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Preface

This edited book is selected from International Conference on Nonlinear Science
and Complexity, held at Budapest, Hungary, during August 6–11, 2012. The aims
of this edited book are to present the new results in the fundamental and frontier
theories and techniques in science and technology, and to stimulate more research
interest in the community of nonlinear science and complexity. This is the fourth of
a series of events held during the last years reflecting the progress in this challenging
area. The first conference on Nonlinear Science and Complexity was held in 2006
at Beijing, China. The second conference was held in 2008 at Porto, Portugal. The
third conference was held in 2010 at Ankara, Turkey. The edited book included 24
chapters selected and extended from 60 accepted papers in NSC 2012 after peer-
review. Presented are the following four issues:

1. Fractional dynamics and nonlinearity
2. Chaos and complexity
3. Discontinuous dynamics
4. Engineering and financial nonlinearity

In the first topic, eight chapters present Lie group analysis, fractional dynamical
systems and control. The second topic includes six papers on stability, bifurcation,
and chaos in nonlinear dynamics. Discontinuous dynamics constitutes the third topic
and includes four chapters presenting impact vibro-dynamical systems and chaos in
piecewise linear systems. The fourth topic presents six chapters in engineering and
financial nonlinearity.

Herein, editors would like to thank authors and reviewers to support the projects.
The results presented in this edited book will constitute an important contribution
for the progress in scientific arena of nonlinear science and complexity.

Porto, Portugal J. A. Tenreiro Machado
Ankara, Turkey Dumitru Baleanu
Edwardsville, IL, USA Albert C. J. Luo
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Part I
Fractional Dynamics and Nonlinearity



Chapter 1
Nonlinear Self-Adjointness
for some Generalized KdV Equations

M.L. Gandarias and M. Rosa

Abstract The new concepts of self-adjoint equations formulated in Gandarias
(J Phys A: Math Theor 44:262001, 2011) and Ibragimov (J Phys A: Math Theor
44:432002, 2011) are applied to some classes of third order equations. Then, from
Ibragimov’s theorem on conservation laws, conservation laws for two generalized
equations of KdV type and a potential Burgers equation are established.

Keywords Self-adjointness • Conservation laws • Lie symmetries

1.1 Introduction

The classical KdV equation arises in various physical contexts and it models weakly
nonlinear unidirectional long waves. A more complicated equation is obtained if one
allows the appearance of higher-order terms. This equation is non-integrable but still
admits some special wave solutions [16]. This equation,

ut C kux C ˛uux C ˇuxxx C ˛2�1u2ux C ˛ˇ.�2uuxxx C �3uxuxx/ D 0 (1.1)

which will be referred to as a generalized KdV equation, was studied in [3] by
Fokas, who presented a local transformation connecting it with an integrable partial
differential equation (PDE). The higher-order wave equations of KdV type model
strongly nonlinear long wavelength and short amplitude waves. It is for the reason
that the strongly nonlinear character and integrability of these equations attract many
researchers to study them. In [19], for some special sets of parameters, the authors
derived some analytical expressions for solitary wave solutions and they carried

M.L. Gandarias (�) • M. Rosa
Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
e-mail: mariluz.gandarias@uca.es; maria.rosa@uca.es

J.A.T. Machado et al. (eds.), Discontinuity and Complexity in Nonlinear Physical
Systems, Nonlinear Systems and Complexity 6, DOI 10.1007/978-3-319-01411-1__1,
© Springer International Publishing Switzerland 2014
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4 M.L. Gandarias and M. Rosa

out a detailed numerical study of these solutions using a Fourier pseudospectral
method combined with a finite-difference scheme. The integral bifurcation method
was used in [15] to study (1.1) and some new travelling wave solutions with singular
or nonsingular character were obtained for some special sets of parameters. In [16],
Marinakis considered as well the third order approximation

ut C kux C ˛uux C ˇuxxx C ˛2�1u
2ux C ˛ˇ.�2uuxxx C �3uxuxx/

C˛3�4u
3ux C ˛2ˇ.�5u

2uxxx C �6uuxuxx C �7u
3
x/ D 0: (1.2)

Equation (1.2) is equivalent to an integrable equation recently studied in [17] and the
study in [16] reveals two integrable cases for (1.2). After some changes of variables
for particular values of the parameters, (1.2) is transformed into

ut C u2ux C 4

9
u3x � uuxuxx C u2uxxx D 0 (1.3)

Recently Marinakis proved that (1.3) is integrable.
In [6] (see also [5]), a general theorem on conservation laws for arbitrary differential
equations which do not require the existence of Lagrangians has been proved. This
new theorem is based on the concept of adjoint equations for nonlinear equations.
There are many equations with physical significance that are not self-adjoint.
Therefore, one cannot eliminate the nonlocal variables from conservation laws of
these equations by setting v D u. In [7], Ibragimov generalized the concept of
self-adjoint equations by introducing the definition of quasi-self-adjoint equations.
Recently, some works have been done in this direction to get conservation laws for
nonlinear wave equations [9]. In [21], Yasar and Özer have derived conservation
laws for one-layer shallow water wave systems and, by using these conserved
systems, they have found potential symmetries for the plane flow case. In [11], the
authors have proved that the Camassa–Holm equation is self-adjoint and they have
constructed conservation laws for the generalized Camassa–Holm equation using its
symmetries. In [12], the conservation laws for a .1C n/-dimensional heat equation
on curved surfaces have been constructed by using a partial Noether’s approach
associated with partial Lagrangian [14]. In [18], conservation laws were derived for
a nonlocal shallow water wave equation. In [20], by using the nonlocal conservation
theorem method [5] and the partial Lagrangian approach [14], conservation laws for
the modified KdV equation were presented. It was observed that only the nonlocal
conservation theorem method leads to the nontrivial and infinite conservation
laws. It happens that many equations having remarkable symmetry properties,
such as the forced KdV equation, are neither self-adjoint nor quasi-self-adjoint.
In [4], Gandarias has generalized the concept of quasi-self-adjoint equations by
introducing the concept of weak self-adjoint equations. Thus, substitution v D h.u/
can be replaced with a more general substitution where h involves not only the
variable u but also the independent variables h D h.x; t; u/. In [8], the concept of
quasi-self-adjoint equations has been generalized by introducing the definition of
nonlinear self-adjoint equations. Thus, substitution v D h.u/ can be replaced by
a more general substitution where h involves not only the variable u but also its
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derivatives as well as the independent variables v D h.x; t; u; ut ; ux; ::/. This will
be a differential substitution. By using these two recent developments in [2], Freire
and Sampaio have determined the nonlinear self-adjoint class of a generalized fifth
order equation, and by using Ibragimov’s theorem [5], the authors have established
some local conservation laws. In [13], Johnpillai and Khalique have studied the
conservation laws of some special forms of the nonlinear scalar evolution equation,
the modified Korteweg-de-Vries (mKdV) equation with time-dependent variable
coefficients of damping and dispersion

ut C u2ux C a.t/u C b.t/uxxx D 0:

The authors use the new conservation theorem [5] and the partial Lagrangian
approach in [14].
In this work we will consider equations (1.2), (1.3) as well as the third order
potential Burgers equation

ut D uxxx C 3uxuxx C u3x: (1.4)

The aim of this work is to determine the subclasses of equations which are weak and
nonlinear self-adjoint. And to determine, by using the Lie generators of equations
(1.2), (1.3), and (1.4) and the notation and techniques of [6], some nontrivial
conservation laws for equations (1.2), (1.3), and (1.4).

1.2 The Class of Nonlinear Self-Adjoint Equations

Recently, the definitions of adjoint equations and self-adjoint equations have been
extended, and the definitions of weak self-adjointness and nonlinear self adjointness
have been introduced.
Consider an sth-order partial differential equation

F.x; u; u.1/; : : : ; u.s// D 0 (1.5)

with independent variables x D .x1; : : : ; xn/ and a dependent variable u; where
u.1/ D fuig; u.2/ D fuij g; : : : denote the sets of the partial derivatives of the first,
second, etc. orders, ui D @u=@xi , uij D @2u=@xi@xj :
The adjoint equation to (1.5) is

F �.x; u; v; u.1/; v.1/; : : : ; u.s/; v.s// D 0; (1.6)

with

F �.x; u; v; u.1/; v.1/; : : : ; u.s/; v.s// D ı.vF /

ıu
; (1.7)



6 M.L. Gandarias and M. Rosa

where

ı

ıu
D @

@u
C

1X

sD1
.�1/sDi1 � � �Dis

@

@ui1���is
(1.8)

denotes the variational derivatives (the Euler-Lagrange operator), and v is a new
dependent variable. Here

Di D @

@xi
C ui

@

@u
C uij

@

@uj
C � � �

are the total differentiations.

Definition. Equation (1.5) is said to be nonlinear self-adjoint if the equation
obtained from the adjoint equation (1.6) by the substitution v D h.x; u; u.1/; : : : /,
with a certain function h.x; u; u.1/; : : : / such that h.x; u; u.1/; : : : / ¤ constant ,

F �.x; u; u; u.1/; u.1/; : : : ; u.s/; u.s// D 0;

is identical with the original equation (1.5).
In other words, if

F �.x; u; u.1/; u.1/; : : : ; u.s/; u.s// D �.x; u; u.1/; : : :/ F .x; u; u.1/; : : : ; u.s//: (1.9)

In particular:

Definition. Equation (1.5) is said to be self-adjoint if the adjoint equation (1.6) is
equivalent to the original equation (1.5) upon the substitution v D u.

Definition. Equation (1.5) is said to be quasi-self-adjoint if the adjoint equation
(1.6) is equivalent to the original equation (1.5) upon the substitution v D h.u/ with
a certain function h.u/ such that h0.u/ ¤ 0.

Definition. Equation (1.5) is said to be weak self-adjoint if the adjoint equation
(1.6) is equivalent to the original equation (1.5) upon the substitution v D h.x; t; u/
with a certain function h.x; t; u/ such that hu ¤ 0 and hx ¤ 0 or ht ¤ 0.

1.2.1 The Subclass of Nonlinear Self-Adjoint Equations

Let us single out some nonlinear self-adjoint equations from the equations of the
form (1.2)

ut C kux C ˛uux C ˇuxxx C ˛2�1u
2ux C ˛ˇ.�2uuxxx C �3uxuxx/

C˛3�4u
3ux C ˛2ˇ.�5u

2uxxx C �6uuxuxx C �7u
3
x/ D 0:
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Theorem. Equation (1.2) is nonlinear self-adjoint for any arbitrary parameters �i ,
i D 1; : : : ; 7.

Proof. Equation (1.7) yields

F � D ı

ıu
Œv.ut C �ux C ˛uux C ˇuxxx C ˛2�1u

2ux C ˛3�4u
3ux

C˛ˇ.�2uuxxx C �3uxuxx/C ˛2ˇ.�5u
2uxxx C �6uuxuxx C �7u

3
x//�

D �˛2 ˇ �5 u2 vx x x � ˛ ˇ �2 u vx x x � ˇ vx x x C ˛2 ˇ �6 u ux vx x

� 6 ˛2 ˇ �5 u ux vx x C ˛ ˇ �3 ux vx x � 3 ˛ ˇ �2 ux vx x C ˛2 ˇ �6 u ux x vx

� 6 ˛2 ˇ �5 u ux x vx C ˛ ˇ �3 ux x vx � 3 ˛ ˇ �2 ux x vx � 3 ˛2 ˇ �7 .ux/
2 vx

C 2 ˛2 ˇ �6 .ux/
2 vx � 6 ˛2 ˇ �5 .ux/

2 vx � ˛3�4u
3vx � ˛2�1u

2vx � ˛uvx

� � vx � vt � 6˛2ˇ�7uxux x v C 3˛2 ˇ �6 ux ux x v � 6 ˛2 ˇ �5 ux ux x v

(1.10)

By substituting v D h.x; t; u/ and its derivatives

v D h.x; t; u/;

vt D huut C ht ;

vx D huux C hx;

vxx D hu ux x C ux .hu u ux C hu x/C hu x ux C hx x;

vxxx D hu ux x x C ux .hu u ux x C ux .hu u u ux C hu u x/C hu u x ux C hu x x/

C 2 .hu u ux C hu x/ ux x C hu x ux x C ux .hu u x ux C hux x/

Chu x x ux C hx x x

into the adjoint equation (1.16) we obtain:

�˛2 ˇ hu �5 u2 ux x x � ˛ ˇ hu �2 u ux x x � ˇ hu ux x x � 3 ˛2 ˇ hu u �5 u2 ux ux x

C 2 ˛2 ˇ hu �6 u ux ux x � 12 ˛2 ˇ hu �5 u ux ux x � 3 ˛ ˇ hu u �2 u ux ux x

� 6 ˛2 ˇ h �7 ux ux x C 3 ˛2 ˇ h �6 ux ux x � 6 ˛2 ˇ h �5 ux ux x

C 2 ˛ ˇ hu �3 ux ux x � 6 ˛ ˇ hu �2 ux ux x � 3 ˇ hu u ux ux x

� 3 ˛2 ˇ hu x �5 u2 ux x C ˛2 ˇ hx �6 u ux x � 6 ˛2 ˇ hx �5 u ux x

� 3 ˛ ˇ hu x �2 u ux x C ˛ ˇ hx �3 ux x � 3 ˛ ˇ hx �2 ux x � 3 ˇ hu x ux x

�˛2 ˇ hu u u �5 u2 .ux/
3 C ˛2 ˇ hu u �6 u .ux/

3 � 6 ˛2 ˇ hu u �5 u .ux/
3

�˛ ˇ hu u u �2 u .ux/
3 � 3 ˛2 ˇ hu �7 .ux/

3 C 2 ˛2 ˇ hu �6 .ux/
3

� 6 ˛2 ˇ hu �5 .ux/
3 C ˛ ˇ hu u �3 .ux/

3 � 3 ˛ ˇ hu u �2 .ux/
3



8 M.L. Gandarias and M. Rosa

�ˇ hu u u .ux/
3 � 3 ˛2 ˇ hu u x �5 u2 .ux/

2 C 2 ˛2 ˇ hu x �6 u .ux/
2

� 12 ˛2 ˇ hux �5 u .ux/
2 � 3 ˛ ˇ hu u x �2 u .ux/

2 � 3 ˛2 ˇ hx �7 .ux/
2

C 2 ˛2 ˇ hx �6 .ux/
2 � 6 ˛2 ˇ hx �5 .ux/

2 C 2 ˛ ˇ hu x �3 .ux/
2

� 6 ˛ ˇ hu x �2 .ux/
2 � 3 ˇ hu u x .ux/

2 � ˛3 hu �4 u3 ux � 3 ˛2 ˇ hu x x �5 u2 ux

�˛2 hu �1 u2 ux C ˛2 ˇ hx x �6 u ux � 6 ˛2 ˇ hx x �5 u ux � 3 ˛ ˇ hu x x �2 u ux

�˛ hu u ux C ˛ ˇ hx x �3 ux � 3 ˛ ˇ hx x �2 ux � hu � ux � 3 ˇ hu x x ux � hu ut

�˛3 hx �4 u3 � ˛2 ˇ hx x x �5 u2 � ˛2 hx �1 u2 � ˛ ˇ hx x x �2 u � ˛ hx u

� hx � � ˇ hx x x � ht D 0

Hence the condition of nonlinear self-adjointness is written as follows:

F � � �Œv.ut C �ux C ˛uux C ˇuxxx C ˛2�1u
2ux C ˛3�4u

3ux

C˛ˇ.�2uuxxx C �3uxuxx/C ˛2ˇ.�5u
2uxxx C �6uuxuxx C �7u

3
x//�

D �˛2 ˇ �5 u2 ux x x � � ˛ ˇ �2 u ux x x � � ˇ ux x x � � ˛2 ˇ �6 u ux ux x �

�˛ ˇ �3 ux ux x � � ˛2 ˇ �7 .ux/
3 � � ˛3 �4 u3 ux � � ˛2 �1 u2 ux � � ˛ u ux �

� � ux � � ut � � ˛2 ˇ hu �5 u2 ux x x � ˛ ˇ hu �2 u ux x x � ˇ hu ux x x

� 3 ˛2 ˇ hu u �5 u2 ux ux x C 2 ˛2 ˇ hu �6 u ux ux x � 12 ˛2 ˇ hu �5 u ux ux x

� 3 ˛ ˇ hu u �2 u ux ux x � 6 ˛2 ˇ h �7 ux ux x C 3 ˛2 ˇ h �6 ux ux x

� 6 ˛2 ˇ h �5 ux ux x C 2 ˛ ˇ hu �3 ux ux x � 6 ˛ ˇ hu �2 ux ux x � 3 ˇ hu u ux ux x

� 3 ˛2 ˇ hu x �5 u2 ux x C ˛2 ˇ hx �6 u ux x � 6 ˛2 ˇ hx �5 u ux x

� 3 ˛ ˇ hu x �2 u ux x C ˛ ˇ hx �3 ux x � 3 ˛ ˇ hx �2 ux x � 3 ˇ hux ux x

�˛2 ˇ hu u u �5 u2 .ux/
3 C ˛2 ˇ hu u �6 u .ux/

3 � 6 ˛2 ˇ hu u �5 u .ux/
3

�˛ ˇ hu u u �2 u .ux/
3 � 3 ˛2 ˇ hu �7 .ux/

3 C 2 ˛2 ˇ hu �6 .ux/
3

� 6 ˛2 ˇ hu �5 .ux/
3 C ˛ ˇ hu u �3 .ux/

3 � 3 ˛ ˇ hu u �2 .ux/
3

�ˇ hu u u .ux/
3 � 3 ˛2 ˇ hu u x �5 u2 .ux/

2 C 2 ˛2 ˇ hu x �6 u .ux/
2

� 12 ˛2 ˇ hu x �5 u .ux/
2 � 3 ˛ ˇ hu u x �2 u .ux/

2 � 3 ˛2 ˇ hx �7 .ux/
2

C 2 ˛2 ˇ hx �6 .ux/
2 � 6 ˛2 ˇ hx �5 .ux/

2 C 2 ˛ ˇ hu x �3 .ux/
2

� 6 ˛ ˇ hu x �2 .ux/
2 � 3 ˇ hu ux .ux/

2 � ˛3 hu �4 u3 ux � 3 ˛2 ˇ hu x x �5 u2 ux

�˛2 hu �1 u2 ux C ˛2 ˇ hx x �6 u ux � 6 ˛2 ˇ hx x �5 u ux � 3 ˛ ˇ hu x x �2 u ux

�˛ hu u ux C ˛ ˇ hx x �3 ux � 3 ˛ ˇ hx x �2 ux � hu � ux

� 3 ˇ hux x ux � hu ut � ˛3 hx �4 u3 � ˛2 ˇ hx x x �5 u2 � ˛2 hx �1 u2

�˛ ˇ hx x x �2 u � ˛ hx u � hx � � ˇ hx x x � ht D 0; (1.11)
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where � is an undetermined coefficient. Hence comparing the coefficients for the
different derivatives of u we obtain that � D �hu and the following conditions must
be satisfied:

� 3 ˇ hu u
�
˛2 �5 u2 C ˛ �2 u C 1

� � 3 ˛2 ˇ h .2 �7 � �6 C 2 �5/

C3 ˛ ˇ hu .˛ �6 u � 4 ˛ �5 u C �3 � 2 �2/ D 0;

˛ ˇ hx .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/� 3 ˇ hu x
�
˛2 �5 u2 C ˛ �2 u C 1

� D 0;

�ˇ hu u u
�
˛2 �5 u2 C ˛ �2 u C 1

�� 2 ˛2 ˇ hu .�7 � �6 C 3 �5/

C˛ ˇ hu u .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/ D 0;

�3 ˇ hu u x
�
˛2 �5 u2 C ˛ �2 u C 1

�� ˛2 ˇ hx .3 �7 � 2 �6 C 6 �5/

C2 ˛ ˇ hu x .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/ D 0;

˛ ˇ hx x .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/
�3 ˇ hu x x

�
˛2 �5 u2 C ˛ �2 u C 1

� D 0;

�˛3 hx �4 u3 C ��˛2 ˇ hx x x �5 � ˛2 hx �1
�

u2

C .�˛ ˇ hx x x �2 � ˛ hx/ u � hx k � ˇ hx x x � ht D 0:

Equations third and fifth are differential consequences of the first and second
equations, respectively.
Consequently, if (1.2) is weak self-adjoint, h D h.x; t; u/must satisfy the following
conditions:

� 3 ˇ hu u
�
˛2 �5 u2 C ˛ �2 u C 1

� � 3 ˛2 ˇ h .2 �7 � �6 C 2 �5/

C3 ˛ ˇ hu .˛ �6 u � 4 ˛ �5 u C �3 � 2 �2/ D 0;

˛ ˇ hx .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/� 3 ˇ hu x
�
˛2 �5 u2 C ˛ �2 u C 1

� D 0;

hu u x
�
˛2 �5 u2 C ˛ �2 u C 1

�� ˛2 ˇ hx .3 �7 � 2 �6 C 6 �5/

C2˛; ˇ hu x .˛ �6 u � 6 ˛ �5 u C �3 � 3 �2/ D 0;

�˛3 hx �4 u3 C ��˛2 ˇ hx x x �5 � ˛2 hx �1
�

u2

C .�˛ ˇ hx x x �2 � ˛ hx/ u � hx k � ˇ hx x x � ht D 0:

However, setting h D h.u/ we get that equation (1.2) is nonlinear self-adjoint for
any arbitrary parameter �i setting h.u/ so that it satisfies the following condition:

�3 ˇ hu u
�
˛2 �5 u2 C ˛ �2 u C 1

� � 3 a2 ˇ h .2 �7 � �6 C 2 �5/

C 3 ˛ ˇ hu .˛ �6 u � 4 ˛ �5 u C �3 � 2 �2/ D 0: (1.12)
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1.2.2 Nonlinear and Weak Self-Adjointness

Equation (1.3) is not self-adjoint; however, we prove that:

Theorem. Equation (1.3) is weak self-adjoint and nonlinear self-adjoint.

We substitute

v D h.x; t; u/;

vt D huut C ht ;

vx D huux C hx;

vxx D hu ux x C ux .hu u ux C hu x/C hu x ux C hx x;

vxxx D hu ux x x C ux .hu u ux x C ux .hu u u ux C hu u x/C hu u x ux C hu x x/

C 2 .hu u ux C hu x/ ux x C hu x ux x C ux .hu u x ux C hux x/

Chu x x ux C hx x x;

into the adjoint equation

�u2 vx x x � 7 u ux vx x � 7 u ux x vx � 28 .ux/
2 vx

3
� u2 vx � vt � 35 ux ux x v

3
D 0

obtaining

�hu u2 ux x x � 3 hu u u2 ux ux x � 14 hu u ux ux x � 35 h ux ux x
3

� 3 hux u2 ux x

� 7 hx u ux x � hu u u u2 .ux/
3 � 7 hu u u .ux/

3 � 28 hu .ux/
3

3
� 3 hu ux u2 .ux/

2

� 14 hux u .ux/
2 � 28 hx .ux/

2

3
� 3 hu x x u2 ux � hu u2 ux � 7 hx x u ux

� hu ut � hx x x u2 � hx u2 � ht D 0:

Hence, the condition of nonlinear self-adjointness is written as follows:

�u2 ux x x �C u ux ux x � � 4 .ux/
3 �

9
� u2 ux � � ut � � hu u2 ux x x

� 3 hu u u2 ux ux x � 14 hu u ux ux x � 35 h ux ux x
3

� 3 hux u2 ux x � 7 hx u ux x
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� hu u u u2 .ux/
3 � 7 hu u u .ux/

3 � 28 hu .ux/
3

3
� 3 hu u x u2 .ux/

2

� 14 hux u .ux/
2 � 28 hx .ux/

2

3
� 3 hux x u2 ux � hu u2 ux

� 7 hx x u ux � hu ut � hx x x u2 � hx u2 � ht D 0:

Here � is an undetermined coefficient such that

�C hu D 0

and the following conditions must be satisfied:

3 hu u u2 C 15 hu u C 35 h

3
D 0;

3 hux u2 C 7 hx u D 0;

�hu u u u2 � 7 hu u u � 80 hu

9
D 0;

�3 hu u x u2 � 14 hux u � 28 hx

3
D 0;

�3 hux x u2 � 7 hx x u D 0;

�hx x x u2 � hx u2 � ht D 0:

The solution is

h D a

u
5
3

C b.x; t/

u
7
3

;

where a D constant and b D b.x/ satisfies

bx x x C bx D 0: (1.13)

Namely the adjoint equation becomes equivalent to the original equation upon the
substitution

v D a

u
5
3

C b

u
7
3

;

with a D constant and being b D b.x/ any solution of (1.13).
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1.2.3 The Condition of Quasi-Self-Adjointness

Let us see if (1.4) is quasi-self-adjoint.
Equation (1.7) yields

F � D ı

ıu
Œv.�ux x x � 3 ux ux x � .ux/3 C ut /�

D vx x x � 3 ux vx x � 3 ux x vx C 3 .ux/
2 vx � vt C 6 ux ux x v (1.14)

Setting v D h.u/ in (1.14) we have

F � D hu ux x x C 3 hu u ux ux x � 6 hu ux ux x C 6 h ux ux x

Chu u u .ux/
3 � 3 hu u .ux/

3 C 3 hu .ux/
3 � hu ut :

Using (1.9) yields:

F � � �.ut � uxxx � 3uxuxx � u3x/ D ux x x �C 3 ux ux x �C .ux/
3 � � ut �

Chu ux x x C 3 hu u ux ux x � 6 hu ux ux x C 6 h ux ux x C hu u u .ux/
3

� 3 hu u .ux/
3 C 3 hu .ux/

3 � hu ut D 0:

Comparing the coefficients for ut , we obtain �Chu D 0 and the following conditions
must be satisfied:

3 hu u � 9 hu C 6 h D 0;

hu u u � 3 hu u C 2 hu D 0: (1.15)

From (1.15) we get that

h.u/ D aeu C be2u;

where a D constant and b D constant . We can state the following:

Theorem. Equation (1.3) is not self-adjoint and it is quasi-self-adjoint, upon the
substitution

h.u/ D aeu C be2u;

where a D constant and b D constant .
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1.2.4 The Condition of Weak Self-Adjointness

Let us see if (1.4) is weak self-adjoint.
Equation (1.7) yields

F � D ı

ıu
Œv.�ux x x � 3 ux ux x � .ux/

3 C ut /�

D vx x x � 3 ux vx x � 3 ux x vx C 3 .ux/
2 vx � vt C 6 ux ux x v: (1.16)

Setting v D h.x; t; u/ in (1.16) we have

F � D u ux x x C 3 hu u ux ux x � 6 hu ux ux x C 6 h ux ux x � 3 hx ux x C 3 hux ux x

Chu u u .ux/
3 � 3 hu u .ux/

3 C 3 hu .ux/
3 C 3 hx .ux/

2 C 3 hu u x .ux/
2

� 6 hux .ux/
2 � 3 hx x ux C 3 hux x ux � hu ut C hx x x � ht :

Equation (1.9) yields:

F � � �.ut � uxxx � 3uxuxx � u3x/ D ux x x �C 3 ux ux x �C .ux/
3 � � ut �

Chu ux x x C 3 hu u ux ux x � 6 hu ux ux x C 6 h ux ux x � 3 hx ux x C 3 hux ux x

Chu u u .ux/
3 � 3 hu u .ux/

3 C 3 hu .ux/
3 C 3 hx .ux/

2 C 3 hu u x .ux/
2

� 6 hux .ux/
2 � 3 hx x ux C 3 hux x ux � hu ut C hx x x � ht D 0:

Comparing the coefficients of the u derivatives we obtain that � D �hu and the
following conditions must be satisfied

3 hu u � 9 hu C 6 h D 0;

3 hux C 3 hx D 0;

hu u u � 3 hu u C 2 hu D 0;

3 hx C 3 hu u x � 6 hu x D 0;

3 hu u � 9 hu C 3 hx x C 3 hux x D 0;

hx x x � ht D 0: (1.17)

From (1.17) we get that

h.x; t; u/ D a.x; t/eu;

where a D a.x; t/ must satisfy the linear equation

at � axxx D 0:
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We can state the following:

Theorem. Equation (1.3) is weak self-adjoint, upon the substitution

h.u; x; t/ D a.x; t/eu;

where a D a.x; t/ satisfies

at � axxx D 0:

1.2.5 The Condition of Nonlinear Self-Adjointness

Let us see if (1.4) is nonlinear self-adjoint.
Equation (1.7) yields

F � D ı

ıu
Œv.�ux x x � 3 ux ux x � .ux/

3 C ut /�

D vx x x � 3 ux vx x � 3 ux x vx C 3 .ux/
2 vx � vt C 6 ux ux x v: (1.18)

Setting v D h.u; ux/ in (1.18) and denoting ux D w we have

F � D hwwxxx C 3hwwwxwxx � 3hwwwxx C 3huwwwxx C huwxx C hwww .wx/
3

� 3hwww .wx/
2 C 3huwww .wx/

2 � 3hw .wx/
2 C 3huw .wx/

2 C 3hww2wx

C 3huuww2wx � 6huww2wx C 3huuwwx � 6huwwx C 6hwwx � hwwt

Chuuuw3 � 3huuw3 C 3huw3 � huut :

Using (1.9) and the derivative with respect to x of (1.4)

�ux x x x � 3 ux ux x x � 3 .ux x/2 � 3 .ux/2 ux x C ut x D 0

which in terms of w can be written as

�wx x x � 3w wx x � 3 .wx /2 � 3w2 wx C wt D 0

yields:

F � � �.�uxxxx � 3uxuxxx � 3 .uxx/
2 � 3 .ux/2 uxx C utx/

��.ut � uxxx � 3uxuxx � u3x/ D �
�
�uxxx � 3uxuxx � .ux/

3 C ut
�
�

Chuxuxxx C 3huxuxuxxuxxx � 3huxuxuxxx C 3huuxuxuxxx C huuxxx

Chuxuxux .uxx/
3 � 3huxuxux .uxx/

2 C 3huuxuxux .uxx/
2 � 3hux .uxx/

2
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C 3huux .uxx/
2 C 3huxu2xuxx C 3huuuxu2xuxx � 6huuxu2xuxx C 3huuuxuxx

� 6huuxuxx C 6huxuxx � huxuxt C huuu.ux/
3 � 3huu.ux/

3 C 3hu.ux/
3 � huut

��
�
�uxxxx � 3uxuxxx � 3 .uxx/

2 � 3 .ux/2 uxx C utx
�

D 0:

Setting ux D w

� ��wxx � 3wwx � w3 C ut
�
� � �

�
�wxxx � 3wwxx � 3 .wx/

2 � 3w2wx C wt
�

C 3hwwwxwxx � 3hwwwxx C 3huwwwxx Chuwxx Chwww .wx/
3 � 3hwww .wx/

2

C 3huwww .wx/
2 � 3hw .wx/

2 C 3huw .wx/
2 C 3hww2wx C 3huuww2wx

� 6huww2wx C 3huuwwx C hwwxxx � 6huwwx C 6hwwx � hwwt C huuuw3

� 3huuw3 C 3huw3 � huut D 0:

Comparing the coefficients for ut ; we obtain �C hu D 0.
Comparing the coefficients for wt ; we obtain � C hw D 0 and the following
conditions must be satisfied:

hww D 0; (1.19)

hu � 2h D 0: (1.20)

From (1.19) we get that

h.u;w/ D ce2uw:

We can state the following:

Theorem. Equation (1.4) is nonlinear self-adjoint, upon the substitution

h.u; ux/ D ce2uux:

1.2.6 General Theorem on Conservation Laws

We use the following theorem on conservation laws proved in [6].

Theorem. Any Lie point, Lie-Bäcklund or nonlocal symmetry

X D �i .x; u; u.1/; : : :/
@

@xi
C �.x; u; u.1/; : : :/

@

@u
(1.21)
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of equation (1.5) provides a conservation law Di.C
i / D 0 for the system of

differential equations (1.5) and (1.6). The conserved vector is given by

C i D �iL CW

�
@L

@ui
�Dj

�
@L

@uij

�
DjDk

�
@L

@uijk

�
� � � �

	

CDj .W /

�
@L

@uij
�Dk

�
@L

@uijk

�
C � � �

	
CDjDk.W /

�
@L

@uijk
� � � �

	
C � � � ;

(1.22)

where W and L are defined as follows:

W D � � �j uj ; L D vF
�
x; u; u.1/; : : : ; u.s/

�
: (1.23)

We will write generators of point transformation group in the form

X D �1
@

@t
C �2

@

@x
C �

@

@u

by setting t D x1 and x D x2: The conservation law will be written

Dt.C
1/CDx.C

2/ D 0: (1.24)

1.2.7 Conservation Laws for a Subclass of Self-Adjoint
Equations

Let us apply the general theorem on conservation laws to the self-adjoint equation
(1.2) with

�3 D 2�2; �7 D �6 � 3�5; �5 D �22=4;

�6 D �22; �2 D 1=�; �4 D 0;

�1 D 1=4� :

Let us find the conservation law provided by the following symmetry of (1.2):

X D t
@

@t
� .u

2
C 1

a�2
/
@

@u
: (1.25)

In this case, we have that W D �u

2
� 1

a�2
� tut and (1.22) yield the conservation

law (1.24) with

C1 D �u .˛ u C 2 k/

2 ˛
CDx.B

1/;
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C2 D �˛
2 ˇ u3 ux x
4 k2

� 5 ˛ ˇ u2 ux x
4 k

� 2 ˇ u ux x � ˇ k ux x
˛

� ˛2 ˇ u2 .ux/
2

8 k2

� ˛ b u .ux/
2

4 �
� ˛2 u4

16 k
� 5 ˛ u3

12
� � u2 � �2 u

a
�Dt.B

1/;

where

B1 D
�
˛2 ˇ t u3

4 �2
C ˛ ˇ t u2

�
C ˇ t u

�
ux x C ˛2 ˇ t u2 .ux/

2

8 �2
� ˇ t .ux/

2

2

� ˇ t .ux/
2

2
C ˛2 t u4

16 �
C ˛ t u3

3
C � t u2

2
:

We simplify the conserved vector by transferring the terms of the formDx.: : :/ from
C1 to C2 and obtain:

C1 D �u .˛ u C 2 �/

2 ˛
;

C 2 D �˛
2 ˇ u3 ux x
4 �2

� 5 ˛ ˇ u2 ux x
4 k

� 2 ˇ u ux x � ˇ k ux x
˛

� ˛2 ˇ u2 .ux/
2

8 �2

� ˛ b u .ux/
2

4 �
� ˛2 u4

16 �
� 5 ˛ u3

12
� � u2 � �2 u

˛
:

1.2.8 Conservation Laws for a Subclass of Self-Adjoint Third
Order Equations

Let us apply the general theorem on conservation laws to the quasi-self-adjoint
equation (1.3).
In this case, we have

L D
�

ut C u2ux C 4

9
u3x � uuxuxx C u2uxxx

�
v: (1.26)

Let us find the conservation law provided by the following obvious scaling
symmetry of (1.3):

X D t
@

@t
� u

2

@

@u
: (1.27)

In this case, we have that W D �u

2
� tut and (1.22) yield the conservation law

(1.24) with
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C1 D � k

2 u
2
3

CDx

 
k t u

1
3 ux x � 2 k t .ux/

2

3 u
2
3

C 3 k t u
4
3

4

!
;

C 2 D k u
1
3 ux x
3

� 2 k .ux/
2

9 u
2
3

C k u
4
3

4
�Dt

 
k t u

1
3 ux x � 2 k t .ux/

2

3 u
2
3

C 3 k t u
4
3

4

!
:

We simplify the conserved vector by transferring the terms of the formDx.: : :/ from
C1 to C2 and obtain

C1 D � k

2 u
2
3

;

C 2 D k u
1
3 ux x
3

� 2 k .ux/
2

9 u
2
3

C k u
4
3

4
:

1.2.9 Conservation Laws

Let us apply general theorem on conservation laws to the weak self-adjoint and
nonlinear self-adjoint equation

ut � uxxx � 3uxuxx � u3x D 0; (1.28)

with h.x; t; u/ D a.x; t/eu where a D a.x; t/ satisfies

at � axxx D 0 (1.29)

and h.u; ux/ D e2uux , ux D w. In this case we have

L D
�

ut � uxxx � 3uxuxx � u3x

�
v: (1.30)

1. Let us find the conservation law provided by the following symmetry of (1.4):

v D x
@

@x
C 3t

@

@t
(1.31)

and h.u; x; t/ D a.x; t/eu, where a D a.x; t/ satisfies (1.29).
In this case, we find that W D �xux � 3tut and (1.22) yield the conservation
law (1.24) where after simplifying the conserved vector by transferring the terms
of the formDx.: : :/ from C1 to C2 we obtain:

C1 D eu .ax x C 3 ax x x t C a/ ;
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C2 D �ax eu ux x x � ax eu .ux/
2 x C ax x e

u ux x � at e
u x � 3 at t e

u ux x

� a eu ux x � 3 at t e
u .ux/

2 � a eu .ux/
2 C 3 at x t e

u ux

C 2 ax e
u ux � 3 at x x t eu � 3 ax x e

u;

and a D a.x; t/ satisfies (1.29).
2. Let us find the conservation law provided by the following symmetry of (1.4):

v D k1
@

@x
C k2

@

@t
(1.32)

and h.u; x; t/ D a.x; t/eu, where a D a.x; t/ satisfies (1.29).
In this case, we find that W D �k1ux � k2ut and (1.22) yield the conservation
law (1.24), where after simplifying the conserved vector by transferring the terms
of the formDx.: : :/ from C1 to C2 we obtain:

C1 D � .ax x k2 C a k1/ e
u ux;

C 2 D �at k2 eu ux x � ax k1 e
u ux x � at k2 eu .ux/

2 � ax k1 e
u .ux/

2

C at x k2 e
u ux C ax x k1 e

u ux C ax x k2 e
u ut C a k1 e

u ut ;

where a D a.x; t/ satisfies (1.29).
3. Let us find the conservation law provided by the following symmetry of (1.4):

v D k1
@

@x
C k2

@

@t
(1.33)

and h.u; ux/ D uxe2u.
In this case, we find W D �k1ux � k2ut and (1.22) yield the conservation law
(1.24) where after simplifying the conserved vector by transferring the terms of
the formDx.: : :/ from C1 to C2 we obtain:

C1 D �k2 e2 u .ux x/
2 C k2 e

2 u .ux/
4

3
� k1 e

2 u .ux/
2 ;

C 2 D 2k2e
2uuxxuxxxx � k2e

2u .uxxx/
2 C 2k2e

2uuxuxxuxxx � 4k2e
2u .ux/

3 uxxx
3

C2k1e2uuxuxxx C 6k2e
2u .uxx/

3 C 3k2e
2u .ux/

2 .uxx/
2 � k1e2u .uxx/

2

�2k2e2u .ux/
4 uxx C 4k1e

2u .ux/
2 uxx � k2e

2u .ux/
6

3
C k1e

2u .ux/
4 :

4. Let us find the conservation law provided by the following symmetry of (1.4):

v D x
@

@x
C 3t

@

@t
(1.34)

and h.u; ux/ D uxe2u.
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In this case, we find thatW D �xux �3tut and (1.22) yield the conservation law
(1.24), where, after simplifying the conserved vector by transferring the terms of
the formDx.: : :/ from C1 to C2 we obtain:

C1 D �e2u .ux/
2 x C 3te2u .uxx/

2 � te2u .ux/
4 ;

C 2 D 2e2uuxuxxxx � e2u .uxx/
2 x C 4e2u .ux/

2 uxxx C e2u .ux/
4 x

� 6te2uuxxuxxxx C 3te2u .uxxx/
2 � 6te2uuxuxxuxxx

C 4te2u .ux/
3 uxxx � 18te2u .uxx/

3 � 9te2u .ux/
2 .uxx/

2

C 6te2u .ux/
4 uxx � 2e2uuxuxx C te2u .ux/

6 :

1.3 Conclusions

In this work we have considered three third order equations: a potential Burgers
equation and two third order wave equations of the KdV type. We have determined
the subclasses of these equations which are weak and nonlinear self-adjoint. By
using the general theorem on conservation laws proved by Nail Ibragimov, we found
some conservation laws for some of these partial differential equations without
classical Lagrangians.

Acknowledgements The support of DGICYT project MTM2009-11875 and Junta de Andalucía
group FQM-201 is gratefully acknowledged.

References

1. Adem KR, Khalique CM (2012) Exact solutions and conservation laws of Zakharov-Kuznetsov
modified equal width equation with power law nonlinearity. Nonlin Anal: Real World Appl
13:1692–1702

2. Freire IL, Sampaio JCS (2012) Nonlinear self-adjointness of a generalized fifth-order KdV
equation. J Phys A: Math Theoret 45:032001

3. Fokas AS (1995) On a class of physically important integrable equations. Physica D 87:
1451–1550

4. Gandarias ML (2011) Weak self-adjoint differential equations. J Phys A: Math Theor
44:262001

5. Ibragimov NH (2006) The answer to the question put to me by LV Ovsiannikov 33 years ago.
Arch ALGA 3:53–80

6. Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333:311–328
7. Ibragimov NH (2007) Quasi-self-adjoint differential equations Arch. ALGA 4:55–60
8. Ibragimov NH (2011) Nonlinear self-adjointness and conservation laws. J Phys A: Math Theor

44:432002
9. Ibragimov NH, Torrisi M, Tracina R (2010) Quasi self-adjoint nonlinear wave equations. J Phys

A: Math Theor 43:442001



1 Nonlinear Self-Adjointness for some Generalized KdV Equations 21

10. Ibragimov NH, Torrisi M, Tracina R (2011) Self-adjointness and conservation laws of a
generalized Burgers equation. J Phys A: Math Theor 44:145201

11. Ibragimov NH, Khamitova RS, Valenti A (2011) Self-adjointness of a generalized Camassa-
Holm equation. Appl Math Comp 218:2579–2583

12. Jhangeer A, Naeem I, Qureshi MN (2012) Conservation laws for heat equation on curved
surfaces. Nonlinear Anal Real World Appl 13:340–347

13. Johnpillai AG, Khalique CM (2011) Variational approaches to conservation laws for a
nonlinear evolution equation with time dependent coefficients. Quaestiones Mathematicae
34:235–245

14. Kara AH, Mahomed FM (2006) Noether-type symmetries and conservation laws via partial
Lagrangians. Nonlin Dyn 45:367–383

15. Li J, Rui W, Long Y, He B (2006) Travelling wave solutions for higher-order wave equations
of KdV type III. Math Biosci Eng 3:125135

16. Marinakis V, Bountis TC (2000) Special solutions of a new class of water wave equations.
Comm Appl Anal 4:43345

17. Qiao ZJ (2009) A new integrable equation with no smooth solitons. Chaos Solitons Fractals
41:587–593

18. Rezvan F, Yasar E, Özer MN (2011) Group properties and conservation laws for nonlocal
shallow water wave equation. J Appl Math Comput 218:974–979

19. Tzirtzilakis E, Marinakis V, Apokis C, Bountis T (2002) Soliton-like solutions of higher order
wave equations of the Korteweg-de-Vries type. J Math Phys 43:6151–6165

20. Yasar E (2002) On the conservation laws and invariants solutions of the mKdV equation. J Math
Anal Appl 363:174–181

21. Yasar E, Özer T (2010) Conservation laws for one layer shallow water wave systems. Nonlin
Anal: Real World Appl 11:838–848



Chapter 2
Weak Self-Adjointness and Conservation
Laws for a Family of
Benjamin-Bona-Mahony-Burgers Equations

M.S. Bruzón

Abstract Ibragimov introduced the concepts of self-adjoint and quasi-self-adjoint
equations. Gandarias generalized these concepts and defined the concept of weak
self-adjoint equations. In this paper we consider a family of Benjamin-Bona-
Mahony-Burgers equations and we determine the subclass of equations which are
self-adjoint, quasi-self-adjoint and weak self-adjoint. By using a general theorem
on conservation laws proved by Ibragimov we obtain conservation laws for these
equations.

Keywords Weak self-adjointness • Conservation laws

2.1 Introduction

Nonlinear PDEs that admit conservation laws arise in many disciplines of the
applied sciences including physical chemistry, fluid mechanics, particle and quan-
tum physics, plasma physics, elasticity, gas dynamics, electromagnetism, magneto-
hydro-dynamics, nonlinear optics, and the bio-sciences. Conservation laws are
fundamental laws of physics. They maintain that a certain quantity, e.g. momentum,
mass, or energy, will not change with time during physical processes.

In [16] (see also [15]) Ibragimov proved a general theorem on conservation
laws for arbitrary differential equations which do not require the existence of
Lagrangians. This new theorem is based on the concept of adjoint equations
for nonlinear equations. There are many equations with physical significance
which are not self-adjoint. Therefore one cannot eliminate the nonlocal variables
from the conservation laws of these equations. Ibragimov in [15]) extended the
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concept of self-adjointness to quasi-self-adjointness. In [9] extended the concept of
quasi-self-adjointness to weak-self-adjointness. Next, in [17] Ibragimov introduced
a new concept: nonlinear self-adjointness.

Symmetry groups have several different applications in the context of nonlinear
differential equations [3–5]. For example, they are used to obtain exact solutions
and conservation laws of partial differential equations (PDEs) [8, 10]. The classical
method for finding symmetry reductions of partial differential equations is the Lie
group method [13, 18, 19]. The fundamental basis of this method is that, when a
differential equation is invariant under a Lie group of transformations, a reduction
transformation exists. For PDEs with two independent variables a single group
reduction transforms the PDE into an ordinary differential equation (ODE), which
in general is easier to solve.

The Benjamin-Bona-Mahony-Burgers (BBMB) equation

� � ut � uxxt � ˛uxx C ˇux C .g.u//x D 0; (2.1)

where u.x; t/ represents the fluid velocity in the horizontal direction x, ˛ is a
positive constant, ˇ 2 R and g.u/ is a C2-smooth nonlinear function appears
in [11]. Equation (2.1) is the alternative regularized long-wave equation proposed
by Peregrine [20] and Benjamin [2]. In [5, 6] we studied similarity reductions of
the BBMB equation (2.1) and we derived a set of new solitons, kinks, antikinks,
compactons, and Wadati solitons.

Wang et al. [21] introduced a method which is called the G0

G
-expansion method to

look for travelling wave solutions of nonlinear evolution equations. In [7] we found
the functions g.u/ D um for which we can apply the G0

G
-expansion method to (2.1).

We obtained new travelling wave solutions which did not appear in [5,6]. In [1] the
G0

G
-expansion method is used to establish travelling wave solutions for special form

of the generalized (2.1) with ˛ D 0, ˇ D 1, and g.u/ D u2

2
. The solutions given in

[1] were obtained by Bruzón and Gandarias in [7] and Kudryashov in [12].
The aim of this work is to determine, for (2.1), the subclasses of equations which

are self-adjoint, quasi-self-adjoint, and weak self-adjoint. We also determine, by
using the notation and techniques of the work [15,16], some nontrivial conservation
laws for (2.1). The paper is organized as follows. In Sect. 2.2 we determine the
subclasses of equations of (2.1) which are self-adjoint, quasi-self-adjoint, and weak
self-adjoint. In Sect. 2.3 we give the Lie symmetries of (2.1) equation obtained by
Bruzón and Gandarias in [5–7]. In Sect. 2.4 we obtain some nontrivial conservation
laws for (2.1). Finally, in Sect. 2.5 we give conclusions.

2.2 Determination of Self-Adjoint Equations

In [16] Ibragimov introduced a new theorem on conservation laws. The theorem is
valid for any system of differential equations where the number of equations is equal
to the number of dependent variables. The new theorem does not require existence
of a Lagrangian and this theorem is based on a concept of an adjoint equation for
nonlinear equations.
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Definition 1. Consider an sth-order partial differential equation

F.x; u; u.1/; : : : ; u.s// D 0 (2.2)

with independent variables x D .x1; : : : ; xn/ and a dependent variable u; where
u.1/ D fuig; u.2/ D fuij g; : : : denote the sets of the partial derivatives of the first,
second, etc. orders, ui D @u=@xi , uij D @2u=@xi@xj : The adjoint equation to
(2.2) is

F �.x; u; v; u.1/; v.1/; : : : ; u.s/; v.s// D 0; (2.3)

with

F �.x; u; v; u.1/; v.1/; : : : ; u.s/; v.s// D ı.vF /

ıu
; (2.4)

where

ı

ıu
D @

@u
C

1X

sD1
.�1/sDi1 � � �Dis

@

@ui1���is
(2.5)

denotes the variational derivative (the Euler-Lagrange operator), and v is a new
dependent variable. Here

Di D @

@xi
C ui

@

@u
C uij

@

@uj
C � � �

are the total differentiations.

Proposition 1. Given the generalized BBMB equation (2.1), by applying definition
(1), the adjoint equation to (2.1) is defined by

F � � �˛uxx � guux � ˇux C utxx � ut : (2.6)

2.2.1 Weak Self-Adjoint Equations

We use the following definitions given in [15, 16].

Definition 2. Equation (2.2) is said to be self-adjoint if the equation obtained from
the adjoint equation (2.3) by the substitution

v D u; (2.7)

F �.x; u; v; u.1/; v.1/; : : : ; u.s/; v.s//

is identical to the original equation (2.2).
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Definition 3. Equation (2.2) is said to be quasi-self-adjoint if the equation
obtained from the adjoint equation (2.3) is equivalent to the original equation
(2.2) upon the substitution

v D h.u/; (2.8)

with a certain function h.u/ such that h0.u/ ¤ 0.

And the following definition given in [9].

Definition 4. Equation (2.2) is said to be weak self-adjoint if the equation obtained
from the adjoint equation (2.3) by the substitution

v D h.x; t; u/; (2.9)

such that hx.x; t; u/ ¤ 0, hu.x; t; u/ ¤ 0, is identical to the original equation, i.e.

F � jvDh D �F: (2.10)

Given the generalized BBMB equation (2.1) we apply definition (4). Taking into
account the expression (2.6) and using (2.9) and its derivatives we rewrite (2.10)

uthuuuxx � ˛huuxx C htuuxx � ˛hxx C uthuuuu2x � ˛huuu2x C htuuu2x

�2˛huxux C 2uthuuxux C 2utxhuuux � guhuux � ˇhuux C 2htuxux

�guhx � ˇhx C uthuxx C 2utxhux C utxxhu � uthu C htxx � ht

D �.�˛ ux x C gu ux C ˇ ux � ut x x C ut /: (2.11)

Comparing the coefficients for utxx; we obtain � C hu D 0 and the following
conditions must be satisfied:

hu x x D 0;

ht u � 2 ˛ hu D 0;

2 ht u x � 2 ˛ hu x D 0;

ht u u � ˛ hu u D 0;

hu u u D 0;

hux D 0;

huu D 0;

huux D 0;

˛ hx x C gu hx C ˇ hx � ht x x C ht D 0: (2.12)
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Table 2.1 Weak self-adjoint equations (2.1)

Casei ˛ ˇ g.u/ h

1. Arbitrary Arbitrary k3 � .k2 C ˇ k1/ u

k1
k1 x C k u C k2 t C k3

2. 0 Arbitrary k3 � .k2 C ˇ k1/ u

k1
k1 exp.�kt/

3. Arbitrary Arbitrary Arbitrary C

4. 0 Arbitrary Arbitrary k1 u C k2

Solving the system (2.12) we obtain that h D k e2˛ t u C a.x; t/ and ˛, ˇ, g.u/ and
a.x; t/ must satisfy the equation

2 ˛ k e2˛ t u C ax gu C ax ˇ C ˛ ax x � at x x C at D 0: (2.13)

From (2.13) we obtain

• For g.u/ D k3 � .k2 C ˇ k1/ u

k1
, with k1 ¤ 0 and ˛ arbitrary constant

h D k1 x C k2 t C k3:

• For g.u/ D k3 � .k2 C ˇ k1/ u

k1
, with k1 ¤ 0 and ˛ D 0

h D k1 x C k u C k2 t C k3:

• For ˛ and ˇ arbitrary constants and g arbitrary function

h D C; with C constant:

• For ˛ D 0, ˇ arbitrary constants and g arbitrary function

h D k1 u C k2:

Consequently, we deduce that

Proposition 2. Equation (2.1) is weak self-adjoint in cases given in Table 2.1.
We remark that for ˛ D 0, ˇ arbitrary constants and g arbitrary function equation
(2.1) is self-adjoint. For ˛ and ˇ arbitrary constants and g arbitrary function (2.1)
is quasi-self-adjoint with h D C .

2.3 Classical Symmetries

To apply the Lie classical method to (2.1) we consider the one-parameter Lie group
of infinitesimal transformations in .x; t; u/ given by

x� D x C 	�.x; t; u/CO.	2/; (2.14)
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t� D t C 	
.x; t; u/CO.	2/; (2.15)

u� D u C 	�.x; t; u/CO.	2/; (2.16)

where 	 is the group parameter. We require that this transformation leaves invariant
the set of solutions of (2.1). This yields to an overdetermined, linear system of
equations for the infinitesimals �.x; t; u/; 
.x; t; u/, and �.x; t; u/: The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v D �.x; t; u/
@

@x
C 
.x; t; u/

@

@t
C �.x; t; u/

@

@u
: (2.17)

Having determined the infinitesimals, the symmetry variables are found by solving
the characteristic equation which is equivalent to solving the invariant surface
condition

�.x; t; u/ � �.x; t; u/ @u

@x
� 
.x; t; u/@u

@t
D 0: (2.18)

The set of solutions of (2.1) is invariant under the transformation (2.14)-(2.16)
provided that

pr.3/v.�/ D 0 when � D 0;

where pr.3/v is the third prolongation of the vector field (2.17) given by

pr.3/v D v C
X

J

�J .x; t; u.3//
@

@uJ

where

�J .x; t; u.3// D DJ .�� �ux � 
ut /C �uJx C �uJ t ;

with J D .j1; : : : ; jk/, 1 � jk � 2 y 1 � k � 3. Hence we obtain the following ten
determining equations for the infinitesimals:


u D 0;


x D 0;

�u D 0;

�t D 0;

�uu D 0;

˛
t C �tu D 0;

2�ux � �xx D 0;

�uxx � 2�x D 0;

�xgu � ˛�xx C ˇ�x � �txx C �t D 0;

�˛�xx � gu�x � ˇ�x � gu
t � ˇ
t � �guu C 2˛�ux C 2�tux D 0: (2.19)
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From system (2.19) � D �.x/, 
 D 
.t/ and � D �.x; t/u C ı.x; t/ where ˛, ˇ, �,

 , � , ı, and g satisfy

�t C ˛ 
t D 0;

2 �x � �xx D 0;

�xx � 2 �x D 0;

2 ˛ �x C 2 �tx � guu u � � ˛�xx � gu �x � ˇ�x � gu 
t � ˇ 
t � ı guu D 0;

�˛u �xx Cgu u �x Cˇ u �x � u �txx C u�t C ıx gu �˛ ıxx Cˇıx � ıtxx C ıt D 0:

(2.20)

From (2.20) we obtain

� D e�2x

8

�
.k4 C 2 k3/ e

4x C .4k1 � 8˛
/ e2x � k4 C 2k3
�
;

� D .k4 C 2k3/ e
2x

8
C .k4 � 2k3/ e

�2x

8
� k4 � 4k2

4
;

and ˛, ˇ, 
 , ı, and g are related by the following conditions:

..gu C ˇ � 2˛/ k4 C .2gu C 2 ˇ � 4˛/ k3/ ue4x

C ��4˛
tu C ıx .4gu C 4ˇ/� 4˛ıxx � 4ıtxx C 4 ıt / e
2x

C ..gu C ˇ C 2 ˛/ k4 C .�2 gu � 2 ˇ � 4 ˛/ k3/ u D 0; (2.21)

..guu k4 C 2 guu k3/ u C .2 gu C 2 ˇ/ k4 C .4gu C 4ˇ/ k3/ e
4 x

C ..4guuk1 � 8˛guu
/ u C 8gu
t C 8 ˇ 
t C 8 ıguu/ e
2 x C .2 guuk3 � guuk4/ u

C .�2gu � 2 ˇ/ k4 C .4gu C 4 ˇ/ k3 D 0: (2.22)

Solving system (2.21)-(2.22) we obtain that if g is an arbitrary function the only
symmetries admitted by (2.1) are

� D k1; 
 D k2; � D 0: (2.23)

The generators of this are v1 D @

@x
(corresponding to space translational invariance)

and v2 D @

@t
(time translational invariance). In the following cases (2.1) has extra

symmetries:

(i) If ˛ D 0, g.u/ D �ˇu C k
a.nC1/ .au C b/nC1, a ¤ 0,

� D k1; 
 D k2t C k3; � D � k2

an
.au C b/:
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Besides v1 and v2, we obtain the infinitesimal generator

v3 D t@t � au C b

an
@u:

(ii) If ˛ ¤ 0, ˇ ¤ 0 and g.u/ D au C b,

� D k1; 
 D k2; � D ı.x; t/;

where ı satisfy

˛ıxx � guıx � ˇıx C ıtxx � ıt D 0:

2.4 General Theorem on Conservation Laws

Much of the research on conservation laws centers around applications of Noether’s
theorem, which requires the existence of a Lagrangian. Anco and Bluman developed
a procedure. The advantage of this procedure is that, in the Lagrangian case, it
bypasses the actual formulation of the Lagrangian, and more importantly, it is
applicable to non-Lagrangian systems.

Given a PDE (2.2) a conservation law for (2.2) is a relation of the form

r � C D Dt.C
1/CDx.C

2/ D 0 (2.24)

where C D .C 1; C 2/ represents the conserved flux and density, respectively, and
Dx , Dt denote the total derivative operators with respect to x and t , respectively.
If (2.24) is a conservation law for (2.2), then it can be shown that there exists an
operator � such that

r � C D �.u/F

The operator � is called the characteristic of the conservation law.
The conservation laws determined via Noether’s theorem need to have a

Lagrangian formulation. Noether’s theorem connects conservation laws with
variational symmetries with infinitesimal generators

We use the following theorem on conservation laws proved in [16]. Any Lie
point, Lie-Bäcklund, or non-local symmetry

X D �i .x; u; u.1/; : : :/
@

@xi
C �.x; u; u.1/; : : :/

@

@u
(2.25)
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of Eq. (2.2) provides a conservation law Di.C
i / D 0 for the simultaneous system

(2.2), (2.3). The conserved vector is given by

C i D �iL CW

�
@L
@ui

�Dj

�
@L
@uij

�
C DjDk

�
@L
@uijk

�
� � � �

	

CDj .W /

�
@L
@uij

�Dk

�
@L
@uijk

�
C � � �

	
CDjDk.W /

�
@L
@uijk

� � � �
	

C � � � ;

(2.26)

whereW and L are defined as follows:

W D �� �j uj ; L D vF
�
x; u; u.1/; : : : ; u.s/

�
: (2.27)

The proof is based on the following operator identity (N.H. Ibragimov, 1979):

X CDi.�
i / D W

ı

ıu
CDiN i ; (2.28)

where X is operator (2.25) taken in the prolonged form:

X D �i
@

@xi
C �

@

@u
C �i

@

@ui
C �i1i2

@

@ui1i2
C � � � ;

�i D Di.�/ � ujDi .�
j /; �i1i2 D Di2.�i1/� uj i1Di2.�

j /; : : : :

For the expression of operator N i and a discussion of the identity (2.28) in the
general case of several dependent variables, see [14] (Sect. 8.4.4).

We will write the generators of a point transformation group admitted by (2.1) in
the form

X D �1
@

@t
C �2

@

@x
C �

@

@u

by setting t D x1; x D x2: The conservation law will be written as (2.24)
Now we use the Ibragimov’s Theorem on conservation laws to establish the

conservation laws of (2.1). We have obtained that equation (2.1) is self-adjoint when
it has the following form

ut � uxxt C ˇux C .g.u//x D 0: (2.29)

In this case, the formal Lagragian is

L D v.ut � uxxt � ˛uxx C ˇux C .g.u//x/:

For ˛ and ˇ arbitrary constants, g.u/ arbitrary function and h D C , (2.29) admits
the generator v1 C v2. In this case we obtain trivial conservation laws.
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Equation (2.29) admits the generator

v3 D t@t � 1

an
.au C b/@ u;

and the normal form for this group is

W D � 1

an
.au C b/� t ut :

The vector components are

C1 D tutvxx
3

C uvxx
3n

C bvxx
3an

� uxvx
3n

� tutxvx
3

C uxxv

3n

C kt .au C b/n uxv � 2tutxxv

3
� uv

n
� bv

an

C 2 D � tut tvx
3

� utvx
3n

� utvx
3

C 2tutvtx
3

C 2uvtx
3n

C 2bvtx
3an

� uxvt
3n

� tutxvt
3

C 2tut txv

3
C 2utxv

3n

C 2utxv

3
� kt .au C b/n utv � ku .au C b/n v

n

� bk .au C b/n v

an
(2.30)

Setting v D u in (2.30)

C1 D tutuxx
3

C 2uuxx
3n

C buxx
3an

� .ux/
2

3n
� tutxux

3

C ktu .au C b/n ux � 2tuutxx
3

� u2

n
� bu

an
;

C 2 D � tut tux
3

� 2utux
3n

� utux
3

C 2tuut tx
3

C tututx
3

C 4uutx
3n

C 2uutx
3

C 2butx
3an

� ktu .au C b/n ut

� ku2 .au C b/n

n
� bku .au C b/n

an
: (2.31)

We simplify the conserved vector by transferring the terms of the formDx.: : :/ from
C1 to C2 and obtain

C1 D � .ux/
2

n
� u .a u C b/

a n

C 2 D .2au C b/ utx
an

� k .au C b/nC1 .2a.nC 1/u C bn/

a2n .nC 1/ .nC 2/
(2.32)
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For g.u/ D k3 � .k2 C ˇ k1/ u

k1
, with k1 ¤ 0, ˛ arbitrary constant and h D k1 x C

k2 t C k3 (2.29) admits the generator v1 C v2. In this case, we do as before and we
obtain

C1 D .k2
2 C k1

2/ u

C2 D �˛ .k22 C k1
2/ ux � .k2

2 C k1
2/ ut x � k2

 
k2
2

k1
C k1

!
u (2.33)

For g.u/ D k3 � .k2 C ˇ k1/ u

k1
, with k1 ¤ 0 and ˛ D 0 and h D k1 x C k u C

k2 t Ck3 (2.29) admits the generator v1 C v2. In this case, we proceed as before and
we obtain the conservation law (2.33) with ˛ D 0.

2.5 Conclusions

In this work we have considered a generalized Benjamin-Bona-Mahony-Burgers
equation (2.1). We have determined the subclasses of equations (2.1) which are
self-adjoint, quasi-self-adjoint, and weak self-adjoint. By using a general theorem
on conservation laws proved by Nail Ibragimov we found conservation laws for
some of these partial differential equations without classical Lagrangians.
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Chapter 3
Some Analytical Techniques in Fractional
Calculus: Realities and Challenges

Dumitru Baleanu, Guo-Cheng Wu, and Jun-Sheng Duan

Abstract In the last decades, much effort has been dedicated to analytical aspects
of the fractional differential equations. The Adomian decomposition method and
the variational iteration method have been developed from ordinary calculus
and become two frequently used analytical methods. In this article, the recent
developments of the methods in the fractional calculus are reviewed. The realities
and challenges are comprehensively encompassed.
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3.1 Introduction

We review the basic definitions of the Riemann–Liouville (R–L) and the Caputo
derivatives. For additional details readers can refer to references [19, 21, 30, 58, 60,
61, 65, 70].

Definition 1. Let f .t/ be a function of class C, i.e. piecewise continuous on
.t0;C1/ and integrable on any finite subinterval of .t0;C1/. Then for t > t0,
the Riemann–Liouville integral of f .t/ of ˇ order is defined as

t0I
ˇ
t f .t/ D 1

 .ˇ/

Z t

t0

.t � 
/ˇ�1f .
/d
; (3.1)

where ˇ is a positive real number and  .�/ is Euler’s Gamma function.
The fractional integral satisfies the following equalities,

t0I
ˇ
t t0I

�
t f .t/ D t0I

ˇC�
t f .t/; ˇ � 0; � � 0; (3.2)

t0I
�
t .t � t0/� D  .�C 1/

 .�C � C 1/
.t � t0/

�C�; � � 0; � > �1: (3.3)

Definition 2. Let f .t/ be a function of class C and ˛ be a positive real number
satisfyingm� 1 < ˛ � m,m 2 N

C, where NC is the set of positive integers. Then,
the Riemann–Liouville derivative of f .t/ of order ˛ is defined as (when it exists)

t0D
˛
t f .t/ D dm

dtm

�
t0I

m�˛
t f .t/

�
; t > t0: (3.4)

Defining for complementarity t0D
0
t D I; the identity operator, then t0D

˛
t f .t/ D

f .˛/.t/ if ˛ D m;m D 0; 1; 2; : : : .
Note that the Riemann–Liouville fractional derivative t0D

˛
t f .t/ is not zero for

the constant function f .t/ � C if ˛ > 0 and ˛ … N
C.

For the power functions, the following holds

t0D
˛
t .t � t0/

� D  .�C 1/

 .�� ˛ C 1/
.t � t0/

��˛; (3.5)

where � > �1; 0 � m � 1 < ˛ � m; t > t0:

Definition 3. Let ˛ be a positive real number, m � 1 < ˛ � m, m 2 N
C, and

f .m/.t/ exist and be a function of class C. Then the Caputo fractional derivative of
f .t/ of order ˛ is defined as

t0D
˛
t f .t/ D t0I

m�˛
t f .m/.t/; t > t0: (3.6)

Defining for complementarity t0D
0
t D I; the identity operator, then t0D

˛
t f .t/

D f .˛/.t/ if ˛ D m;m D 0; 1; 2; : : : :
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For the Caputo fractional derivative, the following equality holds

t0D
˛
t .a0t

r C a1t
r�1 C � � � C ar / D 0; m � 1 < ˛ � m; (3.7)

where the degree of the polynomial about t is no more than m � 1, i.e. r � m � 1:

Moreover, the ˛-order integral of the ˛-order Caputo derivative requires the initial
values of the function and its integer order derivatives,

t0I
˛
t t0D

˛
t f .t/ D f .t/ �

m�1X

kD0
f .k/.tC0 /

.t � t0/
k

kŠ
; m � 1 < ˛ � m: (3.8)

Furthermore, for ˇ > ˛ > 0, m � 1 < ˛ � m, we have

t0I
ˇ
t t0D

˛
t f .t/ D t0I

ˇ�˛
t t0 I

˛
t t0D

˛
t f .t/

D t0I
ˇ�˛
t f .t/ �

m�1X

kD0
f .k/.tC0 /

.t � t0/kCˇ�˛

 .k C 1C ˇ � ˛/
: (3.9)

For the Caputo derivative of the power function .t � t0/�, � > 0, if 0 � m� 1 <
˛ � m < �C 1, then we have

t0D
˛
t .t � t0/� D  .�C 1/

 .� � ˛ C 1/
.t � t0/��˛; t > t0 (3.10)

and

t0Dt
˛f .t/ D t0Dt

˛

"
f .t/ �

m�1X

kD0

.t � t0/
k

kŠ
f .k/.tC0 /

#
: (3.11)

3.2 Adomian Decomposition Method

3.2.1 A Review of the Method

The Adomian decomposition method (ADM) [3–7, 24, 40, 40, 83, 84] is a powerful
tool solving both linear and nonlinear functional equations, including ordinary
differential equations (ODEs), partial differential equations (PDEs), integral equa-
tions, integro-differential equations, etc. The ADM provides efficient algorithms for
analytic approximate solutions and numeric simulations for real-world applications
in the applied sciences and engineering. It permits us to solve both nonlinear initial
value problems (IVPs) and boundary value problems (BVPs) [6, 10, 11, 18, 26, 36,
37, 40, 62, 82, 83] without unphysical restrictive assumptions such as required by
linearization, perturbation, and guessing the initial term or a set of basis functions.
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Furthermore the ADM does not require the use of Green’s functions, which
would complicate such analytic calculations since Green’s functions are not easily
determined in most cases. The accuracy of the analytic approximate solutions can
be verified by direct substitution. Advantages of the ADM over Picard’s iterated
method were demonstrated in [72]. Advantages of the ADM in computation were
demonstrated in [86]. A key notion is the Adomian polynomials [7], which are
tailored to the particular nonlinearity to solve nonlinear operator equations.

The ADM solves nonlinear operator equations with any analytic nonlinearity,
including polynomial, exponential, trigonometric, hyperbolic, negative-power, and
even decimal-power nonlinearities [40], providing us with an easily computable,
readily verifiable, and rapidly convergent sequence of analytic approximate solu-
tions.

Let first recall the basic principles of the ADM using an IVP for a nonlinear ODE
in the form

LŒu�CRŒu�CNŒu� D g.t/; (3.12)

where g is the system input and u is the system output, and where L is the linear
operator to be inverted, which usually is just the highest order differential operator,
R is the linear remainder operator, and N is the nonlinear operator, which is
assumed to be analytic.

We emphasize that the choice for L and concomitantly its inverse L�1 are deter-
mined by the particular equation to be solved; hence, the choice is nonunique [40].
Generally, we choose L D dp

dtp
.�/ for pth-order differential equations and thus its

inverseL�1 follows as the p-fold definite integration operator from t0 to t . We have
L�1Lu D u �ˆ, where ˆ incorporates the initial values.

Applying the inverse linear operator L�1 to both sides of (3.12) it gives

u D �.t/ � L�1ŒRŒu�CNŒu��; (3.13)

where �.t/ D ˆC L�1g.
The ADM decomposes the solution u.t/ into a series of solution components,

and then decomposes the analytic nonlinearity NŒu� into the series of the Adomian
polynomials [3, 4, 7, 39, 40, 73]

u.t/ D
1X

nD0
un; N Œu� D

1X

nD0
An; (3.14)

whereAn D An.u0; u1; : : : ; un/ are the Adomian polynomials, which are defined by
the formula [7]

An D 1

nŠ

dn

d�n
N.

1X

kD0
uk�

k/

ˇ̌
ˇ̌
ˇ
�D0

; n � 0: (3.15)
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For convenient reference, we list the first five Adomian polynomials for the
general analytic nonlinearityNŒu� D f .u/ as follows

A0 D f .u0/;

A1 D f 0.u0/u1;

A2 D f 0.u0/u2 C f 00.u0/
u21
2Š
;

A3 D f 0.u0/u3 C f 00.u0/u1u2 C f 000.u0/
u31
3Š
;

A4 D f 0.u0/u4 C f 00.u0/
�

u22
2Š

C u1u3

�
C f 000.u0/

u21u2
2Š

C f .4/.u0/
u41
4Š
:

Several algorithms [7, 71, 73, 81] for symbolic programming have been devised
to efficiently generate the Adomian polynomials quickly and to high orders. New,
efficient algorithms and subroutines in MATHEMATICA for rapid computer-
generation of the Adomian polynomials to high orders have been provided by Duan
in [31–33], including the single variable and multivariable cases.

For the case of the one-variable Adomian polynomials, we list Duan’s Corol-
lary 3 algorithm [33] as follows

A0 D f .u0/ ; An D
nX

kD1
C k
n f

.k/ .u0/; for n � 1; (3.16)

where the coefficients Ck
n are defined recursively as

C1
n D un; n � 1;

C k
n D 1

n

n�kX

jD0
.j C 1/ ujC1C k�1

n�1�j ; 2 � k � n: (3.17)

We emphasize that in this algorithm, the recursion operations for the coefficients
Ck
n do not involve the differentiation, but only require the elementary operations of

addition and multiplication, and are thus eminently convenient for computer algebra
systems such as MATHEMATICA, MAPLE, or MATLAB.

