from interval temporal logic properties which could
be used to speed up verification process [13, 14].

In 2007, a method to build abstractions of components into AKS (Abstract
Kripke Structure), based on the set of the properties (CTL) each component verifies
was presented in [15]. The method is actually a tentative to associate compositional
and abstraction-refinement verification techniques. The generations of AKS from
CTL formula have been successfully automated [16]. This work will be the base of
the techniques in this paper.

Contribution: In this paper we present a strategy to exploit the properties of
verified component in the goal of verifying complex systems with a good initial
abstraction and eventually being conclusive in a small number of refinement
iterations. We propose a technique to classify component properties according to
their pertinency towards the global property, thus, enabling a better selection of
properties for the initial abstraction generation. Furthermore, in the case where the
verification is not conclusive, we propose a technique guided by the counterexample
given by the model-checker to select supplementary properties to improve the
abstraction.

In the next section, we will give an overview of our framework and introduce
the notations that will be used later. The rest of the paper is organized as follows:
Sect. 2.3 details our strategy of refinement. Section 2.4 presents the experimentation
results and finally, Sect. 2.5 draws the conclusions and summarize our possible
future works.

2.2 Our Framework

The model-checking technique we propose is based on the Counterexample-guided
Abstraction Refinement (CEGAR) methodology [3]. The overall description of
our methodology is shown in Fig. 2.1. We take into account the structure of the
system as a set of synchronous components, each of which has been previously
verified and a set of CTL properties is attached to each component. This set

20 S.H.S. Alwi et al.

Fig. 2.1 Verification process

refers to the specification of the component. We would like to verify whether a
concrete model, M presumably big sized and composed of several components,
satisfies a global ACTL property Φ . Instead of building the product of the concrete
components, we replace each concrete component by an abstraction of its behavior
derived from a subset of the CTL properties it satisfies. Each abstract component
represents an over-approximation of the set of behaviors of its related concrete
component [15].

As shown in [17] for over-approximation abstraction, if Φ holds in the abstract
model then it holds in the concrete model as well. However, if Φ does not hold in
the abstract model then one cannot conclude anything regarding the concrete model
until the counterexample has been analyzed. The test of spurious counter-example is
then translated into a SAT problem as in [3]. When a counterexample is proven to be
spurious, the refinement phase occurs, injecting more preciseness into the (abstract)
model to be analyzed.

2.2.1 Concrete System Definition

As mentioned earlier, our concrete model consists of several components and each
component comes with its specification. The concrete system is a synchronous
composition of components, each of which described as a Moore machine.

Definition 2.1. A Moore machine C is defined by a tuple 〈I,O,R, δ ,λ ,R0〉,
where,

• I is a finite set of Boolean input signals.
• O is a finite set of Boolean output signals.

2 Efficient Refinement Strategy Exploiting Component Properties 21

• R is a finite set of Boolean sequential elements (registers).
• δ : 2I × 2R → 2R is the transition function.
• λ : 2R → 2O is the output function.
• R0 ⊆ 2R is the set of initial states.

States (or configurations) of the circuit correspond to Boolean configurations of
all the sequential elements.

Definition 2.2. A Concrete system M is obtained by synchronous composition of
the component.
M = C1 ‖ C2 ‖ . . . ‖ Cn,where each Ci is a Moore machine with a specification
associated ϕi = {ϕ1

i . . .ϕk
i }. Each ϕ j

i is a CTL\X formula whose propositions AP
belong to {Ii ∪Oi ∪Ri}.

2.2.2 Abstraction Definition

Our abstraction reduces the size of the representation model by letting free some
of its variables. The point is to determine the good set of variable to be freed and
when to free them. We take advantage of the CTL specification of each component:
a CTL property may be seen as a partial view of the tree of behaviors of its variables
configuration. All the variables not specified by the property can be freed. We
introduced the Abstract Kripke Structure (AKS for short) which exactly specifies
when the variable of the property can be freed. The abstraction of a component is
represented by an AKS, derived from a subset of the CTL properties the component
satisfies. Roughly speaking, AKS(ϕ), the AKS derived from a CTL property ϕ ,
simulates all execution trees whose initial state satisfies ϕ . In AKS(ϕ), states are
tagged with the truth values of ϕ’s atomic propositions, among the four truth values
of Belnap’s logic [18]: inconsistent (⊥), false (f), true (t) and unknown (�). States
with inconsistent truth values are not represented since they refer to non possible
assignments of the atomic propositions. A set of fairness constraints eliminates non-
progress cycles. The transformation algorithm of a CTL\X property into an AKS is
described in [15, 19].

Definition 2.3. Given a CTL\X property ϕ whose set of atomic propositions
is AP, an Abstract Kripke Structure, AKS(ϕ) = (AP, Ŝ, Ŝ0, L̂, R̂, F̂) is a 6-tuple
consisting of:

• AP: The finite set of atomic propositions of property ϕ
• Ŝ: a finite set of states
• Ŝ0 ⊆ Ŝ: a set of initial states
• L̂ : Ŝ → B|AP| with B = {⊥, f, t,�}: a labeling function which labels each state

with configuration of current value of each atomic proposition.
• R̂ ⊆ Ŝ× Ŝ: a transition relation where ∀s ∈ Ŝ,∃s′ ∈ Ŝ such that (s,s′) ∈ R̂
• F̂ : a set of fairness constraints (generalized Büchi acceptance condition)

22 S.H.S. Alwi et al.

We denote by L̂(s), the configuration of atomic propositions in state s, and by
L̂(s)[p], the projection of configuration L̂(s) according to atomic proposition p.

As the abstract model M̂ is generated from the conjunction of verified properties
of the components in the concrete model M, it can be seen as the composition of the
AKS of each property. The AKS composition has been defined in [19]; it extends
the classical synchronous composition of Moore machine to deal with four-valued
variables.

Definition 2.4. An Abstract model M̂ is obtained by synchronous composition of
components abstractions. Let n be the number of components in the model and m
be the number of selected verified properties of a component; let Cj be a component
of the concrete model M and ϕk

j is a CTL formula describing a satisfied property of

component Cj. Let AKS(ϕCk
j
) the AKS generated from ϕk

j . We have ∀ j ∈ [1,n] and

∀k ∈ [1,m]:

• Ĉj = AKS(ϕC1
j
) || AKS(ϕC2

j
) || . . . || AKS(ϕCk

j
) || . . . || AKS(ϕCm

j
)

• M̂ = Ĉ1 || Ĉ2 || . . . || Ĉj || . . . || Ĉn

In an AKS, a state where a variable p is unknown can simulate all states in which
p is either true or false. It is a concise representation of the set of more concrete
states in which p is either true or false. A state s is said to be an abstract state if one
of its variable p is unknown.

Definition 2.5. The concretization of an abstract state s with respect to the variable
p (unknown in that state), assigns either true or false to p.
The abstraction of a state s with respect to the variable p (either true or false in that
state), assigns unknown to p.

Property 2.1 (Concretization). Let Ai and A j two abstractions such that A j is
obtained by concretizing one abstract variable of Ai (resp. Ai is obtained by
abstracting one variable in A j). Then Ai simulates A j, denoted by A j � Ai.

Proof. As the concretization of state reduces the set of concrete configuration the
abstract state represents but does not affect the transition relation of the AKS. The
unroll execution tree of A j is a sub-tree of the one of Ai. Then Ai simulates A j. ��
Property 2.2 (Composition and Concretization). Let M̂i be an abstract model of
M and ϕk

j be a property of a component Cj of M, M̂i+1 = M̂i ‖ AKS(ϕk
j) is more

concrete that M̂i, M̂i+1 � M̂i.

Proof. Let s = (si,sϕk
j
) be a state in Si+1, such that si ∈ Si and sϕk

j
∈ Sϕk

j
. The label

of si+1 is obtained by applying the Belnap’s logic operators and to the four-valued
values of variables in si and sϕk

j
. For all p ∈ APi∪APϕk

j
we have the following label :

• L̂i+1[p] =� iff p is unknown in both states or does not belong to the set of atomic
proposition.

2 Efficient Refinement Strategy Exploiting Component Properties 23

• L̂i+1[p] = t (or f) iff p is true (or false) in sϕk
j

(resp. si) and unknown in si

(resp. sϕk
j
).

By Property 2.1, M̂i+1 is more concrete than M̂i and by the property of parallel
composition, M̂i � M̂i ‖ AKS(ϕk

j). ��

2.2.3 Initial Abstraction

Given a global property Φ , the property to be verified by the composition of the
concrete components model, an abstract model is generated by selecting some of
the properties of the components which are relevant to Φ . In the initial abstraction
generation, all variables that appear in Φ have to be represented. Therefore the
properties in the specification of each component where these variables are present
will be used to generate the initial abstraction, M̂0 and we will verify the satisfiability
of the global property Φ on this abstract model. If the model-checking failed and
the counterexample given is found to be spurious, we will then proceed with the
refinement process.

2.3 Refinement

2.3.1 Properties of Good Refinement

When a counterexample is found to be spurious, it means that the current abstract
model M̂i is too coarse and has to be refined. In this section, we will discuss about
the refinement technique based on the integration of more verified properties of the
concrete model’s components in the abstract model to be generated. Moreover, the
refinement step from M̂i to M̂i+1 respects the properties below:

Definition 2.6. An efficient refinement verifies the following properties:

1. The new refinement is an over-approximation of the concrete model: M̂ � M̂i+1.
2. The new refinement is more concrete than the previous one: M̂i+1 � M̂i.
3. The spurious counterexample in M̂i is removed from M̂i+1.

Furthermore, the refinement steps should be easy to compute and ensure a fast
convergence by minimizing the number of iterations of the CEGAR loop.

Refinements based on the concretization of selected abstract variables in M̂i

ensure Item 2. Concretization can be performed by modifying the AKS of M̂i by
changing some abstract value to concrete ones. However, this approach is rude: in
order to ensure Item 1, the concretization needs to be consistent with the sequences
of values in the concrete system. The difficulty resides in defining the proper abstract
variable to concretize, at which precise instant, and with which Boolean value.

24 S.H.S. Alwi et al.

We propose to compose the abstraction with another AKS to build a good refine-
ment according to Definition 2.6. We have several options. The most straightforward
method consists in building an AKS representing all possible executions except the
spurious counterexample; however the AKS representation may be huge and the
process is not guaranteed to converge. A second possibility is to build an AKS with
additional CTL properties of the components; the AKS remains small but Item 3 is
not guaranteed, hence delaying the convergence. The final proposal combines both
previous ones: first local CTL properties eliminating the spurious counterexample
are determined, and then the corresponding AKS is synchronized with the one of M̂i.

2.3.2 Negation of the Counterexample

The counterexample at a refinement step i, σ , is a path in the abstract model
M̂i which dissatisfies Φ . In the counterexample given by the model-checker, the
variable configuration in each state is Boolean. We name L̂i this new labeling. The
spurious counterexample σ is defined such that:

Definition 2.7. Let σ be a spurious counterexample in M̂i = 〈APi, Ŝi, Ŝ0i, L̂i, R̂i,
F̂i〉 of length |σ |= n: σ = s0 → s1 . . .→ sn with (sk,sk+1) ∈ R̂i ∀k ∈ [0..n− 1].

• All its variables are concrete: ∀si and ∀p ∈ APi, p is either true or false according
to L̂i. (not unknown), and s0 is an initial state of the concrete system: s0 ∈ R0

• σ is a counterexample in M̂i: s0 �|= Φ .
• σ is not a path of the concrete system M: ∃k ∈ [1..n − 1] such that ∀ j <

k,(s j ,s j+1) ∈ R and (sk,sk+1) �∈ R.

The construction of the AKS representing all executions except the one described
by the spurious counterexample is done in two steps.

2.3.2.1 Step 1: Build the Structure of the AKS

Definition 2.8. Let σ be a spurious counterexampleof length |σ | = n, the AKS of
the counterexample negation AKS(σ) = 〈APσ , Ŝσ , Ŝ0σ , L̂σ , R̂σ , F̂σ 〉 is such that:

• APσ = APi: The set of atomic propositions coincides with the one of σ
• Ŝσ : {sT}∪{s′i|∀i ∈ [0..n− 2]∧ si ∈ σ}∪{s̄i|∀i ∈ [0..n− 1]∧ si ∈ σ}
• L̂σ with Lσ (s′i) = Li(si),∀i ∈ [0..n− 2] and L(sT) = {�,∀p ∈ APσ̄}, Lσ (s̄i) is

explained in the next construction step.
• Ŝ0σ = {s′0, s̄0}
• R̂σ = {(s̄i,sT),∀i∈ [0..n−1]}∪{(s′i, s̄i+1),∀i∈ [0..n−2]}∪{(s′i,s′i+1,∀i∈ [0..n−

3]}
• F̂σ = /0

The labeling function of s′i represents (concrete) configuration of state si and
state s̄i represents all configurations but the one of si. This last set may not be

2 Efficient Refinement Strategy Exploiting Component Properties 25

Fig. 2.2 An example of a negation of the counterexample AKS, AKS(σ)

representable by the labeling function defined in Definition 2.3. State labeling is
treated in the second step. sT is a state where all atomic propositions are unknown.

2.3.2.2 Step 2: Expand State Configurations Representing the Negation
of a Concrete Configuration

The set of configurations associated with a state s̄i represents the negation of the one
represented by Li(si). This negation is not representable by the label of a single state
but rather by a union of | AP | labels.

Example: Assume AP = {v0,v1,v2} and σ = s0 → s1 and L̂(s0) = {f, f, f} the
configuration associated with s0 assigns false to each variable. The negation of this
configuration represents a set of seven concrete configurations which are covered by
three (abstract) configurations: {{t,�,�},{f, t,�},{f, f, t}}.

To build the final AKS representing all sequences but spurious counterexample
σ , one replaces in AKS(σ) each state s̄i by k =| APσ | states s̄ j

i with j ∈ [0..k− 1]
and assigns to each of them a label of k variables {v0, . . . ,vk−1} defined such that:
L̂(s̄ j

i) = {∀l ∈ [0.. j−1],vl = Li(si)[vl];v j = ¬Li(si)[v j];∀l ∈ [j+1..k−1],vl =�}.
Each state s̄ j

i is connected to the same predecessor and successor states as state s̄i.
This final AKS presents a number of states in O(| σ | × | AP |).

Figure 2.2 shows an example of the negation of a counterexample AKS built from
a counterexample σ = s0 → s1 → s2 → s3 → s2. The counterexample consists of
four states with a loop to a previous state. The negation of the counterexample AKS
allows all possible behaviors except the last step in σ . Therefore, the complementary
states of every state in the counterexample are presented and at any step, a state in
σ can proceed to these complementary states. The elimination of the last step is
obtained by forcing its predecessor to the complementary states of the last step.
All complementary states then leads to the terminal state, ST which represents all
possible behaviors in the future steps.

26 S.H.S. Alwi et al.

2.3.2.3 Reduction of the Negation of the Counterexample AKS

In the AKS generated, the set of configurations associated to the negation of a
counterexample state may be redundant i.e. some configurations are represented
several times in the AKS. Furthermore, all the states in negation part of the AKS
have a unique successor namely the ST state. Therefore, in the objective to reduce
the number of states, these counterexample negation states with identical variable
configurations can be merged. The merge definitions to generate the negation of the
counterexample reduced AKS are given below.

Definition 2.9. Merge condition: Let AKS(σ̄) = (APσ̄ , Ŝσ̄ , Ŝ0σ̄ , L̂σ̄ , R̂σ̄ , F̂σ̄). s1 and
s2 are two counterexample negation states in M: (s1,s2) ∈ Ŝσ̄ \ {sT ,s ∈ σ}. s1 and
s2 can be merged iff

L̂σ̄ (s1) = L̂σ̄ (s2)

Definition 2.10. Merging action: Let AKS(σ̄) = (APσ̄ , Ŝσ̄ , Ŝ0σ̄ , L̂σ̄ , R̂σ̄ , F̂σ̄) and its
reduced AKS, AKS(σ̄)′ = (AP′̄

σ , Ŝ
′̄
σ , Ŝ

′
0σ̄ , L̂

′̄
σ , R̂

′̄
σ , F̂

′̄
σ) applying the Definition 2.9.

s′ ∈ Ŝ′,∀(s1,s2) ∈ Ŝ \ {sT ,s ∈ σ}, s′ = merge (s1,s2)⇒
• L̂′̄

σ (s
′) = L̂σ̄ (s1) = L̂σ̄ (s2)

• ∀((sp1,s1),(sp2,s2)) ∈ R̂2,((sp1,s′),(sp2,s′)) ∈ R̂′2
• ∀((s1,ss1),(s2,ss2)) ∈ R̂2,((s′,ss1),(s′,ss2)) ∈ R̂′2

Property 2.3. AKS(σ̄)′ and AKS(σ̄) are bisimulation-equivalent:

AKS(σ̄)′ ∼ AKS(σ̄)

Proof. Let AKS(σ̄) = (APσ̄ , Ŝσ̄ , Ŝ0σ̄ , L̂σ̄ , R̂σ̄ , F̂σ̄) and its reduced AKS,
AKS(σ̄)′ = (AP′̄

σ , Ŝ
′̄
σ , Ŝ

′
0σ̄ , L̂

′̄
σ , R̂

′̄
σ , F̂

′̄
σ).

All the initial states in Ŝ0σ̄ are represented in Ŝ′0σ̄ and vice versa. ∀(s1,s2) ∈
R̂σ̄ ,∃(s′1,s′2) ∈ R̂′̄

σ where L̂σ̄ (si) = L̂′̄
σ (s

′
i), and the other way around is also true.

Therefore, AKS(σ̄)′ ∼ AKS(σ̄). ��
Figure 2.3 demonstrates the gain from the reduction process on the generation

of the negation of the counterexample AKS from the counterexample σ in the
previous example. In the Fig. 2.3 above, we can see that all the complementary
states have a unique variable configuration and the duplicates no longer present
in the AKS. This simplification technique helps to reduce the size of the system
without having a degradation in terms of property verification as the resulted AKS
is bisimilar to the original one. Even though the gain may seem insignificant at
first sight, the reduction done may be precious when the technique in conducted
on many refinement iterations. Therefore, this reduction technique will be applied
systematically on this method of refinement.

However, removing, at each refinement step, the spurious counterexample only
induces a low convergence. Moreover, in some cases, this strategy may not con-
verge: suppose that all sequences of the form a.b∗.c are spurious counterexamples
(here a, b and c represent concrete state configurations). Assume, at a given

2 Efficient Refinement Strategy Exploiting Component Properties 27

Fig. 2.3 An example of a reduced negation of the counterexample AKS, AKS(σ)′

refinement step i, a particular counterexample σi = s0 → s1 → . . . sn with L(s0) =
a,∀k ∈ [1,n − 1],L(sk) = b,L(sn) = c. Removing this counterexample does not
prevent from a new spurious counterexample at step i + 1: σi+1 = s0 → s1 →
. . .sn+1 with L(s0) = a,∀k ∈ [1,n],L(sk) = b,L(sn+1) = c. The strategy consisting of
elimination spurious counterexample one by one diverges in this case. Furthermore,
we cannot eliminate all the sequences of the form a.b∗.c in a unique refinement step
since we do not a priori know if at least one of these sequences is executable in the
concrete model.

Therefore, from these considerations, we are interested in removing sets of
behaviors encompassing the spurious counterexample while still guaranteeing an
over-approximation of the set of tree-organized behaviors of the concrete model.
The strengthening of the abstraction M̂i with the addition of AKS of already
verified local CTL properties eliminates sets of behaviors and guarantees the
over-approximation (Property 2.2) but does not guarantee the elimination of the
counterexample. We present in the following section a strategy to select sets of CTL
properties eliminating the spurious counterexample.

2.3.3 Ordering of Properties

We propose a heuristic to order the properties depending on the structure of each
component. In order to do so, the variable dependency of the variables present in
global property has to be analyzed. After this point, we refer to the variables present
in the global property as primary variables.

We observed that the closer a variable is to the primary variable, the higher
influence it has on it. Moreover, a global property often specifies the behavior at the
interface of components. Typically, a global property ensures that a message sent
is always acknowledged or the good target gets the message. This kind of behavior
relates the input-output behaviors of components. We have decided to allocate an

28 S.H.S. Alwi et al.

extra weight for interface variables whereas variables which do not interfere with a
primary variable are weighted 0. Here is how we proceed:

1. Build the structural dependency graph for all primary variables.
2. Compute the depth of all variables in all dependency graphs. Note that a variable

may belong to more than one dependency graph, in that case we consider the
minimum depth.

3. Give a weight to each variable (see Algorithm 1).
4. Compute the weight of properties for each component: sum of the property

variables weight.

Algorithm 1: Compute weight
Input: G, the set of all dependency graph variable

V , the set of variables
Output: {(v,w)|v ∈V,w ∈N}, The set of variables with their weight

1 begin
2 p = max(depth(G))
3 for v ∈V do
4 d = depth(v) ;
5 w = 2p−d ∗ p;
6 if d == 0 then v is primary variable
7 w = 5∗w;
8 end
9 if v ∈ I ∪O then v is an interface variable

10 w = 3∗w
11 end
12 end
13 end

The Algorithm 1 gives weight according to the variable distance to the primary
variable with extra weight for interface variable and primary variable. It is definitely
not an exact pertinence calculation of properties but provides a good indicator of
their possible impact on the global property. After this pre-processing phase, we
have a list of properties ordered according to their pertinence with regards to the
global property.

2.3.3.1 Example

In this example, we have a global property φ = A((p = 1)U(q= 1)); which consists
of two primary variables: p and q. As shown in Fig. 2.4, the primary variable p
is dependent of three the other variables: x,y and z whereas the primary variable q
is dependent of four variables: r,s,u and v. The maximum depth of between the two
primary variables dependency graphs is three (q ← r ← u ← v). Furthermore, apart
from p and q being the primary variables, we have y,z,s and v which are interface

2 Efficient Refinement Strategy Exploiting Component Properties 29

Fig. 2.4 Example of variable dependency

variables. Let’s assume that we have a set of properties that includes ϕa −ϕg, with
the weight computation algorithm given previously, the property ϕa which consists
of variables p,y and z will therefore obtain the highest total weight and the rest of
the properties will be ordered as follows:

List of ordered component properties:

1. ϕa(p,y,z)
2. ϕb(q,s,v)
3. ϕc(p,y)
4. ϕd(q,r,v)
5. ϕe(p,z)
6. ϕ f (x,z)
7. ϕg(r,u,v)
8. . . .

Here we can see that the top property ϕa only consists of primary variable p,
therefore the highest property in the list containing q will also be selected in the
initial abstraction generation.

Selected properties for the initial abstraction:

1. ϕa(p,y,z)
2. ϕb(q,s,v)

2.3.4 Filtering Properties

The refinement step consists of adding new AKS of properties selected according to
their pertinence. As we would like to ensure the elimination of the counterexample
previously found, we filter out properties that do not have an impact on the
counterexample σ thus will not eliminate it. In order to reach this objective, a
Abstract Kripke structure of the counterexample σ , K(σ) is generated. K(σ) is a

30 S.H.S. Alwi et al.

succession of states corresponding to the counterexample path which dissatisfies
the global property Φ .

Definition 2.11. Let σ be a counterexample of length n in M̂i such that σ =
s0 → s1 → . . . → sn−1. The Kripke structure derived from σ is 6-tuple K(σi) =
(APσ ,Sσ ,S0σ ,Lσ ,Rσ ,Fσ) such that:

• APσ = APi: a finite set of atomic propositions which corresponds to the variables
in the abstract model

• Sσ = {si|si ∈ σ}∪{sT}
• S0σ = {s0}
• Lσ = L̂i ∪L(sT) = {�,∀p ∈ APσ}
• Rσ = {(sk,sk+1)|(sk → sk+1) ∈ σ}∪{(sn−1,sT)}
• Fσ = /0

All the properties available for refinement are then model-checked on K(σ). If
the property holds then the property will not eliminate the counterexample. Hence
this property is not a good candidate for refinement. Therefore the highest weighted
property not satisfied in K(σ) is chosen to be integrated in the next refinement step.
This process is iterated for each refinement step.

Property 2.4. Counterexample eviction

1. If K(σ) � ϕ ⇒ AKS(ϕ) will not eliminate σ .
2. If K(σ) � ϕ ⇒ AKS(ϕ) will eliminate σ .

Proof. 1. By construction, AKS(ϕ) simulates all models that verify ϕ . Thus the tree
described by K(σ) is simulated by AKS(ϕ), it implies that σ is still a possible
path in AKS(ϕ).

2. K(σ), where ϕ does not hold, is not simulated by AKS(ϕ), thus σ is not a
possible path in AKS(ϕ) otherwise AKS(ϕ) �|= ϕ that is not feasible due to AKS
definition and the composition with Mi with AKS(ϕ) will eliminate σ . ��
The proposed approach ensures that the refinement excludes the counterexample

and respects the Definition 2.6. We will show in our experiments that first, the time
needed to build an AKS is negligible and secondly the refinement converges rapidly.

2.4 Experimental Results

We have conducted preliminary experiments to test and compare the
performance of our strategy with existing techniques available in VIS. There are
several abstraction-refinement techniques implemented in VIS accessible
via approximate_model_check, iterative_model_check, check_invariant and
incremental_ctl_verification commands. However, among the available techniques,
incremental_ctl_verification is the only one that supports CTL formulas and fairness
constraints which are necessary in our test platforms. It is an automatic abstraction

2 Efficient Refinement Strategy Exploiting Component Properties 31

Fig. 2.5 CAN protocol platform

Table 2.1 Statistics on the VCI-PI and CAN bus platform

Experiment Number of BDD Number of Analysis
platform BDD variables size reachable states time (s)

1 master-1 slave 304 7,207 4.711e + 3 6.36
Concrete 2 masters-1 slave 445 24,406 7.71723e + 06 35.2
model 4 masters-1 slave 721 84,118 3.17332e + 12 2,818.3

4 masters-2 slaves 895 238,990 5.708e + 15 68,882.3a

VCI-PI Final 1 master-1 slave 197 76 5.03316e + 07 0.01
abstract 2 masters-1 slave 301 99 4.12317e + 11 0.02
model 4 masters-1 slave 501 147 3.45876e + 18 0.03
for φ1 4 masters-2 slaves 589 167 7.08355e + 21 0.04
Final 1 master-1 slave 194 50 2.62144e + 07 0
abstract 2 masters-1 slave 298 73 2.14748e + 11 0.01
model 4 masters-1 slave 498 121 1.80144e + 18 0.02
for φ2 4 masters-2 slaves 586 141 3.68935e + 21 0.02

CAN bus Concrete model 822 161,730 3.7354e + 07 300.12
Final abstract model for φ3 425 187 1.66005e + 12 0.03
Final abstract model for φ4 425 187 1.66005e + 12 0.04

a Computed on a calculation server: 2x Xeon X5650, 72 Go RAM

refinement algorithm which generates an initial conservative abstraction principally
by reducing the size of the latches by a constant factor. If the initial abstraction is
not conclusive, a goal set will then be computed in order to guide the refinement
process [20, 21].

We have executed and compared the execution time and the number of refinement
iterations for two examples: VCI-PI platform consisting of Virtual Component
Interface (VCI), a PI-Bus and VCI-PI protocol converter and a simplified version
of a CAN bus platform consisting of three nodes on a CAN bus as shown in
Fig. 2.5. Table 2.1 gives the size and the statistics concerning the VCI-PI platform
and CAN bus platform verified. All the values are obtained using the compute_reach

32 S.H.S. Alwi et al.

Table 2.2 Verification Results

Experiment Global Verification Refinement Verification
platform property technique iteration time (s)

Property selection 1 2.2
VCI-PI: φ1 Incremental 0 6.3
1 master Standard MC – 6.06
– Property selection 0 1.0
1 slave φ2 Incremental 562 200.9

Standard MC – 6.13
Property selection 1 2.0

VCI-PI: φ1 Incremental 0 20.4
2 masters Standard MC – 37.9
– Property selection 0 1.0
1 slave φ2 Incremental 74 786.3

Standard MC – 39.4
Property selection 1 2.1

VCI-PI: φ1 Incremental 0 261.6
4 masters Standard MC – >1 day
– Property selection 0 1.0
1 slave φ2 Incremental 0 263.5

Standard MC – >1 day
Property selection 1 2.2

VCI-PI: φ1 Incremental N/A >1 day
4 masters Standard MC – >1 day
– Property selection 0 1.1
2 slaves φ2 Incremental N/A >1 day

Standard MC – >1 day
Property selection 0 1.02

φ3 Incremental N/A >1 day
CAN Standard MC – 2,645.4
bus Property selection 0 1.01

φ4 Incremental N/A >1 day
Standard MC – 1,678.1

command with option -v 1 in VIS except the number of BDD variables, computed
using the print_bdd_stats command. The experiments have been executed on a PC
with an AMD Athlon dual-core processor 4450e and 1.8 GB of RAM memory.

In Table 2.2, we compare the execution time and the number of refinement
between our technique (Prop. Select.), incremental_ctl_verification (Incremental)
and the standard model checking (Standard MC) computed using the model_check
command in VIS (Note: Dynamic variable ordering has been enabled with sift
method). For the VCI-PI platform, the global property φ1 is the type AF((p =
1) ∗ AF(q = 1)) and φ2 is actually a stronger version of the same formula with
AG(AF((p = 1)∗AF(q = 1))) where all requests to write on the PI-Bus will finally
be granted in the future. We have a total of 26 verified components properties to
be selected in the VCI-PI platform. In comparison to φ2, we can see that, a better

2 Efficient Refinement Strategy Exploiting Component Properties 33

set of properties available will result in a better abstraction and less refinement
iterations.

In the case of the CAN bus platform, the global property φ3 is the type
AG(((p′ = 1) ∗ (q′ = 1) ∗ AF(r1 = 1)) → AF((s1 = 1) ∗ AF(t1 = 1))) and φ4 =
AG(((p′ = 1) ∗ (q′ = 1) ∗AG(r2 = 0)) → AG((s2 = 0) ∗ (t2 = 0))). They describe
the correct transmission of generated messages to the receivers. We have at our
disposal 103 verified component properties and after the selection process for the
initial abstraction, 3 selected component properties were sufficient to verify both
global properties without refinement.

Globally, we can see that our technique, for these examples, systematically
computes faster than the other two methods and interestingly in the case where the
size of the platform increases by adding more connected components, in contrary
to the other two methods, our computation time remains stable. This is mainly
due to the fact that for small number of properties, our abstraction is generated
almost instantly and as only pertinent properties are selected, not many refinement
iterations are required in order to complete the verification process. It is also
important to note that the properties tested are simple and we have in our property
selection list the local properties required to satisfy the global property.

2.5 Negation of the Counterexample as a Complementary
Strategy

A well constituted specification is a prerequisite for an efficient refinement strategy
based on property selection technique. However, in practice, we don’t always have
at our disposal a complete specification. Hence, it may be possible that at a particular
refinement iteration, none of the properties available is capable of eliminating
the counterexample. In this case, we propose the negation of the counterexample
technique as a complementary strategy.

Let’s suppose that there are no properties available to refine our CAN Bus
abstract model for the verification of a global property φ5 = A((a = 1)U((a =
0)∗AX((b1 = 1)∗ (b2 = 1)))); where b1 and b2 are outputs of the Receiver 1 and 2
respectively and they are set to 1 in the next step after the signal a = 0 is on the bus
which indicates the start of frame. As our current AKS generator is only capable of
generating CT L\X properties only, the initial abstractions of each component were
built with the aid of the AF operators which allows more satisfaction configurations
than the AX operator.

Therefore, in this example, the negation of the counterexample strategy could
help to eliminate the different configurations that are present in the abstraction.
The first counterexample σ1 provided by the model checker gives the undesired
configuration where the output b1 still remains at 0 right after a = 0. Thus, the
negation of the counterexample is applied on this counterexample configuration to
eliminate it.

34 S.H.S. Alwi et al.

Table 2.3 Statistics at each refinement step with the negation of counterexample technique

Iteration Number of BDD Number of Model checking
BDD variables size reachable states result

0 424 199 4.00015e + 09 M̂0 � φ5

1 426 199 3.79804e + 09 M̂1 � φ5

2 428 249 3.6633e + 09 M̂2 � φ5

In the following iteration, the model-checker provides a rather similar config-
uration of undesired behavior with this time the output b2 which remains at 0
after a = 0. As previously done, the negation of counterexample is applied on this
counterexample σ2. Finally, after these two refinement iterations, the abstract model
built managed to satisfy the property φ5. Table 2.3 shows some statistics at each
refinement iteration.

2.6 Conclusion and Future Works

We have presented a new strategy in the abstraction generation and refinement which
is well adapted for compositional embedded systems. This verification technique is
compatible and suits well in the natural development process of complex systems.
Our preliminary experimental results show an interesting performance in terms
of duration of abstraction generation and the number of refinement iteration.
Moreover, this technique enables us to overcome repetitive counterexamples due
to the presence of cycles in the system’s graph.

Nevertheless, in order to function well, this refinement technique requires a well
constituted specification of every components of the concrete model. Furthermore,
it may be possible that none of the properties available is capable of eliminating
the counterexample which is probably due to an incomplete specification or a
counterexample that should be eliminated by the product of local properties.

We have also demonstrated a possible application of the negation of the
counterexample technique as a complementary strategy albeit limited to certain
form of counterexamples only. Indeed, the negation of counterexample technique is
inefficient when dealing with counterexample with a cycle in the prefix (e.g. a.b∗.c).

In this case, other refinement techniques such as the identification of a good
set of local properties to be integrated simultaneously should be considered. We
are currently investigating other complementary techniques to overcome these
particular cases. The work of Kroening [22], for example, could also help us in
improving the specification of the model: at the component level, or for groups of
components.

Furthermore, we are also examining a comprehensive new strategy that ex-
ploits the finite-state machines (FSMs) of the components in the verification
process. A procedure to generate properties which are directly derived from the

2 Efficient Refinement Strategy Exploiting Component Properties 35

component’s FSM structure is considered as a solution to overcome the insufficiency
of component properties to be selected for the abstraction generation. These on-
going researches will enrich the existing verification techniques in property based
abstraction generation.

Acknowledgements We thank Neha Agarwal for the implementation of the negation of the
counterexample (without reduction) AKS generator which is the base of the generator with
reduction used in this paper.

References

1. The VIS Group: VIS: A system for verification and synthesis, In: Alur, R., Henzinger, T.A.
(eds.) Proceedings of the 8th International Conference, CAV ’96, New Brunswick. LNCS, vol.
1102, pp. 428–432. Springer, Berlin/Heidelberg (1996)

2. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
Computer Aided Verification (CAV ’97), Haifa. LNCS, vol. 1254. Springer, London, Springer
Berlin Heidelberg (1997)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: CAV’00, Chicago. LNCS (2000)

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: Technology
transfer of formal methods inside microsoft. In: 4th International Conference on Integrated
Formal Methods, Canterbury, vol. 2999, pp. 1–20. Springer (2004)

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast:
Applications to software engineering. Int. J. Softw. Tools Technol. Trans. 9(5–6), 505–525
(2007)

6. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: VCEGAR: Verilog counterexample guided
abstraction refinement. In: TACAS’07, Braga, 2007

7. Sharygina, N., Tonetta, S., Tsitovich, A.: An abstraction refinement approach combining
precise and approximated techniques. Int. J. Softw. Tools Technol. Trans. 14, 1–14 (2012)

8. Grumberg, O., Long, D.E.: Model checking and modular verification. In: International Confer-
ence on Concurency Theory, Amsterdam, vol. 527, pp. 250–263. Springer, Berlin/Heidelberg
(1991)

9. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Methodology and
case studies. In: CAV ’98, Vancouver, vol. 1427, pp. 440–451. Springer, Berlin/Heidelberg
(1998)

10. Xie, F., Browne, J.C.: Verified systems by composition from verified components, in ES-
EC/FSE 2003. In: 11th ACM SIGSOFT Symposium on Foundations of Software Engineering
Conference, Helsinki, pp. 227–286. ACM (2003)

11. Li, J., Sun, X., Xie, F., Song, X.: Component-based abstraction refinement. In: 10th Interna-
tional Conference on Software Reuse (ICSR), Beijing, pp. 39–51. Springer (2008)

12. Peng, H., Mokhtari, Y., Tahar, S.: Environment synthesis for compositional model checking.
In: ICCD ’02: 20th International Conference on Computer Design, Freiburg, pp. 70–75. IEEE
Computer Society (2002)

13. Schickel, M., Nimbler, V., Braun, M., Eveking, H.: On consistency and completeness of
property-sets: Exploiting the property-based design process. In: FDL ’06: Forum on Speci-
fication and Design Languages, Darmstadt (2006)

14. Nguyen, M.D., Wedler, M., Stoffel, D., Kunz, W.: Formal hardware/software co-verification
by interval property checking with abstraction. In: Design Automation Conference (DAC’11),
San Diego 2011

36 S.H.S. Alwi et al.

15. Braunstein, C., Encrenaz, E.: Using CTL formulae as component abstraction in a design
verification flow. In: ACSD, Bratislava, pp. 80–89. IEEE Computer Society (2007)

16. Bara, A.: Abstraction de Composant pour la Vérification par Model-Checking, Mémoire de
Diplôme Universitaire OMP – LIP6-SOC, (2008)

17. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16(5), 1512–1542 (1994)

18. Belnap, N.: A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic, pp. 8–37.
Springer, Berlin/Heidelberg (1977)

19. Braunstein, C.: Conception Incrémentale, Vérification de Composants Matériels et Méthode
d’abstraction pour la Vérification de Systèmes Intégrés sur Puce. Ph.D. thesis, Université Pierre
et Marie Curie, LIP6-SOC (2007)

20. Pardo, S., Hachtel, G.: Incremental CTL model checking using BDD subsetting. In: DAC ’98:
35th Design Automation Conference, San Francisco, pp. 457–462. ACM (1998)

21. Pardo, S., Hachtel, G.: Automatic abstraction technique for propositional mu-Calculus model
checking. In: CAV ’97, Haifa, vol. 1254, pp. 12–23. Springer, (1997)

22. Purandare, M., Wahl, T., Kroening, D.: Strengthening properties using abstraction refinement.
In: Proceedings of DATE ’09, Nice, pp. 1692–1697. ACM (2009)

Chapter 3
Formal Specification Level

Rolf Drechsler, Mathias Soeken, and Robert Wille

Abstract The steadily increasing complexity of the design of embedded systems
led to the development of both an elaborated design flow that includes various ab-
straction levels and corresponding methods for synthesis and verification. However,
until today the initial system specification is provided in natural language which is
manually translated into a formal implementation e.g. at the Electronic System Level
(ESL) by means of SystemC in a time-consuming and error-prone process.

In this chapter, we envision a design flow which incorporates a Formal Spec-
ification Level (FSL) aiming at bridging the gap between the informal textbook
specification and the formal ESL implementation. Modeling languages such as
UML or SysML are envisaged for this purpose. Recent accomplishments towards
this envisioned design flow, namely the automatic derivation of formal models from
natural language descriptions, verification of formal models in the absence of an
implementation, and code generation techniques, are briefly reviewed.

3.1 Introduction

Being composed of up to several billion components, the design of embedded
systems is one of the most complex problems people are facing today. While it
was possible to fully design such systems gate by gate on the drawing table 40 years
ago, this procedure has become intractable due to the ever increasing complexity. As
a consequence, elaborated design flows have been developed over the last decades
in which several levels of abstraction are considered.

R. Drechsler (�) • M. Soeken • R. Wille
Group of Computer Architecture, University of Bremen, Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
e-mail: drechsle@informatik.unibremen.de; msoeken@informatik.unibremen.de;
rwille@informatik.unibremen.de

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__3,
© Springer International Publishing Switzerland 2014

37

mailto:drechsle@informatik.unibremen.de
mailto:msoeken@informatik.unibremen.de
mailto:rwille@informatik.unibremen.de

38 R. Drechsler et al.

Specification
(Text Book)

ES Level
(e.g. SystemC)

RT Level
(e.g. VHDL, Verilog)

Manual
Transformation

(Semi-)automatic
Transformation

... ...

Property
Checking

Equivalence
Checking

Specification
(Text Book)

FS Level
(e.g. UML, SysML)

ES Level
(e.g. SystemC)

RT Level
(e.g. VHDL, Verilog)

Interactive
Transformation

(Semi-)automatic
Transformation

(Semi-)automatic
Transformation

Equivalence
Checking

Equivalence
Checking

Specification
Checking

a b

Fig. 3.1 Conventional and envisioned design flow. (a) Conventional design flow. (b) Envisioned
design flow

Today, a design flow as briefly illustrated in Fig. 3.1 is applied. The initial starting
point is given by means of a specification which is usually provided in terms of
a text book description, however, in order to perform even the simplest automatic
synthesis techniques, a formal representation of the specification is required. For this
purpose, an initial implementation is generated at the Electronic System Level (ESL)
using high-level programming languages such as SystemC. This system level
description enables the execution and simulation of the desired design, but still hides
details concerning a precise realization in both hardware and software. From this
description, the system model is consecutively refined in successive steps leading
to descriptions at the Register Transfer Level (RTL), the gate level, and the physical
level. At the end of this process, the resulting chip is sent to a chip manufacturer.

As embedded systems are often employed in safety critical systems such as
avionic, automotive, and medical applications, ensuring the correctness is of high
importance. For this purpose, usually each transformation from one abstraction level
to the next refinement is checked for equivalence. But due to the absence of a
formal description at the specification level, automatic verification techniques are
not applicable for the comparison with the system level. Moreover, as the system
level representation is manually derived from the textual specification, this step is
particularly prone to errors and mistakes.

So far property checking is applied to address this issue by extracting properties
from the specification in terms of temporal and modal logic expressions which can
subsequently be checked with algorithms known as model checkers [6]. Further
techniques called coverage detection exist, which can automatically determine if
enough properties have been written, i.e. whether the full behavior is considered
by all properties [10, 12]. However, the main obstacle remains: the specification

3 Formal Specification Level 39

is provided in natural language and a formal representation needs to be manually
derived from it for further processing. Motivated by this, researchers started working
on closing the gap between the informal textbook specifications and the respective
ESL implementation [9, 13, 26].

In this work, we envision a new design flow that exploits recent achievements in
this area and we propose two major extensions. First, we follow the steady strive for
higher levels of abstraction and enrich the specification itself by formal descriptions.
Modeling languages such as the Unified Modeling Language (UML, [23]) or the
System Modeling Language (SysML, [29]) combined with constraints provided in
the Object Constraint Language (OCL, [28]) provide proper syntax and semantic for
this purpose.1 While models in those languages means remain abstract enough for
the specification level, their formal description enables (semi-)automatic verification
and code construction. As a result, crucial design flaws can already be detected at
the specification level in the absence of a precise implementation.

Second, initial solutions (e.g. [26]) are utilized which allow to automatically
derive UML/OCL descriptions from natural language specifications. Achievements
in the area of natural language processing [15] and knowledge representation [21]
are exploited for this purpose. In fact, already simple grammatical analyses enable
e.g. the derivation of

1. Basic components of a system (which can be derived from nouns in a sentence),
2. Their functions (which can be derived from verbs in a sentence), and
3. Attributes (which can be derived from adjectives in a sentence).

Having such methods, we envision a design flow which includes a Formal Speci-
fication Level (FSL) as shown in Fig. 3.1. This flow enables to (semi-)automatically
derive formal models from a given specification provided in natural language.
Formal methods are applied to this description to verify the correctness of the
design prior to an implementation. If all checks passed, code skeletons for synthesis
and formal properties for verification are extracted for further usage within the
remaining stages of the established design flow.

In the remainder of this chapter, the general ideas and first accomplishments
towards this envisioned design flow are presented. The following section briefly
introduces the necessary background to keep the chapter self-contained. Afterwards,
Sect. 3.3 outlines the proposed extension to the overall design flow in detail. The
respective steps for mapping a natural language specification to a formal model,
checking the correctness of that formal model, and transforming the formal model
into an implementation are then outlined in Sects. 3.4–3.6, respectively. Finally,
remaining challenges to be addressed are discussed and the chapter is concluded
in Sect. 3.8.

1In the following, we focus on UML in combination with OCL, while the general concepts are
similarly applicable to other modeling languages as well.

40 R. Drechsler et al.

3.2 Preliminaries

In this work, the Unified Modeling Language (UML) is applied to represent the
code skeletons and test cases which are semi-automatically derived from natural
language. Besides that, we also exploit language processing tools. To keep the paper
self-contained, the underlying concepts of UML and the applied tools are briefly
reviewed in the following.

3.2.1 Unified Modeling Language

A UML class diagram is used to represent the structure of a system. The main
component of a class diagram is a class that describes an atomic entity of the
model. A class itself consists of attributes and operations. Attributes describe the
information which is stored in the class (e.g. member variables). Operations define
possible actions that can be executed e.g. in order to modify the values of attributes.
Classes can be set into relation via associations. The type of a relation is expressed
by multiplicities that are added to each association end. Class diagrams can be
extended by constraints in the Object Constraint Language (OCL) such as invariants
that further restrict the attribute values.

Example 3.1. Figure 3.2 illustrates the specification of a simple computer architec-
ture in UML using the class diagram notation. The structure of the system is defined
by means of four classes, namely a Processor, a Kernel, a Thread, and a Memory.
Attributes such as maxCapacity provide further details on the respective components
(e.g. the maximal capacity of the processor). An operation spawn is defined on the
class Processor. An invariant states that the number of a processor’s thread must not
exceed the CPU’s capacity.

A detailed overview of the UML is provided in [23].

Kernel

Processor
capacity: Integer
maxCapacity: Integer
hasMaxSize: Bool

spawn(thread: Thread)

Memory
size: Integer

Thread
consumption: Integer

1..*

Runs 1 1 Schedules

1..*

0..1 Executes 1..*

*
StoresData

1

Fig. 3.2 UML class diagram

3 Formal Specification Level 41

1. waiter, server — (a person whose occupation is to serve at table (as in a
restaurant))

2. server1 — ((court games) the player who serves to start a point)
3. server1, host — ((computer science) a computer that provides client sta-

tions with access to files and printers as shared resources to a computer network)
4. server — (utensil used in serving food or drink)

Fig. 3.3 WordNet output of the query for “server”

3.2.2 Natural Language Processing

3.2.2.1 Word Sense Disambiguation

When the correct sense of a word must be determined, Word Sense Disambigua-
tion (WSD, [17]) is applied. Given e.g. the sentence “The server delivers the web-
site,” it is easy for a human to identify “server” as a technical device. For a computer,
in contrast, it is an impossible task to determine the correct sense with no additional
information. Thinking in terms of an MDE context, it is not clear whether “server”
describes a class which is part of the model or an actor that interacts with the model.

In case of ambiguity, WordNet [21] is used for dictionary-based word sense
disambiguation [15] in the scope of this work. WordNet is a lexical dictionary of
English, consisting of more than 90,000 word senses and 166,000 pairs connecting
senses with a semantic meaning. WordNet is designed to be used by external
programs and for many senses it also provides example sentences. Figure 3.3
displays the results of a WordNet query for the word “server”.

In this work, WordNet is applied to determine the semantics of the sentences in
a specification.

3.2.2.2 Constituency Grammars

A constituency grammar [5] is used to decompose a sentence into its constituent
parts, usually depicted as a phrase structure tree (PST, cf. Fig. 3.4). A PST is a tree
whose root is labeled with the most general phrase structure, in case of Fig. 3.4 it
is labeled S referring to the whole sentence. The leaves of the tree are the words of
the sentence. Moving along the branches from the root to the leaves, the vertices
become more specialized phrase structures. Following the leftmost branch from the
example shown in Fig. 3.4 we get the following structures: S (sentence) → NP (noun
phrase) → DT (determiner) → “The” (word within the sentence). The parent of
a leaf corresponds to the part-of-speech (POS, or tag) of the leaf, i.e. “The” and
“the” are determiners, “server” and “website” are nouns and “delivers” is a verb.
For details on how a PST is extracted from a sentence we refer to [15] and [4].

In this work, the constituency grammars are applied to process the structure of
the sentences in a specification.

42 R. Drechsler et al.

S

VP

VBZ

delivers

NP

DT

the

NN

website

.

.

NP

DT

The

NN

server

Fig. 3.4 Phrase structure tree
(PST) of the sentence “The
server delivers the website.”

3.2.2.3 Dependency Grammars

In order to represent dependencies between individual words, natural language pro-
cessing techniques make use of dependency parses [7], i.e. binary dependency rela-
tions are extracted from the sentences. As an example the relation nsubj binds a verb
to its subject. The usual notation for this relation is relation(governor,dependent),
e.g. nsubj(delivers,server). To avoid ambiguities, the position of the word within
the sentence can be appended to the words of the relation (i.e. nsubj (delivers-3,
server-2), cf. Fig. 3.5).

The typed dependencies of a sentence s can be understood as an edge-labeled
graph whose vertices represent words and labels the type of the dependency. There
is an edge g

r−→ d if and only if r(g,d) is a dependency of s. For a visualization
cf. Fig. 3.5.

For example, the nouns are assigned their articles using the det relation. The
relations nsubj and dobj allow for the extraction of the typical subject-verb-object
form. In Fig. 3.5, the verb delivers is connected to the subject server and to the
object website.

