
Chapter 22
In-Plane Free Vibration and Stability of High
Speed Rotating Annular Disks and Rings

Hamid R. Hamidzadeh and Ehsan Sarfaraz

Abstract Analytical method is presented for the determination of free vibration
characteristics of high speed viscoelastic rotating disks. In the development of
this analytical solution, two-dimensional elastodynamic theory is employed and
the viscoelastic material for the medium is allowed by assuming complex elastic
moduli. The general governing equations of motion are derived and a solution for
a single rotating disk with different boundary conditions is developed for a wide
range of rotating speeds and any radius ratios, such as those for solid disks or
thin rings. The proposed solution is used to investigate the influences of hysteretic
material damping on dimensionless natural frequencies and modal loss factors for
the rotating disks. Furthermore, the solution is expanded to consider the effect of
adding disk segment with different material on the inner or outer sides of a disk
on the natural frequencies and critical speeds of the equivalent single disk. The
dimensionless results for these cases are presented for a wide range of rotational
speeds.

Keywords In-plane free vibration • Plane stress • Annular disk • Rotating
disks • Rotating rings • Natural frequency • Modal loss factor • Compound
disks • Discontinuous medium • Critical speed

22.1 Introduction

Due to immense potential applications of the flexible thin rotating disks, the
significance of their vibration characteristics has been emphasized in recent years.
Rotating disks are the principal components in various rotating machinery. Their

H.R. Hamidzadeh (�) • E. Sarfaraz
Department of Mechanical and Manufacturing Engineering,
Tennessee State University, Nashville, TN 37209, USA
e-mail: HHAMIDZADEH@Tnstate.edu; esarfara@my.tnstate.edu

J.A.T. Machado et al. (eds.), Discontinuity and Complexity in Nonlinear Physical
Systems, Nonlinear Systems and Complexity 6, DOI 10.1007/978-3-319-01411-1__22,
© Springer International Publishing Switzerland 2014

389

mailto:HHAMIDZADEH@Tnstate.edu
mailto:esarfara@my.tnstate.edu


390 H.R. Hamidzadeh and E. Sarfaraz

applications can vary from space structures to torsional disk dampers and from
turbine rotors to computer storage devices and brake systems. It is known that
dynamic response and stability of rotating disk depends on its rotational speed. It
should be noted that to design a rotating disk, the knowledge of modal vibrations
and critical speeds are essential.

Vibration of rotating disk can occur as two types, in-plane and out-of-plane
bending vibration. In-plane vibration occurs in the radial direction and can be
coupled with the causing torsional vibration. Torsional vibration can occur in the
disk surface angular displacement only which can vary with the radius. Out-of-
plane bending vibration, the so-called transverse vibration, occurs on the direction
occurring perpendicular to the plane of rotation.

Depending on the amplitude of vibrations, the established publications have used
linear or nonlinear approaches. In the linear methods, the effect of higher-order
terms in the strain–displacement relations is neglected. In the nonlinear theory of
vibration, the effects of higher-order strain terms are taken into account and for most
cases they have given approximate solutions. Based on both of these approaches,
disk deflection will become unbounded at critical speeds corresponding to flutter or
and divergence instabilities. In fact, in these unstable cases, the disk deflection is
increased beyond the acceptable range of linear modal, and it is necessary to use
nonlinear analysis for better predictions of the dynamics of spinning disks.

While the linear and nonlinear transverse vibrations of rotating disk have
received higher attention; nevertheless, knowledge of the in-plane vibration of
rotating disks is also essential for design of rotating disks. In practice, the problem
of rotating disks is far more relevant to applications such as computer hard disks,
turbine rotors, and circular saw blades. It should be noted that the vibration analysis
of rotating disks has more complexities than that of a stationary disk subject to a
rotating load. This complexity is due to the Coriolis and centripetal acceleration
terms associated with the relative motion of the spinning disk.