Upon substitution of the Adomian decomposition series for the solution u.t/ and
the series of Adomian polynomials tailored to the nonlinearityNŒu� from (3.14) into
(3.13), we have

1X

nD0
un D �.t/ � L�1

"
R

1X

nD0
un C

1X

nD0
An

#
: (3.18)
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The solution components un.t/ may be determined by one of the several
advantageous recursion schemes, which differ from one another by the choice of
the initial solution component u0.t/, beginning with the classic Adomian recursion
scheme

u0.t/ D �.t/;

unC1.t/ D �L�1ŒRŒun�C An�; n � 0; (3.19)

where Adomian has chosen the initial solution component as u0 D �.t/. The n-term
approximation of the solution is

'n.t/ D
n�1X

kD0
uk.t/: (3.20)

By various partitions of the original initial term and then delaying the contri-
bution of its remainder by different algorithms, we can design alternate recursion
schemes, such as the Adomian–Rach [10,11], Wazwaz [80], Wazwaz-El-Sayed [85],
Duan [31], and Duan–Rach [37, 42] modified recursion schemes for different
computational advantages.

Several researchers [2, 23, 24, 47, 73] have previously proved convergence of
the Adomian decomposition series and the series of the Adomian polynomials.
For example, Cherruault and Adomian [24] have proved convergence of the
decomposition series without appealing to the fixed point theorem, which is too
restrictive for most physical and engineering applications. Furthermore, Abdelrazec
and Pelinovsky [2] have published a rigorous proof of convergence for the ADM
under the aegis of the Cauchy–Kovalevskaya theorem for IVPs. A key concept
is that the Adomian decomposition series is a computationally advantageous
rearrangement of the Banach-space analog of the Taylor expansion series about
the initial solution component function, which permits solution by recursion. A
remarkable measure of success of the ADM is demonstrated by its widespread
adoption and many adaptations to enhance computability for specific purposes,
such as the various modified recursion schemes. The choice of decomposition
is nonunique, which provides a valuable advantage to the analyst, permitting the
freedom to design modified recursion schemes for ease of computation in realistic
systems.

In [5], Adomian introduced the concept of the accelerated Adomian polynomials
OAn. In [12], Adomian and Rach presented two new kinds of modified Adomian

polynomials
�
An and

D
An. Rach [73] gave a new definition of the Adomian polynomi-

als, in which different classes of the Adomian polynomials were defined within the
same premise. Duan [34] presented new recurrence algorithms for these nonclassic
Adomian polynomials. Generalized forms of the Adomian polynomials were also
proposed by Duan [35].

We remark that the domain of the convergence for the decomposition series
solution, like other series solutions, may not always be sufficiently large for
engineering purposes. But we can readily address this issue by means of one of
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the several common convergence acceleration techniques, such as the diagonal Padé
approximants [6,40,67,75,83] or the iterated Shanks transform [6,41]. For example,
the MATHEMATICA built-in command “PadeApproximant” can be used to easily
generate the Padé approximants.

Rach and Duan [75] presented the combined solution of the near-field and
far-field approximations by the Adomian and asymptotic decomposition methods,
where the Padé approximant technique was used in the mid-field region as nec-
essary. In the ADM, Duan’s parametrized recursion scheme [31, 37, 42] was also
proposed in order to obtain decomposition solutions with large effective regions of
convergence.

The multistage ADM and its numeric schemes were considered in [13,15,36,38].
In [36], Duan and Rach considered one-step numeric algorithms for IVPs based on
the ADM and the Rach–Adomian–Meyers MDM, respectively. In [38] higher-order
numeric schemes based on the Wazwaz-El-Sayed modified ADM were proposed.

Duan and Rach [37] and Duan et al. [43, 44] have introduced new error analysis
formulas for the approximate decomposition solutions when the exact solution is
unknown in advance. When the exact solution is known in advance, we can use
the usual error function, e.g. [45]. However when the exact solution is unknown in
advance, we instead compute the following error remainder function

ERn .t/ D LŒ'n .t/�CRŒ'n .t/�CNŒ'n .t/� � g .t/ ; (3.21)

which we recommend as the best objective measure of how well the sequence of
solution approximants 'n .t/ satisfy the original nonlinear differential equation. In
our error analysis, we also compute the maximal error remainder parameter

MERn D max
a� t � b

jERn .t/j ; (3.22)

where the logarithmic plots of the maximal error remainder parameter versus the
number of solution components per solution approximant characterize the rate of
convergence, e.g. a linear relation signifies an exponential rate of convergence.
Thus our new approach yields an analytic, readily verifiable and rapidly convergent
approximation to the solution of the authentic nonlinear differential equation that
represents the actual physical process under consideration.

For generalization and applications of the ADM to linear or nonlinear and
ordinary or partial fractional differential equations (FDEs), see [16,25,39,40,48,67,
77, 78, 92]. A numeric scheme solving the FDEs based on the ADM was designed
in [63].

Example 1. Consider the IVP for the nonlinear FDE with a composite nonlinearity

0D
˛
t u.t/C 0D

ˇ
t u.t/C e�u2.t/ D 1; (3.23)

u.0/ D 1; u0.0/ D �1; (3.24)

where ˛ and ˇ are real numbers satisfying 1 < ˛ � 2 and 0 < ˇ � 1.
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Applying the fractional integral operator 0I
˛
t to both sides of (3.23) yields

u.t/ D 1 � t C t˛

 .1C ˛/
C t˛�ˇ

 .˛ � ˇ C 1/
� 0I

˛�ˇ
t u.t/ � 0I

˛
t .e

�u2.t//; (3.25)

where we have used the formula 0I
˛
t 0D

ˇ
t u.t/ D 0I

˛�ˇ
t u.t/ � u.0/ t˛�ˇ

 .˛�ˇC1/ : We

decompose the solution as u.t/ D P1
nD0 un and the nonlinearity as e�u2.t/ DP1

nD0 An, where the Adomian polynomials in terms of the solution components
un are

A0 D e�u20 ;

A1 D �2e�u20u0u1;

A2 D e�u20
��u21 C 2u20u

2
1 � 2u0u2

�
;

A3 D e�u20

�
2u0u

3
1 � 4

3
u30u

3
1 � 2u1u2 C 4u20u1u2 � 2u0u3

�
;

A4 D e�u20

�
u41
2

� 2u20u
4
1 C 6u0u

2
1u2 � 4u30u

2
1u2 � u22 C 2u20u

2
2 � 2u1u3

C4u20u1u3 � 2u0u4 C 2

3
u40u

4
1

�
;

: : : :

Substituting the decompositions of the solution and the nonlinearity into (3.25), and
using Wazwaz’s modified recursion scheme [80, 83] for the solution components in
order to develop easy-to-integrate series, we calculate

u0 D 1; (3.26)

u1 D �t C t˛

 .1C ˛/
C t˛�ˇ

 .˛ � ˇ C 1/
� 0I

˛�ˇ
t u0 � 0I

˛
t A0; (3.27)

unC1 D � 0I
˛�ˇ
t un � 0I

˛
t An; n D 1; 2; � � � ; (3.28)

where the recurrence operation involves fractional integrations. Further computa-
tions lead to

u1 D �t C .�1C e/t˛

e�.1C ˛/
;

u2 D � 2t1C˛

e�.2C ˛/
C t1�ˇC˛

�.2 � ˇ C ˛/
� 2t2˛

e2�.1C 2˛/
C 2t2˛

e�.1C 2˛/

� t�ˇC2˛

�.1� ˇ C 2˛/
C t�ˇC2˛

e�.1 � ˇ C 2˛/
;

: : : :
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The nth-stage solution approximant is 'n.t I˛; ˇ/ D Pn�1
kD0 uk . For the case of

integer orders, i.e. ˛ D 2 and ˇ D 1, we list the computed 5th-stage solution
approximant

'5.t I 2; 1/ D 1 � t C
�
1 � 1

2e

�
t2 C

�
�1
3

� 1

6e

�
t3 C

�
1

12
� 1

12e2
C 1

8e

�
t4

C
�

� 1

120
� 1

20e2
C 3

40e

�
t5 C

�
� 1

72e3
C 13

180e2
� 5

72e

�
t6

C
�

1

280e3
� 1

45e2
C 43

2520e

�
t7

C
�

� 1

2016e4
� 1

1440e3
C 3

1120e2
� 1

672e

�
t8:

For the case of ˛ D 1:5 and ˇ D 0:5, we list the 4th-stage solution approximant

'4.t I 1:5; 0:5/ D 1 � t C 4.�1C e/t3=2

3e
p
�

C t2

2
� 8.1C e/t5=2

15e
p
�

C
�

�1
6

� 1

3e2
C 1

3e

�
t3 C

�
16

105
p
�

C 16

105e
p
�

�
t7=2

C
�

� 5

24e2
C 1

24e

�
t4

C
�

�1024.�1C e/2

2835e3�3=2
� 128

945e3
p
�

C 128

945e2
p
�

�
t9=2:

3.2.2 The Rach–Adomian–Meyers Modified
Decomposition Method

In 1992, Rach et al. [76] proposed a modified decomposition method (MDM) based
on the nonlinear transformation of series by the Adomian–Rach theorem [8, 9]:

If u.t/ D
1X

nD0
an.t � t0/n; then f .u.t// D

1X

nD0
An.t � t0/

n; (3.29)

where An D An.a0; a1; : : : ; an/ are the Adomian polynomials in terms of the
solution coefficients. The Rach–Adomian–Meyers MDM combines the power series
solution and the Adomian–Rach theorem and has been efficiently applied to solve
various nonlinear models [6]. Higher-order numerical one-step methods based on
the Rach–Adomian–Meyers MDM were developed by Adomian et al. [13] and Duan
and Rach [36, 38].
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For the FDEs as we will be discussed in (3.33), the solution can be expressed as
a generalized power series in the form of

u.t/ D
1X

nD0
an.t � t0/˛n; (3.30)

where ˛ is a real number. In this case, we have the following generalized Adomian–
Rach theorem [39, 40]

f .

1X

nD0
an.t � t0/˛n/ D

1X

nD0
An.t � t0/˛n; (3.31)

where An D An.a0; a1; : : : ; an/ are the Adomian polynomials in terms of the
solution coefficients.

The multivariable version of the generalized Adomian–Rach theorem is

f .

1X

nD0
a1;n.t � t0/

˛n;

1X

nD0
a2;n.t � t0/˛n; : : : ;

1X

nD0
am;n.t � t0/˛n/

D
1X

nD0
An.t � t0/

˛n; (3.32)

where f is an m-ary analytic function, then

An D An.a1;0; a1;1; : : : ; a1;nI a2;0; a2;1; : : : ; a2;nI : : : I am;0; am;1; : : : ; am;n/
are the m-variable Adomian polynomials [6, 8, 9, 32, 33, 40].

We consider the IVP for the nonlinear FDE

q�1X

kD0
˛k � t0D

q�k
p

t u.t/C ˛qu.t/C ˛qC1f .u.t// D g.t/; t0 < t < T; (3.33)

u.t0/ D C0; u0.t0/ D C1; : : : ; u.m�1/.t0/ D Cm�1; (3.34)

where p; q are positive integers, p � 2, satisfying m � 1 <
q

p
� m, m 2 N

C;
t0; T; Ci ; i D 0; 1; : : : ; m � 1; and ˛n; n D 1; 2; : : : ; q C 1; are real constants and
˛0 D 1; f is an analytic nonlinear function and g.t/ is the system input function
that can be written in the form of a generalized power series [39]

g.t/ D
1X

nD0
gn.t � t0/n=p: (3.35)

We decompose the solution as the form

u.t/ D
1X

nD0
an.t � t0/n=p: (3.36)
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Considering the initial conditions in (3.34), we take

a0 D C0; ap D C1; a2p D C2

2Š
; : : : ; a.m�1/p D Cm�1

.m � 1/Š
; (3.37)

and

aj D 0; for all j � q � 1 and j ¤ kp; k D 0; 1; 2; : : : ; m � 1: (3.38)

Thus the solution (3.36) may be written as

u.t/ D
m�1X

kD0
akp.t � t0/

k C
1X

nDq
an.t � t0/n=p: (3.39)

Substituting (3.35), (3.36), and (3.39) into (3.33) and using the generalized
Adomian–Rach theorem (3.31) we can obtain a recursion scheme for the solution
coefficients an.

The Padé approximants can be directly applied to an analytic function, such as a
polynomial approximation �n.t/ D Pn�1

kD0 aktk: The Padé approximant of �n.t/ is
a rational function in t . We denote the Œm=m� diagonal Padé approximant of �n.t/
in t by Œm=m�f�n.t/g.

For the n-term approximation �n.t/ D Pn�1
kD0 akt�k of the solution for an FDE,

where usually � is not an integer, we need to indirectly apply the Padé approximant
technique. We first make the replacement t� D s, so �n.t/ becomes

N�n.s/ D
n�1X

kD0
aks

k: (3.40)

Calculating the diagonal Padé approximants for N�n.s/ in s, then transforming s D
t�, we obtain the desired result, denoted by

PadKem=mf�n.t/g WD Œm=m�f N�n.s/g
ˇ̌
sDt� ; (3.41)

where usually we take m D .n � 1/=2 if n D 3; 5; 7; : : : , and m D n=2 if n D
4; 6; 8; : : : .

We remark that in the generalized MDM the recurrence scheme for the coeffi-
cients an does not involve integration, while in the ADM the recurrence scheme
for the solution components un does. This offers a computational advantage for the
MDM [39].

Duan et al. [46] investigated eigenvalue problems for fractional ODEs. Jafari and
Daftardar-Gejji [56, 57] considered a system of nonlinear FDEs and the nonlinear
fractional BVPs using the ADM, including the fractional planar Bratu-type problem

D˛
xu.x/C �eu.x/ D 0; 1 < ˛ � 2; 0 � x � 1;

u.0/ D u.1/ D 0:
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Linear and nonlinear fractional PDEs have also been solved using the ADM. Here
we list the coupled Burgers equations with time- and space-fractional derivatives
considered by Chen and An [22]

D˛
t u D L2xu C 2uD˛

xu � Lx.uv/; 0 < ˛ � 1; (3.42)

D
ˇ
t u D L2xv C 2vDˇ

x v � Lx.uv/; 0 < ˇ � 1; (3.43)

subject to the initial conditions

u.x; 0/ D f .x/; v.x; 0/ D g.x/;

where we have adopted the notation Lnx D @n

@xn
.

For a comprehensive bibliography featuring many new engineering applications
and a modern review of the ADM, see [40, 74].

3.3 Variational Iteration Method for Fractional Calculus

The variational iteration method (VIM) was developed in (1999) [50, 51]. The
method doesn’t require specific treatments as in the ADM and perturbation tech-
niques for the nonlinear terms. It has been shown by many authors that this method
provides improvements over existing analytical techniques. Several review articles
have been dedicated to the topic [52,53]. Let’s firstly revisit the basics of the method.

3.3.1 Basic Principles of the Variational Iteration Method

The basic character of the method is to construct a correction functional for the
system (3.12) which reads

unC1.t/ D un.t/C
Z t

0

�.t; 
/.LŒun.
/�CNŒQun.
/� � g.
//d


where �.t; s/ is a general Lagrange multiplier. It can be identified optimally via
variational theory, un is the n-th approximate solution, and un denotes a restricted
variation, i.e., ı Qun D 0.

For example, consider the following simple linear equation

du

dt
C u.t/ D 0; u.0/ D 1: (3.44)

According to the VIM’s rule, construct the correction functional

unC1.t/ D un.t/C
Z t

0

�.t; 
/.
dun
d


C un.
//d
 (3.45)



3 Some Analytical Techniques in Fractional Calculus: Realities and Challenges 47

In order to find necessary extremum conditions, make the functional stationary with
respect to un.t/. Take the variational derivative ı to both sides of (3.45)

ıunC1.t/ D ıun.t/C ı

Z t

0

�.t; 
/.
dun
d


C Qun/d
 (3.46)

Through the integration by parts and calculus of variations, one can derive

ıunC1.t/ D ıun.t/C ıŒ�.t; 
/un jt0 �
Z t

0

@�.t; 
/

@

und
�C ı

Z t

0

�.t; 
/Qund


D ıun.t/C �.t; 
/ j
Dt ıun �
Z t

0

@�.t; 
/

@

ıund
 C

Z t

0

�.t; 
/ı Qund
 (3.47)

The condition ıunC1.t/ D 0 leads to the system

1C �.t; 
/ j
DtD 0;
@�.t; 
/

@

D 0;

from which the Lagrange multiplier can be identified as

�.t; 
/ D �1:

As a result, the variational iteration formula (3.45) reads

unC1.t/ D un.t/ �
Z t

0

.
dun
d


C un.
//d
 (3.48)

Remark.

I. When constructing the variational iteration formulae, we note that the integra-
tion by parts plays a crucial role in the identification of the Lagrange multipliers;

II. There may be various choices of the Lagrange multipliers for a given equation.
Generally speaking, the more explicit the Lagrange multiplier is, the higher
accuracy the approximate solution. For example, if we use a Lagrange multiplier
in (3.44) as �.t; 
/ D �e
�t and only within one step, we can obtain the exact
solution.

3.3.2 Formation of the Problems in Fractional Calculus

The VIM was first applied to the fractional system by He [50] as early as 1998

d2u

dt2
C 0D

1
2
t u.t/C "u.t/3 D 0; 0 < " � 1: (3.49)
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u.t/ in the term 0D˛
t u.t/ was assumed as a restricted variation in the correction

functional and the variational iteration formula was given as
8
<

:
unC1.t/ D un.t/C R t

0
�.t; 
/. d

2un
d
2

C 0D
1
2

 un.
/C "un.
/3/d
;

�.t; 
/ D 
 � t:
(3.50)

In later years, the methodology was suggested as a sample for solving time
fractional PDEs [55,66,68,69,94]. See, for example, the application to the Burgers
equation [55]. The variational iteration formula was identified as

8
<

:
unC1.t/ D un.t/C R t

0
�.t; 
/.0D

˛

 un C unun;x � un;xx/d
;

�.t; 
/ D �1:
(3.51)

But we can check the approximate solution here doesn’t tend to the exact one for
n ! 1. The main reason is that the Lagrange multiplier there wasn’t identified
explicitly.

In view of this point, several modified versions have been suggested. For the
nonlinear FDEs,

0D˛
t u C f .t; u/ D 0; 0D

˛
t u C f .t; u/ D 0; (3.52)

Ghorbani [49] embedded the parameter h to control the iteration scheme’s conver-
gence

unC1.t/ D un.t/C h 0I
˛. 0D˛


 un C f .
; un//d
 (3.53)

where h is a constant.
Yang et al. [93] proved the convergence of the variational iteration formula

unC1.t/ D un.t/ �
Z t

0

.t � 
/.m�1/

 .m/
.
dmu

d
m
C0 D

m�˛

 f .
; un//d
 (3.54)

wherem � 1 < ˛ � m.
But some other drawbacks arise in their applications. The parameter h cannot

be chosen arbitrarily in (3.53) and the approximate solutions (3.54) should satisfy
the property 0D

m�˛
t 0D

˛
t un D 0D

m
t un which generally cannot hold for the Caputo

derivative.

3.3.3 Recent Developments

The identification of the Lagrange multiplier is the most crucial step in the VIM. In
the fractional calculus, it is difficult to identify the Lagrange multiplier according to
the classical VIM’s rule [51]. In order to overcome the drawbacks in the applications
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to FDEs, two accurate ways [87–91] are suggested by means of Laplace transform.
In this section, let’s revisit the methodology and the proof.

3.3.3.1 VIM-I Using Laplace Transform

Firstly, an iteration formula for finding the solution of an algebraic equation

f .u/ D 0 (3.55)

can be constructed as

unC1 D un C �f .un/: (3.56)

The optimality condition ıunC1 D 0 leads to

� D � 1

f 0.un/
: (3.57)

For a given initial value u0, we can find the approximate solution unC1 by the
iterative scheme for (3.55)

unC1 D un � f .un/

f 0.un/
; f 0.u0/ ¤ 0; n D 0; 1; 2; : : : : (3.58)

This algorithm is well known as Newton–Raphson method and has quadratic
convergence. Now, we extend this idea for finding the unknown Lagrange multiplier.
The main step is to first take Laplace transform to (3.12). The linear part is assumed
as LŒu� D dmu=dtm. Then, (3.12) is transformed into an algebraic equation as

sm Nu.s/ � u.m�1/.0/� : : : � sm�1u.0/C L ŒN Œu�� � L Œg.t/� D 0 (3.59)

where Nu.s/ D L Œu.t/� D
1R

0

e�stu.t/dt:

The main iterative scheme involving the Lagrange multiplier can be con-
structed as

NunC1.s/ D Nun.s/C �.s/Œsmun.s/� u.m�1/.0/� : : : � sm�1u.0/

CL ŒN Œun� � g.t/��: (3.60)

One can derive a Lagrange multiplier as

�.s/ D � 1

sm
: (3.61)
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With the inverse-Laplace transform L �1, the iteration formula (3.60) can be
explicitly given as

unC1.t/ D u0.t/ � L �1Œ 1
sm

L ŒN Œun���; (3.62)

where u0.t/ the initial iteration can be determined by

u0.t/ D u.0/C u0.0/t C : : :C u.m�1/.0/tm�1

.m � 1/Š C L Œ
1

sm
L Œg.t/��: (3.63)

Example 2. [89] Consider the relaxation oscillator equation

0D
˛
t u C !˛u D 0; u.0/ D 1; u0.0/ D 0; 0 < t; 0 < ˛ < 2; 0 < !: (3.64)

It was found to have the exact solution E˛..�!t/˛/ [64] and E˛.z/ is the Mittag-
Leffler function.

With Laplace transform, we get the following iteration formula

NunC1.s/ D Nun.s/C �.s/Œs˛ Nun.s/� u.0/s˛�1 � u0.0C/s˛�2 C !˛L Œun��: (3.65)

Setting L Œun.t/� as a restrict variation term, the Lagrange multiplier can be
identified as

�.s/ D � 1

s˛
: (3.66)

The approximate solution of (3.64) can be given as

unC1.t/ D u0.t/ � L �1Œ!˛
s˛

L Œun�� (3.67)

which reads

u0.t/ D 1;

u1.t/ D 1 � !˛t˛

 .1C˛/ ;
u2.t/ D 1 � !˛t˛

 .1C˛/ C !2˛t2˛

 .1C2˛/ ;
:::

(3.68)

For n ! 1;un.t/ rapidly tends to the exact solution.

3.3.3.2 VIM-II Using Laplace Transform

Theorem 1. [87, 91] The fractionalized system (3.12)

0D
˛
t u CRŒu�CNŒu� D g.t/; (3.69)
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has one variational iteration formula

unC1 D un �
Z t

0

.t � 
/˛�1

 .˛/
. 0D

˛

 un CRŒun�CNŒun� � g.
//d
; 0 < ˛:

(3.70)

Proof. We can construct a correction functional through the R–L integration

unC1 D un C0 I
˛
t �.t; 
/Œ 0D

˛

 un CRŒun�CNŒun� � g.
/�: (3.71)

Take Laplace transform to both sides

NunC1.s/ D Nun.s/C LŒ0I ˛t �.t; 
/.C0 D˛

 un CRŒun�CNŒun� � g.
/�: (3.72)

We consider the term

0I
˛
t Œ�.t; 
/ 0D

˛
t un� D 1

 .˛/

Z t

0

.t � 
/˛�1�.t; 
/ 0D˛

 un.
/ d
: (3.73)

Setting the Lagrange multiplier �.t; 
/ D �.X/=XDt�
 ; (3.73) becomes a
convolution of the function a.t/ D �.t/t˛�1ı .˛/ and the term 0D

˛
t un.t/: This

strategy was meanwhile suggested in the two-point value problems of differential
equations in [59].

Making the correction functional stationary with respect to Nun.s/ in (3.72), we
can get

ı NunC1.s/ D ı Nun.s/C ıŒ Na.s/s˛ Nun.s/�
m�1X

kD0
u.k/.0C/s˛�1�k� D .1C Na.s/s˛/ı Nun.s/:

(3.74)

The extremum condition ı NunC1.s/ D 0 requires 1C Na.s/s˛ D 0. With the inverse
Laplace transform, we can have

a.t/ D L �1Œ Na.s/� D � t˛�1

 .˛/
; 0 < ˛: (3.75)

As a result, the Lagrange multiplier can be explicitly identified as

�.t; 
/ D �1 (3.76)

and the iteration formula is given as

unC1 D un�0I
˛
t Œ 0D
un CRŒun�CNŒun� � g.
/�; 0 < ˛:

This completes the proof.
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For ˛ D 2, we can check the variational iteration formula (3.50)’s validness
since it is a special case of (3.70). On the other hand, we only derive the simplest
Lagrange multiplier �.t; 
/ D �1 here. In fact, more explicit Lagrange multipliers
can be identified if more terms inRŒun� of (3.12) (if it exists) are used. For example,
we can derive a variational iteration formula

unC1 D un �
tZ

0

.t � 
/˛�1E˛�ˇ;˛.�.t � 
/˛/. 0D
˛

 un C 0D

ˇ

 un C f .
; un//d
;

0 < ˇ < ˛ (3.77)

for a multi-term FDE

0D
˛
t u C 0D

ˇ
t u C f .t; u/ D 0; 0 < t; 0 < ˇ < ˛: (3.78)

For ˛ D 1; ˇ D 0, and ˛ D 2; ˇ D 0; (3.77) reduces to the formulae in [54]

8
<̂

:̂
unC1 D un C

tR

0

�.t; 
/.u.
0/
n C un C f .
; un//d
;

�.t; 
/ D �.t � 
/˛�1E˛�ˇ;˛.�.t � 
/˛�ˇ/
ˇ̌
˛D1;ˇD0 D �e�.t�
/

(3.79)

and
8
<̂

:̂

unC1 D un C
tR
0

�.t; 
/.u.2/n C un C f .
; un//d
;

� D �.t � 
/˛�1E˛�ˇ;˛.�.t � 
/˛�ˇ/
ˇ̌
˛D2;ˇD0 D sin.
 � t/:

(3.80)

For the details, readers are referred to our recent work [91].

Example 3. [91] The VIM is applied to the time-fractional Burgers equation

8
<

:
0D

˛
t u C u @u

@x
D v @

2u
@x2
; 0 < ˛ � 1;

u0 D u.x; 0/ D g.x/ D sin.2�x/; u.0; t/ D u.1; t/ D 0

(3.81)

where u is the velocity and v is the viscosity coefficient of the flow.
We can have the following variational iteration formula from Theorem 1

unC1 D un �
tZ

0

.t � 
/˛�1

 .˛/
. 0D

˛

 un C un

@un
@x

� v
@2un
@x2

/d
: (3.82)

The successive approximate solutions can be obtained
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Fig. 3.1 The velocity of the flow for ˛ D 0:5 and v D 0:5 [91]

u0 D g.x/ D g;

u1 D g � .gg0 � vg.2//
t˛

 .˛ C 1/
;

u2 D g � .gg0 � vg.2//
t˛

 .1C ˛/
C .2gg02 C g2g.2/

�2vgg.3/ � 4vg0g.2/ C v2g.4//
t2˛

 .1C 2˛/

�.gg0 � vg.2//.g02 C gg.2/ � vg.3//
 .1C 2˛/

 2.1C ˛/

t3˛

 .1C 3˛/
;

::: (3.83)

where g0 D dg

dx
and g.m/ D dmg

dxm
: We get the approximate solution u2 as the second

term approximation. For g.x/ D sin.2�x/ and the fractional order ˛ D 0:5;

Figs. 3.1 and 3.2 show the velocity of the flow at the various viscosity coefficients v.

Remark. As we mentioned in the Sect. 3.3.1, the classical VIM should use the
integration by parts in the identification of the Lagrange multipliers. Sections 3.3.1
and 3.3.2 provide two ways to calculate the Lagrange multipliers more accurately
but without using the integration by parts. Both of the two VIMs lead to the same
approximate solutions. They have different advantages, respectively.
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Fig. 3.2 The velocity of the flow for ˛ D 0:5 and v D 1:5

For the VIM-I, the correction functional is constructed by Laplace transform
instead an integral. In this way, the Lagrange multipliers can be readily given in
form of complex variable s and the initial iteration solution also can be easily
determined. However, readers need to be familiar with the numerical inverse of
Laplace transform.

In the VIM-II, the correction functional is constructed through the Riemann-
Liouville integral which strictly follows the classical VIM’s rule. In order to avoid
the using of the integral by parts in the fractional case, the convolution of Laplace
transform is applied to identify the Lagrange multipliers.

3.3.4 The Coupled Analytical Method Based
on the VIM and the ADM

The VIM and the ADM have their own merits. Abbasbandy [1] initially modified
the variational iteration method by using the Adomian series. The Adomian series
treated the nonlinear terms which can improve the efficiency. The coupled methods
can fully use the methods’ advantages.

Example 4. More generally, we can consider the following type

0D
˛
t u.t/ D 2u.t/2 C t; u.0/ D 0; 0 < ˛ � 1: (3.84)
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The correction functional can be constructed by Laplace transform

unC1.t/ D un.t/C L �1Œ�.s/L Œ 0D
˛
t un � 2un.
/

2 � t ��: (3.85)

With the identified Lagrange multiplier �.s/ D �1=s˛; we can derive the iteration
formula

unC1.t/ D t1C˛

 .˛ C 2/
C 2L �1Œ

1

s˛
L Œu2n��: (3.86)

In order to decompose the term u2n, assume u D P1
iD0 vi and the n-th order

approximation is un D Pn
iD0 vi . We can give the recurrence scheme involving the

Adomian series

vnC1.t/ D 2L �1Œ
1

s˛
L ŒAn��;

v0.t/ D t1C˛

 .˛ C 2/
: (3.87)

As a result, we can obtain the approximate solutions successively as

u0.t/ D t1C˛

 .˛ C 2/
;

u1.t/ D t1C˛ .˛ C 2/ .3C 3 ˛/C 2  .2 ˛ C 3/t3˛C2

 .3C 3 ˛/ .˛ C 2/2
;

::: (3.88)

Through the defined remainder function (3.21)

g.t/ D 0D
˛
t un.t/ � 2un.t/

2 � t; (3.89)

we can illustrate the higher order approximation’s validness in Fig. 3.3.

3.3.5 New Numerical Schemes Using the VIM

For the FDEs with multi-terms, the explicit Lagrange multiplier can be given in
form of the Mittag-Leffler functions and has longer memory. However, the analytical
calculation of the approximate solutions becomes even impossible for a linear FDE.
In our recent work [79], we consider the numerical methods when the Lagrange
multiplier is complicated.
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Fig. 3.3 The error remainder function g.t/ for ˛ D 0:8 and n D 6

Example 5. The Bagley–Torvik equation of fractional order reads

d2u

dt2
C 0D

˛
t u C u.t/ D f .t/; 1 < ˛ � 2; u.0/ D 0; u0.0/ D 0: (3.90)

It was found to have the exact solution [70]

Z t

0

1X

jD0

.�1/j
j Š

.t � 
/2jC1E.j /
2�˛;2C j̨ .�.t � 
/2�˛/f .
/d
 (3.91)

and E.j /

˛;ˇ.t/ is defined as

E
.j /

˛;ˇ.t/ D dj

dtj
E˛;ˇ.t/ D

1X

kD0

.k C j /Štk

kŠ .˛k C j̨ C ˇ/
:

We can obtain the following variational iteration formulae, respectively

8
<

:
unC1.t/ D u0.t/C R t

0 �.t; 
/.0D
˛
t un C un � f .
//d
; u0.t/ D 0;

�.t; 
/ D 
 � t
(3.92)
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Fig. 3.4 Comparison among the numerical solutions using the predictor–corrector method and the
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and
8
<

:
unC1.t/ D u0.t/C R t

0 �.t; 
/.un.
/� f .
//d
; u0.t/ D 0;

� D .
 � t/E2�˛;2.�.t � 
/2�˛/:
(3.93)

From the convergence conditions [79], the iteration formulae lead to the integral
equation accordingly

u.t/ D
Z t

0

.
 � t/.0D
˛
t u.
/C u.
/� f .
//d
 (3.94)

and

u.t/ D
Z t

0

.
 � t/E2�˛;2.�.t � 
/2�˛/.u.
/� f .
//d
: (3.95)

For the variational iteration formula (3.92), one can easily obtain the approximate
solutions. But in the variational iteration formula (3.93), the Lagrange multiplier
is complicated and the analytical calculation by hand becomes tedious and even
impossible with symbolic computation. As a result, we consider the numerical
discretization of the equivalent integral equation. The Adams–Moulton formula
and the predictor–corrector approach [27, 29] are adopted to establish a numerical
scheme and the numerical results in Fig. 3.4 show its efficiency.



58 D. Baleanu et al.

3.4 Conclusions

In the last decades, the ADM and the VIM have been two often used analytical
methods in the area of fractional calculus. We have presented a contemporary review
of the ADM and the VIM in the FDEs and discussed its utility and advantages for
solving linear or nonlinear FDEs. The efficiency of the ADM is greatly increased
since the new algorithms for the Adomian polynomials [31–33]. In view of the
recent developments, some new applications become possible.

• Approximate solutions of other fractional models with the ADM and the VIM

Recently, some models with fractional derivatives newly appear in applied
sciences and describe the nonlocal effects characterized by the nonlocal structure
of the fractional derivatives. See, for example, the fractional delay equations[17],
the fractional fuzzy equations[14], and the fractional sequential equations[20]. The
two methods can be used to analytically investigate these modes and the authors
believe that they can play the same role as that in ordinary calculus.

• New numerical schemes with the ADM and the VIM

The combined solution of the near-field and far-field approximations by
the Adomian and asymptotic decomposition methods was presented in [75].
The parametrized recursion scheme [31, 37, 42] was also proposed to obtain
decomposition solutions with large effective regions of convergence. The multistage
ADM and its numeric schemes were considered in [13, 15, 36, 38]. For the FDEs,
the ADM with the convergence acceleration techniques, such as the diagonal
Padé approximants or the iterated Shanks transform was considered in [41, 67].
A numeric scheme solving the FDEs based on the ADM was designed in [63]. For
a comprehensive bibliography featuring many new engineering applications and a
modern review of the ADM, see [40, 74].

The VIM provides a successive iteration formulae for the FDEs in Sect. 3.3. With
the convergence conditions, the formula can lead to an integral equation. Since there
may be various choices of the Lagrange multipliers in the VIM, rich equivalent
integral equations can be derived. Choosing the optimal one, the accuracies of the
approximate solutions can be improved. Furthermore, numerical methods become
more convenient since there are no terms containing fractional derivatives and this
idea can be further extended to PDEs of fractional order. This chapter mainly
concentrates on the analytical methods, for the numerical aspects and the analysis
of the FDEs, readers are referred to the monographs [19, 28].
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Chapter 4
Application of the Local Fractional Fourier
Series to Fractal Signals

Xiao-Jun Yang, Dumitru Baleanu, and J. A. Tenreiro Machado

Abstract Local fractional Fourier series is a generalized Fourier series in fractal
space. The local fractional calculus is one of useful tools to process the local
fractional continuously non-differentiable functions (fractal functions). Based on
the local fractional derivative and integration, the present chapter is devoted to
the theory and applications of local fractional Fourier analysis in generalized
Hilbert space. We recall the local fractional Fourier series, the Fourier transform,
the generalized Fourier transform, the discrete Fourier transform and fast Fourier
transform in fractal space.
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Keywords Local fractional Fourier series • Local fractional calculus • Local
fractional Fourier transform • The generalized local fractional Fourier transform •
Discrete local fractional Fourier transform • Fast local fractional Fourier trans-
form • Fractal space

4.1 Introduction

Fourier analysis [1–6] is a mathematical method applied to transform a periodic
function with many applications in physics and engineering. It had been used to
a wider variety of field in the sciences and in engineering, image and signal pro-
cessing, containing electrical engineering, quantum mechanics, neurology, optics,
acoustics, oceanography, and so on, and after improved and expanded upon it, its
general field was come to be known as the field of harmonic analysis [7, 8].

In mathematics, in the area of harmonic analysis, the fractional Fourier transform
(FRFT) [9] is a linear transformation generalizing the Fourier transform. The FRFT
[10–18] can be used to define fractional convolution, correlation, and other opera-
tions, and can also be further generalized into the linear canonical transformation
(LCT).

However, the above referred results can’t process the non-differentiable time-
frequency functions on a fractal set (also local fractional continuous functions). The
theory of local fractional calculus (also called fractal calculus [19–51]) is one of
the useful tools to handle the fractal and continuously non-differentiable functions,
and was successfully applied in describing physical phenomena [22, 23, 26–28, 31–
33, 35, 38–40, 42, 44, 45, 47]. Local fractional Fourier analysis [36, 37] that is
derived from the local fractional calculus is a generalization of the Fourier analysis
in fractal space. Local fractional calculus has played an important role in handling
non-differentiable functions.

The aim of this chapter is investigated the theory and applications of the local
fractional Fourier series. The organization of this work is as follows. In Sect. 4.2,
the preliminary results for the local fractional calculus are investigated. The theory
of local fractional Fourier series is presented in Sect. 4.3. Section 4.4 is devoted to
theory of the local FRFT in fractal space. Theory of the generalized local FRFT in
fractal space is considered in Sect. 4.5. The discrete local FRFT in fractal space is
studied in Sect. 4.6. The fast local FRFT in fractal space is considered in Sect. 4.7.
The conclusion is in Sect. 4.8.

4.2 Preliminary Results

4.2.1 Local Fractional Continuity of Functions

Definition 1. If there is [36–41]

jf .x/ � f .x0/j < 	˛ (4.1)
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with jx � x0j<ı, for ", ı > 0 and ", ı 2 R. Now f (x) is called local fractional
continuous at x D x0, denote by lim

x!x0
f .x/ D f .x0/. Then f (x) is called local

fractional continuous on the interval (a,b), denoted by [36–41, 43]

f .x/ 2 C˛ .a; b/ : (4.2)

Lemma 1. Let F be a subset of the real line and be a fractal. If f : (F,d) ! (�,d) is
a bi-Lipschitz mapping, then there is for constants �, 
 > 0 and F � R,

�sHs.F / � Hs .f .F // � 
sHs.F / (4.3)

such that for all x1, x2 2 F,

�˛jx1 � x2j˛ � jf .x1/ � f .x2/j � 
˛jx1 � x2j˛: (4.4)

Hence, we have

jf .x1/ � f .x2/j � 
˛jx1 � x2j˛ (4.5)

such that

jf .x1/� f .x2/j < 	˛: (4.6)

Notice that ˛ is fractal dimension. This result is directly deduced from fractal
geometry [38, 44].

4.2.2 Local Fractional Derivative and Integration

Definition 2. Setting f (x) 2 C˛(a,b), local fractional derivative of f (x) of order ˛ at
x D x0 is defined by [35–44, 46–49]

f .˛/ .x0/ D d˛f .x/

dx˛
jxDx0 D lim

x!x0

�˛ .f .x/ � f .x0//
.x � x0/

˛ ; (4.7)

where�˛(f (x) � f (x0)) Š�(1 C˛)�(f (x) � f (x0)). For any x 2 (a, b), there exists

f .˛/.x/ D Dx
.˛/f .x/; (4.8)

denoted by

f .x/ 2 Dx
.˛/ .a; b/ : (4.9)
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Definition 3. Setting f (x) 2 C˛(a,b), local fractional integral of f (x) of order ˛ in
the interval [a,b] is defined through [35–48]

aI b
.˛/f .x/

D 1

� .1C ˛/

Z b

a

f .t/.dt/˛

D 1

� .1C ˛/
lim
�t!0

jDN�1X

jD0
f
�
tj
��
�tj

�˛
; (4.10)

where �tj D tj C 1 � tj, �t D maxf�t1,�t2,�tj, : : : g and [tj,tj C 1], j D 0, : : : , N � 1,
t0 D a, tN D b, is a partition of the interval [a,b]. For any x 2 (a, b), there exists
[35–38]

aI x
.˛/f .x/; (4.11)

denoted by

f .x/ 2 Ix.˛/ .a; b/ : (4.12)

Here, it follows that [35–38]

aI a
.˛/f .x/ D 0; a D b; (4.13)

aI b
.˛/f .x/ D �bI a

.˛/f .x/; a < b; (4.14)

and

aI a
.0/f .x/ D f .x/: (4.15)

We notice that we have [35–38]

f .x/ 2 C˛ .a; b/ ; (4.16)

if f (x) 2 Dx
(˛)(a,b), or Ix

(˛)(a,b).

4.2.3 Complex Number of Fractional Order

Definition 4. Fractional-order complex number is defined by [36, 37, 43, 44, 46]

I ˛ D x˛ C i˛y˛; x; y 2 R; 0 < ˛ � 1; (4.17)
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where its conjugate of complex number shows that

I ˛ D x˛ � i˛y˛; (4.18)

and where the fractional modulus is derived as

jI ˛j D I ˛I ˛ D I ˛I ˛ D
p
x2˛ C y2˛: (4.19)

Definition 5. Complex Mittag–Leffler function in fractal space is defined by [36,
37, 43, 44, 46]

E˛ .z
˛/ WD

1X

kD0

z˛k

� .1C k˛/
; (4.20)

for z 2 C (complex number set) and 0<˛� 1.
The following rules hold [36, 37, 43, 44]:

E˛ .z1
˛/ E˛ .z2

˛/ D E˛ ..z1 C z2/
˛/ I (4.21)

E˛ .z1
˛/ E˛ .�z2

˛/ D E˛ ..z1 � z2/
˛/ I (4.22)

E˛ .i
˛z1

˛/ E˛ .i
˛z2

˛/ D E˛
�
i˛.z1

˛ C z2
˛/˛
�
: (4.23)

When z˛ D i˛x˛ , the complex Mittag–Leffler function is [36, 37, 43, 44, 46]

E˛ .i
˛x˛/ D cos˛x˛ C i˛sin˛x˛ (4.24)

with

cos˛x˛ D
1X

kD0
.�1/k x2˛k

� .1C 2˛k/

and

sin˛x˛ D
1X

kD0
.�1/k x˛.2kC1/

� Œ1C ˛ .2k C 1/�
;

for x 2 R and 0<˛� 1, we have that [36, 37]

E˛ .i
˛x˛/E˛ .i

˛y˛/ D E˛ .i
˛.x C y/˛/ (4.25)

and

E˛ .i
˛x˛/E˛ .�i˛y˛/ D E˛ .i

˛.x � y/˛/ : (4.26)



68 X.-J. Yang et al.

4.2.4 Generalized Hilbert Space

Definition 6. A generalized Hilbert space is a complete generalized inner-product
space [36, 37].

Definition 7. A scalar (or dot) product of two T-periodic functions f (t) and g(t) is
defined by [36, 37, 43]

hf; gi˛ D
Z T

0

f .t/g.t/.dt/˛: (4.27)

Suppose fe˛ng is an orthonormal system in an inner-product space X. The
following results are equivalent [36, 37, 43]:

1. spanfe1
˛ , : : : , en

˛g D X, i.e., fen
˛g is a basis;

2. (Pythagorean theorem in fractal space)
The equation

1X

kD1
jak˛j2 D kf k2˛ (4.28)

for all f 2 X, where ak
˛ D hf, ek

˛i˛;
3. (Generalized Pythagorean theorem in fractal space)

Generalized equation

hf; gi D
nX

kD1
ak

˛bk˛ (4.29)

for all f, g 2 X, where
ak
˛ D hf, en

˛i˛ and bk
˛ D hg, ek

˛i˛;

4. f D
nX

kD1
ak

˛ek
˛ with sum convergent in X for all f 2 X.

For more details, we see [4–44].
Here we can take any sequence of T-periodic local fractional continuous

functions �k, k D 0, 1, : : : that are [36, 37, 43, 44]
Orthogonal:

h�k; �j i
˛

D
Z T

0

�k.t/�j .t/.dt/
˛ D 0; k ¤ j I (4.30)

Normalized:

h�k; �ki˛ D
Z T

0

�k
2.t/.dt/˛ D 1I (4.31)
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Complete: If a function x(t) is such that

hx; �ki˛ D
Z T

0

x.t/�k.t/.dt/
˛ D 0 (4.32)

for all i, then x(t) � 0.

4.2.5 Local Fractional Fourier Series in Generalized
Hilbert Space

4.2.5.1 Local Fractional Fourier Series in Generalized Hilbert Space

Definition 8. Let f�k(t)gk D 1
1 be a complete, orthonormal set of functions. Then

any T-periodic fractal signal f (t) can be uniquely represented as an infinite series
[36, 37, 43]

f .t/ D
1X

kD0
'k�k.t/: (4.33)

This is called the local fractional Fourier series representation of f (t) in the
generalized Hilbert space. The scalars ®i are called the local fractional Fourier
coefficients of f (t).

4.2.5.2 Local Fractional Fourier Coefficients

To derive the formula for ®k, we write [36, 37, 43]

f .t/�k.t/ D
1X

iD0
'j �j .t/�k.t/; (4.34)

and integrate over one period by using the generalized Pythagorean theorem in
fractal space [36, 37, 43]

hf; �ki˛ D
Z T

0

f .t/�k.t/.dt/
˛

D
Z T

0

1X

jD0
'j �j .t/�k.t/.dt/

˛

D
1X

jD0

�
'j

�Z T

0

�j .t/�k.t/.dt/
˛

��

D
1X

jD0
'j h�j ; �ki˛ D 'k (4.35)
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Because the functions �k(t) form a complete orthonormal system, the partial
sums of the local fractional Fourier series

f .t/ D
1X

kD0
'k�k.t/ (4.36)

converge to f (t) in the following sense:

lim
N!1

0

@ 1

� .1C ˛/

Z T

0

 
f .t/ �

1X

kD1
'k�k.t/

! 
f .t/ �

1X

kD1
'k�k.t/

!
.dt/˛

1

A D 0:

(4.37)

Therefore, we can use the partial sums

fN .t/ D
NX

kD1
'k�k.t/ (4.38)

to approximate f (t).
Hence, we have that

Z T

0

f 2.t/.dt/˛ D
1X

kD1
'k

2: (4.39)

The sequence of T-periodic functions in fractal space f�k(t)gk D 0
1 defined by

�0.t/ D
�
1

T

� ˛
2

and

�k.t/ D
( �

2
T

� ˛
2 sin˛ .k˛!0˛t˛/ ; if k � 1isodd�

2
T

� ˛
2 cos˛ .k˛!0˛t˛/ ; if k > 1iseven

(4.40)

are complete and orthonormal, where !0 D 2�
T

.
Another useful complete orthonormal set is furnished by the Mittag–Leffler

functions [36, 37]:

�k.t/ D
�
1

T

� ˛
2

E˛ .i
˛k˛!0

˛t˛/ ; k D 0;˙1;˙2; : : : (4.41)

where !0 D 2�
T

.
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4.3 Local Fractional Fourier Series

4.3.1 Notations

Definition 9. Local fractional trigonometric Fourier series of f (t) is given by [36,
37, 44]

f .t/ D a0 C
1X

iD1
aksin˛ .k˛!0˛t˛/C

1X

iD1
bkcos˛ .k˛!0˛t˛/: (4.42)

Then the local fractional Fourier coefficients can be computed by

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

a0 D 1

T ˛

Z T

0

f .t/.dt/˛;

ak D
�
2

T

�˛Z T

0

f .t/sin˛ .k˛!0˛t˛/ .dt/
˛;

bk D
�
2

T

�˛Z T

0

f .t/cos˛ .k˛!0˛t˛/ .dt/
˛:

(4.43)

When !0 D 1, we get the short form

f .t/ D a0 C
1X

iD1
aksin˛ .k˛t˛/C

1X

iD1
bkcos˛ .k˛t˛/:

Then the local fractional Fourier coefficients can be computed by

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

a0 D 1

T ˛

Z T

0

f .t/.dt/˛;

ak D
�
2

T

�˛Z T

0

f .t/sin˛ .k
˛t˛/ .dt/˛;

bk D
�
2

T

�˛Z T

0

f .t/cos˛ .k
˛t˛/ .dt/˛:

The Mittag–Leffler functions expression of local fractional Fourier series is given
by [36, 37, 44]

f .x/ D
1X

kD�1
CkE˛

�
�˛i˛.kx/˛

l˛

�
; (4.44)
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where the local fractional Fourier coefficients is

Ck D 1

.2l/˛

Z l

�l
f .x/E˛

���˛i˛.kx/˛
l˛

�
.dx/˛; k 2 Z: (4.45)

For local fractional Fourier series (4.45), the weights of the Mittag–Leffler
functions are written in the form [44]

Ck D
1

.2l/˛

Z lCt0

�lCt0
f .x/E˛

���˛i˛.kx/˛
l˛

�
.dx/˛

1
.2l/˛

Z lCt0

�lCt0
E˛

���˛i˛.kx/˛
l˛

�
E˛

���˛i˛.kx/˛
l˛

�
.dx/˛

: (4.46)

Above is generalized to calculate local fractional Fourier series.

4.3.2 Properties of Local Fractional Fourier Series

The following results are valid [36, 37].

Property 2 (Linearity). Suppose that local fractional Fourier coefficients of f (x)
and g(x) are fn and gn, respectively, then we has for two constants a and b

af .x/C bg.x/ $ afn C bgfn: (4.47)

Property 3 (Conjugation). Suppose that Cn is Fourier coefficients of f (x). Then
we have

f .x/ $ C�n: (4.48)

Property 4 (Shift in time). Suppose that Cn is Fourier coefficients of f (x). Then
we have

f .x � x0/ $ E˛ .�i˛.nx/˛/ Cn: (4.49)

Property 5 (Time reversal). Suppose that Cn is Fourier coefficients of f (x). Then
we have

f .�x/ $ C�n: (4.50)

For proofs of the above, we see [36, 37].
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4.3.3 The Basic Theorems of Local Fractional Fourier Series

The following results are valid [36, 37].

Theorem 6 (Local fractional Bessel inequality). Suppose that f (t) is 2�-periodic,
bounded and local fractional integral on [�� ,�]. If both an and bn are Fourier
coefficients of f (t), then there exists the inequality

a0
2

2
C

nX

kD1

�
ak

2 C bk
2
� � 1

�˛

Z �

��
f 2.t/.dt/˛: (4.51)

Theorem 7 (Local fractional Riemann–Lebesgue theorem). Suppose that f (x)
is 2�-periodic, bounded and local fractional integral on [�� ,�]. Then we have

lim
n!C1

1

.2�/˛

Z �

��
f .t/sin˛.nt/

˛.dt/˛ D 0 (4.52)

and

lim
n!C1

1

.2�/˛

Z �

��
f .t/cos˛.nt/

˛.dt/˛ D 0: (4.53)

Theorem 8. Suppose that Tn;˛.x/ 	 a0
2˛

C
nX

nD1
.ancos˛.nx/

˛ C bnsin˛.nx/
˛/, then

we have that

Tn;˛.x/ D 1

�˛

Z �

��
Tn;˛ .x C t/Dn;˛.t/.dt/

˛; (4.54)

where

Dn;˛.t/ D 1

2
C

nX

kD1
cos˛.nx/

˛ D
sin˛

�
.2nC1/x

2

�˛

sin˛
�
x
2

�˛ : (4.55)

Theorem 9. Suppose that f (t) is 2�-periodic, bounded and local fractional integral
on [�� ,�].

If f .t/ 	 a0
2

C
1X

kD1
.akcos˛.kt/

˛ C bksin˛.kt/
˛/, then we have

1

�˛

Z �

��
f 2.t/.dt/˛ D a0

2

2
C

1X

kD0

�
ak

2 C bk
2
�
: (4.56)
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Theorem 10 (Convergence theorem for local fractional Fourier series). Sup-
pose that f (t) is 2�-periodic, bounded and local fractional integral on [�� ,�]. The
local fractional series of f (t) converges to f (t) at t 2 [�� ,�], and

f .t C 0/C f .t � 0/
2

D a0

2
C

1X

kD1
.akcos˛.kt/

˛ C bksin˛.kt/
˛/; (4.57)

where

a0 D 1

�˛

Z �

��
f .x/.dt/˛; (4.58)

an D 1

�˛

Z �

��
f .x/cos˛.nx/

˛.dt/˛ (4.59)

and

bn D 1

�˛

Z �

��
f .x/sin˛.nx/

˛.dt/˛: (4.60)

For proofs of the above, we see [36, 37].

4.3.4 Applications of Local Fractional Fourier Series

4.3.4.1 Applications of Local Fractional Fourier Series to Fractal Signals

Now we consider the applications of local fractional Fourier series to fractal signals.
Expand fractal signal X(t) D t˛ C 1(�� < t ��) in local fractional Fourier series.
Now we find the local fractional Fourier coefficients

a0 D 1

�˛

Z �

��
X.t/.dt/˛

D 1

�˛

Z �

��
.t˛ C 1/ .dt/˛

D �2 .1C ˛/ t2˛

�˛� .1C 2˛/

ˇ̌
ˇ̌�

� � C � .1C ˛/ t˛

�˛� .1C ˛/

ˇ̌
ˇ̌�

� �

D 2; (4.61)
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an D 1

�˛

Z �

��
X.t/cos˛.nt/

˛.dt/˛ D 1

�˛

Z �

��
.t˛ C 1/ cos˛.nt/

˛.dt/˛

D � .1C ˛/ t˛sin˛.nt/
˛

n˛�˛

ˇ̌
ˇ̌�

� �
� 1

�˛n˛

Z �

��
sin˛.nt/

˛.dt/˛

D � .1C ˛/ t˛sin˛.nt/
˛

n˛�˛

ˇ̌
ˇ̌�

� �
C � .1C ˛/ cos˛.nt/

˛

n2˛�˛

ˇ̌
ˇ̌�

� � D 0 (4.62)

and

bn D 1

�˛

Z �

��
X.t/sin˛.nt/

˛.dt/˛ D 1

�˛

Z �

��
.t˛ C 1/ sin˛.nt/

˛.dt/˛

D
�
�� .1C ˛/ t˛cos˛.nt/

˛

n˛�˛

	 ˇ̌
ˇ̌�

� � � 1

�˛n˛

Z �

��
cos˛.nt/

˛.dt/˛

D
�
�� .1C ˛/ t˛cos˛.nt/

˛

n˛�˛

	 ˇ̌
ˇ̌�

� � C � .1C ˛/ sin˛.nt/
˛

n2˛�˛

ˇ̌
ˇ̌�

� �

D 2� .1C ˛/ .�1/nC1

n˛�˛
: (4.63)

Therefore, for �� < t �� we have local fractional Fourier series representation
of fractal signal

X.t/ D 1C
1X

nD1

 
2� .1C ˛/ .�1/nC1

n˛�˛
sin˛.nt/

˛

!
: (4.64)

4.4 The Local FRFT in Fractal Space

4.4.1 Notations

Definition 10 (The local FRFT in fractal space). Suppose that f (x) 2 C˛(�1, 1),
the local FRFT, denoted by F˛ff (x)g � f!F,˛(!), is written in the form [37, 38,
45–48]

F˛ ff .x/g D f F;˛
! .!/

D 1

� .1C ˛/

Z 1

�1
E˛ .�i˛!˛x˛/ f .x/.dx/˛; (4.65)

where the latter converges.
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Definition 11. If F˛ff (x)g � f!F,˛(!), its inversion formula is written in the form
[37, 38, 45–48]

f .x/ D F�1
˛

�
f F;˛
! .!/

�W

D 1

.2�/˛

Z 1

�1
E˛ .i

˛!˛x˛/ f F;˛
! .!/ .d!/˛; x > 0: (4.66)

For the proofs of the above, we see [37, 38].

4.4.2 The Basic Theorems of Local FRFT

The following results are valid [37, 38].

Theorem 11. Let F˛ff (x)g D f!F,˛(!) and F˛fg(x)g D g!F,˛(!), and let a, b be two
constants. Then we have

F˛ faf .x/C bg.x/g D aF˛ ff .x/g C bF˛ fg.x/g : (4.67)

Theorem 12. Let F˛ff (x)g D f!F,˛(!). If lim
jxj!1

f .x/ D 0, then we have

F˛

n
f .˛/.x/

o
D i˛!˛F˛ ff .x/g : (4.68)

As a direct result, repeating this process, when

f .0/ D f .˛/.0/ D � � � D f ..k�1/˛/.0/ D 0

we have

F˛

n
f .k˛/.x/

o
D ik˛!k˛F˛ ff .x/g : (4.69)

Theorem 13. Let F˛ff (x)g D f!F,˛(!) and lim
x!1�1I x.˛/f .x/ ! 0, then we have

F˛

n
�1I x.˛/f .x/

o
D 1

i˛!˛
F˛ ff .x/g : (4.70)

Theorem 14. If F˛ff (x)g D f!F,˛(!) and a> 0, then we have

F˛ ff .ax/g D 1

a˛
f F;˛
!

�!
a

�
: (4.71)

Theorem 15. If F˛ff (x)g D f!F,˛(!) and c is a constant, then we have

F˛ ff .x � c/g D E˛ .�i˛c˛!˛/ F˛ ff .x/g : (4.72)
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Theorem 16. If F˛ff (x)g D f!F,˛(!) and c is a constant, then we have

F˛ ff .x/E˛ .�i˛x˛!0˛/g D f F;˛
! .! � !0/ : (4.73)

Theorem 17. Let F˛ff1(x)g D f!,1
F,˛(!) and F˛ff2(x)g D f!,2

F,˛(!), then we have

F˛ ff1.x/ 
 f2.x/g D f
F;˛
!;1 .!/ f

F;˛
!;2 .!/ : (4.74)

Theorem 18. If F˛ff (x)g D f!F,˛(!), then

1

� .1C ˛/

Z 1

�1
jf .x/j2.dx/˛ D 1

.2�/˛

Z 1

�1

ˇ̌
f F;˛
! .!/

ˇ̌2
.d!/˛: (4.75)

Theorem 19. If F˛ff (x)g D f!F,˛(!) and F˛fg(x)g D g!F,˛(!), then

1

� .1C ˛/

Z 1

�1
f .x/g.x/.dx/˛ D 1

.2�/˛

Z 1

�1
f F;˛
! .!/ gF;˛! .!/.d!/˛: (4.76)

For the proofs of the above, we see [37, 38].

4.4.3 Applications of Local FRFT to Fractal Signals

We now consider applications of local FRFT to fractal signals.
Let a nonperiodic signal X(t) be defined by the relation

X.t/ D


1;�t0 � t < t0;

0; else:
(4.77)

Taking the local FRFTs, we have

XF;˛
! .!/ D 1

� .1C ˛/

Z 1

�1
X.t/E˛ .�i˛!˛x˛/ .dx/˛

D 1

� .1C ˛/

Z t

�t
E˛ .�i˛!˛x˛/ .dx/˛

D E˛ .�i˛!˛x˛/
�i˛!˛

ˇ̌
ˇ̌ t0

� t0 : (4.78)

Taking into account

E˛ .�i˛x˛/ D cos˛x
˛ � i˛sin˛x

˛;
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we get

XF;˛
! .!/ D 2sin˛!˛t0˛

!˛
D 2t˛sin˛C!˛t0˛; (4.79)

where sin˛C!˛t0˛ D sin˛!˛ t0˛

!˛t0˛
:

4.5 The Generalized Local FRFT in Fractal Space

4.5.1 Definitions and Notations

Definition 12 (Generalized local FRFT). The generalized local FRFT is written
in the form [37, 38, 49]

F˛ ff .x/g D f F;˛
! .!/

D 1

� .1C ˛/

Z 1

�1
f .x/E˛ .�i˛h0x˛!˛/ .dx/˛; (4.80)

where h0 D .2�/˛

�.1C˛/ with 0<˛� 1.

Definition 13. The inverse formula of the generalized local FRFT is written in the
form [37, 38, 49]

F �1
˛

�
f F;˛
! .!/

� D f .x/

D 1

� .1C ˛/

Z 1

�1
f F;˛
! .!/E˛ .i

˛h0x
˛!˛/ .d!/˛; (4.81)

where h0 D .2�/˛

�.1C˛/ with 0<˛� 1.

4.5.2 Some Basic Theorems of Local FRFT in Fractal Space

The following result is valid [37, 38, 49].
Theorem 20. Let F˛ff (x)g D f!F,˛(!), then we have

f .x/ D F�1
˛

�
f F;˛
! .!/

�
: (4.82)

Theorem 21. Let F˛ff (x)g D f!F,˛(!) and F˛fg(x)g D g!F,˛(!), and let a, b be two
constants. Then we have

F˛ faf .x/C bg.x/g D aF˛ ff .x/g C bF˛ fg.x/g : (4.83)
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Theorem 22. Let F˛ff (x)g D f!F,˛(!). If lim
jxj!1

f .x/ D 0, then we have

F˛

n
f .˛/.x/

o
D i˛h0!

˛F˛ ff .x/g : (4.84)

As a direct result, repeating this process, when

f .0/ D f .˛/.0/ D � � � D f ..k�1/˛/.0/ D 0

we have

F˛

n
f .k˛/.x/

o
D ik˛h0

k!k˛F˛ ff .x/g : (4.85)

Theorem 23. Let F˛ff (x)g D f!F,˛(!) and lim
x!1�1I x.˛/f .x/ ! 0, then we have

F˛

n
�1I x.˛/f .x/

o
D 1

i˛h0!˛
F˛ ff .x/g : (4.86)

Theorem 24. If F˛ff (x)g D f!F,˛(!), and a> 0, then we have

F˛ ff .ax/g D 1

a˛
f F;˛
!

�!
a

�
: (4.87)

Theorem 25. If F˛ff (x)g D f!F,˛(!) and c is a constant, then we have

F˛ ff .x � c/g D E˛ .�i˛h0c˛!˛/ F˛ ff .x/g : (4.88)

Theorem 26. If F˛ff (x)g D f!F,˛(!) and c is a constant, then we have

F˛ ff .x/E˛ .�i˛h0x˛!0˛/g D f F;˛
! .! � !0/ : (4.89)

Theorem 27. Let F˛ff1(x)g D f!,1
F,˛(!) and F˛ff2(x)g D f!,2

F,˛(!), then we have

F˛ ff1.x/ 
 f2.x/g D f F;˛
!;1 .!/ f

F;˛
!;2 .!/ : (4.90)

Theorem 28. If F˛ff (x)g D f!F,˛(!), then

1

� .1C ˛/

Z 1

�1
jf .x/j2.dx/˛ D 1

� .1C ˛/

Z 1

�1

ˇ̌
f F;˛
! .!/

ˇ̌2
.d!/˛: (4.91)

Theorem 29. If F˛ff (x)g D f!F,˛(!) and F˛fg(x)g D g!F,˛(!), then



80 X.-J. Yang et al.

1

� .1C ˛/

Z 1

�1
f .x/g.x/.dx/˛ D 1

� .1C ˛/

Z 1

�1
f F;˛
! .!/ g

F;˛
! .!/.d!/˛:

(4.92)

For the proofs of the above, we see [37, 38, 49].

4.6 Discrete Local FRFT in Fractal Space

4.6.1 Definitions and Notations

Definition 14 (Discrete local FRFT). Suppose that f (n) be a periodic discrete-
time fractal signal with period N. The N-point discrete local FRFT (DYFT) of F(n)
is written in the form [50]

F.k/ D
N�1X

nD0
f .n/E˛ .�i˛.2�/˛n˛k˛=N˛/

D
N�1X

nD0
f .n/WN;˛

�nk; (4.93)

with WN;˛
�nk D E˛

�
� i˛n˛k˛.2�/˛

N˛

�
. This is called N-point discrete local FRFT of

F(n), denoted by

f .n/ $ F.k/: (4.94)

Definition 15 (Inverse discrete local FRFT). The inverse discrete local FRFT
(IDYFT) is given by is rewritten as [50]

f .n/ D 1

� .1C ˛/

1

N˛

N�1X

kD0
F.k/E˛ .i

˛n˛k˛.2�/˛=N˛/

D 1

� .1C ˛/

1

N˛

N�1X

kD0
F.k/WN;˛

kn: (4.95)

with WN;˛
kn D E˛

�
i˛n˛k˛.2�/˛

N˛

�
:

Taking into account the relation [50]

E˛ .i
˛.2�/˛.nC 1/˛/ D E˛ .i

˛.2�/˛n˛/ ;
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we deduce that

E˛

�
i˛.2�/˛n˛

�
k CN

N

�˛�
D E˛

�
i˛.2�/˛

n˛k˛

N˛

�
(4.96)

for all n 2 Z. That is to say,

W1;˛
.nCN/ D W1;˛

n

and

WN;˛
.kCN/n D WN;˛

kn:

4.6.2 Some Basic Theorems of Discrete Local FRFT
in Fractal Space

The following results are valid [50]:

Theorem 30. Suppose that F.k/ D
N�1X

nD0
f .n/WN;˛

�nk , then we have

f .n/ D 1

� .1C ˛/

1

N˛

N�1X

kD0
F.k/WN;˛

nk: (4.97)

Theorem 31. Suppose that f (n) be periodic discrete-time signals with period N,
then we have

N�1X

nD0
f .n/ D

jCN�1X

nDj
f .n/: (4.98)

Theorem 32. Suppose that f1(n) $ F1(k) and f2(n) $ F2(k), then we have

af1.n/C bf2.n/ $ aF1.k/C bF2.k/: (4.99)

Corollary 33.

F.n/ $ N˛� .1C ˛/ f .�k/ : (4.100)

Corollary 34 (Time reversal rule for DLFFT).

f .�n/ $ F .�k/ : (4.101)
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Definition 16 (Cyclical convolution). The cyclical convolution product of two
periodic discrete-time signals f (n) and g(n) with periodic N is the fractal discrete-
time signal (f � g)(n) defined by

.f 
 g/ .n/ D
N�1X

lD0
f .l/g .n � l/: (4.102)

Theorem 35 (Convolution in the n-domain rule for DLFFT). Let f (n) and
g(n) be periodic discrete-time signals with period N. Suppose that f (n) $ F(k) and
g(n) $ G(k), then

.f 
 g/ .n/ $ F.k/G.k/: (4.103)

Theorem 36 (Convolution in the k-domain rule for DLFFT). Let f (n) and
g(n) be periodic discrete-time signals with period N. Suppose that f (n) $ F(k) and
g(n) $ G(k), then

1

� .1C ˛/

1

N˛
f .n/g.n/ $ .F 
G/ .k/: (4.104)

Theorem 37 (Paserval theorem for DLFFT). Let f (n) and g(n) be periodic
discrete-time signals with period N. Suppose that f (n) $ F(k) and g(n) $ G(k), then

N�1X

nD0
f .n/g.n/ D 1

� .1C ˛/

1

N˛

N�1X

kD0
F.k/G.k/: (4.105)

Corollary 38. Let f (n) and g(n) be periodic discrete-time signals with period N.
Suppose that f (n) $ F(k), then

N�1X

nD0
jg.n/j2 D 1

� .1C ˛/

1

N˛

N�1X

kD0
jG.k/j2: (4.106)

Theorem 39. Let f (n) and g(n) be periodic discrete-time signals with period N.
Suppose that f (n) $ F(k) and g(n) $ G(k), then

N�1X

nD0
f .n/G.n/ D

N�1X

kD0
F.k/g.k/: (4.107)

For the proofs of the above, we see [50].
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4.6.3 Application of Discrete Local FRFT to Fractal Signals

Let us consider the discrete local FRFT of the fractal signal

f .n/ D E˛ .�i˛.2�/˛n˛F0/ : (4.108)

Taking the discrete local FRFT of (4.108) we have

F.k/ D
N�1X

nD0
f .n/E˛ .�i˛.2�/˛n˛k˛=N˛/

D
N�1X

nD0
E˛ .�i˛.2�/˛n˛F0/E˛ .�i˛.2�/˛n˛k˛=N˛/

D
N�1X

nD0
E˛

�
�i˛ .2�/

˛n˛

N˛
.N ˛F0 � k˛/

	

D E˛

�
�i˛ �

˛.N � 1/˛n˛
N˛

.N ˛F0 � k˛/
	

sin˛ Œ�˛ .N ˛F0 � k˛/�

sin˛ Œ�˛ .N ˛F0 � k˛/ =N˛�
:

(4.109)

4.7 Fast Local FRFT in Fractal Space

4.7.1 Fast Local FRFT of DLFFT

The relations [51]

ŒFN �
˛
�n;kC1 D 1

N˛
WN;˛

�.kC1/n D 1

N˛
WN;˛

�knWN;˛
�n D ŒFN �

˛
�n;kWN;˛

�n

(4.110)

and

ŒFN �
˛
n;kC1 D 1

N˛
WN;˛

.kC1/n D 1

N˛
WN;˛

knWN;˛
n D ŒFN �

˛
n;kWN;˛

n (4.111)

are the component formulas for the local FRFT.
Suppose that fV0,V1,V2, : : : ,VN � 1g is the Nth order discrete local FRFTs of

fv0,v1,v2, : : : ,vN � 1g. Starting with the component formulas for the discrete local
FRFT, we obtain that, for n D 0, 1, 2, : : : , N � 1,
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Vn D
N�1X

kD0
WN;˛

�.kC1/nvk

D
N�1X

k D 0

k � even

WN;˛
�.kC1/nvk C

N�1X

k D 0

k � odd

WN;˛
�.kC1/nvk

D 1

2˛

0

@
M�1X

jD0
W2M;˛

�n.2j /v2j C
M�1X

jD0
W2M;˛

�n.2jC1/v2jC1

1

A

D 1

2˛

0

@
M�1X

jD0
W2M;˛

�n.2j /v2jCWM;˛

n
2

M�1X

jD0
W2M;˛

�n.2j /v2jC1

1

A : (4.112)

and we have the following relation

ŒFNV �
˛
n D 1

2˛

�
ŒFNVE �

˛
n CWM;˛

� n
2 ŒFNV0 �

˛
n

�
; (4.113)

where V is the sequence vector corresponding to fV0,V1,V2, : : : ,VN � 1g, VE is the
M - th order sequence of even-index vk ’ s fV0,V2, : : : ,VN � 2g and VO is the M - th
order sequence of odd-index vk ’ s fV1,V3, : : : ,VN � 1g.

Here we can deduce that

WM;˛
�.MCl/ D E˛

�
�i˛

�
2�

M

�˛
.M C l/˛

�

D E˛

�
�i˛

�
2�

M

�˛
l˛
�

D WM;˛
�l (4.114)

and

WM;˛
�MCl

2 D E˛

�
�i˛

� �
M

�˛
.M C l/˛

�

D �E˛
�
�i˛

� �
M

�˛
l˛
�

D WM;˛
� l
2 : (4.115)
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Hence for l D 0, 1, 2, : : : , m � 1, we have [51]

Vl D 1

2˛

0

@
M�1X

jD0
WM;˛

�lj v2j CWM;˛
�. l2 /j

M�1X

jD0
WM;˛

�lj v2jC1

1

A

D 1

2˛

��
FMVE�1

�˛
l

CWM;˛
�. l2 /j �FMV0�1

�˛
l

�
(4.116)

and

VMCl D 1

2˛

0

@
M�1X

jD0
WM;˛

�lj v2j �WM;˛
. l2 /j

M�1X

jD0
WM;˛

�lj v2jC1

1

A

D 1

2˛

��
FMVE�1

�˛
l

�WM;˛
�. l2 /j �FMV0�1

�˛
l

�
: (4.117)

Here, formulas (4.116) and (4.117) contain common elements that can be
computed once for each l and then used to compute both Vl and VM C l. Hence
we can obtain the total number of computations to find all the Vn ’ s. That is
to say, this process of increasing levels to our algorithm can be continued to
the Kth level provided to N D 2KN0 for some integer N0. Moreover, that integer,
N0 D 2� KN will also be the order of the discrete Yang–Fourier transforms and
inverse discrete local FRFTs. If N D 2K , it is this final Kth level algorithm, fully
implemented and refined, that is called a fast local FRFT of the discrete local
FRFTs.

4.7.2 Fast Local FRFT of Inverse DLFFT

Suppose that fV0
� 1, V1

� 1, : : : , VN � 1
� 1g is the Nth order discrete local FRFTs of

fv0
� 1, v1

� 1, : : : , vN � 1
� 1g, starting with the component formulas for the inverse

discrete local FRFT, we obtain that, for n D 0, 1, 2, : : : , N � 1,
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Vn
�1 D 1

� .1C ˛/

1

N˛

N�1X

kD0
WN;˛

.kC1/nvk�1

D 1

� .1C ˛/

1

N˛

0

BBBBBB@

N�1X

k D 0

k � even

WN;˛
.kC1/nvk

�1 C
N�1X

k D 0

k � odd

WN;˛
.kC1/nvk

�1

1

CCCCCCA

D 1

� .1C ˛/

1

.2M/˛

0

@
M�1X

jD0
W2M;˛

n.2j /v2j
�1 C

M�1X

jD0
W2M;˛

n.2jC1/v2jC1�1
1

A

D 1

� .1C ˛/

1

.2M/˛

0

@
M�1X

jD0
W2M;˛

n.2j /v2j
�1CWM;˛

n
2

M�1X

jD0
W2M;˛

n.2j /v2jC1�1
1

A :

(4.118)

and we have the following relation

ŒFNV �
˛
n D 1

� .1C ˛/

1

.2M/˛

��
FNVE�1

�˛
n

CWM;˛

n
2
�
FNV0�1

�˛
n

�
; (4.119)

where V� 1 is the sequence vector corresponding to fV0
� 1, V1

� 1, V2
� 1, : : : ,

VN � 1
� 1g, VE

� 1 is the M - th order sequence of even-index vk
� 1 ’ s fV0

� 1, V2
� 1, : : : ,

VN � 2
� 1g and VO

� 1 is the M - th order sequence of odd-index vk
� 1 ’ s fV1

� 1, V3
� 1,

: : : , VN � 1
� 1g.