In this work, dependency parses are applied to extract formal properties from
informal requirements.

det(server,The)
nsubj(delivers,server)
root(ROOT,delivers)
det(website,the)
dobj(delivers,website)

ROOT

delivers

server

The

website

the

nsubj

det

dobj

det

root

a b

Fig. 3.5 Typed dependencies of the sentence “The server delivers the website.” (a) List of typed
dependencies. (b) Typed dependencies as a directed graph. Edge labels denote the type of the
relation between the words

3 Formal Specification Level 43

3.3 Formal Specification Level

Figure 3.6 provides a more detailed view on the proposed extension for the
envisioned design flow. The main goal is to (semi-)automatically derive an ESL-
implementation in SystemC2 from a (textbook) specification provided in natural
language. Given natural language test cases and requirements from the specifica-
tion, an initial SystemC implementation, an executable testbench for simulation,
and operation contracts (pre- and post-conditions as motivated by Design-by-
Contract [20]) are (semi-)automatically generated. For this purpose, the Formal
Specification Level as shown in Fig. 3.1 and detailed in Fig. 3.6 is introduced as
a new abstraction level which includes three stages.

In the first stage (cf. Sect. 3.4), the test cases and the requirements are mapped
from their natural language description into a formal representation by means
of UML/OCL. NLP techniques are exploited in order to extract the desired
information. More precisely, the following steps are conducted in this first stage:

• Determine the structure of the design
Using e.g. a grammatical analysis, the basic components of the considered
system are derived from the natural language specification. From the resulting
information, a UML class diagram is created which provides a first formal
description of the structure for the considered design.

• Determine the properties of the design
After the structure has been obtained, the requirements of the specification can
be considered in detail. From them, formal properties which need to be satisfied
by the design are derived and represented in terms of OCL expressions.

Specification

Test Cases Requirements

Formal
Specification

Level
Class Diag. + OCL Sequence Diagram OCL properties

Electronic
System
Level

SystemC Skeleton

A
x

B
y

:A :B

op
always

(a → b)

+
Consistent property set
Executable testbench
Operation contracts

Fig. 3.6 Overview of the formal specification level

2Note that SystemC is just a representative for any high-level object-oriented hardware description
language and can readily be replaced.

44 R. Drechsler et al.

As a result, the first stage leads to a formal description of the desired system in terms
of UML/OCL.

In the second stage (cf. Sect. 3.5), this formal description is used to con-
duct initial checks for correctness. This includes consistency checks such as
checking whether it is possible to instantiate the desired system considering all
constraints and requirements, but also first behavioral checks such as checking
whether it is possible to reach a prohibited state. This allows for the detection
of design flaws already in very early design steps in the absence of a precise
implementation.

In the third stage (cf. Sect. 3.6), after all checks have passed and no errors
have been determined, a skeleton for the system level implementation as well as
corresponding testbenches are derived.
In the next sections, first accomplishments with respect to these stages of the FSL
are illustrated.

3.4 Mapping Natural Language Specifications to the Formal
Specification Level

The first stage addresses the (semi-)automatic determination of a formal representa-
tion describing the structure and the properties of a system that is specified in natural
language. First accomplishments for the former two aspects have been presented
in [26] and are reviewed in the following two sub-sections. Afterwards, ideas on the
property determination are presented.

3.4.1 Determine the Structure of the Design

Technical specifications are often written in a very specific way: often a strong
focus is put on using simple short sentences which contain information. From these
sentences, much information can already been determined automatically. As an
example, consider the following excerpt of a specification based on the example
class diagram given in Fig. 3.2.

A processor spawns a simple thread.
The number of a processor’s threads must not exceed the processor’s capacity.

Figure 3.7 illustrates that already from these two sentences a significant amount
of structural information can be extracted: Since processor and thread are common
nouns, it can be concluded that they represent components of the considered system
(to be represented by classes). Preceded adjectives (such as simple) substantiate ob-
jects and thus shall be added as attributes to the corresponding class. Verbs correlate
to operations which can be invoked by components or actors. Moreover, prepositions
help to determine relations between classes. For example, a processor’s threads implies
a relation.

3 Formal Specification Level 45

Processor
capacity: EInt

spawn(thread: Thread)

Thread
simple: EBoolean*

Aprocessor spawnsasimple thread.
The number of aprocessor’s threadsmust not exceed the processor’scapacity.

Fig. 3.7 Determine the structure of the design

Recent progress in the development of NLP technologies enables to extract much
of these information in a (semi-)automatic manner. More precisely, NLP parsers
(e.g. the one presented in [18]) are able to decompose a sentence in terms of a phrase
structure tree which assigns each atomic word to a syntactic word type (such as
noun, verb, or adjective) and also groups words into larger sub-parts of the sentence
(cf. Sect. 3.2).

However, sometimes the syntactical and grammatical information alone is not
sufficient. For example in the first sentence from Fig. 3.7, two nouns are identified
in the PST, i.e. processor and thread . To determine whether a noun describes a class
or an actor interacting with the system, additional information needs to be derived.
For this purpose, we can make use of word sense disambiguation. Dictionaries such
as WordNet categorize words into lexicographic files. Based on this categories, a
classifier can be implemented: If a noun is assigned to the category person, the
noun likely refers to an actor, if a noun is assigned to the category artifact or object,
the noun rather refers to a part of the system.

Although making use of word sense disambiguation, a clear assignment is not
always possible. As an example, the noun processor can both refer to a person or to
an artifact. Moreover, WordNet assigns the different synsets with frequency counts
which give an indication of how frequent a word is commonly used. This allows
to guess the correct sense, but in the case of processor both senses have the same
frequency count. User interaction is required to resolve this ambiguity.

Overall, exploiting these NLP technologies, a UML class diagram formally rep-
resenting the structure of the considered system can automatically be determined in
many cases. However, since the textual description always can contain ambiguities,
manual interactions with the design engineer cannot entirely be excluded leading to
a (semi-)automatic and assisted approach as evaluated in [26].

3.4.2 Determine the Properties of the Design

When a model is available, e.g. determined using methods described in the previous
section, formal behavioral specifications can be extracted from English sentences
using the approach presented in this section. More precisely, the goal is to support
the designer in creating a formal specification in OCL from given informal natural
language requirements. During the generation process, it is exploited, that despite

46 R. Drechsler et al.

“The number of a processor’s threads
must not exceed the CPU’s capacity.”

not (self.Thread.size >
self.capacity)

Natural language Object constraint language

exceed
must not

number capacity

The threads
processor

a

CPU
the

a
NLP

exceed

not

number capacity

The
threads

processor

a

CPU

the

b not

>

size capacity

Thread Processor

Processor

not

>

size capacity

Thread

self

self

c

Kernel

Processor Thread

Memory

WSD

d

Fig. 3.8 Extracting OCL constraints

the undoubtedly existing differences, the given input (i.e. the sentence in natural
language) and the desired output (i.e. the formal requirement in OCL) are indeed
quite similar. While this is often not evident in a direct comparison, structural
analyses unveil the correlation between the input and the output. This is illustrated
in the following example.

Consider the informal requirement “The number of a processor’s threads must
not exceed the CPU’s capacity” and its formal counterpart

not (self.Thread->size() > self.capacity).

A direct mapping of these two descriptions (cf. the boxes at the top of Fig. 3.8) is not
straightforward. However, after a prior application of semantical and grammatical
analyses followed by a normalization, a promising representation can be obtained
as shown in Fig. 3.8a–c. In fact, the resulting normalized dependency graph of the
sentence (cf. Fig. 3.8b) is almost identical to the resulting abstract syntax tree (AST)
of the OCL constraint (cf. Fig. 3.8c).

However, the example in Fig. 3.8 also shows that, due to the wide scope of natural
language, a direct mapping of all parts of the informal requirement to the appropriate
identifier or OCL operations is not guaranteed. Often different grammatical forms of
words (e.g. due to declension or conjugation) or the use of synonymous descriptions
represent obstacles to a one-to-one mapping from the dependency graph to the
AST. Dictionary-based word sense disambiguation can be applied to address these
problems. Using this technique, normal forms and synonymous identifiers are
determined.

3 Formal Specification Level 47

With respect to the example in Fig. 3.8, while e.g. not and capacity can easily
be mapped from the dependency graph to the corresponding OCL expression (high-
lighted in blue color) or model element (highlighted in red color), respectively, a
correct mapping of CPU is not obvious at a first glance. However, the application
of WSD unveils that among others the word “CPU” is a synonym for “processor”
(for a visualization of the WSD process cf. Fig. 3.8d). Since Processor is a class
in the model, it can be assumed that “CPU” is just an alternative description of
“processor” in the informal description. Hence, substituting both words does not
affect the meaning of the requirement, but enables a correct mapping from the
informal requirement to the formal requirement.

Further approaches which help to derive formal properties from natural language
requirements have been proposed in [19] and [8]. In [19], a systematic approach
is suggested in which sub-sentences of the requirement are manually mapped
into formal properties. This allows for a guided and thus less error-prone manual
translation. Furthermore, reoccurring sub-sentences can be re-used.

Besides that, it is also possible to generalize properties from test cases when
they obey a certain structure. For example, in the context of Behavior Driven
Development (BDD) the structure of a test case is often given by a Given A, When
B, Then C template [22]. Each of these sentences is linked to test code which
should be executed when running the test cases. Since A corresponds to environment
constraints, B corresponds to the antecedent, and C corresponds to the consequent
of a property, formal properties can be generalized from such test cases [8].

3.5 Checking Correctness at the Formal Specification Level

Having passed the first stage of extracting information from natural language
descriptions, a formal specification composed of the structure and properties of
the system is available. In the second stage, this representation is being used
as a basis for initial correctness checks targeting conceptual questions such as
whether the system is free of any contradictions which would disallow an ongoing
implementation. For this purpose, approaches presented in [2, 11, 14, 24] for static
verification, presented in [27] for invariant elimination, and presented in [3, 25] for
dynamic verification can be applied. In [30], also first debugging approaches have
been introduced.

3.5.1 Verification of Static Aspects

Having a formal representation of the design does not necessarily imply that a
working implementation can be generated from it. In fact, the formal model may
inherit constraints which contradict each other. As a result, no valid instantiation
would be possible and any implementation would be erroneous from scratch. The
FSL enables to detect such errors before any code is written.

48 R. Drechsler et al.

Approaches introduced e.g. in [2, 11, 14, 24] can be utilized for this purpose.
They take the obtained UML diagram (representing the structure) together with
the properties (which are encoded as OCL invariants) and automatically perform
the above described consistency checks. Besides enumerative methods [11], also
elaborated formal approaches have been proposed in the recent past [24]. Consid-
ering the abstract description of the models (usually, no complex data-structures
are applied), particularly the latter approaches are applicable to quite significantly
complex designs.

3.5.2 Invariant Removal

At the FSL, invariants are a proper description mean to represent properties the
design has to satisfy. However, when it comes to verification they may cause
unnecessary overhead. Since invariants are assumed globally, i.e. for each possible
system state of the system, they have to be considered all the time. Even if only a
certain functionality of a design is under verification, invariants of the entire model
have to be assumed additionally.

An alternative to prevent this overhead has been proposed in [27]. Here,
invariants are iteratively removed and replaced instead with a smaller set of pre-
and post-conditions for certain operations. This enables to entirely eliminate all
invariants without changing the semantics of the model. Since additionally, pre- and
post-conditions only have to be considered locally when the corresponding function
is called, this reduces the overhead.

Furthermore, invariant elimination enables a design flow in which the implemen-
tation of different operations can be conducted by different developers. Then, the
respective sub-teams do not have to globally consider all the invariants anymore,
but just the local pre- and post-conditions of the corresponding operation.

3.5.3 Verification of Dynamic Aspects

Finally, also the dynamic behavior can be verified at the FSL. This is possible
due to the above-mentioned pre- and post-conditions of operations which enable a
descriptive representation of the behavior, without giving a precise implementation.
A pre-condition describes in which states an operation can be called, while the
post-condition describes the effect an operation has on that system state. These
conditions may be specified directly from the designer or are determined by the
invariant elimination step described above.

Any model where its operations are enriched with pre- and post-conditions can
be transformed into an instance similar to Bounded Model Checking (BMC) [1]
and, therefore, allows for addressing certain dynamic verification tasks. In fact,
similar to verification at the implementation level, operation sequences can be

3 Formal Specification Level 49

determined that lead e.g. to bad states, good states, live locks, or dead locks [25].
Utilizing these techniques, again, errors can be detected before any code is
written.

3.6 Mapping from Formal Specification Level
to the Electronic System Level

Finally, the formally modeled and verified design shall be implemented in an
ESL language so that it can be further refined using the established conventional
design flow. Also in this final stage of the FSL the formal representation can be
exploited.

In fact, the corresponding UML/OCL descriptions allow for a generation of code
parts for the implementation process. This includes

• Code stubs generated from class diagrams (Sect. 3.4.1),
• Generalized properties from the parameterized test cases (Sect. 3.4.2),
• A consistent property set (Sect. 3.5.1),
• And contracts for the operations of a class (Sect. 3.5.2).

Further, the verification of dynamic aspects plays a significant role in the transition
from the FSL to the ESL. As briefly discussed in Sect. 3.5.3, all dynamic aspects,
i.e. the interaction of the components, can be checked in the absence of a precise
implementation. As an example, it can be ensured that the model is deadlock-free or
that all operations can be reached from given initial states. Hence, after the imple-
mentation phase, it is sufficient to check whether the implementation of each single
operation adheres correctly to its contracts. That is, assuming the pre-condition
and executing the code must imply the post-conditions. Since the verification of
the operations can be performed locally without considering the whole system,
verification effort can be decreased.

3.7 Tool Support

The first stage of the proposed design flow, i.e. the mapping from natural language
specifications into formal models, has been implemented into the IDE lips [16].
The IDE considers natural language as a first class citizen in the design flow of
systems and software. Just like modeling languages such as SysML are used for
describing the model and programming languages such as Java are used for writing
the implementation, natural language is used to write the specification. Many IDE
concepts used for easing the use with modeling and programming language can be
exploited in order to ease the writing of the specification as well. Figure 3.9 shows a

50 R. Drechsler et al.

Fig. 3.9 lips IDE

screenshot with the example sentence, the underlying model, and the resulting OCL
constraint. Furthermore, it can be seen that e.g. the outline is used in order to show
the phrase structure and its dependencies.

3.8 Conclusion

In this paper, we envisioned a new design flow which includes an FSL representing
the desired design using modeling languages such as UML or SysML combined
with constraints provided in languages such as OCL. The proposed flow bridges
the gap between the natural language textbook specification and the formal ESL
implementation. We illustrated that first accomplishments towards the envisioned
design flow have already been made: NLP techniques are available to derive formal
descriptions of natural language specifications, verification approaches based on
modeling languages allow to detect design errors prior to a precise implementation,
and code generation techniques can be applied to generate code stubs, executable
testbenches, etc.

Acknowledgements This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck project DR 287/23-1. The authors would like to thank Melanie Diepen-
beck, Daniel Große, Ulrich Kühne, Hoang M. Le, and Julia Seiter for interesting and helpful
discussions.

3 Formal Specification Level 51

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv.
Comput. 58, 117–148 (2003)

2. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using constraint pro-
gramming. In: IEEE International Conference on Software Testing Verification and Validation
Workshop, Lillehammer, pp. 73–80 (2008)

3. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In: Leuschel, M.,
Wehrheim, H. (eds.) Integrated Formal Methods. Lecture Notes in Computer Science, vol.
5423, pp. 40–55. Springer, Berlin/New York (2009)

4. Carnie, A.: Syntax: A Generative Introduction. Blackwell, Malden (2007)
5. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3),

113–124 (1956)
6. Clarke, E.M., Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT, Cambridge (1999)
7. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency parses

from phrase structure parses. In: Conference on Language Resources and Evaluation, Genoa,
pp. 449–454 (2006)

8. Diepenbeck, M., Soeken, M., Große, D., Drechsler, R.: Behavior driven development for
circuit design and verification. In: IEEE International High Level Design Validation and Test
Workshop, Huntington Beach (2012)

9. Drechsler, R.: Quality-driven design of embedded systems based on specification in natural
language. In: EUROMICRO Symposium on Digital System Design, Oulu (2011)

10. Drechsler, R., Diepenbeck, M., Große, D., Kühne, U., Le, H.M., Seiter, J., Soeken, M., Wille,
R.: Completeness-driven development. In: ICGT, Bremen, pp. 38–50 (2012)

11. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and consequences in
UML and OCL models. In: Tests and Proofs, pp. 90–104. Springer, Berlin/New York (2009)

12. Große, D., Drechsler, R.: Quality-Driven SystemC Design. Springer, Dordrecht/Heidel-
berg/London/New York (2009)

13. Harris, I.G.: Extracting design information from natural language specifications. In: Design
Automation Conference, San Francisco, pp. 1256–1257 (2012)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT, Cambridge (2006)
15. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson Prentice Hall, Upper

Saddle River (2008)
16. Keszocze, O., Soeken, M., Kuksa, E., Drechsler, R.: lips: An IDE for model driven engineering

based on natural language processing. In: Workshop on Natural Language Analysis in Software
Engineering, San Francisco (2013)

17. Kilgarriff, A., Rosenzweig, J.: Framework and results for english SENSEVAL. Comput.
Humanit. 34, 15–48 (2000)

18. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Annual Meeting of the
Association for Computational Linguistics, Sapporo, pp. 423–430 (2003)

19. Le, H.M., Große, D., Drechsler, R.: From requirements and scenarios to ESL design in
systemC. In: International Symposium on Electronic System Design, Kolkata (2012)

20. Meyer, B., Nerson, J.M., Matsuo, M.: EIFFEL: object-oriented design for software engi-
neering. In: Nichols, H.K., Simpson, D. (eds.) European Software Engineering Conference,
Strasbourg. Lecture Notes in Computer Science, vol. 289, pp. 221–229. Springer (1987)

21. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
22. North, D.: Behavior modification: the evolution of behavior-driven development. Better Softw.

8(3) (2006)
23. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.

Addison-Wesley Longman, Essex (1999)
24. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UML/OCL

models using Boolean satisfiability. In: Design, Automation and Test in Europe, Dresden,
pp. 1341–1344 (2010)

52 R. Drechsler et al.

25. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models. In: Design,
Automation and Test in Europe, Grenoble, pp. 1077–1082 (2011)

26. Soeken, M., Wille, R., Drechsler, R.: Assisted behavior driven development using natural
language processing. In: International Conference on Objects, Models, Components, Patterns,
Prague (2012)

27. Soeken, M., Wille, R., Drechsler, R.: Eliminating invariants in UML/OCL models. In: Design,
Automation and Test in Europe, Dresden, pp. 1142–1145 (2012)

28. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Longman, Boston (1999)

29. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan
Kaufmann, San Francisco (2008)

30. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models. In:
Design, Automation and Test in Europe, Dresden, pp. 1078–1083 (2012)

Chapter 4
TLM POWER3:
Power Estimation Methodology for SystemC
TLM 2.0

David Greaves and Mehboob Yasin

Abstract We report on a SystemC add-on library which extends every
SystemC module with non-functional data regarding power consumption and
physical layout and which accumulates and estimates dynamic energy usage.
It supports both phase/mode power modelling and energy-per-transaction logging
for TLM (transactional-level modelling). Wiring energy is computed by counting
bit-level activity within the TLM generic payload. Each leaf component can also
register its physical dimensions to facilitate a wire length estimator that traverses the
SystemC model hierarchy using either full placement or Rent’s rule estimators. It
also supports dynamic voltage islands and inter-chip wiring, where each transaction
can consume energy according to the current supply voltage of the relevant islands
and the nature of the interconnect. We report on basic performance from some
SPLASH-2 benchmarks running on a modelled OpenRISC quad-core platform.

4.1 Introduction

With the current major emphasis on power consumption in electronic design it is
important to be able to obtain power estimates during the architectural exploration
phase. Power consumption is an emergent property arising once hardware and
software have been selected. For results to be numerically accurate, a detailed, net-
level layout of the design is required in the chosen target technology. This level of
detail is inconsistent with rapid prototyping. However, with wiring power becoming

D. Greaves (�)
Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK
e-mail: David.Greaves@cl.cam.ac.uk

M. Yasin
Computer Laboratory, King Faisal University, Al-Ahasa, Saudi Arabia
e-mail: my294@cl.cam.ac.uk

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__4,
© Springer International Publishing Switzerland 2014

53

mailto:David.Greaves@cl.cam.ac.uk
mailto:my294@cl.cam.ac.uk

54 D. Greaves and M. Yasin

Bus/NoC
Comp 1

Target
(DRAM)

Bus/NoC
Com 2

Originator
(CPU)

L1
Cache

Extended DMI record

wr util

account

component

wr energy

next
from addr
to addr

agents

rd latency
op count

Agent record Agent record Agent record Agent record

wr latency

Other Blocks Other BlocksOther Blocks

= confidence switcher
rd util
rd energy

wr util

account

component

wr energy

next

rd util
rd energy

wr util

account

component

wr energy

next

rd util
rd energy

wr util

account

component

wr energy

rd util
rd energy

Fig. 4.1 An example extended DMI record and agent list. An initiator may typically have several
of these active at once for different targets or addressable regions in a target. The TLM return path
is always the same as the forward path and the agent records are incremented for utilisation and
energy in (the active phase of) both directions

the dominant contributor in recent generations of VLSI technology, early indications
of this aspect are becoming more essential. Indicators that are relatively accurate
become useful. Relatively accurate indicators may have unknown linear error factors
in the values they report, but they certainly have the correct polarity in their partial
derivatives, thereby allowing the designer to tell whether a change is better or worse.

TLM modelling using SystemC permits high-performance models to be created.
The greatest performance is facilitated by using the blocking transaction style
with loose timing (L/T) and DMI (direct memory interaction). Using blocking
transactions, interactions between a CPU and a cache, memory or I/O device
are modelled as a simple method invocation with handshaking overheads being
modelled simply by the call and return of the relevant subroutine [3]. The loose
timing method allows a given initiator to hog the modelling workstation for an
extended period of time, called its quantum, and thereby avoid the overhead of
context switching needed to keep transactions and bus cycles strictly in the order
they would really occur. DMI allows an initiator, such as a CPU, to make backdoor
access to the workstation memory used to model the contents of RAMs and
DRAMs, thereby avoiding the overheads of modelling caches and busses or NoCs
(networks on chip). However, previous modelling systems have become highly
inaccurate in terms of reported performance and (especially) power when these
advanced modelling features are enabled.

Two previous libraries for SystemC power modelling are TLM POWER2 [6]
and PKtool [13]. Our own library is called TLM POWER3 owing to its direct
reuse of some infrastructure from TLM POWER2, but ideally one might merge
it with PKtool so that the styles and approaches from both previous libraries
are concurrently available. Higher-level approaches might also be included. For
example, the Sesame approach to estimating power consumption uses an abstract
model of execution, based on computational event signatures [8]. A similar higher-
level approach was presented in [10], but built on SystemC.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 55

The TLM POWER2 library for SystemC associated groups of SystemC modules
with a pair of power account records called static and dynamic. The association
was maintained either by inheriting a pw_module parent as well as the standard
sc_module inheritance, or by setting a SystemC attribute to point to the appro-
priate set of accounts.1 TLM POWER2 used the mode/phase approach to power
modelling.

In the mode/phase approach, the consumption of an IP block is determined from
its current state. The state of the block is characterized by both its phase and its
mode. A mode is a particular DPM (Dynamic Power Management) mode (e.g. on,
sleep, off). A phase, basically a functional phase, is characterized by its power and
time duration (e.g. wait, read, compute). The available modes and phases are defined
in a technology/instance file that is inspected by the constructor for the component.
The constructor can nominate a specific file for a specific instance or the kind()
of the component can be looked up and the details set for all instances of that kind
of component. The behavioural model for the block must change mode and phase
explicitly using calls such as

this->update_power(sc_pwr::PW_MODE_ON,
sc_pwr::PW_PHASE_IDLE);

Infact, in the mode/phase approach of TLM POWER2, there is no specific
support for transactional modelling or loose timing. The TLM calls are unannotated
and the SystemC kernel must be advanced for the appropriate period of time while
a component is in a given power mode/phase for the correct energy accumulation to
be logged.

PKtool is another SystemC library for power modelling, but its basic approach
is to count transitions at the net level. Wrappers are provided for all of the
common SystemC datatypes used for modelling wires, such as sc_uint<7>.
When SystemC kernel time advances, the hamming distance of each wrapped type is
computed and added to its transition count. The hamming distance is the number of
bits that have changed value. For energy modelling, only the zero-to-one transition
needs to be considered. A net will consume energy from the supply each time it rises,
according to the standard 1

2CV 2 formula, where C is the net capacitance, which is
proportional to its length. (As explained below, we use the same approach for our
TLM calls, but we then automatically disable it in favour of performance). However,
PKtool library does not help estimate net length, and despite some recent extensions
for TLM modelling, it has no support for the TLM generic payload. Directly relating
the events in the model to the SystemC kernel timestamp cannot support loosely-
timed models which locally run ahead of the kernel.

1We use the word component to denote an sc_module that is so associated.) SystemC augments
every sc_module (or other entity that inherits sc_object) with a key/value space where the
values are void * pointers.

56 D. Greaves and M. Yasin

4.2 Our Approach: TLM POWER3

TLM POWER2 defined physical units for power and energy in the same way
as SystemC itself defines physical units for time. All of the standard arithmetic
operators are overloaded to have the expected behaviour. For instance, a power
multiplied by a time results in an energy. In TLM POWER3, we have added
new physical units for voltage, distance and area, along with the appropriately
overloaded operators. A component can describe its physical size in its constructor
using one of the following TLM_POWER3 calls:

// Set actual dimensions of current component
void set_fixed_dimensions(pw_length x, pw_length y);

// Set additional area of current component
void set_excess_area(pw_area a, float max_aspect_ratio=2.5);

// Select chip/voltage island for current component
// and its children.
void set_chip_name(string chipname, string island);

The former sets the actual dimensions of the current component, leading to a
warning if this is smaller than the sum of its components. The excess_area call
describes the additional area of the current component beyond that of the sum of its
child components. The component is assumed to be flexible in shape from square up
to an oblong of maximum aspect ratio specified. Aspect ratio is, however, ignored
by our provided basic estimator that just sums areas within a component and does
not attempt to give them co-ordinates within the component. Components can be
specified to be placed on different chips or regions of chips but the default is to be on
the same chip/region as their parent. This identifies which wiring crosses between
chips and hence has different dimensions and technology. It can also be used to
exclude logic from the current chip’s dimensions, as is useful for example, when a
DRAM bank model is instantiated inside the DRAM controller rather than exporting
all of the connections (TLM or otherwise) up through the module hierarchy. The
same partitioning approach defines dynamic supply voltage islands where voltage
changes are applied to all members of a chip/region at once.

As well as supporting an external table of modes and phases for each in-
stance/kind of component we enable the C model to contain explicit statements of
power and energy. For instance, the constructor (or PVT callback, mentioned later)
for an SRAM of m_bits might contain the following, where the first line creates a
constant power value and the second logs this power in the static power account of
the current component.

pw_power leakage = pw_power(82.0 * m_bits, PW_nW);
set_static_power(leakage);

Rather than just supporting a fixed pair of power accounts, as in TLM POWER2,
our library supports any number of accounts per group of components with the

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 57

first three being nominally used for component static power, component dynamic
power/energy and wiring dynamic energy. For full flexibility, each account can
model both energy and power. Each account has energy as its primary accumulating
representation and the power being a standing value that, form time to time, is
converted to energy debits. Standing power is converted to energy when the standing
power level is changed or at the end of simulation, the energy being the previous
standing power level multiplied by the time since the last standing power change.
An error is raised if the simulation exits at infinite time with a non-zero standing
power level in any account. Energy figures are converted back to average power in
some forms of report.

Our library also supports utilisation and transaction logging for visualisation
purposes. Although this might seem orthogonal, there are some overlaps. One
feature of the PKtool TLM modelling style is that idle power in a component
is not accumulated while a transaction is active, and hence details of component
utilisation are needed for this style of modelling. By recording utilisation we can
apply this correction if desired: it might be very useful to model dynamic power and
clock gating. In addition, when our library generates a VCD (Verilog change dump)
report, it is convenient to have a graphical illustration of the transactions alongside
the energy use bumps.

4.2.1 Extended Generic Payload: Distance + Hamming

Although our library can be used with the standard generic payload, more detail
is captured using our extended version called PW_TLM_PAYTYPE. In TLM 2.0,
sockets are templated types which default to use the standard generic payload,
but we can instead use PW_TLM_PAYTYPE. Rather than explicitly extending
the generic payload, we could have used the generic payload’s own extensions
(and these still work, as used for instance for extended commands such as
load-linked/store conditional), but we chose not to for efficiency reasons. Socket
definitions and calls now look like this (although CPP macros can tidy this up):

// Providing the third template argument to a socket:
tlm_utils::simple_initiator_socket
<mytype, 64, PW_TLM_TYPES> ifetch_socket, data_socket;

// Using the extended payload in the callbacks:
void b_access(PW_TLM_PAYTYPE &trans, sc_time &delay)

The extensions in PW_TLM_PAYTYPE assist with the following details:

1. Deciding which fields are active so that only the correct fields have their
hamming distance processed for wiring power,

2. Establishing the trajectory of the transaction through the system so that traversed
wire length is estimated,

58 D. Greaves and M. Yasin

3. Keeping note of the components encountered so that the correct power and
utilisation accounts can be incremented under DMI,

4. Measuring the variance of metrics so that automated transition to DMI is enabled.

In a generic example, Fig. 4.1, the originator (CPU) will complete the address
field of the payload and, for writes, also the data and byte-enabled fields. Generally,
multi_passthrough TLM sockets are used in complex system models: these
support forwarding the transaction onwards through bus, cache and NoC (network-
on-chip) subsystems. The return path is always the reverse of the forward path owing
to simple stack unwinding associated with method invocation. So intermediate
components forward the payload, perhaps with minor changes (e.g. address space
manipulations at bus bridges or VM units) to the target destination. This target
will reply with a low-cost acknowledgement for a write and with the data for
a read.

Our TLM payload offers an API with three library calls for bus energy modelling.
These are pw_set_origin,pw_log_hop and pw_terminus. Currently mod-
els invoke these on a payload at the beginning, intermediate steps and end of a its
payload trajectory. Rather than manual application, building these invocations into
the TLM convenience sockets would be more convenient (sic).

void pw_set_origin(sc_module *where,
uint flags=0,
bit_transition_tracker *transition_reference=0);

pw_agent pw_log_hop(sc_module *where,
uint flags=0,

bit_transition_tracker *transition_reference=0);
void pw_terminus(sc_module *where);

The first argument where is the this pointer for the current component. This
is used to track the path through the system.

The second argument is the flags that denote which fields in the payload are
active. They can also encode bidirectional data busses and multiplexed address-data
busses. When the physical nets of busses are re-used the transition count increases
but there are fewer busses (e.g. the high order address bits might be mostly static
on a dedicated address bus but are not if the same wires carry multiplexed address
and data). Most flags are sticky and apply to subsequent hops that do not change
that flag. In particular, if the flags argument is zero for the next hop then nothing has
changed and the next hop has the same properties as the previous hop.

The third argument is a bus reference. Every transaction is considered to
take place over a bus and a bus is a generic set of wires modelled with a
bit_transition_tracker. Wires present (i.e. payload fields) that are not
used consume no energy, so it is not important to customise the instance of a bus
to its use (e.g. the bus from CPU to memory has address and write data whereas
the return bus has just read data). The bus reference is needed so as to check which
physical nets are transitioning with respect to their previous value.

We could integrate a layout package to estimate wiring lengths in detail.
Currently we use the Rentian approach of [4] that provides a simple estimate

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 59

of average connection length in a well-placed implementation according to α.A
1
2

where A is the area of the lowest common parent component to the source and
destination of the signal and α is typically 0.3. The capacitance per unit length
of nets for on-chip and off-chip wiring is read from a configuration file (we use
0.3 pF/mm).

TLM 2.0 defined a DMI record called tlm::tlm_dmi which stores the
start and end addresses and access times for a region of memory that can be
accessed via a fast backdoor mechanism: the client simply reads from the raw
host memory that contains the memory contents. In addition, the target has a
callback called invalidate_direct_mem_ptr whereby this record can be
retracted. However, using this DMI mechanism bypasses the target model and also
all intermediate bus components, including caches, so their utilisation and energy
accounts cannot be updated directly during DMI accesses. In TLM POWER3, we
make the forward trajectory of a TLM DMI-allowed call instantiate a chain of
account records that contain the energy and utilisation and account number for each
intermediate agent and the target. The energy and utilisation are also updated on the
return transit of the thread. (For non-blocking calls, the updates are just made on
the significant protocol phases.) At the initiator we augment the DMI record with a
count of the number of DMI calls made (scaled by the relative size of the transaction
if the payload burst size is varying). Aperiodically (e.g. at end of L/T quantum), and
on DMI invalidate, the count field is reset with the appropriate credits being made
to the utilisation and energy accounts of each referenced component. The invalidate
DMI callback also performs such a flush and frees the agent list. Operations such as
store conditionals must not use DMI, so can be used as flush points.

An alternative to building the agent records is to write DMI energy to a ‘slush
fund’ account where it will appear (correctly) in the total for the system/subsystem
but (incorrectly) in the slush fund of the originator of such transactions instead of the
consuming component (which is ensured by our agent records). We would perhaps
use account number 4 in each component for this purpose.

The energy and power figures in a call to the library can either be pre or post
supply voltage scaling, where the former are multiplied by the supply voltage
squared at the point of logging and the former are not scaled. Given that a component
(sc_module) inherits our pw_module_base, transaction energy logging in a
component can be as simple as:

m_read_energy_op = pw_energy(5.0 +
1.5e-5 * m_bits, pw_energy_unit::PW_pJ);

m_read_energy_op *= get_current_vcc_squared();
this->record_energy_use(m_read_energy_op /*, 1*/);
this->record_utilisation(sc_time(1, sc_us), delay);

where the first line would typically be in the component’s constructor, the second
would be in the constructor or in the PVT (process/voltage/temperature) recalculate
callback. The third line actually logs the energy and can specify an alternative
account to the default of ‘1’. Multiplying by the supply voltage squared on every
logging event is slow, and hence pre-computing this in the PVT method is preferred.

60 D. Greaves and M. Yasin

new confidence<T, N>()

lost
confidence

Confidence Switcher
Measure

metric

constructoruser thread entry

user thread exit

bool measure needed();

T get_average();

T record_measurement(T m);

Fig. 4.2 General use pattern for the ‘confidence switcher’ component that first accumulates and
then provides a mean value for a metric based on aperiodic measurements while raising an
exception if accuracy is lost

Account one is the default intra-component dynamic energy account. The log
of the utilisation itself takes the busy duration and an extra, optional second
argument which is the advance over kernel simulation time needed for accurate
rendering when loosely-timed. The ‘this->’ prefix would either be missed out,
but preferable is is to replace it with the agent handle returned from log_hop
call. This applies the energy and utilisation debits to the current component but also
inserts their values in the agent list (if one is being constructed) so that they are
accounted when subsequent calls are replaced with DMI.

Using standard TLM 2.0, an initiator will start using DMI when calling
get_direct_mem_ptr on the initiating socket after a transaction instantiates
a valid, local DMI record. Typically the initiator has no knowledge of the accuracy
of the latency figures in its DMI record: naively, these will just be the result of the
first call (which could be much slower owing to cache misses etc.). We provide and
use a ‘confidence switcher’ to ensure DMI is employed with fairly accurate values
for latency as well as energy and utilisation in an extended DMI record.

The confidence switcher (Fig. 4.2) is a simple library component designed to
capture the value of a presumed-stationary statistic using a relatively small number
of costly trials. It has internal state and three user methods and is parametrised by
an integer N (default is 1,000) that averages a generic statistic over the second
N measurements and then reports that average from then onwards while making
pseudo-random occasional further measurements (with mean spacing every 1/N) to
check that the mean value has not significantly changed. The first N measurements
are not included in the average to avoid start-up transients. This gives a performance
boost of approximately N times in the overhead of this measurement. A change
by more than 1% and more than 2/N is considered significant and this raises
an SC_ERROR or SC_WARNING according to another construction parameter.
Confidence switchers are used as much as possible, both in the POWER3 library
and by the user models. They can record bit transition density counts, latency times
and and power and energy units.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 61

Fig. 4.3 Part of an example textual report file where a large number of separate components have
been included. The grand total account is clipped off the bottom of this figure

4.2.2 Output Reports

Several kinds of report can be generated with the TLM_POWER3 library. These
cover power consumption, utilisation and physical layout.

The library will automatically add up the power and energy used globally, but
further detail on individual sub-systems can also be reported by selecting other
points in the hierarchy to trace and passing the associated component as an argument
to a power trace function. Each item traced generates either a fresh set of accounts
that include that item and all of its children, or that item alone, or a fresh set of
totals for each component (i.e. for that item alone and recursively for all its children
separately).

Energy consumption and average power are primarily reported in a plain text file
emitted at the end of simulation (or at other user request dump points). An example
is shown in Fig. 4.3. This file can also be written in spreadsheet-friendly SYLK
(SYmbolic Link) form. As mentioned, utilisation, energy and transaction activity
reports are available in VCD form. The VCD generator can also output in a gnuplot-
friendly multi-column file format. Figure 4.4 shows an example VCD plot. The L/T
(loosely-timed) approach can upset the normal SystemC VCD report format owing
to temporal decoupling (events are logged in their actual simulation order rather than
their nominal correct order) but our VCD writer corrects this by writing the events
to a circular RAM buffer whose temporal extent is greater than the L/T quantum.
This also enables sensible energy plots to be made: energy events would be like
Dirac pulses if rendered directly and cumulative energy plots are not especially
informative, but our VCD writer implements a single-pole low-pass filter for the

62 D. Greaves and M. Yasin

Fig. 4.4 An example VCD trace showing static, dynamic and wiring power consumption for a
RADIX sort. The cores operate mainly from cache but exchange data between rounds

energy events so that they appear like exponentially-decaying pulses. Alternatively,
in another mode, it reports the flat average power given by the last energy quantum
divided by the time to the next-logged quantum on that account. Physical layout is
currently printed as a text file which just reports which components are inside which
others and the resulting area for each component. A graphical plot in .svg form is
being implemented.

4.3 Performance

We examined the performance of the first two testbench programs in the Splash-2
suite [14]. These are a radix sort and a L/U matrix decomposition that can run on
1–16 cores. We compiled the Splash-2 programs to run bare metal supported by the
standard linux libc and our own implementation of pthreads and a Simics/ANL
(parmacs) shim layer [5]. Our testbench uses four OpenRISC processor cores [11]
in verilated or fast ISS forms wrapped to use TLM 2.0 blocking calls served by
an un-cached instance of DRAMSIM2 [9]. The cores log 250 pJ per instruction
and run at 200 MHz unless paused waiting for other cores (50 mW core power).
Each core has separate I and D L1 caches that included 17 RAMs each (tag and
data for 8-way set associative and a write buffer). Each Core, Cache and each of
the other components shown in Fig. 4.5 is a separately-annotated SystemC module
that also inherits a TLM_POWER3 base and communication between them is
completely with blocking TLM 2.0 calls. There are 16 SystemC modules in 3
levels of hierarchy. The individual RAMs had dimensions and power consumption
computed according to the equations in Table 4.1 which were formed from our own
regression of 45 nm CACTI runs [12].

Table 4.2 shows that simply taking the four-core ISS and putting it inside
SystemC TLM degrades the performance by about ten-to-one owing to SystemC
kernel overhead (gprof reveals major costs (more than 20% of execution time) are

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 63

SystemC

TLM 2.0 Transaction Library

busmux64.cpp

uart64_cbg.cpp
xterm

stdin/
stdout

dram.64_cbgcpp

ELF
loader

ELF’
machine

code
DRAM Controler

I/O DEVICE

TLM POWER3 Library

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

U. Maryland
DRAMSIM2

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

OR1200 CPU
Core Model

8-way
set-assoc
I cache
16Kbyte

8-way
set-assoc
D cache
16Kbyte

DATA BUS 64 Bits 200 MHz

CONSISTENCY
 BUS

Net-level
connections

GCC
toolchain

Splash-2 Parmacs

Fig. 4.5 Reference hardware platform for experiments (Quad-core OPENrisc with U. Maryland
DRAM simulator)

.
Table 4.1 Interpolated
CACTI 45 nm RAM
parameter equations

Property Model equation Unit

Area 13,359 + 40*bits squm
Read energy 5+1.5E −5 pJ per bit
Write energy 10+3.0E −5 pJ per bit
Access time 0.21+3.E −4× (bits)0.5 ns

Leakage power 82 nW per bit

.
Table 4.2 Simulation performance using GCC 4.43 on Intel x86_64 3 GHz/6,000 BogoMips,
8 GB RAM (no paging) SystemC-2.2.0

Figure 4.6 name Configuration Instructions/s Ratio

Not plotted Fast ISS – No SystemC 11 ×106 1.0
Unannotated model L/T = min, POWER3 = off 1 ×106 0.1
Unannotated model L/T = max, POWER3 = off 4 ×106 0.4

DMI enabled L/T = max, POWER3 = off 7 ×106 0.7
POWER3 L/T = max, POWER3 = on 0.5 ×106 0.05

POWER3 + HOPS L/T = max, POWER3 = on + hops 0.3 ×106 0.03
POWER3 + HOPS+XITIONS L/T = max,

POWER3 = on + hops + hamming
0.2 ×106 0.02

64 D. Greaves and M. Yasin

Fig. 4.6 Relative simulation performance of approximately-timed (left-hand side) and loose-
timed (right-hand side) TLM Model (2 cores, running SPLASH-2 Radix Sort n = 100) with various
configurations

in sc_core::sc_simcontext::crunch(bool) and b_transport. This
degradation occurs with and without the inclusion of caches but the performance of
the modelled system then changes as expected (i.e. program completes much faster
with caches). The next lines in Table 4.2 are taken from Fig. 4.6 which plots the
performance with and without DMI with respect to the L/T quantum keeper value.
Using DMI and a maximal L/T quantum, so that the SystemC kernel is only entered
during bus and mutex contention, restores some of the performance.

The effect of compiling with our power library with various configurations is
reported at the bottom three lines of the table (and in further plots). It gives roughly
a factor of two slow down and the logging of hops does not make it much worse
(penultimate line). Implementing hamming distance computations under control
of confidence switchers where with N = 1,000 causes a further rough factor of 2
performance degradation. Performance can perhaps be improved upon, but it is not
overly bad. Interestingly, the degradation was much worse in an early version where
the island voltage was squared at every use rather than recomputing the transaction
energies just on each PVT change.

Figure 4.7 shows the measured power consumption of the processor (excluding
DRAM) on a real Linux workstation as three identical runs of the RADIX
benchmark were executed, the third one using only one CPU core. A 0.05 Ω resistor
was put in series with the 12 V supply to the processor and its voltage drop and
output voltage were logged at 60 Hz to record the energy consumption. Figure 4.8
shows the total power plot when the same C program was run on the SystemC
model. Some differences in general shape are obvious and need investigation.

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 65

Voltage

20 V

Power

0 W

50 W

100W

150 W

200 W

15 V

10 V

5 V

0V
Current

Ten Seconds

Fig. 4.7 Splash RADIX benchmark: probed processor power consumption. Two runs using two
cores followed by one run on a single core. The end region of each run is the checking phase.
Spikes are other unix processes on the dual-core workstation (Intel Pentium D 3 GHz)

Fig. 4.8 Splash RADIX benchmark: TLM POWER3 total power consumption: we see one run
using two cores followed by one run using a single core. No unix operating system was present

4.4 Accuracy

To explore the general accuracy of our library we used three simple test programs to
generate calibration data and used this data to predict results for a fourth program.
Each of the four programs could be run with one to six threads. We measured the
CPU energy use and execution time on a 2.4 GHz AMD Phenom X6 1045T six-core
chip, as plotted in Figs. 4.9 and 4.10 respectively. This chip has 64 KB I + D caches
per core as well as a dedicated 512 MB L2 cache per core and a shared 6 MB L3
cache. The tests could all run within the L3 cache so DRAM power did not need
to be included. The test programs were respectively a memory-bound program with
disjoint regions that each fit within the dedicated caches of a core, a memory-bound
program with a moderate amount of inter-core churn and a CPU-bound program.
Using a multivariate regression spreadsheet within Libre Office the coefficients in
Table 4.3 were determined. These were then used to calibrate the SystemC models
using the POWER3 library to predict the power consumption and performance of
other programs. Such a program was the SPLASH-2 RADIX benchmark, run with
between one and six cores and plotted as the final six results.

In each test the total amount of work was increased linearly with the number of
cores. The energy used can be seen to grow roughly linearly as well but the execution
time only grows when the cores contend for cache lines. The final six results
show good agreement between measured and predicted values (within 30%) which
is acceptable for high-level architectural exploration. We cannot expect perfect
prediction since the programs were compiled for OpenRISC during simulation and

66 D. Greaves and M. Yasin

Fig. 4.9 Measured and modelled energy consumption for four tests each with one to six cores
where coefficients from the first three tests were used to predict energy in the fourth

Fig. 4.10 Measured and modelled execution time for four tests each with one to six cores where
coefficients from the first three tests were used to predict execution time for the fourth

.
Table 4.3 Energy debits
obtained from curve fitting
between simulation and
measurement over 24 runs
with 1–6 cores in use: CPU &
Caches only (DRAM
excluded)

Operation Energy

Instruction 1 nJ
L1 + L2 I cache miss 50 nJ

L1 + L2 D cache miss 15 uJ
L2 cache snoop read 4 mJ

L2 cache consistency evict 7 mJ

4 TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 67

for x86-64 during measurement. We have recently implemented a more-detailed
model of AMD’s hyper-transport system and Hammer cache protocols and will
report more comprehensively in another paper.

4.5 Conclusion

Our framework provides an easy-to-use power estimation add on to SystemC TLM
modelling. The use of the confidence switcher to dynamically disable detailed
modelling is novel. The user may easily alter the system structure in radical ways,
changing cache size, bus layout and so on. Standard ELF binaries can be easily
generated with GCC/binutils tool chain. We also have a MIPS64 SMP system based
around the same components. Because wiring power is becoming a dominant aspect
it is important to include it in rapid exploration tools.

The benefit of rapidly exploring design options using SystemC was advocated
in [1], but having performance predictions without power predictions is no longer
acceptable. A fairly-detailed TLM model with power annotation was constructed
by [2] for a PowerPC-based SoC. The activity for individual test transactions was
extracted from VCD files and entered into a database. This approach can be applied
in our framework to generate the individual transaction energies. Power estimation
is also being performed for AMS (analog and mixed signal) subsystems within the
SystemC framework [7].

We plan to further refine our API and library and release it for download.
Including the log_hop operations inside the convenience sockets would be
sensible. Also, further support for power islands might be needed, but currently we
can use our chip number concept with zero volt supply setting to disable static power
in regions. Further work will be to integrate back-annotation flows from real layouts
and compare these with the Rentian approach. We would also like to extract net-
level activity from the Verilated models to gain additional insight and confidence.

Acknowledgements We thank Matthieu Moy for providing the TLM POWER2 base platform.

References

1. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: Mparm: exploring the multi-
processor SoC design space with SystemC. J. VLSI Signal Process. Syst. 41, 169–182 (2005)

2. Dhanwada, N.: A power estimation methodology for SystemC transaction level models. In:
Proceedings of CODES-ISSS, Jersey City, pp. 142–147 (2005)

3. Ghenassia, F.: Transaction-Level Modeling with SystemC: TLM Concepts and Applications
for Embedded Systems. Springer, Secaucus (2006)

4. Greenfield, D., Moore, S.W.: Fractal communication in software data dependency graphs. In:
SPAA’08: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures, Munich, pp. 116–118. ACM, New York (2008)

68 D. Greaves and M. Yasin

5. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: a full system simulation platform. Computer
35(2), 50–58 (2002)

6. Moy, M.: Mini power-aware TLM-platform. http://www-verimag.imag.fr/~moy/?Mini-Power-
Aware-TLM-Platform (2010)

7. Pêcheux, F., El Abidine, K.Z., Greiner, A.: Early power estimation in heterogeneous designs
using SoCLib and SystemC-AMS. In: Proceedings of the 20th International Conference
on Integrated Circuit and System Design: Power and Timing Modeling, Optimization and
Simulation, PATMOS’10, Grenoble, pp. 252–252. Springer, Berlin/Heidelberg (2011)

8. Piscitelli, R., Pimentel, A.D.: A signature-based power model for MPSoC on FPGA. VLSI
Des. 2012, 6:6–6:6 (2012)

9. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: Dramsim2: a cycle accurate memory system
simulator. Comput. Archit. Lett. 10(1), 16–19 (2011)

10. Streubuhr, M., Rosales, R., Hasholzner, R., Haubelt, C., Teich, J.: ESL power and performance
estimation for heterogeneous mpsocs using SystemC. In: Specification and Design Languages
(FDL), 2011 Forum on, Oldenburg, pp. 1–8 (2011)

11. Tandon, J.: The openrisc processor: open hardware and linux. Linux J. 2011(212) (2011)
12. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A comprehensive

memory modeling tool and its application to the design and analysis of future memory
hierarchies. In: Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA’08, Beijing, pp. 51–62. IEEE Computer Society, Washington (2008)

13. Vece, G.B., Conti, M.: Power estimation in embedded systems within a SystemC-based design
context: the PKtool environment. In: Seventh Workshop on Intelligent Solutions in Embedded
Systems, Ancona, pp. 179–184 (2009)

14. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs: characteriza-
tion and methodological considerations. SIGARCH Comput. Archit. News 23, 24–36 (1995)

http://www-verimag.imag.fr/~ moy/?Mini-Power-Aware-TLM-Platform
http://www-verimag.imag.fr/~ moy/?Mini-Power-Aware-TLM-Platform

Chapter 5
SCandal: SystemC Analysis for Nondeterminism
Anomalies

Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers,
and Gerd Ascheid

Abstract SystemC is the de facto standard language for electronic system level
design and simulation. SystemC simulations may contain nondeterminism caused
by dependencies on the process execution order (PEO) due to data dependencies of
SystemC logical processes (LP) within delta-cycles. In practice, often this is not an
issue, since simulation execution appears to be deterministic due to deterministic
SystemC scheduler implementations.