The problems of in-plane vibration of rotating disks have been addressed by a
few investigators. Bhuta and Jones [1] have presented a solution to the symmetric
in-plane vibrations of a thin rotating circular disk for some specific modes.
Burdess et al. [2] presented generalized formulation to consider asymmetric in-plane
vibrations, while the effect of rotational speed on forward and backward traveling
wave was discussed only for the mode with two nodal diameters. In their study, the
equations of motion of a thin rotating disk were derived and a solution was achieved.
Moreover, they studied free and forced vibrations and presented their results for the
stability and resonant behavior of the disk. Before Chen and Jhu [3], in most of
previous studies, the disk was assumed to be full. Chen and Jhu [3] determined the
free in-plane vibration of a thin spinning annular disk and investigated the effects of
clamping ratio on the natural frequencies and stability of disks. They extended their
analysis to study the divergence instability of spinning annular disks clamped at the
inner edge and free at the outer boundary. They also considered the effect of a radius
ratio on the natural frequencies and critical speeds of the disk. Chen and Jhu [4]
derived an analytical solution for the in-plane stress and displacement distributions
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in a spinning annular disk under stationary edge loads. Their numerical results
showed that as the rotational speed of the disk approaches zero, the in-plane stresses
and displacements are shown analytically to recover the solution derived through
the Airy stress function in the classical theory of linear elasticity. Hamidzadeh and
Dehghani [5] investigated the linear in-plane vibration of an elastic rotating disk and
studied the effect of rotational speed and radius ratio on natural frequency and elastic
stability of fixed–free vibration rotating disks. Hamidzadeh [6] also developed an
analytical solution for in-plane vibration of spinning rings. Hamidzadeh’s previous
solution for the rotating disk was extended to investigate an analytical method for the
determination of modal vibration of high speed double-segment compound rotating
disks [7]. More specifically, a systematic approach for a compound rotating disk
based on an established solution for linear in-plane vibration of each segment was
developed by satisfying the displacements and stresses compatibilities. He also
presented variation of the dimension natural frequencies for a number of modes
versus non-dimensional speed of rotation for a fixed–free annular disk for the non-
dimensional speeds ranging from 0 to 1.5 [8]. Deshpande and Mote [9] studied
the stability of a spinning thin disk using a nonlinear strain in order to account
changes in stiffness of the disk due to rotation. Their study suggested that the critical
speeds were different using the linear strain assumption. Sarfaraz and Hamidzadeh
[10] studied the effect of material hysteretic damping of the disk on the natural
frequencies and mode shapes of a fixed–free rotating disk by considering constant
complex elastic moduli.

This research report represents the linear in-plane free vibration of a thin
viscoelastic annular rotating disk. In the development of the analytical solution,
two-dimensional elastodynamic theory is employed and the viscoelastic material
for the medium is allowed by assuming complex elastic moduli. The mathematical
model is reduced to a wave propagation problem and time-dependent and time-
independent modes are considered. The general governing equations of motion are
derived by implementing plane stress theory. The natural frequencies and respective
modal displacements and stresses are achieved by satisfying the inner and outer
boundary conditions. The non-dimensional natural frequencies and modal loss
factors for different boundary conditions are computed and presented for several
modes, specific radius ratios, and material loss factors. Also, the critical speeds for
rotating disks and rings are determined. Furthermore, the influences of embedded
disk segments with a different material at one of the edges of the main disk on modal
parameters are investigated.

22.2 Governing Equations

The material of the disk is assumed to be homogeneous, viscoelastic, and isotropic.
The disk is rotating at a constant angular speed without any acceleration. The two-
dimensional theory of elasticity is applied to derive the stress and strain in polar
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Fig. 22.1 (a) A typical rotating annular disk, (b) geometry of an annual disk in polar coordinate

coordinates. These relationships are then implemented into the dynamic equilibrium
equations to derive the governing equations of motion. Figure 22.1 shows the
radial and tangential displacements of a point in polar coordinates (r, �). As it was
presented by Hamidzadeh [8], equations of motion in terms of dilatation � and
elastic rotation  or the freely rotating annular disk are given by:

c21r2� � R�C !2�C 2! P D �2!2
c22r2 � R C !2 � 2! P� D 0

)
(22.1)
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The functions u and v are radial and tangential displacements. ¤, E*, and G* are
Poisson ratio and complex elastic and shear moduli for the viscoelastic medium.
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22.3 Solution to Governing Equation

The following solutions can be assumed for Eq. (22.1):

� D ı0.r/C†�n.r/e
i.n�Cpt/;

 D †i n.r/e
i.n�Cpt/:

)
(22.3)

where �n and  n are time-dependent functions and ı0(r) is a time-independent
function. Also,� is time-dependent dilatation, is time-dependent elastic rotation,
n is any integer number, and p is the frequency of vibration. In the time-independent
part, ı0(r) is only a function of r so the solution of that can be given by
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The governing equation for time dependence is
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)
: (22.5)

The time-dependent equations have a significant role in determining the natural
frequencies and mode shapes of the system. To continue with derivation of the final
solution, it is convenient to introduce the following dimensionless variables:
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(22.6)

where �1 and �2 are non-dimensional speed and non-dimensional frequency.
Substituting modal expression from Eq. (22.3) into governing Eq. (22.1), the two
different ratios of modal elastic rotation to modal dilatation are expressed by the
following equations:
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By using the Bessel function of the first and second kind, the solutions to the
wave operators�n and  n are obtained:
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22.4 Modal Displacements and Stresses

The radial and tangential displacements in terms of time can be written by the
following equations:
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)
(22.10)

Substituting Eq. (22.9) and these displacements into equations of motions and
rearranging, the result yields the modal solution for the non-dimensional radial and
tangential displacements:
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where prime and double prime (0 and 00) represent first and second derivatives of the
function and m1

* and m1
* can be presented by:
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Similarly, the modal radial and shear stresses can be expressed by the following
relations:
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The non-dimensional modal radial and shear stresses can be obtained by
substituting from Eqs. (22.9) and (22.11) based on stress–strain relation, and after
simplifications they are presented by
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where
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Using Eqs. (22.11) and (22.14), the modal displacements and stresses at any
radius for each part of an annular disk can be expressed in the following form:
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where

ŒAn.r/
 D

2
664
a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

3
775 : (22.17)

Elements of An(r) are in terms of material properties and Bessel functions of first
and second kinds. These elements are presented in the above-mentioned paper [8].

22.5 Natural Frequency Equation

To determine the modal parameters, the boundary conditions must be satisfied.
For example, for the fixed–free boundary conditions, it is required that the modal
displacements at the inner edge and the modal radial and shear stresses at the outer
edge must be zero. By implementing the boundary conditions in Eq. (22.16) and
combining them, displacements and stresses at the boundaries are related in the
following form:
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Considering that the matrix [An(b)][An(a)]� 1 is presented in the following form:
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Then Eq. (22.18) can be reduced to the following expression in terms of the inner
boundary stresses:
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In order to obtain a nonzero solution for the stresses, the determinant of the
matrix in Eq. (22.20) must be zero. This results in the frequency equation for the
system: ˇ̌̌

ˇd31 d32d41 d41

ˇ̌̌
ˇ D 0 (22.21)
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The above equation is a function of circumferential wave number n, and other
dimensionless parameters including �1. For given values of n, a/b,¤,�1, and
material loss factor �m there are infinite real values for�2 that satisfy this equation.
It should be noted that the dimensionless frequencies in the rotating coordinate
system are given by the absolute values of �2:

�R D j�2j (22.22)

However, for viscoelastic disk, since modulus of elasticity for damping material
is complex, then �2 in Eq. (22.22) would be complex. In order to obtain the
modal loss factor and the natural frequencies for the viscoelastic rotating disks, the
following procedures are implemented:
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where �L is modal loss factor and is obtained in following form:

�L D tan 2˛ (22.24)

and the natural frequencies are given by:

�2 D
vuut x2 C y2q

1C �2L

: (22.25)

For mode shapes n> 0, if the direction of oscillating wave is the same as that of
rotation of the disk (p> 0) in rotating coordinates, the wave is defined as forward
wave in rotating coordinates. If the direction of oscillating wave is opposite to that of
rotation of the disk (p< 0) in rotating coordinates, the wave is defined as backward
wave in rotating coordinates. For mode shapes n< 0, if the direction of oscillating
wave is the same as that of rotation of the disk (pF > 0) in fixed coordinates, the wave
is defined as forward wave in fixed coordinates. If the direction of oscillating wave is
opposite to that of rotation of the disk (pF < 0) in fixed coordinates, then the wave
defined as backward wave in fixed coordinates. Thus, the relation between natural
frequency in fixed coordinates (pF) and rotating coordinates (p) and the relation
between dimensionless natural frequencies in fixed and rotating coordinate system
can be presented by the following equations:

�F D j�2 C n�1j for �2 > 0 (22.26a)

�F D j�2 � n�1j for �2 < 0: (22.26b)
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Mode shapes for the in-plane free vibration of a rotating disk can be identified
by the number of circular node numbers (m) and the number of nodal diameters (n).
It should be noted that the lower modes (m D 0, 1, 2, 3 and n D 0, 1, 2, 3) have been
found to be the dominant modes of vibration for vibration of the rotating disks.