Here we can deduce that

WM;˛
MCl D E˛

�
i˛
�
2�

M

�˛
.M C l/˛

�

D E˛

�
i˛
�
2�

M

�˛
l˛
�

D WM;˛
l (4.120)

and

WM;˛

MCl
2 D E˛

�
i˛
� �
M

�˛
.M C l/˛

�

D �E˛
�
i˛
� �
M

�˛
l˛
�

D WM;˛

l
2 : (4.121)
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Hence for l D 0, 1, 2, : : : , m � 1, we have [51]

Vl
�1 D 1

� .1C ˛/

1

.2M/˛

0

@
M�1X

jD0
WM;˛

lj v2j CWM;˛
. l2 /j

M�1X

jD0
WM;˛

lj v2jC1

1

A

D 1

� .1C ˛/

1

2˛

�
ŒFMVE �

˛
l CWM;˛

. l2 /j ŒFMV0 �
˛
l

�

(4.122)

and

VMCl�1 D 1

� .1C ˛/

1

.2M/˛

0

@
M�1X

jD0
WM;˛

lj v2j �WM;˛
. l2 /j

M�1X

jD0
WM;˛

lj v2jC1

1

A

D 1

� .1C ˛/

1

2˛

�
ŒFMVE �

˛
l �WM;˛

. l2 /j ŒFMV0 �
˛
l

�
:

(4.123)

It is shown that, formulas (4.122) and (4.123) contain common elements that can
also be computed once for each l and then used to compute both Vl

� 1 and VM C l
� 1.

These can also yield the total number of computations to find all the Vn
� 1 ’ s. That

is to say, this process of increasing levels to our algorithm of inverse discrete Yang–
Fourier transforms is similar to that of the discrete local FRFTs. Taking into account
the relation N D 2K , it is also this final Kth level algorithm, fully implemented and
refined, that is called a fast local FRFT of the inverse discrete local FRFTs.

4.8 Conclusions

In this chapter we recall some of the theory of local fractional Fourier analysis
containing the local fractional Fourier series, the local fractional Fourier transform,
the generalized local fractional Fourier transform, the discrete local fractional
Fourier transform and fast local fractional Fourier transform. We briefly presented
some of their applications. Our attention is devoted to the analytical technique of
the local fractional Fourier series for treating with some real world fractal problems
in a way accessible to applied scientists and engineers.
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Chapter 5
Parameter Optimization of Fractional
Order PI œD� Controller Using Response
Surface Methodology

Beyza Billur İskender, Necati Özdemir, and Aslan Deniz Karaoglan

Abstract This chapter presents optimization of fractional order PI �D� control
parameters by using response surface methodology. The optimization process
is observed on a fractional order diffusion system subject to input hysteresis
which is defined with Riemann–Liouville fractional derivative. The system is
transferred to a fractional order state space model by using eigenfunction expansion
method and then Grünwald–Letnikov approximation is applied to solve the system
numerically. The necessary data for response surface analysis are read from the
obtained numerical solution. Finally, second-order polynomial response surface
mathematical model for the experimental design is presented and the optimum
control parameters are predicted from this response surface model. The proposed
optimization method is compared with the technique of minimization of integral
square error by means of settling time and the results are discussed.

Keywords Fractional order controller • Response surface methodology • Integral
square error • Hysteresis • Riemann-Liouville fractional derivative • Grünwald-
Letnikov approximation

5.1 Introduction

Fractional order system has been drawn great interest recently because of their
advantages to model systems more accurately than integer order models. Improve-
ment of fractional order systems in different areas of science and technology brought
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about a new control tool which is called fractional order controllers. CRONE
is one of the prior fractional order controller designs which was presented by
Oustaloup [20]. Then, Podlubny [24] generalized the classical PID controller to the
fractional calculus by replacing order of the integral and the derivative controllers
with fractional orders � and �, respectively. It is called as fractional order PI �D�

controller. This controller has five parameters to tune while classical PID has only
three parameters. Therefore, it is more flexible and advantageous. The researches
on fractional order controllers were extended to other classical control types, for
example fractional order optimal control [1–3, 22] or fractional order sliding mode
control [10].

PID controller is the frequently preferred type of controllers due from its ease
implementation to industrial systems. Thus, fractional order PI �D� controller is
also preferable for both integer and fractional order control systems. Many methods
have been presented for tuning problem of PI �D� controller which is more complex
according to tuning problem of classical PID [5, 7, 14, 26, 27]. Recently, in [13]
response surface methodology is used to tune such type of controllers. This method
is a collection of mathematical and statistical techniques where a response of interest
is influenced by several variables and the objective is to optimize this response
[17]. The optimization of the controller parameters using response surface method
is achieved by simultaneous testing of limited number of experiments read from the
system under control. In this chapter, it is aimed to improve the response surface
design in [13] in terms of settling time where the controlled system is fractional
order and is subjected to input hysteresis. Because the considered fractional order
system is mathematical, the necessary data are obtained by solving the partial
fractional differential equation. The solution is acquired by using eigenfunction
expansion and Grünwald–Letnikov numerical methods [4]. Finally, this design is
compared with the previous design given in [13] and the method of minimizing
integral square error presented in [21].

5.2 Preliminaries

According to the system under consideration it would be possible to correspond
different types of fractional derivative, for example Riemann–Liouville, Caputo,
Grünwald–Letnikov, Weyl, Marchaud, and Riesz fractional derivatives [16, 19, 23].
In this chapter Riemann–Liouville fractional derivative is used to formulate the
system which is defined for a time-dependent function x .�/ as

0D
˛
t x .t/ D 1

 .n � ˛/
�
d

dt

�n tZ

0

.t � 
/n�˛�1 x .
/ d
; (5.1)



5 Parameter Optimization of PI �D� Controller Using Response Surface. . . 93

where ˛ is order of derivative such that n � 1 � ˛ < n, n is a nonnegative natural
number, and  .:/ is Euler’s gamma function. The Riemann–Liouville fractional
integral is also defined as

0D
�˛
t x .t/ D 1

 .˛ � 1/

tZ

0

.t � 
/˛ x .
/ d
; (5.2)

There is a link between the Riemann–Liouville and Grünwald–Letnikov fractional
derivatives and utilizing this link the Riemann–Liouville fractional derivative can be
approximated numerically by Grünwald–Letnikov definition which is

GL
0 D˛

t x.t/ D lim
h!0

1

h˛

Œ th �X

kD0
.�1/k

�
˛

k

�
x .t � kh/ ; (5.3)

where h represents the time increment, Œ t
h
� means the integer parts of t

h
and

�
˛

k

�
D  .˛ C 1/

 .k C 1/ .˛ � k C 1/
: (5.4)

5.3 Fractional Order PI œD� Controller

PID controller which is the combination of proportional, integral, and derivative
actions represents a basic control structure. It is defined by the following equation

u .t/ D kpe .t/C ki

Z
e .t/ dt C kd

d

dt
e .t/; (5.5)

where t is time variable, u .t/ is control and e .t/ is error functions, kp; ki , and kd
are gains of the proportional, integral, and derivative controllers, respectively. The
error function is defined as the difference between a desired reference value r.t/
and the system output y.t/. The response of a system can be optimized by tuning
of the coefficients of kp; ki and kd . Since this rule can be easily applied to most
of system the controller is still preferable. Therefore, it is generalized for fractional
order systems which is known as fractional order PI �D� controller which involves
an integrator of order � and a differentiator of order �: This controller can also be
applied to integer order systems. The PI �D� is defined by

u .t/ D kpe .t/C kiI
�e .t/C kdD

�e .t/ : (5.6)
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It can be clearly seen that selection of � D 1 and � D 1 gives the classical PID
controller. As it is seen between the above equations the PI �D� controller has
five parameters which are the coefficients of kp; ki , and kd , and the orders of �
and � while the integer order PID has only three parameters. Thus, it is deduced
that PI �D� controller is more flexible than the integer PID controller. Moreover, it
is less sensitive to change of parameters of controlled system, see [23].

Several tuning strategies have been introduced for PI �D� in the literature. In
this paper we present response surface method and compare this method with
minimization of the integral square error.

5.4 Fractional Order Diffusion Systems Subject
to Input Hysteresis

A fractional diffusion process on the one-dimensional spatial domain Œ0; 1�, with
diffusion coefficient � and nonlinear control action applied at point xb 2 .0; 1/

via the SSSL (Su, Stepanenko, Svoboda, Leung) hysteresis operator ˚ which is
a special type of Duhem hysteresis, is given by the following partial fractional
differential equation:

@˛z .t; x/

@t˛
D �

@2z .t; x/

@x2
C ı .x � xb/˚ .u .t// (5.7)

with the Dirichlet boundary conditions

z .t; 0/ D z .t; 1/ D 0; (5.8)

and zero initial condition

z .0; x/ D 0: (5.9)

The system is observed at a point xc 2 .xb; 1/ such that

y .t/ D z .t; xc/ : (5.10)

The SSSL operator ! D ˚ .u/ is defined by the following differential equation:

d!

dt
D � Œ�u � !�

ˇ̌
ˇ̌du

dt

ˇ̌
ˇ̌C �

du

dt
: (5.11)

In (5.11), the input u and the output ! are real valued functions of time t with
piecewise continuous derivatives u and !,

ˇ̌
du
dt

ˇ̌
is the absolute value of du

dt
. �, �, and

� are some constants satisfying the condition � > �, see [25].



5 Parameter Optimization of PI �D� Controller Using Response Surface. . . 95

Solution of the system is obtained by using separation of variables. For this
purpose, let (5.7) have a solution of the form:

z .t; x/ D T .t/X .x/ : (5.12)

Firstly, homogeneous part of (5.7) is considered. Substituting (5.12) in (5.7) gives

1

T

d˛T

dt˛
D �

1

X

d2X

dx2
: (5.13)

The right-hand side of (5.13) holds if it equals a separation constant shown by � as
in the following equation:

1

T

d˛T

dt˛
D �

1

X

d2X

dx2
D ���2: (5.14)

Using (5.9), the solution of the second part of (5.14) is obtained as

X .x/ D sin .k�x/ ; k D 1; 2; : : : (5.15)

which is called eigenfunctions. The general solution of (5.7) is

z .t; x/ D
1X

kD1
qk .t/ sin .k�x/ : (5.16)

Since the higher order terms do not contribute much, it could be of interest to keep
only a finite number of terms denoted by m. Substituting (5.16) into (5.7) gives

mX

kD1

d˛qk .t/

dt˛
sin .k�x/ D ��

mX

kD1
qk .t/ sin .k�x/C ı .x � xb/˚ .u/ : (5.17)

Multiplying both sides of (5.17) by sin .j�x/, 1 � j � m, then integrating from 0
to 1 via variable x, and using the orthogonality property gives

d˛qk .t/

dt˛
D ��k2�2qk .t/C 2 sin .k�xb/˚ .u/ ; k D 1; 2; : : : ; m; (5.18)

subject to initial conditions qk .0/ D 0:Note that the initial conditions are calculated
from (5.29). Equation (5.18) can be presented by the state space form

0D
˛
t q .t/ D Aq .t/C B˚ .u .t//

y .t/ D Cq .t/ (5.19)
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where q .t/ D �
q1 .t/ q2 .t/ : : : qm .t/

�T
is the state variable, A 2 Rm�m, B 2 Rm

and C 2 R1�m are the matrices given by

A D diagonal
���k2�2� ;

B D �
b1 b2 : : : bm

�T
;

C D �
c1 c2 : : : cm

�
;

in which k D 1; 2; : : : ; m, bk D 2 sin .k�xb/, and ck D sin .k�xc/ : The solution of
System (5.19) is obtained numerically by Grünwald–Letnikov approximation. For
this purpose, the time interval Œ0; T � is divided N equal parts with size of h D 1

N

and the nodes are labeled as 0; 1; 2; : : : ; N . The Grünwald–Letnikov approximation
of the Riemann–Liouville fractional derivative at nodeM is

0D
˛
t q .hM/ D 1

h˛

MX

jD0
w.˛/j q .hM � jh/ ; (5.20)

where the coefficients w.˛/j are computed by the following recurrence relationships

w.˛/0 D 1I

w.˛/j D
�
1� ˛ C 1

j

�
w.˛/j�1

for j D 1; 2; : : : ; N . Using (5.20), numerical solution of System (5.19) is obtained
as

q .hM/ D
�
1

h˛
w.˛/0 I �A

��1
0

@B˚ .u .hM//� 1

h˛

MX

jD1
w.˛/j q .hM � jh/

1

A :

(5.21)

Similarly, the PI �D� controller can be computed by the Grünwald–Letnikov
approximation. Note that the integrator of order � is also approximated with (5.20)
by replacing ˛ with ��. Therefore, the PI �D� controller at node M can be
numerically calculated as

u.Mh/ D kpe.Mh/ C ki
1

h��
MX

jD0
w.��/j e .Mh� jh/

C kd
1

h�

MX

jD0
w.�/j e .Mh� jh/ : (5.22)
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Control objective of the system is to get the desired outputy.t/ D 1with a minimum
settling time and no overshoot. This purpose has been achieved by the method of
minimizing integral square error in [21] and by response surface methodology in
[13]. The details of these methods are given in the following sections and also the
previous results obtained in [13] by response surface methodology are improved
with additional experimental designs. These methods are applied to the system by
using the numerical solutions (5.21) and (5.22) whose parameters are chosen as
˛ D 0:8, � D 1, xb D 0:25, xc D 0:375:. The hysteresis parameters � D 1,
� D 3:1635, and � D 0:345 and the parameters of numerical calculations m D 15

and h D 0:05 are taken.

5.5 Integral Square Error Method

To adjust the parameters of the PI �D� controller with integral square error method
the objective function is chosen as

J.p/ D
1Z

0

Œe.t; p/�2dt; (5.23)

where p is the vector of control parameters:

p D �
kp ki kd � �

�
; (5.24)

and e.t; p/ is the error function between reference input function r.t/ and the
system response y.t/. Then the following algorithm is used to minimize the
performance index (5.23) which has been presented by Moradi and Johnson [18].

Step 1. Initialization

• Choose time interval,
• Choose convergent tolerance 	,
• Set loop counter k D 0,
• Choose the initial controller parameter vector p.k/.

Step 2. Gradient Calculation

• Calculate gradient of J . If the gradient satisfies the following condition

ˇ̌
ˇ̌@J
@p
.k/

ˇ̌
ˇ̌ < 	;

then stop.
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Step 3. Update calculation

• Compute the update parameters �k and Rk , and compute

p.k C 1/ D p.k/ � �kR�1
k

@J

@p
.k/ ; (5.25)

• Update k D k C 1 and go to Step 2.

Here,R�1
k is chosen as Hessian of J and �k is a positive real scalar that determines

the step size. Using this algorithm the optimum control parameters have been
obtained in [21] as kp D 0:2022; ki D 0:1915; kd D 0:1958; � D 0:1921, and
� D 0:1904 via convergence tolerance 	 D 0:1 and initial control parameter vector
p D 1:195

�
0:1 0:1 0:1 0:1 0:1

�
: According to these controller parameters the

output of the system reaches y.t/ D 0:997 with the settling time t D 13:8.

5.6 Response Surface Methodology

At the optimization stage of a process, it is important to know the mathematical
model that represents the relation between the factors (controllable input variables)
and the responses (measured output). By using these mathematical models
researchers may perform prediction for not experimented combinations of the
factors or may perform optimization by determining the input factor levels that
provides the desired results. Design of experiment techniques, which are the
combination of statistical and mathematical methods, provide researchers to
model the mathematical relations between the factors and the responses by using
the results of experimental runs of different combination of factor levels, with
minimum number of trials which is important for time saving. Response surface
methodology, Taguchi method, and factorial design are the widely used and well-
known design of experiment techniques. Response surface is used for modeling
systems especially including nonlinear relations. In a response surface model there
are quadratic, linear, and interaction terms while factorial design only includes
linear and interaction terms. So if there are quadratic relations between the factors
and the responses, and also it is important to get the mathematical model with
quadratic, linear, and interaction terms (full quadratic model), it is appropriate to
use response surface methodology but this information is not a generalized rule.
Response surface methodology and factorial design use matrix multiplications and
least square estimators while Taguchi uses logarithmic calculations and signal-to-
noise ratios which is basically different from response surface methodology and
factorial design. By using Taguchi method it is possible to obtain only the optimal
parameter combination of determined factor levels at the design of experiment
stage while other methods give the optimal solution with decimals. Although this
can be seen as a disadvantage of Taguchi method, Taguchi Method requires less
experimental runs if the number of factors are quite much [8, 12, 15].
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Table 5.1 Initial factor
levels Factors Minimum High

kp 0:15 0:30

ki 0:15 0:45

kd 0:25 0:30

� 0:15 0:45

� 0:05 0:25

To determine the desired values of the output y and the settling time t for the
system given by (5.7) the optimum controller parameters of kp , ki , kd , �, and �
are calculated by using response surface methodology. First of all the mathematical
relationships between the responses (y and t) and the tuning parameters (kp, ki , kd ,
�, and �) are established. By using this mathematical equation optimum parameters
are determined for y.t/ D 1 and minimum t . The general second-order polynomial
response surface mathematical model (full quadratic model) for the experimental
design presented in the present study ([6, 9, 11, 17]) is

Y D ˇ0 C
nX

iD1
ˇiXi C

nX

iD1
ˇi iXi

2 C
nX

jD1

X

j<i

ˇijXiXj C 	; (5.26)

in which Y is the response .y; t/ and the ˇ’s are parameters whose values are to be
determined.Xi andXj are the factors and the 	 is the random error term (residuals).
The model in terms of the observations may be written in matrix notation as

Y D ˇX C 	; (5.27)

where Y is the output matrix and X is the input matrix. The least square estimator
of ˇ matrix that composes of coefficients of the regression equation calculated by
the given formula:

ˇ D .XTX/�1XT Y: (5.28)

To reduce the number of tests, an L32 orthogonal array that only needs 32
experimental runs was adopted. Because of using nonrandom system one center
point is used in the design of experiment and by this way the number of experiments
is reduced to 27 runs. MINITAB 16 statistical package is used to establish
mathematical models for achieving the target value of 1 for y, while minimizing
t at a desired confidence interval (95%). The experimental design is realized to get
the optimum factor levels. The initial factor levels and the experimental design are
given in Tables 5.1 and 5.2, respectively.

According to the results of the experiments given in Table 5.2, mathematical
models based on response surface method for correlating responses such as the y
and t have been established which are represented by (5.29) and (5.30).



100 B.B. İskender et al.

Table 5.2 Experimental design

Ex.no kp ki kd � � y t

1 0:150 0:150 0:250 0:150 0:250 1:130 17:75

2 0:300 0:150 0:250 0:150 0:050 1:028 15:95

3 0:150 0:450 0:250 0:150 0:050 1:052 10:20

4 0:300 0:450 0:250 0:150 0:250 1:224 28:50

5 0:150 0:150 0:300 0:150 0:050 0:930 24:40

6 0:300 0:150 0:300 0:150 0:250 1:290 16:35

7 0:150 0:450 0:300 0:150 0:250 1:320 23:20

8 0:300 0:450 0:300 0:150 0:050 1:147 3:90

9 0:150 0:150 0:250 0:450 0:050 0:805 29:00

10 0:300 0:150 0:250 0:450 0:250 1:280 30:00

11 0:150 0:450 0:250 0:450 0:250 1:048 26:65

12 0:300 0:450 0:250 0:450 0:050 1:023 24:00

13 0:150 0:150 0:300 0:450 0:250 1:117 29:15

14 0:300 0:150 0:300 0:450 0:050 1:024 6:50

15 0:150 0:450 0:300 0:450 0:050 0:988 10:30

16 0:300 0:450 0:300 0:450 0:250 1:089 29:15

17 0:150 0:300 0:275 0:300 0:150 1:036 6:35

18 0:300 0:300 0:275 0:300 0:150 1:108 30:00

19 0:225 0:150 0:275 0:300 0:150 1:056 12:20

20 0:225 0:450 0:275 0:300 0:150 1:085 27:60

21 0:225 0:300 0:250 0:300 0:150 1:067 5:45

22 0:225 0:300 0:300 0:300 0:150 1:097 27:60

23 0:225 0:300 0:275 0:150 0:150 1:142 29:80

24 0:225 0:300 0:275 0:450 0:150 1:048 17:30

25 0:225 0:300 0:275 0:300 0:050 1:007 7:20

26 0:225 0:300 0:275 0:300 0:250 1:148 30:00

27 0:225 0:300 0:275 0:300 0:150 1:085 4:55

y D 0:0876C 4:7234kp C 1:3262ki � 1:2102kd C 0:2525�

C2:3687�� 0:7383kp2 � 0:2512ki2 C 9:3552kd
2

C0:8376�2 C :1347�2 � 3:1383kpki � 10:8300kpkd

C1:1117kp� � 1:4882kp�C 1:3317kikd � 1:2308ki�
�2:3288ki� � 3:1850kd�� � 1:1725kd� � 0:4746� (5.29)

t D �300:83C 341:23kp � 90:10ki C 2267:08kd C 0:38�

�26:29�� 87:68kp2 C 54:75ki
2 � 3429:09kd2

C216:97�2 � 6:82�2 C 259:44kpki � 1533:33kpkd

C256:67kp� � 108:33kikd C 11:39ki�C 173:75ki

�C 30:00kp� � 500kd�C 725kd�C 57:50�� (5.30)
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Cur
High

Low0,99959
D

Optimal

d = 0,99918

Targ: 1,0
y

y = 1,0

d = 1,0000

t
Minimum

y = 6,7194
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Desirability

0,99959
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[0,1530] [0,4494] [0,2505] [0,2501] [0,0560]

Fig. 5.1 Optimum levels of parameters for initial design obtained from response optimizer module
of MINITAB Package

Table 5.3 Factor levels for
the new design

Factors Minimum High

kp 0:01 0:05

ki 0:55 0:85

kd 0:15 0:30

� 0:15 0:45

� 0:01 0:15

By using the response optimizer module of MINITAB the optimum parameter
levels are determined as kp D 0:1530, ki D 0:4494, kd D 0:2505, � D 0:2501,
and � D 0:0560. By using the given parameters combination y is predicted as 1:00
while t is predicted as 6:7194which can be found in Fig. 5.1. After the confirmation
tests for the given optimum parameter levels by using MATLAB 7.1, y D 1:00

and t D 6:15 are obtained. Therefore it can be concluded that the settling time is
decreased by the response surface method via integral square error method given
in [21].

Because the levels of kp , ki , and kd are obtained at the boundary levels which
can be seen in Fig. 5.1, current kp , ki , and kd factor levels are rearranged. New
factor levels and experimental design are given in Tables 5.3 and 5.4, respectively.

From the experiments given in Table 5.4 the mathematical models based on
response surface method for correlating responses have been established by (5.31)
and (5.32).
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Table 5.4 The new experimental design

Ex.no kp ki kd � � y t

1 0:010 0:550 0:150 0:150 0:150 0:9582 29:95

2 0:050 0:550 0:150 0:150 0:010 0:9246 30:00

3 0:010 0:850 0:150 0:150 0:010 1:0360 5:20

4 0:050 0:850 0:150 0:150 0:150 1:0850 29:40

5 0:010 0:550 0:300 0:150 0:010 1:0110 13:20

6 0:050 0:550 0:300 0:150 0:150 1:1300 28:65

7 0:010 0:850 0:300 0:150 0:150 1:1460 26:15

8 0:050 0:850 0:300 0:150 0:010 1:1010 28:85

9 0:010 0:550 0:150 0:450 0:010 0:9161 99:40

10 0:050 0:550 0:150 0:450 0:150 0:9156 399:4

11 0:010 0:850 0:150 0:450 0:150 0:5900 15:90

12 0:050 0:850 0:150 0:450 0:150 0:9946 21:15

13 0:010 0:550 0:300 0:450 0:010 0:9946 4:95

14 0:050 0:550 0:300 0:450 0:150 0:9704 99:65

15 0:010 0:850 0:300 0:450 0:010 1:0030 18:40

16 0:050 0:850 0:300 0:450 0:010 1:0190 28:05

17 0:010 0:700 0:225 0:300 0:150 0:9796 54:05

18 0:050 0:700 0:225 0:300 0:080 0:9919 5:40

19 0:030 0:550 0:225 0:300 0:080 0:9421 98:30

20 0:030 0:850 0:225 0:300 0:080 1:0150 21:15

21 0:030 0:700 0:150 0:300 0:080 0:9592 95:80

22 0:030 0:700 0:300 0:300 0:080 1:0230 18:65

23 0:03 0:7 0:225 0:150 0:080 1:0640 28:05

24 0:03 0:7 0:225 0:450 0:080 0:9797 75:90

25 0:03 0:7 0:225 0:300 0:010 0:9825 81:45

26 0:03 0:7 0:225 0:300 0:150 1:0150 5:40

27 0:03 0:7 0:225 0:300 0:080 0:9883 78:64

y D 0:3912� 2:1518kp C 1:4834ki � 0:2448kd � 0:1235�

C0:8493�� 28:2576kp2 � 0:8224ki2 � 1:0583kd 2
C1:1021�2 C 0:3463�2 C 7:4146kpki � 15:0708kpkd

C6:2187kp� � 19:8348kp�C 0:9106kikd � 1:5064ki�
�2:7554ki�C 0:9917kd�C 6:3655kd� � 3:5923�� (5.31)

t D 207:3C 7539kp � 776:6ki C �1540:4kd C 1248:1�

1338:9�� 45088:3kp2 C 531:8ki
2 C 1682:6kd

2

C187:3�2 � 884:8�2 � 7675:0kpki � 8625:0kpkd

C7650:0kp� � 16299:1kikd C 2456:1ki� � 1410:3ki

� � 1159:5kp� � 2150kd� � 4657:1kd�C 1028:6�� (5.32)



5 Parameter Optimization of PI �D� Controller Using Response Surface. . . 103

Fig. 5.2 Optimum levels of parameters for new design obtained from response optimizer module
of MINITAB Package

The same process is used and the optimum parameter levels are determined as
kp D 0:0495, ki D 0:7066, kd D 0:2360, � D 0:2445, and � D 0:0100. The
coefficients of determination (R2) for y and t are calculated as 0:9787 and 0:9248,
respectively. As shown is Fig. 5.2, y is predicted as 1:00 while t is predicted as
3:2449 via the parameters combination. After the confirmation tests for the given
optimum parameter levels by using MATLAB 7.1, y D 1:00 and t D 3:35 are
obtained.

All of the results that are obtained from minimizing integral square error, first
and second designs with response surface methodology are plotted in Fig. 5.3.
Therefore, it can be concluded that the settling time is decreased more and more.
If the both of response surface designs are compared, it can be easily seen that the
optimum values of kp , ki , kd , and � control parameters are found inside in the
levels while the optimum value of � is found at the boundary of its level. However,
it does not need to seek another factor level for � parameter since this situation
leads to further reduce the effect of derivative control. Finally, it can be pointed out
the plotted outputs obtained from fitted model and the real results of experiments
calculated by using MATLAB are close to each other. Real system results are better
for the response t when it is compared with its expected value from MINITAB.
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Fig. 5.3 Response of the system with tuning parameters via response surface method

5.7 Conclusions

The tuning strategies of fractional order PI �D� controller for a fractional order
diffusion process subject to input hysteresis is developed and improved by response
surface methodology. To reach the fixed desired output with minimum time 27
experiment data are read on numerical solution of the system and so the orthogonal
design of experiment matrix is constructed. The mathematical relation between the
response values y and t and the fractional order controller parameters kp , ki , kd , �,
and � are obtained by a full quadratic model. When comparing output of the system
according to response surface method and minimizing integral square error strategy,
it can be concluded that the settling time is decreased.
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Chapter 6
Dynamical Response of a Van der Pol System
with an External Harmonic Excitation
and Fractional Derivative

Arkadiusz Syta and Grzegorz Litak

Abstract We examined the Van der Pol system with external forcing and a memory
possessing fractional damping term. Calculating the basins of attraction we showed
broad spectrum of nonlinear behaviour connected with sensitivity to the initial
conditions. To quantify dynamical response of the system we propose the statistical
0–1 test. The results have been confirmed by bifurcation diagrams, phase portraits
and Poincare sections.

Keywords Van der Pol system • Fractional derivative • 0–1 test • Chaos
detection

6.1 Introduction

The system with fractional damping dependent on the velocity history has focused
a lot of interest and was extensively studied in the last decade [1–6]. To model
complex energy dissipation with minimum number of parameters in presence of
hysteresis and memory effect, the fractional order derivative in the damping term
is proposed. In such systems the damping force is proportional to a fractional
derivative of the displacement instead of the classical case (first order derivative
of the displacement). The memory of the system was noted to be important factor
in different areas [5, 6]. Van der Pol systems, describing relaxation-oscillations
are characterized by a non-viscous composite damping term [7, 8] which is small
value, negative for small amplitude oscillations and changes the sign to positive
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for increasing amplitude. This system property is reflected by dynamical response
of limit cycle [9]. Comparing to viscous nonlinear systems this implies type of
bifurcations and transition to chaos including hopf bifurcations [10, 11].

Recently, Van der Pol systems have been studied in a series of papers [12–15].
Pinto and Machado proposed the complex order van der Pol oscillator [12] reporting
the changes in the system response spectrum with varying the fractional order of
derivative in the damping term. Attari et al. [13] focused on periodic solutions and
studied system parameters for their stability. Suchorsky and Rand [14] investigated
the synchronization by a fractional coupling of two Van der Pol systems. Finally,
Chen and Chen [15] studied a fractionally damped van der Pol equation with
harmonic external forcing. They focus on the effect of fractional damping influence
on the dynamic quasi-periodic and chaotic responses. In particular, the transition
from quasi-periodic to chaotic motion was demonstrated.

In the present paper we continue the analysis of chaotic motion proposing
an efficient method for chaotic solution identification by means of the 0–1 test
[16,17]. The main idea of this method is to use the statistical asymptotics which can
distinguish the periodic and non-periodic response by studying a single coordinate
of system response.

6.2 Van Der Pol System with a Fractional Damping

The van Der Pol system with external excitation is described by equation:

d2x

dt2
C 	.x2 � 1/

dqx

dtq
C x D f cos .!t/; (6.1)

where the fractional order derivative can be described using the Grünwald–Letnikov
definition [18, 19]:

dqx

dtq
�a D

q
t x.t/ D lim

h!1
1

hq

Œ t�ah �X

jD0
.�1/j

 
q

j

!
x.t � jh/; (6.2)

where binomial coefficients can be extended to complex numbers by Euler Gamma
function

 
q

j

!
D qŠ

j Š.q � j /Š D �.q C 1/

�.j C 1/�.q � j C 1/
; (6.3)

here a pair of square brackets Œ:� appearing in the upper limit of the sum denotes the
integer part, while a the length of the memory, respectively.
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Note that (6.1) can be decomposed into set of equations of lower degree:

LD
1
t x.t/ D y.t/

LD
q
t x.t/ D w.t/

LD
1
t y.t/ D �x.t/ � 	.x2.t/ � 1/w.t/C f cos .!t/; (6.4)

where w is defined as a fractional time derivative of displacement, while y coincides
with velocity (y D Px).

6.3 Test 0–1

To quantify obtained results which can be expressed in the time series of each
coordinate we use the 0–1 test for chaos detection ([16, 17, 20–22]). This test
combines both spectral and statistical properties of the system and can distinguish
different types of dynamic of the system by value K 2 f0; 1g. Below, one can find
description of the method.

First of all, we change the coordinates from .x; Px/ to the new set .p; q/ defined
as follows

p.n/ D
nX

jD1
Qxj cos .jc/; q.n/ D

nX

jD1
Qxj sin .jc/; (6.5)

where Qx D Œ Qx1; Qx2; Qx3; : : :� is a time series sampled from the original simulated
series x using and one forth of excitation period [23]. The time interval T=4 (T D
2�=!) corresponds to the nodal autocorrelation function of excitation harmonic
term ıcos.!t/. Note that relevant sampling can make shorter the length of time
series used in calculations leading consequently to reduction of computation time.
Finally, c is a constant, c 2 .0; �/. One can see that (6.5) resembles the Fourier
transform for chosen frequency (in the limit of larger n).

In the next step, one computes the mean square displacement (MSD) of p and q:

MSD.c; j / D 1

n � j

n�jX

iD1

˚
Œp.i C j / � p.i/�2

C Œq.i C j / � q.i/�2

; (6.6)

where 0 � j � n (in practice n=100 � j � n=10). The main criterion which
is based on the trends of MSD.c; j / in higher j limit. It is bounded for regular
dynamics or unbounded for chaotic dynamics[16, 17, 20, 22, 24, 25]

The final quantity K is calculated as a asymptotic growth rate of MSD (here
given by the correlation method):

K.c/ D CovŒj;MSD.c; j /�p
CovŒj; j � � CovŒMSD.c; j /;MSD.c; j /�

; (6.7)
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where j is based on series of natural numbers: j D n=100; n=100C 1 : : : ; n=10,
and Cov[x1,x2] denotes corresponding covariance of two series which for the same
arguments x1 D x2 means variance while for chosen pair of two different series:
x1 D j and x2 D MSD.c; j /, it can be expressed in terms of the expectation
value E[.]:

CovŒj;MSD.c; j /� D EŒŒj � EŒj �� � ŒMSD.c; j / � EŒMSD.c; j /���: (6.8)

6.4 Simulation Results

In our investigations we set 	 D 8:0, f D 1:0, ! D 3=10, and .x; Px/ D .0:5; 0:0/

for various q values (q 2 Œ0:8; 1:2�).
Figure 6.1 shows the results of the bifurcation diagram of the x coordinate s (red

points) versus order of the derivative q. The characteristic broad distributions of
points imply the chaotic behaviour while the countable few points (1 to 3 points per
q value noticeable in Fig. 6.1) correspond to a periodic solution.

On the other hand the full black line corresponds to parameterK defined for the
0–1 test versus q. Note, different q-parameter regions.K � 0 correspond to regular
(periodic motion) while K � 1 to chaotic solutions. Note that the K � 0 regions
ideally match the broad distributions in bifurcation diagram. One can also notice
some intermediate value of K (for q D 1:05) which could tell that reaching the
asymptotic limit of K needs longer time series of Qx.
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0.8 0.9 1.0 1.1 1.2

x,
 K

q

Fig. 6.1 The red points indicate the bifurcation (stroboscopic) diagram of the x coordinate versus
order of the derivative q 2 Œ0:8; 1:2�, initial conditions for each q were .x; Px/ D .0:5; 0:0/. Other
system parameters: 	 D 8:0, f D 1:0, ! D 3=10. The full black line corresponds to parameter K
defined for the 0–1 test versus q. Note, different q-parameter regions.K � 0 correspond to regular
(periodic motion) whileK � 1 to chaotic solution. The parameters used for K estimation were as
follows: n D 400, j D 4; ::; 40
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Fig. 6.2 Phase portraits and Poincare points for q D0.9 (a), q D1.0 (b), and q D1.063
(c), respectively. All other system parameters as in Fig. 6.1. The corresponding results for K:
0:91, �0:02, 0:06

For better clarity we show the phase portraits with corresponding Poincare
sections in Fig. 6.2a–c. The results also confirm the 0–1 test analysis (see Fig. 6.1).

6.5 Conclusions

We have examined dynamics of the Duffing model with fractional damping
term. Using nonlinear methods (phase diagrams, Poincare sections and bifurcation
diagrams) we have showed significant different system response while varying the
order of the derivative (from non-integer to integer). We also quantified the type
of motion by 0–1 test which is based on statistical properties of phase coordinate.
Note that the Lyapunov exponent could be difficult to estimate as the phase space
dimension is undetermined due to the memory effect. In such a situation the
embedding dimension should be estimated for each q value [26].
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Chapter 7
Fractional Calculus: From Simple Control
Solutions to Complex Implementation Issues

Cristina I. Muresan

Abstract Fractional calculus is currently gaining more and more popularity in the
control engineering world. Several tuning algorithms for fractional order controllers
have been proposed so far. This chapter describes a simple tuning rule for fractional
order PI controllers for single-input–single-output processes and an extension of this
method to the multivariable case. The implementation of a fractional order PI on an
FPGA target for controlling the DC motor speed, as well as the implementation of
a multivariable fractional order PI controller for a time delay system is presented.
Experimental results are given to show the efficiency and robustness of the tuning
algorithm.

Keywords Fractional calculus • Control algorithm • Multivariable processes
DC motor speed control • Multivariable fractional order controller • Decoupling
FPGA implementation • Micro-controller implementation • Time delays
Experimental results • Robustness

7.1 Introduction

Fractional calculus represents the generalization of the integration and differen-
tiation to an arbitrary order. The beginning of fractional calculus dates back to
the early days of classical differential calculus, although its inherent complexity
postponed its use and application to the engineering world [1]. Nowadays, its use in
control engineering has been gaining more and more popularity in both modeling
and identification, as well as in the controller tuning. The approach of fractional
calculus to modeling is based on the concepts of viscoelasticity, diffusion, and
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fractal structures that several processes may exhibit, which are more easily and
accurately described using fractional order models [2–6].

In terms of controller tuning, the fractional order PI�Dœ controller is in fact a
generalization of the classical integer order PID controller. It is generally accepted
that the fractional order PI�Dœ controller, due to the two supplementary tuning
variables, � and œ, is able to meet more performance criteria and behave more
robustly than the traditional PID controller [7–11]. Several approaches to tuning
fractional order PI�Dœ exist, with some notable works that use the theory of
fractional calculus in controlling both integer order and fractional order dynamical
systems [12–15].

Usually, the design of the fractional order controllers is done by imposing various
performance criteria that restrict the open loop system to a certain gain crossover
frequency, a given phase margin, a boundary on open loop amplification at certain
frequencies, or a robustness to open loop gain variations. Several techniques to
find a suitable solution for the fractional order controller parameters that meet all
pre-specified closed loop conditions have been developed, ranging from simple
optimization routines to more complex genetic algorithms or graphical methods
[16, 17].

The complexity of the tuning procedure even for simple, single-input–single-
output processes has restricted the application of such fractional order controllers
to these types of systems. Very few results are given for the multivariable case
[18, 19]. The research of Chenikher et al. [18] proposes in fact a rather complex
solution based on an H1 problem with a controller structure constraint, while the
controller parameters are optimized to achieve both user-specified robust stability
and performance, the controller obtained being tested for controlling systems with
multiple delays. The method described in this chapter proposes instead a very simple
method for tuning multivariable fractional order controllers, by extending the single-
input–single-output version. The method is also used for the general case scenario
in which the multivariable system may be non-square and with multiple time delays.

The tuning method is based on a steady state decoupling, followed by several
individual designs of fractional order controllers for the decoupled process and
a final computation of the multivariable controller. The tuning of the individual
fractional order controllers is similar to the single-input–single-output approach and
consists in imposing a given gain crossover frequency, a given phase margin, and a
gain robustness condition to the open loop system.

The chapter also presents some of the implementation steps and problems to be
solved prior to the actual implementation of fractional order controllers on dedicated
devices. Two case studies are presented. The first one consists in an FPGA (Field
Programmable Gate Array) implementation of a fractional order PI controller for a
DC motor, while the second case study presents the microcontroller implementation
of the multivariable fractional order PI controller. The experimental results are also
given to show the accuracy, efficiency, and robustness of the tuning method.

The paper is structured into five parts. Immediately after the Introduction section,
the next subchapter details one of the simplest tuning procedures for computing
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a fractional order PI controller. The method can easily be applied to both integer
order and fractional order single-input–single-output processes. Next, the approach
presented for the case of single-input–single-output processes is extended to the
multivariable case. The proposed control method for multivariable systems is
presented, including the decoupling procedure and the method to compute the
final multivariable fractional order PI controller. The next subchapter presents the
implementation issues associated with these types of controllers. A single-input–
single-output, as well as a multivariable case study is presented. Two different
devices are used for implementation purposes, an FPGA and a microcontroller. The
final section of this chapter contains the concluding remarks.

7.2 The simplest PI Tuning Algorithm

The most generally used transfer function for a fractional order PI controller (FO-PI)
is:

HFO-PI.s/ D kp

�
1C ki

s�

�
(7.1)

where the fractional order is denoted by � and is an arbitrary real number.
Several tuning algorithms for such FO-PI controllers exist, employing optimization
mechanisms for computing the final values of the three controller parameters—kp,
ki, and �—starting with some prescribed performance criteria. These performance
specifications most often refer to (a) an imposed gain crossover frequency of the
open loop system—¨gc, (b) an imposed phase margin of the open loop system—
¥m, and (c) a robustness condition.

In frequency domain, the transfer function of the FO-PI controller may be written
as:

HFO-PI.j¨/ D kp

h
1C ki¨

��
�

cos
 �

2
� j sin

 �

2

�i
(7.2)

where j�� D cos  �
2

� j sin �
2

.
Considering the process transfer function Hp(s), the open loop system may be

written as:

Hopen-loop.s/ D HFO-PI.s/HP .s/ (7.3)

The first condition, imposing a gain crossover frequency, leads to the modulus
equation:

ˇ̌
Hopen-loop

�
j¨gc

�ˇ̌ D 1 (7.4)
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If the process transfer function is written in a complex form as:

HP .j¨/ D 1

R
�
Hp
�C jI

�
Hp

� (7.5)

where R
�
Hp
�

stands for the real part and I
�
Hp
�

denotes the imaginary part of
HP(j¨gc), then (7.4) results in the following:

ˇ̌
ˇ̌
ˇ

1

R
�
Hp
�C jI

�
Hp
�
ˇ̌
ˇ̌
ˇ
!gc

ˇ̌
ˇkp

h
1C ki¨

��
gc

�
cos

 �

2
� j sin

 �

2

�iˇ̌
ˇ D 1 (7.6)

Imposing a phase margin for the open loop system translates to:

†Hopen-loop
�
j¨gc

� D � C ®m (7.7)

which may further be written as:

a tan

 
� ki¨

��
gc sin  �

2

1C ki¨
��
gc cos  �

2

!
� a tan

 
I
�
Hp
�

R
�
Hp
�
!

D � C ®m (7.8)

resulting in:

ki sin
�
 ��
2

�

¨
�
gcCki cos

�
 ��
2

� D tg

 
  � ®m � a tan

 
I
�
Hp
�

R
�
Hp
�
!!

(7.9)

In (7.9), the only unknown parameters are now ki and �, while in (7.6) there is
also kp. A third equation is then used to yield a system of three equations with three
unknown parameters. In this chapter, the third equation refers to robustness to gain
changes in the open loop system. To ensure such a performance specification, the
phase of the open loop system around the gain crossover frequency should be flat,
which implies that the derivative of the open loop system would be zero at the gain
crossover frequency:

d
�†Hopen-loop

�
j¨gc

��

d¨gc
D 0 (7.10)

Using the phase of the open loop system, (7.10) leads to:

�ki¨
���1
gc sin  �

2

1C 2ki¨
��
gc cos  �

2
C k2i¨

�2�
gc

�
PI �Hp

�
R
�
Hp
� � I

�
Hp
� PR �

Hp
�

I
�
Hp
�2 C R

�
Hp
�2 D 0 (7.11)
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which is again an equation with only two unknown parameters: ki and �, as the
case of (7.9). Thus, using (7.9) and (7.11) and applying optimization routines ki

and � can be uniquely determined given any phase margin, ®m. Then, using (7.6)
and the previously determined values for ki and �, the last parameter of the FO-PI
controller, kp, can also be uniquely determined.

7.3 Multivariable Approach to Fractional Order Control

The multivariable approach to fractional order control is based on a steady state
decoupling of the process, followed by the tuning of the fractional order controllers
for the decoupled process and lastly, the final computation of the multivariable
fractional order controller. The approach presented is suitable for square and non-
square systems and also for multivariable systems that exhibit multiple time delays.

For a general process transfer function matrix:

Gp .s/ D
2

4
g11e�£11s : : : g1me�£1ms

W W W
gn1e�£n1s : : : gnme�£nms

3

5 (7.12)

having m inputs and n outputs, the steady state decoupling is achieved using the
Moore–Penrose pseudo-inverse of the steady state gain matrix [20–22]:

G#
m D Gm.0/

H �
�

Gm.0/ � Gm.0/
H
��1 D

0

B@
g#
11 � � � g#

1n
:::

:::
:::

g#
m1 � � � g#

mn

1

CA (7.13)

where Gm
# is the pseudo-inverse, and ( : : : )H is the Hermitian matrix of the steady

state matrix Gm(0) computed as:

Gm.0/ D
2

4
g110 : : : g1m0

W W W
gn10 : : : gnm0

3

5 (7.14)

The decoupled process transfer function matrix is given by:

GD.s/ D Gm .s/ � G#
m D

2

4
gd11 : : : gd1n

W W : : :

gdn1 : : : gdnn

3

5 (7.15)
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Fig. 7.1 Closed loop control structure in the case of multivariable time delay processes

where

Gm .s/ D
2

4
g11e-£11s : : : g1me-£1ms

W W W
gn1e-£n1s : : : gnme-£nms

3

5 (7.16)

is the model of the multivariable process.
In steady state, applying a step input to the decoupled process in (7.15) leads to

output responses that have zero values for all the non-diagonal terms and unitary
values for all terms on the main diagonal. Thus, to compute the fractional order
controller, all non-diagonal elements in GD(s) may be discarded. The diagonal ele-
ments in GD(s) would be further used to design the fractional order controller. Each
diagonal element has, however, a complex form resulting from the multiplication of
the original model Gm(s) with the pseudo-inverse Gm

#:

gdii .s/ D
iDn;jDmX

iD1;jD1
gije�£ijsg#

ji (7.17)

The diagonal forms, as given in (7.17), are difficult to be used in the design of
the controllers. Thus, a more simplified form of (7.17) is required. Denoting the
approximations obtained [20, 21] in (7.17) with Hpi(s) which can be easily written
as in (7.5), the procedure described in the previous section may be used to tune
several FO-PI controllers for each Hpi(s), by imposing n different gain crossover
frequencies and n phase margins ®m for each of the process outputs. Such a design
approach is facilitated since the control structure used would be a Smith predictor,
as shown in Fig. 7.1, where Gp(s) is the process transfer function matrix from (7.12),
Gm(s) is the model of the process from (7.16), QGm .s/ is the model of the process
without the corresponding time delays, GF(s) are some feedback filters [20, 21] and
finally Gc(z) is the multivariable fractional order controller, in its discrete form.
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For processes that do not exhibit time delays, the same tuning procedure can be
applied and the final control structure would be a simple, classical negative feedback
closed loop scheme.

The multivariable fractional order controller Gc(s) may be easily computed as
soon as the individual FO-PI controllers are determined for each Hpi(s):

GC.s/ D G#
m

0

BB@

HFO-PI1 .s/ 0 : : : 0

0 HFO-PI2 .s/ : : : 0

: : : : : : : : : 0

0 0 : : : HFO-PIn .s/

1

CCA (7.18)

7.4 Practical Implementation Issues

To implement the fractional order controllers, both for the single-input-single-output
and for the multivariable processes, an analog or discrete form of these controllers
is required. First, to ensure the effect on an integer order integrator, both at high and
low frequencies [17], the general form of the FO-PI controller in (7.1) is written as:

HFO-PI.s/ D kp

�
1C kis1��

s

�
(7.19)

Compared to traditional integer order systems that have limited memory and
are finite dimensional, fractional order systems imply the use of unlimited memory
(infinite dimensional), which represents one of the main problems in implementing
controllers based on fractional orders. For this reason, the approximation of frac-
tional order systems with finite difference equations becomes even more important.
Several analog approximations have been proposed [23], nevertheless in practice it
is more convenient to use direct discretization methods.

To implement the fractional order controllers, either for the single-input–single-
output processes or for multivariable ones, on digital devices, the discrete form of
(7.19) is necessary to be obtained. The discretization method used is based on the
recursive Tustin method [24, 25]:

s� D
�
2

T

�� A
�

z
�1
; �
�

A
�

z
�1
;��

� (7.20)

where T is the sampling period. The polynomials A have different forms depending
on the order of the discretization:
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for a 5th order approximation, while
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z�2 � �z�1 C 1 (7.22)

is the 9th order approximation.
When using the discrete form of the FO-PI controllers, hardware considerations

must be also accounted for. Limitations in digital implementation refer to the
memory size available, the necessary computational load, the bounds on the
execution time, the number of resources available for compiling, and running the
fractional order control algorithm.

The first case study considered in the paper consists in an FPGA implementation
of a fractional order PI for controlling the DC motor speed. FPGAs are currently
used in a wide area of applications, ranging from digital signal processing systems,
space and defense, prototyping, medical systems, intelligent traffic systems (ITS)
to language recognition, bioinformatics, cryptography, etc. [26]. The choice for the
FPGA implementation is based on a series of advantages: low power consumption,
increased flexibility that allows the addition of new features to the controller, its
update, the implementation of further data post-processing algorithms, dynamic
reconfigurability, and in-system programmability capabilities that allow the imple-
mentation of mechanisms that increase the overall performance of the system and
its reliability [27]. A couple of notable papers describing the implementation of
fractional order control algorithms on PLCs exist [28–30], but research covering the
problem of FPGA implementation is rather scarce.

The transfer function of the DC motor to be controlled is given by [31]:

H .s/ D 27:5

0:26s C 1
(7.23)

having the DC motor duty cycle as the control input. To design the fractional order
PI controller as described in the previous section, for the single-input–single-output
case, the following design specifications are imposed:¨gc D 15 rad/s, ®m D 70o and
robustness to open loop gain variations. Using (7.9) and (7.11), the ki parameter of
the FO-PI controller is computed for different values of the fractional order �. The
results are plotted in a graph given in Fig. 7.2.

Using Fig. 7.2, the intersection point of the two plots yields a fractional order
�D 0.7371 and a corresponding ki D 7.85. With these values, the last parameter of
the FO-PI controller in (7.1) can be uniquely determined using (7.6): kp D 0.09. The
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Fig. 7.2 Plots of ki as a function of the fractional order � for the DC motor speed control

FO-PI controller is further put into its discrete form using 9th order recursive Tustin
method, with a sampling time of 0.015 s.

The main problem with the implementation consists in the data representation.
Matlab and PC based programs use floating-point double data representation,
whereas FPGAs use fixed point. The implementation of the FO-PI controller in
its discrete form implies a recursive equation for the control input, based on its
previous values, as well as previous values of the control error. The floating point
and the fixed point implementation of the FO-PI controller, on a real time target and
an FPGA device, respectively, are given in Fig. 7.3a, b.

For the implementation of the FO-PI controller designed for the DC motor speed
control, the optimum data representation was chosen to be 14 bits for the integer
word length and 32 bits for the entire word length.

The experimental results are given in Fig. 7.4 and are compared to the Matlab
simulation. The results show that the designed FO-PI controller maintains an
overshoot of less than 10 % and a settling time of 0.1 s.

The second case study consists in a design of a multivariable FO-PI controller
for a process with multiple time delays [21]:

Gp .s/ D
0

@
g11.s/ e�£11s g12.s/ e�£12s 0

g21.s/ e�£21s g22.s/ e�£22s g23 .s/
g31.s/ e�£31s g32.s/ e�£32s g33 .s/

1

A (7.24)
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Fig. 7.3 Fractional order control algorithm using (a) fixed-point data running on FPGA and
(b) floating-point data running on RT target (© Elsevier, 2013), reprinted with permission
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Fig. 7.4 DC motor speed control using FPGA (© Elsevier, 2013), reprinted with permission

with the transfer functions determined using experimental identification methods
[21, 32]. The gain matrix of (7.24) is then computed as [21, 32]:

Gm .s D 0/ D
2

4
�1:318 0:569 0

�0:882 0:882 �9:386
�0:140 0:063 8:585

3

5 (7.25)
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Since the multivariable process is a square one, the Moore–Penrose pseudo-
inverse of the steady state gain matrix would be equal to the actual inverse of (7.25):

G#
m D

2

4
�1:432 0:856 0:936

� 1:558 1:982 2:167

� 0:011 �6:7 � 10�4 0:115

3

5 (7.26)

The decoupled process transfer function matrix is computed using (7.26) and
(7.24), replaced in (7.15). The diagonal terms of the resulting decoupled process
transfer function matrix are given by:

gd11 D �1:432 � g11.s/ e�£11s � 1:558 � g12.s/ e�£12s (7.27)

gd22 D 0:856 � g21 .s/ e�£21s C 1:982 � g22 .s/ e�£22s C 6:7 � 10�4 � g23 .s/ (7.28)

gd33 D 0:936 � g31.s/ e�£31s C 2:167 � g32.s/ e�£32s C 0:115 � g33 .s/ (7.29)

To facilitate the design of the controllers, the diagonal terms (7.27), (7.28), and
(7.29) are approximated with the following transfer functions [21]:

g�
d11 .s/ D 0:022274 � e�6s

.s2 C 0:1044s C 0:02223/
(7.30)

g�
d22 .s/ D 0:0045918 � e�8s

.s2 C 0:12s C 0:004592/
(7.31)

g�
d33 .s/ D 1:0565

.s C 1:057/
(7.32)

For the design of the fractional order controller, due to the Smith predictor
structure used, only the delay free parts in (7.30)–(7.32) are considered. The tuning
is performed by setting the gain robustness conditions, as well as the additional
performance specifications regarding the phase margin and gain crossover frequency
for the open loop system: ¨gc1 D 0.01, ¨gc2 D 0.01, and ¨gc3 D 0.05; ®m1 D 60o,
®m2 D 70o, and ®m3 D 50o. Plotting again for each transfer function the ki param-
eters computed using (7.9) and (7.11) as a function of the fractional order, as
given in Figs. 7.7, 7.5, and 7.6, and using (7.6) to determine the final value for
the kp parameter, yield the following final results: �1 D 1.327, kp1 D 0.0424, and
ki1 D 0.0562,�2 D 1.19, kp2 D 0.2213, and ki1 D 0.02, and �3 D 1.436, kp3 D 0.044,
and ki3 D 0.32.

To implement the multivariable FO-PI controller on a microcontroller target, the
discrete form is obtained using 5th order recursive Tustin method, with a sampling
time of 0.3 min. The experimental platform consists in the multivariable process
running in a Simulink, Matlab environment, while the multivariable fractional order
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Fig. 7.7 Plots of ki as a function of the fractional order � for the first diagonal element of the
multivariable decoupled process

control algorithm is developed and runs on a microcontroller. At every sampling
time, the microcontroller reads from Simulink the process outputs and generates the
control inputs, based on the computed error signals. The communication between
the Simulink environment and the microcontroller is a serial one. The multivariable
fractional order control algorithm implemented on the microcontroller consists in
three recurrent relations that generate the next three control signals based on their
previous values, as well as on previous values for the computed tracking errors. The
measured process output values are represented on 32 bits, corresponding to single
precision, which are then split into 4 groups of 8 bits each, and sent one group at
a time to the microcontroller. After the microcontroller computes all of the three
control signal values, they would be sent back in the same fashion, in a vector form
to the process running in Simulink, Matlab.

Figures 7.8 and 7.9 present the necessary subsystems from Simulink required
to connect to the microcontroller. The sending subsystem has three input signals,
corresponding to the three output signals of the multivariable process. Since the
process is running in a Simulink environment, these outputs are represented in
double precision and have to be converted to single precision prior to be sent
to the microcontroller. Also, prior to sending the measured output values to the
microcontroller, these outputs need to be sampled. This operation is performed in
the Single blocks of Simulink, as shown in Fig. 7.8, by providing the sample time.

The multiplexer is used to combine all three measured output values into one
vector. This is necessary since the serial communication used is a one-dimensional
stream of bits. The vector is then sent by the Serial Send block, maintaining the
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order of the three outputs. Each value of the output signals is represented on 32 bits,
split into 4 groups of 8 bits each, and sent one group at a time.

The microcontroller computes the three control signals and places them in a
vector form which is sent to the Simulink program. The Serial Receive block
in Simulink is configured to form a vector dimensional structure, with elements
in single precision representation. The demultiplexer in the receiving subsystem
performs the inverse operation of the multiplexer and separates the three control
signals and converts them in double precision using the Double block of Simulink.
Finally, each signal is passed to a zero-order-hold and then to the multivariable
process.
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Fig. 7.10 The
microcontroller input
function

Fig. 7.11 The
microcontroller output
function

In programming the microcontroller, the input function is designed to read from
the serial port 8 bits at a time and to save them in a union structure. Once all 32
bits are in place, they will be interpreted as a single precision value, as shown in
Fig. 7.10.

The program reads the three measured output values, computes the control
signals using the recurrent relations as resulting from the control algorithm, and
sends them back, in the same order, corresponding to the order of the output signals.

The output function in the microcontroller receives a single precision floating-
point value and sends all its 32 bits, 8 of them at a time, as shown in
Fig. 7.11.

The experimental results are given in Figs. 7.12, 7.13, and 7.14 that present the
three outputs evolution, considering a step change in the second output reference
signal, while Figs. 7.15, 7.16, and 7.17 show the evolution of the three inputs.
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Fig. 7.13 Output y2 evolution considering a step change in its reference and a microcontroller
implementation of the multivariable FO-PI controller
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Fig. 7.15 Input u1 evolution considering a step change in the y2 reference and a microcontroller
implementation of the multivariable FO-PI controller
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Fig. 7.16 Input u2 evolution considering a step change in the y2 reference and a microcontroller
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The nominal case scenarios (black lines), considering Gp(s) D Gm(s), as well as
situations considering ˙30% gain variations (grey lines) are presented in the figures.
The results obtained clearly indicate that the robustness specification regarding gain
uncertainties is attained, with zero overshoot as expected from the increased phase
margin condition and a variation of the ˙15 % in the settling time.

7.5 Conclusions

The main purpose of the chapter is to present a simple tuning rule for FO-
PI controllers, both for the single-input–single-output and for the multivariable
systems. The tuning algorithm is based on two performance specifications for
the open loop system, combined with a robustness condition for gain variations.
The case studies presented include a single-input–single-output process, as well
as a multivariable one. The implementation steps for both controllers are also
presented using two different equipments, an FPGA target and a microcontroller.
The experimental results show that the fractional order control algorithm can be
easily implemented and represents an adequate control solution for different types
of processes.
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Chapter 8
Emerging Tools for Quantifying Unconscious
Analgesia: Fractional-Order Impedance Models

Amélie Chevalier, Dana Copot, Clara M. Ionescu, J. A. Tenreiro Machado,
and Robin De Keyser

Abstract This paper presents the application of model-based predictive control
(MPC) in combination with a sensor for the measurement of analgesia (pain relief)
in an unconscious patient in order to control the level of anesthesia. The MPC
strategy uses fractional-order impedance models (FOIMs) to model the diffusion
process that occurs in the human body when an analgesic drug is taken up. Based
on this control strategy an early dawn concept of the pain sensor is developed.
The grand challenges that coincide with this development include identification of
the patient model, validation of the pain sensor, and validation of the effect of the
analgesic drug.

Keywords Analgesia • Pain relief level • Non-invasive pain sensor • Model-
based predictive control • Fractional-order impedance model

8.1 Introduction

The last few decades, modern medicine has successfully been influenced by
advanced control technologies resulting in applications such as robotic surgery,
electro-physiological system life support and image-guided therapy and surgery [1].
An interesting application of control in medicine is clinical pharmacology and in
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particular the control of general anesthesia during surgery and in the intensive care
unit (ICU). Monitoring and controlling the depth of anesthesia for surgical patients
poses interesting challenges to the control engineer [2] as it is a multi-variable
interaction process that has captured the attention of engineers and clinicians
already decades ago [3]. The first designs were expert systems that advised the
anesthesiologist upon optimal drug infusion rates during clinical trials [4]. Control
of anesthesia has a manifold of challenges, with multi-variable characteristics [5],
different dynamics depending on anesthetic substances [6, 7], and stability prob-
lems [8].

General anesthesia, where the patient is completely unconscious, has the aim of
ensuring sleep, amnesia, loss of pain, relaxation of skeletal muscles, and loss of
control of reflexes of the autonomic nervous system. It consists of three components
acting simultaneously on the patient’s vital signs: hypnosis (ensuring sleep and
amnesia), analgesia (ensures loss of pain), and neuromuscular blockade (relaxes the
skeletal muscles and the motor reflexes). Hypnosis is relatively well characterized
and is in standard clinical practice monitored by sensors based on electroencephalo-
gram (EEG) data. Neuromuscular blockade immobilizes the patient during surgical
procedures or intensive care and is also a relatively well-characterized process with
standard sensors, such as motion sensors, available. By contrast, analgesia is far
from being well characterized and no sensor is available for measuring the pain
relief levels that a patient experiences during general anesthesia.

The advantage of automated closed loop control of anesthesia is that it gives
a continuous drug delivery, contrary to intermittent control which is nowadays
standard practice. A continuous drug delivery ensures that there is no under- or over-
dose of hypnotic or analgesic drugs that could result in patients that feel pain during
surgery but are unable to move. Erroneous feedback information, biased either by
the presence of artifacts (e.g., eye movement, leg movement, coughing, sneezing,
choking, shivering) or by patient model mismatch, is one of the major problems for
the control algorithms [9]. As a result the quality of the measured signals decreases,
leading to the need of complex numerical filtering techniques. The latter require
longer computation times, hence introducing artificial time delays which vary from
one time instant to another, dependent on the signal quality [7]. If not dealt-with
appropriately, such varying time-delays are a source of poor feedback control.
Advanced control techniques such as model-based predictive control (MPC) can
deal successfully with these variable time delays, nonlinearities, input and output
constraints [10].

The research presented in this paper merges classical control theory with the
young promising field of fractional-order modeling to measure pain relief levels in
an unconscious patient and initiate the development of a biosensor for analgesia
levels. Few pioneering attempts to measure the analgesic component of general
anesthesia have shown that current state of the art is unable to deliver suitable
signals and models for optimal regulation. The result is then a high risk of drug
over- or under-dosing and unwanted postoperative effects, leading to increased
hospitalization and health-care costs for both society and patient [11]. We propose
to employ a mathematical tool called fractional-order impedance model (FOIM) to
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model the pharmacological diffusion process that takes place when the human body
takes up an analgesic drug such as remifentanil. These models can be used in an
MPC context to control the depth of analgesia in the unconscious patient.

The paper is structured as follows: in Sect. 8.2, we describe analgesia and the
coinciding diffusion process. Section 8.3 discusses the control method that will be
used in combination with the proposed analgesia sensor and the possible models
used in this control. The grand challenges in the development of the sensor are
discussed in Sect. 8.4 and the conclusions are summarized in a final section.

8.2 Analgesia as Integrated Part of General Anesthesia

General or complete anesthesia refers to inhibition of sensory, motor and sympa-
thetic nerve transmission at the level of the brain, resulting in unconsciousness
and lack of sensation. It consists of three components: hypnosis, analgesia, and
neuromuscular blockade. Hypnosis is a general term indicating unconsciousness
and absence of postoperative recall of events occurred during surgery. The level
of hypnosis is related to the infusion of hypnotic drugs such as propofol and
can be monitored by BIS monitoring. Analgesia is defined as an insensibility to
pain without loss of consciousness. It is a state in which painful stimuli are not
perceived or interpreted as pain and is usually induced by a drug, although trauma or
disease may also result in a general or regional analgesia. Neuromuscular blockade
is induced to prevent unwanted movement or muscle tone and causes paralysis
during surgical procedures. The muscle relaxants are given intravenously (through
the bloodstream) and act directly on the muscles.

Hence, analgesia is the amount of pain relief achieved during general anesthesia.
The pain relief is obtained by administrating an analgesic drug such as remifentanil
to the patient. The effectiveness of the analgesic drugs relies on how they are able
to block the neural messages to the brain that are sent by the pain receptors. In the
next sections we discuss this process of pain perception and how the analgesic drug
is absorbed by the human body, i.e. the drug diffusion process.

8.2.1 Pain Perception

Pain perception is a complicated process where the pain signal is sent from the pain
receptors found in the skin to the brain where the signal is interpreted as pain. The
signal is transmitted via neurons and synapses, through the spinal cord and then to
the brain.

Neurons are the basic cells in the central nervous system (CNS). Classical
neurons consist of a cell body, dendrites, and axons (see Fig. 8.1). After the dendrites
receive the information from the previous cell, the axon generates an action potential
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Fig. 8.1 Main parts of a classical neuron

Fig. 8.2 Inner mechanisms of a synapse

(AP), which is an electrical signal, and sends this signal to the next cell via the
presynaptic terminals. The presynaptic terminal forms the synapse together with the
dendrites of the following cell that receive the information sent through the neuron.

A synapse is the place where two neurons communicate with each other. At
this point in the communication we do not have an electrical signal anymore but
a chemical signal. The chemicals used in this communication are called neurotrans-
mitters. In Fig. 8.2 we can see a schematic of a synapse between two neurons. When
the electric signal reaches the synapse at the side of the signal emitting neuron,
it causes the release of chemical messengers, i.e. neurotransmitters from storage
vesicles. The neurotransmitters travel across a minute gap between the cells and then
interact with protein molecules, i.e. receptors located in the membrane surrounding
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the signal receiving neuron. This interaction causes biochemical reactions that
result in the generation of a new electrical signal, depending on the type of
neuron, neurotransmitter, and receptor involved. Each receptor has a corresponding
neurotransmitter. Receptors function much like gates that enable pain signals to pass
through and onto the neighboring cells.

Pain receptors, also called nociceptors, are sensory neurons that are found in
any area of the body that can sense pain either externally or internally. An external
example are the nociceptors in the top layer of the skin (see Fig. 8.3). Internal
nociceptors are present in a variety of organs, such as the muscle, joint, bladder, gut
and continuing along the digestive tract. Nociceptors can be triggered by exceeding
a high threshold that has been reached by either chemical, thermal, or mechanical
environments.

Afferent neurons (such as nociceptors), which send information to the CNS,
travel back to the spinal cord where they form synapses in its dorsal horn. From
the dorsal horn the information is then sent to the thalamus which is located near
the brain. The information is then processed in the ventral posterior nucleus and
sent to the cerebral cortex, the headquarters for complex thoughts. This is where
the signals are interpreted as pain. This entire process of pain transmission is called
nociception.

There are many different neurotransmitters in the human body acting in various
combinations to produce painful sensations in the body. Some chemicals govern
mild pain sensations while others control intense or severe pain. When tissues
become injured or inflamed, chemicals are released making nociceptors much more
sensitive causing them to transmit pain signals in response to even gentle stimuli
such as breeze or a caress. This condition is called allodynia; a state in which
pain is produced by harmless stimuli. This can be a major cause for over-dosing
of analgesics and should be well understood in order to be avoided.



140 A. Chevalier et al.

Head

Tale

Cell 
Membrane:
Phospholipid
bilayer

Fig. 8.4 Diffusion of analgesic drug through the phospholipid bilayer of the cell membrane

8.2.2 Diffusion Process

An analgesic drug interacts with the CNS to stop the communication between the
nociceptors and the brain so that pain cannot be perceived anymore. However, this
drug needs first to be taken up by the human body. This is achieved by a complex
diffusion process across various cell membranes.

An important function of a biological cell membrane is to serve as a barrier to
the outside world. However, membranes are not impenetrable walls. Nutrients must
be able to enter the cell and waste products have to leave in order for the cell to
survive. For this and many other reasons, it is crucial that membranes be selectively
permeable. For example, the movement of ions across membranes is important in
regulating vital cell characteristics such as cellular pH and osmotic pressure [12].
Membrane permeability is also a key determinant in the effectiveness of drug
absorption, distribution, and elimination. For example, a drug taken orally that
targets cells in the CNS must cross several membranes: first the barrier presented
by the intestinal epithelium, then the walls of the capillaries that perfuse the gut,
then the blood–brain barrier. Some endogenous substances and many drugs easily
diffuse across the lipid bilayer. However, the lipid bilayer presents a formidable
barrier to larger and more hydrophilic molecules (such as ions). These substances
must be transported across the membrane by special protein channels.

Many drugs need to pass through one or more cell membranes (see Fig. 8.4)
to reach their site of action. A common feature of all cell membranes is a
phospholipid bilayer, about 10 nm thick. Spanning this bilayer or attached to the
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outer or inner leaflets are glycoproteins, which may act as ion channels, receptors,
intermediate messengers (G-proteins), or enzymes. Cells absorb molecules and ions
from the extracellular fluid, creating a constant in- and outflow. The interesting
thing about cell membranes is that relative concentrations and phospholipid bilayers
prevent essential ions from entering the cell. Therefore, in order for drugs to
move across the membrane these problems must be addressed. In general, this
is completed by facilitated diffusion or active transport. In facilitated diffusion,
relative concentrations are used to transport in and out. Active transports use energy,
such as ATP (AdenosineTriPhosphate), to transfer molecules and ions in and out
of the cell. Cellular signals cross the membrane through a process called signal
transduction. This three-step process proceeds when a specific message encounters
the outside surface of the cell and makes direct contact with a receptor. A receptor
is a specialized molecule that takes information from the environment and passes it
throughout various parts of the cell. Next, a connecting switch molecule, called
a transducer, passes the message inwards, closer to the cell. Finally, the signal
gets amplified, therefore causing the cell to perform a specific function. These
functions can include moving, producing more proteins, or even sending out more
signals [13].

Diffusion across the lipid bilayer is the spontaneous process where certain
molecules can slip between the lipids in the bilayer and cross from one side to the
other since the membranes are held together by weak forces (see Fig. 8.5). This
process allows molecules that are small and lipophilic (lipid-soluble), including
most drugs, to easily enter and exit cells. In order to be able to develop a sensor
to measure the analgesic component of general anesthesia, we need to find a way to
model this diffusion process.

8.3 Automated Regulation of Depth of Anesthesia

Nowadays, to optimally control the depth of the anesthesia, there is a need for
a sensor that can measure the level of analgesia. The nonlinear response profile
and inter- and intra-patient variation of the patient’s analgesic state to infusion
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of remifentanil should be handled by a robust controller. From a clinical point of
view, an ideal controller would guide the induction of anesthesia in order to reach
the target as fast as possible without initial overshoot. Afterwards, the controller
would simply maintain the desired target as well as possible. Therefore, from control
engineering viewpoint, MPC plays a crucial role in solving such complex problems.

The term model-based predictive control refers to a class of computer-based
control strategies. They utilize in real-time an explicit process model to predict
at each control interval the future response of the controlled system. The type of
models which are currently used in real-life applications are either linear dynamical
system models (step response models, transfer function models, linear state space
models) or nonlinear dynamical system models. The roots for MPC are dating back
to around 1980, when some pioneering institutions started to develop the main ideas
and computer algorithms [14]. The MPC strategy can be visualized by the block-
scheme in Fig. 8.6.

8.3.1 Non-invasive Sensor

General anesthesia (sedation) is difficult to assess in terms of adequacy because of
its subjective nature. Several objective sedation scales such as the Ramsay Sedation
Scale and the Sedation-Agitation Scale have been developed [15]. The Ramsay
scoring system is one of the most commonly used scales. Even though it is simple,
it cannot effectively measure the quality or amount of sedation and has never been
objectively validated. Newer sedation scales are reported to show improvements
in validity and reliability [16, 17]. Unfortunately, clinical sedation scores do not
prevent under- or over-sedation and demand continuous bedside clinical scoring, a
task performed by an alert clinical nurse sitting next to the patient.