However, to satisfy the increasing need for simulation speed, parallel SystemC
engines are being researched: With no fixed strict total order among LPs executed
in parallel, nondeterministic behavior is more likely to surface and more difficult to
debug, threatening the viability to use simulation for debugging use-cases.

This work presents a new method to test for nondeterminism: Anomalies
are detected by running a simulation twice in sequential simulation mode while
systematically varying the PEO, and without the need for source code analysis.
Feasibility is demonstrated with several case studies.

5.1 Introduction

Embedded system hardware and software are becoming more complex, mainly due
to the advent of multi-core technologies. Accordingly, system design complexity
is increasing. Simulation techniques are employed to mitigate the risk of misde-
signing such systems. Simulators provide system architects with early feedback
about system behavior and performance before the actual hardware is completed.

J.H. Weinstock (�) • C. Schumacher • R. Leupers • G. Ascheid
Institute for Communication Technologies and Embedded Systems, RWTH Aachen University,
Aachen, Germany,
e-mail: jan.weinstock@ice.rwth-aachen.de; christoph.schumacher@ice.rwth-aachen.de;
rainer.leupers@ice.rwth-aachen.de; gerd.ascheid@ice.rwth-aachen.de

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__5,
© Springer International Publishing Switzerland 2014

69

mailto:jan.weinstock@ice.rwth-aachen.de
mailto:christoph.schumacher@ice.rwth-aachen.de
mailto:rainer.leupers@ice.rwth-aachen.de
mailto:gerd.ascheid@ice.rwth-aachen.de

70 J.H. Weinstock et al.

Fig. 5.1 Nondeterministic simulator example

Additionally, simulators offer to developers inspection capabilities beyond those of
hardware for investigating software malfunctions (“bugs”).

SystemC [11] is a popular C++ library to create simulators and executable
specifications of embedded systems. It allows the modeler to utilize the full
expressive power of C++ and provides all constructs commonly found in discrete
event simulation (DES) systems to describe LP behavior.

Along with complexity, the gap between real-time and simulation time is
also increasing. Two major orthogonal techniques exist to speed up simulations.
Abstraction techniques like transaction level modeling (TLM) [18] reduce the
number of simulated details and bypass the simulation engine for LP communi-
cation. Complementary, parallel simulation engines, e.g., [2, 15, 17, 20] spread the
simulation over multiple simulator host or GPU cores.

Common model source code as of today is typically written with the sequential
execution model in mind. A single LP activation is assumed to run uninterruptedly
and exclusively. For parallel simulation, under certain circumstances mutex locks
must be introduced if multiple LPs are accessing shared variables within the
same delta-cycle. This can be done manually, or in some cases automatically
[5, 14]. Another at least equally severe and intricate issue is that parallel SystemC
simulation engines face the problem of establishing a strict total order between LPs
as demanded by the SystemC standard [11]. This is especially true when faced with
LPs communicating directly via shared variables bypassing the simulation engine,
as it is often the case for TLM. Accordingly, without taking precautions, parallel
simulation behavior may be nondeterministic. An example of a nondeterministic
yet valid simulation is shown in Fig. 5.1: Here, it is undefined whether the output of
the simulation will be “1” or “2”.

Nondeterministic behavior puts the viability of parallel simulation as a tool
for hardware and software development at risk. In essence, a nondeterministic
simulation environment strips away the ability to go back in simulation time by
re-running a simulation up to an earlier timestamp. This ability is essential for
analyzing software malfunctions when race conditions are present in the simulated
system.

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 71

In this paper we present SCandal, an extension to the OSCI SystemC 2.2
reference distribution [11] for detecting dependencies on the process execution
order in simulations. The key idea is to compare observable behavior of a reference
execution with that of a provocation run. In the latter, the order of all possible
logical process pairs that are run is inverted, while respecting constraints arising
from immediate notifications. While the original motivation for this research is
to support the preparation of models for parallel simulation, the resulting tool is
equally well suited for testing sequential simulations for well-defined, deterministic
behavior.

The key contributions of this work are as follows:

Usable with binary model libraries. The proposed methodology does not require
model source code analysis or annotation, nor the observation of communication
between LPs. In contrast to previous works in the SystemC domain, SCandal can
still do a systematic analysis of the system under test, without resorting to random
testing as in [10].

Transfer of general debugging research to SystemC. SCandal focuses on situa-
tions that are likely to lead to bugs or other anomalies as identified in recent works
such as [13, 16].

Simulator observation. Techniques to detect changes in simulation behavior are
discussed, with focus on nonintrusiveness.

Anomaly detection. A set of new algorithms is presented that identify PEO
dependency issues that are likely to appear: First, their presence is tested for by
running a given simulation exactly twice. Succeeding stages then determine the time
of causation and the involved LPs.

Prototype realization. Results of applying the proposed algorithms to a variety of
well-known simulations, including all OSCI SystemC self tests and examples from
model checking tools, the OSCI TLM 2.0 package and SoClib library, are discussed.

The remainder of this chapter is structured as follows: First, a brief overview
of SystemC is given in Sect. 5.2. After that in Sect. 5.3, related work is introduced.
Section 5.4 gives details on the nondeterminism anomaly detection algorithms as
well as on the realization of the augmented SystemC kernel. Section 5.5 discusses
experimental results, and finally, in Sect. 5.6 conclusion and outlook are presented.

5.2 SystemC Simulation Concept

SystemC is a discrete event simulation framework. Simulations consist of LPs that
exchange information with each other via either channels or plain C++ shared
variables. SystemC time is divided into two hierarchical levels: timestamps and
delta-cycles. Delta-cycles add structure to timestamps and are typically used to
conduct deterministic updates of shared variables stored in channels.

72 J.H. Weinstock et al.

Events are notified by LPs, which need to specify the time at which an event will
be triggered. When an event is triggered, LPs that are sensitive to this event become
runnable and are put into the scheduler execution queue.

Event notifications can indicate three different types of time: First, a timed
notification indicates the first delta-cycle of a future timestamp, second, a delta
notification indicates the current timestamp but the next delta-cycle, or third, an
immediate notification indicates the current timestamp and the current delta-cycle.
Immediate notifications will receive special attention in later sections.

A possible scheduling algorithm is shown in Algorithm 2.

Algorithm 2: SystemC event loop (OSCI-based, simplified)
1: while timed events to process exist do
2: trigger events at that time
3: while runnable processes exist do
4: while runnable processes exist do {In-delta loop}
5: execute one runnable process and trigger events

receiving immediate notifications while executing
6: end while
7: update channels
8: trigger all delta time events
9: end while

10: advance time to next event time
11: end while

5.3 Related Work

For the sequential case, [8] discusses various approaches to ensure that SystemC
simulations behave deterministically independent of the scheduler implementation.

Research on parallel SystemC. and related environments rarely picks up the
issue of nondeterministic behavior. Among those, Simics [14] ensures deterministic
behavior by exploiting message delays and explicit communication channels,
SPRINT [4] guarantees determinism by analyzing and transforming SystemC TLM
simulations into Kahn process networks, and Parallel SimOS [19] deliberately
settles with nondeterministic execution to attain higher simulation speed.

Detecting nondeterminism. is possible with a variety of approaches that are
introduced below:

Model checking (MC) approaches have been successfully applied to SystemC
simulations to prove design properties (e.g., [1, 3, 7]). MC provides the best
flexibility, most comprehensive coverage and most extensive guarantees of all
available methods. Typically, classical MC techniques operate on an abstract system
description.

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 73

As the size of systems to check grows, the complete exploration of the model
state space may become intractable. This is known as the state space explosion
problem. Especially if models are generated from SystemC code, this is likely
to happen, since static conservative C++ pointer analysis is often not able to
sufficiently prune the model state space. Additionally, typically only a limited
subset of SystemC or C++ functionality is supported, e.g., no sc_spawn, no
sc_next_trigger etc. in [1], and no pointers, malloc, arrays, structs etc. in [3].

Dynamic partial order reduction (POR) approaches alleviate the state space explo-
sion problem. A simulation is repeatedly executed, and decisions with indeterminate
outcome are systematically varied to cover the state space completely or in part.
In contrast to classical model checking, such approaches only require information
about state changes and communication between LPs (e.g., [6, 9]). While typically
less time consuming than MC, executing a given simulation possibly many thousand
times and more may be infeasible.

Trace driven approaches typically need to execute a simulation only once for a
given input, recording a set of events. This event trace is then analyzed to recognize
patterns that could lead to assertion violations. Sen et al. [22] applies a trace-driven
approach to detect race conditions and deadlocks, e.g., by analyzing the possibility
of missing sc_event notifications. Trace driven approaches typically require source
code instrumentation to be able to identify issues related to data shared directly
between LPs.

Testing approaches are less common to analyze nondeterminism issues. In [10],
scheduling of SystemC processes within a delta-cycle is randomized. Using as-
sertions, simulations are tested by repeated execution without changing the input
parameters. The tool can operate without source code instrumentation, but gives no
guarantees which anomalies are detected.

Outside the SystemC world, CHESS [16] tries different sequentialized interleav-
ings of the OS threads of multithreaded programs to find assertion violations.

5.4 Process Order Dependency Test

The basic idea of SCandal, a tool conducting SystemC Analysis for NonDetermin-
ism AnomaLies, is to first execute a simulation with a reference process execution
order while observing simulation behavior. In successive executions, the PEO is
systematically varied while searching for deviations from the reference behavior.

In this section, the steps towards the design of the tool are outlined. First,
mechanisms for behavior observation are introduced in Sect. 5.4.1. Afterwards,
the class of targeted nondeterminism anomalies is defined in Sect. 5.4.2. Then,
the required modifications to the OSCI SystemC scheduler implementation are
discussed in Sect. 5.4.3. Finally, details of the analysis algorithms are presented in
Sect. 5.4.4.

74 J.H. Weinstock et al.

5.4.1 Behavior Observation

SCandal compares behavior of multiple simulation executions with different PEOs.
Unexpected or missing observations are treated as nondeterminism anomalies.

An observation is a unique quadruple comprising the ID of the active SystemC
process, the invocation count of this process in the current delta-cycle, the obser-
vation count of this process and the observation body. The available observation
mechanisms focus on simulation output, heap activity, random number generation
and LP activation. The user is responsible to select a feasible set of observation
mechanisms.

5.4.1.1 Standard Output

Usually, SystemC simulators and C++ programs in general generate output via two
different APIs: the Standard C Library and the C++ Standard Template Library.
A mechanism to observe output therefore has to intercept calls to these APIs and
record the string that is being sent to standard output.

Standard C Library Output. To capture output from the Standard C Library, calls
to printf have been redirected by redefining the word printf using a preprocessor
macro to custom_printf. The new function custom_printf is part of the observation
mechanism and can be called in the same way as printf using a variable parameter
list. Internally, the output string is recorded and then relayed to the standard output.

A non-invasive but non-portable approach would redirect calls using the linker.
The GNU linker ld [26] is able to rename symbols during compilation. A strategy
to replace all calls to printf with calls to custom_printf is to first rename printf
to real_printf and then rename custom_printf to printf. The original printf is still
available under the name real_printf.

The advantage of this method is that the code does not need to be recompiled, it
must only be relinked. Therefore it is compatible with simulators that make use of
precompiled third-party models.

C++Library Output. The Standard Template Library offers the class std::ostream
from which two instances std::cout and std::cerr are created upon program start.
These are used to send data to the standard output stream and the standard error
output stream, respectively.

Observation mechanisms must intercept calls made to those instances in order
to capture output. This has been achieved by replacing the internal buffers that
instances of type std::ostream operate on. These buffers have been derived from
the originally used std::streambuf class and provide an overloaded overflow method
that records any characters that did not fit into the buffer due to size limitations. To
ensure that overflow is called for every character written to the buffer, the buffer size
has been set to 0.

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 75

Fig. 5.2 Custom heap memory allocation layout

An alternate approach would replace std::cout and std::cerr with custom streams
recording output using alternate implementations of the commonly used � output
operator. Unfortunately, those streams cannot easily be replaced, since their assign-
ment operators (=) have been disabled. While there are methods available to bypass
this limitation, for the sense of simplicity and to offer the best compatibility with
third-party source code, the buffer replacement method as described above has been
chosen instead.

5.4.1.2 Heap

The heap observation mechanism keeps track of the total number and size of
memory allocations and deallocations made within a single delta-cycle by an LP
on the heap. To achieve this, the default memory provider from the Standard C
Library, i.e., malloc and free, have been replaced with a custom provider using a
similar preprocessor macro as the one described in Sect. 5.4.1.1. Also, the new and
delete operators that are usually used in C++ programs have been overloaded with
new versions requesting and deleting memory using the same custom provider.

This custom memory provider offers two functions called allocate and deallocate
that can be used for requesting or releasing heap memory. Besides allocating and
deallocating heap memory, these functions keep track of the number and size of
allocations and deallocations using a static global storage.

To be able to retrieve the size of an allocation upon releasing it, the memory
provider stores this information with the allocation itself. This method was chosen
over alternative methods like registries or maps, since these usually scale poorly
with increased amounts of allocations.

Upon allocation, the memory provider asks the operating system for a heap
region with 16 bytes more space than originally requested. The extra space is used
to store a magic number as well as the size of the heap region. The effective layout
of a single heap allocation produced with this mechanism is shown in Fig. 5.2.

When calling deallocate, the memory provider will check the magic number
identifier of the allocation that should be freed. It retrieves this number by
subtracting a constant offset from the allocation pointer, effectively looking at the
memory in front of the allocation. If the magic number is incorrect, i.e., it has value
different from the value that is assigned to all allocations by the allocate function,
no memory size accounting can be done. In this case it must be assumed that the

76 J.H. Weinstock et al.

allocation is erroneous or was done by a different memory provider. If the heap
identifier is correct, the size of the allocation is retrieved and accounted towards the
deallocation size data of the currently active LP.

Once an LP has finished its execution for a given delta-cycle, the memory
provider generates an observation including the heap statistics it has collected since
the LP was started or woken up.

In some cases it might be beneficial to exclude allocations from certain sources.
A typical example for this is a model that performs lazy initialization. All allo-
cations that are done this way would always be counted towards the first process
that accesses this model and thereby triggers the lazy initialization mechanism.
Assuming multiple LPs access the model, it depends on the PEO which process
actually performs the initialization. This is results in nondeterministic behavior,
since the PEO is undefined.

Once it has become clear that a model behaves in such a way and it can be
guaranteed that such behavior is not problematic, the lazy initialization can be
excluded from observation. This is done using a whitelist that contains the C/C++
names of all functions that should not be accounted towards the heap statistics of
an LP. Before the allocation is counted towards the heap statistics, the memory
provider tries to identify the name of the function making the request. This is
done by producing a call trace using the gcc specific functions backtrace and
backtrace_symbols. This call trace is then checked if it contains a whitelisted
function. If that is the case, the memory allocation will not be added towards
the allocations of the currently running LP. Since this feature is computationally
expensive, it is disabled by default and must be enabled manually by the user at
compile-time using a preprocessor define.

5.4.1.3 LP Activations

The SystemC processes running during every delta-cycle are recorded. In case a
process runs multiple times during a single delta-cycle, additionally the number
of invocations is stored. If immediate notifications are used to activate an LP, the
observation mechanism also stores which LP triggered the execution.

The behavior description generated with this observation mechanism serves
two purposes. First, it is used to check if the processes are invoked within the
correct delta-cycle. Second, the information is used as a reference PEO from which
variations are computed systematically for later test iterations.

5.4.1.4 Random Number Generator (RNG)

Random number generators (RNG) are widely used in SystemC simulations, e.g.,
to simulate random traffic load or random input patterns for a system or component
under test. This kind of intended non-determinism needs to be filtered out before
looking for unintended nondeterminism like those caused by PEO dependencies.

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 77

During each simulation run, every LP must always see the same invariant sequence
of random numbers as it saw during the initial execution.

A widely used RNG implementation is provided by the C standard library. It
produces a sequence of pseudo random numbers given that it was initialized with
a non-zero, random seed value. Usually the system real time clock is used for this
purpose. Each time a simulation is run the real time clock will return a different
value to be used as a seed, resulting in a different sequence of random numbers and
possibly in a change of behavior of the simulator.

To counter this, the default RNG has been replaced with a custom one, allowing
the user to specify a seed that will be reused for all test iterations to make sure
random number sequences stay invariant at least for the duration of the test.

However, changes in the PEO might still result in LPs seeing different random
numbers. Since the RNG hands out the random numbers on a first-come-first-serve
basis, the individual sequence of numbers that an LP sees depends on its position in
the execution order. Therefore it is necessary to provide independent RNGs for each
of the LPs.

5.4.1.5 User-Provided

Previously described observation mechanisms focus exclusively on automatic
observation of generic simulator behavior. They are not fit to describe anything
specific about the behavior of the simulator since they lack the semantic context
(e.g., a packet being relayed by a router model or the reception of an interrupt in a
processor model). To increase simulator behavior coverage, the default observation
mechanisms can be extended with user-provided observers.

5.4.2 Detectable Anomalies

Related research in the debugging and general purpose computing communities
studies the patterns of common software malfunctions. Lu et al. [13] analyzed
known software malfunctions of popular general purpose software packages: for
the examined software, 96% of all encountered malfunctions could be triggered by
establishing a particular order between just two sections of selected threads of a
multi-threaded program.

Additionally, [16] investigates how to expose bugs in general purpose software by
sequentializing the execution of parallel programs and putting OS thread switching
under the control of a modified scheduler. It is reported that typically switching
threads at one or two distinct points in time is enough to force a malfunction to
appear.

78 J.H. Weinstock et al.

To summarize, a coverage that is viable in practice can be attained even by highly
restricted search patterns. Transferring these results to SystemC, this work focuses
the search on nondeterminism anomalies that satisfy the following assumptions:

• The anomaly can be observed (see Sect. 5.4.1).
• An anomaly is triggered by changing the execution order of exactly two LP

invocations that are executed in the same delta-cycle.
• Changing the order of other process pairs does not prevent the anomaly from

appearing.

The analysis framework is also able to find anomalies that do not satisfy these
conditions, but their detection is not guaranteed (also see Sect. 5.4.4 below).

5.4.3 Controlled Scheduling

The testing algorithms described below require a number of enhancements over the
standard SystemC scheduler:

Uniform treatment of sc_methods and sc_threads. The OSCI reference sched-
uler provides separate queues for both kinds of LPs that are always processed in
succession. A generalized scheduling mechanism has been realized that supports
mixed execution of sc_threads and sc_methods in arbitrary order.

Scheduling dependency tree (SDT). For every delta-cycle an SDT is stored
recording which LP caused which LPs in which order to be scheduled by using
immediate notifications (see Sect. 5.2). LPs runnable at delta-cycle start are recorded
as children of the delta-cycle SDT root node.

5.4.4 PEO Dependency Analysis

The nondeterminism anomaly detection process comprises four stages, which are
run in succession. Only the first two stages are mandatory, while the remaining
stages try to derive additional information. The stages and applied algorithms are
presented below; Table 5.1 summarizes the individual stage runtime complexities.

Stage 1: Reference Generation

The simulation to analyze is executed once. Enabled observers create the reference
observation database. Moreover, SDTs (see Sect. 5.4.3) of every delta-cycle are
recorded for use in later stages.

The key point during reference generation is that a newly proposed prepend-
new-process-list (PNPL) LP scheduling algorithm is used inside the delta-cycle

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 79

Table 5.1 Analysis stages runtime complexities

Stage Req. sim. exec. cend

Reference generation 1 user set
Anomaly detection 1 user set
Causation delta-cycle detection �log2(cobservation +1)� cobservation

Dependant process identification best 2 ccausation

average np ccausation

worst 2np −1 ccausation

cend Delta-cycle up to which the simulation is run
cobservation Observation delta-cycle index
ccausation Causation delta-cycle index
np Process activations in causation delta-cycle

scheduling loop. This allows to efficiently reverse the PEO later in stage 2. An
algorithm close to the OSCI reference implementation scheduling and the PNPL
scheduling algorithm are displayed in Algorithm 3; their difference can be seen in
lines 6–10.

Algorithm 3: OSCI/PNPL delta-cycle scheduling algorithm
1: execution_list := list of runnable processes
2: scheduling_list := empty
3: while execution_list not empty do
4: extract and execute first process from execution_list

{processes that became runnable via immediate-notifications
are appended to scheduling_list}

5: if scheduling_list not empty then
6: if mode is OSCI then
7: append scheduling_list to execution_list
8: else if mode is PNPL then
9: prepend scheduling_list to execution_list

10: end if
11: scheduling_list := empty
12: end if
13: end while

Stage 2: Anomaly Detection

The goal of this stage is to decide whether a detectable anomaly (see Sect. 5.4.2)
is present. To achieve this, the simulation is executed again, inverting the execution
order of all possible LP pairs within delta-cycles while preserving causal relation-
ships during a single simulator run. The algorithm to reverse the execution order is
shown in Algorithm 4 and called causal-reversed-order scheduling (CRO) below.

80 J.H. Weinstock et al.

Algorithm 4: CRO delta-cycle scheduling algorithm
1: reference_list := reference process execution order
2: execution_list := list of runnable processes
3: scheduling_list := empty
4: while execution_list not empty do
5: intersect reference_list and execution_list

{preserve order of reference list}
6: select last process from intersection
7: remove last occurrence of this process from both lists
8: execute this process

{processes that become runnable via immediate-notifications are appended to
scheduling_list}

9: if scheduling_list not empty then
10: join scheduling_list to execution_list
11: scheduling_list := empty
12: end if
13: end while

While the simulation is re-executed with CRO scheduling, observations are com-
pared to the reference observation database. Missing or unexpected observations
indicate nondeterministic behavior.

In case the observations of reference and detection run match exactly, no
detectable anomaly is present. Yet if still an anomaly not matching the criteria of
Sect. 5.4.1 is suspected, a test mode that continuously re-executes the simulation
with randomized PEOs is available to try to discover such anomalies by chance,
similar to [10]. This mode is not used in the experiments presented in Sect. 5.5.

Reason to use PNPL and CRO. PNPL scheduling corresponds to a pre-order tree
walk, and CRO to an anti-pre-order tree walk over the SDT (see Sect. 5.4.3). During
a pre-order tree walk, for any given tree node P (see Fig. 5.3), all nodes PL to the
left of P or left to one of its ancestors will be visited before P; all nodes PR will
be visited in the same manner after P. For an anti-pre-order tree walk, the opposite
is the case. For both kinds of tree walks, ancestors and descendants will always be
visited before and after P, respectively. Accordingly, for any pair of nodes P and P2

exactly one of the following two conditions is true: If P2 is an ancestor or descendant
of P, then their order will not change regardless of the tree walk being a pre-order
or an anti-pre-order walk. Or, if P2 lies inside PL or PR, then using an anti-pre-order
tree walk instead of a pre-order tree walk will cause P and P2 to be in reverse order.

Therefore, compared to PNPL scheduling, CRO scheduling changes the execu-
tion order of all possible LP pairs as long as causality is not violated.

Stage 3: Causation Delta-Cycle Detection

This stage determines in which delta-cycle an anomaly that was observed in
stage 2 was actually caused. Therefore, a binary search is conducted as shown in
Algorithm 5.

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 81

Fig. 5.3 Relationships in SDT

Algorithm 5: Binary search for causation delta-cycle
1: interval := [0 .. index of observation delta-cycle]
2: while interval size > 1 do
3: execute simulation with PEO in first half inverted
4: if anomaly appeared then
5: interval := first half of interval
6: else
7: interval := second half of interval
8: end if
9: end while

10: return index of single delta-cycle left in interval

To employ a binary search method, it is required that changing the PEO in
multiple delta-cycles at the same time will not hide the anomaly. This is the case for
all detected anomalies presented in the case studies (see Sect. 5.5). Regular linear
search is required otherwise.

Stage 4: Dependent Processes Identification

The goal of this stage is to identify two LPs that, if their execution order is reversed,
cause an anomaly to appear. The simulation is advanced to the causation delta-
cycle ccausation as detected in stage 3 using PNPL scheduling. The two methods for
detecting two processes of a dependent LP pair inside ccausation are described below.

First dependent process (stage 4a). In Fig. 5.4 an SDT is shown, with LP nodes
arranged from left to right in the same order as they are executed when using PNPL
scheduling. During successive simulation runs, each LP is individually moved to
the back of the queue. Due to causal relationships, all descendant LPs must move
together with the moved ancestor. Numbers indicate the order in which LPs are
tested: Starting with processes executed last ensures that a process (e.g., B) is always
tested after all of its descendants (in case of B: G, H, I). Therefore, if the anomaly
appears when moving B to the end position, this can only be caused by B itself, but
not due to descendants of B, since these have already been tested.

82 J.H. Weinstock et al.

Fig. 5.4 LPs placed at process queue end (stage 4a)

Fig. 5.5 LP and descendants ripple back (stage 4b)

Second dependent process (stage 4b). Once an LP with dependencies has been
identified in Stage 4a, it is moved step-by-step starting from the end back towards
its original position. It is advantageous to start from the end position, since this again
ensures that the first dependent LP is always already tested against all descendants
of possible second dependent LPs. In Fig. 5.5, an example is shown where B has
been identified as first dependent process. During the following simulation runs,
B will be moved step-by-step back towards its original position until the anomaly
disappears, as indicated by the numbers inside the diamond marks. The LP moved
over last must be the second dependent process. Since it is already known from stage
4a that the second dependent process must be located between the first dependent
LP and the end position, it is sufficient to move B step-wise towards the start until
one step before reaching its original position.

Once both processes have been identified, the testing framework can be in-
structed to run the simulation again, reversing the order of the two dependent
processes. Just before executing the offending LP invocations, a hook function is
called that can be used to place debugger breakpoints to allow manual inspection of
the LP states.

5.5 Experiments and Case Studies

In this section, the practicability of SCandal is evaluated. First, the results of a
number of synthetic tests are given in Sect. 5.5.1. After that, the experiences of
testing SoClib [23] systems are summarized in Sect. 5.5.2. Finally, the results of

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 83

Fig. 5.6 Corner cases – multiple invocation test

analyzing a large system compatible with parallel SystemC simulation are presented
in Sect. 5.5.3.

5.5.1 Synthetic Tests

Random automated synthetic tests. were generated consisting of randomly
generated SDTs with randomly selected dependent LPs appearing in random delta-
cycles. Dependent LPs simulate non-determinism by accessing a shared global
variable. The first LP sets this variable from its initial value of 0 to 1. The second
LP reads this value and saves it inside local storage for deferred output. SCandal
has successfully completed all of more than 106 test iterations.

Corner cases. not covered by the random tests have been checked using hand-
crafted tests. Such corner cases include PEO dependencies between LPs that run
multiple times during a single delta-cycle and more particularly LPs exercising self-
reactivation. Since the OSCI SystemC kernel does not allow an LP to be scheduled
again while it is running, such behavior is only valid under special circumstances as
described below.

For an LP to be able to re-run itself during a single delta-cycle, a second LP must
be introduced that gets woken up from the first LP using an immediate notification.
It is the task of the second LP to wake up the first LP also using an immediate
notification before yielding its execution.

Figure 5.6 illustrates a test simulator has been created to investigate such kind
behavior. It consists of two process groups with eight LPs each. In each group,
the first LP is woken up at the beginning of the simulation and triggers the next
one from its own group using an immediate notification. The last LP from each
group notifies the first LP again. This circle continues for a random number of full
iterations. From each group one LP is randomly selected to expose nondeterministic
behavior by accessing a shared global variable. The test is passed once both LPs that
are responsible for the anomaly have been identified and the number of invocations

84 J.H. Weinstock et al.

Table 5.2 OSCI TLM 2.0 examples results

Test cobservation ccausation Runtime (ms) RefDB size (kB) cend

bus 1 0 287 106 600
cancel-all 76 76 119 26 101
multi-sockets 1 0 164 25 159
at-mixed-targets 2 1 111 393 868
at-ooo 3 1 101 438 931
at-4-phase 4 1 98 456 1,026
at-ext.-opt. 2 1 99 461 962

that these LPs went through before triggering the nondeterminism has been stated
correctly. SCandal has successfully completed all of more than 105 test iterations.

All OSCI SystemC self-tests. have been analyzed, and at least in the original,
unmodified tests no anomalies were found. The self-tests are coded either in a fully
deterministic modeling style, or do not contain any concurrency at all (e.g., testing
output formatting).

sc_event_queue. is a standard primitive channel which buffers multiple event
notifications for a single event. The OSCI implementation (version 2.2.0) contains
PEO dependencies. An assertion violation is triggered in case the queue cleanup
process is scheduled after another process (LPcancel) that calls the cancel_all method
of the event queue. This situation can be created by introducing an event that
activates LPcancel and then notifying this event before notifying the event queue.

This issue appeared when trying to adapt the OSCI event queue for parallel
simulation. While it is straight-forward to protect its data members with synchro-
nization primitives, diagnosing the infrequently appearing assertion violations due
to PEO variations in parallel simulation mode was a complex task. SCandal now
reproducibly triggers the assertion during stage two in sequential mode.

OSCI TLM 2.0 examples. are written using a nondeterministic modeling style. In
Table 5.2, observation cycles (cobservation), causation cycles (ccausation), the required
wallclock time to run the complete analysis (Runtime), the size of the reference
observation database (RefDB) required as well as the number of delta-cycles of the
individual tests (cend) are summarized for all tests with anomalies detected by the
LP scheduling or standard output observer.

The main cause for nondeterministic behavior is that inside the interconnect
models requests are forwarded without being arbitrated.

SCOOT examples [21]. pressure and mutex have been analyzed. Table 5.3 sum-
marizes the analysis results.

In the mutex example, a dependency is detected between two LPs that concur-
rently access a shared variable protected by a mutex lock.

In the pressure example, two LPs perform concurrent operations on a shared vari-
able. To identify the nondeterministic behavior, the proposed tool required a custom

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 85

Table 5.3 SCOOT examples results

Test cobservation ccausation Runtime (ms) RefDB size (kB) cend

mutex 0 0 8 82 400
pressure – – <4 3.3 600
pressure-obs. 0 0 4 5.7 40

observer (see Sect. 5.4.1) for the shared variable to detect the nondeterminism, since
its value is never further used or output.

Indexer [12]. is a well-known benchmark for MC tools. For analysis with the
proposed tool, the already present observation instrumentation for POR tools had
to be replaced with plain variable accesses. Further on, after the test finishes, the
computed hash table needed to be output by a newly introduced process once so that
the result of the computation is visible to the LP output observer. SCandal was then
able to automatically identify the nondeterministic test behavior and the involved
processes.

5.5.2 SoClib

SoClib is a model library for virtual MPSoC prototyping [23]. The SoClib example
systems tutorial0, tutorial0_ppc405 and tutorial1 of the SoClib tutorial [24] con-
taining MIPS and PowerPC processor models have been analyzed to evaluate how
SCandal integrates with large projects: It was sufficient to exchange the SystemC
kernel. Nondeterminism analysis yielded no anomalies though, even after manually
instrumenting the simulations with custom observers. This was expected, as the
tested SoClib models are written using a cycle-accurate and bit-accurate (CABA)
modeling style.

5.5.3 Parallel Simulation of Mixed-Level Multicore Platform

The original motivation to create the proposed tool stems from experiences during
the development of the inhouse virtual Pitaya multicore platform (see Fig. 5.7). Its
main use is experimentation with new simulation technologies. It comprises cycle-
accurate (CA) as well as TLM-style models and behaves deterministically. The CA
inhouse processor models were generated using [25].

Two times nondeterminism anomalies were encountered when executing in
parallel mode, which manifested themselves in minor variations in the timing of data
packets. Both times the issues were related to performance optimizations inside a
newly developed queue modeling primitive used for deterministic message delivery
to LPs. Although the issues have already been fixed by now, they serve as test cases
for the proposed tool.

86 J.H. Weinstock et al.

Fig. 5.7 Overview of Pitaya multicore platform

Table 5.4 Pitaya test results (8×9 tiles system)

Test cobservation ccausation Runtime (min) RefDB size (GB) cend

bug1 2,69,317 2,69,317 94 1.3 300 k
bug1-obs. 2,52,237 2,52,237 86 1.5 300 k
bug2 2,52,237 2,52,235 82 1.3 300 k
current – – 17 4.7 1 M

When testing the system using SCandal with both issues present, the default
memory observer (see Sect. 5.4.1) detected a PEO dependency inside the new queue
modeling primitive and correctly identified the involved LPs. Adding a custom
observer to track activity details of the identified object allowed to detect the same
anomaly with identical LPs even earlier in simulation time. For the second issue,
the default observers already indicated the same processes and the same time as the
custom observer.

In Table 5.4, the analysis results of a Pitaya system exhibiting both issues
are shown. The system comprises 72 complete computational tiles. The resource
consumption of the tool is still low enough to successfully complete all four stages
of the analysis.

In retrospective, placing mutex locks to achieve thread-safety was a straight-
forward task for the given system. However, detecting and analyzing the PEO
dependencies manually at that time was a complex and time-consuming activity. In
contrast, today SCandal identifies the involved LPs reproducibly and automatically.

5.6 Conclusion and Outlook

The presented framework detects process execution order dependencies in a large
variety of SystemC simulations. While following a testing methodology, the most
important class of nondeterminism anomalies is reliably identified. SCandal is not

5 SCandal: SystemC Analysis for Nondeterminism Anomalies 87

intended to substitute MC or POR approaches. But, by reason of its low resource
consumption, the tool can be employed instead in situations where it is not viable to
use MC or POR tools due to hardware or computation time requirements.

In the future, parallel execution of reference and detection run will be enabled to
compare observation data on the fly and to allow analysis runs of arbitrary length.
Moreover, possible algorithms with logarithmic complexity for stages 4a and 4b
need to be investigated to further reduce the time needed for analysis by SCandal.

Acknowledgements This work has been supported by the German excellence cluster UMIC and
the European FP7 project EURETILE.

References

1. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In: Proceedings of
the 2008 IEEE/ACM International Conference on Computer-Aided Design, ICCAD’08, San
Jose, pp. 356–363. IEEE Press, Piscataway (2008)

2. Chen, W., Domer, R.: An optimizing compiler for out-of-order parallel ESL simulation
exploiting instance isolation. In: Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC), Sydney, pp. 461–466 (2012)

3. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: a software model
checking approach. In: Proceedings of the 2010 Conference on Formal Methods in Computer-
Aided Design, FMCAD’10, Austin, FMCAD Inc. (2010)

4. Cockx, J., Denolf, K., Vanhoof, B., Stahl, R.: SPRINT: a tool to generate concurrent
transaction-level models from sequential code. EURASIP J. Appl. Signal Process. 2007(1),
213–213 (2007). http://dl.acm.org/citation.cfm?id=1289174

5. Dömer, R., Chen, W., Han, X., Gerstlauer, A.: Multi-core parallel simulation of system-level
description languages. In: Proceedings of the 16th Asia and South Pacific Design Automation
Conference, ASPDAC’11, Yokohama. IEEE Press, Piscataway (2011)

6. Godefroid, P.: Software model checking: the VeriSoft approach. Form. Methods Syst. Des. 26,
77–101 (2005)

7. Große, D., Kühne, U., Drechsler, R.: HW/SW co-verification of embedded systems using
bounded model checking. In: Proceedings of the 16th ACM Great Lakes Symposium on VLSI,
GLSVLSI’06, Philadelphia, pp. 43–48. ACM, New York (2006)

8. Grotker, T.: System Design with SystemC. Kluwer, Norwell (2002)
9. Helmstetter, C., Maraninchi, F., Contoz, L.M., Moy, M.: Automatic generation of schedulings

for improving the test coverage of systems-on-a-chip. In: Proceedings of the Formal Methods
in Computer Aided Design, FMCAD’06, San Jose, pp. 171–178. IEEE Computer Society,
Washington, DC (2006)

10. Herrera, F., Villar, E.: Extension of the SystemC kernel for simulation coverage. In: Forum on
Specification and Design Languages, FDL’06, pp. 161–168 (2006)

11. IEEE Standard SystemC Language Reference Manual. IEEE Std 1666–2005 pp.0–1423
(2006). doi: 10.1109/IEEESTD.2006.99475 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=1617814&isnumber=33906

12. Indexer Benchmark: http://trac.assembla.com/scrv/browser/examples/rvs/indexer/indexer.cpp.
Accessed 2011

13. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In: Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII,
Seattle, pp. 329–339. ACM, New York (2008)

http://dl.acm.org/citation.cfm?id=1289174
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1617814&isnumber=33906
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1617814&isnumber=33906
http://trac.assembla.com/scrv/browser/examples/rvs/indexer/indexer.cpp

88 J.H. Weinstock et al.

14. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: a full system simulation platform. Computer
35(2), 50–58 (2002)

15. Mello, A., Maia, I., Greiner, A., Pecheux, F.: Parallel simulation of SystemC TLM 2.0
compliant MPSoC on SMP workstations. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE’10, pp. 606–609, Leuven. European Design and
Automation Association (2010)

16. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing Heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, Berkeley, pp. 267–280. USENIX
Association (2008)

17. Nanjundappa, M., Patel, H.D., Jose, B.A., Shukla, S.K.: SCGPSim: a fast SystemC simulator
on GPUs. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference,
ASPDAC’10, Taipei. IEEE Press, Piscataway (2010)

18. Open SystemC Initiative: OSCI TLM-2.0 Language Reference Manual. http://www.accellera.
org/downloads/standards/systemc (July 2009)

19. Robert E. Lantz: Parallel: Scalability and performance for large system simulation. Ph.D.
thesis, Computer Systems Laboratory, Stanford University (June 2007)

20. Schumacher, C., Leupers, R., Petras, D., Hoffmann, A.: parSC: synchronous parallel SystemC
simulation on multi-core host architectures. In: Proceedings of the 8th IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, CODES/ISSS’10,
Scottsdale, pp. 241–246. ACM, New York (2010)

21. SCOOT, a tool for the static analysis of SystemC http://www.cprover.org/scoot. Accessed 2011
22. Sen, A., Ogale, V., Abadir, M.S.: Predictive runtime verification of multi-processor SoCs

in SystemC. In: Proceedings of the 45th Annual Design Automation Conference, DAC’08,
Anaheim, pp. 948–953. ACM, New York (2008)

23. SoClib, an open platform for virtual prototyping of multi-processor systems on chip. http://
www.soclib.fr. Accessed 2011

24. SoClib Appliance. http://www.soclib.fr/appliance/soclib-vm-latest.zip
25. Synopsys Inc.: Synopsys processor designer. http://www.synopsys.com/Systems/BlockDesign/

ProcessorDev/Pages/default.aspx
26. The GNU Linker ld.: http://sourceware.org/binutils/docs/ld/Options.html. Accessed 2011

http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc
http://www.cprover.org/scoot
http://www.soclib.fr
http://www.soclib.fr
http://www.soclib.fr/appliance/soclib-vm-latest.zip
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://sourceware.org/binutils/docs/ld/Options.html

Chapter 6
A Design and Verification Methodology
for Mixed-Signal Systems Using SystemC-AMS

Yao Li, Ramy Iskander, Farakh Javid, and Marie-Minerve Louërat

Abstract This chapter presents a unified platform for design and verification of
mixed-signal systems using SystemC-AMS standard. The platform bases on a
bottom-up design and a top-down verification methodologies. In the methodologies,
several hierarchical abstraction levels of the system are considered. These abstrac-
tion levels are: system, functional, macromodel and circuit levels. We introduce
a simple and efficient solution to implement an interface between system level
models and their circuit level realizations. Simulation tools such as SystemC-AMS
and Spice simulators are combined with a sizing tool named CHAMS, in order to
achieve a unified and standard design and verification environment. Moreover, a
transient simulation scheme is proposed to simulate nonlinear dynamic behavior of
complete mixed-signal systems. The unified platform is used to design and verify
a pipeline ADC. The simulation results prove the effectiveness of the proposed
structure and methodology.

6.1 Introduction

Today’s electronic systems became more and more complex and heterogenous.
Besides digital parts performing signal processing operations and software task
running on dedicated processors, analog and mixed-signal parts became very
critical components in most electrical systems. Due to their complexity and design
challenges [1–3], these components became a bottleneck in the design process of
a SoC. On the one hand, important system functions like clock generation, or
signal conversion between analog and digital signals, are realized by analog circuits.
On the other hand, analog circuits are difficult to design and reluctant to design

Y. Li (�) • R. Iskander • F. Javid • M.-M. Louërat
Université Pierre et Marie Curie, LIP6, 4 Place Jussieu, 75252 Paris, France,
e-mail: Yao.Li,Ramy.Iskander; Farakh.Javid; Marie-Minerve.Louerat@lip6.fr

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__6,
© Springer International Publishing Switzerland 2014

89

mailto:Yao.Li,Ramy.Iskander
mailto:Farakh.Javid
mailto:Marie-Minerve.Louerat@lip6.fr

90 Y. Li et al.

automation. Right now, various tools are employed to simulate these components
from system-level specifications down to circuit-level realizations. For example,
SystemC-AMS [4] uses analog and mixed-signal extensions to define a system-
level behavior, while SPICE [5] simulators are used to simulate transistor netlists to
determine linear and nonlinear circuit behavior.

In [6], a method was proposed to achieve a top-down analog design methodology.
Nevertheless, this attempt to establish a link between system-level description and
circuit-level realization combines many different design tools to achieve a common
design environment. This lacks a clear implementation of a unified platform
supporting an interface to connect system-level descriptions to its circuit-level
realization. Today analog circuit design demands further automation, hence the co-
simulation of mixed-signal design is overly used in recent research. It aims at mixing
with behavioral models, such as transfer function, VHDL or verilog behavioral
descriptions and signal flow graphs, with structural model, such as circuit netlist
(resistor, inductance, capacitor, transistor, source elements).

Many existing co-simulation approaches are based on SystemC [7] or SystemC-
AMS [4]. In [8], co-simulation refined models with Timed Data Flow (TDF)
paradigm of SystemC-AMS are presented. SystemC-AMS acts as master control-
ling VHDL test bench. Another attempt to achieve analog mixed signal simulation
using loose coupling between SystemC and SPICE is presented in [9]. The SPICE
simulator is restarted till next SystemC event using restored simulation state from
previous call.

In this chapter, we propose a unified platform for design and verification of
mixed signal systems which relies on the bottom-up design process. This bottom-
up process of synthesis and optimization is followed by a top-down analysis and
simulation. We provide a standard interface between system-level models and their
circuit-level realizations to be able to connect and simulate different components
with different levels of abstraction. Our approach encapsulates the full spectrum
of design from the system-level to the circuit-level of a mixed-signal design in
one platform based on C/C++ and SystemC. Having a single tool for design and
simulation is more than convenient, since it helps in optimizing efficiency in the
design chain.

This work is part of CHAMS project [10–13], which is developed at the LIP6
(Laboratoire d’informatique de Paris 6). CHAMS is an analog design automation
tool that provides assistance to the designer for the sizing and biasing step, as well
as for the layout generation step. Three advantages that make CHAMS suitable to
be an efficient system to circuit interface:

1. It is based on the C/C++ language which can be used with SystemC/SystemC-
AMS.

2. CHAMS implements a standard interface for the encapsulation of an electrical
simulator.

3. It has a very fast sizing and biasing tool [10–12].

6 A Design and Verification Methodology for Mixed-Signal Systems 91

System
Model

Circuit
SPICE Simulator

Circuit level Design

SystemC_AMS

System model Design

Circuit sizing and
biasing procedure
(CHAMS interface)

TestBench

in out

Top-Down simulation

System to Circuit
(CHAMS Interface)

Bottom-Up Design

SystemC_AMS

System level modeling

SPICE Simulator

Circuit level simulation

SystemC_AMS

Simulation stimulis

Circuit Simulator
control engine

(CHAMS interface)
A B

Fig. 6.1 Proposed platform architecture

The chapter is organized as follows. Section 6.2 describes the AMS extensions of
SystemC, the circuit design procedure and the circuit simulator control engine that
are part of the unified platform. Section 6.3 gives an overview of the different levels
of abstractions by introducing a pipeline ADC case study. The system level to circuit
level interface implementation is introduced in Sect. 6.4. Section 6.5 presents the
nonlinear dynamic analog simulation method. The simulation results are reported in
Sect. 6.6. Section 6.7 concludes the demonstrated work.

6.2 Unified Platform Architecture

Figure 6.1 represents the proposed platform architecture to connect system-level
descriptions to their circuit-level realizations. This platform is composed of a
bottom-up design path as well as a top-down simulation path.

1. The bottom-up design path consists of :

(a) A SPICE simulator used for sizing.
(b) The SPICE simulator is controlled by the circuit sizing and biasing procedure.
(c) The sizing and biasing procedure is called from the SystemC-AMS models.

This procedure provides a sized circuit to be used in the following top-down
simulation.

92 Y. Li et al.

2. The top-down simulation path consists of :

(a) The testbench instantiates the SystemC-AMS models and generates the
corresponding stimuli signals.

(b) SystemC-AMS models to be simulated.
(c) Circuit simulator control engine is controlled by CHAMS and pass the

stimulus to the circuit netlist.
(d) Analysis simulator running the circuit netlist.

As shown in Fig. 6.1, CHAMS interface consists of two main parts: the circuit
simulator control engine (block A in Fig. 6.1) and the circuit sizing and biasing
procedure (block B in Fig. 6.1).

A complete system can be described using only the AMS extension of
SystemC [4] with some parts described in SPICE netlists. The proposed platform
is capable to simulate the whole system with different levels of abstraction. With
this method, we can verify the impact of a circuit block (transistor netlist) at the
system level. Along with it, the system level considerations traverse the different
design levels from the system level over the functional level down to the circuit
level.

6.2.1 SystemC AMS Extensions

The SystemC AMS extensions [4, 14] provide a framework for functional
modeling [15], integration validation, and virtual prototyping [16] of
Embedded Analog/Mixed-Signal Systems. The SystemC AMS extensions provide
three different models of computation: Timed Data Flow (TDF), Linear Signal Flow
(LSF), and Electrical Linear Networks (ELN).

In our approach, the Timed Data Flow model of computation is used. Unlike
the TDF modeling style, the LSF and ELN modeling styles can only be composed
from their own linear primitives, which are too limited to model complex mixed-
signal circuit. TDF is a discrete-time modeling style, which considers data as
signals sampled in time. These signals are tagged at discrete points in time and
carry discrete or continuous values, such as voltage amplitudes. Besides, TDF
can be used with great efficiency to model complex non-conservative behaviors at
system, functional and macromodel level. Figure 6.2 shows the principle of the TDF
modeling. The basic entities found in the TDF model of computation are: the TDF
modules, the TDF ports and the TDF signals. The set of connected TDF modules
form a directed graph, called a TDF cluster as defined below :

• TDF modules are the vertices of the graph.
• TDF signals correspond to its edges.

Each TDF module involved in the cluster contains a specific C++ member
function, named processing(), that computes a value at each time step.

6 A Design and Verification Methodology for Mixed-Signal Systems 93

Fig. 6.2 A basic TDF model
with 3 TDF modules and 2
TDF signals

The TDF modules’ schedule and sampling rate are known in advance for
each TDF cluster. Therefore, this schedule can be statically determined before the
simulation starts and corresponds to a static schedule of the TDF cluster.

If enough data samples are available at its input ports, depending on the involved
port rates, the samples computed by a TDF module are written to the related output
ports and describe continuous-time behaviors.

6.2.2 CHAMS Sizing and Biasing Engine

CHAMS [10–12] is a tool that provides assistance to the designer for the design
of analog firm intellectual properties (IP) [17, 18]. It allows to generate the analog
IP sizing and biasing procedure. It consists of the following three parts: sizing and
biasing operators, graph representation, simulator encapsulation.

6.2.2.1 Sizing & Biasing Operators

A reference transistor is defined for each device as the only transistor to be sized
and biased in the device. Sizing and biasing operators aim at computing the sizes
and biases of reference transistors, they are based on the numerical inversion of the
transistor compact model. Every transistor is defined by the following parameters :
W (width), L (length), VGS (gate-source voltage), VDS (drain-source voltage), VBS

(bulk-source voltage), VEG (overdrive gate voltage), ID (drain current), Temp
(temperature). Each operator has a set of input parameters that are set by the designer
and computes unknown widths and biases (see Table 6.1, where VEG =VGS −VTH).
An operator computes either :

W = fW (Temp, ID,L,VGS,VDS,VBS) (6.1)

or:

VGS = fVGS(Temp, ID,W,L,VDS,VBS) (6.2)

94 Y. Li et al.

Table 6.1 Class definition of sizing & biasing operators

Operator Definition

OPV S(VEG,VB) (Temp, IDS ,L,VEG,VD,VG,VB) → (VS ,W,VT H)

.

OPV G(VEG) (Temp, IDS ,L,VEG,VD,VS) → (VG ,W,VB,VT H)

.

OPV GD(VEG) (Temp, IDS ,L,VEG,VS) → (VG,VD,W,VB,VT H)

.

OPW (VG ,VS) (Temp, IDS ,L,VD,VG,VS) → (W,VB,VT H)

.

OPIDS(VG ,VS) (Temp,W,L,VD,VG,VS) → (IDS,VB,VT H)

.

fW and fVGS are two inverse functions of the transistor compact model given in
Eq. (6.3) :

ID = fMODEL(Temp,W,L,VGS,VDS,VBS) (6.3)

where MODEL is a standard transistor model like BSIM3v3 [19], BSIM4 [19],
PSP [20] and EKV [21]. fW and fVGS are monotonic functions, thus Eqs. (6.1) and
(6.2) are solved using the Newton-Raphson method.