22.6 Natural Frequencies and Critical Speeds

The lowest frequency at which the disk vibrates freely is called the fundamental
mode. When the disk is excited at one of its resonance frequencies, respective nodal
circle(s) and nodal diameter(s) appear. To determine the natural frequency of the
system, the boundary conditions must be satisfied both at the inner radius of the
disk (r D a) and the outer radius of disk (r D b). Considering that for the fixed–
free rotating disks the modal displacements are zero at the inner radius and modal
stresses are zero at the outer radius, then non-dimensional natural frequencies can be
determined for any particular non-dimensional rotating speed and a given geometry
by using Eq. (22.21).

The variations of the dimensionless natural frequencies of a thin annular disk
with Poisson ratio of 0.3 and no material damping in the fixed coordinate for a
number of modes are presented here. The boundary conditions considered are free–
free, fixed–free, and free–fixed. It should be noted that critical speed for rotating
disk is the speed of rotation at which the resonant frequency is zero. Needless to say
that in general the annular disk has infinite number of natural frequencies with any
combinations of positive integer values for n or m. Thus there are infinite possible
numbers of critical speeds for any rotating disk. In this section, the results of the
proposed solution are compared with the available data [2, 9]. The comparisons
demonstrated excellent agreement among the present result and the available data.
This comparison is depicted in Fig. 22.2.

Figure 22.3 presents the variation of dimensionless critical speeds for different
modes of free–free boundary conditions versus radius ratios of the rotating disks.
Illustrated results show that as the radius ratio increases, the critical speed decreases.
In addition, for mode numbers of n D 2 and higher, the critical speed reduces to
zero where radius ratio approaches to one. Figure 22.4 demonstrates the variation
of dimensionless critical speed for fixed–free rotating disk versus radius ratio for
different wave numbers of n. As depicted, since the disk is fixed at the inner and
free at the outer radius, as the radius ratio increases, the critical speed increases, and
for n D 0, as the radius ratio approaches zero, the critical speed approaches to zero.

Figure 22.5 shows the variations of dimensionless natural frequencies that are
experienced in fixed coordinates for free–free conditions versus dimensionless
speed for different modes (m, n) and a radius ratio a/b D 0.1. Figures 22.6 and 22.7
show the same results for disk with similar geometry for two different boundary
conditions of fixed–free and free–fixed. The presented results are extended for a
wide range of dimensionless rotational speed well beyond the speeds previously
presented in the established publications. Please note that labels b and f refer to the
backward and forward waves in the presented figures.
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22.7 The Modal Loss Factor of Viscoelastic Rotating Disk

The main objective of this section is to provide an accurate method for predicting
the natural frequencies and modal loss factors for in-plane vibration of a rotating
annular disk made of viscoelastic material for a specified boundary conditions. The
material damping considered is based on typical hysteretic damping with complex
elastic moduli. The viscoelastic material can provide the needed structure stiffness
with possibility of dissipating vibration energy. To determine the influence of mate-
rial loss factor on the non-dimensional natural frequencies and their corresponding
modal loss factors, computed results for a certain radius ratio of a/b, Poisson’s ratio
of 0.3, and wide range of material loss factors are provided in this section.