In order to obtain a correct level of sedation in the patient, continuous monitoring
of analgesia (pain relief) is of paramount importance. This demands stand-alone
integrated monitoring tools for analgesia. While instrumental tools for the hypnotic
component of anesthesia are standardly available and reliable (e.g., the BIS Monitor
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Fig. 8.7 Three main parts of the proposed biosensor

from Aspect Medical [18]), there is a serious lack of available tools to measure
the analgesic component in an objective, reliable manner. Hitherto, there exists
no sensor that evaluates objectively and continuously the pain relief levels during
general anesthesia. The challenge originates from the fact that pain perception
in the neural dynamics, and hence in the subsequent biological feedback, is not
understood properly since models to characterize this complex biological process
are not available.

To date there exists no integrated pain sensor and no information is available on
how exactly these nociceptors can be detected. An early dawn conceptual picture
of the sensor setup by means of several detection and processing steps is given
in Fig. 8.7. The three main parts of a biosensor are presented: the role of biological
recognition elements (receptors, enzymes, antibodies, etc.) is to differentiate the tar-
get molecules in the presence of various chemicals, the transducer (electrochemical,
optical, magnetic, etc.) converts the bio-recognition event into a measurable signal,
and the signal processing part converts the signal into a readable form.

8.3.2 A Prediction Model for MPC

MPC is a model-based control strategy. Standard models include step response
models, transfer function models, and linear state space models; however, these
models do not suffice in modeling the dynamics of the diffusion processes that occur
in the human body.

In the past many attempts to model the diffusion process have been made. FOIMs
have been shown to well characterize these diffusion processes [19–21], which in
essence take place ubiquitously in our body. It is therefore natural to choose these
tools in detecting, understanding, and characterizing the process of pain reception
at the level of nociceptors.

In medicine, the field of fractional-order calculus has barely been explored.
However, this research field promises to serve a whole range of applications with a
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large impact on the progress of science and welfare. The last decades have shown an
increased interest in the research community to employ parametric model structures
of fractional-order for analyzing nonlinear biological systems [19]. The concept
of fractional-order (FO)—or non-integer order—systems refers to those dynamical
systems whose model structure contains arbitrary order derivatives and/or integrals
[22]. The fractional-order derivatives and integrals are tools of the Fractional
Calculus theory [23]. The dynamical systems whose model can be approximated
in a natural way using FO terms exhibit specific features: viscoelasticity, diffusion,
and fractal structure. From previous work [24–26], we know now that the multiple
scale adaptation of neurons is consistent with fractional order differentiation, such
that the neuron’s firing rate is a fractional derivative of slowly varying stimulus
parameters [27]. The findings of scale-free fluctuations in the activity of neurons and
synapses have been used to illustrate the existence of multiple time-scale dynamics
in neurons and synapses [28]. Additionally, it has been shown that phase-locking
phenomena can be explained by the presence of fractal electrical neuronal networks,
which lead to a FOIM of the neural network [29]. However, the theoretical concepts
of fractals, chaos, and multi-scale analysis have not yet been employed in the field
of anesthesia, where the electrical activity of the brain is altered by the effects of
hypnotic (propofol) and analgesic (remifentanil) drugs.

Another option to model the diffusion processes in the human body is to use
compartmental models in combination with fractional-order derivatives [30]. Three
compartments are used in this diffusion model: blood, muscle, and fat.

Principles of Fractional Calculus

The fractional calculus is a generalization of integration and derivation to non-
integer (fractional) order operators. At first, we generalize the differential and
integral operators into one fundamental operator Dn

t (n the order of the operation)
which is known as fractional calculus.

Several definitions of this operator have been proposed. All of them generalize
the standard differential–integral operator in two main groups: (a) they become
the standard differential–integral operator of any order when n is an integer; (b)
the Laplace transform of the operator Dn

t is sn (provided zero initial conditions),
and hence the frequency characteristic of this operator is .j!/n. The latter is very
appealing for the design of parametric modeling and control algorithms by using
specifications in the frequency domain.

A fundamentalDn
t operator, a generalization of integral and differential operators

(differintegration operator), is introduced as follows:

Dn
t D

8
<

:

dn

dtn
; n > 0

1; n D 0R t
0
.d˛/�n; n < 0

9
=

; (8.1)
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where n is the fractional order and d˛ is a derivative function. Since this paper
will focus on the frequency-domain approach for FO derivatives and integrals, we
shall not introduce the complex mathematics for time domain analysis. The Laplace
transform for integral and derivative order n are, respectively:

L fD�n
t f .t/g D s�nF.s/ (8.2)

L fDn
t f .t/g D snF.s/ (8.3)

where F.s/ D L ff .t/g and s is the Laplace complex variable. The Fourier
transform can be obtained by replacing s by j! in the Laplace transform and the
equivalent frequency-domain expressions are:

1

.j!/n
D 1

!n

�
cos

n�

2
� j sin

n�

2

�
(8.4)

.j!/n D !n
�

cos
n�

2
C j sin

n�

2

�
(8.5)

Thus, the modulus and the argument of the FO terms are given by:

Modulus.dB/ D 20 log
ˇ̌
.j!/�n

ˇ̌ D �20n log j!j (8.6)

Phase.rad/ D arg
�
.j!/�n

� D �n�
2

(8.7)

resulting in a straight line with a slope of �20n passing through 0 dB for ! D 1

for the magnitude (dB vs. log-frequency), respectively, a horizontal line, thus
independent with frequency, with value �n�

2
for the phase (rad vs. log-frequency).

The respective sketches are given in Fig. 8.8.

Principles of Compartmental Fractional Derivative Models

In this section a two-compartmental fractional derivative model is discussed. The
basic idea behind this model can be used to model diffusion processes in the human
body by a multi-compartmental model.

The model is formulated so that the mass balance is preserved. In Fig. 8.9, we see
a conceptual schematic of a model with two compartments. Assume that qi .t/ D
vi ci , for i D 1; 2 denote the amount of a drug in a specific compartment. Here ci is
the concentration of a drug and vi is the volume of the i -th compartment and Kij is
the fractional rate of transfer to compartment i from compartment j .

The first compartment represents the place where the drug is applied, i.e. muscle,
subcutaneous tissue, or digestive tract. The second compartment represents the
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Fig. 8.8 Sketch representation of the FO integral and derivator operators in frequency domain, by
means of the Bode plots (magnitude above and phase below)
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K12q2
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Fig. 8.9 Conceptual schematic of a two-compartment model

plasma or any other region in the body where the kinetics of the drug are uniform.
Traditionally, the two compartments are described by a system of differential
equations of integer order.

dq1.t/

dt
D K12q2.t/ �K21q1.t/ �K01q1.t/ (8.8)

dq2.t/

dt
D K21q1.t/ �K12q2.t/ �K02q2.t/ (8.9)

Recently, the fractional-order models seem to better suit the dynamics of biological
systems than other integer models. A simple model of a two-compartmental system
is then given by the following equations:



n1�1
1 0D

n1
t q1.t/ D �K21q1.t/; (8.10)



n2�1
2 0D

n2
t q2.t/ D K21q1.t/ �K02q2.t/; (8.11)
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where we assumed K01 D 0, K12 D 0 and with the initial conditions q1.0/ D dose,
and q2.0/ D 0. In these equations 
1 and 
2 are time constants which represent the
speed of diffusion, while n1 and n2 represent a non-integer between 0 and 1 and
characterize the type of diffusion (sub-, super-, etc).

8.4 Grand Challenges

Several grand challenges are encountered in the development of the proposed
analgesic biosensor. We discuss the major challenges in the remainder of this
section.

To be able to control the level of analgesia in the unconscious patient, we apply
an MPC strategy. This strategy needs a reliable model of the process that it needs
to control. In traditional, non-human, systems, this model identification is done by
sending excitation signals into the system and analyzing the corresponding output
signals of the open-loop system. However, as we are dealing with patients, it is not
possible to apply here the same strategy. Output signals to analyze are available only
after the nurse administers a certain amount of analgesic drug. As the nurse only
administers this drug after examination of the patient, this is no longer an open-loop
system and system identification can be compromised by this.

Another difficulty in the model identification is the fact that every person reacts
differently to a certain amount or combination of drugs. Therefore, every model
differs for every patient i.e. inter-patient variability.

Moreover, the conditions inside the body of every patient are changing as a
result of accumulated drug effect, i.e. intra-patient variability. The parameters of
the patient model need to be updated regularly.

The pain sensor is supposed to measure a pain signal in an unconscious patient.
However, there is no reliable way to validate the pain sensor once it is developed as
the patient is the only one who can feel the pain but he/she is not able to indicate it
anymore because he/she is unconscious.

Even if you can objectively prove that the pain sensor picks up a pain signal in
one patient, it is not certain that the sensor will have the same result in a different
patient as the pain threshold for one person can be completely different for another
person. This is the result of the inter- and intra-patient variabilities that pose an extra
challenge on the development of the pain sensor.

Another major challenge in this research direction is the fact that a combination
of drugs is administered to the patient. Therefore, it is difficult to completely
separate and validate the effect of the analgesic drug.
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8.5 Conclusions

This paper proposes an early dawn pain sensor to measure analgesia level in
unconscious patients. The proposed sensor can be used in combination with a MPC
strategy to control the level of anesthesia in an unconscious patient. To model the
diffusion process in the human body a FOIM is applied. The coinciding challenges
in this research direction include identification of the patient model, validation of
the pain sensor, and validation of the effect of the analgesic drug.
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Chapter 9
1D Cahn–Hilliard Dynamics: Coarsening
and Interrupted Coarsening

Simon Villain-Guillot

Abstract Many systems exhibit a phase where the order parameter is spatially
modulated. These patterns can be the result of a frustration caused by the com-
petition between interaction forces with opposite effects.

In all models with local interactions, these ordered phases disappear in the
strong segregation regime (low temperature). It is expected, however, that these
phases should persist in the case of long-range interactions, which can’t be correctly
described by a Ginzburg–Landau type model with only a finite number of spatial
derivatives of the order parameter.

An alternative approach is to study the dynamics of the phase transition or pattern
formation. While, in the usual process of Ostwald ripening, succession of doubling
of the domain size leads to a total segregation, or macro-segregation, Misbah and
Politi have shown that long-range interactions could cause an interruption of this
coalescence process, stabilizing a pattern which then remains in a micro-structured
state or super-crystal. We show that this is the case for a modified Cahn–Hilliard
dynamics due to Oono which includes a nonlocal term and which is particularly
well suited to describe systems with a modulated phase.
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9.1 Introduction

Many systems exhibit phases where the order parameter is spatially modulated
and form a pattern [1]. These phases are the result of a frustration caused by the
competition between interaction forces with opposite effects.

For example, in a blend of polymers, the difference of interaction energies
between homo and heteropolymers generates locally a repulsion between het-
eropolymers which leads to a macroscopic segregation. But for diblock co-polymers
which are built with two heteropolymers A and B which are attached to each other
by a chemical bond, such a macroscopic global phase separation is prohibited.
They form a disordered phase at high temperature (when the entropic effects
prevail), but below a critical temperature, whereas energetic considerations should
lead to segregation, this chemical binding prevents separation between A and B
heteropolymers over a long distance: the two components A and B self-organized
in patterns or domains of finite size (mainly lamellar or hexagonal) in order to
minimize nevertheless contacts between heteropolymers en thus the energy of
interaction. The relative density in heteropolymers is thus spatially periodically
modulated. This spontaneous microstructuration could be helpful to design a new
generation of solar cells based on organic semi-conductors [2].

In all models with local interactions, these ordered phases disappear in the
strong segregation regime (low temperature). It is expected, however, that these
phases should persist in the case of long-range interactions, which can’t be correctly
described by a Ginzburg–Landau type model with only a finite number of spatial
derivatives of an order parameter (which can be defined in our preceding example
from the relative density in the two components A and B).

An alternative approach is to study the dynamics of phase transition. While, in the
usual process of Ostwald ripening, succession of coarsening events with doubling
of the domain size leads to a total segregation, or macro-segregation, Misbah and
Politi [3] have shown that long-range interactions could cause an interruption of
this coalescence process, stabilizing a pattern that remains consequently in a micro-
structured pattern or super-crystal.

We show here that this is the case for the equation of Oono [4, 5], which is
particularly well suited to describe the dynamics of systems with a modulated phase.

9.2 Dynamics of Phase Transitions

9.2.1 Time-Dependent Ginzburg Landau Equation

9.2.1.1 Derivation of the Model

Different equations can be used to describe the dynamics of a phase transition
depending on, for example, if the order parameter is a scalar or a vector, and whether
it is conserved by the dynamics or not (for a review see [6, 7]).
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As at equilibrium, this order parameter must minimize a free energy, the
dynamics out of equilibrium must then involve deviation from this stable order
parameter value or function, just like in a simple mechanical system. The simplest
dynamics based on Ginzburg–Landau free energy for a scalar order parameter is the
TDGL (Time-Dependent Ginzburg Landau or model A in Hohenberg and Halperin
classification [6]), which writes

@u

@t
.r; t/ D �ıFGL

ıu
D r2u � "

2
u � 2u3 (9.1)

In this equation, u(r, t) is a macroscopic order parameter which is a coarse
grained of a microscopic order parameter in a small volume around the position r.
And " is the dimensionless control parameter, usually the reduce temperature
" D T�Tc

Tc
where Tc is the critical temperature of the phase transition. This partial

differential equation is invariant by the transformations u ! �u and xi ! �xiCai .
FGL is the Ginzburg–Landau free energy local density or Lyapunov functional in the
context of dynamical systems:

FGL D 1

2

�
.ru/2 C "

2
u2 C u4

�

The non-local term .ru/2 prevents discontinuity or roughness of the order
parameter and assigns energetic overcost to its variations in proportion to their
sharpness. When looking at the temporal evolution of the free energy

R
FGL.r; t/dr :

d

dt

Z
FGLdr D

Z
ıFGL

ıu
:
@u

@t
dr D

Z
ıFGL

ıu
:.�ıFGL

ıu
/dr D �

Z
.
ıFGL

ıu
/2dr < 0

One notices from (9.1) that the dynamics will induce a change of u .r/ as long
as it hasn’t reached a minimum of the free energy density FGL. If one looks
for homogeneous states (where the order parameter is independent of the spatial
coordinates) to be stationary states of this equation, they will be the extrema of the
Landau potential V.u/ D "

2
u2 C u4 which is plotted in Fig. 9.1 for two different

signs of the control parameter. For " > 0, the only extremum is u D 0, so there
is only one homogenous solution, which is stable, being a minimum of the Landau
potential (which is a convex function as long as " > 0). When " < 0, this potential is
now concave in a neighborhood of u D 0, which is now a maximum and thus is now

linearly instable. Two other symmetric solutions u D ˙
p�"
2

have now appeared
due to this pitchfork bifurcation. They are the new stable homogeneous solutions
and correspond to a minimum of the potential Vmin D �"2=32.

9.2.1.2 Linear Stability Analysis

Linear stability analysis consists in computing the growth rate of small fluctuations
of a solution. When linearizing equation (9.1) around u D 0 (i.e., when neglecting
the nonlinear term u3) one gets
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Fig. 9.1 Landau potential as a function of u, the amplitude of the order parameter. We have plotted
the profil of this potential above and below the pitchfork bifurcation at " D 0. For " > 0, the
potential is a convex function and there is only one minimum, u D 0. For " < 0, the Landau
potential is a concave function around u D 0, which is now a maximum; two other solutions have
now appeared as minimum of the potential, symmetric one each other

@u

@t
.r; t/ D � "

2
u C r2u

Considering this equation in the Fourier space we can decompose u in Fourier
series in the case of a finite size problem or Fourier transform in the infinite case:

u.r; t/ D
X

q

uqe
iq�rC�t (9.2)

where uq is the amplitude of the Fourier mode at t D 0. For example, it can
be the thermal fluctuations proportional to T . This mode decomposition enables
to compute the q-dependence of the amplification factor �.q/ (or growth rate or
imaginary part of k D q � i�):

�.q/ D �.q2 C "

2
/ (9.3)

�.q/ is negative for " > 0, and thus the homogeneous solution u D 0 is unstable
with respect to fluctuations of the order parameter. The whole band 0 < q <p
.�"=2/ is linearly unstable as (�.q/ > 0) (see Fig. 9.2).

9.2.1.3 Symmetry Breaking and Conservation Law

The linear stability analysis enables to conclude that the most instable mode is for
q D 0: it is thus a long wave instability, which will give rise to large homogeneous
domains and imply spontaneous symmetry breaking. This is the case, for example,
in magnetic systems.
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s(q)

q

(−e /2)

Fig. 9.2 Amplification factor
�.q/ computed via linear
stability analysis of the
time-dependent
Ginzburg–Landau equation
(TDGL). It is positive
(growth of the modulations)
for all the modes q <

p
�"
2

But if there is a conservation law, as for example a conservation of mass,
such an instantaneous symmetry breaking is prohibited: the matter, or the different
species diffuse with a finite characteristic time. Hillert [8], Cahn and Hilliard [9]
have proposed a model to describe segregation in a binary mixture. This equa-
tion, later on denoted C–H for Cahn–Hilliard, corresponds to model B in the
Hohenberg and Halperin classification [6]. Cahn–Hilliard dynamics is the minimal
equation describing phase transition for a conserved scalar order parameter. As this
conservation law prevents global symmetry breaking, it will generate numerous
domains and interfaces separating them. This dynamic governs a whole class of
first order phase transition like the Fréedericksz transition in liquid crystals [11],
segregation of granular media in a rotating drum[12, 13], or formation of ripple due
to hydrodynamic oscillations [14, 15].

9.2.2 Model B or Cahn–Hilliard Equation

9.2.2.1 Derivation of the Model

Cahn–Hilliard dynamics is a modified diffusion equation for a scalar order parame-
ter u, which writes:

@u

@t
.r; t/ D r2.

"

2
u C 2u3 � r2u/ D r2.

ıF

ıu
/ (9.4)

In the original work of Cahn and Hilliard, u .r; t/ represents the concentration of
one of the components of a binary alloy. But it can also be the fluctuation of density
of a fluid around its mean value, or concentration of one chemical component of a
binary mixture, or the height of a copolymer layer [16].

As in model A, this equation is invariant by the transformations u ! �u and
xi ! �xi C ai and when looking at the time evolution of the local quantity F.t/,
we still have:

dF

dt
D ıF

ıˆu
:
@u

@t
D ıF

ıu
:r2.

ıF

ıu
/ D �.r ıF

ıu
/2 < 0
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In order to derive a conservative dynamics, such that
R
ˆ.x; t/dx D cste, one

can start from a detail balance [17], or from a conservation equation for the order
parameterˆ.

@u

@t
D �r � j

where j is a matter current associated with u. This current is related to the gradient
of the chemical potential� via the Hartley–Fick law : j D �r�). And this chemical
potential is itself related to the functional derivative of the free energy� D ıF

ıˆ
. This

phenomenological approach enables to recover the C–H equation (9.4).
If one looks globally at the quantity

R
u.x; t/dx D< u >, the Cahn–Hilliard

gives

d < u >

dt
D
Z
@u

@t
.x; t/dx D

Z
r2.

ıF

ıu
.x; t//dx D

�
�.r ıF

ıu
/

	

So, apart from boundary terms, the order parameter is indeed a conserved
quantity.

9.2.2.2 Linear Stability Analysis

Stationary states of the (C–H) are again the extrema of the Landau potential V.u/ D
"
2
u2 C u4. And after a quench, the system undergoes a first order phase transition

associated with the pitchfork bifurcation from the u D 0 solution to the symmetric

solutions u D ˙
p�"
2

. But due to the conservation law, the dynamics is different as
Cahn and Hilliard have shown via the linear stability analysis of (9.4) around u D 0.

@u

@t
.r; t/ D r2 "

2
u � r4u (9.5)

one gets for the amplification factor in the Fourier space �.q/:

�.q/ D �.q2 C "

2
/q2 (9.6)

So, as �.q/ is negative for " > 0, the u D 0 solution is stable with respect to small
fluctuations of the order parameter. For negative ", Fig. 9.3 shows a band of instable
Fourier modes, as �.q/ > 0 for 0 < q <

p
.�"=2/. Moreover, linear stability

analysis of C–H predicts that the most instable mode is not anymore for q D 0

but for qC�H D p�"=2 (for which �max D "2

16
). This wave number of maximum

amplification factor will dominate the first stage of the dynamics which is called the
spinodal decomposition; this explains in particular why the homogeneous domains
appear at length scales close to L D �C�H=2 D �=qC�H , half the wave length
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Fig. 9.3 Amplification factor
�.q/ computed from the
linear stability analysis of
Cahn and Hilliard equation

associated with the instability. For longer times, interfaces separating each domain
interact through Ostwald ripening or coarsening, causing < L > to change slowly
toward higher values.

9.3 Cahn–Hilliard Equation

9.3.1 On the Periodic Solutions of Cahn–Hilliard Equation

When the equation is studied for a constant negative ", via a rescaling of u (asp�"u), position r (as r=
p�") and time (as t=j"j2), we observe that we could restrict

the dynamics to the case " D �1. So later on, we will study the equation

@u

@t
.r; t/ D r2.�1

2
u C 2u3 � r2u/ (9.7)

In 1D, a family of stationary solution of this nonlinear dynamics is the so-called
interface-lattice solutions (or soliton-lattice), which writes:

Uk;".x/ D k�Sn.
x

�
; k/with� D ��1 D

p
2 .k2 C 1/ (9.8)

where Sn.x; k/ is the Jacobian elliptic function sine-amplitude, or cnoidal mode.
This family of solutions is parametrized by the Jacobian modulus k 2 Œ0; 1�, or
“segregation parameter.” These solutions describe periodic patterns of period

� D 4K.k/�;whereK.k/ D
Z �

2

0

dtp
1 � k2 sin2 t

(9.9)

is the complete Jacobian elliptic integral of the first kind. K.k/ together with
k, characterize the segregation, defined as the ratio between the size of the
homogeneous domains, L D �=2, and the width of the interface separating them,
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2�. Equation (9.9) and the relation � D ��1 enable to rewrite this family as:

Uk;�.x/ D 4K.k/ � k
�

Sn.
4K.k/

�
x; k/: (9.10)

and using equations (9.8) and (9.9), we find that for a stationary solution, �, and k
have to be related one another through the following implicit equation (or the state
equation):

�2 D 2.1C k2/ .4K.k//2 : (9.11)

Using (9.10) we can compute the free energy per unit length

FGL.k; �/ D
�
4K

�

�2 "�"
4

�
1 � E

K

�
C
�
1C 2k2

6
� E

6K
.1C k2/

��
4K

�

�2#

where E.k/is the complete Jacobian elliptic integral of the second kind. The
absolute minimum for FGL.k; �/ is for k D 1 and � D 1, i.e. for complete
segregation with a single interface.

9.3.2 Stationary States of the Cahn–Hilliard Dynamics

The dynamics starts initially with k D 0, for which U.x/ describes a sinusoidal
modulation of almost vanishing amplitude around the high temperature homoge-
nous stationary solution u D 0

Uk!0;".x/ D k

r
1

2
sin

 r
1

2
x

!

D k
2�

�C�H
sin

�
2�

�C�H
x

�
D kqC�H sin.qx/ (9.12)

The spinodal decomposition dynamics will saturate and reach a stationary state
which is a periodic pattern with a finite domain length (weak segregation regime)
for which � D �C�H , and k D ks0 D 0:687 so as to satisfy (9.11), i.e k is solution
of the implicit equation :

2.1C ks20 /K.k
s
0/
2 D �"0�

2
C�H
16

D �2: (9.13)

The amplitude of the modulation is then ks0�
s
0 D 0:400

p�"0, which is different
from ub.
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Using linear stability analysis, Langer has shown that the stationary profile thus
obtained, u0.x/ D Uks0;�C�H

.x/, is destroyed by stochastic thermal fluctuations
[17]. He has identified the most instable mode as an “antiferro” mode, leading
to an infinite cascade of period doubling [18]. Disorder of the pattern is also a
cause of Ostwald ripening: if the periodicity of the interface-lattice is broken,
either when the distance between theses interfaces or when the bulk value in the
different domains become non-constant, coarsening is triggered by diffusion of
matter between neighboring domains: big domains will then absorb smaller ones
[19, 20].

9.3.3 Coarsening

When considering the C–H equation 9.4 as a diffusion equation, Politi and Misbah
have shown that there should be coarsening as long as d�=d� is positive, where � is
the amplitude of the modulation and � its [3]. As in Cahn–Hilliard dynamics

� D k� D k

r �"
2.k2 C 1/

and � D 4K.k/� D 4K.k/

r
2.k2 C 1/

�"

are two growing functions of the parameter k, this diffusion coefficient will always
remain positive and coarsening will proceed until � ! 1 (as in Fig. 9.4 Left).

When looking at Fig. 9.1, one can see that the bulk energy is decreasing when the

amplitude varies from � D 0 to � D ˙
p�"
2

, that is, when the segregation increase.
As the interfacial energy is proportional, the interfacial energy is proportional to
the period, we finally get that the total energy decreases when the period of the
stationary solutions gets longer and longer. But for other dynamics (as in Fig. 9.4
Right), d�=d� can change of sign as we will see in the following: segregation then
remains partial. Politi and Misbah speak then of interrupted coarsening.

Fig. 9.4 Left: evolution of the amplitude of the modulation of the stationary states as a function
of the period, in the cases of a Cahn–Hilliard dynamics. As d �= d � is always positive, the pattern
will ripen until all the interfaces disappear but one (note that as d �= d � ! 0, there is a slowing
down of the coarsening process). Right, a model where d �= d � changes sign: the coarsening will
then be interrupted
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9.4 Oono’s Model

9.4.1 Derivation of the Model

We would like to work out the period of modulated phase systems for which there
is a competition between two types of interactions: a short-range interaction which
tends to make the system more homogeneous together with a long-range one, or
a non-local one, which prefers proliferation of domain walls. This competition
results in a microphase separation with a preferred mesoscopic length scale. These
systems forming a super-crystal can be studied using a modified Landau–Ginzburg
approach, derived from Cahn–Hilliard equation and of practical use for numerical
simulations [4, 5]:

@u

@t
D .r2 ıFGL.u/

ıu
/ � ˇ2u D r2.

�1
2

u C 2u3 � r2u/�
�
ˇ

4

�2
u: (9.14)

The �ˇ2u term models in the Cahn–Hilliard equation the long-range interactions,
which prevents the formation of macroscopic domains and favors the modulation.
We will see that the inclusion of such a term, following Oono, enables to describe
the behavior of modulated systems at T much lower than Tc . If we suppose, for
example, that in a 3D problem, the long-range interaction decreases like 1

r
, the full

free energy density writes

F.u/ D FGL C Fint

D 1

2
.ru.r//2 C �1

4
u2.r/C 1

2
u4.r/C

Z
u.r 0/g.r 0; r/u.r/dr 0; (9.15)

where g.r 0; r/ D 4�

�
ˇ
4

�2

jr 0�r j in D D 3, or jx0 � xj in D D 1: The long-range interaction
g.r 0; r/ corresponds to a repulsive interaction when u.r 0/ and u.r/ are of the same
sign: thus it favors the formation of interphases. If we want to study the dynamic of
this phase separation, we use the Cahn–Hilliard equation:

@u

@t
D r2

r

�
ıF.u/

ıu

�

D r2
r

��1
2

u C 2u3 � r2u C
Z

u.r 0/g.r 0; r/dr 0
�
: (9.16)

If one recalls that �1
jr 0�r j is the Green’s function associated with the Laplacian

operator r2
r in 3D, the preceding equation then transforms into

r2
r

�Z
u.r 0/g.r 0; r/dr 0

�
D
Z

u.r 0/r2
r g.r

0; r/dr 0

D �
�
ˇ

4

�2 Z
u.r 0/ı.r 0; r/dr 0 D �

�
ˇ

4

�2
u.r/: (9.17)
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which leads to (9.14). Note that, even with the new term added by Oono to the
usual Cahn-Hilliard dynamics, this equation remains in the class of the conservative
models, as it derives from a equation of conservation. Note also that the free energy
Fint is infinite if u.r/ is of the same sign in a macroscopic domain.

9.4.2 Linear Stability Analysis for Oono’s Model

If we look at the linear stability analysis of the homogenous solution u D 0, we
found almost the same results as in the original work of Cahn and Hilliard, except
that the amplification factor �.q/ now write:

�.q/ D .
1

2
� q2/q2 �

�
ˇ

4

�2

This shows immediately that u D 0 is linearly instable if ˇ < 1, with a band of

unstable Fourier modes 0:5
q
1 �p

1 � ˇ2 < q < 0:5

q
1Cp

1 � ˇ2 (for which
�.q/ > 0). The most unstable mode is for qC�H D 0:5 like in the simplest Cahn–
Hilliard model (9.4). Therefore, during the initial stage of the dynamics, the spinodal
decomposition the homogeneous domains appear at length scales close to L D 2� ,
as in the usual Cahn Hilliard dynamics. But one sees that, contrary to the simple
Cahn–Hilliard case, the long wave length modulations are now stable as �.q/ < 0

for q < 0:5

q
1 �p

1 � ˇ2. This explains qualitatively why, for any finite value of
ˇ, the dynamics will end in a micro segregated regime, as it is observed numerically
and as we will discuss quantitatively below.

It has been noticed in different models [21] that if the interaction responsible
of the modulation is local, i.e. described in the free energy by local terms only,
like �.ru/2 in the Swift Hohenberg model, then for low temperature or small ˇ,
the macrosegregated regime (one unique interface) will be energetically favored
compared to the microphase separation.

However, in this model by Oono, because the interaction is long range (i.e., non-
local), no matter how small is ˇ, there will always be a finite region around q D 0

where �.q/ < 0. Indeed, �.0/ D �
�
ˇ

4

�2
. Consequently, a modulated phase should

always end the dynamics[22].

9.4.3 Direct Minimization of the Free Energy

For D D 1, the contribution of the long-range interaction to the free energy per unit
length is [23]

Fint D 1

�

Z �

0

Fintdr D �ˇ2
2�

Z �
2

0

Z �
2

0

‰.r 0/
ˇ̌
r 0 � r

ˇ̌
‰.r/drdr 0:
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Log[l ]Fig. 9.5 Graph of the stable
period �

�
ˇ2
�

computed by
minimizing the free energy
FGL.k; �.k//C Fint .k; ˇ

2/

with respect to k. The result

scales like
�
ˇ2
�1=3

.

When using as ansatz the family of interface-lattice solutions Uk;�.x/, we then
obtain

Fint D �ˇ2
2�

Z �
2

0

Z �
2

0

k2.
4K

�
/2
ˇ̌
r 0 � r

ˇ̌
Sn.

4K.k/

�
r; k/Sn.

4K.k/

�
r 0; k/drdr 0

D �

K

�ˇ2
8

Z 2K

0

Z 2K

0

k2
ˇ̌
x0 � xˇ̌ Sn.x; k/Sn.x0; k/dxdx0:

Thus, this contribution is independent of � and the only minimization is with
respect to k. Consequently, the minimization with respect to � concerns only FGL

and enables to find � as a function of k : �.k/ D 8K

r
1Ck2
3

C k2

3.1� E
K /

. And the

minimization of the free energy FGL.k; �.k// C Fint .k/ is simply with respect
to a single variable k, which can be done numerically for different values of the
interaction strength ˇ2.

Figure 9.5 presents �
�
ˇ2
�

which scales like
�
ˇ2
�1=3

.

9.4.4 Stationary Microsegregated Patterns

The family (9.10) is not anymore an exact stationary solution of the dynamics (9.14)
because of its last term. Nevertheless, it is a good candidate for an approximate
solution (especially in the case of small ˇ) and thus can be used as a tool for
calculation using a solvability condition or Fredholm’s alternative.

Indeed, we can write deviation from a given periodic stationary profile of period
� as u.x; t/ D u0.�.x; t//C "u1.�.x; t//C : : : where " is a small parameter and u0
is a periodic function of the phase �.x; t/. For a steady state solution �.x; t/ D qx

with q D 2�=�: In the general case �.x; t/ D q.X; T /x where X D 	x and
T D 	2t , i.e. q D @�

@x
is now a slowly varying function of x and t:
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@u

@t
D @u

@�

@�

@t
D @u

@�

@�

@T

dT

dt
D 	2

@�

@T

@u

@�

@u

@x
D @u

@�

@�

@x
D @u

@�
.q C @�

@X

dX

dx
/ D q

@u

@�
C 	

@u

@X

If we denote ‰.X; T / D 	�.x; t/, then the local wave number is q.X; T / D @�

@x
D

@‰
@X

and

@

@t
D 	@T ‰@�

@

@x
D q@� C 	

@q

@X

@

@q
D q@� C 	

@2‰

@X2
@q

@2

@x2
D q

@

@�

�
q@� C 	@2XX‰@q

�C 	@2XX@q
�
q@� C 	@2XX‰@q

�

@2

@x2
D q2@�� C 	@2XX‰@� C 2	@2XX‰q@q@�

@2

@x2
D q2@�� C @2XX‰

�
1C 2q@q

�
@�

where we have kept only the first order terms in 	.
If we consider a stationary profile u0 which satisfies (zero order equation):

q2
@2

@�2

��1
2

u0 C 2u30 � q2
@2

@�2
u0

�
�
�
ˇ

4

�2
u0 D 0

i:e:
@

@�

��1
2

u0 C 2u30 � q2 @
2

@�2
u0

�
D
�
ˇ

4

�2
wwhere@�w D q�2u0 (9.18)

Oono’s equation (9.14) becomes then at order one in 	

	@T ‰@�u0 D 	N0.u1/C 	N1.u0/where

N0.u1/ D q2
@2

@�2
.
�1
2

u1 C 6u20u1 � q2
@2

@�2
u1/�

�
ˇ

4

�2
u1

D q2
@2

@�2
L.u1/ �

�
ˇ

4

�2
u1and

N1.u0/ D @2XX‰
�
1C 2q@q

�
@�

��1
2

u0 C 2u30 � q2 @
2

@�2
u0

�

� q2
@2

@�2

�
@2XX‰

�
1C 2q@q

�
@�u0

�

D
�
ˇ

4

�2
@2XX‰

�
1C 2q@q

�
w � q2

@2

@�2

�
@2XX‰

�
1C 2q@q

�
@�u0

�
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where we have used @�w D q�2u0 and equation (9.18) to simplify N1.u0/.
So Oono’s equation (9.14) writes

	@T ‰@�u0 �
�
ˇ

4

�2
@2XX‰

�
1C 2q@q

�
w

Cq2@2XX‰
@2

@�2

��
1C 2q@q

�
@�u0

� D q2
@2

@�2
L.u1/ �

�
ˇ

4

�2
u1 (9.19)

9.4.5 Stability of Stationary Microsegregated Patterns

A necessary condition for a solution to exist is that the left-hand side of the system

is orthogonal to the kernel of the adjoint operator N �
0 D

�
q2@��L �

�
ˇ

4

�2
Id

��
;

if v 2Ker

�
q2@��L �

�
ˇ

4

�2
Id

��
, then the solvability condition (or Fredholm

alternative) writes:

< vj@T ‰@�u0 � N1.u0/ >D< vjN0.u1/ >D 0

As for any v we have

< vjq2 @
2

@�2

��1
2

u1 C 6u20u1 � q2 @
2

@�2
u1

�
�
�
ˇ

4

�2
u1 >

D< q2 @
2

@�2
vj�1
2

C 6u20 � q2 @
2

@�2
/u1 > �

�
ˇ

4

�2
< vju1 >

D< q2
��1
2

C 6u20 � q2
@2

@�2

�
@��vju1 > �

�
ˇ

4

�2
< vju1 >

this adjoint operator writes:

N �
0 D

 
q2@��L �

�
ˇ

4

�2
Id

!�
D q2

��1
2

C 6u20 � q2 @
2

@�2

�
@�� �

�
ˇ

4

�2

If v 2KerN �
0 , we can define Qu such that q2@��v D Qu and which satisfies

q2
@2

@�2

��1
2

Qu C 6u20 Qu � q2
@2

@�2
Qu
�

D q2
�
ˇ

4

�2
@��v D

�
ˇ

4

�2
Qu: (9.20)

SoQuissolutionof
�1
2

Qu C 6u20 Qu � q2
@2

@�2
Qu D

�
ˇ

4

�2
v:
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Using (9.18), we thus find that v defined by q2@��v.D Qu/D @�u0 is an element of

Ker

�
q2@��L �

�
ˇ

4

�2
Id

��
. As a consequence, the diffusion equation writes

	@T ‰ D
�q2 < vj @2

@�2

��
1C 2q@q

�
@�u0

�
> C < vj

�
ˇ

4

�2 �
1C 2q@q

�
w >

< vj@�u0 >
@2XX‰

As q2@�w D u0 and q2@��v D @�u0 we get the equality

v D w:

So < vj@�u0 >D � < @�vju0 >D � < @�wju0 >
D �q�2 < u0ju0 >

and consequently (9.19) is a diffusion equation

	@T ‰ D D @2XX‰

	@T ‰ D q2
@q < q

�
@�u0

�2
> �

�
ˇ

4

�2
@q < q w2 >

< u20 >
@2XX‰

9.5 Conclusion

As long as the diffusion coefficient is negative (due to the< @ku0j
��
1C 2q@q

�
@�u0

�

>D @q < q
�
@�u0

�2
> term), the coarsening process goes on, in order to minimize

interfacial energy. But, due to its second part in ˇ2, the diffusion coefficient will
vanish and thus the coarsening will be interrupted at a finite length scale.
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Chapter 10
Nonlinear Analysis of Phase-locked
Loop-Based Circuits

R.E. Best, N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev,
and R.V. Yuldashev

Abstract Main problems of simulation and mathematical modeling of high-
frequency signals for analog Costas loop and for analog phase-locked loop (PLL)
are considered. Two approachers which allow to solve these problems are consid-
ered. In the first approach, nonlinear models of classical PLL and classical Costas
loop are considered. In the second approach, engineering solutions for this problems
are described. Nonlinear differential equations are derived for both approaches.

Keywords Phase-locked loop • Nonlinear analysis • Dynamical model
• Simulation

The Phase-locked loop (PLL) is a classical circuit widely used in telecommunication
and computer architectures. PLL was invented in the 1930s–1940s [5] and then
intensive studies of the theory and practice of PLL were carried out [11, 33, 40].
One of the first applications of PLL is related to the problems of wireless data
transfer. In radio engineering, PLL-based circuits (e.g., Costas Loop, PLL with
squarer) are used for carrier recovery, demodulation, and frequency synthesis
(see, e.g., [6, 14, 35]).
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Although the PLL is essentially a nonlinear control system, in modern literature,
devoted to the analysis of PLL-based circuits, the main direction is the use of
simplified linear models, the methods of linear analysis, empirical rules, and
numerical simulation (see plenary lecture of Abramovich at American Control
Conference 2002 [1]). Rigorous nonlinear analysis of PLL-based circuit models
is often a very difficult task [4, 9, 10, 37], so for analysis of nonlinear PLL
models, in practice, in numerical simulation is widely used (see, e.g., [6]). However
for high-frequency signals, complete numerical simulation of physical model of
PLL-based circuit in signals/time space, which is described by a nonlinear non-
autonomous system of differential equations, is a very challenging task [2, 3] since
it is necessary to observe simultaneously very fast time scale of the input signals
and slow time scale of signal’s phases. Here the relatively small discretization step
in numerical procedure does not allow one to consider phase locking processes for
high-frequency signals in reasonable time.

Here two approaches, which allow one to overcome these difficulties, are
considered. The first idea is traced back to the works of [40] and consists in
construction of mathematical models of PLL-based circuits in phase-frequency
space. This approach requires to determine mathematical characteristics of the
circuit components and to prove reliability of considered mathematical model. The
second idea is traced back to the works of [8] and consists in design of circuit
components in such a way that there is no oscillation with a double frequency
component in the loop.

10.1 Phase-Frequency Model of Classical PLL

To overcome simulation difficulties for PLL-based circuits it is possible to construct
a mathematical model in phase-frequency/time space [30], which can be described
by a nonlinear dynamical system of differential equations, here only low frequency
signals have to be analyzed. That, in turn, requires [1] the computation of phase
detector characteristics (nonlinear element used to math reference and controllable
signals), which depends on waveforms of the considered signals. Using results of
analysis of this mathematical model for conclusions on behavior of the physical
model requires rigorous justification.

Consider a classical PLL on the level of electronic realization (Fig. 10.1)

Loop
Filter

g(t)
VCO

Fig. 10.1 Block diagram of
PLL on the level of electronic
realization
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Here signals f p.t/ D f p.�p.t//; p D 1; 2with �p.t/ as phases are oscillations
generated by the reference oscillator and the tunable voltage-controlled oscillator
(VCO), respectively.

The block
N

is a multiplier (used as a phase detector) of oscillations f 1.t/ and
f 2.t/, and the signal f 1.�1.t//f 2.�.t// is its output. The relation between the input
�.t/ and the output �.t/ of linear filter has the form:

�.t/ D ˛0.t/C
Z t

0

�.t � 
/�.
/ d
; (10.1)

where �.t/ is an impulse response function of filter and ˛0.t/ is an exponentially
damped function depending on the initial data of the filter at t D 0. By assumption,
�.t/ is a differentiable function with bounded derivative (this is true for the most
considered filters [38]).

10.1.1 High-Frequency Property of Signals

Suppose that the waveforms f 1;2.�/ are bounded 2�-periodic piecewise differen-
tiable functions.1 Consider Fourier series representation of such functions

f p.�/ D
1X

iD1

�
a
p
i sin.i�/C b

p
i cos.i�/

�
; p D 1; 2;

a
p
i D 1

�

�Z

��
f p.�/ sin.i�/d�; bpi D 1

�

Z �

��
f p.�/ cos.i�/d�:

A high-frequency property of signals can be reformulated in the following way.
By assumption, the phases �p.t/ are smooth functions (this means that frequencies
are changing continuously, which corresponds to classical PLL analysis [6, 14]).
Suppose also that there exists a sufficiently large number !min such that the
following conditions are satisfied on a fixed time interval Œ0; T �:

P�p.
/ � !min > 0; p D 1; 2; (10.2)

where T is independent of !min and P�p.
/ D d�p.
/

d

denotes frequencies of signals.

The frequencies difference is assumed to be uniformly bounded

ˇ̌ P�1.
/� P�2.
/ˇ̌ � �!; 8
 2 Œ0; T �: (10.3)

1The functions with a finite number of jump discontinuity points differentiable on their continuity
intervals
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Loop
Filter

g(t) Loop
Filter

G(t)
PD

a b

Fig. 10.2 Phase detector models. (a) Multiplier and filter, (b) Phase detector and filter

Requirements (10.2) and (10.3) are obviously satisfied for the tuning of two high-

frequency oscillators with close frequencies. Denote ı D !
� 1
2

min. Consider the
following relations

j P�p.
/ � P�p.t/j � ��; p D 1; 2;

jt � 
 j � ı; 8
; t 2 Œ0; T �; (10.4)

where �� is independent of ı. Conditions (10.2)–(10.4) mean that the functions
P�p.
/ are almost constant and the functions f p.�p.
// are rapidly oscillating on
small intervals Œt; t C ı�.

The boundedness of derivative of �.t/ implies

j�.
/� �.t/j D O.ı/; jt � 
 j � ı; 8
; t 2 Œ0; T �: (10.5)

10.1.2 Phase Detector Characteristic Computation
for Classical PLL

Consider two block diagrams shown in Fig. 10.2a, b. Here, PD is a nonlinear block
with characteristic '.�/. The phases �p.t/ are PD block inputs and the output is
a function '.�1.t/ � �2.t//. The PD characteristic '.�/ depends on waveforms of
input signals.

The signal f 1.�1.t//f 2.�2.t// and the function '.�1.t/ � �2.t// are the inputs
of the same filters with the same impulse response function �.t/ and with the same
initial state. The outputs of filters are the functions g.t/ and G.t/, respectively. By
(10.1) one can obtain g.t/ and G.t/:

g.t/ D ˛0.t/C
Z t

0

�.t � 
/f 1
�
�1.
/

�
f 2
�
�2.
/

�
d
;

G.t/ D ˛0.t/C
Z t

0

�.t � 
/'.�1.
/ � �2.
/�d
: (10.6)

Using the approaches outlined in [20, 22, 24, 26], the following result can be
proved.



10 Nonlinear Analysis of Phase-locked Loop-Based Circuits 173

Theorem 1. [23, 29, 30] Let conditions (10.2)–(10.5) be satisfied and

'.�/ D 1

2

1X

lD1

�
.a1l a

2
l C b1l b

2
l / cos.l�/C .a1l b

2
l � b1l a2l / sin.l�/

�
: (10.7)

Then the following relation

jG.t/ � g.t/j D O.ı/; 8t 2 Œ0; T �

is valid.

See Appendix for a proof of this theorem.
Broadly speaking, this theorem separates the low-frequency error-correcting

signal from parasitic high-frequency oscillations. This theorem allows one to
compute a phase detector characteristic for various typical waveforms of signals.

10.1.3 Description of classical Costas Loop

Nowadays BPSK and QPSK modulation techniques are used in telecommunication.
For these techniques different modifications of the PLL are used: e.g. a circuit with
a squaring device, or the Costas Loop [6, 11, 33]. However, the realization of some
parts of PLL with squarer, used in analog circuits, can be quite difficult [6]. In
the digital circuits, maximum data rate is limited by the speed of analog-to-digital
converter (ADC) [12, 13]. Here, we will consider analog Costas Loops, which are
easy for implementation and effective for demodulation.

Various methods for analysis of Costas loop are well developed by engineers and
considered in many publications (see, e.g., [11, 14, 32]). However, the problems of
construction of adequate nonlinear models and nonlinear analysis of such models
are still far from being resolved. Further we will consider only classical BPSK
Costas loops, but a similar analysis could be done for QPSK Costas Loop.

Consider the physical model of classical Costas Loop (Fig. 10.3).
Here f 1.t/ is a carrier and m.t/ D ˙1 is data signal. Hilbert transform block

shifts phase of input signal by ��
2

.
In the simplest case when

f 1
�
�1.t/

� D cos
�
!1t

�
; f 2

�
�2.t/

� D sin
�
!2t

�
m.t/f 1.�1.t//f 2.�2.t//

D m.t/

2

�
sin.!2t � !1t/ � sin.sin.!2t C !1t//

�
m.t/f 1.�1.t//f 2.�2.t/ � �

2
/

D m.t/

2

�
cos.!2t � !1t/C cos.sin.!2t C !1t//

�
(10.8)
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Fig. 10.3 Block diagram of Costas Loop at the level of electronic realization

Loop
Filter

Hilbert

g(t)

Loop
Filter

G(t)
PD

-90°

Fig. 10.4 Equivalent block diagrams of Costas loop in signals/time and phase-frequency spaces

standard engineering assumption is that a low pass filter removes the upper sideband
having a frequency of about twice the carrier frequency but leaves the lower
sideband unchanged. Thus, after synchronization one gets demodulated the data
m.t/ cos..!1 � !2/t/ D m.t/ cos.0/ D m.t/ at the output of the lower filter (see
Fig. 10.3).

Further, to avoid this assumption, a rigorous mathematical approach for the
analysis of Costas loop will be demonstrated.

10.1.4 Computation of Phase Detector Characteristic
for Costas Loop

From a theoretical point of view, since two lowpass filters in Fig. 10.3 are used for
demodulation, for analysis of synchronization processes one can study the Costas
loop with only Loop filter. Also since m.t/2 D 1, the transmitted data m.t/ do not
affect the operation of VCO. Thus one can consider the following equivalent block
diagrams of the Costas loop in signals/time and phase-frequency spaces (Fig. 10.4).

In both diagrams the filters are the same and have the same impulse transient
function �.t/ and the same initial data. The filter outputs are the functions g.t/ and
G.t/, respectively.
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Consider a case of non-sinusoidal piecewise-differentiable carrier oscillation
f 1.�1.t// and tunable harmonic oscillation

f 1.�/ D
1X

iD1

�
a1i cos.i�/C b1i sin.i�/

�
;

f 2.�/ D b21 sin.�/: (10.9)

The following assertion is valid.

Theorem 2. [24, 31] If conditions (10.2)–(10.5) are satisfied and

'.�/ D .b21/
2

8

�
.a11/

2 sin.2�/C 2

1X

qD1
a1qa

1
qC2 sin.2�/

�2a11b11 cos.2�/C 2

1X

qD1
a1qC2b1q cos.2�/� 2

1X

qD1
a1qb

1
qC2 cos.2�/

�.b11/2 sin.2�/C 2

1X

qD1
b1qb

1
qC2 sin.2�/

�	
: (10.10)

then the following relation

G.t/ � g.t/ D O.ı/; 8t 2 Œ0; T � (10.11)

is valid.

In general, the proof of this result repeats the proof of Theorem 1. The details of
the proof can be found in [24, 31]. Note that this result could be easily extended to
the case of two non-sinusoidal signals.

10.2 Engineering Solutions for Elimination
of High-Frequency Oscillations

Consider engineering solution for elimination of high-frequency oscillations on the
output of PD for harmonic signals. Further it is considered special analog PLL
and analog Costas loop implementations, which allow one to effectively solve this
problem.

10.2.1 Two-Phase PLL

Consider a special modification of the PLL (two phase PLL) suggested in [8]
(Fig. 10.5).
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Fig. 10.5 Two-phase PLL
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sin(θ1(t)−θ2(t))

Fig. 10.6 Phase detector in
two-phase PLL

Here, a carrier is sin.�1.t// with �1.t/ as a phase and the output of Hilbert
block is cos.�1.t//. The VCO generates oscillations � sin.�2.t// and cos.�2.t//
with �2.t/ as a phase. Figure 10.6 shows the structure of phase detector—complex
multiplier. The phase detector consists of two analog multipliers and an analog
subtractor. Here

sin.�1.t// cos.�2.t// � cos.�1.t// sin.�2.t// D sin.�1.t/ � �2.t//

In this case there is no high-frequency component at the output of the phase detector.
Thus the block diagram in Fig. 10.6 is equivalent to the block diagram in Fig. 10.2b,
where phase detector characteristic is '.�/ D sin.�/.

10.2.2 Two-Phase Costas Loop

Consider now an engineering solution [39] for the problem of elimination of high-
frequency oscillations in the Costas Loop (Fig. 10.7).

Here the carrier is cos.�1.t// with �1.t/ as a phase. The VCO generates the
oscillations cos.�2.t// and � sin.�2.t// with �2.t/ as a phase, and m.t/ D ˙1 is a
relatively slowly varying data signal (carrier period is several orders of magnitude
smaller than the symbol duration). In Fig. 10.8 is shown a structure of phase detector.
Here the outputs of phase detector are the following
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Fig. 10.7 Two-phase Costas loop
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-

-sin(θ2(t))

cos(θ2(t))

+

+
m(t)cos(θ1(t))

-sin(θ2(t))
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m(t)sin(θ1(t))
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Fig. 10.8 Phase detector in two-phase Costas loop

m.t/
�
cos.�1.t// cos.�2.t//C sin.�1.t// sin.�2.t//

� D m.t/ cos.�1.t/ � �2.t//
m.t/

�
sin.�1.t// cos.�2.t// � cos.�1.t// sin.�2.t//

� D m.t/ sin.�1.t/ � �2.t//
(10.12)

If oscillators are synchronized (i.e., �1.t/ D �2.t/), one of the outputs of phase
detector contains only data signal m.t/. Therefore, taking into accountm.t/ D ˙1,
the input of the Loop filter takes the form

m.t/ cos.�1.t/ � �2.t//m.t/ sin.�1.t/ � �2.t// D 1

2
sin.2.�1.t/ � �2.t///

and it depends only on the phase difference of VCO and carrier. Thus the block
diagram in Fig. 10.8 is equivalent to block-scheme in Fig. 10.2b, where the phase
detector characteristic is '.�/ D 1

2
sin.2.�//.
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10.3 Differential Equation for PLL and Costas Loop

Here differential equations for the considered PLL-based circuits are derived.
From a mathematical point of view, a linear low-pass filter can be described by a

system of linear differential equations

Px D Ax C p�.t/; � D c�x; (10.13)

a solution of which takes the form (10.1). Here, A is a constant matrix, x.t/ is a
state vector of filter, b and c are constant vectors.

The model of the tunable generator is usually assumed to be linear [6, 14]:

P�2.t/ D !2f ree C LG.t/; t 2 Œ0; T �: (10.14)

where !2f ree is a free-running frequency of the tunable generator and L is an
oscillator gain. Here it is also possible to use nonlinear models of VCO; see, e.g.,
[7, 36].

Suppose that the frequency of the master generator is constant P�1.t/ � !1:

Equation of the tunable generator (10.14) and equation of the filter (10.13) yield

Px D Ax C p�.t/; P�2 D !2f ree C Lc�x: (10.15)

For a classical PLL circuit

�.t/ D f 1.�1.t//f 2.�2.t//; (10.16)

for a classical Costas loop

�.t/ D f 1.�1.t//f 2.�2.t/ � �

2
/f 1.�1.t//f 2.�2.t//; (10.17)

for the two-phase PLL

�.t/ D sin.�1.t/ � �2.t//; (10.18)

and for two-phase Costas loop

�.t/ D 1

2
sin
�
2.�1.t/ � �2.t//

�
; (10.19)

While for two-phase PLLs and Costas loops, system (10.15) is autonomous, for
classical PLL and Costas loop, system (10.15) is nonautonomous and rather difficult
for investigation [16, 34]. Here, Theorems 1 and 2 allow one to study more simple
autonomous system of differential equations

Px D Ax C p'.��/; � P� D !2f ree � !1 C Lc�x;

�� D �2 � �1; (10.20)
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Loop
Filter

G(t)

PD

VCO

Fig. 10.9 Block scheme of
phase-locked loop in
phase-frequency space

where '.�/ is the corresponding characteristic of the phase detector. By well-known
averaging methods [15] one can show that solutions of (10.15) and (10.20) are close
under some assumptions. Thus, by Theorems 2 and 1, the block diagrams of PLL
and Costas Loop in signals/time space (Figs. 10.1 and 10.3) can be asymptotically
replaced [for high-frequency generators, see conditions (10.2)–(10.4)] for the block-
scheme in phase-frequency space (Fig. 10.9).

The methods of nonlinear analysis for system (10.20) are well developed (see,
e.g., [17–19, 25, 27, 28]). The simulation approach for PLL analysis and design,
based on the obtained analytical results, is discussed in [21].

It should be noted that instead of conditions (10.3) and (10.5) for simulations of
real system, it is necessary to consider the following conditions

j�!j << !min; j�Aj << !min;
where �A is the largest (in modulus) eigenvalue of matrix A. Also, for correctness of
transition from (10.21) to (10.25) it is necessary to consider T << !min. It is easy
to see that for sinusoidal waveforms operations of classical PLL and two-phase PLL
are very similar because the phase detector characteristic and corresponding phase-
frequency models are the same. Theoretical results are justified by simulation of
classical PLL and two-phase PLL (Fig. 10.10).

Unlike the filter output for the phase-frequency model of classical and two-
phase PLLs, for signals/time space model of classical PLL the outputs of filter
and phase detector contains additional high-frequency oscillations. These high-
frequency oscillations interfere with qualitative analysis and efficient simulation
of PLL. The filter output of two-phase PLL is delayed compared to the classical
one because of the non-ideality of the Hilbert transformer. Similar results can be
obtained for the Costas loop (see Fig.10.11).

Appendix

Proof. Suppose that t 2 Œ0; T �. Consider a difference

g.t/ �G.t/ D
tZ

0

�.t � s/
�
f 1
�
�1.s/

�
f 2
�
�2.s/

� � '��1.s/� �2.s/
�	
ds:

(10.21)
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Suppose that there exists m 2 N [ f0g such that t 2 Œmı; .mC 1/ı�. By definition
of ı, one has m < T

ı
C 1. The continuity condition implies that �.t/ is bounded

on Œ0; T � and f 1.�/; f 2.�/ are bounded on R. Since f 1;2.�/ are piecewise
differentiable, one can obtain
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a
p
i D O.

1

i
/; b

p
i D O.

1

i
/: (10.22)

Hence '.�/ converges uniformly and '.�/ is continuous, piecewise differentiable,
and bounded. Then the following estimates

Z .mC1/ı

t

�.t � s/f 1
�
�1.s/

�
f 2
�
�2.s/

�
ds D O.ı/;

Z .mC1/ı

t

�.t � s/'
�
�1.s/� �2.s/

�
ds D O.ı/

are satisfied. It follows that (10.21) can be represented as

g.t/ �G.t/ D
mX

kD0

Z

Œkı;.kC1/ı�
�.t � s/

�
f 1
�
�1.s/

�
f 2
�
�2.s/

� � '
�
�1.s/ � �2.s/�

	
ds CO.ı/: (10.23)

Prove now that on each interval Œkı; .k C 1/ı� the corresponding integrals are
equal to O.ı2/.

Condition (10.5) implies that on each intervals Œkı; .k C 1/ı� the following
relation

�.t � s/ D �.t � kı/CO.ı/; t > s; s; t 2 Œkı; .k C 1/ı� (10.24)

is valid. Here O.ı/ is independent of k and the relation is satisfied uniformly with
respect to t . By (10.23), (10.24), and the boundedness of f 1.�/; f 2.�/; and '.�/,

g.t/ �G.t/ D
mX

kD0
�.t � kı/

Z

Œkı;.kC1/ı�
�
f 1
�
�1.s/

�
f 2
�
�2.s/

� � '
�
�1.s/ � �2.s/�

	
ds CO.ı/: (10.25)

Denote

�
p

k .s/ D �p.kı/C P�p.kı/.s � kı/; p D 1; 2:

Then for s 2 Œkı; .k C 1/ı�, condition (10.4) yields

�p.s/ D �
p

k .s/CO.ı/:
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From (10.3) and the boundedness of the derivative '.�/ on R it follows that

Z

Œkı;.kC1/ı�

ˇ̌
'
�
�1.s/� �2.s/

� � '
�
�1k .s/ � �2k .s/

�ˇ̌
ds D O.ı2/: (10.26)

If f 1.�/ and f 2.�/ are continuous on R, then for f 1
�
�1.s/

�
f 2
�
�2.s/

�
the

following relation holds

Z

Œkı;.kC1/ı�
f 1.�1.s//f 2.�2.s//ds

D
Z

Œkı;.kC1/ı�
f 1.�1k .s//f

2.�2k .s//ds CO.ı2/: (10.27)

Consider the validity of this estimate for the considered class of piecewise-
differentiable waveforms. Since the conditions (10.2) and (10.4) are satisfied and
the functions �1;2.s/ are differentiable and satisfy (10.3), for all k D 0; : : : ; m

there exist sets Ek [the union of sufficiently small neighborhoods of discontinuity
points of f 1;2.t/] such that the following relation

R

Ek

ds D O.ı2/ is valid, in which

case the relation is satisfied uniformly with respect to k. Then from the piecewise
differentiability and the boundedness of f 1;2.�/ it is possible to obtain (10.27) (see
Corollary 1).

By (10.27) and (10.26), relation (10.25) can be rewritten as

g.t/ �G.t/ D
mX

kD0
�.t � kı/

Z

Œkı;.kC1/ı�

Œf 1
�
�1k .s/

�
f 2
�
�2k .s/

� � '
�
�1k .s/ � �2k .s/

�
�ds CO.ı/

D
mX

kD0
�.t � kı/

Z

Œkı;.kC1/ı�
�� 1X

iD1
a1i cos

�
i�1k .s/

�C b1i sin
�
i�1k.s/

��


� 1X

jD1
a2j cos

�
j�2k .s/

�C b2j sin
�
j�2k .s/

��

� '
�
�1k .s/ � �2k .s/

�	
ds CO.ı/: (10.28)

Since conditions (10.2)–(10.4) are satisfied, it is possible to choose O.1
ı
/ of

sufficiently small time intervals of length O.ı3/, outside of which the functions
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f p.�p.t// and f p.�
p

k .t// are continuous. It is known that on each interval, which
has no discontinuity points, Fourier series of the functions f 1.�/ and f 2.�/

converge uniformly. Then there exists a number M D M.ı/ > 0 such that
outside sufficiently small neighborhoods of discontinuity points of f p.�p.t// and
f p.�

p

k .t//, the sum of the first M series terms approximates the original function
with accuracy toO.ı/. In this case by relation (10.28) and the boundedness of f 1.�/

and f 2.�/ on R, we obtain

g.t/ �G.t/ D
mX

kD0
�.t � kı/

Z

Œkı;.kC1/ı�

MX

iD1

MX

jD1
�
�i;j .s/ � '��1k .s/� �2k .s/

�	
ds CO.ı/; (10.29)

where

�i;j .s/ D 1

2

�
.a1i a

2
j C b1i b

2
j / cos.i�1 � j�2/

C.�a1i b2j C b1i a
2
j / sin.i�1 � j�2/

C.�b1i b2j C a1i a
2
j / cos.i�1 C j�2/

C.a1i b2j C b1i a
2
j / sin.i�1 C j�2/

�
:

From definition of ı and (10.22) it follows that 8i 2 N; j 2 N the relation
Z

Œkı;.kC1/ı�

1

i
cos

�
j.!mins C �0/

�
ds D O.ı2/

ij (10.30)

is valid. Taking into account (10.30) and (10.2), one obtains the estimate
Z

Œkı;.kC1/ı�
b
p
j cos

�
j�

p

k .s/
�
ds D O.ı2/

j 2
:

A similar estimate is also valid for the addends with sin.
Consider the addend involving cos.i�1k.s/ C j�2k .s// in �i;j .s/. By (10.2) one

can obtain i P�1.kı/ C j P�2.kı/ � .i C j /!min. Then (10.30) yields the following
relation

Z

Œkı;.kC1/ı�
cos

�
i
�
�1.kı/C P�1.kı/.s � kı/

�

Cj ��2.kı/C P�2.kı/.s � kı/
��
ds
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D
Z

Œkı;.kC1/ı�
cos

��
i P�1.kı/C j P�2.kı/�s

� �
i�1.kı/C j�2.kı/

�
kı

C �
i P�1.kı/C j P�2.kı/�kı

�
ds D O

�
ı2

i C j

�
: (10.31)

Then

MX

iD1

MX

jD1

Z

Œkı;.kC1/ı�

�b1i b2j C a1i a
2
j

2
cos

�
i
�
�1k .s/

�C j
�
�2k .s/

��
ds

D
MX

iD1

MX

jD1

O.ı2/

ij.i C j /
:

The convergence of series
1P
iD1

1P
jD1

1
ij.iCj / implies that the above expression isO.ı2/.

Obviously, a similar relation occurs for the addend sin.i�1k.s/C j�2k .s//.
Thus, by (10.29)

g.t/ �G.t/ D
mX

kD0
�.t � kı/

Z

Œkı;.kC1/ı�

� MX

iD1

MX

jD1


a1i a

2
j C b1i b

2
j

2
cos

�
i�1k.s/ � j�2k .s/

�

C a1i b
2
j � b1i a

2
j

2
sin
�
i�1k .s/ � j�2k .s/

��

� '
�
�1k .s/� �2k .s/

�	
ds CO.ı/:

Note that, here, the addends with indices i D j give, in sum, '
�
�1k .s/ � �2k .s/

�

with accuracy to O.ı/. Consider the addends with indices i < j , involving cos (for
the addends with indices i > j , involving sin, similar relations are satisfied). By
(10.3), similar to (10.31), the following relation

MX

iD2

i�1X

jD1

a1i a
2
j C b1i b

2
j

2

Z

Œkı;.kC1/ı�
cos

�
i
�
�1k .s/

� � j
�
�2k .s/

��
ds

D
MX

iD2

i�1X

jD1
O.ı2/O

�
1

ij ji � j j
�

D O.ı2/

is valid (see Lemma 2). ut
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Fig. 10.12 Approximation of function f .�.s// with the help of f .�k.s//

Let us now proceed to the proof of the used auxiliary lemmas.
One can show that it is possible to choose sufficiently small neighborhoods of

points of discontinuity of f .�.t//, in which there are also points of discontinuity of
f .�k.s// (see. Fig. 10.12, indicated neighborhoods are hatched). Then f .�.s// can
be approximated with the help of f .�k.s// (see. Corollary 1).

Lemma 1. Suppose, f .�/ is piecewise-differentiable 2�-periodic bounded func-
tion. �.t/ is a smooth function such that the conditions of high-frequency property
(10.2)–(10.4) are satisfied. Then there exist sets E";k such that any "-neighborhood
of point of discontinuity of f .�/ acted by ��1.s/ and ��1

k .s/, attains the same
interval, completely contained in E";k , where

�k.s/ D �.kı/C P�.kı/.s � kı/; (10.32)

in which case these sets are small:
Z

E";k

ds D O.ı2/: (10.33)

Proof. By the data, f .�/ is bounded on R. If f .�/ is continuous on R, then the
assertion of Lemma is obvious. Consider the case when f .�/ has at least 1 point of
discontinuity.

Taking into account (10.4) and a smoothness of � , it is possible to introduce the
following notion

!min � mk D min
Œkı;.kC1/ı�

P�.s/;

!min � Mk D max
Œkı;.kC1/ı�

P�.s/:

Then for s 2 Œkı; .k C 1/ı� one obtains

�.kı/Cmk.s � kı/ � �.s/ � �.kı/CMk.s � kı/: (10.34)
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Then (10.32) implies

�.s/ 2 Œ�.kı/; �.kı/CMkı�;

�k.s/ 2 Œ�.kı/; �.kı/CMkı�: (10.35)

Suppose, a1; a2; : : : aN are discontinuity points of f .�/ such that

aj 2 Œ�.kı/; �.kı/CMkı�: (10.36)

Here there are altogetherO.1
ı
/ intervals of length ı on Œ0; T �, on each of which the

increase of P�.s/ is less than��. Thus, P�.s/ � !min C��O.1
ı
/, i.e. Mk D O. 1

ı2
/.

If on interval Œ0; 2�� the function f .�/ has NŒ0;2�� discontinuities, then on interval
of the length Mkı there are N D 1

2�
MkıNŒ0;2�� discontinuities. However Mkı D

O. 1
ı2
/ı D O.1

ı
/. Thus, N D O.1

ı
/.

Consider "-neighborhoods

V
j

";k D .aj � "; aj C "/; 0 < " < ı:

The choice of such neighborhoods becomes clear in proving the Lemma from the
latter relations of (10.42).

Introduce the following notion

�
aj � " � �.kı/CMkkı

Mk

;
aj C " � �.kı/Cmkkı

mk

�
D QEj

";k; (10.37)

E
j

";k D QEj

";k \ Œkı; .k C 1/ı�: (10.38)

In this case if s 2 Œkı; .k C 1/ı� n Ej

";k , then �.s/; �k.s/ do not attain "—

neighborhoods of aj , denoted by V j

";k . Denote

E";k D
N[

jD1
E
j

";k: (10.39)

This implies that condition (10.48) is satisfied.
Further, forE";k , it will be proved that property (10.33) is satisfied. The following

estimation

Z

E
j
";k

ds �
�
aj C " � �.kı/Cmkkı

mk

� aj � " � �.kı/CMkkı

Mk

�
(10.40)
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is valid. Using (10.34), one obtains jMk �mkj � C . Then

aj C " � �.kı/Cmkkı

mk

� aj � " � �.kı/CMkkı

Mk

�
�
aj � �.kı/

��
Mk �mk

�

Mkmk

C "

�
1

mk

C 1

Mk

�
C
�
mkkı

mk

� Mkkı

Mk

�

� �
aj � �.kı/

�Mk �mk

Mkmk

C 2"

!min

� �
aj � �.kı/

� C

Mkm
C 2"

!min
: (10.41)

By (10.36)

�
aj � �.kı/

� C

Mkmk

C 2"

!min

� Mkı
C

Mkmk

C 2"

!min

� Cı

mk

C 2"

!min

� Cı

!min
C 2"

!min

D O.ı3/C "O.ı2/: (10.42)

The relations (10.40), (10.41), and (10.42) imply

Z

E
j
";k

ds D O.ı3/: (10.43)

Taking into account that the number of points of discontinuity is equal to N D
O
�
1
ı

�
, one proves the assertion of Lemma 1:

Z

E";k

ds D
NX

jD1

Z

E
j
";k

ds D O.ı2/: (10.44)

ut
Corollary 1. Suppose, f .�/ is a piecewise-differentiable 2�-periodic bounded
function. �.t/ is a smooth function and the conditions of high-frequency property
(10.2)–(10.4) are satisfied.
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Then

.kC1/ıZ

kı

f .�.s//ds D
.kC1/ıZ

kı

f .�k.s//CO.ı2/; (10.45)

where

�k.s/ D �.kı/C P�.kı/.s � kı/: (10.46)

Proof. By the data, f .�/ is bounded on R. If f .�/ is continuous on R, then the
assertion of Lemma is obvious. Consider the case when f .�/ has at least 1 point of
discontinuity. Since the conditions of Lemma 1 are satisfied, there exist sets E";k .
Then the use of (10.33) and the boundedness of f .�/ gives

Z

Œkı;.kC1/ı�
f .�.s//ds D

Z

Œkı;.kC1/ı�nE";k
f .�.s//ds CO.ı2/;

Z

Œkı;.kC1/ı�
f .�k.s//ds D

Z

Œkı;.kC1/ı�nE";k
f .�k.s//ds CO.ı2/: (10.47)

In addition, according to assertion of Lemma 1, the functions f .�/ are differentiable
with respect to � and their derivatives are bounded for

� 2 f�.s/js 2 Œkı; .k C 1/ı� nE";kg [ f�k.s/js 2 Œkı; .k C 1/ı� nE";kg; (10.48)

i.e. on this set, f .�/ is Lipschitzian.
By (10.46) and (10.4)

�.s/ D �.kı/C
.kC1/ıZ

kı

P�.v/dv D �k.s/CO.ı/: (10.49)

Then (10.48) and (10.49) yield

Z

Œkı;.kC1/ı�nE";k

ˇ̌
f
�
�.s/

� � f ��k.s/
�ˇ̌
ds D O.ı2/;

Z

Œkı;.kC1/ı�nE";k
f
�
�.s/

�
ds D

Z

Œkı;.kC1/ı�nE";k
f
�
�k.s/

�
ds CO.ı2/; (10.50)

Then (10.47) implies the assertion of Lemma. ut
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Fig. 10.13 Proof idea for
Lemma 2

Lemma 2. The following series
1P
iD1

1P
jD1;j¤i

1
ij ji�j j converges.

Proof. For Lemma to be proved, it is sufficient to prove convergence of the
following series

1X

iD2

i�1X

jD1

1

ij.i � j /
(10.51)

Consider i D 9

1

9

� 1

1.9 � 1/ C 1

2.9� 2/
C 1

3.9 � 3/ C 1

4.9� 4/
C 1

5.9 � 5/ C 1

6.9 � 6/

C 1

7.9� 7/
C 1

8.9� 8/

�
D 1

9

� 1

1.9� 1/
C 1

2.9� 2/
C 1

3.9� 3/

C 1

4.9� 4/
C 1

.9 � 4/4
C 1

.9 � 3/3
C 1

.9 � 2/2 C 1

.9� 1/1

�
(10.52)

This implies that it is sufficient to prove convergence of the following series

1X

iD2

b i2 cX

jD1

1

ij.i � j / ; (10.53)

where bxc D max
d2Z; d�x

d . Since

1

iy.i � y/ (10.54)
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decreases for y 2 .0; i
2
�; i � 2, one obtains that (Fig. 10.13)

b i2 cX

jD1

1

ij.i � j / � 1

i.i � 1/
C

i
2Z

1

1

iy.i � y/dy; i � 2; (10.55)

However

i
2Z

1

1

iy.i � y/
dy D 1

i2

�
log.y/ � log.i � y/

�ˇ̌
ˇ
i
2

1

D 1

i2

�
log.

i

2
/� log.i � i

2
/ � log.1/C log.i � 1/

�
D log.i � 1/

i2
: (10.56)

It follows that a series

1X

iD2

log.i � 1/
i2

(10.57)

converges. ut

References

1. Abramovitch D (2002) Phase-locked loops: a control centric tutorial. Proc Am Control Conf
1:1–15

2. Abramovitch D (2008) Efficient and flexible simulation of phase locked loops, part I: simulator
design. In: American control conference, Seattle, pp 4672–4677

3. Abramovitch D (2008) Efficient and flexible simulation of phase locked loops, part II: post
processing and a design example. In: American control conference, Seattle, pp 4678–4683

4. Banerjee T, Sarkar B (2008) Chaos and bifurcation in a third-order digital phase-locked loop.
Int J Electron Commun 62:86–91

5. Bellescize H (1932) La réception synchrone. L’onde Électrique 11:230–340
6. Best RE (2007) Phase-lock loops: design, simulation and application. McGraw-Hill, New York
7. Demir A, Mehrotra A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory

and numerical methods for characterization. IEEE Trans Circuits Syst I 47:655–674
8. Emura T (1982) A study of a servomechanism for nc machines using 90 degrees phase

difference method. Progress Report of JSPE, pp 419–421
9. Feely O (2007) Nonlinear dynamics of discrete-time circuits: a survey. Int J Circuit Theory

Appl 35:515–531
10. Feely O, Curran PF, Bi C (2012) Dynamics of charge-pump phase-locked loops. Int J Circuit

Theory Appl 27. doi:10.1002/cta.1814
11. Gardner F (1966) Phase–lock techniques. Wiley, New York
12. Gardner F (1993) Interpolation in digital modems - part i: fundamentals. IEEE Electron

Commun Eng J 41(3):501–507
13. Gardner F, Erup L, Harris R (1993) Interpolation in digital modems - part ii: implementation

and performance. IEEE Electron Commun Eng J 41(6):998–1008



10 Nonlinear Analysis of Phase-locked Loop-Based Circuits 191

14. Kroupa V (2003) Phase lock loops and frequency synthesis. Wiley, New York
15. Krylov N, Bogolyubov N (1947) Introduction to non-linear mechanics. Princeton University

Press, Princeton
16. Kudrewicz J, Wasowicz S (2007) Equations of phase-locked loops: dynamics on the circle,

torus and cylinder, A, vol 59. World Scientific, Singapore
17. Kuznetsov NV, Leonov GA, Seledzhi SS (2008) Phase locked loops design and analysis.