Table 6.1 gives the definition of the main five classes of the sizing and biasing
operators applied to the MOS transistor. Let us examine in further detail one
operator such as OPVG(VEG). The OPVG operator class is gate voltage VG. The
OPVG(VEG) is called whenever VEG is known and the MOS transistor is bulk-source
connected. This operator computes VG, VB, VT H and W , simultaneously, in terms of
Temp, IDS, L, VEG, VD and VS.

6.2.2.2 Graph Representation

To size and bias a reference transistor, a bipartite DAG (Directed Acyclic Graph)
is associated with it. The bipartite graph [22] for the sizing and biasing of the
diode-connected transistor using operator OPVGD(VEG) (Table 6.1) is shown in
Fig. 6.3b. A set of input parameters are defined for the diode-connected transistor.
The sizing and biasing operator OPVGD(VEG) is then called to compute the set of
output parameters.

6.2.2.3 Simulator Encapsulation

Sizing and biasing operators use a specific simulator encapsulation that allows
to interface with industrial design kits to ensure very accurate computed results.
The simulator encapsulation is illustrated in Fig. 6.4. At the bottom is an electrical
netlist that specifies the suitable technology and contains only two transistors: one

6 A Design and Verification Methodology for Mixed-Signal Systems 95

a b

Fig. 6.3 (a) NMOS reference transistor. (b) Graph representing the input parameters and output
parameters of the operator OPVGD

Fig. 6.4 CHAMS sizing
engine: electrical simulator
encapsulation within sizing
and biasing operators

PMOS and one NMOS, entirely sizable and biasable through simulator interactive
commands. It is loaded by the electrical simulator launched in interactive mode.
Three types of interactive commands are evaluated: set, get and run. The first
one allows to set all transistor known parameters (sizes and biases) inside the
simulator. The second one enables to get all currents, voltages and small signal
parameters computed by the simulator. After a set command, a simulation must
be run using run command, in order to compute the DC operating point of the
transistor. An API is developed using expect library [23] to automate set, get and run
commands execution using simulator interactive mode. Sizing and biasing operators
are optimized to minimize the number of calls to the simulator, which can reach
several thousands during sizing.

96 Y. Li et al.

2n

Fig. 6.5 A two stage 4-bit pipeline ADC using four levels of abstractions

6.3 Proposed Levels of Abstraction

In this section, we present the different levels of abstraction used in a two stage 4-
bit pipeline analog-to-digital converter (ADC) design hierarchy. The ADC is shown
in Fig. 6.5, where the hierarchical design view is organized into four levels of
abstraction: system, functional, macromodel and circuit.

• The system level represents the highest abstraction level. The system is modeled
as a monolithic unit able to process the specified functionalities. In our case, it
describes the system view of the two-stage 4-bit ADC pipeline. It is composed
of two stages, where the MSBs come from the first stage, and the LSBs from the
second one.

• The functional level describes each stage as a set of mathematical functions,
algorithms or state presentation. The block diagram shows that the analog input
Vin is first sampled and held, quantized to (n = 2) bits by the A/D Flash and fed

6 A Design and Verification Methodology for Mixed-Signal Systems 97

to a (n = 2) bits D/A, whose output is subtracted from the input. The resulting
residue is amplified by a factor 4 before stepping into the next stage.

• The macromodel level is the hierarchical level where some function are described
by a set of macromodels. For example, the 2-bit resolution of the Flash
ADC function are obtained by using a resistor ladder with 2n resistors and
2n − 1 comparators. Macromodels [24] use simplified simulation elements and
mathematical functions to define a specific behavior of a given function. The
output of each comparator is a high/low value signal, then a logic encoder is used
to convert the signal to a binary coded word.

• The circuit level describes the characteristics of the circuit using SPICE netlist.
It is implemented with the typical basic analog circuits like current sources,
differential pairs, current mirrors, output buffers, . . . [25]. The comparator
macromodel is implemented as a two-stage structure [26] as shown in Fig. 6.5.

6.4 Implementation of the Unified Platform

The unified design and verification platform is presented in Fig. 6.6. It is composed
of three parts: the SystemC-AMS environment, the CHAMS interface and the two
electrical simulators (sizing simulator and analysis simulator). In the SystemC-
AMS simulator, a set of TDF modules are organized to build the two stage 4-bit
pipeline ADC with the four hierarchical levels shown in Fig. 6.5. Each TDF module
is integrated in a separate file. For instance, a module named source_constant.h
works as a resistor ladder circuit for generating the reference voltage.

Fig. 6.6 The unified design and verification platform with SystemC-AMS. The four hierarchical
levels shown in Fig. 6.5 are implemented in the design platform

98 Y. Li et al.

Fig. 6.7 Algorithm that
permits to realize the
CHAMS interface from
system-level to circuit-level

As shown in Fig. 6.6, the CHAMS interface is related to a TDF module named
comparator.h. The analysis simulator (step 6 in Fig. 6.6) is encapsulated in CHAMS
to load the whole comparator circuit netlist. The test bench is described in the file
main.cpp, using a TDF module source.h, which generates the input signal.

The algorithm that allows to implement the CHAMS interface (blocks A and
B in Fig. 6.1) from system-level to circuit-level is represented in Fig. 6.7. In this
algorithm, each step is defined by a number that corresponds to either a TDF module
(step 1) or a function call (steps 2–6) shown in Fig. 6.6.

This algorithm can be separated to two parts, which are system design and system
simulation respectively. The first four steps in the algorithm are executed only once,
they correspond to the sizing and biasing of the comparator within the complete
system-level description of the two-stage pipeline ADC, it is the design part in
Fig. 6.1. In step 2, the sizing and biasing procedure is executed by using a electrical
simulator named SizingSimulator (see line 18 in Sect. 6.4.2). This sizing simulator
is closed at the end of step 3.

From step 5 until the end of execution, they correspond to the system simulation
including the circuit level comparator. It is the simulation and verification part in
Fig. 6.1. In steps 5 and 6, at each timestep, the signal interface passes the input
samples and evaluate the simulated output samples. These steps are executed until
the last input sample is processed. At the first execution of step 5, a single electrical
simulator named AnalysisSimulator (see line 21 in Sect. 6.4.2) is opened, it calls the
complete circuit netlist at the step 6, this analysis simulator is closed at the end of
the system simulation. During the simulation, a loading and saving of the state of
the transient simulation for each time step is performed before and after step 6, these
two blocks refer to the initial condition of the circuit simulation (see lines 37, 39 in
Sect. 6.4.4). The following sections will detail the unified design platform.

6 A Design and Verification Methodology for Mixed-Signal Systems 99

6.4.1 Comparator TDF Module

The comparator TDF module (implemented in comparator.h, lines 7–16). The
comparator is implemented as TDF module. The implementation of the constructor
of the comparator is described below:

• Lines 1, 2: Define the parameters used to size and bias the comparator.
• Lines 3, 4: Define the parameters used to store simulations results.
• Lines 5, 6: Define the parameters used to store initial conditions for transient

behavior at each time step.
• Lines 8, 9: Define two TDF input ports and one TDF output port that carries the

continuous-value (real) signals [4, clause 2.2.2].
• Line 10: The constructor expects the parameters by using the const reference to

an object.
• Lines 11–13: Define the pointer of allocated objects for each struct, which are

initialized by the constructor.

1 struct sizing_parameters{

2 double Temp, Veg, L, Vs, Ids ,...; };

3 struct analysis_parameters{

4 double W, L, Vg ,...; };

5 struct initial_conditions{

6 double Init_1, Init_2, Init_3, Init_4; };

7 SCA_TDF_MODULE(comparator) {

8 sca_tdf::sca_in<double> inp, inn;

9 sca_tdf::sca_out<double> out;

10 comparator(

const sizing_parameters& ,

const analysis_parameters& ,

const initial_conditions&);

11 sizing_parameters *sizing_param;

12 analysis_parameters *analysis_param;

13 initial_conditions *initial;

14 void end_of_elaboration();

15 void initialize();

16 void processing();

};

100 Y. Li et al.

6.4.2 end_of_elaboration() function

This callback function is called at the very end of elaboration before starting
simulation [7, clause 4.4.2]. This callback will be used to instantiate two simulator
objects. The first simulator object will be used to size and bias the comparator before
the start of simulation. The second simulator object will be used to simulate the
comparator netlist within the complete two-stage ADC system simulation.

The implementation of the design procedure (using sizing and biasing operators)
is described below:

• Line 18: Defines an electrical simulator object for the circuit sizing and biasing
procedure (see Fig. 6.4).

• Line 19: The sizing and biasing simulator loads the netlist which is related to
transistor compact model.

• Line 20: Defines an electrical simulator object for the simulation of the complete
circuit netlist (comparator).

• Line 21: The analysis simulator loads the complete netlist which contains the
circuit information of the comparator.

• Line 22: Defines a circuit object into the sizing and biasing procedure.
• Lines 23, 24: Define the operators to compute the sizes and biases of reference

transistors with different operator classes (see Sect. 6.2.2.1).
• Lines 25, 26: Add the devices to the circuit.
• Line 27: Sets the input parameters for the sizing operators. The input parameters

are loaded from a pointer object of struct named sizing_param (line 11 in
Sect. 6.4.1).

• Line 28: Runs the design procedure with the pre-defined sizing simulator and
operators.

• Line 29: Gets the output parameters computed by the sizing procedure. The
output parameters are stored in a pointer object of struct named analysis_param
(line 12 in Sect. 6.4.1).

17 void comparator::end_of_elaboration() {

18 ElectricalSimulator *SizingSimulator

= new ElectricalSimulator;

19 SizingSimulator->loadnetlist ("nmos-pmos.spi");

20 ElectricalSimulator *AnalysisSimulator

= new ElectricalSimulator;

21 AnalysisSimulator->loadnetlist ("comparator.spi");

22 Circuit *CirComparator = new Circuit;

23 Operator *OperatorCM= new Operator (OPVGD);

24 Operator *OperatorDP= new Operator (OPVS);

... ...

25 CirComparator->addDevice(OperatorCM);

26 CirComparator->addDevice(OperatorDP);

6 A Design and Verification Methodology for Mixed-Signal Systems 101

... ...

27 SetInputParameters(sizing_param);

28 SizingProceduce(SizingSimulator, CirComparator);

29 GetOutputParameters(analysis_param);

}

6.4.3 initialize() function

The member function initialize() is called once-only after the callback of the
member function start_of_simulation and before the first call to the member
function processing of a TDF module. In our proposed methodology, this member
function is used to set the variables for the circuit simulation [4]. Following the
computation and registration of the analysis parameters in lines 28–29, the SetSimu-
Param function (lines 31–33) will automatically transmit the parameter values to
the simulator used to simulate the complete circuit netlist (AnalysisSimulator).

30 void comparator::initialize() {

31 AnalysisSimulator->SetSimuParam

("Width_M1",analysis_param->W);

32 AnalysisSimulator->SetSimuParam

("Length_M1",analysis_param->L);

33 AnalysisSimulator->SetSimuParam

("Vg_M1",analysis_param->Vg);

... ...

}

6.4.4 processing() function

The member function processing() is the only mandatory function that needs to be
overloaded in any TDF module, its is described below:

• Lines 35, 36: Samples are read from a TDF module input port by calling its
member function read, then the sample values are passed to the complete circuit
netlist with the name Vin, Vre f .

• Line 37: Sets the initial condition for transient simulation, this simulation method
is described in Sect. 6.5.

• Line 38: Performs comparator transient simulation.
• Line 39: Gets the initial condition from transient simulation, this simulation

method is described in Sect. 6.5.

102 Y. Li et al.

a b

Fig. 6.8 (a) TDF signal with sampled values. (b) Transient simulation with a set of pulse signals

• Line 40: The output samples are extracted from the electrical simulator and are
written to the TDF module output port using write function of TDF module.

34 void comparator::processing() {

35 AnalysisSimulator->SetSimuParam

("Vin" , inp.read());

36 AnalysisSimulator->SetSimuParam

("Vref" , inn.read());

37 AnalysisSimulator->SetInitialConditions

(initial_conditions);

38 AnalysisSimulator->TransientAnalysis();

39 AnalysisSimulator->GetInitialConditions

(initial_conditions);

40 out.write(GetExtractValue("Vout"));

}

6.5 Transient Analysis Method

For the design of analog circuits, the most important characteristic is the consid-
eration of signals that are continuous in time and value. We aim at performing
conservative nonlinear simulations for the components described in SPICE netlist.
Contrary to this, the Timed Data Flow (TDF) model of computation is not
conservative, it considers values that are discrete in time and value. To be able to
handle such problem, we convert the TDF input signal Vinp of the comparator shown
in Fig. 6.8a to the sample and hold version shown in Fig. 6.8b. This conversion will
be considered as the stimuli signal of the comparator during SPICE simulation. The
following steps are performed during comparator simulation:

1. As shown in Fig. 6.8b, in the comparator netlist, a pulse signal with a voltage
value of v(t) is generated at time t. The pulse width is set to the sampling periode
dt (line 4 in the code below). At the beginning of the transient analysis, the

6 A Design and Verification Methodology for Mixed-Signal Systems 103

voltages at nodes 1, 2, 3, 4 marked in Fig. 6.5 are respectively set to ic1,
ic2, ic3, ic4 (line 6). At the end of the transient simulation, the voltage
at the four nodes are extracted to be the initial conditions for the next simulation
(line 7). The four nodes connect to all the small-signal capacitances in the circuit.

1 .PARAM ic1 = ...

2 .PARAM dt = ...

3 .PARAM vin = ...

4 Vpulse 0 vin 0 dt

5 .TRAN 0.1n dt uic

6 .IC v(1)=ic1 v(2)=ic2 v(3)=ic(3) v(4)=ic4

7 .EXTRACT label = ic1 yval(v(1), dt)

... ...

2. In processing() function, the SetInitialConditions function (line 37 in Sect. 6.4.4)
is called to set the initial conditions at the beginning of each simulation step.
At the end of current simulation, the value of each node is retrieved using
GetInitialConditions (line 39 in Sect. 6.4.4) to be used as the initial conditions
for the simulation of the next time step. This function uses the simulator control
engine to extract the initial conditions from the simulator using the predefined
labels such as ic1 in line 7 using the .EXTRACT command.

Using the above approach, the unified platform for mixed signal system design
can mix non-conservative system-level behavior with conservative nonlinear circuit
simulation.

6.6 Experimental Results

In this section, we use the unified platform to design and verify the two-stage 4-bit
pipeline ADC shown in Fig. 6.5. The first step consists in implementing the TDF
modules that constitute the system level view of the pipeline ADC. The second step
consists in developing the sizing and biasing procedure for circuit level view of the
comparator. The sizing procedure and simulation results are shown in the following
parts.

All experiments have been carried out on a 32-bit Linux computer with 2 Duo
Processor (3M Cache, 2.93 GHz), and 2 GB of memory.

6.6.1 Sizing and Biasing Procedure of the Two-Stage
Comparator

The topology of two-stage comparator is shown in Fig. 6.5. The first stage consists
of two basic devices: a current mirror, a differential pair. The purpose of the second

104 Y. Li et al.

ba

Fig. 6.9 Design view of the comparator circuit: (a) Bipartite graph (i.e. design procedure). Pin

parameters are propagated to each operator input parameters. (b) Input parameters Pin (TEMP
nodes are omitted) and output parameters Pout

stage is to get a much faster linear response. CL is the input capacitance of the
following block (encoder).

The sizing and biasing procedure of the two-stage comparator is shown in
Fig. 6.9a with a 130 nm process. It is a bipartite graph that contains the designer
knowledge to size and bias the comparator. The designer’s knowledge is represented
by Pin set of input parameters (at the top of the graph). Parameters in Pin (see in
Fig. 6.9b) are propagated to each operator input parameters through equations and
equalities. An example of equation is given with eq3 : Ids_M7 = K3 · Ibias where
{K3, Ibias} ∈ Pin. The resulting output parameters Pout are listed in Fig. 6.9b. The
bipartite graph is a sequence of sizing and biasing operators, it is evaluated from top
to bottom.

6 A Design and Verification Methodology for Mixed-Signal Systems 105

0 1 2 3 4 5 6 7 8 9

x 10−6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

V
ol

ta
ge

 (
V

)

Fast input signal
Slow input signal
Slow output digital signal
Fast output digital signal

SLOWFAST

0 1 2 3 4 5 6 7 8 9

x 10−7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

V
ol

ta
ge

 (
V

)

Fast ouptu digital signal
Fast input signal

a

b

Fig. 6.10 Results of ADC simulations with sample rate (a) 30 and 300 MHz. (b) 300 MHz

6.6.2 Simulation Results of a Two-Stage Pipeline ADC

The testbench of the unified platform (see in Fig. 6.1) receives the input signals with
the form V (t) =VDD − k · t as a function of time t, it is generated by a TDF module
with the following features:

N = number o f samples = 256
T = Simulation time = N

sample rate

k = VDD
T

(6.4)

Two different input stimuli are applied to our design platform. The simulation
results are shown in Fig. 6.10. The resolution of the pipeline ADC is 4 bits, since the

106 Y. Li et al.

number of quantization levels is equal to 24 = 16, so N/16 simulated samples are
used for each quantization. We fix the number of samples N. Then we change the
simulation time using two different sample rates (30 and 300 MHz respectively)
to obtain the same number of samples for each quantization level. In Fig. 6.10,
we notice that by increasing the slope of the input signal, the precision of the
pipeline ADC is decreased. Note that the higher slope corresponds to a faster varying
signal. This observation exactly describes the relationship between relative speed
and precision in a real pipeline ADC. The unified platform allowed to verify the
performance of the pipeline ADC within the context of system-level and circuit-
level description.

The total number of CPU-seconds that the process spent is less than 1 min, where
the sizing and biasing procedure took less than 1 s.

6.7 Conclusion

This chapter presented a unified platform for design and verification of mixed-signal
systems. It is based on a bottom-up design process and a top-down verification
method, which efficiently provides a standard interface between system-level
models and their circuit-level realizations. This interface is able to connect and
simulate different components with different levels of abstraction.

The proposed framework interfaces SystemC-AMS and SPICE with CHAMS
fast sizing and biasing. The framework is used to effectively design complex
systems, and links to lower level circuit design techniques. A transient simulation
scheme has been proposed to allow the simulation of system-level non-conservative
models along with conservative circuit-level netlists. The platform has been used
to design and simulate a two-stage pipeline ADC. The simulation time as well as
simulation results prove the effectiveness of the proposed method.

Acknowledgements This work was funded by the project Verification For Heterogenous Reliable
Design and Integration (VERDI), which is supported by the European Commission within the 7th
Framework Programme for Research and Technological Development (FP7/ICT 287562).

References

1. Rutenbar, R.A.: Design automation for analog: the next generation of tool challenges. In: ACM
International Conference on Computer-Aided Design, San Jose, pp. 458–460 (2006)

2. Taranovich, S.: Analog design in the 21st century: challenges, tools, and IC advances. http://
www.edn.com (2012)

3. Graeb, H.E.: Analog Design Centering and Sizing. Springer, Heidelberg (2007)
4. Accellera Systems Initiative: SystemC AMS 2.0 standard. http://www.accellera.org/

downloads/standards/systemc/ams/ (2013)

http://www.edn.com
http://www.edn.com
http://www.accellera.org/downloads/standards/systemc/ams/
http://www.accellera.org/downloads/standards/systemc/ams/

6 A Design and Verification Methodology for Mixed-Signal Systems 107

5. Vladimirescu, A.: The SPICE Book. Wiley, New York (1994)
6. Sommer, R., Rugen-Herzig, I., Hennig, E., Gatti, U., Malcovati, P., Maloberti, F., Einwich, K.,

Clauss, C., Schwarz, P., Noessing, G.: From system specification to layout: seamless top-down
design methods for analog and mixed-signal applications. In: Design, Automation and Test in
Europe, Paris, pp. 884–891 (2002)

7. IEEE Computer Society: 1666–2011 IEEE Standard SystemC Language Reference Manual.
IEEE, 1666–2011.

8. Zaidi, Y., Grimm, C., Hasse, J.: On mixed abstraction, languages, and simulation approach to
refinement with systemC AMS. EURASIP J. Embed. Syst. (2010). doi:10.1155/2010/489365

9. Kirchner, T., Bannow, N., Grimm, C.: Analogue mixed signal simulation using spice and
SystemC. In: Design, Automation Test in Europe Conference Exhibition, Nice, pp. 284–287
(2009)

10. Iskander, R., Louërat, M.-M., Kaiser, A.: Automatic DC operating point computation and
design plan generation for analog IPs. Analog Integr. Circuit Signal Process. J. 56, 93–105
(2008)

11. Iskander, R., Louërat, M.-M., Kaiser, A.: Hierarchical sizing and biasing of analog firm
intellectual properties. Integr. VLSI J. 233, 123–148 (2013)

12. Javid, F., Iskander, R., Louërat, M.-M.: Simulation-based hierarchical sizing and biasing of
analog firm IPs. In: IEEE International Behavioral Modeling and Simulation Conference, San
Jose, pp. 43–48 (2009)

13. Javid, F., Iskander, R., Durbin, F., Louërat, M.-M.: Analog circuits sizing using the fixed
point iteration algorithm with transistor compact models. In: IEEE Mixed Design of Integrated
Circuits and Systems, Warsaw, pp. 45–50 (2012)

14. Vachoux, A., Grimm, C., Einwich, K.: Extending SystemC to support mixed discrete-
continuous system modeling and simulation. In: IEEE International Symposium on Circuits
and Systems, Kobe, pp. 5166–5169 (2005)

15. Mu, Z., Van Leuken, R.: SystemC-AMS model of a dynamic large-scale satellite-based AIS-
like network. In: Forum on Specification and Design Languages, Oldenburg, pp. 1–8 (2011)

16. Cenni, F., Scotti, S., Simeu, E.: Behavioral modeling of a CMOS video sensor platform using
systemc AMS/TLM. In: Forum on Specification and Design Languages, Oldenburg, pp. 1–6
(2011)

17. Levi, T., Lewis, N., Tomas, J., Fouillat, P.: IP-based methodology for analog design flow: ap-
plication on neuromorphic engineering. In: IEEE International NEWCAS-TAISA Conference,
Montreal, pp. 343–346 (2008)

18. Saleh, R., Wilton, S., Mirabbasi, S., Hu, A., Greenstreet, M., Lemieux, G., Pande, P.P., Grecu,
C., Ivanov, A.: System-on-chip: reuse and integration. Proc. IEEE 94(6), 1050–1069 (2006)

19. Liu, W.: MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4. Wiley,
New York (2001)

20. NXP. MOS model PSP level 103. http://www.nxp.com/models/mos/_models/psp/ (2011)
21. Enz, C., Krummenacher, F., Vittoz, E.: An analytical MOS transistor model valid in all regions

of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits
Signal Process. J. 8(1), 83–114 (1995)

22. Javid, F., Iskander, R., Louërat, M.-M., Dupuis, D.: Analog circuits sizing using bipartite
graphs. In: IEEE International Midwest Symposium on Circuits and Systems, Seoul, pp. 1–
4 (2011)

23. Libes, D.: Exploring Expect: A Tcl-Based Toolkit for Automating Interactive Programs.
O’Reilly Media, Sebastopol (1994)

24. Maehne, T., Vachoux, A., Giroud, F., Contaldo, M.: A VHDL-AMS modeling methodology for
top-down/bottom-up design of RF systems. In: Forum on Specification and Design Languages,
Sophia Antipolis, pp. 1–7 (2009)

http://www.nxp.com/models/mos/_models/psp/

108 Y. Li et al.

25. Graeb, H., Zizala, S., Eckmueller, J., Antreich, K.: The sizing rules method for analog
integrated circuit design. In: IEEE/ACM International Conference on Computer Aided Design,
San Jose, pp. 343–349 (2001)

26. Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, Oxford
(2002)

Chapter 7
Configurable Load Emulation Using FPGA
and Power Amplifiers for Automotive Power ICs

Manuel Harrant, Thomas Nirmaier, Christoph Grimm, and Georg Pelz

Abstract In this paper we present a new concept of an application-oriented
post-silicon verification method for automotive power micro-electronic devices.
Automotive power semiconductors are mainly influenced by their real-life applica-
tion but there is no sufficient method yet to assess device robustness within their
application. For that reason we established a first approach to emulate different
automotive power loads by running their model equations in real-time on an FPGA
platform while the load current is controlled with a class AB power amplifier. The
functionality of this approach is evaluated on the basis of automotive smart high-
side switches and incandescent lamp models.

7.1 Introduction

Exploring and assessing robustness for automotive smart power micro-electronic
devices become more and more difficult due to increasing complexity of the
devices. This behavior is mainly driven by ever increasing customer demands for
energy efficiency and safety. While there are well established methods for standard
functional post-silicon verification [1, 2], there is less work done to assess device
robustness within their real-life application. Application tests are done late during
the verification process of automotive power devices.

While there is much freedom in accessing and changing all available operating
conditions of the Device Under Test (DUT) and parameters of the power load

M. Harrant (�) • T. Nirmaier • G. Pelz
Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany
e-mail: Manuel.Harrant@infineon.com; Thomas.Nirmaier@infineon.com;
Georg.Pelz@infineon.com

C. Grimm
Technische Universität Kaiserslautern, Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany
e-mail: Grimm@cs.uni-kl.de

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__7,
© Springer International Publishing Switzerland 2014

109

mailto:Manuel.Harrant@infineon.com
mailto:Thomas.Nirmaier@infineon.com
mailto:Georg.Pelz@infineon.com
mailto:Grimm@cs.uni-kl.de

110 M. Harrant et al.

during pre-silicon verification, application tests are using fixed setups to replicate
the real system environment of the semiconductor. The usage of those standard
loads (e.g. one specific DC motor for the wiper application in combination with
the corresponding smart high-side switch) consists of a fixed set of load parameters
and consequently give no statement about device robustness within their variations
of all active and passive components as well as aging effects.

For that reason we want to explore the verification space by certain load parame-
ters to achieve an application-oriented robust post-silicon verification approach. The
concept is to emulate different automotive power loads like incandescent lamps, DC
motors, lithium-ion batteries, etc. in real-time on an FPGA (Field Programmable
Gate Array) and control the calculated load current with a class AB power amplifier
circuitry. This approach allows to emulate application intrinsic parameters such as
wire resistance and wire inductance of the connection between DUT and power load
beside the load parameters itselves.

We present the first implementation of an experimental closed-loop test system
at mid-range power performance to emulate different automotive power loads in
real-time on an FPGA platform and explore the verification space by identified load
parameters.

The outline of this chapter is set up as follows:

• Related work in the area of automotive power load emulation for lab verification
topics is discussed in Sect. 7.2.

• Section 7.3 describes the experimental test setup regarding hardware concept and
software architecture and its reached performance.

• The hierarchy for modeling automotive power loads in real-time for FPGA
targets is explained in Sect. 7.4 and exemplified on the modeling process of an
incandescent lamp.

• Section 7.5 compares an emulate incandescent lamp with nominal power of 21 W
with the corresponding real lightbulb to evaluate the accuracy of the model while
Sect. 7.6 show some selected measurement examples done for automotive front
lighting.

• A conclusion and outlook regarding future work within this topic is presented in
Sect. 7.7

7.2 Related Work

Several methods for load emulation exist with respect to Hardware-in-the-Loop
simulation platforms [3, 4]. These platforms are almost used for testing integration
of electronic control units (e.g. bus communication) or emulate their environmental
conditions like sensor interfaces. But these solutions are not sufficient for real power
load emulations which require current levels up to 90 A.

7 Automotive Power Load Emulation 111

Other concepts [5–7] have sufficient time accuracy for the real-time emulation of
automotive low-power loads, such as stepper motors or single battery cells, but are
not satisfying for the emulation of high-power loads in multiple kW-ranges.

Similar to these low-power performance approaches there are also high-power
emulation concepts [8–10, 12] available. These approaches can handle high load
currents (up to 80 A) but are not able to handle the timing requirements which are
needed to correctly replicate the dynamic behavior of DUT in combination with the
power load.

A further limitation is the lack of flexibility in configuration. Automotive power
micro-electronic devices go from simple single-channel power switches up to com-
plex battery management devices which can handle several battery cells in parallel.
For that reason, an efficient load emulation approach needs to be configurable for
a multitude of devices that should be verified, based on lab measurements, in this
way.

Combining the requirements for emulating automotive high-power loads during
functional verification, the approach must fulfill the following tasks:

• Feedback test system required to handle interaction between DUT and power
load.

• Real-time capability.
• Configurable number of load channels to handle single-channel as well as multi-

channel devices.
• Output currents up to 90 A.

Consequently, no referenced concept meets the requirements to emulate auto-
motive power loads for an application-oriented characterization method to the best
knowledge of the authors.

7.3 First Experimental Setup

For emulating different automotive power loads in real-time we propose a closed-
loop measurement test system consisting of an FPGA in combination with a class
AB power amplifier. Due to strong interactions between micro-electronic devices
and power loads within automotive applications an open-loop system, which cannot
react to discontinuous dynamic behaviors (e.g. switching of power channels) is not
sufficient for this topic.

Load emulation test systems, in general, consists of two parts:

• Any type signal processing unit (e.g. digital signal processors (DSP), micro-
processors (μP), Field Programmable Gate Arrays (FPGA)) for evaluating the
load model equations in real-time.

• A current source which controls and consumpts the load current depending on
the model.

112 M. Harrant et al.

Fig. 7.1 Hardware concept for closed-loop load emulation for automotive power ICs

We have chosen an FPGA platform to process the physical equations of the load
model in real-time. Referenced concepts are using digital signal processors (DSP) or
microprocessors (μP) instead of FPGA platforms to solve the differential equations.
Digital Signal Processors are often used because they are more arithmetic-oriented
to solve even complex mathematical functions. However, reasons for choosing an
FPGA are listed below:

• Low-level mathematical functions are solved faster (e.g. in few nanoseconds) due
to high internal clock rates.

• Because of parallel operations and single-cycle timed loops numerous non-
complex mathematical functions can be solved at the same time.

For instance, an FPGA platform seems to be the best trade-off between model
complexity and processing speed for automotive power load models.

An overview to the first experimental test setup for real-time automotive power
load emulation is presented in Fig. 7.1.

A reconfigurable load model (called “Logic” in Fig. 7.1) is running on the FPGA
and calculating instantly the corresponding current values according to the DUT’s
output voltage. The power amplifier can work in two quadrants and is able to sink
current for ohmic loads like incandescant lamps as well as additionally source
current for inductive/capacitive loads like DC Motors, batteries, etc. Furthermore,
with respect to the used power amplifier concept (see a simplified schematic in
Fig. 7.2a), a digital PID controller and a mathematical subtraction (SUBT) are
implemented inside the FPGA because of single-ended ADC channels.

The implemented power amplifier is a controlled voltage source that consists of
parallel driven complementary power transistors with high collector currents and

7 Automotive Power Load Emulation 113

Fig. 7.2 First approach of a class AB power amplifier for automotive power load emulation

Fig. 7.3 Performance evaluation of the class AB power amplifier

an operational amplifier. The module itself adjusts the potential at (B). The digital
PID controller, implemented on the FPGA, controls the load current. This is done
by using the calculated load current as reference and the voltage between (A) and
(B) as process variable. Current consumption is consequently defined as the voltage
drop at a shunt resistor.

This combination of analog class AB power amplifier circuitry and digitally
implemented PID controller acts as a controlled dynamic current source and is
operating in two quadrants in the complete experimental setup. The reason of
choosing this type of power stage is the fast closed-loop speed and the good handling
of interactions between DUT and power load as well as other discontinuous
behaviors, like switching of power channels, during operation.

Due to the high current consumption when emulating automotive power loads,
many challenges needed to be solved, such as impedance matching and symmetry
resistors in the output path to prevent thermal drift of the power transistors or several
solutions to get a stable as well as fast control loop.

Figure 7.3 shows the step responses for a first approach of the power amplifier
in order to evaluate its performance regarding speed and power. The module’s input
was driven with an arbitrary waveform generator (AWG) to produce the stimuli

114 M. Harrant et al.

Table 7.1 Large signal
performance of the
closed-loop system

Parameter Performance range

VBat 0 V . . . 24 V
IOUT −40 A . . .+40 A
tFPGA 6 μs . . . 10 μs
tPowerStage 8 μs

while the output current was measured at an 0.68 Ω resistor against ground. Due
to the used operational amplifier’s loop-gain, the output current is higher than the
input step depending on the values of R1 and R2.

First results of the class AB amplifier’s large signal performance can be
summarized as follows:

• Maximal output current of 40 A measured in combination with the first approach
of the closed-loop system.

• The step from 0 to 32 A has a settling time of approximately 8 μs.
• The module has a reaction time between input signal and the rising slope of the

output current.
• Transition between operating quadrants (in this case a change from first to third

quadrant was chosen) occurs in less than 8 μs (Table 7.1).

Performance limitations of the complete measurement setup come from several
points of the closed-loop system. On the one hand side, the digital-to-analog
conversion unit of the FPGA has a maximal sampling period of 10 μs, dependent
on the number of used conversion channels. Secondly, the operational amplifier
used for controlling the potential at (B) is limited because of its finite slew rate
and operating frequency. Summarizing the results coming from the presented
performance evaluation lead to the following specification of the closed-loop test
system:

This experimental setup can be controlled and configured using a stand-alone
software programmed in LabVIEW for rapid prototyping purposes. The graphical
user interface (GUI), see Fig. 7.4, allows the configuration of available loads
including their individual parameters, trigger measurements, monitor selected
waveforms of interest and brings the test system in a safe operating state in case of
malfunctions.

Furthermore, the test system can be connected to a PXIe (PCI eXtension for
Instrumentation) System and fully controlled via a lab automation environment [11].
The automation is controlling all required equipment via General Purpose Interface
Bus (GPIB), PXI bus and allows to change all identified load parameters on-the-
fly. This approach allows to run variations up to large statistical Monte Carlo
experiments in an automated way including an automated report generation.

7 Automotive Power Load Emulation 115

Fig. 7.4 Software interface for load emulation

7.4 Load Modelling for Real-Time Evaluation

As already mentioned, there are different solutions for digital signal processing
units to calculate automotive power load models in real-time. The main option lies
on DSP and FPGA solutions. There are automated ways of code generation from
MATLAB/Simulink models to DSP and μP targets but no automated flow could be
found for FPGAs as target platform. An overview to emulator development options
is visualized in Fig. 7.5.

The modelling process starts with the analytical equations of the power load.
Load models are commonly available in MATLAB/Simulink, VHDL-AMS or
SystemC-AMS. Especially AMS languages differ in abstraction level, which makes
it more or less difficult to transfer the models to another abstraction. MAT-
LAB/Simulink is the standard approach for automotive system level modelling,
while VHDL-AMS is standard for block level.

Mixed-Signal models are often written as implicite differential equations and
simulators require implicite solvers. Implementing such solvers on an FPGA
platform will need lots of resources and never meet the required processing speed

116 M. Harrant et al.

Fig. 7.5 Hierarchy for load emulation development

to emulate automotive power loads. For that reason, we have choosen LabVIEW
(translated from MATLAB/Simulink models) and a semi-automated way to get
from the analytical differential equations to a synthesized and executable digital
load model that can be implemented on an FPGA without the need of any implicite
solver algorithm. The advantages of this flow are listed below:

• The graphical interface of LabVIEW’s FPGA toolbox is similar to MAT-
LAB/Simulink and allows an easy transfer of block level Simulink models.

• The FPGA library from LabVIEW is a subset of the MATLAB/Simulink’s
library.

• An integrated toolbox allows an automated way to get a digital FPGA design out
of the block schematic.

• LabVIEW is a common environment used for lab automation, which enables
easy access to FPGA configuration as well as other lab equipment needed for
load emulation topics.

• FPGA platforms can easily be integrated in automated measurement and test
systems running with LabVIEW software.

• Optimization and debug within the block level model can already be done in
MATLAB/Simulink to save development time (no need for synthesis of VHDL
code).

The procedure for real-time load emulation using LabVIEW in combination with
an FPGA platform is done in three steps. They are described below based on the
example of incandescent lamps:

1. Physical equations:
Starting first with Kirchhoff’s law for electrical meshes (see Eq. (7.1)). This
equation considers the influence of wire resistance as well as wire inductance
beside the thermo-electrical model of the lamp on the load current i(t).

7 Automotive Power Load Emulation 117

Kirchhoff Voltage Law:

uHS(t) = RWire · i(t)+LWire · di
dt

+R(T) · i(t) (7.1)

where uHS is the time-variant output voltage of the smart high-side switch, RWire

and LWire are resistance and inductance of the conductor and R(T) is the thermal-
dependent resistance of the filament.

In a second equation the load specific behavior, depending on electro-thermal
or electro-mechanic loads must be included. This behavior might be thermal
heating when modelling incandescent lamps, back electro-magnetic force (Back-
EMF) for all kinds of motors, etc.

Energy Conservation:

Pel = Prad +Pcond +Cth · ṪFil (7.2)

ṪFil =
1

Cth,Fil
· (R(T) · i2(t)− γ · (TFil −TAmb)

4 − TFil

Rth,Fil
) (7.3)

Beside Kirchhoff’s law the energy balance in combination with the thermal
equivalent circuit of the lamp is used to consider thermal heating of the lamp’s
filament, which effects an increasing resistance. The energy balance simply says
that the electrical power Pel , which is dependent on the thermal-variant resistance,
can be split into radiated power Prad (see Stefan Boltzmann’s law for black body
radiation), conducted power Pcond and thermal heating.

Thermal resistor R(T):

R(T) = RFil,nom · (TFil

TFil,nom
)ρ (7.4)

The third equation calculates the thermal-variant resistance of the filament on
the basis of its resistance RFil,nom and filament temperature TFil,nom at nominal
power.

2. FPGA Implementation:
Implementing Eqs. (7.1), (7.3) and (7.4) on an FPGA platform leads to the
following block level design, which is afterwards converted to VHDL and
synthesized within an automated way (Fig. 7.6).

Equations (7.1), (7.3) and (7.4) were transformed from differential equations
to a set of difference equations first order that must be calculated in real-time
on the digital signal processing unit. The sampling time tSample is equal to the
processing time of one loop cycle. This timing strongly depends on the used
FPGA and analog-to-digital converter as well as the model complexity itself. For
the presented lamp model, the sampling time was ≈7μs. Factors or parts of the

118 M. Harrant et al.

Fig. 7.6 Real-time capable incandescent lamp model in LabVIEW’s FPGA toolbox

equation which are time-invariant (γ · T 4
Amb) are calculated in a pre-processing

step to optimize the digital design. Doing this pre-processing step leads to two
advantages regarding performance of the model implementation:

• The number of mathematical operations inside the FPGA can be reduced
which leads to a faster processing speed.

• The model can be optimized regarding the number of bits spent for fixed-point
calculations which also leads to a short calculation time and less resources of
logic blocks.

3. Parameter extraction:
In a last step the influencing factors of the lamp model are figured out. There
are several sensitivity analysis methods to identify these parameters such as
evaluating the partial derivative for every factor to see the impact of each
parameter to the model’s output. This is one of the most reasonable advantages
of emulating automotive power loads instead of using the equivalent real load.

An overview to these parameters, including their range or nominal value, for
an incandescent lamps with 21 W nominal power can be found in the following
Table 7.2:

In contrast to the power load, where all parameters are nominal values for the
specific type of lightbulb, the conductor parameters and the ambient temperature
are given within ranges. Conductor parameters depend on the implementation
inside the vehicle as well as on the location of the load compared to the electronic
control unit.

Similar to the steps that have been made for incandescent lamps it is possible
to generate parameterized real-time models for several types of automotive power
loads, such as motors, LED modules, batteries or even full applications like
electronic throttle control (motor and throttle) that are application-relevant for
automotive power micro-electronic devices and execute them on an FPGA platform.

7 Automotive Power Load Emulation 119

Table 7.2 Influencing parameters of the incandescent lamp model with 21 W nomi-
nal power consumption

Conductor Description Range

RWire Resistance of the conductor 30 mΩ . . . 105 mΩ
LWire Inductance of the conductor 1.5 μH . . . 4.5 μH

Lamp factors Description Nominal value

Cth,Fil Heat capacity of lamp’s filament 13.5 mJ
W

Rth,Fil Thermal resistance of lamp’s filament 245 K
W

TFil,nom Filament temperature at nominal power 2,820 K

RFil,nom Filament resistance at nominal power 7.3Ω
RSock Resistance of the lamp’s socket 0.0035Ω

Environment Description Range

TAmb Ambient temperature −40◦C . . .+150◦C

Furthermore, the emulation test system can be configured to handle dynamic load
steps for power loads that cannot be modelled on the basis of physical equations,
such as micro-controllers or xenon lighting profiles.

7.5 Evaluation of Lamp Model

This approach of a closed-loop load emulation system was tested by emulating an
incandescent lamp for automotive lighting applications, such as a direction indicator
light. The transfered lamp model is running in real-time on the FPGA platform while
the power amplifier generates and controls the calculated load current. Incandescent
lamps are non-linear ohmic loads and the amplifier was only operating in the third
quadrant and sink the load current which is consumpted by the lamp.

The evaluation of the lamp model should have the following purpose:

• Evaluate the dynamic performance of the closed-loop load emulation test system,
for continuous as well as discontinuous behavior.

• Evaluate the precision of the lamp model to see whether the incandescent lamp
was correctly characterized (Fig. 7.7).

Running several measurements and easily compare results from the closed-loop
test system with an equivalent real incandescent lamp, the following testbench was
used:

The used DUT (A) for this evaluation was a single-channel smart high-side
switch which is commonly used for front lighting applications. In the area of
automotive power micro-electronic devices, so called “Smart Power ICs” include
several protective functions (e.g. over-current and over-voltage detection, over-
temperature shut-down, current sense capability, etc.) to prevent its circuitry from

120 M. Harrant et al.

Fig. 7.7 Smart high-side switch with real 21 W lamp (left) and emulated 21 W lamp (right)

damages. In a first series of measurements the smart high-side switch was operating
with a real incandescent lamp at its output. Similar during a second series of
measurements, the closed-loop system was connected to the same smart high-side
switch. Afterwards the waveforms of real systems were compared to the emulated
ones.

The first evaluation of results (see Fig. 7.8) was focused on the accuracy of the
lamp model during continuous behavior. Using the same device in both series of
measurement prevent variations caused by different samples (e.g. manufacturing
tolerances according to wafer position). In general, incandescent lamps have high
inrush currents (approximately higher by factor 10 than its steady state current)
due to their low resistance at low temperatures. When current is flowing through the
filament the resistance is increasing in a non-linear way and the current is decreasing
inversely.

Remaining deviations between emulated current waveform and the behavior of
the real incandescent lamp may have several reasons, such as:

• Finite accuracy from fixed-point arithmetic blocks for the FPGA implementation
and resolution of the ADC/DAC modules.

• Quantization and Sample and Hold characteristic of the analog-to-digital con-
verter module.

• Latencies coming from the mixed-signal part between converting the output
voltage of the smart high-side switch into discrete values and the control of the
load current using the power amplifier.

Second evaluation results presented in this chapter concentrate more on the
hardware performance of the closed-loop test system. In real-life applications the
lamp’s inrush current exceeds the value of the smart switches current limitation. As
far as the current consumption of the load exceeds this specified value ILim the switch
shuts-down for a certain period of time to avoid power drop or thermal destruction
until it is automatically switched on again. The procedure is repeated as long as the
current consumption stays above ILim. This discontinuous behavior is called thermal
toggling and occurs every time lamps are switched on inside automotive lighting

7 Automotive Power Load Emulation 121

Fig. 7.8 Comparison of real lamp (blue) and emulated lamp (green) in continuous behavior

applications. The manner how the closed-loop system handles this toggling process
is shown in Fig. 7.9.

When the smart high-side switch is turned on, current consumption is defined
through the voltage waveform and the model equations. As far as the current exceeds
ILim the device starts toggling until it can handle the load current of the real/emulated
lamp. According to Fig. 7.9 it is clear that the closed-loop system can handle this
discontinuous behavior and correctly reproduce the current waveform with only
small deviations. This discontinuous behavior is somehow thermal-dependent and
the point in time cannot be predicted. This discontinuous toggling is of great interest
during post-silicon verification of smart high-side switches and was sometimes
limiting the functionality when using electronic load equipment for emulation tasks.

In conclusion, the results achieved during this evaluation measurements in
Figs. 7.8 and 7.9 must be evaluated. This analysis is shown in Fig. 7.10.

Due to strong interactions between the device under test and automotive power
load in combination with non-reproducible results (caused by noise, timing jitter
and dynamic behavior of the complete system) the mean value of 10 measurements
was used as a precision scale.

To evaluate the model’s precision the percentage derivation between real current
waveform and emulated current waveform was calculated. It can be stated that the
relative error over time never exceeds a 5 % interval for the emulated incandescent
lamp. The maximal derivation seems to be at the rising slope of the lamp’s inrush
current. The reason for this behavior could either be caused by the model calculation

122 M. Harrant et al.

Fig. 7.9 Comparison of real lamp (blue) and emulated lamp (green) in discontinuous behavior

Fig. 7.10 Relative derivation in current between real lamp and emulated lamp for continuous
behavior

(numerical noise, accuracy of AD/DA converters) or by the dynamic behavior of the
closed-loop system itself. Improving the system’s closed-loop speed could minimize
this issue and achieve a even better precision.

7 Automotive Power Load Emulation 123

7.6 Experimental Results

The great advantage of using such an emulation test system instead of using physical
automotive power loads is the access to all load parameters that may influence
the dynamic behavior or even create situations in which the device under test is
not working properly anymore. In a first run we have chosen sweep tests and
statistical Monte Carlo experiments to visualize the impact of operating conditions
and parameter spread from the modelled incandescent lamp model.

First measurements, again, show the real-life behavior how incandescent lamps
are switched on inside automotive applications, as already described in the second
part of Sect. 7.5. Since we know that the filament temperature is correlated to the
ambient temperature when the lamp is in off-state as well as to the resistance, we
performed a sweep test to see the impact of variable ambient temperature on the
shape of the current waveform.

It is obvious, according to the results presented in Fig. 7.11, that the ambient
temperature of the lamp will have an impact on the maximum inrush current
and, which is more interesting for the micro-electronic device, on the dynamic
behavior between high-side switch and incandescent lamp. As far as the operating
temperature lasts from −40 ◦C to +150 ◦C it is necessary to check the behavior of
this application under different operating conditions. Measurements on the physical
light bulb will take a long time caused by cool-down phases of the lamp to get back
to its off-state resistance. Here in this case we can see the thermal toggling effect
caused by the over-load protection of the smart high-side switch as far as the ambient
temperature of the light bulb was adjusted below 293 K. Performance evaluations in
this case could be to measure the length of the toggling pulse until the smart switch
is turned on again or the number of toggling pulses.

Fig. 7.11 Current consumption for incandescent lamp with 21 W nominal power at different
ambient temperatures

124 M. Harrant et al.

Fig. 7.12 Current waveform for 1,000 Monte Carlo experiments and Gaussian distributed incan-
descent lamp model parameters

Second measurement runs shall give more feedback regarding device robust-
ness and robustness metrics. There is a multitude of measures and metrics with
statistical background in semiconductor industry [15] to get a relationship between
performance distribution and its specification as presented in [13]. For evaluating
our results we have chosen the Worst-Case-Distance (WCD), which was proposed
in [14] for yield and design analysis, for the current limitation of the selected smart
high-side switch.

The first step was to perform a statistical Monte Carlo experiment with 1,000
runs. In fact that a specific incandescent lamp will have a nominal set of parameters
including a spread coming from manufacturing tolerances a Gaussian distribution
was carried out for statistical Monte Carlo experiments. The standard deviation σ
for these parameters was set to 5% from its nominal value. The output of interest
from these measurements was the maximum value of the inrush current dependent
on the lamp’s parameters.

Figure 7.12 shows the current waveform of 1,000 Monte Carlo experiments
within one single plot to see the deviation of the current shape dependent on all
lamp parameters. It is obvious that there is a large spread in current consumption
even for small spread of load parameters.

Getting a little deeper into robustness measures and robustness metrics we
will have a closer look on the maximum inrush current with respect to the
lamp’s parameters. Visualizing correlations between either maximum inrush current
and lamp parameters or the lamp parameter itselves is done using Matrix plots.
According to Fig. 7.13 gaussian distributed lamp parameters lead to a distribution
of the maximal inrush current with a nominal value of approximately 12A. Imagine
the current limitation of the used smart high-side switch would be specified as
ILIM = 14A we can calculate a Worst-Case Distance as described in [14]:

7 Automotive Power Load Emulation 125

Fig. 7.13 Matrix plot of 1,000 Monte Carlo experiments for maximum inrush current (Imax)
related to lamp parameters

WCD = 7.8435 (7.5)

This value gives a correlation between nominal value of the maximum inrush
current and the current limitation as specified for the given high-side switch in
multiples of the standard deviation σ .

7.7 Conclusion and Outlook

In this chapter we presented a flow to emulate different automotive power loads
in real-time on an FPGA platform and control the required load current using a
class AB power amplifier circuitry. First results have shown that this concept is
working with a closed-loop speed that meets the requirements for emulating mid-
power loads and open a way to assess the robustness of automotive power micro-
electronic devices with respect to their real-life application already during post-
silicon verification.

For future load emulation it is necessary to improve the performance of the
existing closed-loop system for high-power loads, which have a current consump-
tion up to 90 A, as well as extend the approach by parallelized channels to emulate
loads for multi-channel devices, especially in the area of battery management.

126 M. Harrant et al.

Achieving more power goes hand-in-hand with a reduction of the closed-loop speed.
For that reason, the control loop must be optimized (e.g. using a pre-amplifier to
handle increasing capacities at the output of the operational amplifier).

Besides improving the performance of the closed-loop system further automotive
loads must be modelled in this way and implemented on the FPGA. The emulation
of lithium-ion cells for lab verification topics of battery management devices stands
in the foreground especially for future topics regarding electro-mobility.