Figures 22.8, 22.9, and 22.10 show variation of dimensionless modal loss factors
versus dimensionless speed for a fixed–free viscoelastic rotating annular disk with a
radius ratio 0.2 and different wave numbers. The presented results are for hysteretic
damping with material loss factors of 0.05, 0.1, 0.3, 0.5, and 0.7. As shown, each
curve presented in Fig. 22.11 depict the effect of different material loss factors on
the non-dimensional natural frequencies for the mode associated with m D 2 and
n D 2. It could be observed that by increasing wave number of n, modal loss factors
are decreased.
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22.8 Natural Frequencies of Rotating Rings

Vibration abatement and structural stability in high speed rotating rings is one of
the most prevalent problems in engineering practice. An important step in the study
of these rotating structural components is the evaluation of the modal parameters
such as mode shapes, natural frequencies, and critical speeds. This information
has immense practical importance when designing for these components. It is
known that in-plane motion of a point in the medium is combination of radial and
circumferential displacements, and the natural frequencies depend on the rotational
speed. The literature on dynamic response of rotating rings is mainly restricted to
the application of shell or curved beam theories. The ring-like components is of
great interest in mechanical systems. For the in-plane vibration of rings, they can be
modeled by annular disks with radius ratios very close to one. Thus the general
governing equation and natural frequency equation for the rotating annular disk
are also valid to determine all the model parameters for ring when its boundary
conditions are satisfied. Figures 22.12 and 22.13 show the variation of dimensionless
natural frequencies in fixed coordinate versus dimensionless speed of a ring with
radius ratio of 0.9 for two different boundary conditions of free–free and fixed–free
and different wave numbers of n D 0, 1, 2, and 3 and m D 0.
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22.9 Effect of Embedded Different Material
on Natural Frequencies

This section presents non-dimensional natural frequencies versus dimensionless
rotating speeds for compound rotating annular disks with added disk segments with
different materials at the inner or outer edge of the main disk. Figure 22.14 illustrates
small embedded segments of higher stiffness and density at one of the edges of
the rotating disk. Computation was performed to determine the effect of an added
disk segment on the dimensionless natural frequency at different rotating speeds.
This was done by considering the general solution for stresses and displacement
at inner and outer edges of the main disk and the added disk segment using
Eq. (22.14). The frequency equation for each mode can be determined by satisfying
the compatibility of stresses and displacements at the interface between the main and
the added disk segment as well as the boundary conditions of the compound disk.
Analysis was conducted for three cases with the same inner to outer radius ratio of
0.2 and fixed–free boundary conditions. In case I, the disk is a single disk made of
aluminum. Case II is for an aluminum main disk with added steel disk segment at the
inner edge, and case III is an aluminum main disk with added steel disk segment at
the outer edge. Non-dimensional frequencies in rotating coordinates for these three
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Fig. 22.14 Case (a): The disk has small segment of higher mass around of outer edge. Case (b):
The disk has small segment of higher mass around of inner side

cases for a wide range of dimensionless rotating speeds and for t1 D (b � a)/c D 0.05
and t2 D (c � b)/c D 0.05 are illustrated in Fig. 22.15a.

Similar results for t1 D t2 D 0.15 are shown in Fig. 22.15b. The presented results
are for n D 0, and m D 0, 1, 2, 3, and 4. The modulus of elasticity, mass density,
and Poisson’s ratio for aluminum disk and steel are assumed to be (180 GPa,
7,700 kg/m3, and 0.305) and (69 GPa, 2,700 kg/m3, and 0.335), respectively.
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22.10 Conclusion

In this research report, an analytical method has been developed to determine
the natural frequency and critical speed for in-plane vibration of a homogeneous,
isotropic viscoelastic rotating disk for a wide range of rotational speeds. The modal
vibration characteristics of in-plane vibration for annular rotating disks are studied
for different types of boundary conditions, i.e., free–free, fixed–free, and free–
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fixed. The proposed method of solution in this investigation can be effectively
applied to determine the modal vibration characteristics of a high speed rotating
annular disk. The provided method is capable of computing dimensionless natural
frequencies for all modes at any rotating speeds. Furthermore, modal loss factor
and stability of a rotating disk with hysteretic material damping ratio have been
computed by considering complex natural frequencies. It was observed that the
effect of rotational speed on natural frequency depended on the radius ratio, the
mode of vibration, Poisson’s ratio, stiffness, mass density of the material, and
material damping. The presented solution is also capable of determining modal
information for the in-plane vibration of rings by considering the radius ratio of
the ring, which is slightly less than 1. Moreover, it was observed that a small
segment of a material of higher density and elasticity modulus attached around
the inner side of rotating annular disk induced higher natural frequencies and
promotes a better dynamic stability for a disk. The presented results can provide
a guideline to assist designers by choosing appropriate geometry and material
properties to avoid critical speeds and possible resonances for obtaining desired
operating speed.
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