In: Proceedings of ICINCO 2008 - 5th international conference on informatics in control,
automation and robotics, vol SPSMC, pp 114–118. doi:10.5220/0001485401140118

18. Kuznetsov NV, Leonov GA, Seledzhi SM (2009) Nonlinear analysis of the Costas loop and
phase-locked loop with squarer. In: Proceedings of the IASTED international conference on
signal and image processing, SIP 2009, pp 1–7

19. Kuznetsov NV, Leonov GA, Seledzhi SM, Neittaanmäki P (2009) Analysis and design of
computer architecture circuits with controllable delay line. In: Proceedings of ICINCO 2009 -
6th international conference on informatics in control, automation and robotics, vol 3 SPSMC,
pp 221–224. doi:10.5220/0002205002210224

20. Kuznetsov NV, Leonov GA, Neittaanmäki P, Seledzhi SM, Yuldashev MV, Yuldashev RV
(2010) Nonlinear analysis of phase-locked loop. In: IFAC proceedings volumes (IFAC-
PapersOnline), vol 4(1), pp 34–38. doi:10.3182/20100826-3-TR-4016.00010

21. Kuznetsov NV, Leonov GA, Seledzhi SM, Yuldashev MV, Yuldashev RV (2011) Method for
determining the operating parameters of phase-locked oscillator frequency and device for its
implementation. Patent RU2449463 C1

22. Kuznetsov NV, Neittaanmäki P, Leonov GA, Seledzhi SM, Yuldashev MV, Yuldashev RV
(2011) High-frequency analysis of phase-locked loop and phase detector characteristic com-
putation. In: ICINCO 2011 - proceedings of the 8th international conference on informatics in
control, automation and robotics vol 1, pp 272–278. doi:10.5220/0003522502720278

23. Kuznetsov NV, Leonov GA, Neittaanmäki P, Seledzhi S, Yuldashev MV, Yuldashev RV (2012)
Simulation of phase-locked loops in phase-frequency domain. In: International congress on
ultra modern telecommunications and control systems, IEEE Press, pp 364–368

24. Kuznetsov NV, Leonov GA, Yuldashev MV, Yuldashev RV (2012) Nonlinear analysis of Costas
loop circuit. In: ICINCO 2012 - proceedings of the 9th international conference on informatics
in control, automation and robotics 1:557–560. doi10.5220/0003976705570560

25. Leonov GA (2006) Phase-locked loops. Theory and application. Autom Remote Control
10:47–55

26. Leonov GA (2008) Computation of phase detector characteristics in phase-locked loops for
clock synchronization. Dokl Math 78(1):643–645

27. Leonov GA, Kuznetsov NV, Seledzhi SM (2006) Analysis of phase-locked systems with
discontinuous characteristics. In: IFAC proceedings volumes (IFAC-PapersOnline), vol 1,
pp 107–112. doi10.3182/20060628-3-FR-3903.00021

28. Leonov GA, Kuznetsov NV, Seledzhi SM (2009) Nonlinear analysis and design of phase-
locked loops. In: Automation control - theory and practice. In-Tech, New York, pp 89–114.
doi:10.5772/7900

29. Leonov GA, Kuznetsov NV, Yuldahsev MV, Yuldashev RV (2011) Computation of
phase detector characteristics in synchronization systems. Dokl Math 84(1):586–590.
doi:10.1134/S1064562411040223

30. Leonov GA, Kuznetsov NV, Yuldahsev MV, Yuldashev RV (2012) Analytical method for
computation of phase-detector characteristic. IEEE Trans Circuits Syst II Express Briefs
59(10):633–647. doi:10.1109/TCSII.2012.2213362

31. Leonov GA, Kuznetsov NV, Yuldashev MV, Yuldashev RV (2012) Differential equations of
Costas loop. Dokl Math 86(2):723–728. doi:10.1134/S1064562412050080

32. Lindsey W (1972) Synchronization systems in communication and control. Prentice-Hall,
New Jersey

33. Lindsey W, Simon M (1973) Telecommunication systems engineering. Prentice Hall,
New Jersey



192 R.E. Best et al.

34. Margaris W (2004) Theory of the non-linear analog phase locked loop. Springer, New Jersey
35. Stiffler JP (1964) Bit and subcarrier synchronization in a binary psk communication system

Natl Telemetering Conf
36. Suarez A, Quere R (2003) Stability analysis of nonlinear microwave circuits. Artech House,

New Jersey
37. Suarez A, Fernandez E, Ramirez F, Sancho S (2012) Stability and bifurcation analysis of self-

oscillating quasi-periodic regimes. IEEE Trans Microw Theory Tech 60(3):528–541
38. Thede L (2005) Practical analog and digital filter design. Artech House, New Jersey
39. Tretter SA (2007) Communication system design using DSP algorithms with laboratory

experiments for the TMS320C6713TM DSK. Springer, New York
40. Viterbi A (1966) Principles of coherent communications. McGraw-Hill, New York



Chapter 11
Approaches to Defining and Measuring
Assembly Supply Chain Complexity

V. Modrak and D. Marton

Abstract The present study examines static complexity of assembly supply chains
(ASCs). While static complexity describes the structure of the supply chain, the
number and the variety of its components, and interactions between relevant
units; the dynamic complexity of supply chains involves the aspects of time and
randomness. The aim is to come up with a methodological framework for conceptual
modeling of ASC structures. Models of such ASC structures are divided into classes
on the basis of the numbers of initial suppliers. Subsequently, we propose to apply
different indices for measuring a structural complexity of ASC structures based on
specific demand conditions. Special attention is also paid here to so-called Vertex
Degree Index. It is a complexity measure originating from information theory and
is based on the Shannon entropy. Finally, we outline a reference model for defining
levels of parameterized complexity of ASC structures.

Keywords Static complexity • Assembly • Supply chain • Topological classes

11.1 Introduction

The main goal of assembly supply chains (ASCs) is to reduce uncertainty and thus
help diminish the volatility of business results. General supply chain frequently
involves three segments: upstream, where sourcing or procurement from external
suppliers occurs; internal supply chain, where production, assembly, and packaging
take place; and downstream, where distribution to customers takes place. Our
focus is concentrated on the exploration of convergent ASCs commonly associated
with automotive and similar industries. Recently, the studies of ASC systems are
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mainly focused on stochastic models. Instead, our ambition is to examine the static
complexity of ASCs. While static complexity describes the structure of the supply
chain, the number and the variety of its components, and interactions between
relevant units; the dynamic complexity of supply chains involves the aspects of
time and randomness. Structural properties of ASCs are assumed to be especially
important indicators at the early design stage when making a decision about a
suitable networked manufacturing configuration. In this context any reduction of
redundant complexity of ASC is considered as a way to increase organizational
performance and reduce operational inefficiencies.

In general, high complexity of any nonlinear dynamic system including ASC
systems makes it difficult to analyze, because a small change leads to a massive
reaction. Nonlinear systems that are unpredictable cannot be solved exactly and
need to be approximated. One way of how to approximate a dynamic complexity
of such systems is to transform them into simpler ones. Therefore, structural
complexity is linked to dynamical complexity. In structural complexity the main
focus is on complexity classes, as opposed to the study of systems behavior to be
conducted more efficiently. According to [1], “structural complexity investigates
both internal structures of complexity classes, and relations that hold between
different complexity classes.” In this study our intent is to determine topological
classes of ASCs and subsequently to determine a parameterized measure of
topological complexity of such networks.

The aim is also to come up with a methodological framework for conceptual
modeling of ASC structures. Models of such ASC structures are divided into classes
on the basis of the numbers of initial suppliers. Subsequently, we propose to apply
different indices for measuring a structural complexity of ASC structures based on
specific demand conditions. Finally, we outline a reference model for defining levels
of parameterized complexity of ASC structures.

11.2 Related Works

Supply chain can be defined in numerous ways. According to [2], supply chain is
a network of organizations that are involved, through upstream and downstream
linkages, in the different processes and activities that produce value in the form of
products and services delivered to the ultimate consumer. The authors [3] add that
each functional level of this network is represented by numerous facilities that along
with the structure of the material and information flows contribute to the complexity
of the chain.

In practical and theoretical approaches to system complexity issues it is useful
to remember the formulation by [4] that “every good regulator of a system
must be a model of that system.” This principle can also be used in the diag-
nosis of failures of complex systems. Complexity of systems has many facets,
some of which are mutually correlated. For example, Kolmogorov complexity
[5, 6] is based on algorithmic information theory, which is related to Shannon
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entropy [7]. Both theories use the same unit the bit for measuring information.
Shannon’s information has been widely used in biological and ecological networks
in the form of information indices, characterizing different aspects of chemical
structure [8–10].

Another category of intricacy so-called stochastic complexity is defined using the
concept of the minimum description length principle [11, 12]. Information theories
consider information complexity as the minimum description size of a system [13–
15]. Related pertinent findings with regard to the impact of organization size on
increasing differentiation have been expressed in literature [16–18]. These authors
maintain that increasing differentiation of networks creates a control problem of
integrating the differentiated subunits. According to [19], the most basic issues in the
study of complex networks are structural properties because structure always affects
function. Moreover, he adds that there are missing unifying principles underlying
their topology. The lack of such principles makes it difficult to evaluate certain
topological aspects of networks including complexity.

There is a rich body of literature studying inventory models with supply
uncertainty. Authors [20, 21] assume that the supplier has a random capacity, while
authors [22, 23] model supply uncertainty using random yield. There are several
papers, e.g., [23, 24], on assembly systems with random yield that determine the
optimal assembly target level and the optimal order quantities of components.

Managing an ASC can be very difficult, since various sources of uncertainty are
combined in the ASC. Uncertainty may result from customer’s demand variability
or unreliability in external suppliers [25]. In this context, various deterministic
and stochastic models have been developed to study supply chain control and
management [26, 27].

11.3 Classification of ASCs

Obviously, supply chains come in all shapes and sizes and can also be very specific.
For the purposes of this work, the supply chain structure classification according
to Fig. 11.1 has been used. Convergent class of structure that represents assembly-
type of supply chains is that one in which each node in the chain has at most one
successor, but may have any number of predecessors. This class of SC structures is
matter of interest in this study. Convergent supply chains can be divided into two
basic groups: Modular SCs and Non-modular SCs [29].

Moreover, it is suggested here to divide the Modular SCs into two specific
categories: Modular SCs with minimal number of echelons and Modular SCs with
maximal number of echelons. This categorization is conditioned on the requirement
that number of initial nodes is the same for these two altered structures. In the
modular configuration, the final producer purchases subcomponents from inter-
mediate subassemblers instead of doing all the assembly activities itself. Modular
assembly is typical for many industries, such as automotive, agricultural equipment,
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Classification of supply chain 
structures Examples

Convergent (assembly) SC

Divergent SC

Conjoined SC

General SC

Classification of assembly 
supply chain structures Examples

Non-modular assembly SC

Modular assembly SC 
(minimal number of echelon)

Modular assembly SC 
(maximal number of echelon)

Fig. 11.1 Supply chain structure classification (adapted from [28])

aerospace, and others. In this context, it is proposed here to establish a framework
for creating topological classes of ASCs.

11.4 Generating of ASC Classes

Assembly-type of supply chains is that one in which each node in the chain has
at most one successor, but may have any number of predecessors. Such supply
chain structures are convergent and can be divided into two types, modular and non-
modular. In the modular structure, the intermediate sub-assemblers are understood
as assembly modules, while the non-modular structure consists only from suppliers
(initial nodes) and a final assembler (end node). The framework for creating
topological classes of ASC structures follows the work [29] who outlined the way
forward to model possible supply chain structures with four original suppliers as
shown in Fig. 11.2.

Generating all possible combinations of structures brings enormous combina-
torial difficulties. Thus, it is proposed here to establish a framework for creating
topological classes of ASCs for non-modular and modular ASC structures based on
number of initial nodes respecting the following rules [30]:

1. The initial nodes in topological alternatives are allocated to possible tiers tl
(l D 1, : : : ,m), except the tier tm, in which is situated a final assembler,

2. The minimal number of initial nodes in the first tier tl equals 2,
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No.1 No.2 No.3 No.4 No.5

Fig. 11.2 Possible ASC
structures with four initial
suppliers (adopted from [29])
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t=4
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Number of modul inputs (im)

2
3

3 im=3;3;2

Fig. 11.3 Graphical models of the selected classes of ASC structures

3. In case of non-modular ASC structure, the number of initial nodes in the most
upstream echelon is equal to the number of individual assembly parts or inputs
(i D 1, : : : ,r).

Then, all possible structures for given number of initial nodes can be created. An
example of generating the sets of structures for the classes with numbers of initial
nodes from 2 to 6 is shown in Fig. 11.3.

The numbers of all possible ASC structures for arbitrary class of a structure
can be determined by the following manner. We first need to calculate the sum
of non-repeated combinations for each class of ASC structures through the so-
called Cardinal Number [31]. The individual classes are determined by number of
initial nodes (inputs) denoted by “i.” Then, for any integer i � 2, we denote by S(i)
the finite set consisting of all q-tuples (i1, : : : , iq) of integers i1, : : : , iq � 2 with
i1 C � � � C iq � i, where q is a nonnegative integer.

The Cardinal Number #S(i) of S(i) is equal to p(i) � 1, where p(i) denotes the
number of partition of “i,” which increases quite rapidly with “i.” For instance, for
i D 2, 3, 4, 5, 6, 7, 8, 9, 10, the cardinal numbers #S(i) are given, respectively, by 1,
2, 4, 6, 10, 14, 21, 29, 41 [32].

Subsequently, for each non-repeated combination “K,” a multiplication coeffi-
cient “M” has to be assigned (see Fig. 11.4). Then,

P
Mi—the number for all

possible combinations of ASC structures for a given class can be obtained. This
number is applied in Fig. 11.4.
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S(i) K M S(i) K M S(i) K M S(i) K M S(i) K M S(i) K M S(i) K M S(i) K M S(i) K M

1 1;1 1 1 2;1 1 1 3;1 2 1 4;1 5 1 5;1 12 1 6;1 33 1 7;1 90 1 8;1 261 1 9;1 766

ΣMi 1 2 1;1;1 1 2 2;2 1 2 3;2 2 2 4;2 5 2 5;2 12 2 6;2 33 2 7;2 90 2 8;2 261

ΣMi 2 3 2;1;1 1 3 3;1;1 2 3 4;1;1 5 3 5;1;1 12 3 6;1;1 33 3 7;1;1 90 3 8;1;1 261

4 1;1;1;1 1 4 2;2;1 1 4 3;3 3 4 4;3 10 4 5;3 24 4 6;3 66 4 7;3 180

ΣMi 5 5 2;1;1;1 1 5 3;2;1 2 5 4;2;1 5 5 5;2;1 12 5 6;2;1 33 5 7;2;1 90

6 1;1;1;1;1 1 6 3;1;1;1 2 6 4;1;1;1 5 6 5;1;1;1 12 6 6;1;1;1 33 6 7;1;1;1 90

ΣMi 12 7 2;2;2 1 7 3;3;1 3 7 4;4 15 7 5;4 60 7 6;4 165

8 2;2;1;1 1 8 3;2;1;1 2 8 4;3;1 10 8 5;3;1 24 8 6;3;1 66

9 2;1;1;1;1 1 9 3;1;1;1;1 2 9 4;2;2 5 9 5;2;2 12 9 6;2;2 33

10 1;1;1;1;1;1 1 10 3;2;2 2 10 4;2;1;1 5 10 5;2;1;1 12 10 6;2;1;1 33

ΣMi 33 11 2;2;2;1 1 11 4;1;1;1;1 5 11 5;1;1;1;1 12 11 6;1;1;1;1 33

12 2;2;1;1;1 1 12 3;3;2 3 12 4;4;1 15 12 5;5 78

13 2;1;1;1;1;1 1 13 3;3;1;1 3 13 4;3;2 10 13 5;4;1 60

14 1;1;1;1;1;1;1 1 14 3;2;2;1 2 14 4;3;1;1 10 14 5;3;2 24

ΣMi 90 15 3;2;1;1;1 2 15 4;2;2;1 5 15 5;3;1;1 24

16 3;1;1;1;1;1 2 16 4;2;1;1;1 5 16 5;2;2;1 12

17 2;2;2;2 1 17 4;1;1;1;1;1 5 17 5;2;1;1;1 12

18 2;2;2;1;1 1 18 3;3;3 4 18 5;1;1;1;1;1 12

19 2;2;1;1;1;1 1 19 3;3;2;1 3 19 4;4;2 15

20 2;1;1;1;1;1;1 1 20 3;3;1;1;1 3 20 4;4;1;1 15

21 1;1;1;1;1;1;1;1 1 21 3;2;2;2 2 21 4;3;3 15

ΣMi 261 22 3;2;2;1;1 2 22 4;3;2;1 10

23 3;2;1;1;1;1 2 23 4;3;1;1;1 10

24 3;1;1;1;1;1;1 2 24 4;2;2;2 5

25 2;2;2;2;1 1 25 4;2;2;1;1 5

26 2;2;2;1;1;1 1 26 4;2;1;1;1;1 5

27 2;2;1;1;1;1;1 1 27 4;1;1;1;1;1;1 5

28 2;1;1;1;1;1;1;1 1 28 3;3;3;1 4

29 1;1;1;1;1;1;1;1;1 1 29 3;3;2;2 3

ΣMi 766 30 3;3;2;1;1 3

31 3;3;1;1;1;1 3

32 3;2;2;2;1 2

33 3;2;2;1;1;1 2

34 3;2;1;1;1;1;1 2

35 3;1;1;1;1;1;1;1 2

36 2;2;2;2;2 1

37 2;2;2;2;1;1 1

38 2;2;2;1;1;1;1 1

39 2;2;1;1;1;1;1;1 1

40 2;1;1;1;1;1;1;1;1 1

41 1;1;1;1;1;1;1;1;1;1 1

ΣMi 2312

i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

Cardinal Number  
2, 4, 6,…, 29, 41, 55,… 

Sloane Integer sequence 
1, 2, 5,…, 766, 2312, 7068,..  

1

2

5

12 

Fig. 11.4 Determination of total combinations of ASC networks related to the given classes

A critical step in determining all possible combinations of ASC structures for
a given class (starting with a class for i D 2) is rules by which we can prescribe a
multiplication coefficient “M.”

In the case when we consider the number of initial nodes equal 2, there is only
one numerical combination (1;1) corresponding with appropriate graphical model
of ASC structure, and thus M D 1. Similarly, for each numerical combination has to
be found exact logic rule. Accordingly we can formulate the following rules:

R1. If the numerical combination “K” consists only of numeric characters (digits),
assigned by symbol “n,” n � 2, then M(2) D 1.

R2. If the numerical combination “K” consists just of one digit “3” and other digits
are< 3 or do not appear respectively, then M(3) D 2.

R3. If the numerical combination “K” consists just of one digit “4” and other digits
are< 3 or do not appear, respectively, then M(4) D 5.

Analogically, we can continue to determine multiplication coefficients “M”
for similar cases when numerical combinations “K” consist just of one digit � 5
and other digits are< 3 or do not appear, respectively. Then we would obtain
the following multiplication coefficients: M(5) D 12; M(6) D 33; M(7) D 90;
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M(8) D 261, etc. The multiplication coefficients, in such case, follow the Sloane
Integer sequence 1, 2, 5, : : : , 261, 766, 2312, 7068, : : : [32].

For other cases has to be applied next rules:
R4. If the numerical combination “K” consists just of two digits “3” and other

digits are< 3 or do not appear, respectively, then M(3,3) D 3. Calculation of this
multiplication coefficient can be formally expressed in this manner:

M.3;3/ D M.3/ C �
M.3/ � 1� D 2C 1 ) M.3;3/ D 3 (11.1)

R5. If the numerical combination “K” consists just of two digits “4” and other digits
are< 3 or do not appear, respectively, then M(4,4) D 15. M(4,4) can be computed
similarly as Eq. (11.1):

M.4;4/ D M.4/ C �
M.4/ � 1�C �

M.4/ � 2�C �
M.4/ � 3

�C �
M.4/ � 4

�

M.4;4/ D 5C 4C 3C 2C 1 ) M.4;4/ D 15

(11.2)

Analogically, we can continue to determine multiplication coefficients “M” for
similar cases when numerical combinations “K” consist just of two digits � 5 and
other digits are< 3 or do not appear, respectively. For such cases we can calculate
the multiplication coefficients by this equation:

M.n;n/ D M.n/ C �
M.n/ � 1�C �

M.n/ � 2�C; : : : ;C �
Mn � �

M.n/ � 1�� (11.3)

11.5 Static Structural Complexity Metrics
for ASC Structures

11.5.1 Some Terminology and Definitions

The following section consists of theoretical concepts and working definitions for
the given research domain. General networks can be properly defined as well as
effectively recognized as structural patterns by Graph Theory (GT). GT deals with
the mathematical properties of structures as well as with problems of a general
nature. In this context, a graph is a network of nodes (vertices) and links (edges)
from some nodes to others or to themselves. Graph G consists of a set of V vertices,
fVg � fv1, v2, : : : , vVg, and the set of E edges, fEg � fe1, e2, : : : , eEg. The edge fijg
is the path from Vertex i and ends in vertex j. The number of the nearest-neighbors
of a Vertex “i” is termed vertex Degree and denoted deg(v).

The maximum degree of a graph G, denoted by �(G), and the minimum degree
of a graph, denoted by •(G), are the maximum and minimum degree of its vertices.
For a vertex, the number of head endpoints adjacent to a vertex is called the in-
degree of the vertex and the number of tail endpoints is its out-degree. For a directed
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No.12No.8

No. t n l

No.8 3 9 8

No.12 4 9 8

m

3

3

i=6

Fig. 11.5 Example of comparison of ASC structures with same number of links and modules but
with different number of tiers (i D 6)

graph, the sum of the vertex in-degree and out-degree is the vertex degree [33].

deg.v/ D degC.v/i C deg�.v/i (11.4)

11.5.2 Approaches to Measuring ASC Complexity

Complexity reduction of convergent ASC systems is among topical questions under
discussions in a framework of material flow optimization. Our interest in this context
will be focused on selected measurable complexity indicators that have a potential
to characterize configuration complexity attributes. In the proposed approaches this
problem is treated for three different conditions:

• There is only one dominant final product among all the variants determined
by a final product portfolio. They also showed that in the first scenario where
one variant significantly dominates the demand, the optimal ASC with smallest
complexity should be non-modular [28].

• Demand shares are equal across all variants determined by a final product
portfolio. In the scenario of equal demand shares, the modular ASCs are more
beneficial than non-modular ones when the product variety is rather large than
small [28].

• We do not consider the above-mentioned specifications in such case we study
ASC as general networks.

11.5.2.1 The Case When Dominant Demand Exists

Based on the previous premise for these scenarios two propositions can be formu-
lated:

1. For a given class of ASS structures the optimal structure is one with the smallest
number of links.

2. When comparing two or more structures with the same number of links “l,” nodes
“n,” and modules “m” but with different number of tiers “t” (see Fig. 11.5), the
following argument can be constructed:



11 Approaches to Defining and Measuring Assembly Supply Chain Complexity 201

No. M No. M No. M No. M No. M No. M No. M No. M
1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7

2 1 2 4 6 9 12

1 3 1 2 4 8

5 2 6 10 1 2

1 7 17 15 21

12 2 9 33 57

4 1 28 62

3 10 8 31

1 14 1 6

33 5 20 1

5 40 35

4 29 92

1 7 102

90 15 47

23 7

10 35

6 78

4 63

1 18

261 22

31

14

8

5

1

766

8;17;16

9;17;16

5;14;13

5;15;14

5;16;15

5;17;16

7;17;16

8;16;15

6;14;13

6;15;14

6;16;15

6;17;16

7;15;14

7;16;15

3;14;13

4;12;11

4;13;12

4;14;13

4;15;14

4;16;15

4;17;16

5;13;12

4;14;13

4;15;14

5;12;11

5;13;12

2;10;9

3;11;10

3;12;11

3;13;12

3;11;10

3;12;11

4;13;12

5;11;10

7;15;14

8;15;14

5;14;13

5;15;14

6;13;12

6;14;13

6;15;14

7;14;13

2;6;52;5;4

6;11;10

2;8;7

3;9;8

3;10;9

3;11;10

4;10;9

4;11;10

4;12;11

3;10;9

t;n;l

4;11;10

5;10;9

5;11;10

i=2 i=3 i=4

3;7;6

4;7;6

i=9i=8i=7i=6i=5

4;10;9

t;n;lt;n;l t;n;lt;n;lt;n;lt;n;l

3;6;5

2;9;8

4;13;12

6

26

20

10

ΣMi

ΣMi

3;7;6

3;8;7

4;8;7 3;10;9

ΣMi

ΣMi

ΣMi

5;12;11

3;13;12

4;11;10

4;12;11

6;13;12

7;13;12

2
ΣMi

ΣMi

ΣMi

4

14

4;9;8

5;9;8

t;n;l
2;3;2 2;4;3

3;5;4

5;13;12

6;12;11

4;9;8

2;7;6

3;8;7

3;9;8

Munafo classical sequence 

2, 4, 6,...,26, 34, 42,..., 86, 100, 

Fig. 11.6 Non-repeated sets of ASC structures based on t,n,l parameters

The structure with the smallest number of tiers is topologically less complex
than other one(s). Then, it is proposed to measure structural complexity by formula
Links/Tiers Index [34, 35]:

LTI D
pX

jD1

mX

lD1
lj :tl 0; 1 (11.5)

In order to have, at our disposal, all non-repeated ASC structures of selective
classes we need to clear redundant structures with the identical parameters “t, n, l.”
To do so, we can determine exact numbers of all non-repeated ASC structures that
are shown in Fig. 11.6. These numbers follow a classical sequence MCS6858778
introduced by Munafo and used by, e.g., [36].

When applying Eq. 11.5 to calculate structural complexity measures for all non-
repeated ASC structures of the selective classes (for i D 4–10) we obtain values
that are depicted in Fig. 11.7. Subsequently, it is possible to use these values for
comparison of arbitrary structures from the structural complexity point of view.

Naturally the next question arises about a mechanism of generating all non-
repeated ASC structures for the higher relevant classes (from i D 11, 12, : : : ,n). This
mechanism is graphically outlined in Fig. 11.8.

The principle of generating sub-sets of non-repeated structures (assigned with
blocks in the figure above) from lower classes to higher classes is quite simple, but
its formal description would require rather complicated procedures.
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Fig. 11.7 Computational results of the LTI for selected classes of ASC structures

11.5.2.2 The Case When Dominant Demand Does Not Exists

According to the assumption for this scenario, modular ASCs are more beneficial
than non-modular ones. Authors [29] of this premise showed that, e.g., for the
structures in Fig. 11.9 the following relation can be formulated:

Complexity .I/ > Complexity .II/ > Complexity .III/ :

Considering this assumption, it is proposed the following parameterization with
aim to obtain measures that allow comparing complexity of structures:

1. To split a given structure into substructures which are represented by Non-
modular ones, the number of which is just equal to sum of the intermediate
subassemblers plus one assembler of final products (see Fig. 11.10),

2. To calculate a structural complexity for each substructure of original structure,
3. To calculate a total structural complexity of an original structure.

For step 2, to measure substructure complexity, the following parameter of
Module Degree can be formulated:

deg .m/i D .im � 1/2; (11.6)

where im presents a number of module inputs (im D 1, : : : ,r) of given Non-modular
structure.

For step 3, to measure the Index of Module Degree, the following formula is
used:
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Fig. 11.8 The mechanism of generating subsets of non-repeated structures based on t,n,l
parameters
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I II III

Fig. 11.9 Example of
Modular ASC structures
(i D 8)

Fig. 11.10 Substructures of
the original structure (i D 8)

No. im M No. im M No. im M No. im M No. im M No. im M No. im M No. im M

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

ΣMi 1 2;2 1 3;2 2 4;2 2 5;2 2 6;2 2 7;2 2 8;2 2

ΣMi 2 2;2;2 2 3;3 1 4;3 2 5;3 2 6;3 2 7;3 2

ΣMi 5 3;2;2 5 4;2;2 5 5;2;2 5 6;2;2 5 7;2;2 5

2;2;2;2 3 3;3;2 5 4;4 1 5;4 2 6;4 2

ΣMi 12 3;2;2;2 12 4;3;2 9 5;3;2 9 6;3;2 9

2;2;2;2;2 6 4;2;2;2 12 5;2;2;2 12 6;2;2;2 12

ΣMi 33 3;3;3 2 4;4;2 5 5;5 1

3;3;2;2 17 4;3;3 5 5;4;2 9

3;2;2;2;2 28 4;3;2;2 33 5;3;3 5

2;2;2;2;2;2 11 4;2;2;2;2 29 5;3;3;2 34

ΣMi 90 3;3;3;2 12 5;2;2;2;2 28

3;3;2;2;2 55 4;4;3 5

3;2;2;2;2;2 66 4;4;2;2 17

2;2;2;2;2;2;2 23 4;3;3;2 33

ΣMi 261 4;3;2;2;2 109

4;2;2;2;2;2 66

3;3;3;3 4

3;3;3;2;2 57

3;3;2;2;2;2 167

3;2;2;2;2;2;2 155

2;2;2;2;2;2;2;2 43

ΣMi 766

7

2
3

5

i=5i=4i=3i=2 i=9i=8i=7

22

15

11

i=6

Sloane integer sequence 

2, 3, 5,..., 15, 22, 30,..., 101, 135, 176,

Fig. 11.11 Non-repeated sets of ASC structures based on the number of module inputs parameter

Imd D
qX

sD1
deg .m/i (11.7)

In order to have, at our disposal, all non-repeated ASC structures of selective
classes we need to clear redundant structures with the identical parameter named as
“number of module inputs” (im). To do so, we can determine exact numbers of all
non-repeated ASC structures that are shown in Fig. 11.11. These numbers follow
the integer sequence A000041 introduced by [37].
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Fig. 11.12 Computational results of the Imd for selected classes of ASC structures

When applying Eq. 11.7 to calculate structural complexity measures for all non-
repeated ASC structures of the selective classes (for i D 4–10) we obtain values
that are depicted in Fig. 11.12. Subsequently, it is possible to use these values for
comparison of arbitrary structures from the structural complexity point of view.

Anyway, the concern is obviously about finding a mathematical model (mecha-
nism) of generating all non-repeated ASC structures for the higher relevant classes
(from i D 11, 12, : : : ,n). The mechanism is graphically outlined in Fig. 11.13.

11.5.2.3 The Case When We Consider ASC as General Networks

According to Shannon’s information theory [7], the entropy of information H(˛) in
describing a message of N system elements (or symbols), distributed according to
some equivalence criterion ’ into k groups of N1, N2, : : : , Nk elements, is calculated
by the formula:

H .˛/ D �
kX

iD1
pi log2pi D �

kX

iD1

Ni

N
log2

Ni

N
(11.8)

where pi specifies the probability of occurrence of the elements of the ith group.
Since it is of interest to characterize entropy of information of a network

according to Eq. 11.8, it is possible to substitute symbols or system elements for
the vertices.
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i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
im im im im im im im im im

2 3 4 5 6 7 8 9 10
2;2 3;2 4;2 5;2 6;2 7;2 8;2 9;2

2;2;2 3;3 4;3 5;3 6;3 7;3 8;3

3;2;2 4;2;2 5;2;2 6;2;2 7;2;2 8;2;2

2;2;2;2 3;3;2 4;4 5;4 6;4 7;4

3;2;2;2 4;3;2 5;3;2 6;3;2 7;3;2
2;2;2;2;2 4;2;2;2 5;2;2;2 6;2;2;2 7;2;2;2

3;3;3 4;4;2 5;5 6;5

3;3;2;2 4;3;3 5;4;2 6;4;2

3;2;2;2;2 4;3;2;2 5;3;3 6;3;3

2;2;2;2;2;2 4;2;2;2;2 5;3;3;2 6;3;3;2
3;3;3;2 5;2;2;2;2 6;2;2;2;2
3;3;2;2;2 4;4;3 5;5;2

3;2;2;2;2;2 4;4;2;2 5;4;3

2;2;2;2;2;2;2 4;3;3;2 5;4;2;2

4;3;2;2;2 5;3;3;2

4;2;2;2;2;2 5;3;2;2;2

3;3;3;3 5;2;2;2;2;2

3;3;3;2;2 4;4;4

3;3;2;2;2;2 4;4;3;2

3;2;2;2;2;2;2 4;4;2;2;2
2;2;2;2;2;2;2;2 4;3;3;3

4;3;3;2;2

4;3;2;2;2;2

4;2;2;2;2;2;2

3;3;3;3;2

3;3;3;2;2;2

3;3;2;2;2;2;2

3;2;2;2;2;2;2;2

2;2;2;2;2;2;2;2;2

Fig. 11.13 The graphical principle of generating non-repeated structures based on im parameter

In order to define the probability for a randomly chosen system element i it
is possible to formulate general weight function as pi D wi/˙wi, assuming that
˙pi D 1.

Author [38] claims that, considering the system elements, the vertices and
supposing the weights assigned to each vertex to be the corresponding vertex
degrees, one easily distinguishes the null complexity of the totally disconnected
graph from the high complexity of the complete graph.

Then, the probability for a randomly chosen vertex i in the complete graph of V
vertices to have a certain degree deg(v)i can be expressed by the formula:
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pi D deg .v/i
VX

iD1
deg .v/i

: (11.9)

Based on our previous experiences the most feasible indicator to configuration
complexity of general structures seems to be Vertex degree index (Ivd). The informa-
tion entropy of a graph with a total weight W and vertex weights wi can be expressed
in the form of the equation:

H.W / D W log2W �
VX

iD1
wi log2wi (11.10)

Since the maximum entropy is when all wi D 1, then:

Hmax D W log2W (11.11)

By substituting W DP
deg(v)i and wi D deg(v)i, the information content of the

vertex degree distribution of a network called as Vertex Degree Index (Ivd) is derived
by [38] that is expressed as follows:

Ivd D
VX

iD1
deg .v/i log2 deg .v/i (11.12)

In order to have, at our disposal, all non-repeated ASC structures of selective
classes we need to clear redundant structures with the identical parameter named
as “vertex degree” (deg(v)i). To do so, we can determine exact numbers of all non-
repeated ASC structures that are shown in Fig. 11.14. These numbers follow the
integer sequence A139582 introduced by [39].

When applying Eq. 11.12 to calculate structural complexity measures for all non-
repeated ASC structures of the selective classes (for i D 4–10) we obtain values that
are depicted in Fig. 11.15.

Subsequently, it is possible to use these values for comparison of arbitrary
structures from the structural complexity point of view.

In order to find a mathematical model of generating all non-repeated ASC
structures for the higher relevant classes (from i D 11, 12, : : : ,n) the possible
mechanism is graphically outlined in Fig. 11.16.
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No. deg(v)i M No. deg(v)i M No. deg(v)i M No. deg(v)i M No. deg(v)i M No. deg(v)i M No. deg(v)i M No. deg(v)i M

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

ΣMi 1 3;2 1 4;2 1 5;2 1 6;2 1 7;2 1 8;2 1 9;2 1

ΣMi 2 3;3 1 4;3 2 5;3 2 6;3 2 7;3 2 8;3 2

3;3;2 2 4;3;2 3 5;3;2 3 6;3;2 3 7;3;2 3 8;3;2 3

ΣMi 5 3;3;3 2 4;4 1 5;4 2 6;4 2 7;4 2

3;3;3;2 3 4;4;2 2 5;4;2 3 6;4;2 3 7;4;2 3

ΣMi 12 4;3;3 5 5;3;3 5 6;3;3 5 7;3;3 5

4;3;3;2 8 5;3;3;2 8 6;3;3;2 8 7;3;3;2 8

3;3;3;3 4 4;4;3 5 5;5 1 6;5 2

3;3;3;3;2 6 4;4;3;2 8 5;5;2 2 6;5;2 3

ΣMi 33 4;3;3;3 13 5;4;3 9 6;4;3 9

4;3;3;3;2 21 5;4;3;2 15 6;4;3;2 15

3;3;3;3;3 7 5;3;3;3 13 6;3;3;3 13

3;3;3;3;3;2 11 5;3;3;3;2 21 6;3;3;3;2 21

ΣMi 90 4;4;4 2 5;5;3 5

4;4;4;2 3 5;5;3;2 8

4;4;3;3 18 5;4;4 5

4;4;3;3;2 31 5;4;4;2 8

4;3;3;3;3 32 5;4;3;3 34

4;3;3;3;3;2 52 5;4;3;3;2 58

3;3;3;3;3;3 14 5;3;3;3;3 32

3;3;3;3;3;3;2 23 5;3;3;3;3;2 53

ΣMi 261 4;4;4;3 13

4;4;4;3;2 21

4;4;3;3;3 60

4;4;3;3;3;2 101

4;3;3;3;3;3 77

4;3;3;3;3;3;2 128

3;3;3;3;3;3;3 29

3;3;3;3;3;3;3;2 46

ΣMi 766

4

i=3i=2 i=7i=6i=5i=4 i=9i=8

2

10

30

22

14

6

Omar integer sequence 

2, 4, 6,..., 30, 44, 60,..., 202, 270, 352  

Fig. 11.14 Non-repeated ASC structures based on the “vertex degree” parameter

0

5

10

15

20

25

30

35

40

45

V
al

ue
 o

f 
st

ru
ct

ur
al

 c
om

pl
ex

it
y

i=4 i=5 i=6 i=7 i=8 i=9 i=10

Fig. 11.15 Computational results of the Ivd for selected classes of ASC structures

11.6 Reference Model for Defining Complexity Levels
of Supply Chain Structures

Basically, the comparison of complexity is of a relative and subjective nature. It is
also clear that through a relative complexity metric we can compare the complexity
of the existing configuration against the simplest one. Perhaps, the most important
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i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
deg(v)i deg(v)i deg(v)i deg(v)i deg(v)i deg(v)i deg(v)i deg(v)i deg(v)i
2 3 4 5 6 7 8 9 10

3;2 4;2 5;2 6;2 7;2 8;2 9;2 10;2

3;3 4;3 5;3 6;3 7;3 8;3 9;3

3;3;2 4;3;2 5;3;2 6;3;2 7;3;2 8;3;2 9;3;2

3;3;3 4;4 5;4 6;4 7;4 8;4

3;3;3;2 4;4;2 5;4;2 6;4;2 7;4;2 8;4;2

4;3;3 5;3;3 6;3;3 7;3;3 8;3;3

4;3;3;2 5;3;3;2 6;3;3;2 7;3;3;2 8;3;3;2

3;3;3;3 4;4;3 5;5 6;5 7;5

3;3;3;3;2 4;4;3;2 5;5;2 6;5;2 7;5;2

4;3;3;3 5;4;3 6;4;3 7;4;3

4;3;3;3;2 5;4;3;2 6;4;3;2 7;4;3;2

3;3;3;3;3 5;3;3;3 6;3;3;3 7;3;3;3

3;3;3;3;3;2 5;3;3;3;2 6;3;3;3;2 7;3;3;3;2

4;4;4 5;5;3 6;6

4;4;4;2 5;5;3;2 6;6;2

4;4;3;3 5;4;4 6;5;3

4;4;3;3;2 5;4;4;2 6;5;3;2

4;3;3;3;3 5;4;3;3 6;4;4

4;3;3;3;3;2 5;4;3;3;2 6;4;4;2

3;3;3;3;3;3 5;3;3;3;3 6;4;3;3

3;3;3;3;3;3;2 5;3;3;3;3;2 6;4;3;3;2

4;4;4;3 6;3;3;3;3

4;4;4;3;2 6;3;3;3;3;2

4;4;3;3;3 5;5;4

4;4;3;3;3;2 5;5;4;2

4;3;3;3;3;3 5;5;3;3

4;3;3;3;3;3;2 5;5;3;3;2

3;3;3;3;3;3;3 5;4;4;3

3;3;3;3;3;3;3;2 5;4;4;3;2

5;4;3;3;3

5;4;3;3;3;2

5;3;3;3;3;3

5;3;3;3;3;3;2

4;4;4;4

4;4;4;4;2

4;4;4;3;3

4;4;4;3;3;2

4;4;3;3;3;3

4;4;3;3;3;3;2

4;3;3;3;3;3;3

4;3;3;3;3;3;3;2

3;3;3;3;3;3;3;3

3;3;3;3;3;3;3;3;2

Fig. 11.16 The graphical principle of generating non-repeated structures based on vertex degree
parameter
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Fig. 11.17 Graph of the complexity measures for the selected complete graphs

feature of the relative complexity metric is that we can generalize it to other areas
[40].

Comparing the results of the three structural complexity indicators from graphs
(shown in Figs. 11.7, 11.12 and 11.15) the Vertex degree index seems to be suitable
as generic approach for use in most structural applications. To test this anticipation
we apply this indicator in order to compare complexities of the complete graphs with
v(v � 1)/2 edges (see Fig. 11.17). Subsequently, one can determine upper bounds of
configuration complexity for any general supply chain structure with a given number
of vertices.

Under an assumption that we will consider upper bound value of a complete
graph with V vertices as lower bound for a complete graph with V C 1 vertices,
then we suggest to rate these complexity values of complete graphs complexity as
boundaries of levels configuration complexity of general supply chain networks.

Based on these considerations, the reference model for defining levels of
parameterized complexity of supply chain networks is outlined in Fig. 11.18.

11.7 Conclusions

The main contributions of this paper we see in the following three aspects:

1. A new framework for creating topological classes of ASC networks under
defined specific condition is developed (see Fig. 11.4). This methodological
framework is enabling exactly determining all relevant topological graphs for
any class of ASC structure. The usefulness of such framework is especially in
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Fig. 11.18 Reference model for defining levels of configuration complexity of SC networks

cases when it is necessary to apply relative complexity metrics to compare the
complexity of the existing configuration against the simplest one.

2. As the second contribution of this paper, it is showed that structural complexity
of ASC networks can be dependable measured for the three different scenarios
through the proposed formulas. Potentially, these structural complexity measures
can be used to find or create optimal ASC configurations according to one of the
specific criteria.

3. The reference model for defining levels of configuration complexity of general
supply chain networks is outlined based on an upper bound concept.

However, this research path requires further independent research to confirm
presented results and proposals.
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Chapter 12
Non-commutative Tomography: Applications
to Data Analysis

Françoise Briolle and Xavier Leoncini

Abstract In this chapter, we briefly recall the theory of non-commutative tomog-
raphy in a pedagogical way. We then consider its applications to signal analysis.
The advantages and drawbacks of these techniques to finite samples of data are
discussed. Then the method is applied, first to signals originating from reflectometry
measurements in magnetized fusion plasmas, and then to data obtained from the
advection of tracers in a two-dimensional time-dependent flow generated by three
point vortices. In the first case, we show that the tomogram allows to pick a base to
represent our signal which has the advantage of isolating the reflection coming from
the plasma and then to improve the estimation of the density profile. In the second
case, we show how, with a “tricky transformation” the method allows us to detect
Lévy flights and extract some of their properties.
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12.1 Introduction

The notion of time has been throughout the ages of constant debate and reflexion. In
physics the emergence of the theory of relativity and its consequences have related
in an intertwined manner the notions of space and time, leading, for instance, to
the definition of the meter through the speed of light since 1983. From another
perspective, the classical mechanical time which is essential to Newton’s second
law and lead to the rise of the dynamical systems branch of physics and mathematics
can be as well challenged, essentially by data analysis. Indeed physics is grounded
on experimental relevance of its laws, in order to uncover or verify these, the
experimentalist acquires data usually originating from a time-dependent signal.
When dealing with time-dependent systems, data acquisition and signal analysis
become crucial, not only because, as quantum mechanics taught us, measuring
something changes it, but also and quite often on the macroscopic scale because of
imperfections, noise, and possible biases. When dealing with almost periodic data,
such as the one acquired by looking at our sky and planetary motion, we usually
rely on Fourier series, who introduced them in 1822. It took though a long time to
develop a full mathematical theory of the basis of this approach, which eventually
leads to the notion of functional analysis, with its vector space, basis or generating
ensembles, and scalar products useful to define a norm, projections and a distance
between functions. In some way, using this approach we try to describe an unknown
function (signal) with a set of functions that are well known. Fourier analysis was
then able to be deployed using the integral formalism and the full Fourier transform.
At the same time, the notion of wave-length and frequency could be seen as dual
representation of time and space, and hence the notion of time or its representation
could become fuzzier, leading to the notion of time-frequency representations.
Following this trend, the switch to numerical treatment, the development of new
algorithms such as the Fast Fourier Transform, especially tailored for finite sampled
data, lead to the uncovering of some of the shortcomings of Fourier analysis, and
most notably for un-stationary signals, for which the time-frequency representations
become crucial. This paved the way for the development of new signal processing
tools such as for instance wavelet analysis. In this chapter we focus on another
approach to signal analysis, it of course comes like most other approaches for the
original vein of Fourier analysis, and is as well somewhat inspired from wavelet
analysis. It, however, adds a new degree of freedom, in the sense that we use a
parametric generating set, that allows us to tune this parameter to “optimize” our
signal representation for certain desired tasks, such as isolating some components
or signature from an un-stationary signal.

Most of signals are non-stationary with a time-dependent spectral content.
Therefore an adequate joint time and frequency representation is desired for a
characterization of such signals. Several types of linear transforms, such as Gabor
transform or wavelets transforms, are widely used.
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The Wigner-Ville quasi distribution is considered to be optimal in the sense that
the spread in the time-frequency plane is minimal. But the Wigner-Ville distribution
has in general positive and negative values and the interference terms (artifacts) may
be nonzero and the interpretation of its representation could be delicate.

Tomograms transforms are recent mathematical techniques, based on group
theory. Associated with a linear combination of non-commutative operators, tomo-
grams are quadratic positive signal transforms. Then, in contrast to a time-frequency
representation, the tomogram is the exact probability distribution of the signal on the
variableX , corresponding to a linear combination of the chosen operators. We may
define as a component of the signal any distinct feature (ridge, peak, etc.) of the
representation.

In Sect. 12.2 we will give an overview of several transformations as linear
transforms, quasi-distributions and tomograms, which can be used to characterize
unstationary signals. Non-commutative tomograms, elaborated with the generators
of the one-dimensional conformal group will be presented, with a particular empha-
sis to the time-frequency tomogram. Then, two applications of this transformation
will be extensively presented. In Sect. 12.3, tomograms are used for the analysis of
measurements of reflectometry on magnetized plasma, allowing to isolate the only
reflection on the plasma, and then to estimate with accuracy the density profile. In
Sect. 12.4, the anomalous transport of particles in a flow generated by three points
vortices will be detected and characterized. After a transformation of the arclength
of chaotic trajectories as the instantaneous frequency of a signal, the time-frequency
tomogram transformation is used for the detection and characterization of Lévy
flights.

12.2 Non-commutative Tomograms

Several types of integral transform [68, 77] are used in signal processing and are
applied in different fields such as engineering, acoustic, communications, radar,
medicine, we will consider here an analytic signal f .t/ D x.t/ C iy.t/, where
y.t/ is the Hilbert transform of x.t/, where x.t/ is the real measured signal.

In addition to the traditional Fourier analysis [36] widely used, other transforms
have been developed like the wavelet [20, 30, 31]. Recently the non-commutative
tomograms, based on the linear combination of non-commutative operators, were
suggested [56, 57]. We will present in this section a unified picture of different
methods of signal processing using linear or bilinear transform in the Hilbert space.
Mutual relations of the Wavelets, Wigner-Ville and tomographic transformations
will be exhibited.



218 F. Briolle and X. Leoncini

12.2.1 Linear Transforms, Quasi-distributions and Tomograms

A unified framework to characterize linear transforms, quasidistributions and
tomograms was developed in [57]. This is briefly summarized here.

Consider:

• a normalized analytic signal f .t/ as vectors j f i in a dense nuclear subspace
N of a Hilbert space H with dual space N � (with the canonical identification
N � N �)

• a family of operators fU.˛/ W ˛ 2 I , I � Rng defined on N �, satisfying the
completeness conditions (which is the case whenU .˛/ generates a unitary group
U .˛/ D eiB.˛/).

• a reference vector hh 2 N � be a reference vector chosen in such way that the
linear span of fU.˛/hj 2 N � W ˛ 2 I g is dense in N �. This means that, out of
the set fU.˛/hg, a complete set of vectors can be chosen to serve as a basis.

If U .˛/ is a unitary operator, there is a self-adjoint operator B .˛/, such that
U .˛/ D eiB.˛/.

In this setting three types of integral transforms are constructed.

1. Linear transform:W .h/

f .˛/ D hU.˛/h jf i
• Fourier transform [36] is the representation of the analytic signal as a linear

superposition of planes waves which are the eigenvectors j !i of the frequency
operator O! D �i d

dt
. The plane wave signals reads

f!.t/ D ht j !i D 1p
2�
ei!t ;

and the Fourier transform of the analytic signal is

Ff .!/ D h! j f i D 1p
2�

Z
f .t/e�i!tdt:

This transformation is invertible and gives the possibility to reconstruct the
signal f .t/ by means of the inverse Fourier transform

f .t/ D ht j f i D 1p
2�

Z
F.!/ei!td!:

The main problem with the Fourier transform is that the signal f .t/ has a
finite duration and the plane waves f!.t/ are supposed of infinite duration.
And in the case of unstationary signals, this transformation will not give any
information of the spectral evolution in time. In fact, it is necessary to use a
joint time-frequency description of the signal to get the evolution of the phase
derivative (instantaneous frequency) as a function of time.
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• Gabor transform [69] or Short-Time Fourier transform [1, 61, 67] gives the
possibility to represent the spectral evolution of the signal f .t/, using a
window function of fixed width. The signal will be projected on “wave
packets” of finite duration:

h
;!.t/ D h.t � 
/ei!t ;

and the Gabor transform is

Gf .
; !/ D hh
;! j f i D 1p
2�

Z
f .t/h�.t � 
/e�i!tdt:

For each 
 , the window h.t/ will take only a portion of the signal beforehand
the Fourier transform. To get a good resolution in time, the width of the
window h.t/ should be very small, but then the resolution in frequency
is degraded. And to get a good resolution in frequency, the window has
to be very large, and then the resolution in time is very bad. However,
this transformation, also called the spectrogram, is widely used to represent
unstationary signals.

• Wavelet transform [60, 72] is the projection of the signal f .t/ on a “basic
wavelet” h.t/ translated and expanded:

hs;
 .t/ D 1p
s
h.
t � 


s
/ei!t ;

and the Wavelet transform is

Wf .s; 
/ D hhs;
 j f i D
Z
f .t/h�

s;
 .t/dt:

To get a finite integral, the “basic wavelet” should satisfy the eligibility
conditions such as

R
h.t/dt D 0 (zero mean) and

R jH.!/j2 d!
!

D 1. A lots
of “basic wavelets” can be used as the Mexican hat wavelet

h.t/ D .1 � t2/e�t 2=2;

or the Morlet wavelet

h.t/ D 1

2�
e�t 2=2ei!0t :

Unlike the Short-Time Fourier transform which gives a unique resolution
(in time or in frequency) for each point of the time-frequency plane, the
wavelet transform will give different resolutions according to the frequency:
for low frequency, the resolution will be good in frequency at the cost of a
bad localization in time. On the contrary, for high frequency, the compression
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of the wavelet will allow to a good resolution in time to the detriment of
the frequency resolution. This transformation elaborated in the years 1980
by Grossman and Morley [39] is now used in many applications of signal
processing.

2. Quasidistribution transform: Qf .˛/ D hU.˛/f jf i
• Wigner-Ville transform [75, 76] is a bilinear map of the function f .t/

W.t; !/ D
Z
f .t C u

2
/f �.t � u

2
/e�i!udu

Wigner-Ville quasidistribution provides information in the joint time-
frequency domain with good energy resolution. But the oscillating cross-term
makes the interpretation of this transform a difficult matter. Even if the
average of the cross-terms is small, their amplitude may be greater than the
signal in time-frequency regions that carry no physical information. This is a
consequence of the basic fact that the time (Ot) and the frequency ( O! D i d

dt
)

operators associated with this quasi distribution are a pair of non-commutative
operators and then precludes the existence of joint probabilities density in the
time-frequency plane. Hence a joint probability density cannot be defined.
To profit from the time-frequency energy resolution of the bilinear transforms
while controlling the cross-terms problem, modifications to the Wigner-Ville
transform have been proposed. Transforms in the Cohen class [25,26] make a
two-dimensional filtering of the Wigner-Ville quasidistribution.

• Ambiguity function: the analytic signal f .t/ can also be described by a
function called the ambiguity function of two variables

AFf .
; !/ D
Z
f .t C 


2
/f �.t � 


2
/e�i!tdt

This function is the two-dimensional Fourier transform of the Wigner-Ville
quasidistribution. Thus, the ambiguity function contains the same information
on a signal as the Wigner-Ville transformationW.t; !/.

3. Quadratic signal transforms: M.B/

f .X/ D hf j ı .B .˛/ � X/ j f i
Recently, a new type of strictly positive bilinear transforms has been proposed
[56, 57], called tomograms, which is a generalization of the Radon transform
[32] to non-commutative pairs of operators.
Let X take values on the spectrum of B.˛/. Considering a set of generalized
eigenstates (in N �) of B.˛/, one obtains for the kernel

hY j ı .B.˛/ � X/ j Y 0i D ı.Y 0 �X/ ı.Y � Y 0/ D hY j XihX j Y 0i

Therefore, we may identify ı .B.˛/ � X/ with the projector j XihX j
ı .B.˛/ �X/ Dj XihX jD PX
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From this, it follows

M
.B/

f D hf j ı .B.˛/ �X/ j f i D hf j XihX j f i D jhX j f ij2; (12.1)

showing the positivity of the tomogram and its nature as the squared amplitude
of the projection on generalized eigenvectors of B.˛/. For a normalized analytic
signal f .t/, the tomogram is normalized

Z
M

.B/

f .X/ dX D 1:

Then, the tomogram can be interpreted as the probability distribution of the
random variableX corresponding to the observable defined by the operatorB .˛/
and provides a full characterization of the signal.
Let us consider the operator B.˛/ as a linear combination of the operators
O1;O2 and its eigeinvectors f‰X

˛ .t/g. The B-tomogram, which explores the
signal along lines in the plane .O1;O2/, is the projection of the analytic signal
on the eigenvectors:

M
.B/

f .X/ D hf;‰X
˛ i D

Z
f .t/‰X

˛ .t/dt

Here, we consider one-dimensional conformal group with its generators

Ot O! D �i d
dt

D D .Ot O! C O! Ot/ K D i
�Ot2 d

dt
C Ot� :

One may elaborate a linear combination of those non-commutative operators to
construct one-dimensional tomograms.

• Time-frequency tomogram

The operator B1.˛/ is a linear combination of the time Ot and frequency O!
operators,

B1.�; �/ D �Ot C � O!:

The eigenvectors‰X
�;�.t/, associated with the eigenvalueX are

‰X
�;�.t/ D e

�i
�
�t2

2 � � tX
�

�

;

and the time-frequency tomogram is the projection of the analytic signal on
the eigenvectors

M1 .�; �;X/ D 1

2 �j�j

ˇ̌
ˇ̌
ˇ

Z
e
i

�
�t2

2 � � tX
�

�

f .t/ dt

ˇ̌
ˇ̌
ˇ

2

: (12.2)
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This tomogram is studied in more detail in Sect. 12.2.2 and two applications
using this transformation are extensively detailed in Sects. 12.3 and 12.4.

• Time-scale tomogram
For this tomogram, the operator B2.˛/ is a linear combination of the time Ot
and the dilatation operator D D .Ot O! C O! Ot / D �i �Ot d

dt
C 1

2

�
, instead of the

operator O! used for the previous operator,

B2.�; �/ D �Ot C �D:

The time-scale tomogram is defined as the projection of the signal on the
eigenvectors of the operator B2.�; �/ associated with the eigenvalueX ,

M2.�; �;X/ D 1

2�j�j

ˇ̌
ˇ̌
ˇ

Z
dt
f .t/pjt je

Œi. �� t�X
� log jt j/�

ˇ̌
ˇ̌
ˇ

2

: (12.3)

• Frequency-scale tomogram
This tomogram is elaborated with the operatorB3.˛/, a linear combination of
the frequency operator O! and the dilatation operatorD,

B3.�; �/ D � O! C �D: (12.4)

and then, the projections of the signal on the eigenvectors will give the
frequency-scale tomogram

M3.�; �;X/ D 1

2�j�j

ˇ̌
ˇ̌
ˇ

Z
Ff .!/pj!j e

Œ�i. �� !�X
� log j!j/�d!

ˇ̌
ˇ̌
ˇ

2

; (12.5)

with Ff .!/ being the Fourier transform of the analytic signal f .t/.
• Time-conformal tomogram

For this tomogram, the operator B4.�; �/ is a linear combination of the time
Ot and the conformal operatorK

B4.�; �/ D �Ot C �K D �Ot C i�

�
t2
d

dt
C t

�
:

Then, the tomograms related to this operator is

M4.�; �;X/ D 1

2�j�j
ˇ̌
ˇ̌
Z
dt
f .t/

jt j e
Œi. X�t C �

� log jt j/�
ˇ̌
ˇ̌
2

: (12.6)

For more details on non-commutative tomograms defined on the one-
dimensional conformal group, see [16, 57].

4. Quantum mechanics formalism
The linear and the quasidistribution transforms can be written using group theory
formalism.
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If U .˛/ are unitary operators, by Stone’s theorem, there are self-adjoint opera-
tors B .˛/ such that U .˛/ D eiB.˛/. The linear and quasidistribution transforms
can be written as

W
.h/

f .˛/ D hhjeiB.˛/jf i

Q
.B/

f .˛/ D hf jeiB.˛/jf i

For B.˛/ D ˛1 Ot C ˛2 O! and h a generalized eigenvector of the time-translation
operator, the linear transformW

.h/

f becomes the Fourier transform. ForB.˛/ plus

the parity operator �.Ot
2C O!2�1
2

, the Qf .˛/ would be the Wigner -Ville transform.
Similarly, for B.˛/ D ˛1D C ˛2 O! where D is the dilatation operator D D
1
2
.Ot O! C O! Ot /, the linear transformW

.h/

f is a wavelet transform and theQf .˛/ the
Bertrand transform.
The relations between the transformations are established in [57].

12.2.2 Time-Frequency Tomogram

For a signal f .t/, the time-frequency tomogram is defined as:

Mf .X;�; �/ D 1

2�j�j
ˇ̌
ˇ̌
Z
f .t/ exp

�
i�

2�
t2 � iX

�
t

�
dt

ˇ̌
ˇ̌
2

; (12.7)

For each .�; �/ pair corresponding to a linear combination of the time and frequency
operators the tomogram provides a probability distribution on the variable X [see
Eq. (3)]. The tomogramMf .X;�; �/ is an image in the .X; .�; �// hyper-plane of
the probability flow from the t-description of the signal to the frequency-description,
through all the intermediate steps of the linear combination.

For an easy interpretation of the time-frequency tomogram, we consider a
particular case � D cos �; � D sin � with the self-adjoint operator B.�/ D
cos � Ot C sin � O!. The tomogram is defined as:

Mf .X; �/ D 1

2�j sin � j
ˇ̌
ˇ̌
Z
f .t/ exp

�
i cos �

2 sin �
t2 � iX

sin �
t

�
dt

ˇ̌
ˇ̌
2

: (12.8)

Then, in the plane .X; �/ the tomogram Mf .X; �/ can be interpreted as the
probability distribution on the variable X . For this particular case, the tomogram
Mf .X; �/ coincides with the Radon transform [37], which has already been used
for signal analysis by several authors [7, 78, 79] in a different context.
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For � D �
2

, the tomogramMf .X;
�
2
/ is the frequency-description of the signal,

Mf .X;
�

2
/ D 1

2�

ˇ̌
ˇ̌
Z
f .t/e�iXt dt

ˇ̌
ˇ̌
2

:

For � D 0, the operator B.�/ D Ot and the tomogram Mf .X; 0/ is the time-
description of the signal. The limit of the Fresnel tomogramMF

f .X; �/ defined for
small � in [33] is

lim
�!0

MF
f .X; �/ D js.t/j2 :

The variableX is the time for � D 0, the frequency for � D �=2 and is a generalized
variable X , mixture of time and frequency, for other values of � .

We can make the link between the time-frequency tomogram Mf .X; �/ and the
fractional Fourier transform [66], defined as:

Fs.x; �/ D C.�/e
i�x2

tan �

Z
s.t/exp

�
i� cos �

sin �
t2 � 2�x

sin �
t

�
dt: (12.9)

Up to a phase factor exp.ix2=2 tan �/ and a normalization constant C.�/, the
fractional Fourier transform is similar to the time-frequency tomogram Mf .X; �/.
They can be both interpreted as the projection of the analytic signal f .t/ on a basis
of chirp signals [13]

 �;x.t/ D eiŒ.�=2 tan �/t2�.x=sin�/t�:

12.2.3 Time-Frequency Tomogram and Data Analysis

12.2.3.1 Signal of Finite Duration T

For a signal of duration T the time-frequency tomogram can be written as:

Ms.x; �/ D
ˇ̌
ˇ̌
Z

s.t/‰�;T
x .t/ dt

ˇ̌
ˇ̌
2

D ˇ̌
< s;‰�;T

x >
ˇ̌2
; (12.10)

with

‰�;T
x .t/ D 1p

T
exp

��i cos �

2 sin �
t2 C ix

sin �
t

�
: (12.11)
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The family
˚
‰�;T
xn
.t/


is orthogonal and normalized basis: < ‰�;T
xm
;‰�;T

xn
>D ım;n

for a family of values fxn D x0 C 2n�
T

sin �g, where x0 is freely chosen (in general
we take x0 D 0).

The time-frequency tomogram can be written, for each angle �1; : : : ; �k; : : : ;
�P , as:

M.xn; �k/ D ˇ̌
c�k .xn/

ˇ̌2
: (12.12)

For a digital signal fsŒngnD0;:::;N�1, of length NT , c�k .xn/ is the Fast Fourier
Transform of the digital signal:

c�k .xn/ D FF T

�
sŒn� exp

�
i cos �k
2 sin �k

n2
	�
: (12.13)

The fast implementation of the time-frequency tomogram is of complexity
O.N logN/, for each �k .

It is then possible, from the projections c�k .xn/ to recover the original signal sŒn�:

sŒn� D IFF T
�
c�k .xn/

�
: exp

��i cos �k
2 sin �k

n2
	

(12.14)

12.2.3.2 Density of Magnetized Plasma
from Reflectometry Measurements

Reflectometry measurements on magnetized plasma are difficult to analyze. Indeed
the signal is a mixture of components such as reflections on the porthole, on the
wall of the machine and, that which is of interest, the reflection on the plasma. For
this application, we use the time-frequency tomogram as a kind of “chirp filter.”
For an angle �k , the probability distribution of the signal on the variable x allows
to separate the three components. Then, from the tomogram projections c�k .xn/,
we will “re-synthesize” each component and their phase derivative. We are able to
extract the component of interest, the reflection on the plasma, and then to extract
information of the plasma density. This application is developed in Sect. 12.3.

12.2.3.3 Detection and Characterization of Lévy Flights

Transport of advected passive particles in two-dimensional flows with coherent
structures (vortex) is anomalous when it contains Lévy flights. The arclength of
the particle trajectories is characterized by a linear behavior with respect to the time
(ballistic motion). The arclength of the trajectory will be transformed as the phase
derivative of a new signal to emphasize the linear part of the trajectory. Then, the
time-frequency tomogram will be used to detect linear chirps in a two-dimensional
time-frequency representation. This application is developed in Sect. 12.4.
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12.3 Measurement of the Density Profile
of Magnetized Plasma

12.3.1 Context

The energy confinement in ITER is predicted with scaling laws extrapolated
from measurements on smaller machines such as Tore Supra and Jet. tokamaks.
When rewritten with dimensionless parameters, large uncertainties remain on some
parameter dependence such as the ratio of plasma pressure to magnetic pressure.
The understanding of the anomalous transport of particles in magnetized plasmas is
a key issue for a fusion reactor. The large heat and particle transport is attributed to
drift wave turbulence destabilized by temperature and density gradients [40].

Density measurements play an important role in the study of the anomalous
transport of magnetically confined plasma for a better understanding of the turbu-
lence. Microwave reflectometry is a radar-like technique, widely used to measure the
electronic density profile in tokamak plasmas. Reflectometers have been developed
along two main applications: density profile and density fluctuation measurements
[43, 62].

In the years 2010, we participated in the analysis of data coming from new
reflectometers on Tore Supra [14, 15]. The goal was to extract from a mixture of
multi-reflections (reflectometry measurements) the sole reflection on the plasma.

In this part, we will first explain the principle of reflectometry measurements in
magnetized plasma and then give some results of tomographic data analysis and its
future applications to reflectometers.

12.3.2 Principle of Reflectometry

Derived from radar principles, reflectometry measures the amplitude and the phase
variation of a microwave ER.t/ reflected inside the plasma at a cutoff layer where
the refractive index n becomes zero, by mixing the reflected wave with the probing
wave (reference)E0.t/.

For measuring the density profile, a standard method uses a frequency sweeping
of the probing wave.

E0.t/ D cosf�.t/:t/g wi th
@�.t/

@t
D a:t C b: (12.15)

Then the reflected wave is equal to ER.t/ D A.t/cosf�.t/:t/ C �.t/g. This signal
is multiplied by a pure frequency cosf�.t/:t/g and low-pass filtered afterwards in
order to get, at the output of the mixer, the signal:

s.t/ D A.t/cosf�.t/g: (12.16)
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In the mixer output, the amplitude A.t/ of the reflected wave ER.t/ depends on
the variation of the reflectivity of the cutoff layer. This is due to geometrical effects
like the divergence of the microwave beam or the tilting of the cutoff layer when a
large perturbation modifies the flux surfaces. The phase �.t/, that contains the most
reliable information about the plasma density, is the main quantity of interest. In
Sect. 12.3.3, the experimental setup, which allows us to get the amplitude and the
phase of the reflected wave, is exposed in details.

There are two modes of polarization of the probing wave: the ordinary polar-
ization, where the wave polarization is in the direction of the magnetic field B of
the plasma (E k B), the so-called the 0–mode, and the extraordinary polarization,
X-mode, where the wave polarization is orthogonal to the magnetic field (E ? B).
The value of the refractive index is depending on the polarization of the probing
wave, as it is shown in Sect. 12.3.2.1.

12.3.2.1 Wave Propagation in a Plasma

With the hypothesis of cold (the particles are static), homogeneous (the character-
istics lengths are large in comparison with the wavelength), and stationary plasma
(the evolution time is large in comparison with the wave period), it is possible to
write the equation of propagation of a plane wave [38, 70, 71]. Then, the dielectric
tensor is:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

	xx D 	yy D 1 � !2pe

!2�!2ce

	xy D 	yx D �!ce
!

!2pe

!2�!2ce

	zz D 1 � !2pe

!2

	xz D 	zx D 	yz D 	zy D 0

(12.17)

where ! is the pulsation of the probing wave, !pe D
q

e2ne
	0me

the electronic plasma

pulsation and !ce D eB=me the cyclotronic electronic pulsation, ne is the electron
density, e andme the electronic charge and mass, "0 the permittivity of the vacuum.

The propagation equation of a wave, perpendicular to the direction 0y, when the
magnetic field B is constant andOz oriented, can be written as:

0

@
	xx �i	xy 0

i	xy 	xx �N2 0

0 0 	zz �N2

1

A

0

@
Ex
Ey

Ez

1

A D 0 (12.18)

With N the refractive index,N D kc=!.
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• Ordinary polarization (O-mode)
In the ordinary polarization (O-mode), the wave polarization is in the direction
of the magnetic field of the plasma (E k B). In this case Ex D 0, and the
propagation equation has a unique solution:

N2
O D 1 � !2pe

!2
: (12.19)

Then, the cutoff frequency fO is equal to the plasma frequency !pe=2� and
depends only on the electron density ne .

fO D 1

2�

s
e2ne

	0me

: (12.20)

The O-mode is widely used in reflectometry, but the measurements can be done
only for density gradient between 0.3 and 0.8. The edge and the center density of
the plasma can’t be reached with this kind of measurements.

• Extraordinary polarization (X-mode)
In the extraordinary polarization, the wave polarization is orthogonal to the
magnetic field (E ? B). Then, the refractive index is equal to:

N2
X D 1 � !2pe.1 � !2pe

!2
/

!2 � !2pe � !2ce
: (12.21)

If the frequency f of the probing wave is equal to 1
2�

q
!2pe � !2ce , then the wave

will become evanescent and will be absorbed by the plasma.
The wave will be reflected when NX D 0. There are two cutoff frequencies,
namely the upper f up

X and lower f low
X :

f
up
X D 1

2�

q
!2ce C 4!2pe C !ce

2
and f low

X D 1

2�

q
!2ce C 4!2pe � !ce

2
:

(12.22)

The edge density can be probed using the upper cutoff frequency since the
frequency is finite. It allows us to measure weak density at the edge of the plasma.

12.3.2.2 Density Profile Reconstruction

Using the WKB approximation along the propagation path (1D approximation), the
phase variation between the antenna at r D 0 and the reflecting layer at r D rco can
be estimated:

�p D 4�

c
:f:

Z rDrco

rD0
N.r; f; t/dr � �

2
; (12.23)
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where f is the frequency of the probing wave, N(r,f,t) the plasma refractive index
at the frequency f . The term ��

2
indicates that the reflection inside the plasma is

nonmetallic.
A variation of the phase �p can be due either to a variation of the probing

frequency or to a variation of the optical path length between the antenna and the
cutoff layer along the line of sight. Temporal changes of the phase can thus be
written as:

@�p

@t
D 4�

c
:
@f

@t
:

Z rDrco

rD0
N.r; f; t/drC 4�

c
:f:

@

@t

�Z rDrco

rD0
N.r; f; t/dr

�
: (12.24)

The first term is proportional to the optical path length
R rDrco
rD0 N.r; f; t/dr , i.e.

the position rco of the reflecting layer, when the frequency f is swept.
The second term describes the phase changes introduced by fluctuations of the

optical path length arising from temporal and spatial fluctuations of the electron
density.