References

1. Nirmaier, T., Meyer zu Bexten, V., Tristl, M., Harrant, M., Kunze, M., Rafaila, M., Pelz, G.,
Lau, J.: Measuring and improving the robustness of automotive smart power microelectronics.
In: Design, Automation and Test in Europe, Dresden, pp. 872–873 (2012)

2. Nirmaier, T., Harrant, M., Pelz, G.: Extending constrained random verification to mixed-signal
automotive power devices using a non-stationary Markov process. In: International Workshop
on Silicon Debug and Diagnosis, ITC, Anaheim (2011)

3. Duelks, R., Salewski, F., Kowalewski, S.: A real-time test and simulation environment based
on standard FPGA hardware. In: TAIC part, Windsor, pp. 197–204 (2009)

4. Dufour, C., Belanger, J., Lapointe, V.: FPGA-based ultra-low latency HIL fault testing of a
permanent magnet motor drive using RT-LAB-XSG. In: POWERCON, New Delhi, pp. 1–7
(2008)

5. Thanheiser, A., Kohler, T., Herzog, H.-G.: Battery emulation considering thermal behavior. In:
Vehicle Power and Propulsion Conference (VPPC), Chicago, pp. 1–5 (2011)

6. Thanheiser, A., Meyer, W., Herzog, H.-G.: Design and investigation of a modular bat-
tery simulator system. In: Vehicle Power and Propulsion Conference (VPPC), Dearborn,
pp. 1525–1528 (2009)

7. Srinivasa Rao, Y., Chandorkar, M.C.: Real-time electrical load emulator using optimal
feedback control technique. In: IEEE Transactions on Industrial Electronics, Kandy, vol. 57,
pp. 1217–1225 (2010)

8. Ginot, N., Le Claire, J.C., Loron, L.: Active loads for hardware in the loop emulation of electro-
technical bodies. In: IEEE Industrial Electronics Society, Raleigh (2005)

9. Rao, Y.S., Chandorkar, M.: Electrical load emulation using power electronic converters. In:
IEEE Region 10 Conference, Hyderabad (2008)

10. Armstrong, M., Atkinson, D.J., Jack, A.G., Turner, S.: Power system emulation using a real-
time 145 kW virtual power system. In: IEEE European Conference on Power Electronics and
Applications, Dresden (2005)

11. Kunze, M., Pirker-Fruehauf, A.: A novel methodology to combine and speed-up the verification
process of simulation and measurement of integrated circuits. In: AUTOTESTCON, Salt Lake
City, pp. 259–262 (2008)

12. Grubic, S., Amlang, B., Schumacher, W., Wenzel, A.: A high-performance electronic
hardware-in-the-loop driveï£¡load simulation using a linear inverter (LinVerter). In: IEEE
Transactions on Industrial Electronics, Kandy, vol. 54, pp. 1208–1216 (2010)

13. Nirmaier, T., Kirscher, J., Maksut, Z., Harrant, M., Rafaila, M., Pelz, G.: Robustness metrics
for automotive power microelectronics. In: Design, Automation and Test in Europe, RIIF
Workshop, Dresden (2013)

14. Antreich, K., Graeb, H., Wieder, C.: Circuit analysis and optimization driven by worst-
case distances. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, San Jose, pp. 57–71 (1994)

15. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/
handbook/

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/

Chapter 8
Model Based Design of Distributed Embedded
Cyber Physical Systems

Javier Moreno Molina, Markus Damm, Jan Haase, Edgar Holleis,
and Christoph Grimm

Abstract In this chapter, we propose a Model-Based Design (MBD) methodology
that aims to deal with complexity due to the convergence of different domains and
technologies in distributed embedded systems, enabling early design optimization
and reduction of time-to-market. This methodology requires models for very
different domains able to work together: Electronic System Level (ESL), network,
radio propagation and quantities to be captured by the sensor systems. Using
different simulators involves co-simulation and coupling overhead. We introduce
a framework based exclusively in SystemC and its extensions for Transaction-Level
Modeling (TLM) and Analog Mixed-Signal (AMS), and extensible with additional
C/C++ code. The whole approach has been validated in a Cyber-Physical System for
demand side energy management in buildings and environments, developed during
the SmartCoDe Project.

J.M. Molina (�) • M. Damm • C. Grimm
Technische Universität Kaiserslautern, Gottlieb-Daimler-Str.,
67653 Kaiserslautern, Germany
e-mail: moreno@cs.uni-kl.de; damm@cs.uni-kl.de; grimm@cs.uni-kl.de

J. Haase
Vienna University of Technology, Institute of Computer Technology,
Gußhausstr. 27-29/384, A-1040 Vienna, Austria
e-mail: haase@ict.tuwien.ac.at

E. Holleis
Tridonic, Dornbirn, Austria
e-mail: edgar.holleis@tridonic.com

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__8,
© Springer International Publishing Switzerland 2014

127

mailto:moreno@cs.uni-kl.de
mailto:damm@cs.uni-kl.de
mailto:grimm@cs.uni-kl.de
mailto:haase@ict.tuwien.ac.at
mailto:edgar.holleis@tridonic.com

128 J.M. Molina et al.

8.1 Introduction

Over the last years, electronic systems have become more and more complex and
design tools and approaches have had to be adapted accordingly. System-on-Chips
(SoCs) are now heterogeneous analog mixed-signal devices with both digital and
analog parts, which makes the design process more complicated. This complexity
has increased even more with new application paradigms, such as Wireless Sensor
Networks and some Cyber-Physical Systems.

For instance, SmartCoDe project investigated the development of a Cyber-
Physical System to control and manage energy demand in buildings and envi-
ronments in order to adapt it to the energy generated by volatile energy sources.
This area of research is very active because most of the available renewable
energy sources have this volatile behaviour. Energy generation cannot be planned
and controlled and is scattered geographically, on contrast with traditional power
plants. The approach in SmartCoDe consists in a distributed cyber-physical system,
integrated by embedded systems attached to energy suppliers and energy consumers
and an energy management application which analyses the available information
about energy supply (e.g. wind forecast) and controls the functioning of the different
energy consumers according to it and some policies which vary depending on the
kind of appliance.

Designing such a system involves many complex design decisions which con-
dition all the following steps. Requirements for embedded systems vary depending
on the distribution of computational resources within the system. This distribution
has to take into account limitations of all hardware, software and communication.
Furthermore, some limitations might even depend on where the embedded systems
are installed, due to the environment interaction. Figure 8.1 depicts the complexity
of this kind of systems.

8.1.1 Model-Based Design Approach

In embedded systems design, Model-Based Design methodologies have provided
means to deal with this complexity and today it is a very common design approach.
Nonetheless, the new additional degrees of complexity have not been successfully
integrated in the Model-Based Design approach, mainly because combining so
many different models into an integrated multidisciplinary model is a very chal-
lenging task.

Thus, on the one hand, the use of sensors and actuators introduces interaction
with the environment. Therefore, in order to predict the system behaviour, it is
necessary to take into account the temporal variation of the quantities to be sensed.
In a monitoring system, for instance, where data is transmitted only when certain
difference is detected, volatile measures require more transmissions and more
energy consumption, which is a major constraint in these systems that has to be
carefully assessed at design time.

8 Model Based Design of Distributed Embedded Cyber Physical Systems 129

Fig. 8.1 Complexity in cyber-physical systems

However, modelling the physics significantly increases complexity of the simu-
lation. Continuous variation must be included in a discrete event simulation. This
involves mixing and synchronizing different Models of Computation (MoCs), which
typically means coupling different simulators.

On the other hand, WSNs and similar distributed systems have to be modelled
as a whole. Isolated node models are insufficient to validate and verify the system
or to evaluate node hardware requirements, as they are affected by the distribution
of computational resources, the network topology and the network traffic. A bad
network topology or an inappropriate routing algorithm might overload some nodes,
with the subsequent effect in system reliability. Therefore, network and propagation
have to be considered in order to achieve successful designs.

To model the effects of distribution and network, not only one node has to
be modelled, but several nodes (possibly thousands) together with the interaction
among them. This requires a higher level of abstraction to still get acceptable
simulation performance.

8.1.2 Multi-domain Simulation

In order to deal with all this different models, the first approach is to create ESL,
physics and network models separately using already available specific tools. If
results are evaluated independently, the interaction between them will be missing
and unpredicted situations may arise during later design stages. This not only may

130 J.M. Molina et al.

lead to critical problems and potential risks, but also makes optimization more
difficult. Interaction between the models can be achieved by co-simulation. How-
ever, co-simulation requires the different simulation environments to be running
in parallel and to frequently synchronize among them, affecting significantly the
overall simulation performance.

Hence, the idea of a single multi-level and multi-domain simulation environment
arises. Such a solution would provide better model integration, which results in
better performance and better and more intuitive knowledge of the whole system.
Nevertheless, there is still no complete and satisfactory solution.

In this work, a unified simulation framework which comprehends ESL, analog,
network and propagation models, is presented. This unified simulation framework
has been used to model a WSN to control the energy demand of appliances
in a building. A sensor node is attached to every device and depending on the
environmental conditions and the renewable energy availability, decisions are made
and the nodes can actuate on the devices they are attached to and set the most
suitable states.

The rest of the paper is organised as follows: After discussing some related
work, we make some notes on the methodology behind our simulation approach.
In Sect. 8.4, the implementation of the WSN simulation is described. Section 8.5
describes the energy management application which is developed with the help of
the simulation framework and shows some simulation results before concluding.

8.2 Previous Work

Already with VLSI systems the need of dealing with different levels of abstraction
and different domains became a focus of research in electronics. In this context,
in 1983, Gajski et al. introduced the Y-Chart which represents the interconnection
between different levels of abstraction in three different planes: structural,
behavioural and physical [9].

In embedded systems design, apart from the increasing complexity of the SoCs,
the very demanding requirements, for instance in terms of efficiency and power
consumption, have led to specific operating systems and software which had to be
developed in parallel to the hardware. This interconnection between hardware and
software design motivated the appearance of new design methodologies, such as
Electronic System Level (ESL) and Model Based Design (MBD) [4].

Hence, the new methodologies and abstraction levels required to design net-
worked embedded systems and interaction with the environment, which are signifi-
cant challenges in Wireless Sensor Networks (WSN) and Networked Cyber Physical
Systems (NCPS) design [13, 17], are just another step further in electronic systems
design.

There are already some Model-Based Design approaches in order to consider
physical processes at design time. In [11], a MBD methodology for Cyber-Physical
Systems is proposed. This methodology consists of ten steps, in which physical

8 Model Based Design of Distributed Embedded Cyber Physical Systems 131

models are already used for problem characterization. However, this methodology
is focused on the coupling of embedded systems with physical environment
interaction, but no attention is paid to system distribution.

The main obstacle for using MBD is the lack of appropriate tools. In [3],
a Modelica based physical model is combined with the ns-2 network simulator.
Special attention has to be paid to synchronization. Nevertheless, it is not an ESL
tool, where node hardware and software could be easily and precisely modelled, and
therefore it is not well suited for system design.

Ptolemy II [16] enables simulation of different levels of abstraction and domains
through different Models of Computation (MoCs) within the same simulator.

SystemC is an industry standard for ESL design. As it is based on C/C++ it
is easily extensible and there are already some SystemC-based simulators capable
of modelling networks, such as those presented in [5] and [7]. The simulator
in [5] leverages Transaction Level Modeling (TLM) [1] to improve simulation
performance and to abstract energy consumption information [15]. It is even
possible to include in the simulation Instruction Set Simulators (ISS) to obtain cycle-
accurate microcontroller models [18].

Although SystemC provides discrete-event simulation, using SystemC-AMS
extensions, it is also possible to model continuous time processes. Therefore, ESL
(SystemC), network (TLM based wireless model) and physical processes (SystemC-
AMS) can be all modelled together within the same SystemC simulation.

Moreover, as SystemC is C/C++ based, software models can be reused as real
application code, as long as some coding rules are followed, such as, using C based
coding style and avoiding dependencies from libraries that will not be available in
the embedded system.

During the work presented in this chapter continues the work realized in
[5,15] and [18], by enhancing and extending the simulation environment, including
physical processes to model environment interaction. This physical processes are
implemented in SystemC-AMS [2].

Furthermore, this chapter provides a new use case for smart energy management
and building automation, where the design methodology and simulation approach
have been tested.

8.3 Methodology

Distributed embedded systems are the convergence of several technologies and have
very demanding requirements such as reduced size of the embedded systems, low
cost and high efficiency, specially in terms of power and energy. The design process
must include cross-level optimization in order to fulfil those requirements.

Modelling each aspect separately not only leads to insufficient optimization, but
also involves a risk, due to unexpected effects of interactions among the different
system domains. Furthermore, in distributed cyber-physical systems, interactions
with external environment have to be considered as well.

132 J.M. Molina et al.

Therefore, ordinary hardware design methodologies or even embedded systems
hardware and software co-design methodologies might not provide fully satisfactory
results. One of the main challenges in CPS is to find an appropriate methodology
that could lead to optimum results.

Simulation plays a crucial role in CPS design. Apart from the advantages
of simulation in ordinary embedded systems design, CPS operation depends on
environmental conditions which are imposed by the location where they are installed
or deployed. These conditions might be difficult, if not impossible, to recreate in
a testbed. Furthermore, a significant part of the applications require them to run
unattended for very long periods of time. Simulation enables the evaluation of both
environmental conditions and long term operation.

8.3.1 Requirements

The first step is the requirements elicitation of the system to design. Based on these
requirements, a network architecture has to be defined, identifying the roles of the
different components and, accordingly, the requirements for the embedded systems
that will integrate the system. This crucial step rules the whole methodology.
Fast exploration and refinement is crucial in order to achieve a successful design.
Network models and the physical models of the quantities sensed by the sensors are
of great aid in order to estimate nodes and network activity and correctly dimension
the system. Upon refinement of the distribution architecture, embedded systems
requirements may vary significantly, and, therefore, most important decisions have
to be made before any specific knowledge about the hardware/software platforms is
available, but considering their feasibility.

8.3.2 Functional Model

Once the requirements of the hardware/software platforms are set, their basic logical
architecture is defined and the interfaces specified. The next goal is to obtain a
purely functional and comprehensive executable specification of the system. This
high level model will be the basis of the whole development. The functional model
must start as generic as possible. While the system components are fixed, models can
be refined and more detailed and specific models can be implemented if necessary.
As depending on the application requirements, criticality of the different elements
may vary, the model must be flexible enough and support real multi-level simulation,
implementing low-level models only in the specific components that require it, so
that the trade-off between accuracy and performance is correctly handled.

One of the main milestones in this methodology is the integration of the
functional model within the network and environment models. This step enables
refinement of the distributed model just before hardware/software partitioning starts
and changes are still affordable.

8 Model Based Design of Distributed Embedded Cyber Physical Systems 133

8.3.3 Hardware/Software Co-design

At this point, the model must assist in evaluating the best SoC partitioning, as it
is common practice in model-based design methodologies for embedded systems.
Hardware and software must then be designed in parallel and simulated models
provide the necessary cross-layer knowledge to hardware and software designers to
create a consistent and optimal design.

At the same time, implementation of the models can be refined into more specific
models, that can be used as a virtual prototype, where the system and the application
can be validated and verified. This enables error detection, debugging and therefore
reducing the risks of critical failures in implementation. When the virtual prototype
is sufficiently mature, the real prototype can be manufactured.

Last, but not least, virtual prototypes can also be used to verify the resulting
hardware/software platform.

8.3.4 Deployment

When the hardware prototype is available, the virtual prototype can be calibrated
in order to obtain more accurate and realistic results. This is another critical step
which is characteristic of distributed embedded systems design, where the system
deployment is as important as the platform manufacturing process.

In many cases, once deployed, the only way to access or modify the systems will
be through software over-the-air updates and no further maintenance options will
be feasible. Moreover, the results of a single node prototype or a small network
of prototypes can be used to calibrate and refine the whole networked system
model and evaluate weaknesses and long-term performance. Therefore, evaluating
the complete system with the most realistic data might solve some problems that
later will be very difficult to address.

Figure 8.2 summarizes the whole methodology explained in this section.

8.4 Models Implementation

This section describes the implementation of the models required for the design of
the energy demand management CPS introduced in Sect. 8.1. The main purpose
of the implementation is to comprehend all multi-domain models in the same
simulation environment. The approach followed is to use SystemC as the simulator
core. SystemC not only fits the purpose of system modelling at the Electronic
System Level (ESL), but it is enhanced by extensions such as Transaction Level
Modelling (TLM), which abstracts communication, and SystemC-AMS, which
includes solvers and Models of Computation (MoCs) to model analogue behaviour.

134 J.M. Molina et al.

R
ef

in
em

en
t

Fig. 8.2 Methodology diagram

Fig. 8.3 Architecture of the CPS comprehensive model

Furthermore, SystemC is C/C++ based and therefore can be extended with
more specific implementations. The architecture of the whole CPS simulation
environment is depicted in Fig. 8.3.

Apart from obtaining a comprehensive multi-domain model of the system, it is
crucial to achieve a multi-level model, which adapts the level of abstraction of every
model component in order to achieve the best performance possible for the accuracy
requirements.

The usage of more or less detailed models depends on what the specific use
case demands. E.g. in the case of battery powered nodes where batteries cannot be
replaced, such as in a Tire Pressure Monitoring System (TPMS), a very detailed
model of the microcontroller might be necessary in order to accurately estimate its
power consumption [18].

8 Model Based Design of Distributed Embedded Cyber Physical Systems 135

On contrast, in the use case presented here, although low power consumption
is desired, it is not critical since the sensor/actor nodes controlling the appliances
are connected to the power grid (see [14]). Moreover, since the wireless network
lag usually dominates computation times of the processor, there is no other
motivation to use a cycle-accurate model and/or an Instruction Set Simulator (ISS),
which would be very costly in terms of simulation performance. Nevertheless, the
implementation presented here, is extensible in order to use other models, such as
an ISS.

8.4.1 Functional Node Model

In the energy management CPS the main components are an Energy Management
Unit and the SmartCoDe nodes, which are those responsible of sensing and
controlling the appliances. Sometimes, it can be necessary to use additional very
simple sensor nodes just to deliver extra sensed values to the SmartCoDe nodes,
when measures have to be done separated from the location of the controlling unit,
e.g. fridge. This section will focus on the SmartCoDe nodes.

Wireless physical and MAC layers are both implemented in hardware as part
of the transceiver. A transceiver model has therefore been implemented with
transmission and reception parameters such as transmitting power, data rate or
sensitivity, as well as a state machine which defines what state transitions can be
triggered.

Concerning the sensors, important parameters to model are those about data
granularity and time required for sampling and value settlement.
Three different kinds of sensors are supported by the sensor interface:

• Periodically triggered sensors write sensor values into the event queue period-
ically (the interval is sensor specific)

• Single shot sensors write exactly one sensor value to the event queue when
activated (after exhibiting a sensor specific delay)

• Externally triggered sensors writes one sensor value to the event queue
triggered by an event from the physical domain

The interface is therefore designed to support all sensors present in building
automation, as well as some specific sensors inside white goods with relevance
to their function as virtual energy storages. What is explicitly not abstracted is
the mapping formula from physical dimension to sensor value. While the ZigBee
standard is taken as guideline, other cases have to be handled by the application
itself.

The actuator interface is modelled after a single analogue output, represented
by unsigned 8 bit integer, which is sufficient to describe different power states or
dimming levels the appliance can be switched to.

136 J.M. Molina et al.

8.4.2 Embedded Platform Model

Along with this functional model development, the embedded platform to be used
was selected. This platform is the NXP/Jennic JN5148, which is a System-on-Chip
which integrates the microcontroller and the transceiver. Although the hardware
platform design is not part of our implementation, SystemC and TLM are widely
accepted and standardized for hardware/software co-design of embedded systems
[10].

Thus, in this model implementation, there is no need for a highly-detailed model
of the sensor/actor nodes. The simulation framework models then only the relevant
parts of the hardware (wireless transceiver, sensor and actuator-interfaces) on a high
abstraction level, as well as the software.

Hardware is modelled by refining the functional model presented in previous sec-
tion, adding the specific behaviour and characteristics of the NXP/Jennic hardware.
For instance, the transceiver model is completed with the specific state machine
and transmitting power of the Jennic transceiver. Furthermore, Jennic high power
modules, which have a longer reach, are also considered. With this data, and the
propagation model introduced later in Sect. 8.4.3, the network topology can be
optimized and verified.

The software API presented to the application level code, functionally resembles
JenOS API, the embedded OS of the NXP/Jennic ZigBee platform chosen for the
implementation. This way, and by using embedded C coding style, the application
software developed in the modelling framework can be reused in the real platform
with very little adaptation.

The energy management application to be simulated is written in an event-
driven style. This reflects common practice in embedded system programming. Even
though the NXP/Jennic platform does support multi-threading, the recommended
way of writing applications is to use only a small number of threads, usually just
one, for application level code. Other threads handle network communication tasks,
network originated remote procedure calls (RPCs), as well as hardware related tasks.
True to the TLM paradigm, those other tasks are not modelled in detail (as would be
the case in hardware oriented modelling), but merely their latencies are accounted
for. The OS model for the SmartCoDe node functional model can therefore forego
true multi-tasking. Instead, there exists a single thread for the application level code
which is driven by a single unified event queue.

The downside of this approach is that CPU utilisation and especially contention
is not accurately represented by the model. It was deemed of low priority for the
case at hand, since the selected hardware platform (32 bit, 16 MHz) provides ample
reserve in that respect.

As depicted in Fig. 8.4, the unified event queue is fed by several event sources:
network events (e.g. incoming packets, changed network variables), sensor events
(when new sensor values are available) and timer events for delayed or periodic
execution.

8 Model Based Design of Distributed Embedded Cyber Physical Systems 137

Fig. 8.4 Architecture of the functional sensor/actor node model embedded in the simulation
framework

8.4.3 Propagation Model

The simulation includes a radio propagation model realized in SystemC TLM2 [1].
This simulator is capable of modelling noise, collisions, interferences and time-
variant effects.

Transaction Level Modeling abstracts communication and separates it from the
implementation. Therefore, although it is intended for bus modelling, its approach
is suitable for wireless communication too; see [5] for details.

Every node is a module with both an initiator and target socket. The medium
is modelled as another module, which acts as a TLM interconnect. In order to be
connected, every node has to be registered in the air, which later distributes the data
and calculates the attenuation. This registration process binds the TLM sockets.

Transaction Level Modeling is leveraged by abstracting the messages into the
transaction data structure, improving simulation performance and providing new
means of gathering simulation information in order to evaluate and optimize the
system [15].

8.4.4 Network Protocol Stack

The network implements a ZigBee protocol stack. The physical layer and part of the
MAC layer are implemented in the transceiver and already introduced in Sect. 8.4.2.

The software protocol stack is also implemented using TLM. Every layer is
implemented in an independent software module, with one output and one input
interfaces per adjacent layer.

138 J.M. Molina et al.

The MAC layer protocol implemented is the unslotted MAC protocol defined in
IEEE Standard 802.15.4, which consists basically on a CSMA-CA scheme, with
an exponential backoff mechanism between channel assessments. The maximum
backoff time is increased exponentially depending on the transmission retries. If
the maximum retries are reached and the channel was never clear, the package is
discarded.

The model also includes an Ad-hoc On-demand Distance Vector (AODV) routing
implementation at the network layer.

MAC and routing protocols have to be implemented and simulated in order to
obtain an accurate model of the network behaviour. The number of transmissions
carried out by one node is not only governed by the application but also by the
number of retries due to the MAC protocol and the number of packages that have to
be forwarded because of the routing functionality.

It is crucial for the whole system operation to detect in time a very busy channel
where messages can be delivered late or even discarded, with the consequent effect
in system performance.

Simulating the routing algorithm is even more important, as an inadequate
network topology might cause bottlenecks and overload some nodes with packets
to be forwarded. This should be taken into account in application development, but
might also affect the hardware production, as some more ZigBee routers can be
required in order to solve bottleneck problems.

8.4.5 Environment Interaction

The application to be modelled is the control of appliances providing a thermal
service like heating or air-conditioning. The precise appliance class which was
modelled captures fridges and freezers, and in the following we will refer to the
case of a fridge with a compressor which can be switched on or off, although the
approach can be easily extended to more general cases.

It is well known that the temperature profile produced by a fridge can be modelled
as a low-pass filter in the time domain (see e.g. [12]). For each power state, the input
to the lowpass is the value (in the following referred to as target temperature) where
the temperature would asymptotically tend to would the appliance stay in that state
indefinitely. In the case of a fridge it would be room temperature if it stayed switched
off, and a certain temperature usually below 0 ◦C if it stayed on.

There are formulas to determine the time constant of the lowpass depending on
the insulation and other factors, but the goal is to write a controller software which
learns the relevant parameters itself without prior knowledge, such that it can be
used with any kind of fridge/freezer. Therefore, it is more important to have a good
qualitative temperature model with parameters chosen randomly out of a value-
range which produces sensible quantitative temperature profiles.

With SystemC AMS, the thermal model lowpass can be described in a
straightforward manner using an embedded Laplace transfer function, e.g.

8 Model Based Design of Distributed Embedded Cyber Physical Systems 139

sca_tdf :: sca_ltf_nd , which describes a transfer function in the numerator-
denominator form (for details see [8]), and simulates the temperature in
discrete time.

However, two effects which can be observed in real fridge temperature profiles
are not yet captured: Usually it takes some time until the switching takes effect in
the temperature measured, and the slope of the temperature reverses its direction
not abruptly, but gradually. Since the exact parameters of these effects are not only a
function of the appliance, but also of the sensor and sensor placement, getting a good
qualitative model of this is sufficient. For the case at hand, this has been modelled
with a delay counter, which counts down from a given start value after each switch.
A turnaround counter, which counts down after the delay counter reaches 0, is used
to gradually change the target temperature from the former power state to the new
one. Listing 8.1 shows the relevant code of this thermal model.

Listing 8.1 Thermal lowpass model

void processing(){

char input = in.read();

if(last_input != input){

tc = turn_time[input];

dly = delay[input];

}

double t = target_temp[input]

* tc/turn_time[input]

+ target_temp[1-input]

* (turn_time[input] - tc)

/turn_time[input];

out.write(ltf_nd(num, den, t, h0));

last_input = input;

if(dly > 0) dly--;

else if(tc > 0) tc--;

}

8.5 Simulating the Energy Management Application

In a previous paper [6], a partially decentralized energy management approach was
described where abstract cost functions are sent to the wireless sensor/actor nodes
by an Energy Management Unit (EMU) to steer the power consumption. The nodes
then try to control their appliance such that they consume less power at high energy
cost intervals and vice versa, and compute a forecast or even a plan of the future
power consumption which then is sent back to the EMU for consideration (see
Fig. 8.5). Fridges, in that respect, can act as virtual storages by cooling down more
in low-cost times such that they can switch off in high-cost times.

140 J.M. Molina et al.

tariff t

EMU

forecast f1

forecast fr

. . .

cost function c1

cost function ck

. . .

E1

En
. . .

consumption
forecasts / plans
e1,…,en

appli-
ances

E1

En
. . .

Fig. 8.5 Partially decentralized energy management (Taken from [6])

The cost functions issued by the EMU can be based on various data; apart from
the current tariff it might for example include forecasts on availability of solar- and
wind-energy. In fact, the latter was a main motivation for the project where this
research has been performed. But the cost functions can also be purely abstract
just to reach a certain optimization goal. For example, the EMU can send periodic
cost functions with the same frequency but phase-shifted by a certain degree to
different appliances for load balancing between them; i.e. the EMU tries to achieve
that the appliances are switched on at different times such that the overall power
consumption is more constant.

Naturally, the problem of writing the software for such an application has two
aspects: A global and a local one. Locally the goal is to react to the cost function
as good as possible, while at the same time trying to maintain the service of
the appliance, e.g. keeping the fridge temperature in between certain temperature
bounds. Even if this goal is met satisfactory, this does not ensure that the global
goal (e.g. load balancing) is met.

Figure 8.6 shows an overview of the local energy management algorithm used
after an initial learning phase where usual bang-bang control is used and the
normal duty cycle of the fridge is determined in order to parameterize a PI
controller. The PI controller then computes an initial schedule (pOFF , pON) based
on the difference (eu,el) of the max/min temperatures (tmax, tmin) of the last off/on
cycle to the temperature bounds (bu,bl). This initial schedule is then tweaked
according to the cost function. In the case of a periodic cost function, the most
straightforward approach for the cost tweak is to search for the nearest cost-
minimum. To make sure that the temperature does not go too far out-of-bounds,
a temperature forecast algorithm is used which fits a discrete time thermal model to
the observed temperature measurements so far.

This algorithm was partly developed in an earlier SystemC model, and then
ported to the Jennic/NXP platform and refined further; in fact a real fridge was
controlled in lab conditions (A trace of such an experiment can be seen in Fig. 8.7
to the bottom right). To refine the global energy management (a currently ongoing
process), the code then was ported back to the SystemC model and used to simulate
a group of fridges.

8 Model Based Design of Distributed Embedded Cyber Physical Systems 141

_

(bu, bl)

(tmax, tmin)

(eu,el)
PI

(pOFF , pON) cost-tweak
f · (pOFF , pON) switch

off : f·pOFF sec
on : f·pON sec

EMU

comp-
ressor

thermal
process

Analysis
t1 ,…, tm

timer

Fig. 8.6 cost-function dependent PI-based fridge controller

upper bound 5.47 °C

lower bound 3.35 °C

bang-bang control cost-function dependent PI -control 6000 12000 18000 seconds

4

cost-function
power

Real
Fridge:

3

5 °C

Fig. 8.7 Simulation screenshot, together with an example from a real fridge

Figure 8.7 shows the simulation trace of four fridges being controlled using four
periodic cost functions shifted by π/2. Although there is no feedback to the EMU
yet, the combined power consumption is less volatile than in the usual bang-bang
case, as can be seen by observing the sample variance. The ultimate goal is to
model a given power consumption curve in that way. The simulated time shown is
about 2 days, which was simulated in less than half a minute on a normal personal
computer.

The use case implementation presented here was mainly used to develop and
test an energy management application for energy demand control. In this context,
the most important output of the simulation was testing different approaches and
algorithms.

The simulation environment permitted evaluating all aspects of the different
approaches together, such as network bottlenecks and complexity of the algorithms
to be implemented in end nodes. Furthermore, comparisons about what approach
performed better in terms of energy management could be established.

142 J.M. Molina et al.

8.6 Conclusion and Future Work

This paper presented a model-based design methodology for distributed embedded
systems along with a SystemC based simulation framework currently used to de-
velop an advanced energy management application. Despite encompassing several
domains and abstraction levels, from high-level processor modelling via medium
level wireless network modelling to rather detailed physical temperature models,
all could be fit into the SystemC modelling paradigm using the TLM and AMS
extensions.

Although modelling every domain and every aspect at every level is still not
possible, the framework presented here is flexible enough to enable modelling the
domains, aspects and levels of interest, all within the same simulation environment.
The only constraints are the simulation performance and the resources required to
develop the models.

Both the methodology and the comprehensive simulation proposed have been
successfully put into practice in a CPS use case of energy management wireless
sensor network, which adapts energy demand of building appliances to both
renewable energy supply and environmental conditions.

Future work will include using the framework to further develop the global
energy management application, as well as introducing other appliance classes and
applications like washing machines or electric car charging, which is currently a hot
topic.

Acknowledgements The work presented in this paper has been carried out in the Smart-
CoDe project, co-funded by the European Commission within the 7th Framework Programme
(FP7/2007–2013) under grant agreement no 247473.

References

1. Accellera Systems Initiative: TLM2.0. http://www.accellera.org (2012, 2013)
2. Accellera Systems Initiative, SystemC AMS working group: SystemC AMS. http://www.

systemc-ams.org (2012, 2013)
3. Al-Hammouri, A.T.: A comprehensive co-simulation platform for cyber-physical systems.

Comput. Commun. 36, 8–19 (2012)
4. Bailey, B., Martin, G., Piziali, A.: ESL Design and Verification. Morgan Kaufmann, (2007)
5. Damm, M., Moreno, J., Haase, J., Grimm, C.: Using transaction level modeling techniques for

wireless sensor network simulation. In: Proceedings of the Conference on Design, Automation
and Test in Europe, Dresden, 2010, pp. 1047–1052

6. Damm, M., Mahlknecht, S., Grimm, C., Bertenyi, T., Young, T., Wysoudil, C.: A partially
decentralised forecast-based demand-side-management approach. In: 2nd IEEE PES Inter-
national Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe),
Manchester, Dec 2011, pp. 1–7

http://www.accellera.org
http://www.systemc-ams.org
http://www.systemc-ams.org

8 Model Based Design of Distributed Embedded Cyber Physical Systems 143

7. Du, W., Mieyeville, F., Navarro, D., Connor, I.: IDEA1: a validated systemc-based system-level
design and simulation environment for wireless sensor networks. EURASIP J. Wirel. Commun.
Netw. 2011, 1–20 (2011). doi:10.1186/1687-1499-2011-143

8. Einwich, K., Vachoux, A., Grimm, C., Barnasconi, M.: SystemC AMS extensions user’s guide.
Accellera Systems Initiative, SystemC AMS working group (2008)

9. Gajski, D.D., Kuhn, R.H.: New VLSI tools. Computer 16, 11–14 (1983)
10. IEEE Std 1666–2011 IEEE Standard SystemC Language Reference Manual, (Revision of IEEE

Std 1666–2005) pp. 1–638 (2012) doi=10.1109/IEEESTD.2012.6134619
11. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-physical

systems. In: 7th International Wireless Communications and Mobile Computing Conference
(IWCMC), Istanbul, 2011, pp. 1666–1671

12. Kupzog, F.: Frequency-responsive load management in electric power grids. Ph.D. thesis,
Vienna University of Technology (2008)

13. Lin, J., Sedigh, S., Miller, A.: Towards integrated simulation of cyber-physical systems: a
case study on intelligent water distribution. In: Eighth IEEE International Conference on
Dependable, Autonomic and Secure Computing, Chengdu, Dec 2009, pp. 690–695

14. Lukasch, F.: Cost efficient mains powered supply concepts for wireless sensor nodes. In:
IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, May 2011,
pp. 502–505

15. Moreno, J., Wenninger, J., Haase, J., Grimm, C.: Energy profiling technique for network-level
energy optimization. In: AFRICON, 2011, Victoria Falls, pp. 1–6. IEEE (2011)

16. Ptolemy II: UC Berkeley EECS Depatment, Ptolemy II Project, UC Berkeley http://ptolemy.
eecs.berkeley.edu/ptolemyII/ Accessed 2012

17. Tabuada, P.: Cyber-physical systems: position paper. In: NSF Workshop on Cyber-Physical
Systems, Austin (2006)

18. Wenninger, J., Moreno, J., Haase, J., Grimm, C.: Designing low-power wireless sensor
networks. In: Forum on Specification and Design Languages (FDL), Oldenburg, 2011,
pp. 1–6. IEEE (2011)

http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

Chapter 9
Model-Driven Methodology for the Development
of Multi-level Executable Environments

Fernando Herrera, Pablo Penil, Hector Posadas, and Eugenio Villar

Abstract Electronic system-level (ESL) methodologies have enabled the
development of fast executable system performance models by relying on standard
languages such as SystemC. Recent system-level dynamic, that is, simulation-based
performance estimation techniques have enabled faster assessment of the design
alternatives, and thus the design space exploration (DSE) of complex embedded
systems. In this context, the development of system environment models able to
reflect common and feasible use cases is crucial for achieving efficient and valid
solutions at early design stages. However, such environment modelling can be
as or more complex and costly than the system model development itself. The
adoption of model-driven development (MDD), component-based design (CBD)
and abstraction, can improve the productivity of the environment specification
as it does for system specification. In this chapter, a multi-level model-driven
methodology for the specification of executable environments is presented. The
methodology supports the capture of the environment use cases by relying on
the UML standard language and on standard profiles, i.e. MARTE and UTP, and
uses UML components for a clean separation of system and environment, and of
environment actors. Moreover, a SystemC executable counterpart is automatically
generated from the UML-based environment model, coupling the documental and
performance analysis levels. The approach is able to capture the communication
protocol between system and environment, and also the environment functionality,
which can embed either an abstract stimuli generation model, or actual functionality
of I/O devices. Thus, different abstraction levels are supported in the functional
modeling of the environment.

F. Herrera (�) • P. Penil • H. Posadas • E. Villar
University of Cantabria, ETSIIT, Santander, Spain
e-mail: fherrera@teisa.unican.es; pablop@teisa.unican.es; posadash@teisa.unican.es;
villar@teisa.unican.es

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__9,
© Springer International Publishing Switzerland 2014

145

mailto:fherrera@teisa.unican.es
mailto:pablop@teisa.unican.es
mailto:posadash@teisa.unican.es
mailto:villar@teisa.unican.es

146 F. Herrera et al.

9.1 Introduction

Integration capabilities have undergone a continuous growth (from 107 to 109 tran-
sistors) in the last decade, and further integration capabilities are envisaged [4, 14].
These integration capabilities have led to the possibility of producing more complex
embedded systems. However, at the same time, this has involved a major challenge
to overcome the gap between design productivity and integration capability. One
of the main strategies adopted to overcome the design gap is the development
of electronic system-level (ESL) design methodologies [18], where the key initial
activity is system specification. Model-driven development (MDD) methodologies
enable concepts for making specifications simpler and more understandable, which
are major requirements for tackling the design challenge [17]. The usage of
standard languages such as UML [23] provides understandability and portability
of specifications.

After specification, the next task in an ESL design methodology is design space
exploration (DSE) [3, 12, 18]. This activity is crucial for an early assessment of the
optimal design decision, since about 90 % of the overall costs are determined in the
first stages of the design [12].

Due to the high complexity of the systems and to the huge number of design
alternatives, new estimation techniques, such as [8] and native simulation [7, 27],
have been proposed for the assessment of the performance of each feasible design
alternative. These techniques are dynamic, that is, simulation-based and provide
simulation speed-ups of two orders of magnitude with regard to instruction set
simulators [27]. Dynamic techniques require the definition of a stimuli environment.
Performance results greatly depend on this stimulation, and thus on the design
decisions resulting from this assessment. This makes dynamic performance estima-
tion techniques suitable for customized and average optimizations of the systems,
which is interesting in many application domains, e.g. wide consumer market, where
efficient implementations and cost reduction are crucial. However, these techniques
require to enable and facilitate the specification of the system environment as a
set of use cases which comprise common cases and corner cases, to let the user
dimension the system and assign a given quality of service and guarantees on
constraint fulfillment when the system works under both “normal” conditions and
under expected worst-case conditions.

However, the development of an executable stimuli environment which can be
reused and properly linked to the DSE design flow could be easily more costly than
the system specification and the extraction of its executable performance model.
Because of this, the specification of the stimuli environment should also support
design concepts which have been shown useful for system modeling and design.
Adopting an MDD approach for the environment model enables abstraction, and
other benefits, such as the application of code generation toolsets for the automated
extraction of executable counterparts. This way the whole modelling task, and not
only the system specification is covered.

9 Model-Driven Methodology for the Development of Multi-level. . . 147

In this paper, a methodology for the abstract modeling and automatic generation
of an executable counterpart of the multilevel environment of an embedded system is
presented. Specifically, in this methodology, the verification environment is modeled
by using UML [23], MARTE [21] and the UML Testing Profile (UTP) [22]. After
this stimuli environment model has been developed, a code generator enables
the automatic production of an executable SystemC code which reflects all the
information captured in the UML model of the stimuli environment. This SystemC
model can be easily built up with verification functionality.

The methodology enables the modeling of the environment actors and the spe-
cific sequences of interface function calls between the system and the environment
actors. This enables to exercise the system, in such a way that depending how
the environment actors couple system interfaces, the concurrency of the system
application can be more or less exploited, which, in general, impacts on the decision
of the optimal mapping to the system platform. It also serves to validate the
concurrency structure of the system. These modeling aspects, and the generation of
the SystemC executable model were introduced in a previous work [11]. This paper
presents the overall methodology, which has been enriched to support additional
features. Specifically, the methodology supports now a simplified description of the
environment, through implicit sequential diagrams. Moreover, a tool-independent
link between the environment model and the files containing the functionality of
the environment has been enabled. Finally, the methodology provides now means to
describe the environment behavior at two abstraction levels, a first one by capturing
an abstract, target independent, description of the environment behavior; and a
second, more detailed level, where the system code, typically legacy code, or I/O
peripheral driver, is considered part of the environment. This is interesting, for
instance, when the system component is use as an input for an automatic synthesis
process [28].

The structure of the chapter is the following one. In Sect. 9.2, related and
previous work will be presented. Section 9.3 presents the methodology for modeling
the environment. Section 9.4 introduces the tooling supporting the environment
modeling methodology. Section 9.5 explains how the SystemC model is simulated
together with the system performance model. Finally, Sect. 9.6 explains how
the methodology has been validated. Sections 9.7 and 9.8 ends with the main
conclusions and future work, respectively.

9.2 Related and Previous Work

Several UML-based methodologies for the modeling of an embedded system
have been proposed. Intuitively, the modeling of the system environment can be
tackled by directly applying the system modeling methodology. However, although
maintaining some homogeneity in the modeling methodology of both environment
and system can be convenient, environment and system modeling have different

148 F. Herrera et al.

constraints and needs. Moreover, certain distinction and asymmetry is required, for
instance, to let the implementation framework knows what to synthesize or compile.

At MDD level, this has motivated the development of the UTP standard [22].
Despite the relatively long availability of UTP, only a few approaches have tried to
provide support for UTP [15]. In [15] UML and UTP are used for deploying Model-
Based Testing in Resource-Constrained-Real-Time Embedded Systems (RTES-
RC). This paper aims to close this gap and discusses a concise set of UTP artifacts
in the context of model-based testing for RC-RTES. A detailed discussion on the
test artifact generation algorithm is presented, demonstrating the applicability of the
approach in a real-life RC-RTES example. In [16] the integration of executable uses
cases as a supplement to MDD is proposed. It is seen as a model-based approach to
requirements engineering. Specifically, a coloured petri-net model is used to express
user requirements.

SystemC [13] enables the building of executable, platform agnostic validation
environments. SystemC has been widely used for system-level and reusable test
bench development, and it has already enabled the development of advanced
features for supporting verification and debugging. SystemC has been targeted from
several model-based methodologies, focused on the description of a system for
the development of executable performance models. Related to verification, in [2]
formally sound B models are used to verify model refinement, and translated into
SystemC.

The cooperation of fast performance estimation techniques with SystemC has
enabled fast simulation of a complex embedded system including SW and custom
HW parts. In [19], SW parts are simulated with a virtualization environment called
Simics, while SystemC was used for modeling custom HW devices. In [19] the
SystemC kernel is made a slave system of the Simics kernel, and an efficient
technique for check pointing of the SystemC custom HW was presented. In this
approach SystemC is used to model HW devices as an integral part of the system
model

The recent merging of the Open SystemC Initiative (OSCI) with Accelera [1]
makes targeting SystemC even more interesting, once the proposed modeling
environment can benefit from cooperation with other verification approaches, such
as the Universal Verification Methodology (UVM) [30].

Although the methodology proposed here does not preclude its extension for
supporting a verification methodology, the main motivation was to enable a UML-
based, abstract and flexible modeling of the stimuli environment and the automated
generation of a standard and executable counterpart. Much of the features of the
methodology, presented in [11], were necessary to complete the UML/MARTE
COMPLEX modeling and virtual system generation framework [5]. In such a
framework, a UML/MARTE-based methodology [9] enables the development of
an embedded system model, including the main features in terms of impact on
performance. This model can be captured with Papyrus [24], a tool for capturing
UML models, which is fully integrated in Eclipse [6]. A related tool, which
includes model validators, model-to-text generators [10], and the SCoPE native-
based simulation infrastructure [26], enables the automated generation of the

9 Model-Driven Methodology for the Development of Multi-level. . . 149

performance model. Moreover, the additional features shown in this chapter, e.g.
the integration of target-dependent application code as part of the environment, have
been applied to a MDD framework enabling automatic software synthesis for many-
core framework.

9.3 Environment Modelling Methodology

The proposed environment modeling methodology enables a UML-based modeling
of the environment, which can be smoothly integrated in a component-based
methodology [29]. Specifically, it is integrated in methodologies such as COM-
PLEX [5] and PHARAON [25], where the whole system is enclosed in a UML
component, and where different views, in the shape of UML packages are used to
capture the system model. The proposed specification of the environment, as shown
in the following sections, cleanly separates the system information from the model
containing environment actors, their functionality and their interconnection with the
system model.

9.3.1 Environment Structure and Connection to the System

The user can develop the model of the environment at the same abstraction level,
clearly separating the system from the verification environment. Specifically, the
user will enclose all UML modeling elements within a specific view of the model:
the verification view. Figure 9.1 shows an example with the hierarchy of UML ele-
ments used for the modeling of the environment proposed, and which can be taken
as a reference for the following discussion. The verification view is actually a UML
package, typed with the «VerificationView» stereotype, which contains the
model elements which describe the verification environment facilitating a tool-
independent separation of system and verification elements. The verification view
declares the whole set of actors which compose the environment as a set of UML

Fig. 9.1 Several scenarios are supported

150 F. Herrera et al.

Fig. 9.2 Declaration of environment and test components in the VerificationView

components with the UTP «TestComponent» stereotype applied (Fig. 9.2). An
additional UML component, with the UTP «TestContext» stereotype is used for
the declaration of a verification environment (StimuliCompoUTP in Fig. 9.2). The
internal structure of this component, depicted in the composite diagram in Fig. 9.3,
reflects the interconnection structure of the system and environment component
instances. Environment component instances are captured as UML properties typed
as «TestComponent» components, and the system component instance. The
system component is captured as a UML property typed as the UML component
reflecting the system, and which exports I/O functional interfaces. Notice that this
system component is not in the verification view, but in a view related to the
specification of the system description. This means a dependency, so the verification
view depends on the system views. In addition, the referred system component
must be specified by the UTP «SUT» (System Under Test) stereotype. Through
this scheme a clear separation is established between the system element and the
environment elements.

The composite diagram in Fig. 9.3 also shows the port to port connection. After
this interconnection, the environment components that provide the services required
by the system are stated. Similarly, services provided by the system can be invoked
from the environment modules.

9.3.1.1 Modelling the Behaviour of the Environment: One Scenario

As well as the interconnection between the environment elements and the system,
the proposed methodology supports the specification of the behavior of the en-
vironment. First, the methodology adds a main concept, the scenario. A scenario
models the activity of the different environment components, and their interaction
with the system for a given use case. Several scenarios are possible (see Sect. 3.4).
It means that, while one scenario can involve activity in all the environment
components, each with a specific behavior, a different scenario can model activity
only in some environment actors, with a different behavior. Each scenario can be
described by:

9 Model-Driven Methodology for the Development of Multi-level. . . 151

Fig. 9.3 Environment structure for an EFR vocoder

• Interactions, each interaction between an environment component and the system
is a totally ordered sequence of service calls, which can be synchronous or
asynchronous.

• References to file sets, where the specific functionality is allocated.

A scenario is captured as a UML package stereotyped with the MARTE stereotype
«GaWorkloadBehavior». A scenario package has to be a child element of the
VerificationView package. The methodology does not enforce the use of both
type of functionality. Indeed, the UML/MARTE COMPLEX methodology uses only
interaction diagrams, such a later code generation phase produce templates with
empty functionality. Therefore, filling the functionality is left to the user, as a manual
task. Instead, in the context of the UML/MARTE PHARAON methodology, file
references are included, while interaction diagrams are omitted. In practical terms,
it involves two different environment modelling styles. However, both of them fit to
the more general scheme presented here.

Interaction Modeling

Interaction modeling relies on UML interactions, where UML lifelines can rep-
resent either, the system or an environment component. As a prerequisite, the
GaWorkloadBehavior package (scenario package) must comprise a UML
component with the UTP «TestContext» stereotype. Then, this new

152 F. Herrera et al.

Fig. 9.4 Generalization for
referencing environment
components in the modeling
of each scenario

Fig. 9.5 Sequence diagram for a port to port interaction

«TestContext» component is generalized by the «TestContext» compo-
nent where the environment structure is specified (Fig. 9.3). This«TestContext»
components relation is modelled by an UML generalization (Fig. 9.4). This way, the
component instances reflecting environment components can be accessed and later
on associated to UML lifelines, used for specifying scenario interactions.

A scenario comprises the specification of all the interactions over time between
the system and the environment components. They are described by means of one or
more UML interactions (as child elements of the «TestComponent» component)
which also have the UTP «TestCase» stereotype applied. A scenario description
is complete when all the interactions cover all environment components and their
ports. However, this is not a required condition since a scenario can represent a use
case which might not require an interaction with all system ports. UML interactions
are graphically captured by means of sequence diagrams. Figure 9.5 shows a
sequence diagram capturing the interaction between an environment component and
the system component. A lifeline references the instance of the system component,
while the other lifeline references an instance of one environment component.
Making these references is feasible thanks to the specialization shown in Fig. 9.4.
As well as the lifelines, the interaction contains the set of UML messages exchanged
between the system and the environment component. These messages represent
function calls, as services provided either by the system to the environment or
viceversa.

The different environment components are communicated with the
system by using interfaces and specified by the MARTE stereotype
«ClientServerSpecification» and they contain the functions used for
the component interconnections. The interfaces are included in the model view
«FunctionalView». Depending on the goals of the designer, these interfaces
can represent auxiliary interfaces used for defining functions for validating the

9 Model-Driven Methodology for the Development of Multi-level. . . 153

concurrency and behavior of the system in different use cases. After the system
validation using the stimuli specifications, the designer can develop the environment
interfaces for physical implementation in order to access to the environment actors
which represent peripherals. In this case, these interfaces are the implementation
mechanisms for accessing these peripherals according to predefined functional and
non functional requirements.