The beat frequency is defined as:

fb D 1

2�

@�p

@t
; (12.25)

and the group delay of the reflected wave, namely the time of flight:


g D 1

2�

@�p

@f
D fb=

@f

@t
: (12.26)

• Ordinary polarization (O-mode)
It is possible to reconstruct a monotonic density profile, with the estimation of
the group delay 
g of the reflected wave. The localization of the reflecting layer
rc.Fp/ for the frequency Fp is given by the analytic expression [27]:

rc.Fp/� a D c

�

Z Fp

0


g.f /q
F 2
p � f 2

df: (12.27)

• Extraordinary polarization (X-mode)
In the extraordinary polarization (X-mode), the density profiles are recovered
from the phase using the Bottolier algorithm [12]. Initialization of the profile
is the most interesting feature of the X-mode polarization. Contrary to the O-
mode polarization, where at zero density the cutoff frequency equals zero, in X
mode the edge density profile position can be setup with the rise of the detected
amplitude. Assuming that the first cutoff is for a null density, the start of the
plasma can be set providing knowledge of the local magnetic field.
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Fig. 12.1 X-mode Reflectometer working in V-Band (50–75 GHz)

12.3.3 Experimental Setup

A broadband reflectometer operating in the frequency range 50–75 GHz (V-Band)
in extraordinary mode polarization has been developed on Tore Supra to measure
edge density profiles [21–23].

Fast sweeping improves greatly the profile reconstruction. On Tore-Supra, the
cutoff layer displacement during the turbulence correlation time (microsecond
range) is comparable to the turbulence correlation length (centimeter range). At
a sweeping rate of 1 GHz �s�1, the wavelength rate is 30 cm �s�1, which is
comparable to the displacement of the cutoff layer. With the experimental setup
described in Fig. 12.1, the probing wave operates in the range 50–75 GHz with a
sweeping rate of 20 �s.

The output of a Hyperabrupt varactor Tuned Oscillator (HTO) providing fast
linear frequency sweeps from 12 to 19 GHz in 20�s is mixed to a low frequency
signal f m 	 100MHz.

After amplification, the frequency !.t/ C fm is multiplied by 4 to provide a
probing signal with a frequency coverage between 48 and 76 GHz. The probe signal
E0.t/ D cos.4f!.t/C fmg:t/ is then emitted through wave guides.

Emission and reception are done with two separate identical rectangular anten-
nas, one near of the other, outside the vacuum vessel through a porthole, around 120
cm away from the plasma edge, as it is shown in Fig. 12.2.

A sweep is done before every discharge and the reflection on the inner wall of the
vessel is used as a reference to correct the dispersion in waveguides and antennas.
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Fig. 12.2 The experimental setup is located outside the vacuum vessel, close to the plasma edge

The output of the HTO, at the frequency 4!.t/, is 
 delayed by a delay line,
to obtain the signal: u.t/ D cos.4!.t/:.t C 
//. During the time 
 , the path of
the probing wave is equal to D D 
:c, where D is the distance from the emitting
antenna to the inner wall of the vessel. Then, the phase differences between the
probing and the reflected waves will be mainly due to the position of the cutoff
layer.

The reflected wave, ER.t/ D A.t/cosf.4!.t/C 4fm/:.t C 
R/C �.t/g, is then
mixed to u.t/ and band-pass filtered at 4f m ˙ 50MH z to obtain a low frequency
signal v.t/ D A.t/cosf.4fmt C �.t/g.

An heterodyne demodulation at 4fm, providing in-phase and 90ı phase detection,
leaves the reflected wave in the base-band leaving only the cutoff data of the probing
frequency s.t/ D A.t/ei�.t/.

The reflectometer can achieve a repetition rate of 5�s between sweeps, so the
dynamic behavior of fast plasma events can be followed.

12.3.4 Data Processing

The goal is to measure the density at the edge of the plasma on the extraordinary
mode polarization (X mode) on Tore Supra.

The sweep-frequency reflectometer launches a probing wave in the V band
(50–75 GHz). The reflectometry system repeatedly sends sweeps of duration 20�s.
The heterodyne reflectometers, with I=Q detection, provide a good signal-to-noise
ratio, up to 40 dB.

As it is described in detail in Sect. 12.3.3, for each sweep, the reflected chirp
ER.t/ is mixed with the incident sweep Eref .t/ and only the interference term is
recorded as an in-phase and a 90ı phase shifted sampled signals. Let the reflected
signal be:

s.t/ D x1.t/C ix2.t/ D A.t/ei'.t/: (12.28)
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Fig. 12.3 Up Time-frequency representation of the base-band downshifted reflected wave
A.t/e�.t/. Down Real part of the base-band downshifted reflected wave

For one of the measurements (choc #42824) the Gabor Transform Gs.t; !/,
namely the spectrogram gives a time-frequency representation of the signal
s.t/ [20].

Gs.t; !/ D 1p
2�

Z C1

�1
s.
/e��.
�t /2 e�i!
d
:

The Gabor Transform is obtained with short time Fourier transforms (STFT) of
the sampled signal broken up into M windowed chunks, which usually overlap,
and Fourier transformed. The spectrums are then “laid side by side” to form the
image or a three-dimensional surface. For a better representation, the amplitude of
the spectrum is represented by gray scales, to obtain a two-dimensional image where
the horizontal axis is the time and the vertical one the beat frequency. Each vertical
line represents the spectrum of a trunk (Fig. 12.3).

The signal s.t/ is sampled at the frequency of 100 MHz, so we get only 2,000
samples by trial. For a nice time-frequency representation, the length of the chunks
is equal to 100 samples with an overlapping equal 90%.

As it can be seen on the time-frequency representation, the base-band reflected
wave s.t/ is a mixture of different signals: a reflection of the probing wave on the
inner wall of the vessel (0 < t < 10 �s ; beat frequency 	 20 MHz) a reflection
on the porthole, placed in front of the antennas (0 < t < 12�s; beat frequency 	-5
MHz) and the reflection on the cutoff layers of the plasma (7 < t < 20 �s; beat
frequency between 5 to 20 MHz). The reflections on the inner wall and the porthole
are represented by straight lines while the plasma reflection is more heckled.
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The goal is then to extract only the reflection on the plasma from the base-
band reflected wave. The reflections are overlapping in time and in frequency, the
reflection on the inner wall is very close to some reflections on the plasma: a band-
pass filter will not give good results.

A time-frequency tomographic analysis is therefore used to achieve the separa-
tion of different reflections merged in the reflected wave.

12.3.5 Tomographic Analysis

12.3.5.1 Time-Frequency Tomograms (Signal of Finite Duration)

In part I, we described in much detail the time-frequency tomograms. Here, we will
describe the method of component separation for the operator:

BS
� D cos� t C sin� !; (12.29)

where t and ! D i @
@t

are, respectively, the time and frequency non-commutative
operators.

A probability family of distributions,Ms.x; �/, is defined from a complex signal
s.t/, t 2 Œ0; T � by:

Ms.x; �/ D
ˇ̌
ˇ̌
Z

s.t/‰�;T
x .t/ dt

ˇ̌
ˇ̌
2

D ˇ̌
< s;‰�;T

x >
ˇ̌2
; (12.30)

with

‰�;T
x .t/ D 1p

T
ei.

� cos �
2 sin� t2C x

sin � t/: (12.31)

Note that the ‰�;T
x are generalized eigenfunctions for any spectral value x of the

operatorBS
� . ThereforeMs.x; �/ is a (positive) probability distribution as a function

of x for each � .
A glance at the shape of the functions (12.31) shows that, for fixed � , the

oscillation length at a given t decreases when jxj increase. As a result, the projection
of the signal on the

˚
‰�;T
xn
.t/


basis locally explores different scales. On the other
hand the local time scale is larger when � also becomes larger, in agreement with
the uncertainty principle for a non-commuting pair of operators.

Here � is a parameter that interpolates between the time and the frequency oper-
ators, thus running from 0 to �=2 whereas x is allowed to be any real number. For
� D 0, the tomogram Ms.x; �/ is the probability distribution of the signal in time
js.t/j2 and for � D �

2
, the probability distribution of the signal in frequency jS.f /j2.

Our strategy is to search for intermediate values of � where a good compromise
may be found to separate the components of the signal. For such intermediate
values it is possible to pull apart different components of the signal (see Fig. 12.4, a
tomographic representation (0 < � < �

2
) of the reflected wave).
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Fig. 12.4 Time-frequency tomographic representation of the base-band reflected wave A.t/e�.t/.
For � D 0, the tomogram Ms.x; �/ is probability distribution of js.t/j2 and for � D �

2
, the

probability distribution of jS.f /j2

Fig. 12.5 Left: Fourier transform of the base-band signal s.t/ measured at the output of the
reflectometer. Right: Tomogram, for � D �

5
of the signal s.t/

As it can be seen in Fig. 12.5, an intermediate value of sin � 	0:6 (� D �
5

) allows
us to separate the three components, taking into account both time and frequency
information.

The Fourier transform of s.t/(left part Fig. 12.5) shows that it is impossible to use
a band-pass filter to get the only reflection on the plasma. With a tomogram of the
signal, for � D �

5
, the three components can be distinguished (right part Fig. 12.5).
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12.3.5.2 Components Factorization

First we select a subset of numbers fxng in such a way that the corresponding family˚
‰�;T
xn
.t/

n

is orthogonal and normalized:

< ‰�;T
xm
;‰�;T

xn
>D ım;n: (12.32)

This is possible using the sequence

xn D x0 C 2n�

T
sin �; (12.33)

where x0 is freely chosen (in general we take x0 D 0 but it is possible to make other
choices, depending on what is more suitable for the signal under study).

We then consider the projections of the signal s.t/ on the orthonormal basis
f‰�;T

xn
g

csxn;� D< s;‰�;T
xn

>; (12.34)

and use the coefficients csxn;� for our signal processing purposes.
As it is shown on the right part of the Fig. 12.4, it is possible, using a threshold, to

select three subsets Fk of the fxng. A multi-component analysis of the signal [15]
is done by reconstructing the partial signals:

sk.t/ D
X

n2Fk

csxn;�‰
�;T
xn
.t/ k D 1; 2; 3: (12.35)

From the projections of the signal s.t/ on the orthonormal basis f‰�;T
xn

g, for � D
�
5

, using a threshold (	 D 0:04) it is possible to select the spectral projections of
three different components (see Fig. 12.6).

First component, the reflection on the porthole
The first component, es1.t/, corresponds to �20 � xn � 0 and is therefore

defined as:

es1.t/ D
0X

xnD�20
c�xn.y/‰

�
xn
.t/: (12.36)

This component is the reflection of the probing wave on the porthole. The distance
from the emitting/reception antenna to the porthole is around 80 cm. It is a constant
low frequency signal (see Fig. 12.7): the phase derivative of the reflection is
proportional to the distance from the antenna to the reflector. The duration of this
signal is around 12 �s.
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Fig. 12.6 Tomogram of the
signal s.t/ for � D �

5
,

Ms.x; � D �
5
/

Fig. 12.7 The three
components of the
reflectometry signal. For
visual purposes, the average
ofes1.t/ is shifted to 1 and the
average ofes3.t/ to -1

Second component, reflection on the plasma
The second component is the reflection on the cutoff frequency of the plasma (see

Fig. 12.7). The reflection starts around 10�s after the reflection on the porthole. The
frequency and the amplitude of this reflected wave is quite heckled. This component,
es2.t/, corresponds to 0 � xn � 110 and is therefore defined as:

es2.t/ D
110X

xnD0
c�xn.y/‰

�
xn
.t/: (12.37)
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Third component, reflection on the inner wall of the vessel
The last component corresponds to the reflection of the probing wave on the wall

of the vacuum vessel. The frequency is quite constant (Fig. 12.7), and related to the
distance antenna-wall. The duration of this signal is around 10 �s. This component,
es3.t/, corresponds to 110 � xn � 140 and is therefore defined as:

es3.t/ D
140X

xnD10
c�xn.y/‰

�
xn
.t/: (12.38)

12.3.5.3 Estimation of the Phase Derivative

To compute the density profile of the plasma, with reflectometry measurements in
the X-mode, it is necessary to estimate the phase derivative of the reflection on the
cutoff layer of the plasma. The usual process is to isolate this refection and then
to unwrap the phase using a classical gradient procedure. Given a signal s.t/ D
A.t/ei�.t/, the time derivative of the phase may be obtained from

@

@t
�.t/ D Im

 
@s
@t

s.t/

!
: (12.39)

Using a tomographic decomposition allows us to get the time derivative of the
phase directly. Let us remember that:

esk.t/ D Ak.t/e
i�k.t/ D

X

n2Fk

csxn;�‰
�;T
xn
.t/ k D 1; 2; 3; (12.40)

then,

@

@t
esk.t/ D

X

xn

csxn;�
@

@t
‰�;T
xn
.t/: (12.41)

Notice that an explicit analytic expression for @
@t
‰�;T
xn
.t/ is known, namely:

@

@t
‰�;T
xn
.t/ D i

�� cos �

sin �
t C x

sin �

�
‰�;T
xn
.t/: (12.42)

Therefore we obtain a direct expression for the phase derivative in terms of the
coefficients csxn;� without having to use the values of sk for neighboring values of t .

@

@t
�k.t/ D Im

 P
xn
csxn;� i

�� cos �
sin � t C x

sin �

�
‰�;T
xn
.t/

P
xn
csxn;�‰

�;T
xn .t/

!
k D 1; 2; 3:

(12.43)
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Fig. 12.8 The phase derivative of the three components, estimated by the tomogram method, is
plotted on the time-frequency representation of the signal s.t/

This provides a more robust method to estimate the derivative. The phase
derivative of the three components obtained with this method is plotted on the time-
frequency representation of the signal (Fig. 12.8).

The expression of the phase derivative @
@t
�k.t/, given by the Eq. (12.43), is true

for all t 2 Œ0; T �.
As it can be seen in Fig. 12.7, the reflections on the porthole (es1) and the inner

wall (es3) are very weak t > 11�s. The reflection on the plasma (es2) starts only after
7�s. The phase derivative will be computed only when the signal exists.

For some values of t , the denominator in Eq. (12.43) could be very small, and
then the estimation of the phase derivative is not good. To overcome this problem,
we use a low pass filter. More details are given in [14].

The estimation of the phase derivative of the three components, with the method
described above, is plotted on the time-frequency representation of the full signal
s.t/. The method gives good results as it is shown in Fig. 12.8.

The data processing (tomogram) will be used for the new reflectometer on Tore
Supra and on Jet [11, 24, 73, 74].
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12.4 Detection and Characterization of Lévy Flights

12.4.1 Context: Stickiness and Lévy Flights
in Chaotic Advection

In order to detect Lévy flights, we shall consider a specific physical context namely
the stickiness phenomenon which leads to the presence of such flights. For this
purpose we shall introduce briefly this phenomenon, in the case when it occurs in
low-dimensional Hamiltonian systems [45]. To be more explicit stickiness occurs at
the border between an island of regular motion and the chaotic sea. This stickiness
induces long time correlations and as such memory effects and Lévy flights. We
consider a specific physical context for which this phenomenon has been explicitly
exhibited. This will allow the reader to get a better intuition on physical mechanisms
behind the stickiness and how it affects transport properties. The considered system
is the advection of passive tracers by a two-dimensional time dependent flow leading
to the phenomenon of chaotic advection. For this purpose and in order to be more
explicit we shall consider a specific flow generated by three point vortices (see, for
instance, [54]).

12.4.1.1 Chaotic Advection

Let us start by giving some definition and clarifying the background of chaotic
advection. Let us consider a flow v.r; t/ of an incompressible fluid (r � v D 0) and
a particle advected by this flow: one can, for instance, picture a small object floating
on the surface of a river and transported by the stream. We then need to introduce the
notion of passive particle or passive tracer. This notion defines an idealized particle
which presence and motion in the fluid imposes no feedback on the flow and thus
does not modify it. By definition this would be true for a fluid particle itself, but
for other types of particles or tracers this is usually not true. However if the size of
particle is small enough with respect to the length scales involved in the system and
governing the flow, and other factors such as density and rugosity are more or less
those of the considered fluid this ideal hypothesis is a good approximation. We can
then derive the equation of motion of a passive particle which transported by the
fluid so that its speed equals that of the fluid and hence its motion is governed by:

Pr D v.r; t/; (12.44)

where r D .x; y; z/ refers to the tracer’s position, and the P to the time derivative.
We shall see now how this relates to Hamiltonian chaos. In fact for an

incompressible flow, we can define a stream function which resumes to a scalar
field for a two-dimensional system, such that the fluid velocity can be written as

v D r ^ .‰ z/; (12.45)
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where z corresponds to the unit vector perpendicular to the two dimensional space.
Using ‰, we can rewrite the equations governing the motion of a passive tracer
Eq. (12.44) projected on each coordinate, as

Px D @‰

@y
; Py D �@‰

@x
: (12.46)

And we recognize Hamilton equation of motion, where the space coordinates
.x; y/ are actually canonically conjugated and the stream function ‰ acts as an
Hamiltonian.

When the flow is time independent, then the Hamiltonian ‰ reduces to an
autonomous one degree of freedom system and is therefore integrable, which
translates into the particular considered case that our passive tracers are following
velocity field lines. However, it is possible and likely that the stream function
‰ is actually time dependent. In this case, we have actually a non-autonomous
system and we have a time-dependent Hamiltonian system, meaning a system
with 1 � 1

2
degrees of freedom. And it is known that generically, such systems

generate the so-called Hamiltonian chaos. Note that this chaotic phenomenon can
also occur in a stationary incompressible flow, but then the flow has to be three-
dimensional, and we talk about chaos of field lines, see, for instance, [55] and
references therein.

In the context of the advection of particles in flows, this chaotic nature of
trajectories was called as a phenomenon of chaotic advection [3, 4, 64]. One of
the major consequences of this phenomenon concerns the mixing of trajectories.
Indeed chaotic advection can enhance drastically the mixing properties of the flow,
meaning that the mixing process generated by the chaotic motion is much more
efficient than the one occurring through molecular diffusion. And this effect is even
more patent when the flow is laminar [6, 9, 28, 65, 81]. When dealing with mixing
in micro-fluid experiments and devices, chaotic advection becomes crucial. Indeed
since the Reynolds number is usually small, chaotic mixing becomes, de facto,
an efficient way to mix. There are also numerous domains of physics, displaying
chaotic advection-like phenomena, for instance in geophysical flows or magnetized
fusion plasmas [2, 10, 17–19, 29, 34, 35, 48].

To detect the Lévy flights we use data coming from the simulation of passive
tracers advected by the flow generated by three point vortices. We now shall recall
quickly what is a point vortex and how they appear and can be useful in two-
dimensional flows.

12.4.1.2 Definition of a Point Vortex

In order to describe the notion of a point vortex it is convenient to start with Euler
equation. In fact, when considering a perfect two-dimensional incompressible flow
governed by the Euler equation, if we are interested in the dynamics of the vorticity
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field�, we simply take the rotational of the Euler equation. This helps getting rid of
the pressure and other potential forces gradients and we end up with the following
equation

@�

@t
C f�;‰g D 0; � D �r2‰; (12.47)

where f�; �g corresponds to the Poisson brackets. In order for the point vortices to
“appear,” we assume a vorticity field given by a superposition of point concentrated
vorticities (Dirac functions) written as

�.r; t/ D
NX

iD1
ki ı .r � ri .t// ; (12.48)

where ki is the vorticity of a point vortex, and the vortex is localized by the point
ri .t/ in the plane. This singular distribution is actually an exact solution of the Euler
equation (12.47) when each of theN vortices obeys a specific and prescribed motion
[58]. In fact the dynamics of the vortices ends up being equivalent to the one coming
from an N -body Hamiltonian dynamics. The form of the Hamiltonian is strongly
related to the Green function and therefore depends on the considered boundary
conditions. Typically if one considers no specific boundary conditions, meaning
that we allow the flow to evolve on the whole plane. In this case, the Hamiltonian is
quite simple and writes

H D 1

2�

X

i>j

kikj ln jri � rj j; (12.49)

where the canonically conjugated variables are kiyi and xi . This is reminiscent of
the passive tracer Hamiltonian as the canonical variables are intimely linked to the
vortex position ri .t/ in the plane; however, it is important to recall that the phase
space corresponds now to a 2N dimensional space.

The equations of motion derived from Hamiltonian (12.49) just state the fact that
each vortex is advected by the velocity field generated by the other vortices. We also
can note that since we know in time the positions of the point vortices, we know as
well the stream function (the Hamiltonian governing passive tracers) of the flow:

‰.r; t/ D � 1

2�

NX

iD1
ki ln jr � ri .t/j: (12.50)

As a last remark and important point concerning point vortex dynamics, it is
important to notice that the Hamiltonian (12.49) is invariant by translation and by
rotation. There are thus three constant of the motion besides the “energy” associated
with these symmetries. However only three integrals are really in involution and
Hamiltonian chaos appears in point vortex motion when we have more than N D 3

vortices [5, 46, 47, 63]. Note that point vortices can be also useful to model some
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geophysical flows [49]. And that three vortices can have singular solution, leading to
finite time singularities which can lead to interesting properties and considerations
[46, 50].

In order to obtain a regular (laminar) and time-dependent flow, the flow generated
by three vortices is a good compromise. Indeed the integrable motion of three
point vortices shows a large variety of behaviors, quasi-periodic and aperiodic flows
are both possible [5, 46, 63], and are more easy to tackle than flows with more
vortices see, for instance, [44, 47], as Poincaré maps can be computed [41, 42, 54].
In order to choose among the different possibilities, we would like to point out that
usually, to address transport properties, asymptotic (large times) behavior and time
translational properties are desired. So in order to achieve a situation where these
features exist, we have had to consider the quasi-periodic motion of vortices. Note
that these discussions are inspired by the work related to transport of passive tracers
in the case of three identical vortices found in [41, 42] and the one reported in [54]
corresponding to a situation of vortices with vorticities with different signs.

12.4.1.3 Stickiness and Anomalous Transport

Until now, we have briefly reviewed the notion of chaotic mixing in a flow generated
by three point vortices. As a matter of fact transport in these systems is potentially
anomalous [54]. In order to emphasize what we mean by anomalous, we would like
to remind the reader that the type of transport can be defined by considering the
behavior of the second moment of the displacement distribution and, for instance,
extracting a value of a characteristic exponent. If we proceed as mentioned, we end
up with a rough definition of anomalous transport, meaning that transport is said to
be anomalous when it is not Gaussian (diffusive), meaning that

hX2 � hXi2i 	 t�; (12.51)

with � ¤ 1 and as such:

1. If � < 1 transport is anomalous and sub-diffusion is present.
2. If � D 1 transport is Gaussian and we have diffusion.
3. If � > 1 transport is anomalous and super-diffusion is present.

Going back to our point vortex system, the motion of passive tracers is depicted
in the Poincaré section depicted in Fig. 12.9. We can notice that there are islands of
regular motion, surrounded by a finite chaotic sea. When measuring transport, we
shall consider only initial conditions in the stochastic sea, but since this chaotic
region is bounded. Measuring plain dispersion is not convenient, it is, however,
possible to circumvent this problem by working instead with length of trajectories
and then to measure the dispersion of distance travelled among different trajectories.
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Fig. 12.9 Left: Poincaré section of passive particle in a flow generated by three point vortices.
Right: localization of sticky regions contributing to different types of flights (see [54] for details)

si .t/ D
Z t

0

jvi .
/jd
; (12.52)

where vi .
/ denotes the speed of particle i at time 
 .
Once we have the length we can compute transport properties by computing the

moments of the distribution

Mq.t/ � hjs.t/ � hs.t/ijqi; (12.53)

where h: : : i corresponds to ensemble averaging (average over different trajectories).
Finally once we have the moments, we shall estimate the characteristic exponent of
each moment, from its time evolution.

Mq.t/ 	 t�.q/: (12.54)

As a result of this analysis the transport properties are found to be super-diffusive
and multi-fractal [54], and this is the result of the memory effects engendered by
stickiness.

Stickiness is a phenomenon which is found in Hamiltonian systems with mixed
phase spaces, meaning phase spaces where regions of regular motion coexists
with region of chaotic motion. When this is the case, in the vicinity of an island,
trajectories can stay for arbitrary large times, we can think of them mimicking the
behavior of the regular trajectories nearby inside the island, these sticky borders act
then as pseudo-traps [51, 52, 59, 80].
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Fig. 12.10 Left: Arclength of the trajectory of a single particle, where several Lévy flights can be
observed. Right: A set of trajectories of advected particles

In the end, stickiness induces memory effects and implies a slow decay of
correlations. This affects strongly transport properties and ends up in an anomalous
super-diffusive transport.

In order to visualize the effect of stickiness, we have extracted from transport data
the points which were corresponding to Lévy flights and then localized them on the
Poincaré section. We can see clearly that sticky regions are responsible for these
flights and are located near regular islands (note that not all islands are necessary
sticky, see, for instance, [53]). The plot is drawn in Fig. 12.9 (see [54,59] for details).
To resume, once a trajectory sticks near an island, its length starts to grow almost
linearly with time, it does so usually with an average speed generically different
from the average peed over the chaotic sea. When looking at the transport data, this
statement will imply the presence of Lévy flights in. In Fig. 12.9, we can see that
four different sticking regions are present. We can thus expect to have four different
types of Lévy flights in our advected data.

12.4.2 Data Processing

We shall now introduce the particularities of the data set from a signal processing
point of view and describe the first step of the analyzing method.

A typical trajectory s is a one-dimensional signal of N D 1000 sampling points
s.t/, t 2 Œ1; N �. An example of such signal is shown in Fig. 12.10 (left) and a set
of trajectories in Fig. 12.10 (right). Several parts can be distinguished: a random
fluctuation (Brownian motion) and some almost linear segments of different length
corresponding to Lévy flights.
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12.4.2.1 A Time-Frequency Transformation

The robustness of our method relies on an uncertainty principle which is reminiscent
of quantum mechanics. It can be shown that one cannot measure exactly both
frequency and time of a given signal. We use this latter relation to our advantage.
Through an elementary transformation we turn random fluctuations of the signal
amplitude into random fluctuations of the frequency of a new signal. When these
frequencies are rapidly varying, as it is the case for random behaviors or noise in the
signal, the uncertainty principle makes it impossible to have precise information on
these variations. In the meantime, coherent behavior is emphasized since it is less
fluctuating.

It is then important to notice that thanks to the uncertainty principle:

• random fluctuations in frequency cannot be rendered precisely in the time-
frequency plane. It requires to be precise both in time and in frequency, which is
forbidden.

• linear parts or more generally slowly varying frequency components are empha-
sized by the time-frequency representation. Moreover, linear parts, called chirp
signals, can be detected efficiently using the fractional Fourier transform.

It is then interesting and natural to take advantage of this fact for the analysis of the
data set. To perform our analysis we shall therefore interpret the arclength s.t/ as
the phase derivative (the fluctuation of the “frequency component”) of a new signal
S.t/. This corresponds to the first step of the process: Let us introduce the phase

'.t/ D
tX


D1
s.
/; (12.55)

and the signal

S.t/ D ei'.t/: (12.56)

The signal S.t/ is a non-stationary signal of magnitude one and made of a single
frequency component which fluctuations are the one of the initial function s.t/.

The time-frequency representation (Gabor transform [20]) of S presented in
Fig. 12.11 (right) is the absolute value of the short-time Fourier transform of S . One
single frequency component can be seen which mimics the behavior of the signal s
plotted on the left. But the important difference is now, because of the uncertainty
principle, that brownian fluctuations become diffuse stains in Fig. 12.11 (right).

A consequence of this time-frequency transformation is that the random behavior
is blurred even more, spread over a neighborhood zone, whereas the linear parts
remain relatively sharp.

Our first objective is attained: the linear behavior has been emphasized over the
brownian motion, thanks to the uncertainty principle.
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Fig. 12.11 Left: tracer trajectory s with fluctuating regions and linear regions (Lévy flights). Right:
Gabor Transform (spectrogram) of S (absolute value of the short-time Fourier transform of S).
Darker regions are associated to high values of jVS j

12.4.3 Tomographic Analysis

For the detection of linear behavior in chaotic signals, we need a method able
to detect these straight line patterns. In a 2-dimensional image, one would use
techniques such as the Hough transform. In our case, we need a similar tool
retrieving straight lines which would appear when a time-frequency decomposition
is done (such as the short-time Fourier transform, the Gabor transform, or the
Wigner-Ville transform). The appropriate tool for this purpose is based on the time-
frequency tomogram.

In Sect. 12.3.5 we describe in detail the time-frequency tomogram applied to a
reflectometry signal of finite duration T.

In this application, projections of the reflectometry signal on an orthogonal basis˚
‰�;T
xn
.t/

x0;:::;xN

are used to extract the different components of the signal (see

Sect. 12.3.5.2). Each element of the basis ‰�;T
xn
.t/ is equal to:

‰�;T
xn
.t/ D 1p

T
ei.

� cos �
2 sin � t2C xn

sin � t/ D 1p
T
ei˛.t/: (12.57)

We can notice that the phase derivative d˛
dt

is linear:

d˛

dt
.t/ D � 1

tan �
t C xn

sin �
: (12.58)

That means that the projections of a signal on such basis will be appropriate to
detect linear part of its phase derivative. Considering a signal with a linear phase
derivative such s.t/ D ei.

b
2 t
2Cct/, it is easy to demonstrate that the set of projections

on an orthogonal basis:

csxn;� D< S;‰�;T
xn

>; (12.59)
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Fig. 12.12 Left: for �M , signal projections jc�M .xn/j. Right: short-time Fourier transform of the
signal S1, partial reconstruction of S . The longest Lévy flight has been removed

is maximal for �M D arctan. 1
b
/ and xM D c sin �m.

The time-frequency tomogram will then be used to detect linear part in the phase
derivative of the signal S.t/ D ei'.t/ (Eq. 12.56), where the phase derivative is the
arclength s.t/ of the particle (Eq. 12.55).

In order to detect the different slopes of the Lévy flights it is necessary to
apply the time-frequency tomogram for different �k regularly spaced and search
the maxima in the projections cSxn;�k . The number of selected �k is fixed by the user
depending on how accurate he wants to be and is independent of the length of the
signalN . The fast implementation of the time-frequency tomogram is of complexity
O.N logN/, hence the overall complexity is of the same order.

The time-frequency tomogram can be reversed and it is possible to detect a
linear part with slope 1= tan � inside the signal then erase it in the .�; �/ space
and to re-synthesize the signal without this linear part by applying a time-frequency
tomogram of angle .��/.

12.4.4 Detection and Characterization of Lévy Flights

12.4.4.1 Method

On the signal shown in Fig. 12.11, one can see several Lévy flights (left) which have
been turned into linear chirps in the frequency-time plane (right). For a specific
angle �M 1, the time-frequency tomogram defined (Eq. 12.59) will produce one
sharp peak corresponding to the presence of a chirp as it is illustrated in Fig. 12.12
(left), where jc�M 1.xn/j is plotted. For xM 1	830, the sharp peak jc�M 1.xM 1/j gives
evidence that there is a Lévy flight with a particular slope related to �M 1 and length
related to amplitude of the peak. This search for maxima is the process that detects
linear parts in the time-frequency plane.
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Since the time-frequency tomogram is invertible (see Sect. 12.3.5.2), we can re-
synthesize the signal back to the initial representation after setting the values of
the transform in red region of Fig. 12.12 (left) to zero. This result is illustrated in
Fig. 12.12 (right), which represents the short-time Fourier transform of the newly
recreated signal S1. The largest frequency slope of S has been completely removed,
the rest remaining untouched. This shows that indeed the peaks in the FRFT
correspond to Lévy flights.

The method to detect linear parts of the phase derivative of the signal S.t/ is
described by the following steps:

• compute the time-frequency tomogram of the signal S.t/, jcS�k .xn/j for K values
�k and N samples xn:

c�k .xn/ D< S;‰�k;T
xn

>D 1p
T

Z T

0

S.t/e�i.� cos �
2 sin� t2C xn

sin � t/dt; (12.60)

• extract the maximum from theN K projections jcS�k .xn/j, �M , xM will give the
slope and the position of the first detection.

• reconstruction of the signal S1.t/, where the linear part of the phase derivative is
removed. A set cS1�M .xn/ is obtained with the projections at the angle �M , where
jcS�M .xM /j and some coefficients of a small neighborhood are put to zero.

S1.t/ D
X

xn

c
S1
�M
.xn/‰

�M ;T
xn

.t/; (12.61)

• repeat the process with S1.t/ for other detections.

When the signal Sp.t/ D ei�P .t/ is obtained, after p detections of Lévy flights
in the phase derivative, we will estimate the arclength of trajectory sp.t/ where the
Lévy flights are removed:

sP .t/ D �i @Sp.t/=@t
Sp.t/

: (12.62)

Then sp.t/ will be compared to s.t/ and the Lévy flights will be characterized by
their length in time, �l and their velocity vs D �h=ıl .

This process is applied to the tracer trajectory s plotted in Fig. 12.11 (left). After
two iterations, the linear part of the phase derivative of S.t/ is removed, as it can be
seen in Fig. 12.13 (left). The tracer trajectory s2.t/ where the Lévy flights have been
removed is compared to the original s.t/ in Fig. 12.13 (right). Then, the flights are
characterized by their length and velocity.

12.4.4.2 Results

We now consider blindly data obtained from the advection of 250 tracers in the
point vector flow described in the previous subsection. That is to say, we analyze
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with our method 250 signals. We set up a threshold on the modulus of the projection
coefficients in order to select only the most relevant Lévy flights. Similar transport
data was analyzed in [54], with traditional tools and found to be anomalous and
super diffusive. As mentioned, the starting point of the anomaly was traced back to a
multi-fractal nature of transport linked to stickiness on four different regular regions.
One would thus expect four different types of Lévy flights in the data (see Fig. 12.9).

In the present case, the method described above has been applied to the data set.
Our goal is to detect the multi-fractal nature of the transport resulting from the sticky
islands, which would serve as a proof of concept and pave the way for applying the
method to numerical and experimental data. The results are presented in Fig. 12.14.

For each trajectory, Lévy flights have been detected and characterized by their
length in time,�l , and velocity,�h=�l D s. The process described in detail above
gives, for each flight, its slope (related to the velocity) and length.

The Fig. 12.14 (left) is an illustration of the duration of the flights as a function
of the velocity: four different values have been estimated (	 �170; 	75; 	190



250 F. Briolle and X. Leoncini

and 	510), which means that there are four different types of Lévy flights, as
anticipated. We mention as well that for some trajectories no Lévy flights have
been detected. A few typical trajectories with Lévy flights have been plotted in
Fig. 12.14 (right). The color coding corresponds to the one already used in Fig. 12.9,
so that each specific detected flight can be easily associated with its originating
sticky region. The agreement with the results found in [54] confirms that our
method is successful and is thus ready to be applied to various numerical and
experimental data.

12.5 Perspectives

After a first time frequency transformation, where the signal s is transformed as
the phase derivative of a new signal S , the time-frequency tomogram is used
to detect Lévy flights which are transformed as a linear phase derivative of S .
This transformation makes use of the uncertainty principle: there is a “dilution
effect” on the rapidly varying chaotic parts of the signal s while coherent patterns
(Lévy flights) are only slightly affected. This part is critical for the robustness of
the detection. Numerical simulations show that our technique is indeed extremely
robust.

The time-frequency tomogram will give a sparse representation of the data of
interest: Lévy flights become sharp peaks in the set of projections c� k.xn/. The key
point is that we knew the pattern we want to detect and chose the transformation in
consequence.

The door is open to further extension and generalization of our method, providing
that one knows a priori the patterns to detect which may not be linear but curved
or some other slowly varying shape (slowly varying with respect of the chaotic
fluctuations). A different representation from the tomogram should be used based
on the shape information. One may use a basis or a set of vectors different from
the set of linear chirps. Possible alternatives may be found in, e.g., [16, 57] where
what they call “tomograms” are bases of bended chirps and other more general
time-frequency forms, associated with one or more parameters (equivalent of � in
the time-frequency tomogram case). One may also think of Gabor frames made of
chirped windows [8]. Once the representation in which the relevant information is
sparse has been found, the peak detection process remains the same.

12.6 Conclusion

This chapter is an attempt to show how non-commutative tomography can be used
as an efficient and powerful signal processing tool. The approach is based on the
physical analogies with the non-commutative nature between time and frequency,
and actually use this to our advantage in order to “clean” signals from undesirable
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noise. For such purposes we started this chapter with a slow step by step introduction
of the mathematical notions behind non-commutative tomography. We tried to
emphasize on some simple specific examples in order to give the non-mathematical
reader some possible intuitions on the nature of the considered transforms.

From then on we considered data originating from magnetized fusion plasmas,
namely reflectometry data of the plasma. We first briefly introduce the field of
tokamak plasmas and then discussed the ideas behind reflectometry and how
reflectometers work, as well as how data is acquired and processed. We then showed
how using tomogram techniques allowed to clearly separate relevant data from
unnecessary reflections on the tokamak walls or on the initial porthole. In this
context, the fact that the original signal sent into the plasma is a chirp, meaning a
signal whose frequency varies linearly in time allowed us to select a specific family
reminiscent of fractional Fourier transform, which are particularly adapted for such
signals. The actual experimental data was then analyzed and for some specific value
of frequency-time mixture, we were able to clearly distinguish between the different
reflection of the original signal. Hence using the reconstructing technique we were
able to filter out on the fly the data, in order to recover only the useful reflection
on the plasma which is useful, for instance, in order to reconstruct time-dependent
density profiles.

As a second application we considered data corresponding to the advection of
the so-called passive tracers in the flow generated by three point vortices. The
dynamics of these tracers is Hamiltonian but due to the time-dependent nature of
the two-dimensional flow, their trajectories are chaotic. Actually the phase space
of passive tracers corresponds to the so-called mixed phase spaces, meaning that
there are regions where regular non-erratic motion is possible called regular islands,
while there is a so-called stochastic sea, where the motion is chaotic. In these mixed
phase space the phenomenon of stickiness is able to generate long memory effects
which affects transport properties, generating anomalous diffusion of tracers and
the existence of long-lasting Lévy flights. Using the analogy of considering a flight
similar to the chirp signal used in the reflectometer, we performed a first simple
transform of the signal in order to detect the chirp in the modified signal, which
actually are flights in the original data. The method was shown to be successful
in detecting the different Lévy flights present in the data, which were of different
nature, as different sticking regions existed in the phase space.

In summary, we have showed in different contexts the efficiency of the signal
processing method in two different cases, namely the case of reflectometry data and
Lévy flights in advected data. Since in the context of magnetized fusion plasma
there are some strong indications that transport is as well anomalous in the sense
that it could be super-diffusive. It could be interesting to perform the Lévy analysis
on reflectometer data, after the chirp flight trick has been performed. Should we
detect as well some flights, it could be probably interesting to hard-code such signal
processing treatment in a reflectometer to allow for fast plasma monitoring.
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Chapter 13
Projective Synchronization of Two Gyroscope
Systems with Different Motions

Fuhong Min and Albert C. J. Luo

Abstract In this chapter, a simple nonlinear controller is applied to investigate the
generalized projective synchronization for two gyroscopes with different dynamical
behaviors. The projective synchronization conditions are developed through the
theory of discontinuous dynamical systems. The synchronization invariant domain
from the synchronization conditions is presented. The parameter maps are obtained
for a better understanding of the synchronicity of two gyroscopes. Finally, the partial
and full generalized projective synchronizations of two nonlinear coupled gyroscope
systems are carried out to verify the effectiveness of the scheme. The scaling factors
in such synchronization are observed through numerical simulations.

Keywords Projective synchronization • Gyroscope system • Discontinuous
dynamical system

13.1 Introduction

Since Pecora and Carroll [1] investigated the synchronization between the dynam-
ical systems, chaos synchronization has become a interesting topic due to its
potential applications. The synchronization of many chaotic attractors was studied
through different methods. Recently, chaos synchronization of gyroscopes with
nonlinear damping has been studied extensively [2, 3]. In 2005, Lei et al. [4]
discussed the global synchronization of two chaotic gyroscope systems through an
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active control method, and the sufficient conditions for the chaos synchronization
were achieved. In 2006, Yan et al. [5] investigated the adaptive synchronization
control for chaotic symmetric gyroscope systems through the adaptive sliding
controller. In 2007, Yau et al. [6] investigated the complete synchronization of two
chaotic nonlinear gyroscope systems through fuzzy logic control scheme. In 2008,
Yau [7] adopted a fuzzy sliding mode control to synchronize two chaotic gyroscope
systems with uncertainties and external disturbances. Hung et al. [8] used a sliding
mode control technique to study the generalized projective synchronization of two
chaotic gyroscope systems coupled with dead-zone nonlinear input. Salarieh and
Alasty [9] used the modified sliding mode control to investigate the synchronization
of two stochastic gyroscope systems with different parameters. From the above
literature survey, the adopted techniques cannot present the necessary and suffi-
cient conditions for synchronization, and the Lyapunov method was employed to
determine the stability for such an error system. The control laws designed are often
complicated, and the implementation becomes much difficult in practice.

In 2009, Luo [10] developed a theory for synchronization of dynamical systems
with specific constraints via the theory of discontinuous dynamical systems. Such
a theory for discontinuous dynamical systems can be found from [11–13]. In
such a theory, the G-functions were introduced to determine the switchability of
a flow from one domain to another in discontinuous dynamical systems. In Min
and Luo [14], the complete synchronization of two chaotic gyroscope systems was
investigated through the theory of discontinuous dynamical system. The parameter
characteristics of chaotic synchronization were discussed from the analytical con-
ditions of synchronization. In Min [15], the generalized projective synchronization
of a noised chaotic gyroscope with a periodic gyroscope system was carried out
initially. The partial and full projective synchronizations of two coupled chaotic
gyros were observed. In Min and Luo [16], a comprehensive analytical mechanism
of such synchronization will be discussed. The necessary and sufficient conditions
for such synchronization will be derived from the theory of discontinuous dynamical
systems in Luo [10–13].

In this chapter, the parameter characteristics for the generalized projective syn-
chronization for two gyroscopes with different behaviors will be investigated. The
synchronization will be presented in the theory of discontinuous dynamical systems.
Numerical results for the partial and full generalized projective synchronizations for
two dynamical systems with different behaviors are illustrated to demonstrate the
usefulness and efficiency of the scheme.

13.2 Problem Statement

A periodically forced, symmetric gyroscope with linear-plus-cubic damping [5, 6]
is considered as

R� C c1 P� C c2 P�3 C ˛2
.1 � cos �/2

sin3�
� ˇ sin � D f sin!t sin �; (13.1)
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where � is the angular displacement, f sin!t sin � is parametric excitation, c1 P� and
c2 P�3 are linear and nonlinear damping terms. The term ˛2(1 � cos �)2/sin3� �ˇ sin �
is a nonlinear force.

Let x1 D � , x2 D P� , and h(�) D˛2(1 � cos �)2/sin3� , then the gyroscope system
of Eq. (13.1) becomes


 Px1 D x2;

Px2 D h .x1/ � c1x2 � c2x32 C .ˇ C f1 sin!t/ sin x1:
(13.2)

Consider Eq. (13.2) as a master system, a second controlled gyroscope system
with different behavior is regarded as a slave system


 Py1 D y2;

Py2 D h .y1/� c1y2 � c2y
3
2 C .ˇ C f1 sin!t/ sin y1;

(13.3)

where

h .y1/ D �˛2.1 � cosy1/
2=sin3y1 (13.4)

and the nonlinear control law u(t) D (u1(t), u2(t))T is given by

u1 D k1 sgn .y1 � p10x1/ and u2 D k2 sgn .y2 � p2x2/ ; (13.5)

with p1 and p2 for the scaling factors, k1 and k2 for the controller parameters.
For simplicity, the state variables are introduced as

x D .x1; x2/
T and y D .y1; y2/

T (13.6)

and the corresponding vector fields are defined as

NF .x; t/ D � NF1 .x; t/ ; NF2 .x; t/
�T

and F .y; t/ D .F1 .y; t/ ; F2 .y; t//
T (13.7)

where

NF1 .x; t/ D x2;
NF2 .x; t/ D h .x1/� c1x2 � c2x

3
2 C .ˇ C f1 sin!t/ sin x1;

F1 .y; t/ D y2 � u1.t/;
F2 .y; t/ D h .y1/� c1y2 � c2y32 C .ˇ C f2 sin!t/ sin y1 � u2.t/:

(13.8)

Under the controlled law in Eq. (13.5), the controlled gyroscope system becomes
discontinuous, and the corresponding vector fields are shown as follows:
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1. For y1> p1x1 and y2> p2x2,

F1 .y; t/ D y2 � k1;

F2 .y; t/ D h .y1/� c1y2 � c2y
3
2 C .ˇ C f2 sin!t/ sin y1 � k2I (13.9)

2. For y1> p1x1 and y2< p2x2,

F1 .y; t/ D y2 � k1;
F2 .y; t/ D h .y1/� c1y2 � c2y32 C .ˇ C f2 sin!t/ sin y1 C k2I (13.10)

3. For y1< p1x1 and y2< p2x2,

F1 .y; t/ D y2 C k1;

F2 .y; t/ D h .y1/� c1y2 � c2y32 C .ˇ C f2 sin!t/ sin y1 C k2I (13.11)

4. For y1< p1x1 and y2> p2x2,

F1 .y; t/ D y2 C k1
F2 .y; t/ D h .y1/� c1y2 � c2y32 C .ˇ C f2 sin!t/ sin y1 � k2:

(13.12)

With the above equations, there are four domains and four boundaries with
different vector fields. As in Min and Luo [16], four domains ˝˛ (˛D 1, 2, 3, 4)
of the controlled slave systems in phase space are defined as

�1 D f .y1; y2/j y1 � p1x1.t/ > 0; y2 � p2x2.t/ > 0g ;
�2 D f .y1; y2/j y1 � p1x1.t/ > 0; y2 � p2x2.t/ < 0g ;
�3 D f .y1; y2/j y1 � p1x1.t/ < 0; y2 � p2x2.t/ < 0g ;
�4 D f .y1; y2/j y1 � p1x1.t/ < 0; y2 � p2x2.t/ > 0g :

(13.13)

and the boundaries @˝˛ˇ (˛,ˇD 1, 2, 3, 4;˛¤ˇ) of the four domains are

@�12 D f .y1; y2/jy1 � p1x1.t/ > 0; y2 � p2x2.t/ D 0g ;
@�23 D f .y1; y2/jy1 � p1x1.t/ D 0; y2 � p2x2.t/ < 0g ;
@�34 D f .y1; y2/jy1 � p1x1.t/ < 0; y2 � p2x2.t/ D 0g ;
@�14 D f .y1; y2/jy1 � p1x1.t/ D 0; y2 � p2x2.t/ > 0g :

(13.14)

where the subscript (�)˛ˇ denotes the boundary from�˛ to �ˇ.
From Eqs. (13.9) through (13.12), the controlled slave system is in a vector

form of

Py.˛/ D F.˛/.y.˛/; t/; (13.15)
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where

F.˛/.y.˛/; t/ D .F
.˛/
1 ; F

.˛/
2 /

T
;

F
.˛/
1 .y.˛/; t/ D y

.˛/
2 � k1 for ˛ D 1; 2I

F
.˛/
1 .y.˛/; t/ D y

.˛/
2 C k1 for ˛ D 3; 4I

F
.˛/
2 .y.˛/; t/ D h.y

.˛/
1 / � c1y.˛/2 � c2.y

.˛/
2 /

3

C .ˇ C f2 sin!t/ sin y.˛/1 � k2 for ˛ D 1; 4I

F
.˛/
2 .y.˛/; t/ D h.y

.˛/
1 / � c1y.˛/2 � c2.y

.˛/
2 /

3

C .ˇ C f2 sin!t/ sin y.˛/1 C k2 for ˛ D 2; 3 (13.16)

The dynamical systems on the boundaries @�˛ˇ are presented by

Py.˛ˇ/ D F.˛ˇ/
�
y.˛ˇ/; x.t/; t

� I
Px D NF .x; t/ (13.17)

where

F
.˛ˇ/
1

�
y.˛ˇ/; t

� D y2.t/ D p1x2.t/ and F .˛ˇ/
2 .y.˛ˇ/; t/ D p2 Px2.t/ (13.18)

with

y
.˛ˇ/

1 D p1x1 and y
.˛ˇ/

2 D p2x2 on@�˛ˇ for .˛; ˇ/ D f.2; 3/ ; .1; 4/g I
y
.˛ˇ/

1 D p1x1 C C and y
.˛ˇ/

2 D p2x2 on@�˛ˇ for .˛; ˇ/ D f.1; 2/ ; .3; 4/g :
(13.19)

From the above equations, the boundary flows vary with time in the absolute
coordinate, and it is difficult to develop the synchronization conditions. Then,
introduce the relative coordinates

z1 D y1 � p1x1 and z2 D y2 � p2x2: (13.20)

The corresponding domains, boundaries, and the intersection point in the relative
coordinates are presented as

�1 D f .z1; z2/j z1 > 0; z2 > 0g ;
�2 D f .z1; z2/j z1 > 0; z2 < 0g ;
�3 D f .z1; z2/j z1 < 0; z2 < 0g ;
�4 D f .z1; z2/j z1 < 0; z2 > 0g :

(13.21)
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Fig. 13.1 Phase plane partitions and boundaries in the relative coordinates

@�12 D f .z1; z2/j z2 D 0; z1 > 0g ;
@�23 D f .z1; z2/j z1 D 0; z2 < 0g ;
@�34 D f .z1; z2/j z2 D 0; z1 < 0g ;
@�14 D f .z1; z2/j z1 D 0; z2 > 0g :

(13.22)

and

†�˛ˇ D \4
˛D1\4

˛D1@�˛ˇ D f .y1; y2/j z1 D 0; z2 D 0g (13.23)

From the above illustrations, the velocity and displacement boundaries in the
relative frame are constant. Then, the partition of phase plane is sketched in
Fig. 13.1. The intersection point is where the generalized projective synchronization
of two gyroscopes with different motions. For this case, the analytical conditions for
such synchronization can be developed easily through the theory of discontinuous
dynamical systems. The controlled slave system in the relative coordinates becomes

Pz.˛/ D g.˛/
�
z.˛/; x; t

�

with Px D NF .x; t/ (13.24)

where

(13.25)
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with

(13.26)

The dynamics on the boundary in the relative coordinates is also determined by

Pz.˛ˇ/ D g.˛ˇ/.z.˛ˇ/; x; t/ with Px D NF.x; t/ (13.27)

where

g
.˛ˇ/

1 .z.˛ˇ/; x; t/ D z2 D 0 and g.˛ˇ/2 .z.˛ˇ/; t/ D 0 (13.28)

with

z.˛ˇ/1 D 0 and z.˛ˇ/2 D 0 on@�˛ˇ for .˛; ˇ/ D .2; 3/ ; .1; 4/ I
z.˛ˇ/1 D C and z.˛ˇ/2 D 0 on@�˛ˇ for .˛; ˇ/ D .1; 2/ ; .3; 4/ :

(13.29)

13.3 Analytical conditions

Before discussing the synchronization conditions, the G-functions are introduced in
the relative coordinates for zm 2 @�ij at t D tm, as in Luo [10–13]

G
.˛/

@�ij
.zm; x; tm˙/ D nT

@�ij
� �g.˛/ .zm; x; tm˙/ � g.ij / .zm; x; tm˙/

�
(13.30)

G
.1;˛/

@�ij
.zm; x; tm˙/ D nT

@�ij
� �Dg.˛/ .zm; x; tm˙/ �Dg.ij / .zm; x; tm˙/

�
(13.31)

From Eq. (13.24), the normal vectors of the relative boundaries are

n@�12 D n@�34 D .0; 1/T and n@�23 D n@�14 D .1; 0/T: (13.32)

From Eqs. (13.24) to (13.29), the corresponding G-functions in Eqs. (13.30) and
(13.31) for a flow at the boundary are

G
.˛/

@�12
.zm; x; tm˙/ D G

.˛/

@�34
.zm; x; tm˙/ D g

.˛/
2 .zm; x; tm˙/ ;

G
.˛/

@�23
.zm; x; tm˙/ D G

.˛/

@�14
.zm; x; tm˙/ D g

.˛/
1 .zm; x; tm˙/ I (13.33)

G
.1;˛/

@�12
.zm; x; tm˙/ D G

.1;˛/

@�34
.zm; x; tm˙/ D Dg

.˛/
2 .zm; x; tm˙/ ;

G
.1;˛/

@�23
.zm; x; tm˙/ D G

.1;˛/

@�14
.zm; x; tm˙/ D Dg

.˛/
1 .zm; x; tm˙/ I (13.34)
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To illustrate the flow switchability, the G-functions of a flow in domains with
respect to the boundary are defined as

G
.˛/

@�12
.z.˛/; x; t/ D G

.˛/

@�34
.z.˛/; x; t/ D g

.˛/
2 .z.˛/; x; t/;

G
.˛/

@�23
.z.˛/; x; t/ D G

.˛/

@�14
.z.˛/; x; t/ D g

.˛/
1 .z.˛/; x; t/I

G
.1;˛/

@�12
.z.˛/; x; t/ D G

.1;˛/

@�34
.z.˛/; x; t/ D Dg

.˛/
2 .z.˛/; x; t/;

G
.1;˛/

@�23
.z.˛/; x; t/ D G

.1;˛/

@�14
.z.˛/; x; t/ D Dg

.˛/
1 .z.˛/; x; t/:

(13.35)

where the total derivative functions are given by

Dg
.˛/
1 .z.˛/; x; t/ D h1.z

.˛/
1 C p1x1/� p1h.x1/

C .ˇ C f2 sin!t/ sin.z.˛/1 C p1x1/� c1Œz
.˛/
2 C p2x2 � p1x2�

� c2Œ.z
.˛/
2 C p2x2/

3 � p1x
3
2 �� p1.ˇ C f1 sin!t/ sin.x1/;

Dg
.˛/
2 .z.˛/; x; t/ D Œh1.z

.˛/
1 C p1x1/C .ˇ C f2 sin!t/ cos.z.˛/1 C p1x1/�F1.z.˛/ C x; t/

� Œc1 C 3c2.z
.˛/
2 C p2x2/

2
�F2.z.˛/ C x; t/

� p2Œh1.x1/C .ˇ C f1 sin!t/ cos x1�F1.x; t/

C p2.c1 C 3c2x
2
2/F2.x; t/C Œf2 sin.z.˛/1 C p1x1/� p2f1 sin x1�! cos!tI

(13.36)

As in Luo [10–13], the generalized projective synchronization state of the
controlled slave system with the master system requires a sliding flow on the
boundary. Similarly, the non-synchronization state at the boundary is a passable
flow. The de-synchronization requires a source flow state to the boundary. Then
the analytical conditions for the synchronization of two gyroscopes with different
behaviors will be shown. Then, the synchronization conditions of two gyroscopes at
the intersection point are

G
.1/

@�14
.zm; x; tm�/ D g

.1/
1 .zm; x; tm�/ < 0;

G
.1/

@�12
.zm; x; tm�/ D g

.1/
2 .zm; x; tm�/ < 0

)
for zm 2 @�12 \ @�14 on �1I

G
.2/

@�12
.zm; x; tm�/ D g

.2/
2 .zm; x; tm�/ > 0;

G
.2/

@�23
.zm; x; tm�/ D g

.2/
1 .zm; x; tm�/ < 0

)
for zm 2 @�12 \ @�23 on �2I

G
.3/

@�23
.zm; x; tm�/ D g

.3/
1 .zm; x; tm�/ > 0;

G
.3/

@�34
.zm; x; tm�/ D g

.3/
2 .zm; x; tm�/ > 0

)
for zm 2 @�23 \ @�34 on �3I

G
.4/

@�34
.zm; x; tm�/ D g

.4/
2 .zm; x; tm�/ < 0;

G
.4/

@�14
.zm; x; tm�/ D g

.4/
1 .zm; x; tm�/ > 0

)
for zm 2 @�34 \ @�14 on �4:

(13.37)



13 Projective Synchronization of Two Gyroscope Systems with Different Motions 263

From simplicity, four basic functions are introduced as

g1.z.˛/; x; t/ � g
.˛/
1 .z.˛/; x; t/ D z.˛/2 � k1 in �˛ for ˛ D 1; 2I

g2.z.˛/; x; t/ � g
.˛/
1 .z.˛/; x; t/ D z.˛/2 C k1 in �˛ for ˛ D 3; 4I

g3.z.˛/; x; t/ � g
.˛/
2 .z.˛/; x; t/ D G .z.˛/; x; t/ � k2 in �˛ for ˛ D 1; 4I

g4.z.˛/; x; t/ � g
.˛/
2 .z.˛/; x; t/ D G .z.˛/; x; t/C k2 in �˛ for ˛ D 2; 3:

(13.38)

The synchronization conditions in Eq. (13.37) become

g1 .zm; x; tm�/ D z2m C .p2 � p1/ x2 � k1 < 0;

g2 .zm; x; tm�/ D z2m C .p2 � p1/ x2 C k1 > 0;

g3 .zm; x; tm�/ D G .zm; x; tm�/� k2 < 0;

g4 .zm; x; tm�/ D G .zm; x; tm�/C k2 > 0:

(13.39)

Let zm D 0, then the synchronization conditions of generalized projective syn-
chronization for two gyroscopes are

g1 .zm; x; tm�/ D .p2 � p1/ x2 � k1 < 0;
g2 .zm; x; tm�/ D .p2 � p1/ x2 C k1 > 0;

g3 .zm; x; tm�/ D G .x; tm�/� k2 < 0;

g4 .zm; x; tm�/ D G .x; tm�/C k2 > 0:

(13.40)

where

G .x; tm�/ D �˛2.1 � cos .p1x1//
2=sin3 .p1x1/� c2Œ.p2x2/

3 � p2x32�
C.ˇCf2 sin!tm�/ sin .p1x1/�p2h .x1/� .ˇCf1 sin!tm�/ sin x1;

(13.41)

If the control parameters k1 and k2 satisfy the conditions in Eq. (13.40), the
projective synchronization of two coupled gyroscopes will be observed through
numerical simulations. From the above conditions, the synchronization invariant
set can be given by

�k1 < .p2 � p1/ x2 < k1 and � k2 < G .x; tm-/ < k2; (13.42)

In a small neighborhood of zm D 0, the attractive conditions for jz � zmj<" are

(13.43)

From the foregoing equation, z1
* and z2

* are computed and the initial condition
for the controlled slave system is computed by

y1 D z�
1 C p1x1 and y2 D z�

2 C p2x2: (13.44)
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Once the generalized projective synchronization of two coupled gyroscopes
disappears, the conditions of generalized projective synchronization vanishing for
the controlled slave system on @�˛ˇ for (˛,ˇ) D f(1,4),(2,3)g are

(13.45)

Let

(13.46)

The vanishing conditions of generalized projective synchronization for the
controlled slave systems on @�˛ˇ for (˛,ˇ) D f(1,2),(4,3)g are given by

(13.47)

and

(13.48)

The onset conditions of generalized projective synchronization for the controlled
slave systems with z(˛)(tm �) D zm

(˛) D zm are

(13.49)

from zm � " D y1 � p1x1> 0, and

(13.50)

from zm C " D y1 � p1x1< 0.



13 Projective Synchronization of Two Gyroscope Systems with Different Motions 265

The onset conditions of generalized projective synchronization for the controlled
slave systems with z(˛)(tm ˙) D zm

(˛) D zm are

(13.51)

from Pzm�	 D y2 � p2x2 > 0 and

(13.52)

from Pzm�	 D y2 � p2x2 < 0.

13.4 Parameter Studies

From the previous analytical conditions, parameter studies will be carried out for
a better understanding of the synchronization of two dynamical gyroscopes with
different behaviors. The parameters of nonlinear gyroscope systems are first given as
˛2 D 100, ˇD 1, c1 D 0.5, c2 D 0.05, !D 2. As varying parameter f, the gyroscope
system can exhibit different behaviors, including chaotic attractors and different
periodic motions.

First, if f1 D 35.0 and f2 D 35.7, the master system is chaotic attractor, and
the slave system is a period-4 motion. The initial conditions are given by
(x1,x2) D (0.17391,1.36406) and (y1,y2) D (0.32878,0.67165). The scaling factors
are given by p1 D � 0.6 and p2 D � 1.0. For a global view of the generalized
projective synchronization of two coupled gyroscopes, the parameter map (k1,k2)
is depicted in Fig. 13.2a. Acronyms “FS,” “PS,” and “NS” represent full, partial,
and non-generalized projective synchronization. The partial generalized projective
synchronization regions are shaded. For k1> 0.59 and k2> 9.75, the full generalized
projective synchronization of the two coupled systems occurs. For 0< k1< 0.59 and
k2> 9.75, only the partial generalized projective synchronization is obtained. For
small k2, the non-synchronization area is presented. Besides, varying the control
parameter k2, the switching phase for the generalized projective synchronization
with k1 D 3 is shown in Fig. 13.2b. The switching points of synchronization are
satisfied y1k D p1x1k and y2k D p2x2k. From the switching scenario, if k2 2 (0,0.03),
no synchronization is observed. If k2 2 (0.03,9.74), the partial generalized projective
synchronization of two gyroscopes occurs. If k2 2 (9.74,1), full generalized
projective synchronization of the two systems exists. The switching scenarios are
chaotic because the master system experiences the chaotic attractor.

Similarly, the master system is a period-4 motion and the slave system
is chaotic with f1 D 35.0 and f2 D 35.7. The initial conditions are given by
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Fig. 13.2 Generalized projective synchronicity of two chaotic gyroscope dynamical systems. (a)
Parameter maps for (k1,k2). (b) Switching phase with k1 D 3.0. (The scaling factors: p1 D � 0.6
and p2 D � 1.0. System parameters: c1 D 0.5, c2 D 0.05, ˛D 10, ˇD 1.0, !D 2.0, f1 D 35.0,
f2 D 35.7. FS full synchronization, PS partial synchronization, NS non-synchronization.)

(x1,x2) D (0.08328,1.31797) and (y1,y2) D (0.3,1.7). The scaling factors are given by
p1 D 0.6 and p2 D 1.2. As varying the control parameters k1 and k2, the parameter
map (k1,k2) is presented in Fig. 13.3a. Compared to Fig. 13.2a, the boundaries of
the partial synchronization are much smooth because the master system is periodic.
For k1> 0.9 and k2> 14.05, the full generalized projective synchronization of the
two coupled gyroscopes yields. However, if k1< 0.9 and k2> 14.05, it is difficult
to guarantee the synchronization conditions of two coupled gyroscopes, so only
the partial synchronization exists. For small k2, the non-synchronization area is
presented. The switching phase for the generalized projective synchronization is
illustrated in Fig. 13.3b with k1 D 3. The switching scenario is regular because the
master system is periodic. From the switching phase, no generalized projective
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Fig. 13.3 Generalized projective synchronicity of two periodic gyroscopes. (a) Parameter maps
for (k1,k2). (b) Switching phase with k1 D 3.0. (The scaling factors: p1 D 0.6 and p2 D 1.2.
System parameters: c1 D 0.5, c2 D 0.05, ˛D 10, ˇD 1.0, !D 2.0, f2 D 35.0, f1 D 35.7. FS full
synchronization, PS partial synchronization, NS non-synchronization.)

synchronization appears for k2 2 (0,0.3), and the partial generalized projective
synchronization is in the range of k2 2 (0.3,14.05). The full synchronization of the
two gyroscope systems can obtain for k2 2 (14.05,1).

13.5 Numerical Simulations

From the above parameter maps, the control parameters k1 and k2 can be chosen
to do numerical simulations for the generalized projective synchronization of two
coupled gyroscopes. According to the parameter maps in Fig. 13.2, the partial
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Fig. 13.4 The partial generalized synchronization of the periodic gyroscope with chaotic gyro-
scope system: (a) velocity responses, (b) G-function responses, (c) switching points of master
system with the invariant domain, (d) switching points of slave system with the invariant domain.
(The scaling factors: p1 D � 0.6 and p2 D � 1.0. System parameters: c1 D 0.5, c2 D 0.05, ˛D 10,
ˇD 1.0, !D 2.0, f1 D 35.0, f2 D 35.7. Initial condition: (x1,x2) D (0.1739142,1.3640564), and
(y1,y2) D (0.32877629,0.67165378). FS full synchronization, PS partial synchronization, NS non-
synchronization. Hollow and filled circular symbols are synchronization appearance and vanishing,
respectively.)

synchronization of the coupled periodic gyroscope with the chaotic gyroscope
system for k1 D 3.0 and k2 D 2.0 can be observed in Fig. 13.4. The symbols “S”
and “N” represent “Synchronization” and “Non-synchronization.” Hollow circulars
represent the switching points for appearance, and filled circular symbols denote the
synchronization disappearance. In Fig. 13.4a, the time-histories of velocities of two
coupled gyroscopes are plotted. The trajectories for master system are depicted by
solid curves and the trajectories for slave system are presented by dashed curves.
In Fig. 13.4b, the corresponding G-functions are shown. The synchronization
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Fig. 13.4 (continued)

regions are shaded and the non-synchronization areas are not shaded. At all the
switching points of appearance, the G-functions satisfy the onset conditions of
projective synchronization in Eqs. (13.49)–(13.52). At all the switching points
of disappearance, the G-functions satisfy the vanishing conditions of projective
synchronization in Eqs. (13.45)–(13.48). The G-functions for non-synchronization
are presented by dashed curve, which means imaginary flow. For instance, if the
G-function of g3(t) is plotted by the dashed curve, the controlled slave system lies
in domain�˛(˛D 1, 4) and y2< p2x2 if the G-function of g4(t) is the dashed curve,
the controlled slave system lies in domain �˛ (˛D 2, 3) and y2> p2x2. To observe
the existence of the partial synchronization for a long time, the switching points of
two coupled gyroscopes for 10,000 periods are shown in Fig. 13.4c, d, respectively.
The black and red points are for the appearance and disappearance of projective
synchronization, respectively. The invariant domain of synchronization is also
inserted in Fig. 13.4c, d. “S-domain” denotes the synchronization invariant domain.
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Fig. 13.5 Full generalized synchronization of the chaotic gyroscope with periodic gyroscope
system: (a and b) time-histories of G-functions responses, (c) master system with the invariant
domain, (d) slave system with the invariant domain. (The scaling factors: p1 D 0.6 and p2 D 1.2.
System parameters: c1 D 0.5, c2 D 0.05, ˛D 10, ˇD 1.0, !D 2.0, f1 D 35.7, f2 D 35.0. Initial
condition: (x1,x2) D (0.083285,1.317967), and (y1,y2) D (0.4,1.6). S synchronization, NS non-
synchronization. Hollow circular symbols are synchronization appearance.)

“NS-domain” represents the regions of non-synchronization. All the switching
points lie in the invariant domain of projective synchronization.

From the parameter maps in Fig. 13.3, the full projective synchronization of
the controlled chaotic gyroscope with a periodic gyroscope system is illustrated
in Fig. 13.5 with control parameter k1 D 3 and k2 D 15. In Fig. 13.5a, b, the time-
velocity history of the corresponding G-functions is shown. The shaded regions are
for non-synchronization. Hollow symbols stand for the full generalized projective
synchronization appearance. For time t 2 (0.14808,1), the G-function responses
satisfy the conditions of full synchronization in Eq. (13.39), i.e., g1< 0, g2> 0,
and g3< 0 and g4> 0, then the full synchronization with the scaling factors occurs
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Fig. 13.5 (continued)

completely, y1(t) D 0.6x1(t) and y2(t) D 1.2x2(t). To make a better understanding
the generalized projective synchronization for two coupled gyroscopes, the phase
trajectories of master and slave systems are depicted in Fig. 13.5c, d, respectively.
The invariant domain for full synchronization is also embedded. All the trajectories
lie in the invariant domain of such synchronization.

13.6 Conclusion

In this chapter, the generalized projective synchronizations for two coupled gyro-
scopes with different motions were investigated through the theory of discontinuous
dynamical systems. The analytical conditions for such synchronizations are shown.
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The parameter studies for slave system with master system were carried out. Finally,
the partial synchronization for a controlled periodic gyroscope with a chaotic
gyroscope was illustrated, and the full synchronization of a controlled chaotic
gyroscope with periodic gyroscope was developed. The scaling factors in such
synchronization are observed through numerical simulations.
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Chapter 14
Measuring and Analysing Nonlinearities
in the Lung Tissue

Clara M. Ionescu

Abstract This paper introduces the concept of fractional order models for
characterizing viscoelasticity in the lungs. A technique to detect and analyse
these nonlinear, low-frequency contributions in the lung tissue is presented, along
with some experimental data. The measurements are performed using the forced
oscillation technique and a non-invasive lung function testing procedure which
takes only 40 s, while the patient is breathing at rest. The index introduced to
quantify the nonlinear contributions in the lungs in healthy is then employed in
a theoretical analysis to show that the values are changing in case of disease.
The results indicate that the proposed method and index are useful for clinical
classification of viscoelastic properties in the lungs.

Keywords Nonlinear distortion • Respiratory system • Viscoelasticity
• Frequency response

14.1 Introduction

An optimal lung function parameter follow-up is a key element in allowing early
detection of respiratory disorders and managing treatment strategies to maximize
their positive effect on the patient. Since most lung diseases affect the viscoelastic
properties of the respiratory tissue [1,6], it is optimal that lung function tests provide
information upon the low-frequency dynamics in the airways and tissue [2, 14, 19].

The viscoelastic properties characterize materials such as polymers, found to be
very similar to lung tissue [10]. In the human lung, these properties are changing
with diseases and they may be detected at early stages by evaluating the respiratory
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impedance at low frequencies, i.e. closer to the breathing frequency of the patient
[2, 11, 14, 18]. However, the lower the frequency one wants to investigate in terms
of signal processing methods, the more difficult the filtering problem between the
breathing (which acts as a disturbance) and the effect of the excitation signal in the
lungs (which is in fact the useful information one wants to extract). In particular, this
paper addresses the detection of nonlinear contributions at frequencies below 10 Hz.

There is one single group of healthy young adult volunteers measured for the
purpose of this paper. These are male and female, with age between 24–33 years,
height between 164–180 cm and weight between 49–78 kg.

The paper is organized as follows: the forced oscillations technique is presented
in the next section, along with some of the advantages over spirometry, in order to
motivate our choice of method. The third section presents the theoretical background
for signal processing and the algorithms employed in order to obtain the respiratory
impedance in its best linear approximation, while minimizing the biasing effects
introduced by the breathing of the patient. The fourth section delivers the results
and the discussion of these results obtained for the prototype device, calibration tube
and a group of 11 volunteers. A conclusion section summarizes the main outcome
of this work and offers some perspectives.

14.2 FOT: Applications, Devices and Impedance
Measurement

The forced oscillation technique (FOT) consists of superimposing external pressure
signals on spontaneous breathing (tidal breathing) [3,5,12,17]. It provides an effort
independent assessment of respiratory mechanics [4].

The measurements of the signals analysed in this paper have been performed
using the device depicted in Fig. 14.1, assessing respiratory mechanics in the range
from 0.1 Hz to 5 Hz. The low-frequency multisine in the prototype allows excitation

Fig. 14.1 A photo of the prototype device
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of respiratory tissue at frequencies where viscoelastic properties become important
and relevant for clinical insight. The measurement of air-pressure P (kPa) and air-
flow Q D dV=dt (liter/s) (with V as the air volume) during the FOT lung function
test is done at the mouth of the patient. The FOT lung function tests were performed
according to the recommendations described in [13]. The FOT excitation signal was
kept within a range of a peak-to-peak size of 0.1–0.3 kPa, in order to ensure patient
comfort and safety. The test has a maximum duration of 40 s and the sampling
frequency is 1 kHz.

Although the prototype device introduced in this paper can only produce excita-
tion signals as low as 0.1 Hz, it serves to perform a feasibility study upon detecting
the nonlinear distortions and evaluating respiratory mechanics at frequencies closer
to the breathing of the patient. Later on, the prototype can be further used to gather
data from a larger number of volunteers to obtain reference intervals.

Viscoelasticity is well defined in materials exhibiting nonlinear dynamics, e.g.
polymers. The properties of lungs are fairly similar to those of polymers [2]
and viscoelastic effects in the human tissue take place at low frequencies [10].
When the respiratory mechanics are characterized at frequencies below the resonant
frequency, one investigates the balance between elastic and viscous properties of the
lung tissue and parenchyma [11, 14, 19].

14.3 Signal Processing Methods

This section addresses two problems: (1) the problem of breathing interference with
the excitation signal and (2) the detection of nonlinear contributions in the measured
signals. The common solution to these problems is the optimization of the excitation
signal, detailed in [7,15]. In short, the optimized excitation signal is an odd random
phase multisine defined as:

UFOT D
109X

kD0
Ak sin.2�.2k C 1/f0 t C �k/ (14.1)

with:

• frequency interval from 0.1 to 10.9 Hz
• frequency resolution f0 of 0.1 Hz
• only odd harmonics
• only harmonics which are not overlapping with the first 5 breathing harmonics

are used
• equal amplitude Ak for all excited harmonics
• the phase �k uniformly distributed between Œ0; 2��
• 1 so-called detection line for each group of 4 excited odd harmonics is not excited

in order to check for odd nonlinear distortion.
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The standard procedure to obtain the impulse response g.t/ of a linear system is
based on the correlation analysis [15]:

Ryu.t/ D g.t/ 
Ruu.t/ (14.2)

with u.t/ the input signal, y.t/ the output signal and 
 denoting the convolution
product.Ryu.t/ and Ruu.t/ are the cross- and auto-correlations, respectively:

Ryu.
/ D Efy.t/u.t � 
/g
Ruu.
/ D Efu.t/u.t � 
/g (14.3)

with 
 the shift interval. Applying Fourier-transform to (14.2) results in

G.j!/ D SYU .j!/

SUU .j!/
(14.4)

where the cross-spectrum SYU .j!/, the auto-spectrumSUU .j!/, and the frequency
response function (FRF) G.j!/ are the Fourier transforms of RYU .t/, RUU .t/ and
g.t/, respectively.

The Best Linear Approximation (BLA) [15, 16] of a nonlinear system gBLA.t/

minimizes the mean squared error (MSE) between the real output of a nonlinear
system y.t/ � Efy.t/g and the output of a linear model approximation gBLA.t/ 

.u.t/ � Efu.t/g/:

Efk.y.t/ � Efy.t/g/� gBLA.t/ 
 .u.t/ �Efu.t/g/k2g (14.5)

where E denotes the expected value with respect to realizations of the input. In the
frequency domain, the solution to the optimization problem from (14.5) is given by:

OGBLA.j!/ D
OSYU .j!/
OSUU .j!/

(14.6)

where the cross-spectrum OSYU .j!/, the auto-spectrum OSUU .j!/, and the FRF
OGBLA.j!/ are the Fourier transforms ofRYU .t/,RUU .t/ and gBLA.t/, respectively.

In practice, this relation is simplified for periodical signals as:

OGBLA.j!k/ D 1

M

MX

mD1

Y Œm�.k/

U Œm�.k/
(14.7)

where the notation XŒm�.k/ has been used to describe the DFT-spectrum of the mth

multisine realization. The estimation of BLA, OGBLA, described by relation (14.7)
can be re-written as:

OGBLA.j!k/ D GBLA.j!k/CGS.j!k/CNG.j!k/ (14.8)
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Fig. 14.2 A schematic representation of the input–output contributions. It can be observed that
the proposed algorithm allows separation of the even, odd contributions which come from non-
excited bins of frequency. In this way, the response to the excited bins (i.e. linear and nonlinear
contributions) and the response from the non-excited bins (i.e. nonlinear contributions) can be
separated and used for analysis

where GS is the nonlinear noise term (EfGSg D 0) and NG is the measurement
noise. The nonlinear stochastic contributionGS depends on the power spectrum and
the power distribution of the input signal, as well as on the even and odd nonlinear
contributions. The effect ofGS can be reduced by averaging the measurements over
several multisine realizations (i.e. multiple measurements m of the same system,
with different inputs of same amplitude distribution, but different random phase
realization in (14.1)). The effect of NG can be reduced by measuring longer records
(i.e. larger number of periods p during each measurement).

In Fig. 14.2, the underpinning principle of detecting these nonlinearities is
represented.

In time domain, the output y.t/ of a nonlinear system can be written as:

y.t/ D gBLA.t/ 
 u.t/C ys.t/ (14.9)

where gBLA.t/ is the impulse response of the linear BLA, and ys.t/ is the term in
the output signal as a result of the stochastic nonlinear distortion.

Given that ny.t/ is a stochastic process and ys.t/ is a periodical signal dependent
on the realization r.t/, the FRF of the mth realization and pth period, GŒm;p�.j!k)
can be described as [15]:
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GŒm;p�.j!k/ D Y Œm;p�.k/

U
Œm�
0 .k/

D GBLA.j!k/C Y
Œm�
S .k/

U
Œm�
0 .k/

C N
Œm;p�
Y .k/

U
Œm�
0 .k/

(14.10)

where XŒm;p�.k/ is the DFT spectrum of the pth period of the mth multisine
realization and OXŒm� is the estimated spectrum of the mth multisine realization.

Consequently, one can estimate the BLA, the variance of the stochastic nonlinear
distortions and the noise variance using:

OGŒm�.j!k/ D 1

P

PX

pD1
GŒm;p�.j!k/

OGBLA.j!k/ D 1

M

MX

mD1
OGŒm�.j!k/ (14.11)

O�2OGŒm� .k/ D
PX

pD1

jGŒm;p�.j!k/ � OGŒm�.j!k/j2
P.P � 1/

O�2OGBLA.k/ D
MX

mD1

jGŒm�.j!k/� OGBLA.j!k/j2
M.M � 1/

(14.12)

O�2OGBLA;n .k/ D 1

M2

MX

mD1
O�2OGŒm� .k/ (14.13)

var.GS .j!k// � M. O�2OGBLA.k/� O�2OGBLA;n .k// (14.14)

where OGBLA.j!k/ is the estimated BLA, O�2OGBLA.k/ is the estimated total variance
(stochastic nonlinear variance + noise variance) averaged over the m realizations,
O�2OGBLA;n .k/ is the estimated noise variance averaged over the m experiments and

var.GS.j!k// the variance of the stochastic nonlinear distortion with respect to
one multisine realization. This estimations can be done for odd and even frequencies
separately, depending on the selection of !k .

The total variance and noise variance are averaged over the m experiments
and provide insight into the reliability of the FRF measurements over m different
multisine realizations. The variance of the stochastic nonlinear distortion with
respect to one realization provides insight into the amount of nonlinear distortion
in the system. A comprehensive description of these methods and a manifold of
illustrative examples are given in [15].

In order to obtain a quantification of these nonlinear contributions, we introduce
the following index:

T D Peven C Podd

Pexc
� Uexc

Ueven C Uodd
(14.15)
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where each variable is the sum of the absolute values of all the contributions
in pressure signal and input flow signal, respectively, at the even non-excited
frequencies, the odd non-excited frequencies and the excited odd frequencies. Only
the corrected output pressure (i.e. corrected from the bias coming from the device
itself) has been taken into account when calculating (14.15).

14.4 Results and Validation

14.4.1 Device and Calibration Tube

In order to validate the correctness of the measurement, a known impedance
is required. A calibration tube with the characteristics shown in Fig. 14.3 has
been measured by means of the prototype device. The corresponding BLA of the
calibration tube is given in Fig. 14.4, which corresponds to a theoretical value for
the reference tube impedance.

14.4.2 Volunteers

The nonlinear distortions introduced in the input signal due to the device itself are
corrected in the measured pressure before calculating the BLA or the respiratory
impedance of the volunteers. This is done using the BLA of the device itself and
(14.10). For the signal processing part, we usedm=6 realizations, p=3 intervals and
n=5000 samples.

Figure 14.5 shows the results obtained for a healthy volunteer. In this figure, one
may observe the excited and non-excited frequency contributions in the pressure
signal.

Fig. 14.3 Schematic representation of the calibration tube. ID: inner diameter
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Fig. 14.4 BLA of the calibration tube, for the pressure signal. Bold black line: BLA; blue dashed
line: total variance (noise + stochastic nonlinear distortion); red dotted line: noise variance;
green dash-dot line: variance of the stochastic nonlinear distortion with respect to one multisine
realization

Fig. 14.5 Input (left column), output (middle column) and corrected DFT spectrum for nonlinear
contributions in the device (right column) of a healthy volunteer. Blue ‘+’: excited odd harmonics;
red ‘o’: non-excited odd harmonics; green ‘*’: non-excited even harmonics

Figure 14.6 shows the results obtained for all the volunteers, in terms of the
new index from (14.15). Statistical analysis has been performed using standard t-
tests from statistical toolbox of Matlab. The 5 % confidence intervals are 0.1586
and 0.1887, respectively, with a mean of 0.1736, median of 0.1715 and standard
deviation of only 0.0224. The fact that the standard deviation is rather small
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Fig. 14.6 The values of the novel index from (14.15) plotted for the group of volunteers

compared to the mean value is an indication that the group of volunteers have been
chosen close to each other in terms of pulmonary characteristics (this was also pre-
requisite to be included in the test group). This is further supported by the fact that
the mean and median values are also close together.

One may expect that the nonlinear distortions tend to be significantly increased
in patients diagnosed with respiratory disease than in healthy subjects. From
clinical insight, this indeed makes sense. The respiratory system affected by chronic
obstructive pulmonary disease contains broken alveolar sacs which will change the
heterogeneous appearance of the tissue and introduce nonlinear effects originated by
turbulent flow, stiffness, with additional inflammation and clogging of the airways.
The respiratory system affected by asthma is subject to airway hyperresponsiveness
leading to airway chronic inflammation. This affects the airway remodelling,
changing airflow dynamics and hence introducing nonlinear effects from turbulent
flow, airway obstruction, airway muscle fibrosis, etc. In both cases, changes in
structure and morphology will change the nonlinear response of the respiratory
system, hence the values of the proposed index will change as well. This assumption
is also supported by earlier works on the dynamic analysis of the respiratory system
in healthy volunteers and diagnosed patients [8, 9].

Although this preliminary evaluation was performed on a limited number of
volunteers, it suggests that measuring nonlinear contributions may hold significant
information upon the evolution of respiratory diseases. Respiratory mechanics at
low frequencies have inherent information on the viscoelastic properties of airways
and tissue. The challenge is that the amplitude and frequency of the breathing signal
may vary within the measurement and from one measurement to another, making
the detection lines prone to biased values. The results obtained in these initial steps
are a proof of concept which motivates further development of the technique.
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14.5 Conclusions and Perspectives

This contribution introduced a novel device and an improved method which
allow detection and quantification of the nonlinear effects in the measurement
instrumentation and in the respiratory system. The proposed algorithm extracts
the best linear approximation of the nonlinear dynamics present in the respiratory
system. An optimized multisine excitation signal has been applied on a group of
healthy volunteers. A novel index has been proposed to quantify these nonlinear
contributions in the signals measured from the volunteers.
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Chapter 15
Drilling Systems: Stability and Hidden
Oscillations

M.A. Kiseleva, N.V. Kuznetsov, G.A. Leonov, and P. Neittaanmäki

Abstract There are many mathematical models of drilling systems Despite, huge
efforts in constructing models that would allow for precise analysis, drilling
systems, still experience breakdowns. Due to complexity of systems, engineers
mostly use numerical analysis, which may lead to unreliable results.

Nowadays, advances in computer engineering allow for simulations of com-
plex dynamical systems in order to obtain information on the behavior of their
trajectories. However, this simple approach based on construction of trajectories
using numerical integration of differential equations describing dynamical systems
turned out to be quite limited for investigation of stability and oscillations of these
systems. This issue is very crucial in applied research; for example, as stated in
Lauvdal et al. (Proceedings of the IEEE control and decision conference, 1997)
the following phrase: “Since stability in simulations does not imply stability of the
physical control system (an example is the crash of the YF22) stronger theoretical
understanding is required”.

In this work, firstly a mathematical model of a drilling system developed by a
group of scientists from the University of Eindhoven will be considered. Then a
mathematical model of a drilling system with perfectly rigid drill-string actuated by
induction motor will be analytically and numerically studied. A modification of the
first two models will be considered and it will be shown that even in such simple
models of drilling systems complex effects such as hidden oscillations may appear,
which are hard to find by standard computational procedures.
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Among the problems the drilling industry faces, drill string failure is of particular
interest because of its frequency of occurrence. This issue suggests that the drill
string was under a load which led to its break or operation cutoff. The costs derived
from these failures are of such importance that finding solutions for reducing them
has been a concern for industrial research for many years [8, 39]. For example, in
1985, among all the deep well drilling problems, 45% were related to drill string
failures. In 1991, Shell Expro suffered exceptionally high losses due to drill string
failures. These losses were estimated to be more than US $2MM in a two-month
span and were caused by a specific drilling unit experiencing five failures within
this period. To reduce these failures, a Drill String Prevention Quality Improvement
Project was implemented, and it succeeded in reducing nonproductive time costs
associated with drill string failures from US $6.5MM in 1992 to less than US $1MM
in 1994. Also, by the end of 1994 total failures had been reduced by 55%, which
translated into about US $8.5MM in savings associated with these costs. The cost
associated with each failure averages roughly US $106000, and drill string failure
occurs at some point in 1 out of 7 drill rigs, thus research in drilling systems to
reduce both the rate and costs of these failures continues being crucial.

The drill string undergoes various types of vibrations during drilling [11, 19,
35, 40]: axial (longitudinal), lateral (bending), hydraulic and torsional (rotational)
vibrations. Axial vibrations are compression alternations and are due to the rebound
(bouncing) of the drill against the formation during the rotation. Lateral vibrations
are also called transversal of whirling vibrations. This type of vibration is caused
by the eccentricity of the strings which leads to centripetal forces during rotation.
Hydraulic vibrations appear in circulation system stemming from pulp pulsation.

Torsional vibrations are caused by the nonlinear interaction between the bit and
the rock. In [3, 14, 36] it was concluded that the negative damping in the friction
force that appears due to the contact of the bit and the borehole is the reason for
torsional vibrations. Negative damping in the friction force may lead to stick-slip
phenomenon [4,9,20,37,38], when drill string and borehole wall alternate between
sticking to each other and sliding over each other. The consequence of stick-slip
vibration may be severe enough to provoke a sudden stop of the drill rotation.

There are many mathematical models of drilling systems [5, 12, 22]. Despite,
huge efforts in constructing models that would allow for precise analysis, drilling
systems still experience breakdowns. Due to complexity of systems, engineers
mostly use numerical analysis, which may lead to unreliable results.

Nowadays, advances in computer engineering allow for simulations of complex
dynamical systems in order to obtain information on the behavior of their trajec-
tories. However, this simple approach based on construction of trajectories using
numerical integration of differential equations describing dynamical systems turned
out to be quite limited for investigation of stability and oscillations of these systems.
This issue is very crucial in applied research; for example, as stated in [18] the
following phrase: “Since stability in simulations does not imply stability of the
physical control system (an example is the crash of the YF22) stronger theoretical
understanding is required”.
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In this work, firstly a mathematical model of a drilling system developed by a
group of scientists from the University of Eindhoven will be considered. Then a
mathematical model of a drilling system with perfectly rigid drill-string actuated by
induction motor will be analytically and numerically studied. A modification of the
first two models will be considered and it will be shown that even in such simple
models of drilling systems complex effects such as hidden oscillations may appear,
which are hard to find by standard computational procedures.

15.1 Two-Mass Mathematical Model of a Drilling System

Let us first consider the “two-mass” mathematical model of a drilling system studied
in [5, 36]. This model consists of an upper disc actuated by a drive part (consisting
of a power amplifier, DC-motor, and a gear box), a no-mass string, and a lower disc
(see Fig. 15.1). The upper disc is connected to the lower disc by the string, which is
a low stiffness connection between the discs. There are two friction torques acting
on the upper and the lower discs. The upper friction torque is mainly caused by the
electromagnetic field in the drive part of the model. The lower friction torque is a
result of the friction against the workpiece which the drill bit cuts. This model is
described by equations of motion for the upper and lower discs:

String

DC
motor

Upper disc

Lower disc
Fig. 15.1 Two-mass
mathematical model of a
drilling system
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Fig. 15.2 Upper and lower friction models

Ju
R�u C k� .�u � �l /C b. P�u � P�l /C Tf u. P�u/� kmu D 0;

Jl R�l � k� .�u � �l /� b. P�u � P�l /C Tf l . P�l / D 0: (15.1)

Here �u and �l—angular displacements of the upper and lower discs, respectively,
( P�u, P�l—derivatives of �u, �l with respect to time t), Ju and Jl—inertia torques, k� ,
km, b—nonnegative coefficients, u—constant input voltage. Tf u and Tf l—friction
torques acting on the upper and the lower discs. In order to model both frictions
set-valued force laws are needed. The friction torque acting on the upper disc is
described as follows:

Tf u. P�u/ 2
8
<

:
Tcu. P�u/sign. P�u/; for P�u ¤ 0

Œ�Tsu C�Tsu; Tsu C�Tsu�; for P�u D 0;
(15.2)

Tcu. P�u/ D Tsu C�Tsusign. P�u/C buj P�uj C�bu
P�u; (15.3)

where Tsu, �Tsu, bu, �bu—nonnegative coefficients.
The model of the friction torque acting on the lower disc is:

Tf l . P�l / 2
8
<

:
Tcl . P�l /sign. P�l /; for P�l ¤ 0

Œ�Tsl ; Tsl �; for P�l D 0;
(15.4)

Tcl . P�l / D Tfm C .Tsl � Tfm/e
�j P�l

!sl
jısl C bl j P�l j; (15.5)

where Tsl , Tfm, !sl , ısl and bl—nonnegative coefficients.
Both friction models are depicted in Fig. 15.2. The usage of discontinuous

friction models allows to properly describe stick-slip effect and most of the
important friction phenomena. In the discontinuous region the solution of system
(15.1) is understood in the sense of [6, 41].



15 Drilling Systems: Stability and Hidden Oscillations 291

Performing nonsingular change of variables !u D P�u, !l D P�l , ˛ D �u � �l we
obtain the system

P!u D �k�˛ � b.!u � !l/ � Tf u.!u/C kmu;

P!l D k�˛ C b.!u � !l/ � Tf l .!l/;
P̨ D !u � !l : (15.6)

Upper and lower friction torques transform to

Tf u.!u/ 2
8
<

:
Tcu.!u/sign.!u/; for !u ¤ 0

Œ�Tsu C�Tsu; Tsu C�Tsu�; for !u D 0;
(15.7)

Tf l .!l/ 2
8
<

:
Tcl .!l /sign.!l /; for !l ¤ 0

Œ�Tsl ; Tsl �; for !l D 0:
(15.8)

Here

Tcu.!u/ D Tsu C�Tsusign.!u/C buj!uj C�bu!u (15.9)

and

Tcl .!l/ D Tfm C .Tsl � Tfm/e�j !l!sl jısl C bl j!l j: (15.10)

Due to the complexity of the friction models only numerical analysis of system
(15.6) is possible. During the local analysis it was found that the system has either
a stable or an unstable equilibrium state. Then the global analysis of the system was
done in order to check whether there were any oscillations in the system.

Since, for computing an oscillation in nonlinear dynamical system, one of the
key factors is its basin of attraction, the attractors can be regarded [2, 21, 24, 30, 33]
as self-exciting or hidden attractors, depending on simplicity of finding its basin of
attraction in the phase space. Self-exciting attractors can be numerically localized by
standard computational procedure, in which after a transient process a trajectory,
started from a point of unstable manifold in a neighborhood of equilibrium, reaches
a state of oscillation therefore one can easily identify it. In contrast, for a hidden
attractor, its basin of attraction does not intersect with small neighborhoods of
equilibria 1.

1In the 1950–1960s of last century the investigations of widely known Markus-Yamabe’s, Aizer-
man’s conjecture (Aizerman problem), and Kalman’s conjecture (Kalman problem) on absolute
stability led to the finding of hidden oscillations in automatic control systems with nonlinearity,
which belongs to the sector of linear stability (see, e.g., [2, 17, 23, 27, 29] and others). In 1961,
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Fig. 15.3 Hidden oscillations and stable equilibrium

During the analysis of the model hidden oscillations were found (Fig. 15.3). One
can see both the stable equilibrium state and the stable limit cycle. Note that here the
mentioned above stick-slip vibrations appear. In Fig. 15.4 limit cycle for the same
data is depicted. Here sections with !l D 0 correspond to moments when the drill
got stuck against borehole. Finding such hidden oscillations is a quite complicated
problem due to the fact that standard computation (in which a trajectory from a
neighborhood of an unstable equilibrium reaches and identifies an attractor) does not

Gubar’ [7] showed analytically the possibility of hidden oscillations existence in two-dimensional
system of phase locked-loop [32, 33]. In 2010 chaotic hidden oscillations (hidden attractors) were
discovered for the first time [15, 16, 28, 30, 31] in Chua’s circuit.
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Fig. 15.4 Stick-slip vibrations phenomenon

work here, since the only equilibrium is stable. Integration with random initial data
is a challenging task due to the fact that the system is of 3rd order and the basin of
attraction is not large.

This model considers only the dynamics of the drill since it uses DC motor.
In real systems, the DC motor may heat to the point where the windings of the
rotor burn out (for example, if the load is too high). Using an induction motor in a
drive part of a drilling system allows to avoid this problem. In the next two sections
models of a drilling systems actuated by induction motor will be introduced.

15.2 Mathematical Model of Drilling System
with Perfectly Rigid Drill-String

Assume that the drill-string is a perfectly rigid body, stiffly connected with the rotor
which rotates due to magnetic field created by the stator of the induction motor.
During the operation this system experiences sudden load changes provoked by the
interaction of the drill bit with the rock, so the problem of drilling system behavior
understanding arises.

There are different mathematical models of induction motor [25, 26, 34]. Here,
in order to provide qualitative analysis of the system, we use one of the low-
dimensional models proposed in [13,22] supplemented by friction torque appearing
when the drill bit cuts the rock.

Induction motor consists of fixed stator and rotating rotor stiffly connected to the
drill-string. Alternating current in stator windings creates alternating magnetic field.
In order to simplify the model several assumptions are made: stator’s windings are
made in such a way that intensity vector of magnetic field and angular velocity of
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0 ω

Tf

-T0

MT0

Fig. 15.5 Friction torque Tf

magnetic field are constant (Tesla-Ferraris effect, see [10]), these electromagnetic
processes in rotor windings don’t influence the currents in the stator windings
and the rotor contains only two orthogonal windings with currents i1 and i2
passing through them. Consider rotating coordinate system stiffly connected with
the intensity vector of magnetic field. In this case we define currents with the help of
Faraday’s law and Ohm’s law (the reciprocal inductance is not taken into account):

LPi1.t/CRi1.t/ D ˆB.sin�.t// P�.t/;
LPi2.t/CRi2.t/ D ˆB.cos�.t// P�.t/: (15.11)

Here �—angular displacement of the drill with respect to the magnetic field created
by the stator, which rotates with constant velocity !mf ; i1.t/, i2.t/—currents in
rotor windings;R—resistance of the windings;L—inductance of the windings;ˆB
magnetic flux through the windings.

The equations of the motion of the drill-string connected to the rotor with respect
to the rotating magnetic field takes the following form:

J R�.t/ D �ˇˆB.i1.t/sin�.t/C i2.t/cos�.t//C Tf .!mf C P�.t//: (15.12)

where J—inertia torque of the drill, ˇ—proportionality coefficient;! D P�C!mf —
angular speed of the drill-string rotation with respect to the motionless coordinates
system. Equations (15.11) and (15.12) are equations of the mathematical model of
drilling the system perfectly rigid drill-string actuated by induction motor.

Let us assume that Tf is of Coulomb type [41]. Here in contrast to the classical
Coulomb friction law with symmetrical discontinuous characteristics we consider
Tf with asymmetrical characteristics shown in Fig. 15.5:

Tf D
(

�T0 if ! > 0

MT0 if ! < 0;
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where M;T0 > 0, M is sufficiently large number. This corresponds to the fact that
the drilling process happens only when ! > 0. In real systems during transient
processes such characteristics don’t allow change from positive to negative !. In
such cases the system may only get stuck at ! D 0 for some period of time. Such
effects will be shown during the analysis of system (15.11)–(15.12) and happen
quite often [1] during the drilling process.

Performing nonsingular change of variables

s D � P�;

x D L

ˆB
.i1cos� � i2sin�/;

y D L

ˆB
.i1sin� C i2cos�/;

from (15.11)–(15.12) we obtain the following system:

Ps D ay C �.s; y/;

Py D �cy � s � xs;
Px D �cx C ys; (15.13)

where a D ˇˆB
2

IL
, c D R

L
. Here x, y determine electrical variables in rotor

windings, and s defines the slip. In the discontinuous region, �.s; y/ should be
defined as:

�.s; y/ D

8
ˆ̂<

ˆ̂:

�; if s D !mf ; y < � �

a
or s < !mf I

��M; if s D !mf ; y >
M�

a
or s > !mf I

�ay; if s D !mf ;� �

a
� y � M�

a
;

where � D T0

I
.

Limit load problem. Let there be a sudden load change from �0 to �1 at the

moment t D � , where 0 < �0 < �1 < �max D a

2
. Such situation happens during

the transition to a harder medium. For � D �0 the system has one stable equilibrium

state s0 D c.a �p
a2 � 4�02/
2�0

, y0 D ��0
a

, x0 D ��0s0
ac

. It is important that the

solution s.t/, x.t/, y.t/ of system (15.13) in a new transient mode with � D �1

and initial data s.�/ D c.a �p
a2 � 4�02/

2�0
, y.�/ D ��0

a
, x.�/ D ��0s0

ac
tends the

equilibrium state s1 D c.a �p
a2 � 4�12/
2�1

, y1 D ��1
a

, x1 D ��1s1
ac

for t ! C1.
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Using the results obtained in [22] we obtain the following theorem.

Theorem 1. Let the following conditions be fulfilled:

�0 < �max; (15.14)

�1 < min
˚
�max; 2c2


; (15.15)

.�1 � �0/
2

2c2
s0
2 C .�1 � �0/

2

2
�

!mfZ

s0

�.s/ds C .1CM/2

2
�1
2: (15.16)

Then the solution of system (15.13) with � D �1 and initial data s.
/ D
c.a �p

a2 � 4�02/

2�0
, y.
/ D ��0

a
, x.
/ D ��0s0

ac
tends to the equilibrium state

of this system for t ! C1.

In this theorem, condition on permissible parameters �0 and �1 corresponding to
two different medium types is given, such that the transient process during sudden
medium change is stable.

Proof. Let us present the scheme of the proof of the theorem. Consider the region˚
s.t/ < !mf


of the phase space of system (15.13).

Performing nonsingular change of variables

� D ay C �1; z D �x � �1

ac
s;

from (15.13) we obtain

Ps D �;

P� D �c�C azs � �.s/;

Pz D �cz � 1

a
s� � �1

ac
�: (15.17)

Here �.s/ D ��1
c
s2 C as � c�1.

Let’s introduce the function

V.s; �; z/ D a2

2
z2 C 1

2
�2 C

sZ

s1

�.s/ds:

For any solution of system (15.17) from region s.t/ < !mf the following relation
is satisfied:

PV .s.t/; �.t/; z.t// D �a2cz.t/2 � a�1

c
�.t/z.t/ � c�.t/2 � 0: (15.18)



15 Drilling Systems: Stability and Hidden Oscillations 297

The quadratic form in the right-hand side of (15.18) is negative definite taking
into account (15.15).

Introduce the set

�mf D
8
<

:V.s; �; z/ �
!mfZ

s1

�.s/ds C .1CM/2

2
�21 ; s 2 Œs2; !mf �

9
=

; ;

where the point s2 < !mf is such that

!mfZ

s2

�.s/ds C .1CM/2

2
�21 D 0:

Set �mf is limited, and for s.t/ D !mf it takes the form:

a2

2
z2 C 1

2
�2 � .1CM/2

2
�21 :

Going back to initial coordinates(x, y, s) we obtain:

.x C �1

a
/2 C .y C �1

a
/2 � .1CM/2

a2
�21 :

Note that this circle lies below the lower boundary y D M�1

a
of the slip region

� D


s D !mf ;��1

a
� y � M�1

a

�
of system (15.13).

In the slip region� of system (15.13) can be transformed to the following form:

Py D �cy � !mf � !mf x;
Px D �cx C !mf y:

There are no equilibrium states in the slip region if the condition (15.15) is
valid. The solution which falls into the slip region necessarily goes out through

the lower boundary y D ��1
a

into the region s < !mf (Ps < 0 if s D !mf ; y <

��1
a

). Condition (15.18) implies that this solution is found to be inside the region
(
V.s; �; z/ �

!mfR
s1

�.s/ds

)
, it doesn’t fall further into the slip region and tends to

the equilibrium state .s1; y1; x1/ of the system due to the boundedness of �mf .
Obviously, other trajectories which fall into �mf but don’t pass through the slip
region will also tend to the equilibrium state.

Thus the system is dichotomic (i.e., every solution bounded on Œt0;1/, where
t0 2 R tends to a stationary set, see [41]), if condition (15.15) is fulfilled.
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The set �mf contains the point s D s0, � D �1 � �0, z D �0 � �1
ac

s0, if

.�1 � �0/
2

2c2
s0
2 C .�1 � �0/

2

2
�

!mfZ

s0

�.s/ds C .1CM/2

2
�1
2: (15.19)

Due to �0 < �1 and condition (15.16)

.�1 � �0/
2

2
�

!mfZ

0

�.s/ds C .1CM/2

2
�1
2: (15.20)

Let’s show that

.�1 � �0/2
2c2

s0
2 �

0Z

s0

�.s/ds: (15.21)

Indeed, taking into account �0 � 2�1, we get:
�1

3c
s0
2 � a

2
s0 � .�1 � �0/2

2c2
s0 C

c�1 D 1

12c2�02
.c2.a�pa2 � 4�02/

2�1 � 3a2c2�0 C 3a2c
p
a2 � 4�02�0 � 3.�1 �

�0/
2.a �p

a2 � 4�02/�0 C 12c2�1�0
2/ � 1

12c2�02
.2a2c2 � 2ac2

p
a2 � 4�02�1 C

3ac2
p
a2 � 4�02�3a2c2�0C3

p
a2 � 4�02�0�12�3a�12�0C8c2�02�1/ � 0:Hence,

from inequalities (15.20) and (15.21) we obtain the condition (15.19).
Thus the solution s.t/, �.t/, z.t/ with initial data

s.
/ D s0; �.
/ D �1 � �0; z.
/ D �0 � �1
ac

s0

tends to the equilibrium state of the system. ut
The following corollary is formulated for the case when the rotating speed of

the magnetic field is equal to the maximum value of the static characteristics of the
induction motor.

Corollary 1. Let the following conditions be fulfilled

�0 < �max;

�1 < min
˚
�max; 2c2


;

3.M2 C 2M/�21 � 8c2�1 C 3ac2 � 0:

Then the solution of system (15.13) with !mf D c, � D �1 and initial data

s.
/ D c.a �p
a2 � 4�02/
2�0

; y.
/ D ��0
a
; x.
/ D ��0s0

ac

tends to the equilibrium state of this system for t ! C1.
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γ =
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c
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γ = a /2

γ

c0

2
1

Fig. 15.6 1 permissible load
region due to the theorem, 2
permissible load region due
to the computer modeling of
the system

The next corollary states the stability of transient process for drilling system
when drill may rotate only in one direction.

Corollary 2. Let M be a sufficiently large number, !mf D c, �0 D 0 and

�1 < min
na
2
; 2c2

o
: (15.22)

Then the solution of system (15.13) with � D �1 and initial data s.
/ D 0, y.
/ D 0,
x.
/ D 0 tends to the equilibrium state of this system when t ! C1.

For �1 2
n
2c2;

a

2

o
(i.e., the condition (15.22) is not valid) computer modeling of

system (15.13) was done (region 2 in Fig. 15.6), which showed that the statement of
the corollary 2 is valid.

Thus, with the help of analytical methods and computer simulation, it was shown
that the limit permissible discontinuous load depends on the maximum value of
the constant load under which the system has the steady mode. As opposed to the
previous model, no oscillations were found in this model.

15.3 Mathematical Model of the Drilling System Actuated
by Induction Motor

In order to take into account the dynamics of the motor let us consider the
modification of the first model supplemented by the equations of the induction motor
used in the second model. The rotation of the discs will be considered with respect
to the rotating magnetic field created by the stator of the induction motor, but we
will use the same notation as before.
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The equations of the new two-mass model of the drilling system actuated by
induction motor are as follows:

LPi1 CRi1 D ˆB.sin �u/ P�u;

LPi2 CRi2 D ˆB.cos �u/ P�u;

Ju
R�u C k� .�u � �l /C b. P�u � P�l /C ˇˆB.i1 sin �u C i2 cos �u/ D 0;

Jl R�l � k� .�u � �l /� b. P�u � P�l /C Tf l .!mf C P�l / D 0: (15.23)

Here �u, �l—angular displacements of rotor and the lower disc relative to the
rotating magnetic field created by the stator of the induction motor, !mf —speed
of the rotation of magnetic field, Tf l .!mf C P�l /— friction torque (same as in the
first model). Here the first two equations are the equations of the induction motor
from the second model. Third and fourth equations are taken from the first model,
but in the third equation expression Tf u. P�u/ � kmu from the first model is replaced
by the expression ˇˆB.i1.t/ sin �u.t/C i2.t/ cos �u.t// which represents the effect
of the induction motor on the upper disc. Only Tf l . P�/ changed to Tf l .!mf C P�l /
due to the fact that �u � �l is same in both systems and, obviously, the derivatives of
!mf C P�u and .!mf C P�l / are equal to P�u and P�l , respectively.

Performing nonsingular change of variables

!u D � P�u;

x D L

ˆB
.i1 cos �u � i2 sin �u/;

y D L

ˆB
.i1 sin �u C i2 cos �u/;

!l D � P�l ;
� D �u � �l ;

we obtain the system of 5th order

Py D �cy � !u � x!u;

Px D �cx C y!u;

P� D !l � !u;

P!u D k�

Ju
� C b

Ju
.!l � !u/C a

Ju
y;

P!l D �k�
Jl

� b

Jl
.!l � !u/C 1

Jl
Tf l .!mf � !l/; (15.24)

Here a D ˇˆB
2

L
, c D R

L
.
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Fig. 15.7 Hidden oscillations and stable equilibrium in the mathematical model of a drill actuated
by induction motor—projection onto (� , !u, !l )

Due to the complexity of Tf l .!mf �!l/ and high order of the system it is hard to
provide in-depth qualitative analysis for system (15.24). Using computer modeling
it is shown that under certain parameters the system has unique stable equilibrium
state and hidden oscillations represented by stable limit cycle (See Fig. 15.7). Here
the modeling is done in the system of 5th order so the chance of finding hidden
oscillations was much lower than in the first model described above. In Fig. 15.8
it can be seen that these oscillations are also of a stick-slip type. Here !mf � !u,
!mf � !l are speeds of the upper and lower discs relatively to the fixed coordinate
system.
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Fig. 15.8 Stick-slip vibrations phenomenon in the mathematical model of a drill actuated by
induction motor

15.4 Conclusion

Despite the numerous models describing drilling systems, drill-string failures still
occur, which cause enormous cost losses for drilling industry. In this work, a two-
mass model of a drilling system, a mathematical model of drilling system with
perfectly rigid drill-string, actuated by induction motor, and a modified version
of these two models are considered. For the second model both analytical and
numerical methods are used and it is shown that the limit permissible discontinuous
load is equal to the value of the highest constant load at which the system has the
steady mode. For the other two models it is demonstrated that along with the stable
equilibrium, a stable limit cycle was found in both cases. This result shows that such
complex effects such as hidden oscillations appear even in rather simple models. It
is possible that the breakdowns in real drilling systems happen due to the existence
of hidden oscillations which were not found because of difficulties during numerical
analysis of those systems.
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Chapter 16
Chaos in a Piecewise Linear System
with Periodic Oscillations

Chunqing Lu

Abstract The paper studies a second order nonlinear differential equation whose
right hand side is a piecewise linear function. It shows the coexistence of a countable
set of periodic solutions and an uncountable set of bounded non-periodic solutions.
The result can be also used to explain the chaos on some smooth nonlinear
dynamical systems.

Keywords Chaos • Piecewise linearity • Weierstrass theorem

16.1 Introduction

Consider a second order nonlinear differential equation

x00 C p.x/ D � cos 	t (16.1)

where p.x/ is an S -shaped polynomial and � and 	 are positive constants. One
of such equations is the well-known Duffing equation without damping in which
p.x/ D x3 � x or a third order polynomial. Many researchers have investigated
the rich phenomenon of its solutions numerically. There are also some analytical
results based on the perturbation method and Poincare maps [1]. However, there are
still more questions to be investigated. For example, if the solutions are chaotic, can
we find the pattern of such solutions? This paper uses a piecewise linear function
to approximate the polynomial p.x/ to explore certain types of chaotic solutions of
(16.1). As an example, we study the equation
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x00 � f .x/ D � cos 	t (16.2)

where f .x/ is a piecewise linear function

f .x/ D
8
<

:

x for jxj � 1;

2 � x if x > 1;
�2 � x if x < �1:

(16.3)

By the Weierstrass approximation theorem, for any� > 0, there exists a polynomial
p.x/ such that jp.x/ � f .x/j < � for all x on a finite interval Œ˛; ˇ�. This means
also that f .x/ can be used to approximate the polynomial p.x/ for all x on any
given finite interval.

Note that the piecewise linear function f .x/ is Lipschitz conditioned and
therefore, the existence and uniqueness theorem of solutions to (16.2) can be
applied. In addition, solutions of (16.2) continuously depend on its initial values,
parameters, and the function f .x/ on any finite interval of t . Precisely, we can take
� small enough so that the solutions of equations (16.2) and (16.1) and their first
order derivatives can be sufficiently close over any fixed finite interval. In this way,
the behavior of solutions of (16.1) is determined by the solutions of (16.2) on the
finite interval. The analysis in this paper shows that the behavior of the solutions
of (16.2) on the finite interval will determine the behavior of the solutions for
�1 < t < 1; which becomes chaotic in the sense that there exist a countable
set of periodic solutions and a non-countable set of bounded non-periodic solutions.
The N -shaped function (�f .x/) is used to approximate the S -shaped polynomial.
We then will observe the existence of the chaotic solutions of a generalized Duffing
equation (16.1).

Equation (16.2) is not a smooth nonlinear dynamical system. It may be used as a
real mathematical model for some dynamical systems. The perturbation of Poincare
maps and the related theory including the so-called Melnikov’s method may not be
applied. However, (16.2) can be solved explicitly in different intervals. Thus, the
direct classical analysis can be implemented, which gives us a clear insight about
how chaos happens in this system. This paper modifies the analyses in [6] and gives
clearer proofs. But, some approximation analyses are still given by their outlines.

Using approximation theory and the direct classical analysis to study Chaos was
first accomplished by N. Levinson [3] in 1949. Levinson first proved the existence
of chaotic solutions of the generalized van der Pol equation

x00 C p.x/x0 C x D c sin t; (16.4)

where p.x/ is a polynomial and c is a constant. He used a piecewise constant
function to approximate the polynomial p.x/ and obtained some chaotic solutions
of the equation. Levinson’s work also showed the existence of the strange attractors,
the Levinson ring, which is a ring-shaped closed connected set in the phase plan.
It was Levinson’s analysis that led to Smale’s introduction of the horseshoe map.
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The relation between Levinson’s ring and Smale’s horseshoe was explained by
Levi [1, 4].

16.2 Asymptotic Solutions for jxj � 1

We assume that 	 > 0 is sufficiently small in this paper. We first make a change
of variables: 
 D 	t; u.
/ D x.t/ D x.
=	/. For convenience, we replace 
 by t .
Thus, (16.2) takes the following form

	2u00 D f .u/C � cos t; (16.5)

where

f .u/ D
8
<

:

u for juj � 1

2 � u if u > 1
�2 � u if u < �1

(16.6)

The solutions of (16.5) can be given explicitly. For juj < 1, the equation is linear
which takes the form

	2u00 D u C � cos t: (16.7)

Then its solutions are given by

u D A1e
.t�t0/=	 C A2e

�.t�t0/=	 � �

1C 	2
cos t: (16.8)

Thus,

u0 D 1

	

�
A1e

.t�t0/=	 �A2e�.t�t0/=	� C �

1C 	2
sin t: (16.9)

In these two expressions, A1;A2; and t0 are constants.
If u > 1, the equation is another linear equation,

	2u00 D 2 � u C � cos t; (16.10)

which has the general solution

u D B1 cos

�
t � t1

	
C ı1

�
C 2C �

1 � 	2
cos t; (16.11)
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where t1 is an initial time, and B1 and B2 are constants determined by initial
conditions.

Similarly, for u < �1;

u D B2 cos

�
t � t0

	
C ı2

�
� 2C �

1 � 	2
cos t: (16.12)

Since the right-hand side of (16.5) satisfies the Lipschitz condition, its solutions
are in C1 over any finite interval. This enables us to determine the above coefficients
Ai ; Bi ; and ıi for i D 1; 2.

We begin with a continuous family of solutions of (16.5) with initial conditions

u0 D �1; u0
0 > 0 (16.13)

where u.t0/ D u0; u0.t0/ D u0
0, and t0 D 
 . From the solution form (16.8), we see

A1 C A2 � �

1C 	2
cos 
 D �1 (16.14)

and

1

	
A1 � 1

	
A2 C �

1C 	2
sin 
 D u0

0: (16.15)

Thus,

A1 D
�

u0 C 	u0
0 C �

1C 	2
cos 
 � 	�

1C 	2
sin 


�
=2 (16.16)

and

A2 D
�

u0 � 	u0
0 C �

1C 	2
cos 
 C 	�

1C 	2
sin 


�
=2 (16.17)

To make these solutions increasingly cross the line u D 1 we must require A1 � 0;

A2 < 0: Since

	u0
0 D 2A1 C 1 � �

1C 	2
cos 
 C 	�

1C 	2
sin 
; (16.18)

we set

u0
0 D 1

	

�
1 � �

cos 


	2 C 1
C �	

sin 


	2 C 1
C 2�

�
(16.19)

It follows that A1 D � and A2 D �1 � � C �

1C	2 cos 
; where � > 0 is sufficiently
small. It then follows that u0

0 D 1=	.1� � C o.�//: Hence the solution is given as
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u D �e.t�
/=	 �
�
1C � � �

1C 	2
cos 


�
e�.t�
/=	 � �

1C 	2
cos t; (16.20)

and

u0 D 1

	

�
�e.t�
/=	 C

�
1C � � �

1C 	2
cos 


�
e�.t�
/=	

	
C �

1C 	2
sin t: (16.21)

It then follows

u0 D 1

	

�
u C 2

�
1C � � �

1C 	2
cos 


�
e�.t�
/=	 C �

1C 	2
cos t

	
C �

1C 	2
sin t

(16.22)

Note that u0 > 0 as long as t 2 Œ
; �� for any � � 0: This is true if 
 � 0: If 
 < 0
and j
 j is sufficiently small, u0.t/ > e

�.t�
/=	
=2	C �

1C	2 sin t for t > 
 if � < 1=4:

Then, u0.t/ > 1
	
e�j
 j=	 � 1

2
sin j
 j > 0 for 0 > t > 
 if 	 > 0 is sufficiently small:

Notice that 
 can be negative and independent of �: Let E.t/ be the sum of the first
two terms in (16.20), i.e.,

E.t/ D �e.t�
/=	 �
�
1C � � �

1C 	2
cos 


�
e�.t�
/=	:

It then follows that E.
/ � �1 C �

1C	2 cos 
; and E 0 > 0 for all t > 
 and for

sufficiently small j
 j: This implies that E.t/ > E.�/ D �e.��
/=	 � .1 C � �
�

1C	2 cos 
/e�.��
/=	 as long as u.t/ < 1 for t > �: Thus, u.t/ � E.�/� �

1C	2 for all

t � 
 as long as u � 1, if � < 1=4. It is seen that u.t/ > E.�/� �

1C	2 > � 1
2
e�2�=	�

�

1C	2 > � 1
2
> �1 for all t > 
 , since E.�/ > � 1

2
e�.��
/=	: It is impossible to have

u D �1 for some t > � , for otherwise, u must be equal to �1=2 for some t > �

before it reaches �1, which is a contradiction. Thus, we conclude that u > �1 for
all t > 
 as long as u < 1 (since the expression (16.20) is valid).

One of sufficient conditions for u � 1 is the inequality, �et�
=	 < 1 � �;

where t 2 Œ
; � C 
�; which comes from the expression (16.20): We first let
�1 D f .�; 	/e��Cı=	 : In this case, it is seen that at t1 D � C 
 � ı; u D
f .�; 	/� .1� � C�1/e

.��Cı/=	 C �

1C	2 cos.
 � ı/Co .ı/ D 1 for some continuous
function f .�; 	/ � 1 � � if jıj is sufficiently small. This comes from the fact
u.�; �1/ D f .�; 	/ C � C o.ı/, and hence, f .�; 	/ D 1 � � C o.ı/. Similarly, we
may choose another �2 D g.�; 	/ such that u.3� C 
 � ı; �2/ D 1. For simplicity,
we denote u.t; �1/ D u1.t/; t1 D � C 
 � ı; t2 D 3� C 
 � ı and u.t; �2/ D u2.t/.
In addition, we may assume that ti is the first time for ui to reach the line u D 1

from the region u < 1: From (16.22)

u0
1.t1/ D 1

	

�
1C 2

�
1C � � �

1C 	2
cos 


�
e�.t1�
/=	 C �

1C 	2
cos t1

	

C �

1C 	2
sin t1
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D 1

	

�
1 � �

1C 	2
cos.
 � ı/

	
C �

1C 	2
sin t1 CO.e�.��ı/=	=	/ (16.23)

Note that E 0 > 0 for t > 
 and E � �et�
=	 for t > � and for sufficiently small
j	j. Thus, the first time for u to reach the line u D 1 can be estimated by solving

�e.t�
/=	 � �

1C 	2
cos t D 1: (16.24)

Letting � D .1 � �/e�.2n�1/�Cı=	; we see the ascending time for u D 1 is around
t D 
 C .2n � 1/� for n D 1; 2 by choosing 
 and ı such that e�.��ı/=	=	 is
sufficiently small .

16.3 Solutions for x > 1

Consider the solution (16.11) with the initial condition u1.t1/ D 1: We see

B1 cos ı1 C 2C �

1 � 	2
cos t1 D 1: (16.25)

Thus,

B1 cos ı1 D �1 � �

1C 	2
cos t1 (16.26)

Again, from (16.11),

u0 D �B1
	

sin

�
t � t1

	
C ı1

�
� �

1 � 	2
sin t; (16.27)

and

u0.t1/ D �B1
	

sin ı1 � �

1 � 	2
sin t1: (16.28)

Therefore, from (16.23),B1 and ı1 satisfy (16.26) and

� B1

	
sin ı1 � �

1� 	2
sin t1 D 1

	

�
1 � �

1C 	2
cos.
 � ı/

	

C �

1C 	2
sin t1 CO.e�.��ı/=	=	/: (16.29)

From (16.26) and (16.29), we see that

B1 sin ı1 D �
�
1C �

1C 	2
cos t1/

	
� 2�	

1 � 	4
sin t1

It then turns out that

u.t/ D B1 cos

�
t � t1
	

C ı1

�
C �

1 � 	2 cos t
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where ı1 D 5�=4C o.	/. We then see that u.t/ increases to its maximum and then
gets back to the line u D 1 around t�t1

	
C ı1 D 2� C 2� � ı1; or t � t1 D 3	�

2
: This

can be seen from the fact t1 � � and that if t D � C o.	/; then cos t D �1C o.	2/

and the value of cos. t�t1
	

C ı1/ can run over the interval Œ�1; 1� because this cosine
function has the period 2�	: If cos. t�t1

	
Cı1/ D .�1C�Co..
�ı//=B1 while cos t

would be still close to �1; then Therefore, u.t/ returns to u D 1 around t D t1C 3	�
2

where t1 D � C 
 � ı:
Similarly, if we choose t1 D � C 
 C ı; then the corresponding solution u .t/

would return to u D 1 before t1 C 	.2� � ı0/ for t1 D � C ı: By continuity
of solutions we see that there is a sufficiently small � � .1 � �/e��=	 such that
u.t; �/ satisfies the following properties: u.0/ D �1; and u.t/ crosses the line u D 1

and reaches its maximum. Then, u.t/ descends to the line u D 1 at t D 
1 where

1 � t1 C 3	�

2
.

Once u.t/ reaches the line u D 1 at t D 
1 around �; the solution shall take the
form (16.8), i.e.,

u D A1e
.t�
1/=	 C A2e

�.t�
1/=	 � �

1C 	2
cos t:

Using the information about u0.
1/; we can adjust the value ı � 
 (or u0
0 ) to make

A1 � �.1 � �/e�.2n�1/�=	 for n D 1; 2. Similarly, we can analyze the case when
t2 D 3� C 
 � ı:

16.4 Chaotic Solutions

If we set the initial value u.
/ D �1 and u0.
/ as in (16.19) where � is in the
neighborhood of .1 � �/e��=	 and follow the argument above, we will get the
solution that starts at the line u D �1 and then crosses the line u D 1 and returns
to u D 1 around the time t D � C 
: In what follows, the returning time to line
u D 1 means the first time it gets back to the line u D 1 after it crosses the line
u D 1. From the continuity of solutions in initial conditions, we may extend the
value of u0.
/ to an interval .˛1; ˇ1/� .0; 2=	/ so that the above properties hold for
u0.
/ 2 .˛1; ˇ1/: This can be done by adjusting the value ı: Similarly, we extend the
value of � around .1 � �/e�3�=	 so that for u0.
/ 2 .˛2; ˇ2/ around 1=	: Of course,
.˛1; ˇ1/\ .˛2; ˇ2/ D ;:We can prove similarly that there exists an interval .˛n; ˇn/
such that if ˛ 2 .˛n; ˇn/ then the solution u.t; ˛/ crosses the line u D 1 at the first
time t1 D .2n � 1/� for n D 1; 2. Thus, we just proved the following theorem.

Theorem 1. Let 	; � > 0 be sufficiently small. There exist at least two disjoint
subintervals .˛1; ˇ1/ and .˛2; ˇ2/ of .0; 2=	/ such that the descending time T1 of
u.t; ˛/ is in the interval .� � �; � C �/ and the ascending time S1 of u.t; ˇ/ is in
.3� � �; 3� C �/; where ˛ 2 .˛1; ˇ1/ and ˇ 2 .˛2; ˇ2/.

Similarly, we can prove Theorem 2 as follows.
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Theorem 2. Let 	; � > 0 be sufficiently small. There exists at least two disjoint
subinterval .�1; �1/ and .�2; �2/ of .˛1; ˇ1/ such that if ˛ 2 .�1; �1/ then u.t; ˛/
descends to the line u D �1 and then ascends back to the line u D �1 around
t D 2� and if ˛ 2 .�2; �2/ then u.t; ˛/ descends to the line u D �1 and then
ascends back to the line u D �1 around t D 4� .

Let I1 D .˛1; ˇ1/ and I2 D .˛2; ˇ2/: Denote I11 D .�1; �1/ and I12 D .�2; �2/.
Then, I11 \ I12 D ; and I11; I12 � I1: If ˛ 2 I11, then the corresponding solution
has the first descending time T1 D � and the first ascending time at 2�: If ˛ 2 I12,
then the corresponding solution has the first descending time T1 D � and the first
ascending time at 4�: Similarly, we can define I21 and I22 such that I21 \ I22 D ;
and I21; I22 � I2 and if ˛ 2 I21 the corresponding solution has the first descending
time T1 D 3� and the first ascending time at 4� . If ˛ 2 I22, then the corresponding
solution has the first descending time T1 D 3� and the first ascending time at 6�:
We now can see that the descending time is always at .2n � 1/� and ascending
time is always at 2m�: The difference between the two successive ascending time
and descending time is either � or 2�: Assume the solution starts from u D �1 at
t D 0: Then the first descending time is 
1 which is either T1 D � or S1 D 3�; and
the next ascending time would be �1 which is either � C 
1 or 3� C 
1. We then
obtain a sequence f
k; �kg for k D 1; 2; : : :. Let dk D �k � 
k . We then can prove
the following theorems.

Theorem 3. Assume that 	 > 0 and � > 0 are sufficiently small. For any sequence
fdkg for k D 1; 2; : : :, where dk is either � or 3�; there exist at least two
solutions such that the difference between the kth successive descending time and
kth ascending time is dk of the solutions.

Proof. The infinite sequence fdkg; k D 1; 2; : : : corresponds to a nested sequence of
open intervals I1 � I1j1 � I1j1j2 � : : : : � I1j1j2:::jk � : : : : Since each open interval
is a proper subset of the former interval in the nested sequence, we may choose a
closed interval from each open interval, say J1j1j2:::jk � I1j1j2:::jk . This implies that
we can make a nested closed intervals J1 � J1j1 � J1j1j2 � : : : : � J1j1j2:::jk �
: : : :: Therefore there exists at least one ˛ 2 I1j1j2:::jk for k D 1; 2 : : : :: such that
the solution u.t; ˛/ has the successive spacing fdkg; k D 1; 2; : : : : Of course, this
solution has the first descending time at T1 D �: Similarly, we can start with the
interval I2, which gives another solution having the first descending time S1 D 3� .

Notice that the descending time is always odd and ascending time is always even.
With the similar arguments, we can generalize Theorem 3 as the following theorem.

Theorem 4. Let S1 D 2m C 1 and T1 D 2n C 1 and m > n � 0 are integers.
There exists �0 and 	0 > 0 such that for any 	 2 .0; 	0/ and � 2 .0; �0/ and for any
sequence fdkg there exist at least two solutions of the equation with the successive
time spacing dk; k D 1; 2; : : : :: where dk D .2mC 1/� or .2nC 1/�:

Theorem 3 is the case m D 0 and n D 1 of Theorem 4. The proof of Theorem 4
is almost the same as that of Theorem 3.
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16.5 Conclusion

The cardinality of the set of all sequences fdkg; k D 1; 2; : : :, where dk is either 3�
or � , is the continuum. Among such sequences, there is a countable set of periodic
sequences. We may prove that to each periodic sequence fdkg there is at least one
periodic solution of the equation. Therefore, this dynamical system admits at least
a countable set of periodic solutions. Of course, the other sequences correspond
to bounded non-periodic solutions, which form an uncountable set of solutions.
This coexistence of periodic and non-periodic solutions shows the chaos of the
system, (16.2) and therefore (16.1). Note that some part of this paper, the asymptotic
analyses are given only approximately. The more delicate analyses and the proof of
existence of periodic solutions will be given in another paper. The technique used
in this paper is a classical shooting method. The detailed explanation of this method
can be found in [2]. The method was also applied by this author to get the chaos
for the pendulum equations [5]. This paper only studies the equation with piecewise
linearity. However, further investigation can show that Theorems 1–4 in the paper
also hold for (16.1) as well as the equation

x00 C cx0 D p.x/C � cos 	t (16.30)

provided the values jcj; j� j, and j	j are sufficiently small. This and the existence of
the strange attractors for the nonlinear dynamic systems will be reported in another
paper.
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Chapter 17
Basins of Attraction in a Simple Harvesting
System with a Stopper

Marek Borowiec, Grzegorz Litak, and Stefano Lenci

Abstract We examine the dynamical response and the power output of a vibration
energy harvesting electromechanical system with kinematic ambient excitation and
impact. Due to the stopper nonlinearities the examined system exhibits multiple
solutions. We characterize their properties and stability by the voltage output and
the corresponding basins of attraction.

Keywords Piecewise linear system • Energy harvesting • Basins of attractions

17.1 Introduction

Many mechanical systems with nonlinearities show complex responses character-
ized by multiple solutions with different amplitudes of vibrations and specific basins
of attraction. Their existence make unrivalled opportunity to improve the effec-
tiveness of kinetic energy harvesters through the so-called broadband frequency
effect [1, 3, 9, 11]. Energy harvesting devices based on the existence of multiple
attractors are equipped with mechanical nonlinear resonators and appropriate energy
transducers, transforming ambient mechanical energy into electric form.

Recently, kinetic energy harvesters based on mechanical resonator and electro-
magnetic transducers [8, 10, 12] were explored extensively. See also the interesting
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work by Blystad and Halvorsen [2]. Micro-electromechanical systems (MEMS)
electrostatic devices were proposed and studied by Gu [4] and Le et al. [5, 6].

In this chapter we continue to study on the nonlinear impacting electro-magnetic
harvesters with stoppers, derived from the idea of Soliman et al. [13, 14]. For the
considered system, at least two different solutions appear due to the presence of
a stopper of the moving structure, if the amplitude of mechanical resonator is
large enough. The impact with the stopper both limits vertical displacements and
simultaneously changes the elastic characteristics of the system.

17.2 The Model

The model of energy harvester is made up of a main body frame, which contains
both the electrical harvester and the internal mechanical system (see Fig. 17.1a). The
subsystem within the frame includes the effective magnet massm which is linked to
the frame through the springs and dampers. The frame system is moving vertically
due to a ground harmonic excitation y D A cos.!et/. The transducer on the frame
harvests the kinetic energy, converting into the electric power output. This energy
transformation causes the electromagnetic damper be via the moving magnet inside
the coil located appropriately on the frame.

When a given distance zd is reached by the massm an impact occurs and a second
spring k2 activates, the effective spring force is changing as shown in Fig. 17.1b. Due
to impacts both the stiffness and the mechanical damping take two differently values
(i D 1 and i D 2), from k1 and bm1 when impacts do not take place, to k2 and bm2,
while contacting. Then the mechanical restoring force Fr is simultaneously modified
according to:

zd
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Fig. 17.1 Schematics of the mechanical resonator of energy harvesting system (a). The additional
electrical circuit is powered by Faraday electromotive force via the moving coil across the magnetic
field. In the calculations we neglect self-induction of the coil Lc . The stiffness characteristics of
the effective model (b)
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Fr D


k1z for z < zd .i D 1/

k2z C .k1 � k2/zd for z � zd .i D 2/
(17.1)

and the damping restoring force Fd is modified according to:

Fd D


b1Pz; for z < zd .i D 1/

b2Pz; for z � zd .i D 2/
(17.2)

The equation of motion of the system reads

mRz C bi Pz C ki z D �m Ry C .k2 � k1/zd‚.z � zd /; (17.3)

where‚(.) is a s the Heaviside step function.
Finally, voltage induced across the load resistor R can be estimated as

U D RB`

RCRc
Pz: (17.4)

whereR andRc denote the load and the coil resistances,B is the magnetic induction
and ` is the coil effective length.

Using the dimensionless variables:


 D !1t; � D !e

!1
; Z D z

zd
; Y D y

zd
; (17.5)

where the natural frequency used for introducing dimensionless time 
 is !1 Dp
k1=m, the equation of motion in dimensionless form becomes:

RZ C 2�i PZ C r2i Z D � RY C .�2 � 1/‚.Z � 1/: (17.6)

The function‚.Z � 1/ is the Heaviside function, switching the system whether the
mass m is in contact with the spring of stiffness k2 or not.

The parameters r and � depend on conditions of Eqs. 17.1, 17.2 and for two cases
(i D 1; 2), ri D p

ki=k1 and �i D .be C bmi /=.2
p
k1m/ (see Table 17.1).

(
r1 D 1; and �1 D 0:0074; for z < zd .i D 1/

r2 D � D p
20 and �2 D 0:45; for z � zd .i D 2/

(17.7)

The excitation frequency range used in simulation is fe D !e
2�

D .90 � 110/Hz
for crossing the resonant area, which was found at fe D fn D !1

2�
D 94:8Hz [14]

(fn—natural frequency), (see Figs. 17.2).
The other parameters used in simulations are listed in table 17.1.
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Table 17.1 System parameters

Symbol and value Description

m D 0:0038 kg The effective mass of the magnet
k1 D 1348N/m The stiffness of the upper spring 1
k2 D 26960N/m The stiffness of the lower spring 2
bm1 D 0:0175Ns/m The mechanical damping coefficient of the upper damper 1
bm2 D 2:0208Ns/m The mechanical damping coefficient of the lower damper 2
B D 0:57T The magnetic induction
` D 0:44m The effective length of an electric coil
R D 2:7� The load resistance
Rc D 1:2� The internal resistance of an electric coil

be D .B`/2

RCRc
The electric damping coefficient

�i D beCbmi
2
p

k1m
The dimensionless damping coefficient of the system

17.3 The Results of Simulations

The main feature of our nonlinear systems is the appearance of two solutions. In
Fig. 17.2a we show the resonance curve of the voltage output U versus excitation
frequency. Note that the black one shows the results for the system without a stopper
impacts at an enough large gap distance zd . After shifting the gap to an appropriate
smaller value, the stopper hits and the situation changes drastically. First of all the
resonance region amplitude is limited to some value, but on the right-hand side
of the black curve we observe a substantial increase of the voltage output due to
continuation of the impacting solutions (red curve) with increasing the excitation
frequency. Simultaneously the second non-impacting solution exists (blue curve and
points) in the same region of frequency competing with the impacting one. This
solution coincides with the black curve solution without a stopper. In Fig. 17.2b we
show additionally a stroboscopic bifurcation diagram versus excitation frequency.
It is possible to see that the impacting solution disappears entirely at the frequency
fe at about 106 Hz. Finally in Fig. 17.3a, b we show the corresponding time series
and phase portraits for impacting and non-impacting solutions for chosen frequency
at fe D 100Hz. It confirms that for different initial conditions the mechanical
resonator vibrates at different amplitudes and velocities, respectively, and so it leads
to the larger or smaller voltage output. For distinguishing the different behaviour
of the system in the case presented in Fig. 17.3, the dimensionless initial conditions
.Z.
 D 0/; PZ.
 D 0// D .z0; Pz0/ were chosen in accordance with Fig. 17.4f as
z0 D 0, Pz0 D 0 (no impacts) and z0 D 1, Pz0 D 0 (with impacts).

Having two competing solutions a new question arises. What are the basins
of attraction of corresponding solutions and how they evolve with increasing
frequency? The answer to this question is the focus the next part of our discussion.
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Fig. 17.2 RMS of voltage output versus frequency (a), blue colour denotes the solution with
impacts for fe D .92:6 � 97:1/Hz (swept by quasi-static decreasing of frequency) while red one
corresponds to the impacting solution for fe D .92:6 � 106:1/Hz (swept with increasing fre-
quency), additionally black curve illustrates the solution without stopper. Bifurcation diagram (b)

600 800 1000 1200 1400
−0.4

−0.2

0

0.2

0.4

time [s]

z 
[m

]

Time series of z displacements

no impacts
with impacts

−0.4 −0.2 0 0.2 0.4
−150

−100

−50

0

50

100

150

Phase portrait fexc = 100Hz

vertical displacement z [m]

ve
rt

ic
al

 v
el

oc
it
y 

dz
/d

t 
[m

/s
]

a b

Fig. 17.3 Time series (a) and corresponding phase portraits with Poincare points (b) for two
solutions. Blue colour denotes the solution without impacts while red one corresponds to the
impacting solution

For better clarity, simulations were done (Fig. 17.4) for increasing frequency.
Obviously the impacting solution basin (red colour) is fairly reduced by increasing
excitation frequency and about fe D 106Hz it almost disappears. To follow the
quantitative changes of the basin size, we defined the ratio between the area of the
basin of the impacting solution and the area on the considered rectangular window
of the phase space. These results are plotted in Fig. 17.5. Note, Figs. 17.4 and 17.5
show erosion in the basin of attraction with increasing frequency. One can clearly
observe in Fig. 17.5 the erosion increasing from the impacting solutions at fe about
97 Hz (red background in Fig. 17.4a) to the solutions nearly without impacting
(white background in Fig. 17.4i).
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17.4 Conclusions

In summary we note that the nonlinear characteristics of the mechanical resonator
with impacts provide a much broader frequency range for the power (RMS
voltage in Fig. 17.2a). Two existing solutions (Fig. 17.2: with and without impacts)
are characterized by different resonator amplitudes. The results show that the
basin of attraction for the impacting solution erodes strongly with the increasing
frequency (Figs. 17.4 and 17.5). The influence of initial conditions on output energy
is significant within the broaden band resonance curve, effecting multi-solution
phenomenon.

A possible development of the proposed analysis consists in applying more
detailed dynamical integrity arguments [7] to the basins of attraction reported in
Fig. 17.4. This will allow us to better detect the robustness of the two competing
solutions with respect to changes in initial conditions, and thus will permit to judge
on the reliability of the proposed system in harvesting energy.
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Chapter 18
Analytical Dynamics of a Mass–Damper–Spring
Constrained System

Albert C. J. Luo and Richard George

Abstract This chapter discusses the dynamics of a mass–damper–spring system
with two rigid constraints and impact interactions. Impacting chatter and stuck
phenomena are investigated for the mass with constraints and the corresponding
conditions for such phenomena are determined. Analytical predictions are presented
for the system to give a more precise and complete demonstration of the phenomena
in the system. Finally, an analytical parameter map is given to show how the system
changes for varying parameters. From these conditions, numerical simulations are
performed to demonstrate these phenomena in the system.

Keywords Discontinuous dynamical systems • Constrained mass-damper-Spring
system • G-Functions • Grazing motion • Chatter motion • Stuck motion

18.1 Equations of Motion

A sinusoidal forcing function is applied to a mass–damper–spring system, as shown
in Fig. 18.1. The system is further constrained, both above and below, by two rigid
walls, which the mass will interact with when the displacement of the mass from
equilibrium is equal to the position of either wall. There are different types of
interactions that can occur between the mass and either wall, which are discussed
in this chapter. The possible interactions include impact, chatter, and stuck motions.
Impact occurs when the mass comes to the wall with some velocity, hits the wall, and
then leaves the wall. When multiple impacts occur with one wall, impacting chatter
occurs. This phenomenon is explained as follows. The impacts continue to cause the
mass to bounce back from the wall and the system is still trying to continue through
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Δ
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m

Fig. 18.1 Mechanical model

the wall, when the mass comes to the wall with zero velocity and continues to try and
force its way into the wall, the mass will appear to stuck to the wall. There are two
states of motion that can exist in this system and they are both defined here with their
respective equations of motion. The first is free flight motion, which exists when the
mass is moving in between the two walls. The second is stuck motion, which occurs
when the mass appears to be stuck to one of the walls. Free flight motion includes
the impact and chattering motions with the wall. The previous studies on this topic
can be referred to [1–12]. However, in this chapter, the analytical condition will be
developed for a better understanding of complex motions.

The system’s motion is described by the ordinary differential equation for the
forced vibration of a mass–spring–damper system

m Rx C d Px C kx D P cos�t (18.1)

A coefficient of restitution impact model is used in this system. The coefficient
of restitution, e, relates the velocity of the mass before and after impact

PxmC D �e Pxm�: (18.2)

Stuck motion occurs during the intervals where the mass appears to be stuck to
the wall. This motion begins with stuck initiation, which is when the mass comes to
one of the walls with zero velocity and continues to try and force its way through
the wall. The motion continues until stuck vanishing, where the system leaves the
wall and enters back into free flight motion. Stuck motion is defined as the point
where the mass is either at the top or bottom wall and its velocity is equal to zero

x D ˙� and Px D 0

F D P cos�t � k� � 0 at x D C�
F D P cos�t C k� � 0 at x D ��

(18.3)
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18.2 Domains and Boundaries of Motion

Before determining how the system will interact with the wall when it comes to it,
and what conditions need to be satisfied to determine the state of motion the mass
is in, the domains and boundaries of motion must be defined. The domains and
boundaries are all defined on the phase plane in Fig. 18.2. For this system, there are
three domains of motion. The first is the free flight domain, defined as �1, which
is when the position of the mass is between the two walls, with any velocity. The
remaining two are stuck domains, defined as �0

(˙), where the mass is “stuck” to
either the top or bottom wall. The domains are defined as,

�1 D
n
.x; Px/

ˇ̌
ˇx 2 .��;�/ ; Px 2 .�1;1/

o

�
.˙/
0 D

n
.x; Px/

ˇ̌
ˇx D ˙�; Px D 0

o (18.4)

There are four boundaries in this system, two are impact boundaries, defined
as @�.˙/

11, and two are stuck boundaries, defined as @�.˙/
10 . There is one impact

boundary at each wall, both defined as when the mass comes to the wall with a
nonzero velocity. There is also one stuck boundary at the each wall, but these are
defined at the wall where the velocity of the mass is equal to zero. The boundaries
are defined as,

@�
.˙/
11 D

n
.x; Px/

ˇ̌
ˇx D ˙�; Px ¤ 0

o

@�
.˙/
10 D

n
.x; Px/

ˇ̌
ˇx D ˙�; Px D 0

o (18.5)

The free flight domain is represented by the subscript 1 and the stuck domains
by 0. The top and bottom walls are represented by C and –, respectfully. The impact
boundary is represented by 1, which is used to show that the boundary cannot be
passed through. The stuck domains and stuck boundaries are both given as the same

x

x⋅

( )
10

+¶Ω( )
10

-¶Ω

Ω1

(+)
1¥¶Ω(-)

1¥¶Ω

( )
0
+Ω( )

0
-Ω

Fig. 18.2 Domains and
boundaries
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two points for the top and bottom walls in phase plane. For the stuck boundary, the
mass is still not able to move through the wall, but can still apply a force into the
wall while remaining at this point.

18.3 G-Functions

When the system is in one of the domains, the motion is determined by the
respective equation of motion previously presented. In order to determine the
necessary conditions for motion switchability at the boundaries, the G-Function will
be introduced. To begin, introduce vectors as,

x D .x; Px/T D .x; y/T and F D .y; F /T (18.6)

From the definitions of the domains, the equation of motion can be expressed in
the vector form of,

Px.i/ D F.i/
�
x.i/; t;p.i/

�
; .i D 1; 2/ (18.7)

Where p are system parameters and,

F .1/ D 1
m

�
P cos�t � dy.1/ � kx.1/

� I
F .0/ D 1

m
.P cos�t � k�/ at x.0/ D C� and y.0/ D 0;

F .0/ D 1
m
.P cos�t C k�/ at x.0/ D �� and y.0/ D 0:

(18.8)

The lower and higher order G-Functions can then be introduced as,

G
.0;˛/

@�˛ˇ
.x; tm˙/ D nT

@�˛ˇ
� F.˛/ .x; tm˙/ ;

G
.1;˛/

@�˛ˇ
.x; tm˙/ D nT

@�˛ˇ
�DF.˛/ .x; tm˙/ ;

(18.9)

where DF is the total derivative of F,

DF D @F
@x

Px C @F
@t

(18.10)

and n@�˛ˇ represents the vector normal to the boundary in phase plane, given by

n@�˛ˇ D r'˛ˇ D
�
@'˛ˇ

@x
;
@'˛ˇ

@y

�T

: (18.11)

For the impact boundaries, @�.˙/
11 , and the stuck boundaries, @�.˙/

10 , the corre-
sponding normal vectors are,
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n
@�
.˙/
11

D .1; 0/T and n
@�
.˙/
10

D .0; 1/T (18.12)

The corresponding G-Functions at the impact boundaries, @�.˙/
11, can then be

calculated as,

G
.0;1/
11 .x; tm˙/ D y.1/

G
.1;1/
11 .x; tm˙/ D F .1/

�
x.1/; tm˙

�
:

(18.13)

The corresponding G-Functions at the stuck boundaries, @�.˙/
10 , can similarly be

calculated as,

G
.0;˛/

@�
.˙/
10

.x; tm˙/ D F .˛/
�
x.˛/; tm˙

�
;

G
.1;˛/

@�
.˙/
10

.x; tm˙/ D DF .˛/
�
x.˛/; tm˙

� I (18.14)

Where

DF .1/ D 1
m

��P� sin�t � F .1/d � ky.1/� I
DF .0/ D � 1

m
P� sin�t at x.0/ D C� and y.0/ D 0;

DF .0/ D � 1
m
P� sin�t at x.0/ D �� and y.0/ D 0:

(18.15)

18.4 Analytical Conditions

Using the G-Function, the conditions necessary to determine the motion switchabil-
ities can be defined. In other words, the G-Function is used to determine what type
of interaction when the system comes to a boundary and how the system is able to
move relative to the boundary.