The sense of a UML message is captured through its “from” and “to” attributes
(in the diagram, the “to” attribute corresponds to the tip of the arrow). The
sense states whether the system calls a function provided by the environment
(“from=system”) or, on the contrary the environment requires a service provided
by the system (“to=system”).

Two different types of UML messages are used: synchronous messages and asyn-
chronous messages. They enable the specification of synchronous and asynchronous
services. Synchronous services require the return of the function call, e.g. because
the client expects some output data from the service call. However, it might be
interesting to specify service calls which just provide input data for triggering the
service, and which immediately return and let either the system or the environment
component go on executing. A UML synchronous message is represented by a solid
arrow head (as in the two messages from the system to the environment component
in Fig. 9.5). UML asynchronous messages are represented by open arrow heads (as
in the message from the environment component to the system in Fig. 9.5).

The name of the message identifies which function is called. This is required
because an interface can comprise several service functions. In the example of
Fig. 9.5, the environment component first calls the funcSystem service provided by
system component. Next, the system calls the “funcEnvir2” service twice provided
by the environment component. These functions must be part of the interface
accessed through any of the environment component ports. And, as explained, those
interfaces could present more functions, e.g. “funcSystem2” or “funcEnvir1”.

Although the sequence diagram graphically reflects a total order in the exchange
of messages, this information is not contained in the UML interaction. Diagrams
provide a graphical representation, but not all that graphical information is contained
in the UML model. It is required to add this information in a way it can be preserved
in the .uml file read, so available to the toolset around the model, e.g. model
validation or code generation frameworks. For it, in the proposed methodology, a
unique order identifier (“i:”) prefixes the message name, which is part of the UML
model. In this way, a total order in the exchange of messages can be specified
at local level. Local level means the interaction between the system and a single
environment component, which requires two lifelines, as in Fig. 9.5.

The user can specify all the interactions in a compact way. In fact, the messages
of a sequence diagram can refer to functionalities of different ports of the environ-
ment component, and thus of the system. Moreover, one UML interaction can be
used for specifying the interaction of the system with more than one environment
component. In Fig. 9.6 a sequential diagram shows the communication between
the system and two environment components. In principle, in a diagram like this,
the sequence of messages exchanged between the system and one environment

154 F. Herrera et al.

Fig. 9.6 A sequence diagram stating synchronization conditions between the systems and two
environment components

component is not related to the sequence of messages exchanged between the system
and another environment component. That is, in the example of Fig. 9.6, if the
reader forgets by now the strict labeled boxes, there would be in principle no order
relationships between the messages exchanged between system/envir2 lifelines, and
the messages exchanged between system/envir1 lifelines. That is, the i-th message
of system-envir2 communication might happen before, at the same time, or after the
j-th message of system-envir1 communication.

However, use cases may actually require the modeling of these types of
constraints, because the environment itself can also present dependencies, e.g.
among environment components, and thus provoke dependencies between system
interfaces which do not have its origin in the system itself. In the proposed
methodology, the user can specify order relationships among messages exchanged
by different environment components with the system. This is done by using
UML CombinedFragments, shown as boxes in Fig. 9.6. Specifically, in the Fig. 9.6
example, a strict combined fragment is used. The strict combined fragment groups
the execution of the set of messages it covers, so that all covered messages have to
be executed before or after the remaining messages. That is, it defines an atomic
region of messages exchange. Taking the previous discussion into account, the
use of combined fragments adds a higher ordering level to the specification of the
environment, in the sense that all the messages encapsulated in the same combined
fragment are associated with a single and higher order implicit ordering index.
Moreover, it also adds a global ordering since it covers the interaction of the system
with more than one environment component.

For instance, the two combined fragments in Fig. 9.6 state that “1:funcEnvir2”,
envir2 call to “2:funcSystem”, and “1:funcEnvir1” will have an associated higher
order k-th index; and will have to be executed before or after “3:funcSystem”,

9 Model-Driven Methodology for the Development of Multi-level. . . 155

“4:funcEnvir1”, and envir 1 call to “2:funcSystem” messages, with a m-th high order
index. The total order of each local system-environment component interaction,
imposes a total order in the execution of the combined fragments (m < k).
In other words, the bottom combined fragment in Fig. 9.6 has to happen after
the top combined fragment. Local and global ordering has to be coherent, thus
two environment component lifelines cannot impose an order conflict on two
combined fragments (e.g., m < k, m > k). As a result, the methodology enables the
specification of a partial order of messages exchange. A partial order of messages
is specified where there can be order relationships among the messages sequences
exchanged by the system with different components. Specifically, in the Fig. 9.6
diagram, “1:funcEnvir2” and “2:funcSystem” messages, reflecting function calls
among envir2 environment component and the system, will take place before the
“2:funcsystem” call done by envir1 environment component. Similarly, the diagram
in Fig. 9.6 specifies that “3:funcSystem” and “4:funcEnvir1” will take place after
“1:funcEnvir1”.

The methodology also supports another two combined fragments. The “loop”
combined fragment (loop) is used for specifying repetitive subsequences of message
exchange. The “parallel” combined fragment (par) is used to model that certain
groups of services either provided or required by the same environment component
can be executed in parallel.

The features presented up to here enable the specification of a partial order
of service calls in the environment. Formally speaking, this is the most abstract
way to specify time constraints in the environment model. Furthermore, the
proposed methodology enables the association of physical time information with
the environment model. Specifically, the initiation of each service call can be
placed in a specific physical time stamp. In order to specify it, the MARTE
«TimedProcessing» stereotype is used. This stereotype is applied to the UML
message which reflects the service call placed in physical time. The stereotype
provides the attribute “start”, which denotes a UML Time Event, which in turn,
is placed in physical time through a UML Time Expression.

Implicit Interactions

The methodology admits the use of implicit interactions. It is a practical feature
which saves time and complexity in the modeling of common environment models
in a specific domain. Specifically, it means that an environment component will have
a default interaction scheme associated, if no specific UML interaction has been
captured and associated with it. A methodology can define this implicit interaction.
For instance, in a domain space oriented methodology, hard real-time analysis
methodologies will typically assume a reactive environment, and an active system
which does not block because of waiting for environment services, whose response
might be non-predictable and/or unbounded. It is typically modeled through an
interaction scheme with an infinite loop enclosing an incoming asynchronous UML
message. I.e. requested by the system. Therefore, this interaction scheme is a good
implicit interaction candidate for space domain oriented applications.

156 F. Herrera et al.

Fig. 9.7 File association with a TestComponent

Association of File Sets

The proposed methodology supports the capture within the environment model of a
file set related to an environment component. All the interface functions present in
the interactions of the environment component could find its implementation in the
file set or not. In the former case, this feature enables a fully automated integration of
source code, e.g. previously implemented test benches in SystemC or C/C++, with
the rest of the environment model information. The association is also applicable to
the case of relying on implicit interactions. In such a case, the functions called can be
inferred from the associations or be explicitly captured as environment component
operators. The scenario when this happens is explained later on. As mentioned,
it might also happen that not all the functions associated with the environment
component are found in the associated file artifacts. In such a case, code generators
produce the interface function declarations and the implementation templates.

Figure 9.7 shows how file set association is captured in the proposed method-
ology. Let assume that environment functionality is available in a set of source
files. The file set is modeled as a UML artifact typed by the UML standard stereo-
type «File». These file artifacts are included in the «FunctionalView»
package. These files represent previously created test-benches and, thus, can be
reused in different designs or the user code of the component functionality.

When the environment component functionality is specified by files the corre-
sponding GaWorkloadBehavior package should contain additional
TestComponent components. These TestComponent components are
generalized from the TestComponent defined in VerificationView
package (Fig. 9.8). These new TestComponent have associated the different
files where the functionality of the scenario is implemented. This
file-TestComponent association is modeled by a UML abstraction specified
by the MARTE stereotype «Allocated» (Fig. 9.7).

9 Model-Driven Methodology for the Development of Multi-level. . . 157

Fig. 9.8 TestComponent
generalization

Fig. 9.9 TestComponents as application components

9.3.2 Levels of Abstraction in the Specification of Environment
Behaviour

The proposed environment modeling methodology supports de distinction at the
modeling level between an abstract (target independent) and a target dependent
description of the environment behaviour.

Figure 9.7 exemplifies the modeling of the former case. Then, the model reflects
that the source code linked to the environment model reflects a functional model
of the environment and which can be therefore used for creating an executable
counterpart of the environment model. This is independent from the language.
However, a language such as SystemC is typical of this case, since SystemC is
a language suitable for implementation agnostic models. Moreover, the proposed
methodology supports a system-dependent, and more specifically target dependent,
description of the environment component. The case is show in Fig. 9.9. The idea
is that methodologies, require the consideration of certain application components
as environment components. For instance, in PHARAON methodology, there are
application or platform software components which reflect the software layer for
accessing I/O peripherals. However, it is not interesting to consider them as part of
the system, e.g., for code synthesis effects. However, they can contain C or C++
code reflecting the functionality of the device driver which facilitates and makes
realistic the development of the environment, or that can even enable hardware in
the loop methodologies (enabling the integration of the peripheral hardware, e.g.
a camera, together with its driver, as part of the environment, and the rest of the
system under design).

158 F. Herrera et al.

A distinctive aspect of this case is that the source code (“C” code in Fig. 9.9
example) is likely target dependent code. E.g., a high-level device driver code used
as part of the test bench will likely make calls to an operative system instance, which
in turn is part of the system under design, and thus such operative system instance
is captured in the system specification. Therefore, this model needs to break the
pure separation of scopes between the environment and the system. As this is not
the general rule in a MDD methodology, it is convenient to mark the environment
components which such access to the system model internals. It is shown in Fig. 9.9,
where the environment component is typed by the «RtUnit» MARTE stereotype,
as well as by the UTP «TestComponent» stereotype.

9.3.3 Modeling Several Scenarios

The proposed methodology supports the modeling of several
GaWorkloadBehavior packages. This enables a set of different stimuli asso-
ciated with different use cases to be captured in a single model. Then, a DSE
exploration can be done for each use case, and the design can be tailored for
a set of use cases. A a wide set of scenarios can be also used for validating a
single design for different use cases. In addition, the methodology provides different
GaWorkloadBehavior packages where the file association is used. This fact
enables the verification of the system with test-bench files (SystemC or C/C++) and
so the verification of the peripheral interfaces for the final implementation. In this
way, both modeling mechanisms can cohabit in the same VerificationView
package which enables the definition of the different design stages in the same
model. In order to specify several scenarios, the user only needs to specify a new
GaWorkloadBehavior package, in turn containing a TestContext com-
ponent. This TestContext component again generalizes the TestContext
component and owns as many interactions as the user requires for describing the
new scenario.

9.4 Toolset

The environment modeling methodology presented is partially supported by a
toolset which relies on Eclipse and Papyrus. Specifically, two code generation
tools have been separately implemented up to now. The first generator produces
a SystemC counterpart from the ULM interactions. The second one, implements
the generation of the file structure from the model. These generators have been
written in the standard Model-to-Text (M2T or MTL) language [20], to improve
its portability across different model-to-text transformation engines.

9 Model-Driven Methodology for the Development of Multi-level. . . 159

9.4.1 SystemC Generation

The code generation is in charge of producing all the SystemC code reflecting
the structure of components and concurrency present in the UML/UTP/MARTE
environment model. It also produces the service calls fulfilling the partial order
specified in the environment model by means of sequential diagrams. The generator
does not produce functional code, whose insertion is left to the user. However, in
order to enable the production of an executable environment model from the first
moment after the generation, void functions with debugging printouts are produced.
This permits a fast initial check of the SystemC code produced and provides a basis
for indicating to the user where to insert functional code.

Code generation is actually done in two phases. First a model-to-text transformer
translates the UML environment model into a set of macros. A specific front-
end of the SCoPE simulation framework provides the SystemC translation for
these macros. The SCoPE framework enables the compilation of a dynamic library
(instead of a static executable file) for each scenario. In this way, the approach
is modular at executable level, in the sense that each scenario of the SystemC
environment has its own .so file, separated from the .so files of the system executable
model itself. The generator basically maps all verification views to a single SystemC
module (thus there is no UML environment component module mapping). The
code generator produces at least one SystemC process containing a sequence of
channel accesses for each environment component. This sequence fulfils all the
order constraints specified through the sequence diagrams, as explained in Sect. 9.3.

9.4.2 File Structure Generation

The other implemented code generator enables the generation of the file structure.
In order to characterize an application component, the files whose functionality
is implemented, the interfaces required/provided and the component’s functions
should be specified. With this information, the code generator creates the application
files (.c/cpp and .h). These files include the declaration of the functions provided
by the application component through its interfaces and the other functions specified
in the model as internal component functions. The functions of the application
environment component can be associated with a specific file in order to specify that
a function has to be included in this file. Otherwise, the code generator produces two
additional files, apart from the files specified in the model, one which includes the
declaration of the functions of the interfaces provided by the component and another
file which includes the internal functions of the component. Then, by using a UML
comment, the programming language is annotated (Figs. 9.7 and 9.9).

In addition, the second generator enables the generation of the makefiles required
for the compilation of the environment components with the rest of the application
in order to be executed in the simulation tool. This feature enables the designer to
focus on the functionality implementation and not on the infrastructure required for
the simulation tool execution.

160 F. Herrera et al.

9.5 SystemC Simulation with the System Performance Model

The system simulation infrastructure used (SCoPE+) works on top of the SystemC
kernel. Time advance, buses and peripherals have been developed using the standard
SystemC features. As a result, no kernel synchronizations between the system
simulation kernel and the environment kernel are required, which contrasts with
other approaches such as. However, direct use of SystemC environments is not
possible since both parts rely on different models of computation.

On the one side, the system model uses a client-server component-based
communication, based on function calls. Each time a client component requires a
service, it calls a function that is implemented and provided by another provider
component. Under this perspective, the data transferred among components are the
input and output arguments of the functions of component interfaces. Each function
called by a client component means sending input arguments to server components
and, if output arguments are expected, they are sent from the m server component
to the client component. On the other side, the SystemC environment relies on
interfaces based on transfers which use SystemC channels. These channels receive
packaged data and provide different communication semantics: blocking/non block-
ing, with/without memory, etc.

Interconnection wrappers are used to adapt each channel of the SystemC envi-
ronment to each function in the system interface. In these wrappers, communication
accesses are divided into two steps: a request step, where the input arguments are
sent, and a response step, where output arguments return to the calling task. In
the meantime, the calling task is blocked, waiting for the response. This approach
models the blocking nature of function calls. Additionally, data transfers are
packaged by copying the arguments of each function call in a buffer that is sent
through the SystemC channel as a single unit.

9.6 Example

The suitability of this methodology has been demonstrated through the development
of environment models for an EFR vocoder example. The interrelation between the
environment components and the system has been specified in two different ways,
by using the UML interactions and by means of the files. The SystemC code was
automatically extracted from the environment and simulated with the executable
performance model, automatically extracted from the UML/MARTE model of the
system, after requiring only the injection of the functional code.

Figure 9.3 shows the structure of a first environment model developed for
simulating a full-duplex transmission operation mode. In this use case, the coder and
the decoder functionalities of the vocoder are stimulated independently (and thus
potentially at the same time) and they have to exhibit concurrent behavior able to
attend to coding and decoding services at the same time. This model is composed of

9 Model-Driven Methodology for the Development of Multi-level. . . 161

Fig. 9.10 Modeling of order constraint for remote closed loop modeling

four environment components. In this way, independent threads stimulate the coder
and decoder within the vocoder, and the collection of coded audio (transmission)
also runs independently of the collection of the decoder output (speaker output).

In order to show the usage of more than one scenario, the environment with the
structure shown in Fig. 9.3 was extended to support a second scenario, specifying a
remote close loop use case. In principle, this could also be done with the structure
shown with the addition of some functionality for emulating channel effects. The
only additional requirement to cover the specification needs of “scenario2” was the
ability to specify that the service for transmitting the i-th coded frame should always
be called before the reception of the corresponding i-th received frame, reflecting the
same coded frame but corrupted by the channel effect after traversing the remote
closed loop. Notice that since different components (and processes) are inferred for
transmitter and receiver, and since the receiver can directly read from a file with the
coded and corrupted frames, the ordering constraint is required to model the actual
causality existing between the i-th coded frame sent and the corresponding received
frame after traversing the remote loop.

Figure 9.10 shows the sequence diagram which reflects the interaction of
transmitter and receiver with the system. Two strict combined fragments are used to
reflect the aforementioned order condition, which will impose an order relationship
in the test-bench generation. The combined fragments cover lifelines from both
the transmitter and from the receiver environment components. Notice that the
null activity of one environment component while the other is attending to a
service is explicitly modeled. The sequence diagram in Fig. 9.10 also illustrates
the usage of synchronous and asynchronous messages for modeling synchronous
and asynchronous service calls. In fact, the EFR Vocoder uses the asynchronous
transmit service since the vocoder can go on coding frames after the coded audio
frame is delivered to the transmitter. However, the vocoder uses a synchronous call

162 F. Herrera et al.

for the services to be called since the decoder cannot work without having received
the output parameter of the received function, that is, the received audio frame.

The scenario “scenario3” (Fig. 9.1) is part of a test-bench collection to be used
for checking the vocoder system. In this case, it is not necessary to specify the
interactions for functionality description; only the capture of the different files
in the model is required. The infrastructure for system simulation (makefiles) is
automatically obtained for the SCoPE+ simulation.

Finally, the scenario “scenario4” (Fig. 9.1) specifies the target dependent source
code (Fig. 9.9) of the different device drivers for the code synthesis process.
The makefiles generated included all the information required for compiling the
application in the target board (cross compiler, flags. . .).

9.7 Conclusions

Support for MDD and related tools in the specification of a stimuli environment
is necessary for the development of performance models for complex embedded
systems. It enables fast model development and efficient design decisions in the
DSE phase. This paper describes a methodology for UML/MARTE/UTP modeling
of an environment which supports the specification of the main environment actors
and their interconnection with the system; the specification of the interaction of
environment components with the system as partially ordered sequences of service
calls; and the specification of several scenarios for reflecting different use cases.
In addition, the methodology enables the capture of the files which implement
the functionality of test-benches for system simulation in different scenarios. This
avoids modeling the environment-system interactions in order to take advantage
of the previously implemented test-benches. Moreover, the methodology enables
the specification of peripheral interfaces to be developed for the final system
implementation which, by using the simulation, enables the verification of the
interface’s functionality required for the final system synthesis implementation.

Tools support the generation of the SystemC code and the makefiles infrastruc-
ture for execution in the simulation tool.

9.8 Future Work

Some methodological aspects have still not been implemented in a specific tool.
Specifically, there is no support for the generation of the function calls sequence
which defines the behavior of an application environment component in a specific
scenario. This generator would generate the complete, ordered sequence of function
calls established between the system and the environment application component.
This sequence of call functions would be included in a file. This file is automatically
generated. However, it is possible to define where these function calls should be
allocated in a specific file that has previously been captured in the model. In order

9 Model-Driven Methodology for the Development of Multi-level. . . 163

to do so, a UML operation should be specified in the corresponding application
environment component. Then, this operation is associated with a file artifact. In this
way, the sequence of function calls which composes the communication statements
are specified in the body of this function allocated in the file artifact. Finally, a
complete framework which integrates all the code generators and enables all the
environment specification and simulations is still to be implemented.

Additionally, the environment modeling methodology could be extended. A
natural extension of this work consists in the addition of verification capabilities,
by using further UTP stereotypes for the specification of assertions, supported by an
extension of the validation tool.

Acknowledgements This work has been funded by the European FP7-247999 COMPLEX
project, FP7-288307 PHARAON project and by the Spanish MCI TEC2011-28666-C04-02
DREAMS project.

References

1. Accellera: http://www.accellera.org/home/ (2013)
2. Cansell, D., Culat, J.F., Méry, D., Proch, C.: Derivation of SystemC code from abstract system

models. In: Proceedings of FDL 2004, Lille, Sept 2004
3. Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A.J., Todd, L.: Surviving the SOC

Revolution: A Guide to Platform-Based Design. Kluwer, Boston (1999)
4. Chiang, S.Y.: Keynote speech. In: Proceedings of ARM Techcom Conference, Santa Clara, Oct

2011
5. COMPLEX Project: http://complex.offis.de (2013)
6. Eclipse project website: http://www.eclipse.org/ (2012)
7. Gerin, P., Hamayun, M., Petrot, F.: Native MPSoC co-simulation environment for software

performance estimation. In: Proceedings of the CODES+ISSS’09, Grenoble, Oct 2009
8. Gligor, M., Fournel, N., Pétrot, F.: Using binary translation in event driven simulation for fast

and flexible MPSoC simulation. In: Proceedings of the CODES+ISSS’09, ACM, Grenoble,
France (2013)

9. Herrera, F., Peñil, P., Villar, E., Ferrero, F., Valencia, R.: An embedded system modeling
methodology for design space exploration. In: Jornadas de Computación Empotrada (JCE),
2012. Alicante, Jornadas Sartenco. Elche, Sept 2012

10. Herrera, F., Posadas, H., Villar, E., Calvo, D.: Enhanced IP-XACT platform descriptions for
automatic generation from UML/MARTE of fast performance models for DSE. In: DSD, Izmir,
Turkey 2012

11. Herrera, F., Penil, P., Posaads, H., Villar, E.: A model-driven methodology for the development
of SystemC executable environments. In: Proceedings of the FDL 12, Viena, Sept 2012

12. Holzer, M.: Design space exploration for the development of embedded systems. Thesis
dissertation, Vienna University of Technology, Vienna (Apr 2008)

13. IEEE Std. 1666-2011: IEEE Standard for SystemC R© Language Reference Manual. http://
standards.ieee.org/getieee/1666/download/1666-2011.pdf (2012)

14. Intel 22 nm Technology: http://www.intel.com/content/www/es/es/silicon-innovations/intel-
22nm-technology.html?wapkw=22nm (2013)

15. Iyenghar, P., Pulvermueller, E., Westerkamp, C.: Towards model-based test automation for
embedded systems using UML and UTP. In: IEEE 16th Conference on Emerging Technologies
And Factory Automation (ETFA), Toulouse, Sept 2011, pp. 1–9

http://www.accellera.org/home/
http://complex.offis.de
http://www.eclipse.org/
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://www.intel.com/content/www/es/es/silicon-innovations/intel-22nm-technology.html?wapkw=22nm
http://www.intel.com/content/www/es/es/silicon-innovations/intel-22nm-technology.html?wapkw=22nm

164 F. Herrera et al.

16. Jogesen, J.B.: Executable use cases: a supplement to model-driven development? In: Model-
Based Methodologies for Pervasive and Embedded Software, MOMPES, Braga, Portugal 2007

17. Kopetz, H.: The complexity challenge in embedded system design. In: 11th IEEE ISORC,
Orlando, May 2008

18. Martin, G., Bailey, B., Piziali, A.: ESL Design and Verification: A Prescription for Electronic
System Level Methodology. Systems on Silicon. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2007). ISBN: 9780080488837

19. Monton, M., Gladigau, J., Haubelt, C., Teich, J.: Checkpoint and restore for SystemC models.
In: Borrione, D. (ed.) Advances in Design Methods from Modeling Languages for Embedded
Systems and SoCs. Springer, Dordrecht/New York (2010)

20. OMG: MOF Model to Text Transformation Language (MOFM2T), 1.0. http://www.omg.org/
spec/MOFM2T/1.0/ (2008)

21. Object Management Group. UML profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. Version 1.1. (2011). Available in http://www.omg.org/spec/MARTE/1.1/.
Accessed 2013

22. Object Management Group. UML Testing Profile (UTP). Version 1.1. (2012). Available in
http://www.omg.org/spec/UTP/1.1/. Accessed 2013

23. OMG Unified Modeling Language: Infrastructure and Superstructure. V2.4.1. www.uml.org
(2013)

24. Papyrus: http://www.eclipse.org/modeling/mdt/papyrus/ (2012)
25. PHARAON project web: http://pharaon.di.ens.fr/ (2013)
26. Posadas, H., Real, S., Villar, E.: M3-SCoPE: performance modeling of multi-processor

embedded systems for fast design space exploration. In: Silvano, C., Fornaciari, W. Villar,
E. (eds.) Multi-objective Design Space Exploration of Multiprocessor SoC Architectures: The
MULTICUBE Approach. Springer, New York (2011)

27. Posadas, H., Díaz, A., Villar, E.: Annotation techniques and RTOS modeling for native
simulations of heterogeneous embedded systems. In: Tanaka, T. (ed.) Embedded Systems-
Theory and Design. Intech, Rijeka (2012)

28. Posadas, H., Penil, P., Nicolás, A., Villar, E.: Automatic synthesis of embedded SW from
UML/MARTE models based on memory space definitions. In: Design of Circuits and
Integrated Systems (DCIS), Avignon, France 2012

29. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley Professional, London (2002)

30. Universal Verification Methodology (UVM) 1.1 Class Reference: http://www.accellera.org/
downloads/standards/uvm (2011)

http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MARTE/1.1/.
http://www.omg.org/spec/UTP/1.1/
www.uml.org
http://www.eclipse.org/modeling/mdt/papyrus/
http://pharaon.di.ens.fr/
http://www.accellera.org/downloads/standards/uvm
http://www.accellera.org/downloads/standards/uvm

Chapter 10
GREEN HOME: The Concept and Study
of Grid Responsiveness

Slobodanka Tomic, Jan Haase, and Goran Lazendic

Abstract This paper describes the concept for a distributed demand management
program based on bi-directional communication involving an energy management
system of a Grid Responsive Energy Efficient Networked (GREEN) home and the
energy supplier in the Smart Grid. Our work is motivated by expected benefits
that an energy supplying company can achieve based on additional high-granular
knowledge regarding his customers’ consumption habits. Our demand management
approach uses in-home energy consumption monitoring and forecasting of future
demands, which are in aggregated form available to the supplier as a day-ahead and
intra-day forecasts. The supplier uses these forecasts to achieve higher precision of
trading, and consequently reduce total energy cost. This trading gain he can share
with his customers participating in such a program.

10.1 Introduction

The communication and information technology is a main building block of novel
energy management solutions, which promise to make energy consumption in
households smarter in terms of eliminating energy waste and reducing the energy
bill [1]. In a vision of the next generation smart home, an autonomous decision
support system for smart home management is able to associate each of the home
appliances, sensors or devices with some functions, such as cooling, heating,

S. Tomic (�) • G. Lazendic
FTW Forschungszentrum Telekommunikation Wien GmbH, Donau-City-Straße 1/3,
A-1220 Vienna, Austria
e-mail: tomic@ftw.at; lazendic@ftw.at

J. Haase
Vienna University of Technology, Institute of Computer Technology, Gußhausstr.
27-29/384, A-1040 Vienna, Austria
e-mail: haase@ict.tuwien.ac.at

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__10,
© Springer International Publishing Switzerland 2014

165

mailto:tomic@ftw.at
mailto:lazendic@ftw.at
mailto:haase@ict.tuwien.ac.at

166 S. Tomic et al.

light, entertainment, and with people in the home, their preferences, actions and
needs. Based on this model, such system can automatically control some of the
home functions using the preferences of users, e.g., regarding the required level of
comfort, and optimize the energy use or energy bill by reducing consumption or
using cheaper energy [2]. As some of the energy consumption decisions will always
be under the direct control of people, who can also override all automatic control
decisions, the home management system must be able to re-optimize the system
after every user action.

The smart home vision is driven by two trends: on the one hand, a broad variety
of intelligent personal or home devices or appliances will be able to simply plug-
in into the home communication network, and to communicate with the external
world, to send their data or directly receive remote control messages [3]; on the
other hand, there is an effort to establish one single device, the Home Gateway as a
central intelligence component, coordinating not only the in-home communication,
but also acting as a central decision making component for home automation and
energy consumption management and optimization [4–10]. For the purpose of
energy management in the future smart homes such Home Gateway is envisioned
to communicate with the Smart Grid, for example directly or through the Smart
Electricity Meter, facilitating a non-discriminative access to the home for different
energy suppliers and other Smart Grid service providers.

Indeed, different intelligent energy service providers may be interested in
establishing programs for demand management or demand response aiming at
enhancing the grid stability through controlled load shedding, or managing the
demand through dynamic prices.

In our vision of energy efficient homes, the precise monitoring of home
energy consumption conducted within the home is regarded as one central system
functionality. We assume that the Home Gateway will keep the track of consumption
by reading the Smart Meter’s data directly. We also assume that all appliances and
other home equipment that consume energy will soon be capable of measuring their
own power consumption, detecting their own state, and communicating these to the
Home Gateway. Today, similar functionality is available via smart plugs.

The other central functionality of the home management system is to understand
how home residents interact with different home devices, and how flexible they
are in these interactions. The user-centered optimization of energy consumption
requires that users’ utility of some equipment as a function of time is put into
the relation with the price of energy. The optimization potential grows when it is
possible to automatically detect intervals in which devices are switched on but are
essentially only wasting energy, e.g., lights are on but no one is at home, and from
detecting potential to schedule some devices away from the periods of general peak
consumption, into periods with high energy availability. Load schedules optimized
only in respect to Smart Grid constraints may potentially not be acceptable from the
point of view of the users, as they do not satisfy the constraints that come from their
individual flexibility. For example a user may be restricted in accepting a schedule
that starts his washing machine because of some rules that apply to all tenants of the
apartments in his building.

10 GREEN HOME: The Concept and Study of Grid Responsiveness 167

Fig. 10.1 GREEN Home overall scope

The concept of grid responsive energy efficient networked home integrates a
number of information and communication technologies to achieve energy effi-
ciency and costs savings based on active customer participation and automation.
The overall scope and the general architecture of the GREEN Home System are
illustrated in Fig. 10.1.

While in our vision of grid responsive homes the smart home system may support
interactions with different Smart Grid actors, such as energy suppliers, distribution
system operators, new energy markets or other energy service providers, in this
paper our special focus is on functions that support demand management governed
by an energy supplier. Today, the energy supplying companies purchase energy for
their customers using standardized user profiles [11], as they do not obtain real-time
consumption data of their customers. The energy is purchased through long-term
procurements and short-term trading. In particular the peak demand is satisfied by
means of short term procurements mostly at higher prices. While standard profiles
provide aggregated models of different levels of demand during different periods of
the day and time of the year, they may not be accurate enough in the future Smart
Grid scenarios. Accordingly, we assume that by better understanding the customers’
real-time consumption needs, and by being able to partially shape these needs, the
energy supplying companies could procure energy at lower prices. This motivated
our work on a specific demand management concept and its enabling technology,
which is centered around the system capability to detect potentials for optimization
by monitoring how home devices are being used, by learning to predict when and
for how long the devices will be used, and interacting with users in order to enhance
the precision of predictions.

The details of the concept and its realization are presented in this paper in the
following way. Section 10.2 describes the GREEN HOME Gateway architecture

168 S. Tomic et al.

and functions, Sect. 10.3 briefly reviews the concept of the Demand Response,
and Sect. 10.4 describes the details of the concept for Grid Responsiveness. In
Sect. 10.5 the model of home activities is further described. Section 10.6 presents
our forecasting approach, Sect. 10.7 the test bed suitable for the user lab-based
experiments, and Sect. 10.8 provides conclusions and plans for further work.

10.2 Home Gateway Functions

The central part of the GREEN Home system is the Home Gateway that inter-
connects all devices within the home environment. In general, the Home Gateway
platform may be distributed: computationally intensive tasks may be physically
spread among several networked computation platforms, including the Cloud.

Regarding the intelligence of home devices we take into consideration that some
devices may be more intelligent than others. For example, our assumption is that a
simple next generation appliance will be capable of measuring its power and will
offers a simple on/off switching or program switching interface; a more advanced
device will be capable of getting control signals, e.g., information outlining the
dynamic energy price, so that it can autonomously optimize its operation by schedul-
ing higher load in the periods of lower prices. All home devices communicate
with the Home Gateway, so that the device consumption information, as well as
configuration information can be used by the home system. Appliances with no
direct user interfaces may also be configured through specialized user interaction
devices, e.g., a tablet or a touch screen.

User Interfaces for interaction with the system (through smart displays, pervasive
interfaces, etc.) and with the next generation of appliances (embedded displays,
switches, etc.) are essential components of the system. Although the system has
to be able to autonomously reason and make decisions, the user must be given the
means to engage in the operation of the system in order to guarantee high user
satisfaction and sustainable user interest in energy management.

The role of the Home Gateway is to support many different applications and use-
cases of automated energy management. In designing the GREEN HOME system
component architecture we regarded requirements of a number of different home
automation and energy management use-cases such as in-home or remote control,
visualization for energy awareness, data sharing for social energy awareness, risk
reduction via anomaly detection, emergency-signal-based demand management,
price-based demand management, forecast-based demand management (the focus
of this paper), market-based flexibility trading, and electric vehicle battery manage-
ment. To facilitate different use-cases efficiently the architecture of the system must
be flexible and based on extensible model. This motivates our approach for flexible
system modeling based on the use of semantic technologies [12]. Such system
realization includes ontology and the knowledge-base to organize system data. The
ontology also includes the model of system alarms and is the basis for automated

10 GREEN HOME: The Concept and Study of Grid Responsiveness 169

system actions, as we demonstrated in integration of the energy management system
within an overall home autonomous system [13].

This semantic-based core is a common component of the system; for the forecast-
based demand management use-case it is complemented with the following specific
components:

• The Monitoring Component interacts with the home devices in order to acquire
all relevant data. These include time series of device-based consumption, sensor
data reading (e.g., temperature), device status, etc.

• The External Data Integration Component integrates other important data that
may come from external sources such as weather predictions.

• The System Configuration Component elicit through interaction with users
system data that cannot be obtained automatically, user profiles and preferences,
and user flexibility in using devices. This information is time-stamped and saved
in the knowledge-base

• The Forecasting Component takes as the input (1) historic per-device consump-
tion data, (2) historic weather and holiday data, and (3) weather predictions and
provides as an output a possible profile of devices’ use for the next day.

• The Plan Configuration Component updates the profile of devices’ use for the
next day through interaction with users. For example the user can inform the
system of his planned absence. Based on this configuration plans are prepared
for each device in the home.

• The Smart Grid Interaction Component exchanges information with the system
of the supplier. The home system receives from the supplier a price profile for
the next day and provides a power usage profile based on the day-ahead updated
forecast.

• The Plan Execution Component monitors the device usage i.e., per device
power consumption against the forecasted profile and triggers the control of
intelligent schedule-able devices in order to minimize the difference between
the real and predicted consumption if possible. It also updates the forecast for
the remaining period of the day and sends this updated forecast together with the
real consumption data in 15-min periods.

10.3 Demand Response

Demand response refers to technical and business programs that are offered by
energy companies, mostly utilities (DSOs), and involve customers who are willing
to respond to different types of information from the utility, e.g., received via
telephone calls, or specialized in-home devices, by reducing their consumption
manually or automatically [14]. Many such programs have been deployed and tested
in the field. The extensive research in demand response systems also resulted in a
Open Automatic Demand Response standard (openADR) [15].

170 S. Tomic et al.

As compared with demand response programs typically offered by distribution
companies or integrated utilities, where within a contractually defined period a num-
ber of criticality events can be received and shall result in load management actions
for grid stabilization, our demand-management approach focuses on the needs of
the energy suppliers in the liberalized market. In the liberalized market, energy
suppliers can have customers in many different distribution areas, and are interested
to win new customers based on attractive offers. They are not concerned with the
grid stability, they currently do not receive consumption data of their customers in
the real time, and have no access to consumption data of their potential customers.
Currently they offer mostly fix prices to their customers, and the difference between
this fix retail (consumer) price and the dynamic wholesale price at different markets
is the source of earnings or losses. Therefore, in defining specific demand response
schemes the energy suppliers can either offer dynamic prices to customers, to share
the risk by directly exposing the consumer to higher prices as a motivation for cost-
based load shedding or scheduling away from expensive peaks, or they can offer
programs in which the responsiveness of customers help them to purchase energy at
lower prices and to share this gain according to some incentive scheme.

The issue of dynamic prices has been considered in several theoretical and
practical studies. In a liberalized market in which customers can select from multiple
suppliers, the home energy management system should in principle be able to
receive dynamic prices from multiple suppliers so that the customer could reduce
the consumption when the price is high but also dynamically select the best offer in
real-time. Our focus in this work is not on selection among multi-supplier offers, but
we developed a demand management scheme which exploits an existing contract
between the customer and the supplier and aims at getting incentives (monetary
compensations) by deploying a home energy management system with a forecasting
and automated load scheduling capability.

Our scheme is essentially a decision-support scheme as the Home Gateway
supports users in discovering possibilities for consumption optimization and in
communicating forecasts of their consumption to their supplier.

10.4 Grid Responsiveness Concept

The GREEN HOME concept of responsiveness for consumption optimization is
designed also to meet requirements regarding privacy-preservation and scalability
of operation. Both requirements are addressed by carefully discriminating among
the information that can be collected within the home, and the information to be
exchanged among the home and the supplier domain. As already mentioned, we
anticipate a near-term vision in which all appliances in the home are capable of
monitoring their own consumption and communicating with the Home Gateway.
The users may use some devices more flexibly that the others. For these, the users
can directly input their preferences regarding the device scheduling or regarding the
device priority. This flexibility is the basis for consumption optimization through

10 GREEN HOME: The Concept and Study of Grid Responsiveness 171

automated scheduling. In addition the sensors in home will be able to monitor
the temperature, humidity, and light levels. In our concept these data are basis for
building the knowledge about the users’ behavior. This very detailed knowledge is
only accessible for the in-home control and forecasting function. It does not leave
the home and can be secured within the home domain.

The information that leaves the home domain is the aggregated consumption
information – both the real-consumption data and the forecasted consumption.
Especially forecasting data require very careful handling, in the first place through
encrypted transport. Forecasts of future consumption may be quite accurate (for
example a user can announce his absence in the next week) and can be of great
value for the supplier company. On the other hand if intercepted it may be a source
of security risks, and if changed it may incur damage as wrong information would
be used on the supplier side to make purchases.

The communication for demand management among the home domain and the
supplier domain happens periodically and we differentiate between the day-ahead
forecast-plan exchange and the intra-day consumption and forecast exchange. In
the day-ahead exchange the supplier domain system first requests the forecast from
the GREEN Home system on the previous day. It provides an energy consumption
preference curve (proportional to forecasted prices) to guide possible scheduling.

The home system replies with a day-ahead forecast reflecting demand flexibility,
and the supplier system completes the interaction with the agreed plan. The day-
ahead forecast-plan exchange includes direct interaction with users; the intra-day
forecast involves only respective computational intelligence at the Home Gateway
and the supplier side system. The details are provided in the following sub-sections.

10.4.1 The Day-Ahead Exchange

Once per day a gateway receives the preference curve from the supplier with the
values between 0 (to be avoided) and 1 (preferred) for each minute of the next
day. The home system generates a forecast of the schedules of the home devices’
use. Applying a probabilistic approach the forecasting component selects from a
number of schedules of different probability the one with the highest probability,
and presents it to the user. The user interface for this interaction enables the user to
select from several options:

• Holiday; the user specify that the next day (or several next days) the home will
not be occupied and that only always-on devices or specially scheduled devices
(e.g., time-scheduled lights, HVAC or water heater scheduled for the hours before
the residents arrival) shall be switched on. In this case it could be expected that
the uncertainty is quite low.

• Active day; the user provides feedback about the forecasted schedule, deleting
the devices that will not be used and selecting the devices that will be used.
The user also provides scheduling constraints, e.g., the washing machine will

172 S. Tomic et al.

wash for 4 h (based on the selected program) and shall be started after 17:00 and
shall finish before 3:00 the other day.

• Passive day; the user provides no feedback to the schedule. In this case the
uncertainty is quite high and there is no flexibility.

After the interaction with the user is completed, the forecasting component
schedules flexible devices according to the preference curve and sends the updated
plan to the supplier system encoded as a Forecast.xml document. Within the offered
flexibility the supplier selects one specific option and creates a Plan.xml document
that describes the load profile which the supplier is now expecting from the user.
The Home Gateway will make device activating decisions based on this selected
plan.

10.4.2 The Intra-day Exchange

In the intra-day operation, there is an additional exchange of information among
the home domain and the supplier domain which happens each 15 min. The Plan
Execution Component of the Home Gateway monitors the energy consumption
according to the agreed plan. The system detects that there are some deviations
from the forecasted schedule (e.g. some devices are switched on although this was
not planned) and so the total consumption for this period may be different from the
planned one. Nevertheless, because the system has the knowledge of these events it
can update prediction regarding the use of energy in the next period. This update of
prediction together with the consumption information is sent to the supplier system.

We selected the 15 min time interval here because the smart meter regulation
prescribes that meter readings are acquired each 15 min. It should be noted that
currently reading the meter is in the domain of the distribution system operator. The
readings are collected only for the accounting purposes and presented to respective
suppliers e.g., once per month. As contrary to this approach, we are designing the
system in which supplier collects consumption and forecasting data from many
homes in the real-time (15 min) in order to be able to make better intra-day trading
decisions.

The scheduling of flexible devices is performed with the goal to minimize the
deviation of the real consumption from the selected plan. The flexibility includes
switching on schedule-able appliances or switching on/off any of interruptible active
appliances.

10.4.3 User Responsiveness

The major benefit for the energy supplier company introduced by this program is
that it acquires not only the real-time (15 min interval) consumption data but also
consumption predictions which though not fully accurate, much better represent

10 GREEN HOME: The Concept and Study of Grid Responsiveness 173

the reality than standard profiles that are used today. The supplier can also suggest
how to use flexibility in scheduling. In particular when the GREEN Home resident
uses options such as “holiday” or “active day” and updates the forecasts to better
represent her plans and actual activities, the benefits for the supplier may be quite
high.

The system at home can also learn about user responsiveness – the willingness to
use active day and holiday options, the quality of his forecast updates, and also about
the predictability or regularity in user life. This information may be quite important
for the supplier as regularity in home activities may better qualify users for such a
program.

10.5 The Model of Home Activities

The proposed forecasting-based demand management incorporates learning and
requires specific data from the past. For the evaluation purposes where such data
is not available we designed a simulator [16] which implements a flexible model of
home and user activities and generates a number of related time series: (a) for each
device a synthetic consumption profile with power level reading for each minute,
(b) for each resident the presence profile with the values 1 (present at home) and 0
(absent from home) for each minute (c) outdoors temperature per each minute (d)
the light condition with values 1 (high level) and 0 (low level) (e) the time of year
is captured in a model where for each day we can have the following values: work
day, weekend, holiday,

The model of home activities is based on a simple ontology which captures the
house, devices, residents, temperature, light conditions, and seasonality. Regarding
temperature the simulator use real temperature data, e.g., we used the historical
meteorological data for Vienna. The real temperature data is a time series of daily
measurements including two readings for each day: the maximum and the minimum
temperature. Based on these readings we created synthetic temperature levels for
each minute created random values uniformly distributed within the minimum and
maximum level. The outdoors light conditions are also real data; here we use the
sunrise and the sunset data for Vienna, and assign the value 0 to the interval between
the sunset and the sunrise, and the value 1 for the interval between the sunrise and
the sunset. The temperature data are used to model the heating and cooling function.
In our simple model we included a function which defines several intervals of
temperature and for each interval defines the number of (electricity-based) heating
or cooling hours requires. Once the number of hours is determined for each day,
based on previously generated per-minute temperature values the heating or cooling
are scheduled to start in the minutes of the day at which the triggering temperatures
are for the first time reached.

All appliances are described with their power use. In the simulator we assume
constant power profiles for the switched-on state. Each lamp in the home is also
classified as the one that is dependent/not dependent on the light levels. For all lamps
that are dependent on light levels the percentage of switch-on time is specified.

174 S. Tomic et al.

Hence all such sources of light will be assumed to be switched on after the sunset
and their active period will be distributed between the sunset and the sunrise.

The model defines that home is used by a family which consists of several
residents; the home includes devices which implement functions. For each day the
user can be present or absent depending on the type of the day (weekend, working
day, holiday). The family as a whole can be absent from home, these are the days
which are labeled as big holiday. Each of the residents in home is characterized with
his profile of interactions with devices. For each user, personalized intervals for daily
activities can be specified and for each of these, the devices that user can select to
use, the average time of using devices and probability of using these devices. These
profiles are used to generate per-device usage data.

Using presented models the simulator generates different time series which are
the input for the forecasting function.

10.6 Forecasting of the Uncertainty Level

Forecasting of consumption uncertainty and flexibility intervals is the main compo-
nent of the Home Gateway intelligence. In fact, the gateway generates potential
schedules of device usage and predicts resident’s presence based on the model
constructed through learning, first within some specific learning period in which
the gateway do not participate in any demand response activity. After this pe-
riod of learning the forecasting system can start to participate in the demand
response program and continues to learn through monitoring and interactions with
users.

The forecasting component predicts for the next day, for each device (which is
not always on) the amount of time that it will be used. We tested and integrated
an approaches based on the similar day model and statistic method that detects the
frequency of the patterns of device use, similar to [17]. The forecasting takes into
account the status of each devices, the presence of residents, the hour of the day, the
day of the week, and the month of the year information, the holiday information,
the temperature interval information, and the light condition information.

10.7 The Test Bed

To evaluate proposed concept we designed and implemented a test-bed that
integrates both emulated and simulated functions [18]. The demonstrator setup
integrates a ONENET [19]-based network with tablet PCs emulating home devices
(see Fig. 10.2 for a screenshot), hence real-time aspects of in-home communication
between appliances and the Gateway can be studied. Novel UIs for the device
control are running as applications on the tablet PCs. The set-up also includes a
network of smart plugs [20]. The input for a test run in a test-bed includes time
series of per-device energy consumption generated by the simulator, e.g., modeling

10 GREEN HOME: The Concept and Study of Grid Responsiveness 175

Fig. 10.2 A screenshot of the energy consumption simulator’s main menu that shows all devices
that can be simulated (TV set, washing machine, refrigerator, rechargers, etc.). Each simulation
runs in real time, therefore real time values are sent to the Gateway using ONENET via an attached
communication node. If the simulator is not connected to a real network of devices, it offers a much
faster simulation mode, too, in order to easily see consequences of events

Fig. 10.3 Simulator screenshot: A refrigerator is simulated. The current temperature inside the
refrigerator is drawn in blue, the energy consumption is drawn in yellow. the pale part in the
right shows the current forecast (i.e. the screenshot shows the state at time 12:38). As soon as
the temperature reaches an upper threshold (here 2.0◦C) a new cooling cycle begins, in this case
having a predefined power consumption of 500 W. The “current price” was just set to “expensive”,
therefore the algorithm tries to delay the cooling cycle as long as possible by allowing an upper
threshold of 4.0◦C, in order to consume less energy. The short peak at around 09:15 comes from a
simulated opening of the refrigerator door, which leads to a quick temperature increase

176 S. Tomic et al.

Fig. 10.4 Screenshot of a washing machine simulation with a typical load profile. The yellow
curve is the objected load profile (corresponding to the chosen washing programme, in this case
“colored laundry 60 degrees”) and the red curve is the envelope function showing the maximum
energy consumption allowed (by the Gateway) at all times. The numbers stated at the load profile
curve depict minutes the point of the profile can be delayed without influencing the washing process
(e.g. the start of the spin cycle might be delayed a few minutes). Current simulated time is 06:34
(i.e. all data shown to the right of this vertical bar is a forecast). 07:27 is the configured latest
allowed end for the completion of the washing programme

Fig. 10.5 GREEN Home test bed architecture

10 GREEN HOME: The Concept and Study of Grid Responsiveness 177

a consumption of the last 3 years. These are used for training the forecasting model.
One additional year is simulated to represent the real usage. The test environment
supports all interactions according to the described approach. The test starts with
the day-ahead forecast and user interaction for updates. The test UI includes the
representation of the emulated real consumption, and the representation of the
forecasted one (see Figs. 10.3 and 10.4). The user can update the forecast (according
to real consumption and real presence) or leave it as it is. The user can also
select passive day option. The automatic monitoring and forecasting interactions
(in the real-world performed each 15 min) are performed in much shorter periods.
For evaluation of performance the system calculates the difference between the
(updated) forecast plan and the real consumption.

The aim of the test bed study is to validate our concept in several scenarios
of interest in particular with respect to user responses to different user interface
options.

The test bed is schematically illustrated in Fig. 10.5.

10.8 Conclusions

In this paper we presented a concept, an implementation and an evaluation
environment for a collaborative energy management using the model of home
responsiveness based on an in-home consumption forecasting. This new model
utilizes continuous interactions between the energy management systems in the
home domain and in the energy supplying company domain. Information exchanged
includes higher precision forecasts generated within the home domain. These
forecasts are calculated by the home energy management system which collects
device data and infers user behavior. The protocol is implemented using Web-
service approach, exploiting the benefits of ubiquitously supported and standardized
technology.

Our future work will focus evaluations and system extensions. In user studies
we plan to evaluate the acceptance of the concept and user interfaces involved.
Particularly interesting is how user can control the precision of forecasts that are
sent to the provider by his own actions. For example if user is willing to disclose
that he is out of his home for several days he can achieve higher benefit because of
better forecast. On the other hand he may not be willing to do so. The second venue
of future work is to quantify benefits of our approach in large scale scenarios. Again
the knowledge of the users’ privacy preferences will be incorporated in these studies.
The third challenge is that of full distribution of home management intelligence. In
this scenario the schedule for appliances is not calculated centrally at the gateway
but is a result of a distributed algorithm. The appliances have a higher level of
autonomy and do collaborative allocation of available energy.

178 S. Tomic et al.

Acknowledgements The work was supported within a research project Grid Responsive Energy
Efficient Networked Home (GREEN HOME).The Telecommunications Research Center Vienna
(FTW) is supported by the Austrian government and the City of Vienna within the competence
center program COMET.

References

1. Taylor, A.S., Harper, R., Swan, L., Izadi, S., Sellen, A., Perry, M.: Homes that make us smart.
Pers. Ubiquitous Comput. 11(5), 383–393 (2007)

2. Tomic, S., Fensel, A.V., Schwanzer, M., Kojic Veljovic, M., Stefanovic, M.: Semantics
for energy efficiency. In: Applied Semantic Technologies: Using Semantics in Intelligent
Information Processing. CRC Press, Taylor and Francis, USA (2011)

3. Schmidt, A., van Laerhoven, K.: How to build smart appliances? IEEE Pers. Commun. 8(4),
66–71 (2001)

4. Open Service Gateway Initiative, Device Expert Group. http://www.osgi.org. Accessed August
2013

5. GSMA: Vision of Smart Home, The Role of Mobile in the Home of the Future, Sept 2011.
Available from: http://www.gsmaembeddedmobile.comasVisionofSmartHomeReport.pdf

6. State-of-the-art of energy management, e-Health and community-service requirements on
common service delivery frameworks, Project FIGARO Future Internet Gateway-based
Architecture of Residential Networks, Mar 2011. Available from: http://www.ict-figaro.
euasFIGARO-Deliverable-5-1.pdf

7. CENELEC: Smart House Roadmap. Available from: ftp://ftp.cenorm.be/CENELEC/
SmartHouseasSmartHouseRoadmap.pdf. October 2010

8. Standardization Trends of OSGi Technology, NTT Technical Review, 6(1), (2008). Available
from: https://www.ntt-review.jp

9. Requirements for the Software Modularity on the Home Gateway, HGI, 2011. http://www.
homegatewayinitiative.org/publis/RD-008-R3.pdf

10. Use Cases and Architecture for a Home Energy Management Service, HGI, 2011. Available
from: http://www.homegatewayinitiative.orgasuse-cases-and-architecture-for-home-energy-
Management-service.pdf

11. EnWG -Weimar, Lastprofile und Einspeiseprofile, August 2013, available at http://www.enwg-
weimar.de/tech-strom-lastprofile.php

12. Tomic, S., Fensel, A.V., Pellegrini, T.: SESAME Demonstrator: Ontologies, services and
policies for energy efficiency. In: Proceedings of the I-SEMANTICS, Graz, Sept 2010. ACM.

13. Next Generation Home, GENIO, 2011. http://www.celtic-initiative.org/projects/genio
14. Albadi, M.H., El-Saadany, E.F.: Demand Response in electricity markets: An Overview, Power

Engineering Society General Meeting, 2007. IEEE , pp. 1–5, 24–28 June 2007
15. Open ADR: http://drrc.lbl.gov/openadr. Accessed August 2013
16. Wenninger, J., Haase, J.: Efficient building automation simulation using system on chip

simulation techniques. In: Proceedings of 2013 26th International Conference on Architecture
of Computing Systems (ARCS), Prague (2013)

17. Barbato, A., Capone, A., Rodolfi, M., Tagliaferri, D.: Forecasting the usage of household
appliances through power meter sensors for demand management in the smart grid. In:
IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels,
Belgium, 2011, pp. 404, 409, 17–20 Oct 2011

18. Rathmair, M., Haase, J.: Simulator for smart load management in home appliances. In:
The Fourth International Conference on Advances in System Simulation (SIMUL), Lisbon,
Portugal, pp. 1–6, Nov 2012

19. ONE NET Protocol: http://www.one-net.info. Accessed August 2013
20. PlugWise: http://www.plugwise.com. Accessed August 2013

http://www.osgi.org.
http://www.gsmaembeddedmobile.com as VisionofSmartHomeReport.pdf
http://www.ict-figaro.eu as FIGARO-Deliverable-5-1.pdf
http://www.ict-figaro.eu as FIGARO-Deliverable-5-1.pdf
ftp://ftp.cenorm.be/CENELEC/SmartHouse as SmartHouseRoadmap.pdf
ftp://ftp.cenorm.be/CENELEC/SmartHouse as SmartHouseRoadmap.pdf
https://www.ntt-review.jp
http://www.homegatewayinitiative.org /publis/RD-008-R3.pdf
http://www.homegatewayinitiative.org /publis/RD-008-R3.pdf
http://www.homegatewayinitiative.org as use-cases-and-architecture-for-home-energy-Management-service.pdf
http://www.homegatewayinitiative.org as use-cases-and-architecture-for-home-energy-Management-service.pdf
http://www.enwg-weimar.de/tech-strom-lastprofile.php
http://www.enwg-weimar.de/tech-strom-lastprofile.php
http://www.celtic-initiative.org/projects/genio
http://drrc.lbl.gov/openadr.
http://www.one-net.info.
http://www.plugwise.com.

Chapter 11
Polynomial Metamodel-Based Fast Optimization
of Nanoscale PLL Components

Saraju P. Mohanty and Elias Kougianos

Abstract As the complexity of nanoscale-CMOS analog/mixed-signal (AMS)
circuits and systems grows, the challenges of their design becomes exponentially
more difficult. Performing accurate design simulations that entail exhaustive design
space exploration has become infeasible with the increasing complexity of nano-
CMOS circuits and systems integration, coupled with aggressive scaling of process
technologies. Transistor-level SPICE simulations with full parasitics (RCLK) of
complex circuits, which provide silicon accurate results, have run times in the order
of days or weeks. With ever shrinking time to market pressures, the simulation
time proves to be impractical as it can lead to longer design cycle times. The
simulation time factor is further aggravated by additional design and process
parameters which have to be accounted for due to increased sensitivity in deeply
scaled technologies. In order to mitigate this problem, this chapter presents a two-
stage approach that uses layout-accurate metamodels and efficient search algorithms
for fast mixed-signal circuit and system optimization. The different components of
a Phase-Locked Loop (PLL) are considered as a case study. First, the metamodel
creation process is presented. A simulated annealing based optimization algorithm
is then discussed for power optimization of the PLL components. It is shown that the
metamodel approach speeds up the optimization phase by 2,000× with very good
accuracy. The power consumption of the circuit is decreased by 22% for the baseline
design and is within 8% of the circuit netlist-based, but computationally expensive
approach.

S.P. Mohanty (�)
Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA
e-mail: saraju.mohanty@unt.edu

E. Kougianos
Engineering Technology, University of North Texas, Denton, TX 76203, USA
e-mail: eliask@unt.edu

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__11,
© Springer International Publishing Switzerland 2014

179

mailto:saraju.mohanty@unt.edu
mailto:eliask@unt.edu

180 S.P. Mohanty and E. Kougianos

11.1 Introduction

The market desire for smaller and yet more powerful computing devices has been
the driving force towards more complex integrated designs for analog/mixed-signal
(AMS) circuits and systems. With technology scaling into the deep nanometer
region, the number of design and process parameters to be taken into consideration
increases significantly. AMS component design is a complex and time consuming
process especially at the optimization and physical design stages [13]. In addition,
the presence of parasitics after the layout stage has a very dramatic effect on the
output, hence making traditional numerical simulation methods inefficient [23].
This in turn increases the computation time for accurate exploration of the design
space.

Even with advanced computing resources, the full simulation of complex circuits
takes days and sometimes weeks to complete. With an increased number of
parameters and pronounced effects from process variation, efficient and accurate
design optimization becomes prohibitive due to the expensive simulation costs.
The inherent problem is one of computational efficiency versus accuracy. The
scaling of technology deeper into nanometer regions aggravates this design problem.
Previously proposed methods to increase the efficiency by reducing the computation
time include the use of interpolating functions and fast optimization algorithms for
design optimization [22]. Thus, there is a pressing need for fast and accurate design
flows and optimization approaches for mixed-signal circuit and system design
exploration.

The mitigation of AMS design optimization problems can be achieved by one
or more of the following approaches: (1) Reduction of the simulation time; (2)
Reduction of the optimization time; (3) Reduction of the number of layout iterations
needed. The research introduced in this paper proposes a new design flow for
fast and accurate optimization of complex mixed-signal circuits and systems. The
proposed design flow crates and uses accurate and fast metamodels of the actual
circuit and performs optimization on the metamodels, not the actual circuit. The key
concept of the metamodel assisted optimization is depicted in Fig. 11.1.

Metamodels (which are models of models) are used in many different fields
to simplify the design process, especially when the sampling of the design space
for optimization is very costly or time consuming [9, 11]. Metamodels are also
known as surrogate models. Using mathematical functions or algorithms in the
optimization step speeds up the process since each iteration of the calculations
does not require analog simulation of the circuit or recreation of the physical
design. In this chapter we address the power metric to simplify and explain the
metamodel creation process. Creating a metamodel is a very crucial step, since the
manufacturing price of the circuit is very high and it is essential to produce the most
accurate metamodel possible, given a fixed simulation time budget. Phased locked
loop components are investigated separately and their metamodeling is presented.
The metamodels are then used to optimize the individual circuits.

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 181

Baseline Mixed-Signal
Circuit

Layout-Aware Netlist

 Metamodels
of Baseline

Mixed-Signal Circuit

Optimization over Metamodels

9000x Speedup

300x Speedup
Pa

ra
m

et
er

i

Parameterj

Technology Constraints

Speci
fic

atio
n Constra

ints

Traditional – Slow Approach

Fig. 11.1 The proposed metamodel-assisted optimization

The novel contributions of this chapter to the state-of-art are the following:

1. A metamodel assisted fast AMS design flow that can significantly reduce design
cycle time.

2. An approach for polynomial metamodel generation which can be used for any
technology node.

3. A simulated annealing based algorithm to optimize different components of a
PLL for power (including leakage).

4. A 22% decrease in power is achieved when using the metamodeling approach
to the initial baseline design and 8% decrease in power is reached over the
traditional netlist-based approach.

5. Metamodeling is 2,000× faster compared to the netlist-based optimization.
6. A metamodeling MATLAB GUI toolbox is presented to assist designers in

metamodel creation, verification and optimization.

The rest of the chapter is organized as follows: Sect. 11.2 discusses the novel
proposed flow. A discussion of related prior literature is included in Sect. 11.3.
An overview of a PLL and its different components is presented in Sect. 11.4.
Section 11.5 explains the steps needed to create an accurate metamodel. Section 11.6
presents the optimization algorithm used. Section 11.7 presents the experimental
results. Summary, conclusion and future research are discussed in Sect. 11.8.

11.2 Proposed Novel Fast Analog/Mixed-Signal Design Flow

The proposed novel fast design flow for AMS circuit and system optimization is
depicted in Fig. 11.2. The proposed overall fast AMS design optimization flow
can be logically divided into four steps as follows: (1) Baseline AMS component

182 S.P. Mohanty and E. Kougianos

Create Logical Design

Input Specifications of the Mixed-Signal IC

Create Layout of the Mixed-Signal IC

Perform DRC/LVS/ RCLK Extraction

Done Yes

Yes

No

No

Parasitic-Aware Mixed-Signal IC Netlist

 met?
Specifications

Specifications
 met?

Parameterize the Parasitic-Aware Netlist
with Design Variables

Parasitic-Aware Parameterized
Mixed-Signal IC Netlist

Create Polynomial-Metamodels of

Perform Simulated Annealing Based
Optimization Over Polynomial Metamodels

Optimal Physical-Design

Yes
Create New Layout of the Mixed-Signal IC

Perform DRC/LVS/RCLK Extraction

Done

No
 met?
Specifications

Optimized Mixed-Signal IC Layout

Mixed-Signal Design Schematic

Mixed-Signal Design Layout

Perform Fast and Accurate Sampling
of Mixed-Signal IC Design Space

Sampled Data Points for
Polynomial-Metamodel Generation

Figures-of-Merits of the Mixed-Signal IC
Polynomial-Metamodels of

the FoMs of the Mixed-Signal IC

B
as

el
in

e
M

ix
ed

-S
ig

na
l

IC
 C

om
po

ne
nt

 D
es

ig
n

Po
ly

no
m

ia
l M

et
am

od
el

in
g

IC
 C

om
po

ne
nt

s
of

 M
ix

ed
-S

ig
na

l
M

et
am

od
el

s

O
pt

im
iz

at
io

n
ov

er
IC

 C
om

po
ne

nt
s

M
ix

ed
-S

ig
na

l
O

pt
im

al

Variables

Fig. 11.2 The proposed fast design flow of nanoscale mixed-signal circuits such as a PLL

design and characterization, (2) Polynomial metamodel generation, (3) Optimiza-
tion over metamodels, and (4) Optimal AMS component design and characteriza-
tion. Speedup in the proposed metamodel may come from many aspects: (1) Use of
optimization iterations over the metamodels instead of the netlist. (2) Decoupling of
the optimization from an analog simulation (SPICE) framework. (3) Use of faster
optimization algorithms. (4) Use of exactly two manual layout steps.

In the first phase of the novel flow, the baseline physical design of AMS
components is performed. At this phase minor optimization may be performed
over the schematic designs which are fast to run since the netlists do not contain
parasitics. At this point a baseline physical design of AMS components is made
and the baseline circuit SPICE netlist with parasitics (RCLK, R – Resistance,
C – Capacitance, L – Self Inductance and K – Mutual Inductance) is extracted from

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 183

Design Space
Sampling

Mathematical Function
FittingActual Circuit

(SPICE netlist)
of an AMS-SoC

Component

Fig. 11.3 The concept of metamodel: transforming circuit netlist to mathematical expressions

the physical design. The parasitic aware netlist is then parameterized in terms of the
design variables. The polynomial metamodel generation phase uses a fast sampling
algorithm (for example Latin Hypercube Sampling or LHS) of the AMS component
design space. Polynomial metamodels are generated from these sparse sampled
data for each of the target Figures-of-Merit (FoMs) of the PLL components. At the
optimization phase of the proposed flow, the well-established Simulated Annealing
Algorithm (SAA) is used to optimize the FOMs. The specification constraints are
set by using one or more metamodels and the main FoM is then optimized within
the constraints. One of the main benefits of using the metamodels is that they are
reusable, as long as the FoMs and the process constraints are selected judiciously by
the designer. Once the metamodels are created, the specification constraints can be
adjusted and the optimization time using metamodels is very short in comparison to
the same type of optimization done via simulations on the original model (SPICE
netlist). Therefore a more dynamic design can be achieved using metamodels
without being impacted by simulation time. Once the optimal design parameters
are obtained from the optimization, a final (or 2nd) physical design is performed
and characterized.

The speedup in the proposed flow relies heavily on the metamodels. A meta-
model is a predictive mathematical algorithm or function for a given FoM such as
power, frequency, jitter, leakage, and phase noise [11]. Each circuit can obviously
have more than one metamodel associated with it if the optimization is multi-
objective. The concept of metamodel is presented in Fig. 11.3 [12]. In essence,
metamodels transform the circuit characteristics to set of equations, functions,
or algorithms and decouple the circuit simulation from the continuous-time ana-
log domain (SPICE). Any general modeling language, such as C/C++, Verilog-
AMS/VHDL-AMS and Matlab/Simulink can then be used for design exploration.
For the metamodel to be effectively useful, it needs to have the following properties
[15]: (1) Accuracy – This is the capability of the metamodel to predict the system
response over the entire allowable design space. (2) Efficiency – Efficiency is an
indicator of the computational effort required for constructing the metamodel. (3)
Transparency – This is the capability of the metamodel to provide the information

184 S.P. Mohanty and E. Kougianos

concerning contributions and variations of design variables and correlation among
the variables. (4) Simplicity – Metamodel generation should require minimal user
input and should be easily adaptable to different problems and circuits. More
information on metamodeling and computer experiments is given from a generic
point of applicability in [9], but VLSI areas of application are not covered there.

11.3 Related Prior Research

Design space exploration approaches from high-level descriptions of analog circuits
are given in [7]. The use of neural networks in the automatic synthesis of OP-AMPs
is explored in [30]. RF-specific transistor sizing with explicit parasitic estimates is
given in [2]. A layout-aware modeling approach for analog synthesis is given in [24]
and [25]. Posynomial modeling for gate sizing is presented in [26, 27].

In [28], a surrogate modeling approach for expensive circuit-level simulation
is presented that uses support vector machine (SVM)-based machine learning. In
[16], the authors propose the use of metamodels for creating an inductor for CMOS
circuits. The technique that the author proposes does not use sampling techniques
but rather uses mathematical formulas for the model estimation and optimization.
Metamodeling has been applied on IP reuse for SoC integration and microprocessor
design in [18]. This approach covers a higher level design flow, is purely digital
and does not create metamodels specifically for CMOS circuits. In [31], a surrogate
modeling approach is also used for statistical wire-length estimation. Metamodeling
has been implemented for grid computing in [14].

An order reduction technique, macromodeling is discussed in [1, 3, 4, 6]. Some
authors use the terms “macromodel” and “metamodel” interchangeably but they are
very distinct. A macromodel is simply a reduced complexity (order) representation
of the circuit but is still a netlist, necessitating the use of an analog (SPICE)
simulator. On the other hand, a metamodel is a language and simulator independent
model of the original model (hence the term meta). In this context, a VCO
parametric metamodeling approach is given in [8].

11.4 Design of PLL Component Circuits

As a specific case study of the proposed mixed-signal system design flow the design
of a Phase Locked Loop (PLL) is considered. A PLL is a closed loop feedback
control system that consists of a Phase Detector (PD), Charge Pump (CP), Voltage
Controlled Oscillator (e.g. LC-VCO), and Frequency Divider (FD). Thus the PLL is
an excellent example of a mixed-signal system. The block diagram representation of
a PLL is presented in Fig. 11.4. The following sections briefly detail each component
of the PLL and highlight their design parameter complexity. For brevity, selected

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 185

Phase
Detector

Charge
Pump LC-VCO

Frequency
Divider

Reference
Clock

Clock
Output

Fig. 11.4 Block diagram of a Phase Locked Loop (PLL)

layouts are provided for an 180 nm CMOS process. In this research, the PLL’s output
has a 2.25 GHz frequency for wireless local area network (WLAN) applications.

11.4.1 Phase Detector

The phase detector is an important component of the PLL. Its action enables the
phase differences in the loop to be detected and the resultant error voltage to be
produced. A proportional phase detector directs the charge pump to supply charge
amounts in proportion to the phase error detected. Phase detectors range from a very
simple XOR gate to complex logic circuits consisting of flip-flops. The schematic
and physical design of the phase detector for 180 nm CMOS is provided in Fig. 11.5.
This circuit has many transistors and it is not efficient to consider them all separately
in the design exploration process. In order to simplify the optimization process,
all transistor widths in one flip flop are assigned to design parameters WnDFF1 and
WpDFF1 for NMOS and PMOS, respectively. In the second flip flop they are WnDFF2

and WpDFF2, respectively. For the remaining NMOS and PMOS they are Wn and Wp,
respectively.

11.4.2 Loop Filter and Charge Pump

The charge pump provides stabilization of spurious fluctuation of currents and the
switching time in order to minimize the spurs in the VCO input [10]. The output
signal from the charge pump is applied to the loop filter which determines the PLL’s
dynamic characteristics. A low-pass RC filter is used that passes frequency signals
within the range of the VCO. The loop filter can affect tracking and capture ranges
and maximum slew rate. For metamodel generation and optimization, the width of
all charge pump transistors are considered.

11.4.3 LC Voltage Controlled Oscillator

An LC-VCO is an electronic oscillator specifically designed to be controlled by a
voltage input. The operating frequency of the LC-VCO can be mainly controlled

186 S.P. Mohanty and E. Kougianos

AND

DFF2

DFF1
D Flip Flop

D Flip Flop

D

Clear

Clk

Clk

Clear

D

Q

Q

VDD

VDD
a

b

Fig. 11.5 Design of Phase Detector of the PLL for 180 nm CMOS. (a) Block diagram. (b) Layout

by applying a DC input voltage. Since the PLL’s output is mostly dependent on
the output of the LC-VCO, this work targets a 2.25 GHz frequency for WLAN
applications. The LC-VCO has only two easily adjustable parameters other than
the size of the LC tank which is considered fixed. Since it is a symmetric circuit the
two NMOS and two PMOS transistor widths have been selected as design variables.
The layout of the LC-VCO is shown in Fig. 11.6.

11.4.4 Frequency Divider

The basic operation of the frequency divider is to reduce the frequency of a
continuous train of pulse waveforms fed to it as an input signal, to approximately
half. The frequency divider is implemented using true single phase logic. The
baseline frequency divider was designed using the minimal width values allowed

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 187

GND

Voutp

Voutn

C2

L1

VDD

NM2NM1

C1

PM1 PM2

Vtune

a b

Fig. 11.6 LC-VCO design for 180 nm CMOS. (a) Schematic. (b) Layout

by the technology node: 400 nm for the NMOS and 800 nm for PMOS. For each
transistor in the divider, the width of each NMOS and each PMOS is varied and is
considered as a design parameter separately. Therefore the divider circuit has nine
design parameters. The boundaries were set to 400 nm≤ (Wn and Wp)≤ 1,600 nm,
where Wn and Wp are the widths of NMOS and PMOS respectively, while the
nominal values have been selected to be Wn = 400 nm and Wp = 800 nm.

11.5 Proposed Approach for Generation of Fast
and Layout-Accurate Metamodels

The creation of metamodels is the crucial step in this proposed fast design flow.
Selecting the right prediction function that has low error variance compared to the
actual simulated analysis is crucial. Since it is not possible to exhaustively sample
the design space when a large number of degrees of freedom (design variables) is
present, the accuracy of the model varies based on the form of the metamodel. To
decrease the complexity of metamodel creation this research targets the generation
of polynomial functions due to the small number of variables for each subcircuit.
This process can be extended to other functions such as splines and artificial neural
networks, which can be generated from the same sample data. To make this process
robust the following flow for metamodel creation has been created and described
in Algorithm 6. In this algorithm, ERROR refers to the error between the predicted
value at a sample point and the actual result from the netlist simulation.

188 S.P. Mohanty and E. Kougianos

Algorithm 6: Layout-accurate polynomial metamodel generation
1: Obtain the parasitic aware netlist of an AMS component.
2: Parameterize the netlist for target tuning variables.
3: Sample the AMS component design space; sample ← generate_sample_data().
4: Verify the sample data; verify ← generate_verify_data().
5: Perform mean data centering; centered ← center(sample).
6: for degree ← 1 to p do
7: sample_mm(degree) ← stepwise(sample, degree).
8: centered_mm(degree) ← stepwise(centered, degree).
9: sample_ERROR(degree) = verify(sample_mm, verify).

10: centered_ERROR(degree) ← verify(centered_mm, verify).
11: end for
12: pick_lowest(sample_ERROR, centered_ERROR).

The final outcome is a multivariate polynomial function of degree p in the n
design variables x = x1,x2, · · · ,xn for the predicted response ŷ:

ŷ(x) = ∑
|α |≤p

cα xα , (11.1)

where the multi-index α = (α1,α2, · · · ,αn) takes values in N
n
0, |α| ≡ α1 +α2 +

· · ·+αn, xα ≡ (xα1 ,xα2 , · · · ,xαn) and cα ≡ (cα1 ,cα2 , · · · ,cαn) are the undetermined
fitting coefficients. Since 0 ≤ |α| ≤ p, the total number of such terms is:

N(p,n) =
p

∑
k=0

(
n+ k− 1

k

)
(11.2)

As the number of design variables (n) and/or the degree of the multinomial (p)
increase, N(p,n) increases exponentially.

The final metamodel degree p is selected so that it provides the least error to
the data points and the lowest error for verification points. As the error metric
value for fitted data points shows the error for points that are being sampled, it
may not always be a good metric to use since the function can be possibly over
fitted, i.e. it can pass through all sample points but can have a very large error
between samples. Points in between the sampled data are used to verify the accuracy
of the function and based on the error metric value calculated from that step,
the metamodel function degree is selected. Algorithm 6 generated the best fitted
polynomial function within the given criteria. If the accuracy still does not satisfy
the specifications, the number of samples has to be increased to generate more fitting
functions. The initial number of samples can be quite small to reduce the sampling
time and can be gradually increased for more accuracy. It is a matter of experience to
select appropriate minimal number of sample points needed for accuracy and speed
trade-offs.

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 189

11.5.1 Data Sampling

The starting step for creating the metamodel is to perform simulations for a sample
of the design space, determined by the available simulation budget. There are
many sampling options available including Monte Carlo, Latin Hypercubes, Middle
Latin Hypercubes, and Design of Experiments [11]. In this paper all metamodels
have been generated using Middle Latin Hypercube Sampling (MLHS) [17] which
divides the design space into Latin Hypercubes [29] and then samples the middle
point of each hypercube. Our previous research has shown that data is distributed
more evenly, even though MLHS does not sample the edges where the parameters
have minimum and maximum values, but due to the polynomial function behavior
it is compensated by the slope of the function as long as the behavior of the sample
data is not sporadic at the edges [11]. All metamodels have been generated by 1,000
MLHS samples and 100 MLHS samples were used for verification.

A matrix L is generated to code each row as a term in the polynomial power for
each parameter except when the value is 0 as it is implied that the term is not present.
As an example, for second order code with two parameters, L has the following
form:

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
2 0
0 1
0 2
1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(11.3)

Let us assume that matrix X ≡ [x1,x2] where x1, x2 are design parameters. Then
the design matrix template (DMT) for X using L code becomes DMT (X ,L) =
[0,x1,x1

2,x2,x2
2,x1x2]. The design matrix (DM) is created by using MLHS of the

x1 and x2 parameters, resulting in a matrix of the following form:

DMT (X ,L) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

mlhs(x1)1 . . . mlhs(x1)n

mlhs(x1)
2
1 . . . mlhs(x1)

2
n

mlhs(x2)1 . . . mlhs(x2)n

mlhs(x2)
2
1 . . . mlhs(x2)

2
n

mlhs(x1)1mlhs(x2)1 . . . mlhs(x1)nmlhs(x2)n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.4)

The corresponding Y matrix is then sampled from the original design and is based
on the parameters x1 and x2 for each row in the DM matrix.

190 S.P. Mohanty and E. Kougianos

11.5.2 Data Centering

Mean data centering is used to alleviate abrupt changes in the data. It centers and
scales each column of X before fitting. Zscore for each parameter in the circuit is
calculated by using the following expression:

Zscore =

(
xi − μi

σi

)
, (11.5)

where xi is the i-th design parameter, μi is the mean of the data points for that
parameter, and σi is its standard deviation. This approach is mostly used when the
parameter range is very high and the data is not distributed evenly.

11.5.3 Stepwise Regression

Stepwise regression is conducted on the sample data to create the polynomial
of first to sixth order [20]. The resulting polynomial may not include all terms
since stepwise regression iteratively removes coefficients that are not statistically
significant, resulting in metamodels with fewer coefficients without losing accuracy.
This method may build different models from the same set of potential terms
depending on the terms included in the initial model and the order in which terms
are moved in and out. The function stepwise(), which is embedded in MATLAB,
tests different initial models and outputs the coefficients for the best model for that
order.

11.5.4 Verification of the Metamodel

For the estimation of the accuracy of the metamodels, several error metrics can be
used [15]. Three important error metrics for metamodel performance analysis are
the following: (1) Root-Mean Square Error (RMSE), (2) Relative Average Absolute
Error (RAAE), and (3) R-Square (R2). RMSE represents the departure of metamodel
from the real response (SPICE parasitic netlist results are considered “golden”).
RMSE is calculated in the following manner:

RMSE =

√(
1
N

) N

∑
k=1

(y(xk)− ŷ(xk))
2, (11.6)

where N is the number of sample points, y(xk) is the metamodel response at the k-th
sample point and ŷ(xk) is the “golden” response. A smaller RMSE means that the
metamodel is more accurate. The RAEE is calculated in the following manner:

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 191

Table 11.1 Metamodel polynomial degree comparison for PLL component power consumption

PLL R2 Coefficients Coefficients RMSE RMSE
components Degree R2 adjusted total in model fit (W) verification (W)

1 0.8610 0.9997 7 3 2.1 × 10−10 6.6 × 10−10

2 0.9603 0.9993 28 18 1.1 × 10−10 7.1 × 10−10

Phase 3 0.9663 0.9989 84 34 1.0 × 10−10 7.0 × 10−10

Detector 4 0.9748 0.9974 210 94 9.2 × 10−11 7.1 × 10−10

5 0.9926 0.9955 462 206 8.2 × 10−11 7.1 × 10−10

6 0.9968 0.9938 924 662 5.4 × 10−11 9.7 × 10−10

1 0.9905 1 5 5 2.3 × 10−6 8.4 × 10−4

2 0.9968 1 15 14 1.3 × 10−6 8.4 × 10−4

Charge 3 0.9987 1 35 31 8.6 × 10−7 8.5 × 10−4

Pump 4 0.9995 1 70 54 5.3 × 10−7 8.4 × 10−4

5 0.9999 1 126 87 2.8 × 10−7 8.2 × 10−4

6 1 1 210 151 1.4 × 10−7 8.3 × 10−4

LC-VCO

1 0.9237 0.9985 3 3 4.5 × 10−5 4.1 × 10−5

2 0.9769 0.9999 6 6 2.5 × 10−5 2.1 × 10−5

3 0.9878 0.9999 11 11 1.8 × 10−5 1.7 × 10−5

4 0.9927 0.9999 16 16 1.4 × 10−5 1.4 × 10−5

5 0.9942 0.9999 21 20 1.2 × 10−5 1.2 × 10−5

6 0.9946 0.9999 28 20 1.2 × 10−5 1.1 × 10−5

Divider

1 0.2954 0.9943 10 9 7.6 × 10−6 7.7 × 10−6

2 0.3503 0.9901 55 16 7.3 × 10−6 5.9 × 10−6

3 0.4504 0.9618 220 66 6.9 × 10−6 5.8 × 10−6

4 0.6787 0.8828 715 268 6.0 × 10−6 9.1 × 10−6

5 1 1 2,002 999 0 1.1 × 10−4

RAEE =

(
∑N

k=1 |y(xk)− ŷ(xk)|
N ×σ

)
, (11.7)

where σ is the standard deviation of all error terms. A smaller RAAE means more
accurate metamodel. R2 is calculated in the following manner:

R2 =

(
1−
(

1
N ×σ2

) N

∑
k=1

(y(xk)− ŷ(xk))
2

)
. (11.8)

A larger R2 means a more accurate metamodel. In this chapter RMSE and R2 have
been used as error accuracy measures.

The RMSE value that is calculated from metamodel fitting for sampling points
is not a good metric for the metamodel fit. Extra verification points are required
to ensure that the fit is also good at other points than the ones being sampled.
Verification samples are checked to make sure that the data points are not the same
as the sampling points. The lowest RMSE value for different metamodel functions
is then selected as the best function. Polynomial functions of order 1 through 6 are
considered in this research. A total of 12 metamodels for the power consumption

192 S.P. Mohanty and E. Kougianos

of each component, 6 metamodels using the sample points with data centering and
6 metamodels without data centering are generated and then compared. The lowest
RMSE verification value is used to pick the most accurate metamodel. Table 11.1
compares the various metamodels.

11.6 Proposed Metamodel Based Design Optimization

For the optimization of the PLL components over the polynomial metamodels many
heuristic algorithms can be used. The optimization over metamodels instead of
the SPICE netslists allows accurate and otherwise computationally expensive algo-
rithms to iterate extensively before converging to an optimal solution. We propose
the use of the well established simulated annealing algorithm in this research. The
average power dissipation is considered as the objective for minimization.

Simulated annealing optimization is an extension of the Monte Carlo algorithm
and simulates the annealing process which is used in metallurgy. This gives the
simulated annealing algorithm random characteristics. More details of the theory

Algorithm 7: Simulated annealing optimization for Pn parameters
1: Initialize iteration counter: Counter ← 0.
2: Initialize first feasible solution Si ← mid(Pn) for each parameter P.
3: Determine initial Poweri using polynomial metamodels for the solution Si.
4: Initialize temperature T and cooling rate αT .
5: while (ΔPower! = 0) do
6: Counter ←Maximum number of iterations.
7: while (Counter > 0) do
8: Generate random transition from Si to S∗i .
9: if (S∗i is acceptable solution) then

10: Update the results; result ← S∗i .
11: break both while loops.
12: else
13: Calculate average power of AMS component from polynomial metamodels for

solution Si as Poweri.
14: Calculate average power of AMS component from polynomial metamodels for

solution S j as Power∗j .
15: Calculate the difference in power dissipation as: ΔPower ← Poweri −Power∗j

16: if
(

ΔPower < 0 random(0,1) < e

(
ΔPower

T

))
then

17: Update the solution; S ← S∗i .
18: end if
19: end if
20: Decrement the counter; Counter ←Counter−1.
21: end while
22: Change the temperature; T ← αT ×T .
23: end while
24: return result .

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 193

behind the simulated annealing algorithm can be found in [5]. This paper explored
the algorithm for circuit optimization as the number of parameters can be quite
large. By its nature, the simulated annealing algorithm has a random component and
two successive runs can produce different results. The steps of simulated annealing
based search are presented in Algorithm 7.

The algorithm takes random walks through the design space starting from
its middle point, looking for points with low energies. Parameter S calculations
are based on the polynomial metamodels of the FoMs which consider the PLL
frequency as a constraint, and returns the component’s power value if the design
is within the frequency specifications. If the design is not within the frequency
specifications the returned value is high, making the algorithm ignore the parameter
values of that step. In each step, the probability of taking a step is determined by the

Boltzmann distribution, p =
(

e
ΔPower

T

)
if ΔPower is high, and p = 1 when ΔPower is

low. Therefore a step will occur if a new value is better than the previous one. If the
new value is worse, the transition can still occur, and its likelihood is proportional
to the temperature T and inversely proportional to ΔPower.

11.7 Experimental Results

The algorithm implementations and simulations were performed in an integrated
environment of Cadence and MATLAB. A GUI is developed for easy use of
the design flow, as shown in Fig. 11.7. A complete development of this AMS

Fig. 11.7 Screen shot of metamodeling toolbox which will be released for educational usage once
development is completed

194 S.P. Mohanty and E. Kougianos

Table 11.2 Multiobjective optimization using power and frequency metamodels for
LC-VCO with 1% accuracy for 2.25 GHz

Power Frequency Error to verification Error to target

Prediction 0.153 mW 2.23 Ghz 0.047 mW 0.02 Ghz
Verification 0.110 mW 2.25 Ghz – 0 Ghz
Polynomial order 4 5

Table 11.3 Power metamodel versus netlist circuit optimization comparison

Circuit (parameters)
Metamodel Netlist

Order Prediction (W) Time (s) (W) Time (min)

Phase Detector (6) 1 7.35 × 10−9 0.07 6.81 × 10−9 ≈19
Charge Pump (4) (without
data centering)

2 3.01 × 10−5 0.11 3.11 × 10−5 ≈18

LC-VCO (2) 5 8.84 × 10−5 1.22 9.54 × 10−5 ≈18
Divider (1) 3 1.20 × 10−5 1.05 3.43×10−5 ≈8

design framework will eventually become a comprehensive automatic exploration
environment.

The results for PLL component multiobjective optimization which has been
performed using two metamodels, one for power and one for frequency, are shown
in Table 11.2. The frequency metamodel is used as constraint in the optimization
process and is set to within 1% of 2.25 GHz. The simulated annealing algorithm
is used to minimize the power with the given constraint. As a result, the chosen
metamodels are of order 4 and 5 for power and frequency respectfully. The accuracy
of the metamodel prediction values are verified using SPICE simulations and
show that the metamodel error to actual simulation at the near optimal point is
47 μW for power and 20 MHz for frequency. It is also interesting to note that the
verification simulation achieved closer results to the target values with lower power
and frequency being directly on target.

The results for the different PLL components are shown in Table 11.3. The
metamodel generation time is generally in the order of seconds and depends on
the maximum number of coefficients that can be present in the model, since the
stepwise regression process is very much dependent on the number of coefficients.
Higher order polynomials add more calculation time, but still the largest 6th order
polynomial with 9 parameters took roughly 2 min to create. The optimization time
is also in seconds in comparison to simulation optimization.

The final results for power consumption for all PLL components are shown
in Table 11.4. The initial power has been measured at the lowest minimal values
for each parameter considered in all circuits. The order of each metamodel varies
and was selected from those having the lowest RMSE values. It is easy to see
that on average the metamodeling approach has reached better results than the
simulation approach, even though simulation optimization provides better results
for the divider.

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 195

T
ab

le
11

.4
Po

w
er

op
ti

m
iz

at
io

n
us

in
g

m
et

am
od

el
s

fo
r

di
ff

er
en

tc
om

po
ne

nt
s

PL
L

Ph
as

e
C

ha
rg

e
pu

m
p/

To
ta

l
C

PU
co

m
po

ne
nt

s
de

te
ct

or
(n

W
)

lo
op

fil
te

r
(μ

W
)

L
C

-V
C

O
(μ

W
)

D
iv

id
er

(μ
W

)
po

w
er

(μ
W

)
ti

m
e

In
it

ia
lp

ow
er

9.
31

21
.8

4
75

.5
60

.5
15

7.
9

M
et

am
od

el
op

ti
m

iz
at

io
n

6.
80

3.
10

71
.4

48
.1

12
2.

6
7.

48
s

Si
m

ul
at

io
n

op
ti

m
iz

at
io

n
6.

87
3.

11
95

.4
34

.3
13

2.
8

81
m

in

196 S.P. Mohanty and E. Kougianos

Fig. 11.8 Layout of the 180 nm CMOS based complete PLL

Once optimization of different PLL components is performed, the overall PLL is
designed by combining them. The complete physical design of the PLL for 180 nm
CMOS is shown in Fig. 11.8. Subsequent characterization of the PLL finds the
following specifications: 0.92 mW average power (including leakage), 2.25 GHz
center frequency, and 525 × 326 μm2 silicon area.

11.8 Summary, Conclusions, and Future Direction
of Research

From this research we can conclude that the second order polynomial, which forms
the basis for Response Surface Methodologies (RSM), does not always accurately
capture the complexity of the response in a multidimensional design space. For a
PLL circuit, higher order polynomials provide better results. The metamodeling
design flow lowers the design optimization phase by roughly 2,000× compared to
the simulation based optimization approach if used for IP reuse. The metamodel
generation is the slowest step of the proposed design process and provides speedup
that is roughly equal to the ratio of the number of samples and netlist optimization
sampling. One can argue that the metamodeling approach sampling and model
generation stage is time consuming, but considering that the metamodels are
reusable and can be used for circuit verification in addition to optimization, this
approach becomes very attractive for AMS SoC design and verification.

It may be noted that metamodeling techniques have been well researched
in many disciplines [15]. The research is in full swing for its applicability in
VLSI design automation. With the increasing complexity and dimensionality of

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 197

Metamodels

Polynomial

Polynomial Basis
Functions

Non-Polynomial

Kriging Machine Learning

Support Vector
Machines

Genetic
Programming

Artificial
Neural Networks

Piecewise
polynomial

Fig. 11.9 Different types of metamodels

Table 11.5 Metamodeling comparative perspective for a PLL with center frequency fc

of 2.7 GHz

PLL ANN metamodel Polynomial metamodel
FoM RMSE Time to create RMSE Time to create

Center 48 MHz 11 h for sampling 78 MHz 11 h for sampling
Frequency (1.8% of fc) +10 min for training (2.9% of fc) +1 min for creation

designs, the need for more efficient and accurate metamodeling techniques grows.
A classification and analysis of metamodeling techniques is presented in Fig. 11.9
[19, 32]. Various metamodeling approaches, including second order polynomial
techniques, Multivariate Adaptive Regression Splines (MARS), boosting, Support
Vector Machine (SVM), Artificial Neural Networks (ANN), Genetic Programming
(GP), and Kriging are being investigated for accuracy and speed trade-offs.

For a specific comparison, ANN and polynomial metamodels are considered and
presented in Table 11.5. For design optimization over the actual circuit netlist, 100
iterations take 10,000 min, which is 7 days. This is the worst case analysis. On the
other hand, both ANN and metamodels reduce that time significantly. The RMSE for
polynomial metamodel is larger than the ANN metamodels. However, polynomial
metamodels are straight forward to create and do not need sophisticated training as
is the case of ANN metamodels.

In the future, the research problem of metamodeling and design optimization
over metamodels can be tackled in multiple fronts. The sampling phase is the most
time consuming phase of metamodeling. What is the best alternative to Monte
Carlo for large circuits to capture the complete design space accurately is still an
open question. Higher parameter circuits and more circuit characterization will be
considered in our future research. The correlations among parameters in affecting
a target FoM needs more research. Capturing the process variations accurately
through metamodeling is essential for nanoscale circuit and system optimization.
Also, multiobjective optimization functions involving more than one, possibly
conflicting FoMs, is a future research direction.

198 S.P. Mohanty and E. Kougianos

Acknowledgements The chapter is based on the following presentation [21]. The authors would
like to acknowledge the help of UNT graduate Dr. Oleg Garitselov and Mr. J. M. Molina who
presented the conference version. The authors would like to thank the Editors of this book and
FDL 2012 [21] organizers.

References

1. Agarwal, A., Vemuri, R.: Hierarchical performance macromodels of feasible regions for
synthesis of analog and RF circuits. In: IEEE/ACM International Conference on Computer-
Aided Design, San Jose, pp. 430–436 (2005)

2. Agarwal, A., Vemuri, R.: Layout-aware RF circuit synthesis driven by worst case parasitic
corners. In: 2005 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, San Jose (2005)

3. Agarwal, A., Wolfe, G., Vemuri, R.: Accuracy driven performance macromodeling of feasible
regions during synthesis of analog circuits. In: Proceedings of the 15th ACM Great Lakes
Symposium on VLSI, Chicago, pp. 482–487 (2005)

4. Basu, S., Kommineni, B., Vemuri, R.: Variation-aware macromodeling and synthesis of analog
circuits using spline center and range method and dynamically reduced design space. In: 22nd
International Conference on VLSI Design, New Delhi, pp. 433–438 (2009)

5. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)
6. Ding, M., Vemuri, R.: Efficient analog performance macromodeling via sequential design

space decomposition. In: 19th International Conference on VLSI Design, Hyderabad, p. 4.
(2006)

7. Doboli, A., Vemuri, R.: Exploration-based high-level synthesis of linear analog systems
operating at low/medium frequencies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
22(11), 1556–1568 (2003)

8. Dong, W., Feng, Z., Li, P.: Efficient VCO phase macromodel generation considering statistical
parametric variations. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, San Jose, pp. 874–878 (2007)

9. Fan, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman
and Hall/CRC, Boca Raton (2006)

10. Gardner, F.: Charge-pump phase-lock loops. IEEE Trans. Commun. 28(11), 1849–1858
(1980). [legacy, pre-1988]

11. Garitselov, O., Mohanty, S.P., Kougianos, E.: A comparative study of metamodels for fast and
accurate simulation of nano-CMOS circuits. IEEE Trans. Semicond. Manuf. 25(1), 26–36
(2012)

12. Garitselov, O., Mohanty, S.P., Kougianos, E.: Accurate polynomial metamodeling-based ultra-
fast bee colony optimization of a nano-CMOS phase-locked loop. J. Low Power Electron. 8(3),
317–328 (2012)

13. Ghai, D., Mohanty, S.P., Kougianos, E.: Design of parasitic and process-variation aware nano-
CMOS RF circuits: a VCO case study. IEEE Trans. VLSI Syst. 17(9), 1339–1342 (2009)

14. Hendrickx, W., Gorissen, D., Dhaene, T.: Grid enabled sequential design and adaptive
metamodeling. In: Proceedings of the Winter Simulation Conference, Monterey, pp. 872–881
(2006)

15. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques under
multiple modelling criteria. Struct. Multidiscip. Optim. 23, 1–13 (2001)

16. Lamecki, A., Balewski, L., Mrozowski, M.: Towards automated full-wave design of microwave
circuits. In: 17th International Conference on Microwaves, Radar and Wireless Communica-
tions, Wroclaw, pp. 1–2 (2008)

17. Lesh, F.H.: Multi-dimensional least-squares polynomial curve fitting. Commun. ACM 2,
29–30 (1959)

11 Polynomial Metamodel-Based Fast Optimization of Nanoscale PLL Components 199

18. Mathaikutty, D.A., Shukla, S.: Metamodeling driven IP reuse for system-on-chip integration
and microprocessor design. Artech House, Norwood, MA 02062 USA (2007)

19. McConaghy, T., Gielen, G.: Analysis of simulation-driven numerical performance modeling
techniques for application to analog circuit optimization. In: Proceedings of the IEEE
International Symposium on Circuits and Systems, (ISCAS), Iasi, vol. 2, pp. 1298–1301 (2005)

20. McCray, A.T., McNames, J., Abercrombie, D.: Stepwise regression for identifying sources of
variation in a semiconductor manufacturing process. In: IEEE Conference and Workshop on
Advanced Semiconductor Manufacturing, Boston, pp. 448–452 (2004)

21. Mohanty, S.P., Kougianos, E., Garitselov, O., Molina, J.M.: Polynomial-metamodel assisted
fast power optimization of nano-CMOS PLL components. In: Proceeding of the 2012 Forum
on Specification and Design Languages, Vienna, pp. 233–238 (2012)

22. Mohanty, S.P., Kougianos, E., Okobiah, O.: Optimal design of a dual-oxide nano-CMOS
universal level converter for multi-v dd socs. Analog Integr. Circuits Signal Process. 72(2),
451–467 (2012)

23. Park, J., Choi, K., Allstot, D.J.: Parasitic-aware design and optimization of a fully integrated
CMOS wideband amplifier. In: Proceedings of the 8th Asia South Pacific Design Automation
Conference, Kitakyushu, pp. 904–907 (2003)

24. Pradhan, A., Vemuri, R.: A layout-aware analog synthesis procedure inclusive of dynamic
module geometry selection. In: Proceedings of the 18th ACM Great Lakes Symposium on
VLSI, Orlando, pp. 159–162 (2008)

25. Pradhan, A., Vemuri, R.: Efficient synthesis of a uniformly spread layout aware pareto surface
for analog circuits. In: Proceedings of the 22nd International Conference on VLSI Design,
New Delhi, pp. 131–136 (2009)

26. Roy, S., Chen, C.C.P.: Smartsmooth: a linear time convexity preserving smoothing algorithm
for numerically convex data with application to VLSI design. In: Asia and South Pacific Design
Automation Conference, Yokohama, pp. 559–564 (2007)

27. Roy, S., Chen, W., Chung-Ping Chen, C., Hu, Y.H.: Numerically convex forms and their
application in gate sizing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(9),
1637–1647 (2007)

28. Samanta, R., Hu, J., Li, P.: Discrete buffer and wire sizing for link-based non-tree clock
networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(7), 1025–1035 (2010)

29. Tang, B.: Orthogonal array-based latin hypercubes. J. Am. Stat. Assoc. 88(424), 1392–1397
(1993)

30. Wolfe, G., Vemuri, R.: Extraction and use of neural network models in automated synthesis of
operational amplifiers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 198–212
(2003)

31. Wong, J.L., Davoodi, A., Khanderwal, A., Srivastava, A., Potkonjak, M.: A statistical
methodology for wire-length prediction. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 25(7), 1327–1336 (2006)

32. Yelten, M.B., Zhu, T., Koziel, S., Franzon, P.D., Steer, M.: Demystifying surrogate modeling
for circuits and systems. IEEE Circuits Syst. Mag. 12(1), 45–63 (2012)

Chapter 12
Methodology and Example-Driven Interconnect
Synthesis for Designing Heterogeneous
Coarse-Grain Reconfigurable Architectures

Johann Glaser and Clifford Wolf

Abstract Low power consumption or high execution speed is achieved by making
an application specific design. However, today’s systems also require flexibility
in order to allow running similar or updated applications (e.g. due to changing
standards). Finding a good trade-off between reconfigurability and performance is a
challenge.

This work presents a design methodology to generate application-domain spe-
cific heterogeneous coarse-grain reconfigurable architectures. The specification of
the reconfigurable architecture is given by a set of example applications which
define the whole range of its required functionality. These applications are analyzed
to extract common building blocks, which can be reused between them.

In the next step, the circuits of the application are merged to a single reconfig-
urable module. The major part of this work describes the according tool and its
algorithm. Its main task is to optimize the interconnect by hierarchically grouping
the functional units. Additional resources can be added to enable future applications.
The tool generates the HDL source for a module with the instances of all blocks and
the reconfigurable interconnect. The feasibility of the methodology is demonstrated
by the design of reconfigurable architectures for digital filters as well as simple logic
networks.

12.1 Introduction

In current system design a shift to employ reconfigurable logic tries to utilize their
benefits for various applications. Typical wireless sensor network (WSN) nodes
are supplied from batteries or utilize energy haversting. Therefore the main goal

J. Glaser (�) • C. Wolf
Institute for Computer Technology, Vienna University of Technology, Vienna, Austria
e-mail: glaser@ict.tuwien.ac.at; clifford@clifford.at

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0__12,
© Springer International Publishing Switzerland 2014

201

mailto:glaser@ict.tuwien.ac.at
mailto:clifford@clifford.at

202 J. Glaser and C. Wolf

is to optimize a WSN node for ultra low power consumption. Unfortunately, the
CPU as main controller consumes power even for very simple tasks. By adding a
dedicated reconfigurable hardware module to offload the CPU for such simple tasks
as sensor measurements or network MAC layer handling, a large reduction in the
power consumption can be achieved [4]. These reconfigurable modules also enable
the use of the SoC in multiple different environments, thus sharing the non-recurring
engineering (NRE) costs.

Accelerators for computer vision systems should support various algorithms.
Currently this is achieved by implementing all algorithms in parallel and switching
between them. Since the algorithms also have common operations, a reconfig-
urable system can reduce the required hardware resources. In multi-standard and
multi-function communication systems the same approach leads to a reduction of
hardware resources [12].

Reconfigurable logic is classified by its granularity. The widely used FPGAs are
fine-grained and pose a large overhead in terms of area and power. This is avoided
by coarse-grained reconfigurable systems that achieve an ASIC-like performance at
much lower power consumption and chip area [11, 15]. For the above mentioned
applications, domain-specific reconfigurable circuits with heterogeneous, tailored
blocks and a non-regular interconnection can provide further reduction in power
and area [7].

In this work, a methodology for the design of heterogeneous coarse-grain
reconfigurable circuits is presented. From a set of different actual applications,
the set of required (possibly reconfigurable) hardware blocks and the interconnect
between them is deduced. The grouping of the blocks is optimized to minimize the
hardware resources of the interconnect.

This work is an extended version of [13]. First we review the design and usage of
custom reconfigurable hardware. Then a detailed view on the design methodology
is given. This is followed by a review and evaluation of interconnect topologies. The
main part of this work is an optimization algorithm for the automatic synthesis of
this interconnect. Then a short section introduces a feature-rich Verilog synthesis
tool which is used for design entry of the presented methodology. This is followed
by an evaluation of the algorithm results. The work ends with conclusions and future
work.

12.2 Development of Reconfigurable Hardware

The generation of reconfigurable circuits is split in two phases. In the so called
“pre-silicon phase” the reconfigurable hardware structures are designed for the
application class. Secondly, in the “post-silicon phase” the reconfigurable silicon
circuit is used to implement the actual application [5, 7].

In this work an approach is presented that provides the (semi-) automated
generation of the pre-silicon circuit and can generate the configuration data for an
actual application in the post-silicon phase.

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 203

12.2.1 Pre-silicon Phase

In the pre-silicon phase, the reconfigurable circuit is designed. As first step,
its specification is derived from the set of (usually similar) actual applications,
which will be implemented in the reconfigurable logic. During this design space
exploration, the “needs of [the] applications [. . .] drive the construction of the
fabric” [11, p. 1]. This approach requires the a-priori knowledge of all future
applications and it is generally not possible to implement a different application with
the resulting fabric. To enable yet unknown applications, we propose oversizing, i.e.,
to include additional hardware and interconnect resources into the fabric.

The specification includes information on the employed blocks (also called
functional units or cells) (e.g. adders, FSMs, . . .), which can be reconfigurable
themselves (e.g. an adder be reconfigured as a subtracter, reconfigurable FSM [6]).
Additionally it includes the number of instances of each block as well as details on
the connections among them.

12.2.2 Post-silicon Phase

In the post-silicon phase after production the actual application has to be im-
plemented by configuring the silicon structure designed in the pre-silicon phase.
So, on the one hand, the post-silicon phase is limited by the results of the pre-
silicon phase. On the other hand, the pre-silicon phase requires information on the
actual implementations later used in the post-silicon phase to provide the required
resources.

12.3 Design Methodology

The reconfigurable module as the result of the pre-silicon development phase will
be integrated into the whole SoC. Therefore the resulting design data has to be
compatible with an industry-standard ASIC design flow. This is best accomplished
by delivering the reconfigurable module as a soft IP core. The required deliverables
include structural and RTL (register-transfer level) hardware description (e.g.,
VHDL, Verilog) as well as guidelines and constraints for synthesis and place and
route. Additionally, information and tools for the post-silicon phase have to be
provided.

The design of such reconfigurable module soft IP cores should be assisted and
automated by dedicated tools. This requires a systematic design approach which
will be described in this section.

204 J. Glaser and C. Wolf

12.3.1 Specification

The start of the development requires a precise specification of the reconfigurable
module. The application class of the module only coarsely defines the functionality.
However, the interfaces of the reconfigurable modules to other modules of the
SoC and outside the SoC can be derived. On the other hand, the functionality
and inventory of the reconfigurable module itself can be specified in two different
ways:

1. Define the functionality and the required flexibility in abstract terms.
2. Use a set of concrete applications, which define the whole range of the required

functionality of the reconfigurable module.

This work only deals with the second form of specification. The design of a
reconfigurable module is thus broken down to first developing a set of concrete
applications. Then, from this set one reconfigurable circuit is derived which is able
to implement each of these concrete applications.

The specification of each concrete, i.e., example application has to be easy
to translate to a logic netlist to facilitate further processing by automated tools.
It should employ an existing type of hardware description so that the designers
do not have to learn a new one. Finally, the description should be supported by
industry-standard verification tools to achieve a first-time-right SoC design. All
these requirements are fulfilled by common hardware description languages like
VHDL and Verilog.

12.3.2 Application Analysis

The first step of the development of a reconfigurable module is to develop and verify
a set of example applications (see “App”s in Fig. 12.1). In the second step, these are
processed to derive the inventory of the reconfigurable module. This consists of a
pool of coarse-grain cells (e.g., FSMs, adders, . . .) (which might be reconfigurable
themselves) plus a reconfigurable interconnect for flexible connections among them
[7, 13] (compare Fig. 12.3).

For the processing of the example applications, a special coarse-grain synthesis
tool creates a netlist representation of each application. These netlists are analyzed
to extract coarse-grain cells and to find commonalities between all example applica-
tions (see top “Synthesis” box in Fig. 12.1). Commonly used cells are candidates
for reuse in the reconfigurable module. Analogously to the FSM plus datapath
(FSM + D) concept, the control logic of each example application is mapped to
an FSM using FSM extraction while all data processing is implemented using
dedicated coarse-grain cells.

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 205

App 1 App 2 App 3

Synthesis with Coarse Grain
Cell Extraction and Inference

Net-
list 1

Net-
list 2

Net-
list 3

Cell
Library

Merge

Cfg. & Param.,
Constraints

Implementation

IP Core

Fig. 12.1 Graphical
representation of the design
methodology (description is
given in the text)

While FSMs are very generic building blocks, which easily can be implemented
with a reconfigurable cell, e.g. as a TR-FSM [6], the development of a reconfig-
urable datapath is a more complex task. At the beginning of the development,
a mostly manual approach is employed. The coarse-grain synthesis tool creates
netlists with instances of simple coarse-grain cells (e.g., adders, shifters, . . .). The
designer has to investigate the schematic and manually identify related cells which
together build a larger, more complex coarse-grain cell (e.g., calculating the absolute
difference of two numbers, a counter, . . .). He can also generalize such groups to
configurable multi-function cells (e.g. an adder and subtracter or a whole ALU).
Further more, using frequent subgraph mining [12] allows to automatically identify
sub-circuits which are common to multiple example applications.

For each such coarse-grain cell a small module is designed (again in a HDL).
These together build the cell library (see Fig. 12.1). We call this semi-automatic
procedure “coarse-grain cell extraction”. It is the core point for optimization of the
final reconfigurable module.

When the cell library for the reconfigurable module is finished, all example ap-
plications are analyzed again with “coarse-grain cell inference”. This uses subgraph
isomorphism to identify and replace all sub-circuits in each example application by
coarse-grain cells from the cell library. For the further processing, each example
application has to be described by a netlist of only FSMs and instances of cells from
the cell library and connections among them (see “Netlist”s in Fig. 12.1).

206 J. Glaser and C. Wolf

12.3.3 Merge

After the application analysis, all separate example applications are merged to a
single common reconfigurable module, which can implement each of the example
applications (see Fig. 12.1). Therefore all used coarse-grain cells from the cell
library including reconfigurable FSMs have to be instantiated in the appropriate
number. To increase the flexibility of the final reconfigurable module, additional
instances of critical cells can be added. Finally, a flexible and reconfigurable
interconnect is created and optimized.

The result of this step is an RTL representation of the reconfigurable module plus
meta-information for the post-silicon phase to specify how to setup the configuration
data.

12.3.4 Implementation

To complete the reconfigurable module, storage and interfaces for configuration and
parameterization are added (see Fig. 12.1). Together with guidelines and constraints
for synthesis and place and route, the reconfigurable module is provided as soft IP
core. It can be integrated into the whole SoC and processed with a standard ASIC
design flow.

12.3.5 Verification

Verification is a major concern in ASIC development, therefore the described
development methodology provides full coverage from the example applications
to the finished IP core. Firstly, the functionality of each example application (see
“App”s in Fig. 12.1) can be verified by simulation as well as formal verification due
to the choice of common HDLs for specification.

Secondly, the individual netlists created by coarse-grain cell inference can be
checked for equivalence to the original HDL. Since these netlists might already
contain reconfigurable cells (e.g., FSMs), the configuration values have to be set
to the proper values using according commands of the equivalence checking tools.
The simulation of the netlist simply uses the original testbench but requires the
application of configuration values before start.

Finally, it is also possible to verify whether the final reconfigurable module
implements any given example application. Again, the according original testbench
is employed and the required configuration data has to be applied before the start
of the simulation. Additionally, equivalence checking can be employed to verify the
logical equivalence of the (appropriately configured) reconfigurable module to each
example application.

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 207

12.3.6 Post-silicon Phase

In the previous sub-sections, it was assumed that the configuration data for each
example application is generated together with the application analysis and merging
steps. Therefore no dedicated post-silicon phase is required for these applications.
However, for a new application a full post-silicon design phase is required. This is
similar to designing FPGA applications, although the results of the pre-silicon phase
limit the design space of these new applications.

In a first step, the new application is synthesized and coarse-grain cell inference
is performed. Then, similar to the merging step above, the netlist is mapped to
the inventory of the reconfigurable module and the signals are routed through the
interconnect. Finally, the configuration data is generated to setup the cells and the
interconnect. The result can be verified using simulation and equivalence checking.

12.3.7 Tools

The above described design methodology requires tools to assist the designer. For
the synthesis of the example applications, a flexible and customizable coarse-grain
synthesis tool is required. This will be described in short in Sect. 12.7. However,
the major part of this paper is on the tool to merge the netlists of the example
applications and generate and optimize the interconnect (Sects. 12.4–12.6).

12.4 Interconnect for Reconfigurable Modules

Most applications of coarse-grain reconfigurable logic are designed for computa-
tional tasks [15]. These use an array of homogeneous functional units connected
with a highly regular interconnect (e.g. mesh structure), similar to FPGAs. In
contrast, the presented approach assumes heterogeneous functional units (cell
types), which also require a non-regular interconnect.

12.4.1 Common Topologies

Different interconnect topologies are evaluated in this section. The most powerful
topology provides connections from every output to all inputs. The disadvantages
are a large circuit overhead. On the other hand, a minimalistic interconnect with
a small number of multiplexers to switch between alternative datapaths (compare
[12]) does not allow to implement yet-unknown applications in the reconfigurable
circuit.

208 J. Glaser and C. Wolf

Mesh structures are an alternative to the layered topology, but also assume
homogeneous FUs that can be configured to perform each of its basic functionalities.
The interconnect itself requires a high number of switches which pose a high
overhead in terms of silicon area and power.

In SoCs, a bus topology is used to connect the CPU with the memory and all
peripherals. For reconfigurable logic circuits with all cells working in parallel, this
leads to high traffic and thus congestions [15]. The utilization of every cell is reduced
and the total processing time protracted, which is not acceptable in the domain of
low-power circuits.

A tree based interconnect topology [10] allows to group the cells to provide short
paths through lower levels of the tree for connections, which are used frequently
by the different applications. On the other hand, connections to other nodes are
still possible using higher hierarchical levels of the tree. This provides a large
optimization potential to reduce circuit overhead but still results in a rich set of
routing resources.

12.4.2 A Tree Topology

For the implementation of the reconfigurable modules the tree topology was chosen
to connect the individual cells. First, a few terms have to be defined. The circuit
is built out of multiple cells, which are instances of various cell types (previously
called blocks, e.g. adder, FSM, look-up tables). Each has a number of input and
output ports.

Analogous to the separation of the control logic and the data-path in the
FSM + D concept, each port of the cell types implements a connection type, e.g.
bit-wide, word-wide or other categories. The connection types are defined based on
compatible signaling (e.g. identical bit width) as well as semantics (e.g. clock enable
vs. other control signal).

All cells are connected using a reconfigurable interconnect. For every connection
type a separate interconnect is implemented (see Fig. 12.2) which provides connec-
tions between all ports of its connection type.

Cell 1

Cell 2

Cell 3

...

Cell n

1× Bit-Wide
Interconnect

Tree

2× Word-Wide
Interconnect

Trees

Fig. 12.2 Example
interconnect with two
different interconnect types
(bit-wide and word-wide).
The word-wide interconnect
is implemented as two
parallel trees

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 209

C
el

l1

C
el

l2

C
el

l3

C
el

l4

C
el

l5

C
el

l6

C
el

l7

C
el

l8

C
el

l9

Switch 4 Switch 5 Switch 6 Switch 7

Switch 2 Switch 3

Switch 1

Fig. 12.3 Example interconnect with seven switches in three levels connecting nine cells of
varying cell types

In the post-silicon phase an actual application is implemented by connecting
the cells as given by the netlist. This specifies nodes of certain cell types, which
are mapped to the cells of the reconfigurable circuit. The ports of these nodes
are connected with nets which are routed via the interconnect of the according
connection type by setting the proper configuration.

The interconnect is a tree (see Fig. 12.3) with the cells as leaf nodes and
reconfigurable switches as inner nodes as well as the edges as connections (electrical
nets).

The switches are unidirectional circuits that can be configured to connect any
input port to any output port (see the detail in Fig. 12.3). The degree of a switch is
the number of its children, (e.g. in Fig. 12.3, Switch 3 has a degree of two, Switch
6 has a degree of three). Each cell and each switch have a parent switch, except the
top-most root switch. The height of the tree is the number of levels (e.g., Fig. 12.3
has a height of three).

The routing length of a net is the number of switches it passes from its source
cell to its destination cell. The total routing length is the sum for all nets of a given
netlist.

Each non-root switch in the tree has a number of connections to and from its
parent switch. Only the number of these connections limits the capability of the
interconnect to implement different netlists. Each switch can drive all outputs from
any input, with one exception: A signal driven by one switch to another switch
cannot be routed back to its originating switch.

To improve the connectivity, for each connection type multiple parallel trees with
identical topology can be implemented (as also implemented by Ferreira et al. [3],
compare Fig. 12.4 and the two word-wide interconnect trees on the right side in
Fig. 12.2). Each cell is assigned to a (generally different) leaf node in each tree.
Therefore each net can be routed in any tree. As each cell might be assigned to a
different leaf node in each tree, the routing length of a net can be small in one tree
but high in the other trees.

210 J. Glaser and C. Wolf

A
D
D
[
0
]

A B Y

F
F
[
3
]

D Q

M
U
L
[
2
]

A Y

F
F
[
1
]

D Q

O
U
T
[
0
]

P

A
D
D
[
1
]

A B Y

A
D
D
[
3
]

A B Y

M
U
L
[
1
]

A Y

I
N
[
0
]

P

F
F
[
0
]

D Q

M
U
L
[
4
]

A Y

A
D
D
[
2
]

A B Y

F
F
[
2
]

D Q

M
U
L
[
0
]

A Y

M
U
L
[
3
]

A Y

M
U
L
[
1
]

A Y

M
U
L
[
4
]

A Y

A
D
D
[
3
]

A B Y

M
U
L
[
0
]

A Y

F
F
[
3
]

D Q

A
D
D
[
1
]

A B Y

F
F
[
2
]

D Q

M
U
L
[
3
]

A Y

F
F
[
0
]

D Q

M
U
L
[
2
]

A Y

A
D
D
[
2
]

A B Y

O
U
T
[
0
]

P

I
N
[
0
]

P

F
F
[
1
]

D Q

A
D
D
[
0
]

A B Y

Fig. 12.4 Exemplary interconnect for the digital filters shown in Fig. 12.6 using two parallel
interconnect trees (top and bottom). The routed signal paths show the post-silicon configuration
for the biquad-df1 filter. In the pre-silicon phase, the interconnect was optimized with the
other three topologies. Note that the cells in the bottom half are the same as the cells in the top
half, but in a different order, because they are mapped to different leaves in the second interconnect
tree

12.4.3 Analysis of the Tree Topology

In this section the tree topology as described in the previous section is evaluated. A
set of six requirements is presented and the fitness of the tree topology to meet this
requirements is analyzed.

1. Requirement: Allow random connections of the cells up to a certain degree.

The set of netlists that can be implemented by a given interconnect tree is
only limited by the number of connections between the switches and their
parent switches and the tree layout (number of levels and degree of switches).
An interconnect with only one big root switch is equivalent to a full-MUX
interconnect that can implement any netlist. This might be useful for connection
types with only a small number of input or output ports.

2. Requirement: Allow optimization of the interconnect for recurring pattern and
similarities in the example netlists.

The interconnect can be optimized towards the similarities in the example netlists
by choosing cell to tree leaf mappings in a way that minimizes the interconnect
utilization of the example netlists.

3. Requirement: Can be characterized using a relative simple and regular data
structure. The existence of such a representation allows for easy manipulation
and investigation of the interconnect topology.

The whole interconnect can be described using only two simple data sets: Firstly
the mapping of each cell to one leaf in each tree and secondly for each switch
the number of connections to and from its parent switch. The first data set can
be charaterized as a per-tree permutation and can be manipulated and optimized
easily by exchanging the assignments of two cells in one tree. The second data set

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 211

is a list of integers where greater value implies more flexibility in the post-silicon
phase, but also more chip resources.

4. Requirement: Prohibits over-optimization towards the example netlists that
would prevent the interconnect to work with netlists that have similarities with,
but are not identical to any, example netlist.

As whole cells (instead of individual ports) are mapped to tree leaves, the
optimization potential towards the individual datapaths is limited. There will
always be nets that cannot be routed by only using the lowest layer of the
interconnect. Thus, smart grouping of cells can be used to optimize, up to a
certain degree, the interconnect to the requirements of the example netlists. On
the other hand, the interconnect will not be limited to the example netlists.

5. Requirement: Allows for easy oversizing of the interconnect resources to broaden
the spectrum of implementable netlists.

Oversizing is done by increasing the number of connections between switches.
Netlists that are similar but not part of the set of example netlists might have nets
which result in a high routing length. With oversizing, extra routing resources
help to improve these cases.

6. Requirement: Easy to implement with currently available logic synthesis tools.
The interconnect topology provides only unidirectional links. This allows for an
implementation using MUXes built from standard cells, as generated by ASIC
synthesis tools. For the interconnect in most up-to-date FPGAs, unidirectional
links are also reconsidered [9].

An additional problem arises from potential combinational loops within the
interconnect circuitry. This is eliminated by forbidding to route a signal back to
its originating switch. On the other hand it is still possible to create loops through
combinational cells connected to the interconnect. This issue must be taken care
of by disabling timing arcs through these cells and applying maximum delay
constraints [2].

In summary, the chosen tree topology seams to be well suited for heterogeneous
coarse-grain reconfigurable architectures.

12.5 Interconnect Synthesis

A tool called InterSynth, which automatically generates the interconnect for the
reconfigurable module, was implemented. It uses a set of example netlists (each
representing an actual application, compare Sect. 12.2.1) with instances of cell
types and connections among them. These are used to optimize the interconnect
to provide cells and connectivity, suitable for implementing any of these netlists.
The output is a synthesizable Verilog file that instantiates the cells and describes the
reconfigurable interconnect.

In the pre-silicon phase, the algorithm first builds the interconnect topology with
the given number of parallel trees, height of the trees and order of each level. The

212 J. Glaser and C. Wolf

total number of leaves is given by the number of cells required by the example
netlists. Then the cells are assigned to leaves in the interconnect trees (cell-to-leaf-
mapping) and the required number of connections for each switch to and from its
parent switch are determined so that the connections of all example netlists can be
routed. In that course the algorithm also implements all example netlists. This means
that for each netlist, each node is mapped to a cell (node-to-cell-mapping) and each
net is routed via one of the interconnect trees.

12.5.1 Optimization Algorithm

During the interconnect optimization, the cell-to-leaf-mappings are permuted, so
that a smaller number of connections to and from the parent switches (and therefore
hardware resources) is required to still implement all example netlists. This is
preformed using an iterative algorithm, a single iteration of which is shown in
Fig. 12.5. It operates on the state S, which contains all node-to-cell-mappings for
all netlists and all cell-to-leaf-mappings for all interconnect trees.

The optimization is based on the Kernighan-Lin algorithm [8], which is an
heuristic procedure for solving partitioning problems by permuting the domain
mappings of entities. In InterSynth it is used (in a slightly modified manner) to
permute the node-to-cell- and cell-to-leaf-mappings in the state S. The function
KERNLINOPTIMIZE in Fig. 12.5 implements the Kernighan-Lin algorithm.

For the first iteration of the algorithm a start state S with random mappings is
used. For all further iterations the result of the previous iteration is used as a starting
point. Experiments have shown that less than six iterations are usually enough
for InterSynth to reach a stable state, whereas further iterations don’t significantly
improve the algorithms result.

The algorithm is controlled through the use of flags that enable or disable
certain parts of the algorithm. Note that the KERNLINOPTIMIZE function is using
different optimization goals in different parts of the algorithm. For example the
term best candidate pair in KERNLINOPTIMIZE is using a different definition of
best depending on the calling block. The flag mode_align_netlists enables a
block that “aligns” the netlists so that similar subcircuits are mapped to the same set
of cells. In this block the optimization goal for KERNLINOPTIMIZE is to minimize
the number of unique pairs of connected cell ports over all netlists. The flag mode_-
swap_cell_mappings enables a block that permutes the cell-to-leaf-mappings
for the individual interconnect trees and the flag mode_swap_node_mappings
permutes the node-to-cell-mappings. In both blocks the optimization goal is to
minimize the sum of the total routing lengths for all netlists in the top i levels of
the interconnect trees. Therefore the first iteration of the i-loop only tries to reduce
the utilization of the root switch and further iterations of the i-loop refine this first
solution with respect to the other switching levels in a top-down manner.

For the pre-silicon procedure the algorithm is used with the flag mode_-
align_netlists enabled in the first iteration. Thus the actual algorithm is using

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 213

Fig. 12.5 InterSynth
algroithm

aligned netlists as a starting point. The flag mode_swap_cell_mappings is set
for all iterations and mode_swap_node_mappings is only set for the second
half of iterations. Thus the algorithm first tries to find a good solution without
modifying the aligned netlists and after that uses this solution as a starting point for
an optimization run with all degrees of freedom. After this the number of required
connections for each switch to and from its parent switch is calculated by using
the maximum number of these connections used for each switch in the routing
results generated by the algorithm. InterSynth also provides configuration options
for oversizing.

In post-silicon runs the flag mode_align_netlists is never activated, as
there is only one netlist in post-silicon runs. The flag mode_swap_cell_-
mappings is also never set during the post-silicon procedure, as the cell-to-
leaf-mappings cannot be changed once the chip has been manufactured. The

214 J. Glaser and C. Wolf

flag mode_swap_node_mappings is set in all iterations of the post-silicon
procedure. As information about the available routing resources is available during
the post-silicon procedure this information is used by the post-silicon routing
algorithm. Thus the post-silicon routing algorithm does not optimize for the shortest
path but for least congestion.

12.5.2 Implementation Details

The actual implementation of InterSynth is using performance optimizations. For
example, instead of copying S to S0, . . . ,S j−1, a journal of the swaps is maintained
that can be rolled back to the best solution. When the number of utilized nodes of
a certain type varies between the netlists, additional “dummy nodes” are added by
InterSynth to level the number of used nodes across all netlists. This is necessary
as InterSynth can only permute the existing cell-to-leaf-mappings. That means
there must be mappings for all leafs in all trees in the initial state in order to
make all possible mappings accessible to the optimization algorithm. The cell type
descriptions used by InterSynth provide a flag to mark a cell input as possible
feedback input. An input that does not have this flag set cannot be connected directly
to an output from the same cell. For most cell types such connections would never
be part of a valid netlist. The Verilog HDL code generated by InterSynth can be used
as-is in the final ASIC design as InterSynth can be configured to not only include the
cell instantiations and interconnect logic but also additional support code in the HDL
output, such as connections of cell ports to ports of the generated module (for input
and output purposes or distributing global signals such as clock and reset). It is also
possible to embed configuration data for reconfigurable cells (ALUs, etc.) within the
InterSynth config bitstream. Inputs and outputs of the whole reconfigurable modules
are handled as special cell types and therefore are not explicitly drawn in Figs. 12.2
and 12.3. The automatically generated interconnect shown in Fig. 12.4 has only one
input and one output labeled IN[0] and OUT[0].

12.6 Evaluation of InterSynth

Two different application classes were used to evaluate InterSynth: digital filters
(see Sect. 12.6.1) and logic functions (see Sect. 12.6.2). For both an identical
interconnect configuration was used, which has two parallel trees of height three
(although with different connection types). The switches in the bottom two layers
have a degree of four and the top level (root) switch connects all switches of the
second layer. In order to create more flexible interconnects, an oversizing rule for
one additional connection to each switch to and from its parent switch was used.

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 215

Fig. 12.6 Filter topologies used as test netlists. Circles represent adders, squares represent delays
and triangles represent configurable constant factor multipliers

12.6.1 Filter Networks

Two instances of the four different digital filter topologies as shown in Fig. 12.6
were concatenated in all 16 possible combinations to build netlists of higher-order
filters. The cell types employed are (word-wide) adders, multipliers and flip-flops.
The Verilog code for this test cases can be found in Listings 12.1.

Test 1 From the pool of 16 netlists a random sample of n was selected and used
for the pre-silicon phase to optimize the interconnect. Then the post-silicon
phase was attempted with each of the 16 netlists. This test was performed
1,000 times each for n ∈ {1, . . . , 6}. The percentage of failed post-silicon
runs per post-silicon netlist and number of pre-silicon netlists is shown in
the center part of Table 12.1. It shows that increasing the number of example
netlists n in the pre-silicon phase results in less failed attempts in the post-
silicon phase. The average resource usage of the generated interconnect is
expressed with two figures: the number of bits of the configuration data and
the number of 2-to-1 MUXes (MUX2) required to build the interconnect.
Both numbers are normalized to the total number of cell ports. The bottom
part of Table 12.1 gives their mean for n ∈ {1, . . . , 6}. For the case of n = 1
pre-silicon netlist, the average number of MUX2 and configuration bits is
shown in the right part of the table for every pre-silicon netlist.

The test also shows that post-silicon implementation of the topology
fir4-df2. fir4-df2 fails in a significant fraction of the generated in-
terconnects, especially for n ≤ 2. This can be explained by the differences in
the fir4-df2 topology compared to the other three topologies in Fig. 12.6:
All multipliers in fir4-df2 are driven directly from the input (which
therefore has a fanout of five) and all delay outputs are connected to adder
inputs while in the other topologies delay outputs are connected to delay
or multiplier inputs. It is worth mentioning that fir4-df2.fir4-df2

216 J. Glaser and C. Wolf

Table 12.1 Filter network post-silicon errors and resource usage vs. number of pre-silicon netlists

Number of pre-silicon netlists Single

Topology 1 2 3 4 5 6 mux2 bits

biquad-df1.biquad-df1 2.4% 0.1% 0.0% 0.0% 0.0% 0.0% 5.74 4.07
biquad-df1.biquad-df2 1.8% 0.0% 0.0% 0.0% 0.0% 0.0% 5.80 4.08
biquad-df1.fir4-df1 2.9% 0.0% 0.0% 0.0% 0.0% 0.0% 5.75 4.07
biquad-df1.fir4-df2 2.5% 0.1% 0.0% 0.0% 0.0% 0.0% 5.85 4.11

biquad-df2.biquad-df1 2.2% 0.0% 0.0% 0.0% 0.0% 0.0% 5.81 4.11
biquad-df2.biquad-df2 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 5.73 4.06
biquad-df2.fir4-df1 3.5% 0.1% 0.0% 0.0% 0.0% 0.0% 5.77 4.08
biquad-df2.fir4-df2 3.0% 0.1% 0.0% 0.0% 0.0% 0.0% 5.80 4.11

fir4-df1.biquad-df1 13.4% 0.5% 0.0% 0.0% 0.0% 0.0% 5.88 4.13
fir4-df1.biquad-df2 3.4% 0.0% 0.0% 0.0% 0.0% 0.0% 5.77 4.06
fir4-df1.fir4-df1 14.7% 0.4% 0.0% 0.0% 0.0% 0.0% 5.86 4.11
fir4-df1.fir4-df2 4.1% 0.0% 0.0% 0.0% 0.0% 0.0% 5.85 4.12

fir4-df2.biquad-df1 6.0% 0.0% 0.0% 0.1% 0.0% 0.0% 5.86 4.13
fir4-df2.biquad-df2 1.7% 0.1% 0.0% 0.0% 0.0% 0.0% 5.77 4.08
fir4-df2.fir4-df1 4.4% 0.2% 0.0% 0.1% 0.0% 0.0% 5.83 4.10
fir4-df2.fir4-df2 34.5% 6.2% 1.6% 0.5% 0.2% 0.3% 5.86 4.13

avg. mux2/port 5.82 7.15 8.24 9.40 10.31 11.04
avg. bits/port 4.10 4.61 5.01 5.43 5.76 6.01

does not require more routing resources than the other topologies (see right
part of Table 12.1). It only requires a different interconnect because it is
composed of different patterns. Thus an interconnect that can implement
fir4-df2.fir4-df2 as well as the other 15 topologies needs more
resources than one that can only implement the 15 others.

Test 2 The resource usage of the pre-silicon results where compared to the resource
usage of an interconnect with a random, i.e., unoptimized cell-to-leaf-
mappings (mode_swap_cell_mappingsdisabled in all iterations of the
algorithm). The difference in the resources needed for these two cases is an
indicator of the optimization potential utilized by InterSynth to optimize the
interconnect for the application domain described by the example netlists.
When n = 4 pre-silicon netlists are used and no additional routing resources
are added, an average number of 3.0 (stddev 1.1) word-wide MUX2 per cell
port are required to implement the filter example. When the InterSynth cell
to leaf mapping is replaced with a random mapping and InterSynth is only
used for the node-to-cell-mappings, this number increases to 7.2 (stddev
0.6). This shows that InterSynth can drastically optimize interconnects for
scenarios like this one with a relatively large number of cell types compared
to the number of cells.

Test 3 The number of parallel interconnect trees was varied from one to four and
the degree of the switches was varied from two (binary tree) to six. For each

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 217

Table 12.2 Number of trees and degree of switches vs. interconnect resource usage and post-
silicon errors

Degree of interconnect trees Degree of interconnect trees

2 3 4 5 6 2 3 4 5 6

#
of

tr
ee

s 1 10.74 8.39 8.42 7.21 8.34 116 82 81 43 32
2 8.51 7.86 8.27 8.31 9.14 46 34 5 6 2
3 8.48 8.57 9.75 10.39 11.80 0 0 0 0 0
4 9.57 10.21 12.23 13.22 15.22 0 0 0 0 0

MUX2/port Post-silicon errors/1k

of these interconnect configurations, two random pre-silicon netlists where
used for optimization. The average resource utilization (number of MUX2)
for each configuration is given in the left part of Table 12.2.

Each optimized interconnect was used for 1,000 post-silicon netlists. The
number of errors (i.e. the post-silicon netlist could not be routed within the
interconnect) is shown in the right part of Table 12.2. For a single intercon-
nect tree, even with a high degree of switches, a large number of post-silicon
errors are present. Two parallel trees and a degree of four and above result
in an acceptable number of post-silicon errors. Therefore two parallel trees
with switches of degree four are a trade-off with resource utilization. More
parallel trees result in a large increase of resource utilization and might also
result in a wiring congestion on chip in larger scenarios.

12.6.2 Logic Networks

Random logic functions with six inputs and one output were generated and ABC
[1] was used to convert these logic functions to netlists of inverters, two-input AND
gates and two-input XOR gates. Of course such a problem would be better solved
by rather using lookup tables than configurable interconnects and basic logic gates,
but this is a simple method for generating a virtually unlimited pool of “similar”
large netlists. For this test InterSynth was configured with oversizing rules to add
10% plus 5 cells of each kind to compensate for the variation in the cell usage in the
generated netlists.

Test 1 For the pre-silicon phase, four random example netlists were used to
optimize the interconnect. The results from this pre-silicon phase were then
tested using 1,000 other random netlists (limited by the number of available
cells) for the post-silicon phase. This was performed 50 times. The post-
silicon run failed in only 0.05% of these 50,000 tests.

Test 2 An average number of 16.8 (stddev 0.8) MUX2 per cell port are required
to implement this testcase (with four pre-silicon netlists) regardless of
the question whether the cell-to-leaf-mapping was optimized or not (i.e.,

218 J. Glaser and C. Wolf

mode_swap_cell_mappingswas enable or disabled). This shows that
while it is possible to use InterSynth for large homogeneous networks
like this test case, it doesn’t have an advantage over distributing the cells
regularly.

12.7 Yosys

In order to provide a convinient way for design entry, a feature-rich HDL synthesis
tool with the name Yosys1 was implemented. Yosys is a generic Verilog synthesis
tool2 that can be used in a wide variety of application domains [14].

The Verilog code in Listings 12.1 was used to create the InterSynth netlists for
the filters used in the evaluation presented in the last section. Additional input files
for Yosys include a small synthesis script and an additional Verilog file that describe
how Yosys should map the RTL constructs to the coarse grain cell library.

Besides simple HDL synthesis Yosys can be used for a wide range of advanced
analyzes and circuit transformations. It can extract FSMs and perform various
operations on extracted FSMs, such as recoding and moving additional function
from logic networks into the FSM. In coarse-grain environments this can be used to
move control logic into a generic FSM cell, e.g. TR-FSM [6].

Yosys also supports technology mapping by finding subcircuit isomorphism,
allowing coarse-grain cells to implement richer logic function than the RTL cells
used by Yosys internally. Yosys also has limited support for frequent subcircuit
mining, easing the identification of possible coarse-grain cell types during the pre-
silicon design phase.

12.8 Conclusion

A design methodology for application-domain specific heterogeneous coarse-grain
reconfigurable logic architectures is presented. One or multiple such resulting
reconfigurable modules are integrated into an SoC to off-load its CPU. This results
in a large reduction of power consumption. Contrary to FPGAs, a coarse-grain and
heterogeneous architecture is used, which allows further reduction in power and
area.

In the pre-silicon phase, the application class for the reconfigurable module
is defined and specified by several example applications. These are synthesized
and analyzed to extract common logic structures as coarse-grain cells (including

1A left-recursive acronym for “Yosys Open Synthesis Suite”.
2VHDL support is in development as of this writing.

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 219

Listing 12.1 Verilog code for generating the filter netlists
module filter(input clk, input [31:0] in, output reg [31:0] out);

parameter type = 0;
parameter k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5;
reg [31:0] next_tmp [3:0], tmp [3:0];
integer i;
always @∗

case (type)
0: begin // biquad−df1

next_tmp[0] <= in; next_tmp[1] <= tmp[0];
next_tmp[2] <= out; next_tmp[3] <= tmp[2];
out <= k1∗in + k2∗tmp[0] + k3∗tmp[1] +

k4∗tmp[2] + k5∗tmp[3];
end
1: begin // biquad−df2

next_tmp[0] <= in + k1∗tmp[0] + k2∗tmp[1];
next_tmp[1] <= tmp[0];
out <= k3∗in + k4∗tmp[0] + k5∗tmp[1];

end
2: begin // fir4−df1

for (i = 0; i < 4; i = i+1)
next_tmp[i] <= i > 0 ? tmp[i−1] : in;

out <= k1∗in + k2∗tmp[0] + k3∗tmp[1] +
k4∗tmp[2] + k5∗tmp[3];

end
3: begin // fir4−df2

next_tmp[0] <= in∗k1;
next_tmp[1] <= in∗k2 + tmp[0];
next_tmp[2] <= in∗k3 + tmp[1];
next_tmp[3] <= in∗k4 + tmp[2];
out <= in∗k5 + tmp[3];

end
endcase

always @(posedge clk)
for (i = 0; i < 4; i = i+1)

tmp[i] <= next_tmp[i];
endmodule

module filter2(input clk, input [31:0] in, output reg [31:0] out);
parameter type = 0;
wire [31:0] tmp;
filter #(.type(type % 4))

F1 (.clk(clk), .in(in), .out(tmp));
filter #(.type(type / 4))

F2 (.clk(clk), .in(tmp), .out(out));
endmodule

module top;
genvar i;
generate for (i = 0; i < 16; i = i+1) begin:list

filter2 #(.type(i)) F ();
end endgenerate

endmodule

220 J. Glaser and C. Wolf

reconfigurable FSMs) and to build a cell library. The example application circuits
are transformed to only instantiate such coarse-grain cells.

The major part of this work presents an algorithm to merge these example
application netlists to a single reconfigurable module. It optimizes a tree structured
interconnect and the selection of coarse-grain cells which are able to implement
all example applications. Spending additional hardware resources even allows to
implement yet-unknown applications with the resulting silicon.

The evaluation of the algorithm was performed using digital filter topologies.
With only two example netlists and slight oversizing in the pre-silicon phase,
nearly all other example netlists could be realized in the post-silicon phase.
Additionally, a large optimization potential to keep the hardware resources limited
was demonstrated.

We propose improvements to InterSynth in the following areas: The routing
algorithm for the pre- and post-silicon phases can be improved, for example to
support routing of a single net in multiple trees.

The over-all optimization procedure can also be improved: As depicted in the
right part of Table 12.1, the hardware resources (MUX2) of the interconnect increase
when more pre-silicon netlists are used, even when all example netlists can be
routed. A consolidation step after the pre-silicon procedure would help reduce the
hardware resources in this cases.

InterSynth is a generic tool for creating interconnects using the procedure
described in this work. It is implemented in C++ and released as an Open Source
project at http://www.clifford.at/intersynth/. The scripts used to run the experiments
in Sect. 12.6 are included.

Yosys is a generic versatile tool for digital circuit synthesis. Besides its other
uses, it can be used as Verilog-frontend for InterSynth as well as for circuit analysis
in the pre-silicon and design phase. Is is also released as an Open Source project at
http://github.com/cliffordwolf/yosys.

Acknowledgements This work has been supported (in part) by the Austrian COMET K-project
ECV under contract no. 815105.

References

1. Berkeley Logic Synthesis and Verification Group: ABC: a system for sequential synthesis and
verification. [Mercurial checkout 13 February 2012], http://www.eecs.berkeley.edu/~alanmi/
abc/

2. Bhatnagar, H.: Advanced ASIC Chip Synthesis Using Synopsys Design Compiler, Physical
Compiler, and PrimeTime. Kluwer, Boston (2002)

3. Ferreira, R., Vendramini, J.G., Mucida, L., Pereira, M.M., Carro, L.: An FPGA-based
heterogeneous coarse-grained dynamically reconfigurable architecture. In: Proceedings of
the 14th International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), Taipei, Oct 2011, pp. 195–204

4. Glaser, J., Haase, J., Damm, M., Grimm, C.: Investigating power-reduction for a reconfigurable
sensor interface. In: Proceedings of Austrochip 2009, Graz, 7 Oct 2009

http://www.clifford.at/intersynth/
http://github.com/cliffordwolf/yosys
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

12 Design Methodology and Interconnect Synthesis for Reconfigurable Architectures 221

5. Glaser, J., Haase, J., Grimm, C.: Designing a reconfigurable architecture for ultra-low power
wireless sensors. In: Ghassemlooy, Z., Ng, W.P. (eds.) Proceedings of the Seventh IEEE, IET
International Symposium on Communication Systems, Networks and Digital Signal Processing
(CSNDSP), Northumbria University, Newcastle upon Tyne, 21–23 July 2010, pp. 343–347

6. Glaser, J., Damm, M., Haase, J., Grimm, C.: TR-FSM: transition-based reconfigurable finite
state machine. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 4(3), 23:1–23:14 (2011)

7. Glaser, J., Gravogl, K., Haase, J., Grimm, C.: A reconfigurable architecture for ultra-low power
wireless sensors. Mediterr. J. Electron. Commun. (MEDJEC) 7(3), 255–266 (2011)

8. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst.
Tech. J. 49(1), 291–307 (1970)

9. Lemieux, G., Lee, E., Tom, M., Yu, A.: Directional and single-driver wires in FPGA
interconnect. In: Proceedings of the IEEE International Conference on Field-Programmable
Technology, Brisbane, pp. 41–48. IEEE, (2004)

10. Marrakchi, Z., Mrabet, H., Farooq, U., Mehrez, H.: FPGA interconnect topologies exploration.
Int. J. Reconfigurable Comput. 2009, 1–13 (2009)

11. Mehta, G., Stander, J., Lucas, J., Hoare, R.R., Hunsaker, B., Jones, A.K.: A low-energy
reconfigurable fabric for the SuperCISC architecture. J. Low Power Electron. 2(2), 148–164
(2006)

12. Ou, J., Muhammad, F., Haase, J., Grimm, C.: A technique for the identification of
reconfigurable resources of flexible communication systems. In: NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), San Diego, June 2011, pp. 256–263

13. Wolf, C., Glaser, J., Schupfer, F., Haase, J., Grimm, C.: Example-driven interconnect synthesis
for heterogeneous coarse-grain reconfigurable logic. In: Forum on Specification and Design
Languages (FDL), Vienna, 18–20 Sept 2012, pp. 194–201

14. Wolf, C., Glaser, J.: Yosys – A Free Verilog Synthesis Suite. Submitted to: Proceedings of the
21st Austrian Workshop on Microelectronics (Austrochip), Linz, Austria, 10 Oct 2013

15. ul Abdin, Z., Svensson, B.: Evolution in architectures and programming methodologies of
coarse-grained reconfigurable computing. Microprocess. Microsyst. 33(3), 161–178 (2009)

	Preface
	Contents
	Contributors
	1 Formal Plausibility Checks for Environment Constraints
	1.1 Introduction
	1.2 Circuit Models
	1.3 Properties of Circuits
	1.4 Environment Constraints
	1.4.1 Implementable Constraints
	1.4.2 Composability

	1.5 Plausibility Checks in Coverage Analysis for Property Sets
	1.5.1 Complete Interval Property Checking (C-IPC)
	1.5.2 Plausibility Checks

	1.6 Experimental Results
	1.7 Conclusions
	References

	2 Efficient Refinement Strategy Exploiting Component Properties in a CEGAR Process
	2.1 Introduction
	2.2 Our Framework
	2.2.1 Concrete System Definition
	2.2.2 Abstraction Definition
	2.2.3 Initial Abstraction

	2.3 Refinement
	2.3.1 Properties of Good Refinement
	2.3.2 Negation of the Counterexample
	2.3.2.1 Step 1: Build the Structure of the AKS
	2.3.2.2 Step 2: Expand State Configurations Representing the Negation of a Concrete Configuration
	2.3.2.3 Reduction of the Negation of the Counterexample AKS

	2.3.3 Ordering of Properties
	2.3.3.1 Example

	2.3.4 Filtering Properties

	2.4 Experimental Results
	2.5 Negation of the Counterexample as a Complementary Strategy
	2.6 Conclusion and Future Works
	References

	3 Formal Specification Level
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Unified Modeling Language
	3.2.2 Natural Language Processing
	3.2.2.1 Word Sense Disambiguation
	3.2.2.2 Constituency Grammars
	3.2.2.3 Dependency Grammars

	3.3 Formal Specification Level
	3.4 Mapping Natural Language Specifications to the Formal Specification Level
	3.4.1 Determine the Structure of the Design
	3.4.2 Determine the Properties of the Design

	3.5 Checking Correctness at the Formal Specification Level
	3.5.1 Verification of Static Aspects
	3.5.2 Invariant Removal
	3.5.3 Verification of Dynamic Aspects

	3.6 Mapping from Formal Specification Level to the Electronic System Level
	3.7 Tool Support
	3.8 Conclusion
	References

	4 TLM POWER3: Power Estimation Methodologyfor SystemC TLM 2.0
	4.1 Introduction
	4.2 Our Approach: TLM POWER3
	4.2.1 Extended Generic Payload: Distance+Hamming
	4.2.2 Output Reports

	4.3 Performance
	4.4 Accuracy
	4.5 Conclusion
	References

	5 SCandal: SystemC Analysis for Nondeterminism Anomalies
	5.1 Introduction
	5.2 SystemC Simulation Concept
	5.3 Related Work
	5.4 Process Order Dependency Test
	5.4.1 Behavior Observation
	5.4.1.1 Standard Output
	5.4.1.2 Heap
	5.4.1.3 LP Activations
	5.4.1.4 Random Number Generator (RNG)
	5.4.1.5 User-Provided

	5.4.2 Detectable Anomalies
	5.4.3 Controlled Scheduling
	5.4.4 PEO Dependency Analysis
	Stage 1: Reference Generation
	Stage 2: Anomaly Detection
	Stage 3: Causation Delta-Cycle Detection
	Stage 4: Dependent Processes Identification

	5.5 Experiments and Case Studies
	5.5.1 Synthetic Tests
	5.5.2 SoClib
	5.5.3 Parallel Simulation of Mixed-Level MulticorePlatform

	5.6 Conclusion and Outlook
	References

	6 A Design and Verification Methodology for Mixed-Signal Systems Using SystemC-AMS
	6.1 Introduction
	6.2 Unified Platform Architecture
	6.2.1 SystemC AMS Extensions
	6.2.2 CHAMS Sizing and Biasing Engine
	6.2.2.1 Sizing & Biasing Operators
	6.2.2.2 Graph Representation
	6.2.2.3 Simulator Encapsulation

	6.3 Proposed Levels of Abstraction
	6.4 Implementation of the Unified Platform
	6.4.1 Comparator TDF Module
	6.4.2 end_of_elaboration() function
	6.4.3 initialize() function
	6.4.4 processing() function

	6.5 Transient Analysis Method
	6.6 Experimental Results
	6.6.1 Sizing and Biasing Procedure of the Two-StageComparator
	6.6.2 Simulation Results of a Two-Stage Pipeline ADC

	6.7 Conclusion
	References

	7 Configurable Load Emulation Using FPGA and Power Amplifiers for Automotive Power ICs
	7.1 Introduction
	7.2 Related Work
	7.3 First Experimental Setup
	7.4 Load Modelling for Real-Time Evaluation
	7.5 Evaluation of Lamp Model
	7.6 Experimental Results
	7.7 Conclusion and Outlook
	References

	8 Model Based Design of Distributed Embedded Cyber Physical Systems
	8.1 Introduction
	8.1.1 Model-Based Design Approach
	8.1.2 Multi-domain Simulation

	8.2 Previous Work
	8.3 Methodology
	8.3.1 Requirements
	8.3.2 Functional Model
	8.3.3 Hardware/Software Co-design
	8.3.4 Deployment

	8.4 Models Implementation
	8.4.1 Functional Node Model
	8.4.2 Embedded Platform Model
	8.4.3 Propagation Model
	8.4.4 Network Protocol Stack
	8.4.5 Environment Interaction

	8.5 Simulating the Energy Management Application
	8.6 Conclusion and Future Work
	References

	9 Model-Driven Methodology for the Developmentof Multi-level Executable Environments
	9.1 Introduction
	9.2 Related and Previous Work
	9.3 Environment Modelling Methodology
	9.3.1 Environment Structure and Connection to the System
	9.3.1.1 Modelling the Behaviour of the Environment: One Scenario

	9.3.2 Levels of Abstraction in the Specificationof Environment Behaviour
	9.3.3 Modeling Several Scenarios

	9.4 Toolset
	9.4.1 SystemC Generation
	9.4.2 File Structure Generation

	9.5 SystemC Simulation with the System Performance Model
	9.6 Example
	9.7 Conclusions
	9.8 Future Work
	References

	10 GREEN HOME: The Concept and Study of Grid Responsiveness
	10.1 Introduction
	10.2 Home Gateway Functions
	10.3 Demand Response
	10.4 Grid Responsiveness Concept
	10.4.1 The Day-Ahead Exchange
	10.4.2 The Intra-day Exchange
	10.4.3 User Responsiveness

	10.5 The Model of Home Activities
	10.6 Forecasting of the Uncertainty Level
	10.7 The Test Bed
	10.8 Conclusions
	References

	11 Polynomial Metamodel-Based Fast Optimizationof Nanoscale PLL Components
	11.1 Introduction
	11.2 Proposed Novel Fast Analog/Mixed-Signal Design Flow
	11.3 Related Prior Research
	11.4 Design of PLL Component Circuits
	11.4.1 Phase Detector
	11.4.2 Loop Filter and Charge Pump
	11.4.3 LC Voltage Controlled Oscillator
	11.4.4 Frequency Divider

	11.5 Proposed Approach for Generation of Fast and Layout-Accurate Metamodels
	11.5.1 Data Sampling
	11.5.2 Data Centering
	11.5.3 Stepwise Regression
	11.5.4 Verification of the Metamodel

	11.6 Proposed Metamodel Based Design Optimization
	11.7 Experimental Results
	11.8 Summary, Conclusions, and Future Direction of Research
	References

	12 Methodology and Example-Driven Interconnect Synthesis for Designing Heterogeneous Coarse-Grain Reconfigurable Architectures
	12.1 Introduction
	12.2 Development of Reconfigurable Hardware
	12.2.1 Pre-silicon Phase
	12.2.2 Post-silicon Phase

	12.3 Design Methodology
	12.3.1 Specification
	12.3.2 Application Analysis
	12.3.3 Merge
	12.3.4 Implementation
	12.3.5 Verification
	12.3.6 Post-silicon Phase
	12.3.7 Tools

	12.4 Interconnect for Reconfigurable Modules
	12.4.1 Common Topologies
	12.4.2 A Tree Topology
	12.4.3 Analysis of the Tree Topology

	12.5 Interconnect Synthesis
	12.5.1 Optimization Algorithm
	12.5.2 Implementation Details

	12.6 Evaluation of InterSynth
	12.6.1 Filter Networks
	12.6.2 Logic Networks

	12.7 Yosys
	12.8 Conclusion
	References