From Luo [10], the conditions for impact to occur in the system are given by the
lower order G-Function

G
.0;1/

@�
.C/
11

.xm; tm�/ > 0 and G.0;1/

@�
.C/
11

.xm; tmC/ < 0 on @�
.C/
11

G
.0;1/

@�
.�/
11

.xm; tm�/ < 0 and G.0;1/

@�
.�/
11

.xm; tmC/ > 0 on @�
.�/
11

(18.16)

In other words, based on the calculated G-Functions,

ym� > 0 and ymC < 0 on @�
.C/
11

ym� < 0 and ymC > 0 on @�
.�/
11

(18.17)

For impact to occur at the top wall, the mass will come to the wall with a positive
velocity. Using the coefficient of restitution impact model given in Eq. (18.2), the
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mass will instantaneously bounce back from the top wall with a negative velocity,
completing an impact interaction with the top wall, as shown in Fig. 18.3. Similarly
for the bottom wall, the mass will come to the wall with a negative velocity and
bounce back into the free flight domain with a positive velocity.

Stuck motion is initiated in the system when the mass comes to one of the walls
and the system stays at that position with zero velocity. The conditions for stuck
onset are given by the lower order G-Function at the stuck boundary.

G
.0;1/

@�
.C/
10

�
x.1/m ; tm�

�
> 0 and G

.0;0/

@�
.C/
10

�
x.0/m ; tm�

�
> 0

at xm D � and ym D 0 for �1 ! �
.C/
0 I

G
.0;1/

@�
.�/
10

�
x.1/m ; tm�

�
< 0 and G

.0;0/

@�
.�/
10

�
x.0/m ; tm�

�
< 0

at xm D �� and ym D 0 for �1 ! �
.�/
0 :

(18.18)

From the previous G-Function, these can also be represented as,

F .1/
�
x.1/m ; tm�

�
> 0 and F .0/

�
x.0/m ; tmC

�
> 0

at @�.C/
10 with xm D � and ym D 0

for �1 ! �
.C/
0 I

F .1/
�
x.1/m ; tm�

�
< 0 and F .0/

�
x.0/m ; tmC

�
< 0

at @�.C/
10 with xm D �� and ym D 0

for �1 ! �
.�/
0 :

(18.19)

The system becomes stuck when it remains at the wall with a velocity of zero. It
is unable to pass through the rigid wall, but continues to force its way into the wall,
as shown in Fig. 18.4 on the higher order phase plane. For the duration of the stuck
motion, there is an equal and opposite reaction force of the wall supporting the mass
that keeps the system at equilibrium for that time, as shown in Fig. 18.5. Since the
wall is considered to be rigid, this force will always oppose the mass, preventing
motion into the wall.
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Once stuck initiation occurs in the system, the G-Functions need to be used to
determine when stuck vanishing will occur. The higher order G-Function for the
stuck boundary is used to determine when the system will move back into the
free flight domain. After some amount of time the system will return to the stuck
boundary where the lower order G-Function will be equal to zero. At this point, the
stuck motion will vanish if the conditions given by the higher order G-Function are
met. If these conditions are not satisfied, the system will remain in the stuck domain.
The conditions for stuck vanishing are,

G
.0;0/

@�
.C/
10

�
x.0/m ; tm�

� D 0 and G.1;0/

@�
.C/
10

�
x.0/m ; tm�

�
< 0;

G
.1;1/

ı�
.C/
10

�
x.1/m ; tmC

�
< 0

9
=

;

at xm D � and ym D 0 for �.C/
0 ! �1I

G
.0;0/

@�
.�/
10

�
x.0/m ; tm�

� D 0 and G.1;0/

@�
.�/
10

�
x.0/m ; tm�

�
> 0;

G
.1;1/

@�
.�/
10

�
x.1/m ; tmC

�
> 0

9
=

;

at xm D �� and ym D 0 for�.�/
0 ! �1:

(18.20)
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for the top wall

From the G-Functions, the conditions that must be satisfied for stuck vanishing
can also be given as,

F .0/
�
x.0/m ; tm�

� D 0 and DF .0/
�
x.0/m ; tm�

�
< 0

DF .1/
�
x.1/m ; tmC

�
< 0

)

at @�.C/
10 with xm D � and ym D 0 for �.C/

0 ! �1I
F .0/

�
x.0/m ; tm�

�
D 0 and DF .0/

�
x.0/m ; tm�

�
> 0

DF .1/
�
x.1/m ; tmC

�
> 0

)

at @�.�/
10 with xm D �� and ym D 0 for�.�/

0 ! �1:

(18.21)

The lower order G-Function is the same for both stuck vanishing and stuck
initiation. Therefore, the first condition that must be satisfied is that the system stops
trying force its way through the wall. The higher order G-Function is basically a jerk
term. Once the zero-order term comes to zero, the direction of the first-order term
will determine whether the system will accelerate away from the wall, back into the
free flight domain, or return to attempting to force its way back into the wall and
remain stuck.

The phenomenon of grazing occurs in the system when the mass comes to one
of the walls from the free flight domain, just touches the wall with velocity of zero,
then moves back into the free flight domain, as shown in Fig. 18.6. The conditions
for grazing to occur at one of the walls are determined using both the lower and
higher order G-Functions. The conditions are

G
.0;1/

@�
.C/
11

.xm; tm˙/ D 0 and G.1;1/

@�
.C/
11

.xm; tm˙/ < 0 on @�
.C/
11;

G
.0;1/

@�
.�/
11

.xm; tm˙/ D 0 and G.1;1/

@�
.�/
11

.xm; tm˙/ > 0 on @�
.�/
11:

(18.22)
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or

G
.0;1/

@�
.C/
10

.xm; tm˙/ D 0 and G.1;1/

@�
.C/
10

.xm; tm˙/ < 0 on @�
.C/
10 ;

G
.0;1/

@�
.�/
10

.xm; tm˙/ D 0 and G.1;1/

@�
.�/
10

.xm; tm˙/ > 0 on @�
.�/
10 :

(18.23)

Calculating out these conditions,

y
.1/

m˙ D 0 and F .1/
�
x.1/m ; tm˙

�
< 0 on @�

.C/
11;

y
.1/

m˙ D 0 and F .1/
�
x.1/m ; tm˙

�
> 0 on @�

.�/
11:

(18.24)

or

F .1/
�
x.1/m ; tm˙

� D 0 and DF .1/
�
x.1/m ; tm˙

�
< 0 on @�

.C/
10 ;

F .1/
�
x.1/m ; tm˙

� D 0 and DF .1/
�
x.1/m ; tm˙

�
> 0 on @�

.�/
10 :

(18.25)

The first set is for grazing against the impact boundary. The zero-order G-
Function is the velocity of the mass in the free flight domain. The first order
G-Function is essentially the acceleration of the mass as calculated from the
equation of motion. When the system comes to one of the boundaries with a velocity
of zero and is accelerating back towards the free flight domain, the mass will graze
the wall. The second set is for grazing against the stuck boundary. The zero order
G-Function is basically an acceleration term and the first-order term is essentially a
jerk term. For this case, the velocity of the mass at the boundary will still be zero,
but if the acceleration term is also zero, then the jerk term is needed to determine
where the system will go. If the mass comes to the wall with zero velocity and
zero acceleration, and the jerk is directed back towards the free flight domain, the
mass will graze the wall. Higher order G-Functions would need to be calculated
and considered as much lower order G-Functions are equal to zero at the boundary.
These can be found by taking more total derivatives of the G-Functions already
presented.

18.5 Generic Mappings

In order for periodic and chaotic motions to be described and determined, switching
sets should be introduced. From the switching boundary, the six switching sets for
this system are,
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†
.C/
11 D f.tk; Pxk/jxk D �; Pxk > 0

o
;

†
.C/
11 D f.tk; Pxk/jxk D �; Pxk < 0

o
;

†
.�/
11 D f.tk; Pxk/jxk D ��; Pxk < 0

o
;

†
.�/
11 D f.tk; Pxk/jxk D ��; Pxk > 0

o
;

†
.C/
10 D f.tk; Pxk/j xk D �; Pxk D 0; F .0/ > 0

o
;

†
.C/
01 D f.tk; Pxk/j xk D �; Pxk D 0; F .0/ D 0

o
;

†
.�/
10 D f.tk; Pxk/jxk D ��; Pxk D 0; F .0/ < 0

o
;

†
.�/
01 D f.tk; Pxk/jxk D ��; Pxk D 0; F .0/ D 0

o
:

(18.26)

The switching sets defined in Eq. (18.26) are used for the purpose of mapping.
†10

(C) and †01
(C) are the same switching plane with different conditions for stuck

motion initiation and vanishing at the boundary @�10
(C). Similarly, †10

(�) and
†01

(�) are the same switching plane at the boundary @�10
(�). †11(˙) and †11

(˙)

are the same switching planes at the boundaries @�11(˙). The switching sets are
shown in Fig. 18.7.

Generic mappings can be defined using these switching sets in order to describe
the free flight and stuck motions that exist in the system. In all, there are six
generic mappings in this system. Two of these mappings are stuck mappings and
the remaining four mappings pass through the free flight domain. The basic six
mappings are defined as,

P1 W †.�/11 ! †
.C/
11; P2 W †.C/11 ! †

.C/
11

P3 W †.C/11 ! †
.�/
11; P4 W †.�/11 ! †

.�/
11

P5 W †.C/10 ! †
.C/
01 ; P6 W †.�/10 ! †

.�/
01 :

(18.27)
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Mappings P1 and P3 are global mappings that map the system from one switching
plane to another switching plane. The initial impact with one wall after interacting
with the other wall is represented by these mappings. Mappings P2 and P4 are local
mappings, which map from a switching plane back to itself. These will be used to
describe the impacting chatter phenomena. Based on the defined switching sets, the
generic mappings can be expanded to show all possibilities of mappings

P1 W †.�/11 ! †
.C/
10 ; P1 W †.�/01 ! †

.C/
11; P1 W †.�/11 ! †

.C/
11I

P2 W †.C/11 ! †
.C/
10 ; P2 W †.C/01 ! †

.C/
11; P2 W †.C/11 ! †

.C/
11I

P3 W †.C/11 ! †
.�/
10 ; P3 W †.C/01 ! †

.�/
11; P3 W †.C/11 ! †

.�/
11I

P4 W †.�/11 ! †
.�/
10 ; P4 W †.�/01 ! †

.�/
11; P4 W †.�/11 ! †

.�/
11:

(18.28)

Mappings P5 and P6 are local at stuck boundaries and are used to describe the
stuck motions. These stuck mappings map the system from stuck initiation to stuck
vanishing. Grazing is a singular point that can be shown in different circumstances
with any of the mapping structures that move through the free flight domain. All of
the generic mapping structures are shown in Fig. 18.8.

18.6 Analytical Predictions and Stability

Based on the equations and switchability conditions developed thus far, a rough
view of the system can be generated in the form of numerical simulations. In order to
get an initial idea of how the system changes for as a parameter changes, a numerical
simulation of a bifurcation scenario is given in Fig. 18.9. The scenario is based on
the parameters,

m D 5; d D 3; k D 10; P D 15; � D :01; e D :3 (18.29)
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Fig. 18.9 A bifurcation scenario. (a) Switching velocity, (b) switching phase

While these numerical simulations do offer some insight to the system, they also
suffer from numerical error and fail to show the stability of the system. In order to
improve on these simulations, the system must be predicted analytically based on
the equations of motion. Analytical predictions of the periodic motions, using the
mapping structures, improve on the results of the numerical simulations and allow
the stabilities of the motions to be directly calculated. Using the switching sets
and mapping structures, any given periodic motion can be predicted analytically.
A single mapping structure is a collection of functions of velocity and time.
Displacements from the switching set are fixed because the boundaries are rigid
walls, but velocity and time will change with the parameters. A mapping can be
written mathematically as a collection of two functions of the initial and final
switching set points
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Pj W


f1 .ykC1; yk; tkC1; tk/ D 0

f2 .ykC1; yk; tkC1; tk/ D 0
(18.30)

where the index j is used to represent any of generic mappings already discussed. In
order to simplify the analysis, introduce the vectors,

f D .f1; f2/
T and z D .y; t/T (18.31)

Then the mapping structure can be written as,

Pj W f .zkC1; zk/ D 0 (18.32)

Using these notations, a periodic motion can be defined as a collection of
mapping structures. For example, the simplest motion occurring in this system has
the mass impacting on one wall and then impacting the other wall and repeat. This
periodic motion can be described as,

P31 D P3 ı P1 (18.33)

Using an initial guess of the switching points for some periodic motion, the
mapping equations, Eqs. (18.32) and (18.33), can be solved for switching set points
of the same periodic motion with varying parameters.

To determine the stability of some periodic motion, the periodicity condition
needs to be considered. For the simplest mapping of one iteration, the stability can
be found by perturbing the switching sets from the fixed points

z�
kC1 D z�

k (18.34)

zkC1 D z�
kC1 C�zkC1; zk D z�

k C�zk (18.35)

After inserting these perturbed values back into the mapping equations, the
equations can be expanded around the fixed point using Taylor’s series

f
�
z�
kC1; z�

k

�C @f
@zkC1

@zkC1
@zk

ˇ̌
ˇ̌
z�

k

�zk C @f
@zk

ˇ̌
ˇ̌
z�

k

�zk C ok�zkk D 0 (18.36)

Neglecting the higher order terms and reducing yields,

@f
@zkC1

@zkC1
@zk

ˇ̌
ˇ̌
z�

k

C @f
@zk

ˇ̌
ˇ̌
z�

k

D 0 (18.37)

The Jacobian matrix of the mapping structure of periodic motion can then be
solved for
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DPj D @zkC1
@zk

D �
�

@f
@zkC1

	�1 �
@f
@zk

	
(18.38)

The Jacobian matrix can be found in a similar fashion as the periodic motions
become more complex. Starting with an initial guess for all of the switching points
of a periodic motion, each point will map to the next. The Jacobian matrix for the
system can then be found

DP D DPjn � � � � �DPj2 �DPj1„ ƒ‚ …
n�term

(18.39)

In which leads to the equation for an n-iterative periodic motion and jl 2
f1; 2 � � � ; 6g with l D 1; 2; � � � ; n

�zkCn D DP�zk (18.40)

To determine the stability of a periodic motion in the system, the periodicity
condition needs to be considered at the perturbed fixed points. These perturbations
need to be scaled to ensure the periodic motion

�zkCn D ��zk (18.41)

The eigenvalues, which determine the stability of the system, can then be
calculated from Eqs. (18.40) and (18.41), i.e.,

.DP � �I/�zk D 0 (18.42)

with

jDP � �I j D 0 (18.43)

For any periodic motion that exists in the system, the proceeding determinate
will yield two eigenvalues from which the stability of the periodic motion can be
determined. To show the preceding analysis, the analytical bifurcation scenario
corresponding to the previous numerical scenario is presented in Fig. 18.10. The
analytical predictions show good correlation with the numerical simulations, but are
able to improve on the defined ends of the existing periodic motions.

The dashed lines mark the points where the mapping structure of the periodic
motion changes. The empty areas are areas of more complex motions that exist in the
system. The locations of these lines are found by tracking the stability of the periodic
motions. As an example, the stabilities of the simplest periodic motions that exist in
this system, P31, are presented by their eigenvalues in Fig. 18.11. This simplest
mapping structure has areas of symmetric and asymmetric motion, which are
separated by a saddle node at �� 17.928. As the excitation frequency is increased,
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Fig. 18.10 Analytical prediction of the bifurcation scenario. (a) Switching velocity, (b) switching
phase

the symmetric motion comes to another saddle node, after which the mass no longer
interacts with the walls, at �� 29.6998. As the excitation frequency is decreased,
the asymmetric motion is found to be bound by a grazing bifurcation that occurs in
the system, and the mapping structure of the motion changes despite having a stable
motion according to the eigenvalues, at �� 16.7422. The boundaries of all other
periodic motions can be found in a similar method.
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Fig. 18.11 Stability of the P31 periodic motions

18.7 Numerical Simulations

The locations of the various types of periodic motion in the system can be found for
different parameters using the completed predictions of the bifurcation scenarios.
To better show the periodic motions that exist in the system, numerical simulations
can then be performed for specific parameters and initial conditions. To demonstrate
the impact, impacting chatter, and stuck motion phenomena previously discussed, a
periodic motion involving all of these is presented here. Using the mapping structure
notation, the periodic motion considered is

P64435241 D P6 ı P44 ı P3 ı P5 ı P24 ı P1 (18.44)

Using the parameters,

m D 5; d D 3; k D 10;� D 7; P D 15;� D :01; e D :3 (18.45)

This periodic motion is presented in Fig. 18.12 for the initial conditions,

t0 D 0:021443; x0 D 0:01; y0 D �0:02700 (18.46)

In the numerical simulations, the four impacting chatter mappings, along with
the stuck motion, can be observed on both the upper and lower boundaries. The
discontinuity of the impact model is more clearly observed from the velocity
responses and trajectory in phase plane. The stuck motion is clearly shown in both
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the displacement and velocity responses, with the displacement remains constant
and the velocity being zero for the duration of the stuck motion.

As was previously shown in the example of a stability analysis, the system
contains two types of the simplest periodic motion. For the P31 periodic motions,
there are both symmetric and asymmetric cases. In order to illustrate the difference
between these two motions, numerical simulations are presented in Fig. 18.13 for
the symmetric case and Fig. 18.14 for the asymmetric case. For the symmetric case
the parameters and initial conditions are,

m D 5; d D 3; k D 10;� D 20; P D 15;� D :01; e D :3 (18.47)

t0 D 0:04033; x0 D 0:01; y0 D �0:08814 (18.48)

For the asymmetric case the parameters and initial conditions are,

m D 5; d D 3; k D 10;� D 17; P D 15;� D :01; e D :3 (18.49)

t0 D 0:021341; x0 D 0:01; y0 D �0:08940 (18.50)

From Fig. 18.14 for asymmetric motion it can also be seen how the motion
disappears as the excitation frequency is lowered. From the stability analysis it was
stated that as the excitation frequency is lowered, the periodic motion disappears
due to a grazing bifurcation. The little loop back towards the wall that can be seen
in the figure eventually comes back into contact with the wall for lower excitation
frequencies and the motion switches to a more complex periodic motion.

18.8 Conclusion

The impact dynamics of a mass–damper–spring constrained system was considered
herein. The analytical conditions governing the impact and stuck motions at the
boundaries were developed and implemented. Periodic motion for the system was
discussed based on the defined switching sets and mapping structures. To show
the effectiveness of the analysis, numerical simulations were presented showing
the discussed motions. Finally, in order to improve on the numerical simulations,
analytical predictions were presented showing good correspondence with, and then
extending farther than the numerical simulations.
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Chapter 19
Formations of Transitional Zones in Shock
Wave with Saddle-Node Bifurcations

Jia-Zhong Zhang, Yan Liu, Pei-Hua Feng, and Jia-Hui Chen

Abstract The formations of transitional zones in shock wave, governed by
Burgers’ equation, are studied from viewpoint of saddle-node bifurcations. First,
the inviscid Burgers’ equation is studied in detail, the solution of the system with
a certain smooth initial condition is obtained, and the solution in vector form is
reduced into a Map in order to investigate the stability and bifurcation in the system.
It is proved that there exists a thin spatial zone where a saddle-node bifurcation
occurs in finite time, and the velocity of the fluid behaves as jumping, namely, the
characteristic of shock wave. Further, the period-doubling bifurcation is captured,
that means there exist multiple states as time increases, and the complicated spatio-
temporal pattern is formatted. In addition to above, the viscous Burgers’ equation is
further studied to extend to dissipative systems. By traveling wave transformation,
the governing equation is reduced into an ordinary differential equation. More,
the instability or bifurcation condition is obtained, and it is proved that there
are three singular points in the system as the bifurcation condition is satisfied.
The results show that the discontinuity resulting from saddle-node bifurcations is
removed with the introduction of viscosity, and another kind of velocity change
with strong gradient is obtained. However, the change of velocity is continuous
with sharp slopes. As a conclusion, it can be drawn that all results can provide a
fundamental understanding of the nonlinear phenomena relevant to shock wave and
other complicated nonlinear phenomena, from viewpoint of nonlinear dynamics.
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19.1 Introduction

The motion of continuum media is often accompanied by the formation of transi-
tional zones, where the parameters, including velocity, density, pressure, tempera-
ture, etc., vary rapidly [1]. In aerodynamics, there are a lot of circumstances where
shock waves are present. For example, the aerodynamic performance in supersonic
aircraft, turbo-machinery, helicopter are much affected by shock waves, which are
of prime importance in air intakes, drag, lift, etc. Indeed, the interaction between
convection and diffusion in many processes, such as fluid flow, chemical reaction,
plays an important role in the dynamic behaviors, and can lead to some complicated
nonlinear phenomena. Burgers’ equation can be considered as a model equation or
approach to the Navier–Stokes equation in fluid dynamics since the main terms are
remained, and it can be used to study the turbulence, shock wave, soliton, etc. There
are a very rich variety of nonlinear phenomena in it [2–5]. In particular, one of the
phenomena is the sharp jumping or discontinuities as the Reynolds becomes higher
or the viscosity coefficient is lower, and such phenomenon is relevant to the shock
wave which is encountered frequently in the aircraft with supersonic speed. It is
clear that the governing equation is a hyperbolic equation which is used to describe
the traveling wave, and the singularities are the results from the counterbalance
between the dispersive and convective effects. That is, as the hyperbolicity condition
is violated, a qualitative change of the system and a bifurcation will occur. Because
of the nonlinear phenomena mentioned above in the Burgers’ equation, some special
numerical methods are normally used to study the phenomena listed. Among them,
the Discontinuous Finite Element Method and Spectral Method are the popular one.
Indeed, Burgers’ equation can be considered as a nonlinear dynamic system, and
dynamic system ideas or theories have increasingly be applied to the analysis of
fluid dynamics. For example, the Approximate Inertial manifolds, which is a global
compact manifold and global attractor is included in, has been introduced to the
analysis of Burgers’ equation and Navier–Stokes equations, and the computing time
will be saved as the numerical method is used to study the systems [6, 7].

Roughly speaking, the study of nonlinear dynamics is a fascinating question that
is at the very heart of understanding of many important problems of natural science
and engineering. In decades, the ideas from nonlinear dynamics are of interest in
turbulent flows. For the fluid dynamics, some researchers are interested in numerical
schemes that approximate the solutions of the Navier–Stokes equation for a long
time, the connections between complex continuum mechanics (fluid dynamics, etc.),
partial differential equations and nonlinear dynamical system, and the route to
instability from viewpoint of bifurcation are the main focuses in this field. Because
bifurcation theory and others in nonlinear science are deemed to be the fundamental
nature of some nonlinear phenomena which a linear-world-view fails to capture
and can give a deep insight into the mathematical nature [8–14]. As an example,
the static stall of airfoil, which is typical discontinuity in lift as angle of attack is
increased, is proved to be a result from saddle-node bifurcation, with introducing a
map to study the nonlinear dynamics of the lift of the airfoil. More, the results show
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that static stall can be postponed by an external perturbation, and the ensuing lift
could be enhanced significantly. Hence, the static stall of airfoil could be controlled
feasibly by the external perturbation [15].

Under such background, this paper will focus on the nature of shock wave and
other complex phenomena in Burgers’ equation from viewpoint of bifurcations, and
a fundamental analysis is carried out theoretically and numerically. Moreover, some
comparisons between inviscid and viscous Burgers’ equations are given.

19.2 Governing Equations and Analysis

19.2.1 Inviscid Burgers’ Equation

The inviscid Burgers’ equation in general form is

8
<

:

@u

@t
C u

@u

@x
D 0; Œ0; 1�  Œ0;T�

u .x; 0/ D u0.x/; Œ0;T�
(19.1)

where u is the velocity.
In this study, the smooth initial condition is

u .x; 0/ D 0:5 sin .2�x/ (19.2)

Then, the solution to Eqs. (19.1) and (19.2) can be obtained as

u .x; t/ D 0:5 sin Œ2� .x � ut/� t � 0 (19.3)

It is clear that Eq. (19.3) in implicit form is a nonlinear equation, and iterative
method can used to approach the solution or “the equilibrium position” from
viewpoint of dynamic system. Hence, Eq. (19.3) is reduced into a Map g as
following,

g W unC1 D 0:5 sin Œ2� .x � unt/� (19.4)

The fixed point or P-1 solution to Map Eq. (19.4), u*, is the solution to Eq. (19.3).
Considering x and t as bifurcation parameters, and keeping constant, the stability

of the fixed point or the state of the system at certain position and time can be
described by the Floquet multiplier,

Dg ju� D ��t cos
�
2�
�
x � u�t

��
(19.5)

For Map g, governed by Eq. (19.4), there exist following bifurcations,
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1. As Dg ju� D �1 , a period-doubling bifurcation can occur as parameters are
varied.

2. Dg ju� D 1 , a saddle-node bifurcation can occur as parameters are varied.

19.2.2 Viscous Burgers’ Equation

The viscous Burgers’ equation in general form is

8
<

:

@u

@t
C u

@u

@x
D �

@2u

@x2
; Œ0; 1�  Œ0;T�

u .x; 0/ D u0.x/; Œ0;T�
(19.6)

where u is the velocity, � the viscosity.
For Eq. (19.6), the traveling wave solution can be in the following form,

� D x � ct (19.7)

where c is the wave speed.
Substitute Eq. (19.7) into Eq. (19.6), yields,

�c Pu C uPu � � Ru D a (19.8)

where a is a integral constant, relevant to initial condition.
Further, we have

Pu D 1

2�

�
u2 � 2cu � 2a� (19.9)

Then, Eq. (19.8) can be transformed into the form with first order in state space,


 Pu D v
Pv D 1

2�2
.u � c/

�
u2 � 2cu � 2a� (19.10)

And, the instability or bifurcation condition can be obtained as

c � p
2�� (19.11)

As the condition, namely, Eq. (19.11), is satisfied, there are three steady states,
A(c,0), B(u1,0), C(u2,0), and A(c,0) is a trivial solution to Eq. (19.10).

The Jacobean matrix for a steady state can be obtained as,

D D
�
0
v�

�

1
u��c
�

#
(19.12)
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For steady state A(c,0), the eigenvalue of its Jacobean matrix is 0, and it is a
non-hyperbolic equilibrium.

For steady states B(u1,0) and C(u2,0), the eigenvalues of their Jacobean matrix
are �1 D 0; �2 D u��c

�
, and it is clear that both of them are non-hyperbolic

equilibriums.
Normally, as the hyperbolicity condition is violated, a qualitative change of

the system and a bifurcation occur. For a continuous-time dynamical system, the
loss of hyperbolicity of an equilibrium generally happens, by the approach to zero
of a simple real eigenvalue of the Jacobian (tangent or fold bifurcation) or by a
pair of simple complex eigenvalues crossing the imaginary axis (Andronov–Hopf
bifurcation). Indeed, an important and well-known aspect of nonlinear dynamics is
the sensitive dependence of the solution on the perturbations, and such perturbation
can come from the imperfection to the system. A slight perturbation to the system
may produce very significant changes in the system’s configuration after a long
time.

It is clear that there exist many complex nonlinear phenomena in the system
governed by Eq. (19.6), and the complex bifurcation will be investigated in the
further work.

19.3 Stability and Bifurcation Analysis

19.3.1 Inviscid Burgers’ Equation

For Eq. (19.3), as discussed above, it is time-dependent. Figure 19.1 shows the
evolution of the system, it is clear that the slopes of curve will become sharp as time
increases, leading to the appearance of discontinuities. At t D 0.31 s and location
x D 0.464, the Floquet multiplier of Map Eq. (19.4) is �0.973, that means a period-
doubling bifurcation may appear.

From Fig. 19.1, the discontinuity will appear as time is beyond 0.31, that is, there
will be a jumping in the following time. In nonlinear dynamics, jumping is normally
relevant to saddle-node bifurcation. In the system studied, namely, inviscid Burgers’
equation, a saddle-node bifurcation will be induced as system is evolving, and this
will be proved in the following.

Considering x as the function of u, and taking derivative of Eq. (19.3) with respect
to u, yields,

1� 1

2
cos Œ2� .x � ut/� 2� .xu � t/ D 0 (19.13)

At saddle-node points, following condition should satisfy,

xu D 0 (19.14)
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Fig. 19.1 The velocity distribution

Substitute Eq. (19.14) into Eq. (19.13), we have

cos .2� .x � ut// D � 1

�t
(19.15)

Obviously, there exists saddle-node bifurcation only if t � 1
�

.
With Eqs. (19.3) and (19.15), the following can be obtained,

�
1

�t

�2
C .2u/2 D 1 (19.16)

Hence, at saddle-node points, the velocities are

uc D ˙1

2

s

1 �
�
1

�t

�2
(19.17)

By Eq. (19.15), the critical time is 0.318 s. As time increases beyond it, a saddle-
node bifurcation occurs, the ensuing velocity behaves as jumping around x D 0.5. As
t D 0.32 s, x D 0.50006, u D 0.05132, the Floquet multiplier governed by Eq. (19.5)
is 0.99999, implying a saddle-node bifurcation is induced in this parameter family.
Also, another saddle-node bifurcation appears at this moment with x D 0.49994,
u D �0.05132. All the results mentioned above are shown in Fig. 19.2.

More, a period-doubling bifurcation spatially occurs around x D 0.04600 and
0.95200, as shown in Fig. 19.2. At this moment and location x D 0.46500, the
Floquet multiplier of Map Eq. (19.4) is �1.0040, that means the state is critical
and a period-doubling bifurcation appears.
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Fig. 19.2 Period-doubling bifurcation at t D 0.32 s
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Fig. 19.3 Discontinuity or shock wave at t D 0.40 s

As time increases to 0.4 s, the jumping or shock wave appears obviously, and the
velocity behaves as discontinuity, as shown in Fig. 19.3. As t D 0.40 s, x D 0.51759,
u D 0.30280, the Floquet multiplier governed by Eq. (19.5) is 0.99999, implying a
saddle-node bifurcation is induced in this parameter family. Also, another saddle-
node bifurcation appears at this moment with x D 0.48241, u D �0.30280. All the
results can be proved numerically in Fig. 19.3.

At this moment and location x D 0.48700, the Floquet multiplier of Map
Eq. (19.4) is �1.25500, implying the state is unstable.

As time increases to 0.50 s, the velocity distribution is shown in Fig. 19.4. As
t D 0.50 s, x D 0.55263, u D 0.38559, the Floquet multiplier is 0.99999, implying a
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Fig. 19.4 Discontinuity or shock wave at t D 0.50 s

saddle-node bifurcation is induced in this parameter family. Also, another saddle-
node bifurcation appears at this moment with x D 0.44737, u D �0.38559. In the
next work, the unstable path between the two saddle-node points will be followed
by numerical path-following method, and only the stable paths are shown in the
following figures. Notice that the two saddle-node points are located around x D 0.5,
and there is a thin zone where the shock wave appears. All the results mentioned
above are shown in Fig. 19.4. Moreover, the discontinuity is located around x D 0.5,
and the velocity is within [�0.5, 0.5] in this thin zone, as proved by Eq. (19.17).

At this moment and location x D 0.50300, the Floquet multiplier of Map
Eq. (19.4) is �1.56900, that means the state is unstable.

As time increases to 0.60 s, the velocity distribution is shown in Fig. 19.5. As
t D 0.60 s, x D 0.59330, u D 0.42384, the Floquet multiplier is 0.99999, implying a
saddle-node bifurcation is induced in this parameter family. Also, another saddle-
node bifurcation appears at this moment with x D 0.40670, u D 0.42384.

In contrast to above, at this moment, there is a sequence of period-doubling
bifurcation, that is, the velocity will oscillate between some values. Note that the
discontinuity is still located around x D 0.5, and the velocities is within [�0.5, 0.5]
in a thin zone.

As time increases to 0.70 s, the velocity distribution is shown in Fig. 19.6. As
t D 0.70 s, x D 0.63685, u D 0.44532, the Floquet multiplier is 0.99999, implying a
saddle-node bifurcation is induced in this parameter family. Also, another saddle-
node bifurcation appears at this moment with x D 0.36315, u D �0.44532. It is
obvious that the thin zone where the shock wave appears is changing.

At this moment, the velocity will oscillate violently. The discontinuity is located
around x D 0.5, and the velocity is within [�0.5, 0.5] in this thin zone.



19 Formations of Transitional Zones in Shock Wave with Saddle-Node Bifurcations 355

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

u(
D

im
)

x(Dim)

Fig. 19.5 Sequence of period-doubling bifurcation at t D 0.60 s
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Fig. 19.6 Chaotic behaviors at t D 0.70 s

As time increases to 0.90 s, the velocity distribution is in chaotic state, as shown
in Fig. 19.7. As t D 0.90 s, x D 0.72845, u D 0.46768, the Floquet multiplier is
0.99999, implying a saddle-node bifurcation is induced in this parameter family.
Also, another saddle-node bifurcation appears at this moment with x D 0.27155,
u D �0.46768. It is obvious that the thin zone where the shock wave appears is
changing. All the results can be proved numerically in Fig. 19.7.

At this moment, the discontinuity is located around x D 0.5, and the velocities is
within [�0.5, 0.5] in this thin zone. And there are period-1 windows in the chaotic
state.
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Fig. 19.7 Period-1 window in chaotic state at t D 0.90 s
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19.3.2 Viscous Burgers’ Equation

As the viscosity is considered, the system becomes dissipative, and the dynamic
behaviors will be changed at a certain degree. With a certain initial condition, the
analytical solution to Eq. (19.9) can be obtained as,

u .x; t/ D c � 1

2
.u1 � u2/ th

u1 � u2
4�

� (19.18)

The curve governed by Eq. (19.18) can be sketched in Fig. 19.8.
With the introduction of viscosity, the slope of the curve becomes smooth. As the

viscosity decreases, the changing of velocity with respect to � becomes rapid, and
the limit is the discontinuity captured in Inviscid Burgers’ equation stated above.
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As a conclusion in this section, it can be drawn that fluid flow is often accom-
panied by the formation of zones with strong gradients, and the flow parameters
(velocity, density, pressure, temperature, etc.) vary rapidly in them. If dissipation is
ignored or becomes slight, the discontinuity will appear in thin zones.

19.4 Conclusions

The nature of the shock wave is studied with inviscid Burgers’ equation in detail,
and it has been proved that there exists a thin spatial zone where a saddle-node
bifurcation occurs as time goes on, and the velocity of the fluid behaves as jumping,
namely, the characteristic of shock wave. Further, the period-doubling bifurcation is
captured, implying there exist multiple states as time increases, and the complicated
spatio-temporal pattern can be formatted. With viscous Burgers’ equation, the
instability or bifurcation condition is obtained, and it is proved that there are
three singular points in the system as the bifurcation condition is satisfied. With
a comparison between them, it shows that the discontinuity resulting from saddle-
node bifurcation is removed with the introduction of viscosity, and another kind of
velocity change with strong gradient is obtained.
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Chapter 20
Dynamics of Composite Milling: Application
of Recurrence Plots to Huang
Experimental Modes

G. Litak, R. Rusinek, K. Kecik, A. Rysak, and A. Syta

Abstract We study the dynamics of a milling process of a composite material
basing on the experimental time series of cutting force components measured in
the feeding direction. By using the recurrence plots we observe the differences
in the response of the system depending on the feeding direction with respect to
composite fibers orientation. This effect has been found after decomposition on
the Huang experimental modes. Showing the results of recurrences in particular
experimental modes we advocate to use this quantity to analyze the stability of the
cutting of composites. The difference between different cases was also noticed using
Fourier transform and statistical parameters such as RMS and kurtosis, but for these
methods the necessary time interval of the examined time series has to be much
longer, while recurrence approach is designed for shorter time series.

Keywords Dynamics of milling process • Chatter identification • Recurrence
plots • Experimental modes decomposition

20.1 Introduction

The cutting process is a basic technology to get the desired shape and surface
parameters. Some conditions may be affected by vibration types of “chatter” as man-
ifested in unexpected waves on the machined surface of the workpiece. This effect
was noticed and described by Taylor in the early twentieth century [1]. However
first attempts to explain this phenomenon took place 50 years after its discovery.
The sources of these vibrations was seen in a number of nonlinear deterministic
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effects, which include the mechanisms of self-excited vibration generation [2], the
effects of regenerative cutting [3], the structural dynamics of the process [4, 5],
and finally dry friction [6, 7]. It should also be noted that these effects are not
mutually exclusive. As a result, the elimination of vibration and stabilize cutting
accompanying met with great interest in science and technology [8–10]. Short time
series studies have become important to understand the process and develop a better
control strategy [11].

Recently, dynamics of milling process have been investigated intensively. The
authors of papers [10, 12–16] focused on stability of milling process, bifurcations
leading to chatter vibrations, and finally on identification of various types of system
vibrations using nonlinear methods.

Resistance of fibers in the composites and possible damage mechanisms (such as
fiber pullout, fiber fragmentation and delamination, matrix burning, and/or cracking)
influence on the surface quality of a machining process [17–19].

20.2 Experimental Setup and Measured Time Series

Milling process of composite material photo and schematics are presented in
Fig. 20.1. In climb thread cutting process a finger cutter (full circuit milling) without
colling. The parameters of the investigated milling process are shown in Table 20.1.
In the experiment, we sampled values feed component forces Fx (Fig. 20.1) with
frequency of 10 kHz. For tests we used Carbon-fiber-reinforced polymer CFRP
based on unidirectional Carbon-epoxyde prepreg (Hexcel) with carbon fiber -AS7J
12K and epoxide resin M12.

The measured time series for the force Fx for fiber orientation angle ˇ are
presented in Fig. 20.2. The angle ˇ was chosen ˇ D 90ı and ˇ D 75ı for D1
and D2, respectively.

Fig. 20.1 Photo of an experimental stand (a) and a schematic plot (b) of milling process
configuration. Note, the angle ˇ denotes the milling direction with respect to composite fibers
(Table 20.1)
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Table 20.1 Milling process parameters

No.
measur.

Cutting
depth [mm]

Feed ratio
[mm/rev.]

Feed ratio
[mm/min]

Milling
width
[mm]

Rot.
speed
[rpm]

Cutting
speed
[m/min]

Angle
ˇ [deg]

(D1) 0.8 0.125 1,500 12 12,000 45.216 90
(D2) 0.8 0.0625 1,500 12 12,000 45,216 75

The angle ˇ (ˇ D 90ı for D1 and ˇ D 75ı for D2) was denoted in Fig. 20.1b)
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Fig. 20.2 Time series of measured force Fx (feed direction in Fig. 20.1). Note, the difference of
scale in vertical axes

20.3 Analysis of the Experimental Response

The corresponding frequency spectrum is shown in Fig. 20.3. One can see the
characteristic frequency of 200 Hz cutter rotation and its multiples. In these two
cases, other components are dominant. If D2 is the frequency of 400 Hz, while in
the case of D1 is 200 Hz. Note that the appearance multiples of 200 Hz implies
nonlinear dynamics.

It also appears that in the case of D1 the spectrum is also showing additional
structure of less than 200 Hz, which may be associated with the orientation of
composite fibers. Namely, this is the most transparent difference in the spectra of
these two cases.

20.4 Recurrence Plots for Huang Experimental Modes

In the analysis by Hilbert–Huang one performs the so-called signal decomposition
into experimental modes (Huang decomposition):F 1

x .t/, F
2
x .t/, . . . , Fm

x .t/ [20,21]:

Fx.t/ D
mX

jD1
F j
x .t/C rm; (20.1)
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Fig. 20.3 Fourier analysis of measured Fx time series: frequency response
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Fig. 20.4 Huang experimental mode (EM) decomposition (of measured Fx). Consecutive modes
1–6 from bottom to top of figures

where rm is a truncation error. Each next experimental j mode is defined after
subtracting average of maximum and minimum values interpolated by a cubic
splines of the local envelope F j�1

x .t/. Note that the first mode F 1
x .t/ is obtained

from the original signal Fx.t/ D F 0
x .t/ and the Huang decomposition procedure.

The first 6 Huang modes obtained using the above schema are plotted in Fig. 20.4.
One can see that the amplitude reach maximum for mode 4, which could be the most
important to distinguish the type of vibrations.

In the next step we provide the second coordinate as the numerical derivative
F

0i
x .t/ for each mode F i

x .t/. After normalization of each two variables QFix.t/ D
. QF 0i

x .t/;
QF i
x .t// for given mode through the corresponding standard deviations we

get phase vector representation

QF1x.t/; QF2x.t/; : : : ; QFmx .t/; (20.2)

wherem is a natural number of the highest mode truncation (in our case m D 6).
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Fig. 20.5 Recurrence rate RR versus the threshold value e

Using such formulation we performed recurrence analysis for each mode to
compare D1 and D2 time series (Fig. 20.2). The recurrence rate (RR) parameter
can be defined for each mode separately. It is defined as a fraction of off diagonal
i ¤ j following inequality [22]

k QFnx.ti / � QFnx.tj /k < e; (20.3)

where e is the given threshold number.
Namely, RR reads

RR D 1

N.N � 1/

X

ij

�.e � k QFnx.ti /� QFnx.tj /k/ .for i ¤ j /; (20.4)

where �.:/ defines the Heaviside step function and N denotes the length of
considered time series. while n indicates the corresponding mode. Note thatRR has
already been proposed as a good quantity to distinguish some different responses
of dynamical systems [23–25]. In this paper we adopt this idea. The results for
the first 5 corresponding modes (see Fig. 20.5) have been used for calculations of
RR One can clearly see the difference in mode functions versus threshold value e.
The most prominent difference is expressed in modes 4 and 5 and also in modes
1–3 intersection behavior in Fig. 20.5 D1 in contrary to the separate (no-crossing)
grow tendency in Fig. 20.5 D2. These behaviors have the origin in different mode
vibrations for D1 and D2 time series. For better clarity we have also plotted the
corresponding recurrence plots (Fig. 20.6 a–j). One can clearly see different patterns
in particular RP figures. The most regular is Fig. 20.6g (for D1) where the diagonal
long lines are most repeatable. This opposes to Fig. 20.6h (for D2) where the lines
have the fairly shorter lengths. These results, and also other figures (from the set
of figures: Fig. 20.6a–j) in a smaller extent, imply that the time series D1 are
more periodic than D2. Note that this conclusion can be drawn from fairly short
time series. Interestingly in that case (D1) the cutter feed direction is oriented
perpendicularly to the composite fibers.
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Fig. 20.6 (continued)

The modal results helped to capture visible changes in the statistical measures
(Table 20.2). They can also be used to the design of improved control algorithm
milling. Note, the nonmonotonic evolution of RR values for D1 series (Table 20.2).
Fairly larger kurtosis in D2 case (see mode 3 in Table 20.2) implies intermittency
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Fig. 20.6 Recurrence plots for e D 0:8 in two cases D1 (a,c,e,g,i) and D2 (b,d,f,h,j) for particular
experimental modes. Note that, the plot is made using the 20.3

confirmed also by RP figures (see the difference between Fig. 20.6e and f, also
Fig. 20.6g and h, and Fig. 20.6i and j). It seems that the configuration of the angle
introduces an additional fairly low frequency modulation in the D1 case, which
is clearly visible in the mode 5 recurrence plot (Fig. 20.6g). In contrast to it,
the recurrence plots of the D2 case exhibits less regular behaviour. This has been
confirmed by the results of the frequency spectrum (Fig. 20.3 (D2)), where the
second harmonic of D2 series reaches the highest values.

20.5 Conclusions

The results of measurement and analysis of signals are based on multi-resolution
method for experimental modes. Unlike the Fourier transform, it is applied to non-
stationary signals as well as those that exhibit the phenomenon of intermittency.
In our case, we have examined the process of composite milling tools with different
orientations relative to the direction of the fibers.
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Table 20.2 Summary of statistics and recurrences for the milling process Fx component: number
of experimental modes (No. EM), root mean square (RMS), kurtosis, recurrence rate (RR)

No. EM
RMS
(D1)[N]

RMS
(D2) [N]

Kurtosis
(D1)

Kurtosis
(D2)

RR (D1)
e D 0:8

RR (D2)
e D 0:8

1 73.33 182.35 2.608 3.117 0.268 0.260
2 37.08 154.91 2.299 3.454 0.141 0.159
3 106.39 280.21 1.730 4.159 0.166 0.145
4 141.34 308.66 1.586 2.651 0.178 0.141
5 69.67 13.20 2.053 1.929 0.243 0.140

Note: RMS and kurtosis have been calculated for intervals of 1 s as shown in Fig. 20.2 while
recurrence for the first 0.2 s of the corresponding time series (see Figs. 20.2 and 20.6)

Recurrences inform about a specific modulation and may also indicate a nonli-
near nature of these oscillations. However, to provide specific guidance and make
a more systematic study some more information about the nature of identified
vibrations can be learned from other parameters which are in use in recurrence
quantification analysis [22]. However repeating the procedure for other parameters
in the adopted processing conditions goes beyond this paper and will be reported in
a separate article.
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Chapter 21
The Dynamics of Shear-Type Frames Equipped
with Chain-Based Nonlinear Braces

Enrico Babilio

Abstract In recent years a number of bracing devices have been proposed,
analyzed, and applied to real cases, since in engineering applications the con-
struction of frames equipped with braces is a widespread practice. In the present
contribution, a nonlinear bracing system is introduced and applied to the case of
shear-type moment-resistant frames. The frame is considered here as the primary
structure and is assumed to have linear elastic behavior and the bracing system is
considered as a secondary, additional structure. The bracing system is made of two
chains, each of them constructed as the assemblage of two axial elements (springs)
undergoing axial force, only. The springs that are assumed to have linear elastic
behavior are connected to each other in the chain and to the frame through hinges.
The global behavior of the system is nonlinear, since the restoring force of the
bracing system is a piecewise-defined function. In order to asses the performance of
the whole nonlinear system, its behavior is compared with that of the linear primary
structure alone, through a suitable concise descriptor.

Keywords Shear-type buildings • Lateral loads • Nonlinear braces

21.1 Introduction

In engineering applications, the construction of frames endowed with braces is a
widespread practice, especially for, but not limited to, the case of steel structures. In
recent years a number of bracing devices [5, 6, 13], including elastic, elastic-plastic
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and viscous braces, have been proposed, analyzed, and applied to real cases. Braces
allow structures, as buildings or bridges, for instance, to efficiently resist to lateral
loads due to earthquakes or wind.

Large amounts of deformation energy can be dissipated under cyclic loads, if
plastic behavior of the braces is taken into account [7–9], or if viscous or friction
brace dampers are mounted in structures, finding the performance of such structures
superior to that of conventional buildings: see [17, 18], where the performance of
a framed building equipped with friction devices is numerically studied, and [19],
where brace dampers, installed at the cross points in braced-frame structure systems,
are introduced, and it is shown that the stiffness and damping in a structure can be
altered by setting properly the stiffness and damping of the damper.

In the present contribution, a bracing system based on linear springs, connected to
each other and to a shear-type moment-resistant frame through hinges, is considered.
The idea comes from a previous work [1], with the main objective to simplify
the device presented there, since, at a deeper insight, it resulted to have some
practical difficulties, both in parameter tuning and, mainly, from a fabrication point
of view. The device proposed here is still based on axial elements, that we call as
springs, experiencing only axial force, but in the present work, in contrast to [1], the
adopted links have elastic, instead of viscoelastic, behavior and no additional mass is
considered. The global behavior of the assemblage of springs is nonlinear, although
the single parts have linear elastic behavior. It is indeed possible for a system
with only linear components to exhibit nonlinear characteristics, as highlighted
in [10]. The restoring force is a piecewise-defined function with non-smooth corners
and each branch of the restoring force-displacement curve is close to have linear
behavior.

In engineering fields, there are many examples of dynamical systems modeled
as multi-linear (bilinear or trilinear) oscillators or, more in general, oscillators
whose restoring force is a piecewise-defined function, as in the present case.
Such oscillators are indeed of great importance in the modeling of the nonlinear
phenomena occurring in structures and machines and their knowledge is helpful
in the design, control, and fault detection. A number of analytical and numerical
studies on such oscillators have appeared in the literature. In what follows, we cite
some of them.

In [20], an articulated mooring tower is modeled as a bilinear oscillator, with
different stiffness for positive and negative deflections, due to the slackening of
mooring lines, showing the model responses a good agreement with experimental
results. The response of the same model under irregular seas is studied in [11].
In [12], the dynamic response of an offshore structure subjected to a nonzero mean,
oscillatory fluid flow is studied. The interaction between the stiffness characteristic
and the asymmetric hydrodynamic drag force is taken into account. In [4] to
investigate the behavior of an articulated offshore platform, the structure is modeled
as an upright pendulum with bilinear springs at the top, having different stiffness
for positive and negative displacements. In [21] a multi-bay, multi-story scaffold
with loose tube-in-tube connecting joints is modeled as a plane structure in sway
under lateral base excitations. The loose restraining joint between adjacent stories
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is treated as a bilinear stiffness. In [2] the effects of a clearance on the normal mode
frequencies of an N -DOF mechanical system, with bilinear stiffness and without
damping, is investigated. In [15] the periodic motion and stability for a system with
a symmetric, trilinear spring is numerically determined and in [16] an analytical
procedure to determine the exact, single-crossing, periodic response of a class of
harmonically excited piecewise linear oscillators is applied.

In the following sections of the present contribution, the model and the motion
equations of the shear-type frame, equipped with nonlinear braces, will be intro-
duced and some numerical applications will be presented and discussed.

21.2 The Model

Let us consider the structure depicted in Fig. 21.1, to which we refer for notations.
Assume the system is made of a primary structure plus additional devices designed
to improve the response of the system against lateral (i.e. horizontal or parallel to
x-direction) loads.

Since we are mainly interested in civil and structural engineering applications,
we assume the primary structure is a multi-story shear-type moment-resistant frame.
We assume that the total mass of the system is concentrated in a number N of
lumped masses, N equal to the number of the stories, and consider all the columns
as massless and inextensible and the beams as rigid.

u1(t)

· · ·

ui(t)

· · ·

uN(t)

u0(t)

H

B

P1(t)

· · ·

Pi(t)

· · ·

PN(t)

rigid beammassless column

massless brace

x

y

Fig. 21.1 The model of the shear-type moment-resistant building equipped with the braces
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ui−1(t)

ui(t)

ki;i−1

hi

bi

Fig. 21.2 The basic cell of
the bracing device, in
between two successive
stories. Qki;i�1 is the stiffness
of each link

The single massless brace is designed as an assemblage of two equal springs,
connected to each other and to the frame itself by means of hinges. We call it as a
basic cell (see Fig. 21.2).

Assume that a couple of such basic cells is inserted in every inter-story height. In
what follows we call it as a bracing couple.

With these ingredients, the dynamics of the building of total height H , made of
N stories, endowed with N inter-story bracing couples, can be modeled by

M Ru C C Pu C Ku C f D p; (21.1)

where M; C; K are N  N symmetric matrices (mass, damping and stiffness,
respectively), u, Pu, and Ru are the displacement vector and its derivatives (velocity
and acceleration) w.r.t. the time t , f is the nonlinear restoration force vector, and p
is the external load vector.

Being the columns of the primary structure inextensible, each displacement
component of u is parallel to the x-direction (see Fig. 21.1).

The .i; j /th entry of the matrices M; C; K is given by

Mi;j D
(
mi; if i D j;

0; otherwise;
(21.2)

Ci;j D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ci;j�1 C ci;jC1; if i D j and i < N;

ci;j�1; if i D j and i D N;

�ci;j ; if ji � j j D 1;

0; otherwise;

(21.3)

Ki;j D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ki;j�1 C ki;jC1; if i D j and i < N;

ki;j�1; if i D j and i D N;

�ki;j ; if ji � j j D 1;

0; otherwise,

(21.4)
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being mi the mass of the i th story and ci;j and ki;j the .i; j /th inter-story total
damping and stiffness, respectively.

The definition (21.3) is for the case of relative damping, that is

C D ˇK; (21.5)

being ˇ a positive constant. The relation (21.5) is a special kind of proportional
damping (see [3]), given by

C D ˛M C ˇK; (21.6)

with ˛ D 0; and ˇ ¤ 0: The case of absolute damping corresponds to ˛ ¤ 0; and
ˇ D 0:

The i th component of the nonlinear force vector f in (21.1) is given by

fi .t/ D f .ui .t/ � ui�1.t//C �i f .ui .t/ � uiC1.t//; (21.7)

where �i is defined as

�i D
(
1; if i < N;

0; if i D N:
(21.8)

The terms appearing in (21.7) will be discussed in Sect. 21.2.1.
The components of the external load vector p in (21.1) are given here as sine

functions, though in actual applications, in many engineering fields, it is quite rare
to meet loads variable in time according to a sine function. Nevertheless sine loads
have the advantage to allow us to construct response diagrams in the simplest
way. The load is assumed variable along the height of the structure, with the i th
component of p given by

pi .t/ D Pi sin .�1 t C �i/ � ıi;1Ug .k0;1 sin �2 t C �2 c0;1 cos �2 t/ ; (21.9)

where ıi;j is the Kronecker delta defined as

ıi;j D
(
1; if i D j;

0; otherwise.
(21.10)

In (21.9), Pi ; �i ; i D f1; � � � N g and �1; are, respectively, amplitudes, phases, and
frequency of the external loads applied to the floors and Ug and �2 are amplitude
and frequency of the ground motion, given by

u0.t/ D ug.t/ D Ug sin .�2 t/: (21.11)
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In case of seismic events, buildings are loaded by ground motion, while wind
or gust loads are variable with the height. It is worth recalling that both seismic
inputs and wind are random in nature and, as a consequence, in real applications
they induce random and multi-frequency loads [14].

21.2.1 The Nonlinear Restoring Force

In order to explicitly write the components (21.7) of the nonlinear restoring force
vector f; consider the system depicted in Fig. 21.2, showing a brace mounted in
between two moving elements, representing two successive stories (numbered as
i � 1 and i ) of the shear-type frame. The brace is built by assembling two links
(springs) assumed equal in terms of stiffness Qki;i�1 and initial length li :

We define the relative displacement�ui between the two stories as

�ui D ui .t/ � ui�1.t/; (21.12)

introduce two limit relative-displacements

�umi D
q
4l2i � h2i ; (21.13)

�upi D �bi C
q
4l2i � h2i ; (21.14)

and assume that

li >

q
b2i C h2i

2
: (21.15)

The stress experienced by the chain of the two springs is equal to zero if�ui satisfies
the inequality

��upi < �ui < �upi : (21.16)

Otherwise, for

�upi � �ui < �umi ; (21.17)

the force exerted is given by

f .1/.�ui / D Qki;i�1.�ui C bi/

 
1 �

s
.bi C�upi /

2 C h2i

.bi ��ui /
2 C h2i

!
; (21.18)

and for

�ui � �umi ; (21.19)
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Fig. 21.3 The restoring force
plot of a bracing couple

f .2/.�ui / D Qki;i�1.�ui C bi /


 
2 �

s
.bi C�umi /

2 C h2i

.bi C�ui /
2 C h2i

�
s
.bi C�upi /

2 C h2i

.bi C�ui /
2 C h2i

!
: (21.20)

Since in each inter-story height the bracing couple is assumed composed by two
braces symmetrically mounted (see Fig. 21.1, again), the nonlinear term is given by

f .�ui / D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

�f .2/.��ui /; if �ui < ��umi ;

�f .1/.��ui /; if ��umi � �ui < ��upi ;

0; if ��upi � �ui < �upi ;

f .1/.�ui /; if �upi � �ui < �umi ;

f .2/.�ui /; if �ui � �umi :

(21.21)

In Fig. 21.3 the restoring force (21.21) is shown.
It is worth noting that, because of the definition (21.12), if Ug ¤ 0; the

function (21.11), besides that in (21.9), appears in the left-hand side of (21.1), in
the first component f1.t/ of the nonlinear term f:

21.2.2 Initial Conditions

The initial conditions, in terms of displacements and velocities of each of the
stories, are

ui .0/ D 0; Pui .0/ D 0 ; i D f1; 2; : : : ; N g : (21.22)
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21.3 Dimensionless Equations

We rescale mi ; ci;j ; and ki;j w.r.t. the trace (that is equal to the sum of the
eigenvalues) of the mass, damping, and stiffness matrices, respectively. To this end,
we define

M D tr M; C D tr C; K D tr K: (21.23)

Notice that M gives the total mass of the system.
By choosing the total height H of the building as the length scale, and

r
M

K
D 1

!
; (21.24)

as the time scale, the following set of dimensionless variables can be defined:

wi D ui
H
; 
 D t!; �i D mi

M
; �i;j D ci;j

C
; Ki;j D ki;j

K
: (21.25)

Applying construction rules similar to those given by (21.2), (21.3), and (21.4) we
get the dimensionless version of (21.1) as

OM Rw C Cp
M K

OC Pw C OKw C Of D Op; (21.26)

where all the symbols are the dimensionless counterpart of those in (21.1). In
particular, Pw and Rw are the derivatives of the dimensionless displacement vector w
w.r.t. the dimensionless time 
 (notice that in (21.1), the over-dot symbol stands for
the derivative w.r.t the time t; instead).

The components of the dimensionless vector Of are given by

Ofi .
/ D Of .wi .
/ � wi�1.
//C �i Of .wi .
/� wiC1.
//; (21.27)

with �i defined in (21.8). The next Sect. 21.3.1 will be devoted to rewrite (21.27)
explicitly. In order to do that, we need to consider the dimensionless counterparts of
constants and functions appearing in Sect. 21.2.1.

The external force (21.9) is rewritten as

Opi.
/D OPi sin .˝1
 C �i/� ıi;1 OUg
�

K0;1 sin˝2
 C Cp
M K

˝2 �0;1 cos˝2


�
;

(21.28)

where OPi ; i D f1; � � � ; N g; OUg; ˝1 and ˝2; are given by

OPi D Pi

HK
; OUg D Ug

H
; ˝1 D �1

!
; ˝2 D �2

!
; (21.29)

and ıi;j is the Kronecker delta defined in (21.10). Initial conditions are nondimen-
sionalized accordingly.
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21.3.1 The Dimensionless Restoring Force

Lengths and relative displacements are rescaled w.r.t. the length scale H; as in the
first of the rules (21.25):

Obi D bi

H
; Ohi D hi

H
; �wpi D �upi

H
; �wmi D �umi

H
; �wi D �ui

H
: (21.30)

In particular�wi ; i.e. the dimensionless version of �ui ; can be rewritten as

�wi D wi .
/ � wi�1.
/: (21.31)

The forces (21.18) and (21.20) are rewritten as

Of .1/.�wi / D #i;i�1. Obi C�wi /

0

@1 �
vuut . Obi C�wpi /

2 C Oh2i
. Obi ��wi /2 C Oh2i

1

A ; (21.32)

Of .2/.�wi / D #i;i�1. Obi C�wi /


0

@2 �
vuut . Obi C�wmi /

2 C Oh2i
. Obi C�wi /

2 C Oh2i
�
vuut . Obi C�wpi /

2 C Oh2i
. Obi C�wi /

2 C Oh2i

1

A ;

(21.33)

where

#i;j D
Qki;j
K
; (21.34)

and the i th component of the nonlinear term Of is given by

Of .�ui / D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

� Of .2/.��wi /; if �wi < ��wmi ;

� Of .1/.��wi /; if ��wmi � �wi < ��wpi ;

0; if ��wpi � �wi < �wpi ;
Of .1/.�wi /; if �wpi � �wi < �wmi ;
Of .2/.�wi /; if �wi � �wmi :

(21.35)

21.4 A Sample Problem

For the numerical applications we present in Sect. 21.5, the special case, in which
all the stories have the same mass mi D m, the inter-story massless columns have
the same stiffness ki;i�1 D ki;iC1 D k and damping property ci;i�1 D ci;iC1 D c

and all the nonlinear braces have the same stiffness Qki;i�1 D Qki;iC1 D Qk and are
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mounted in the same way in the inter-story height, is considered. In particular, we
assume that

hi D h D H

N
; bi D b D �h D �

H

N
; li D l D �h D �

H

N
; (21.36)

where � and � are positive real constants, and, as before,H is the total height of the
frame and N is the number of the stories. These assumptions allow us to simplify
relations (21.13)–(21.15) as

�wm D
p
4 �2 � 1
N

; (21.37)

�wp D �wm � �

N
; (21.38)

� >

p
�2 C 1

2
; (21.39)

and the terms in (21.26) as follows

OM D 1

N
I; OC D OK D 1

2N � 1.I C Q/;
Cp
M K

D cp
m k

r
2N � 1

N
;

(21.40)
where M;C; and K are defined in (21.23), Q is an N  N symmetric matrix
whose entries are defined as

Qi;j D

8
ˆ̂<

ˆ̂:

1; if i D j and i < N;

�1; if ji � j j D 1;

0; otherwise,

(21.41)

and I is an N  N identity matrix whose entries Ii;j D ıi;j are given by the
Kronecker delta, defined in (21.10).

The matrix equation (21.26) is rewritten as

1

N
I Rw C 1

2N � 1.I C Q/

 
2�

p
1C �min

r
2N � 1

N
Pw C w

!
C Of D Op; (21.42)

where �min is the smaller eigenvalue of the matrix Q (see Fig. 21.4, where the
variation of �min w.r.t. N is depicted) and the dimensionless constant � is defined as
follows

� D c

2
p
m k

p
1C �min: (21.43)
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Fig. 21.4 The variation of
�min with the respect to N

We call � as the overall damping ratio, since the value of � determines if all
the displacement components wi of the damped (� > 0) linear N -DOF system
associated with (21.42) (with Of D Op D 0) approaches a static equilibrium oscillating
(0 < � < 1) or decaying without oscillating (� � 1).

Notice that for the single-DOF system .N D 1/; �min D 0 holds, and the
definition of �; as given here, is coincident with the standard definition for the
damping ratio.

The forces (21.32) and (21.33) are rewritten as

Of .1/.�wi / D #

N
.�CN�wi /

0

@1 �
s
.�CN�wp/2 C 1

.� �N�wi /
2 C 1

1

A ; (21.44)

Of .2/.�wi / D #

N
.�CN�wi /


0

@2 �
s
.� CN�wm/2 C 1

.� CN�wi /
2 C 1

�
s
.�CN�wp/2 C 1

.� CN�wi /
2 C 1

1

A ;

(21.45)

and the component of the nonlinear term Of is still given by (21.35), provided
that (21.44) and (21.45) are taken into account.

The i th external load component (21.28) is rewritten as

Opi .
/ D OPi sin˝1
 � ıi;1 OUg
2N � 1

 
sin˝2
 C 2 � ˝2p

1C �min

r
2N � 1

N
cos˝2


!
;

(21.46)

with �i D 0; i D f1; � � � ; N g:
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In what follows the ground motion OUg and the live loads OPi are assumed not
contemporaneous events. In particular, if OUg D 0; to evaluate the effect of the
distribution of loads along the height, we considerN different external force vectors
acting separately, each of them associated with a linear mode shape of the system

1

N
I Rw C 1

2N � 1.I C Q/w D 0: (21.47)

Finally, in order to evaluate the performance of the nonlinear system .# > 0/; in
comparison with the linear system .# D 0/; the definition of a suitable concise
descriptor is needed. To this end, we consider the Poincaré sections taken at


n D 
0 C 2 n �

˝j

; n D f0; 1; � � � g; (21.48)

where j takes the values 1 or 2 depending on the assigned load: for OPi ¤ 0;

and OUg D 0; j D 1I for OPi D 0; and OUg ¤ 0; j D 2: Time 
0 is taken large
enough to have the system in its steady state. On each Poincaré section, we consider
the vector

vi .
n/ D wi .
n/ e1 C Pwi .
n/ e2; (21.49)

e1; e2 being orthonormal vectors. The concise descriptor we choose to consider is
jvi j; i.e. the norm of the vector vi :

21.5 Numerical Results

The simplified system described in Sect. 21.4 is numerically analyzed. The cases of
1 and 2-DOF systems are considered in Sects. 21.5.1 and 21.5.2, respectively.

21.5.1 The Case of a Single Degree of Freedom

The examples we consider first are focused on the single-DOF system (N D 1).
The values of parameters adopted in the numerical simulations are reported in
Table 21.1. Both the case of a live load (applied to the height of the story) and the
case of ground motion are considered. The simulations are performed for different

Table 21.1 Simulation parameters for tests on 1-DOF system

N � � � �min OP1a OUga

1 0.848528 1.0 0.1 0.0 1.0 1.0
aLive load and ground motion do not act simultaneously
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Fig. 21.5 The response of the 1-DOF system, for different values of #

values of the dimensionless stiffness # of the braces. The results are shown in
Fig. 21.5 (live load) and in Fig. 21.9 (ground motion). All the reported curves are
obtained performing a number of computations large enough to get diagrams as
“smooth” and readable as possible. In both cases of loading, the frequency of the
external load is taken in the interval 0 < ˝j � 3; j D f1; 2g:

The response diagrams (or the bifurcation diagrams) for the nonlinear case show
the expected huge richness of behaviors; in the nonlinear case, the norm jv1j near
the linear undamped frequency (˝ D 1:0) is smaller than that in the linear case, and
the (higher) peak of each diagram is shifted w.r.t. the peak in the linear case, due
to the foldover effect. After the peak, the system jumps to the lower branch of each
diagram and, although the typical hysteretic behavior in between the jump-up and
the jump-down frequencies is expected, it is not documented here.

In Fig. 21.6, three enlargements in narrower and narrower frequency ranges are
reported (for # D 10). In particular, the first enlargement shows a number of
superharmonic resonances responsible for the wiggled pattern in the frequency
range 0 < ˝1 � 0:4: The second enlargement, in the range 0:454 < ˝1 � 0:480;

shows that the system passes from periodic to chaotic responses through period
doubling and again to a periodic solution through period halving (and similarly
the system does in the frequency range 0:75 < ˝1 � 0:90). A number of jump-
down or jump-up phenomena, smaller in amplitude with respect to that detected at
a frequency around˝1 D 2:3 (see Fig. 21.5), are found.

Diagrams in Fig. 21.7 (again for # D 10) summarize the results of a number of
computations performed by setting ˝1 at the values reported in each diagram and
OP1 variable in the interval 0 < OP1 � 4:25:

Beside the system again shows a richness of behaviors (period doubling, chaotic
behavior, periodic windows, mainly for ˝1 D 0:85 or ˝1 D 1:00), these diagrams
are interesting also from a system performance point of view.

For low values of OP1; the growth of jv1j in the nonlinear case is linear (as in
the linear case, dashed line in Fig. 21.7) since the displacement w1 satisfies the
dimensionless counterpart of the inequality (21.16) and the bracing couple remains
unstressed. As OP1 increases, the bracing couple starts to exert force on the primary
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Fig. 21.6 The response of the 1-DOF system for # D 10: Three successive enlargements in
narrower and narrower frequency ranges, starting from 0:0 � ˝1 � 1:0 (dashed rectangle in
Fig. 21.5)

structure and the system response leaves the linear branch of the diagram. It is
worth noting that the growth rate of jv1j is slower than that in the linear case, and
depending on the frequency of the loading, the quantity jv1j; in the nonlinear case,
remains smaller or jumps to a higher value than that in the linear case. Combining
the results shown in Figs. 21.5–21.9, the stiffness of the bracing system can be tuned
in order to get the best performance in the frequency and amplitude ranges as large
as possible. Indeed, jv1j is related to the amplitude of the response, and the smaller
it is, the smaller is the stress experienced by the primary structure.

Finally, for the record, four selected solutions, for different values of frequency
˝1 and amplitude OP1; are shown in Fig. 21.8. The reported plots show three periodic
solutions of periods 1, 2, and 3, and a chaotic solution. Time plots (over twelve
cycles of the forcing), phase portraits and corresponding Poincaré maps (dots inside
the phase portraits) are reported.
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Fig. 21.7 The response of the 1-DOF system for different values of the frequency ˝1 (reported
into each graph) with respect to the value of the load amplitude OP1: For each diagram # D 10 is
set, and the response of the linear system (# D 0) is reported (dashed line)
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Fig. 21.8 Four selected solutions for different values of frequency ˝1 and amplitude OP1: period-1
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plots (over 12 cycles of the forcing), phase portraits, and corresponding Poincaré maps (dots inside
the phase portraits) are reported
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Fig. 21.9 The response of the 1-DOF system driven by the ground motion, for different
values of #

Table 21.2 Simulation parameters for tests on 2-DOF system

N � � � �min OP1a OP2a OUga

2 0.848528 1.0 0.1 �0.618034 0.525731 0.850651 1.0
0.850651 �0.525731

aLive loads and ground motion do not act simultaneously

21.5.2 The Case of Two Degrees of Freedom

The present subsection is devoted to the case of 2-DOF system .N D 2/. The values
of parameters adopted in the numerical simulations are reported in Table 21.2.

Both the case of live loads (applied to the height of each of the stories) and the
case of ground motion are considered and, again, the simulations are performed for
different values of the parameter #. The results are shown in Figs. 21.10 and 21.11
(live loads) and in Fig. 21.12 (ground motion) and, in both cases of loading, the
frequency of the external load is taken in the interval 0 < ˝i � 3; i D f1; 2g:

Frequencies and damping ratio of the linear 2-DOF system associated
with (21.42) (with Of D Op D 0) are reported in Table 21.3.

Remarks made for the previously considered case .N D 1/ are essentially still
valid in the present case. Moreover the response of the linear system is amplified
around the first and the second natural frequencies, while the nonlinear system may
present frequency peaks not only due to harmonic and superharmonic resonances
but also due to internal coupling between the two degrees of freedom.

21.6 Conclusions

The present contribution is focused on the study of nonlinear dynamics of a
shear-type moment-resistant frame equipped with nonlinear braces, improving the
response of the system against lateral loads. The bracing system is based on linear
springs connected to each other and to the frame through hinges.



386 E. Babilio

0:0 0:5 1:0 1:5 2:0 2:5 3:0

0

5

10

15

20
1st floor Ug = 0:0

P1 = 0:525731
P2 = 0:850651

κ = 0

κ = 1
κ = 2

κ = 5
κ = 10

Ω1

|v 1
|

20

25

30

35

0:0 0:5 1:0 1:5 2:0 2:5 3:0

0

5

10

15

2nd floor Ug = 0:0
P1 = 0:525731
P2 = 0:850651

κ = 0

κ = 1 κ = 2

κ = 5 κ = 10

Ω1

|v 2
|

Fig. 21.10 The response of the 2-DOF system under loads applied along the height similarly
to the first linear eigenmode, for different values of #: The values of the load amplitude OPi are
reported
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Fig. 21.12 The response of the 2-DOF system under ground motion, for different values of #.
The value of the ground motion amplitude OUg is reported

Table 21.3 Linear
frequencies and damping
ratios

!1 D 0:50462 �1 D �a

!2 D 1:32112 �2 D 2:61803 �a

aValue of � reported in Table 21.2

While all the system components are linear, the behavior of the assemblage is
nonlinear, being the restoring force of the bracing system given as a piecewise-
defined function.

The behavior of the nonlinear system is compared with that of the linear
one through a suitable concise descriptor. The obtained bifurcation diagrams are
effective in detecting and identifying various different responses.

At the present stage of the research, it is possible to claim that endowing a frame,
having linear elastic behavior, with the proposed devices has the advantage to reduce
the stress experienced by the primary structure, near the linear resonance frequency
and in wider ranges of the load frequency or amplitude, provided that the stiffness
of the braces is tuned properly.
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Chapter 22
In-Plane Free Vibration and Stability of High
Speed Rotating Annular Disks and Rings

Hamid R. Hamidzadeh and Ehsan Sarfaraz

Abstract Analytical method is presented for the determination of free vibration
characteristics of high speed viscoelastic rotating disks. In the development of
this analytical solution, two-dimensional elastodynamic theory is employed and
the viscoelastic material for the medium is allowed by assuming complex elastic
moduli. The general governing equations of motion are derived and a solution for
a single rotating disk with different boundary conditions is developed for a wide
range of rotating speeds and any radius ratios, such as those for solid disks or
thin rings. The proposed solution is used to investigate the influences of hysteretic
material damping on dimensionless natural frequencies and modal loss factors for
the rotating disks. Furthermore, the solution is expanded to consider the effect of
adding disk segment with different material on the inner or outer sides of a disk
on the natural frequencies and critical speeds of the equivalent single disk. The
dimensionless results for these cases are presented for a wide range of rotational
speeds.

Keywords In-plane free vibration • Plane stress • Annular disk • Rotating
disks • Rotating rings • Natural frequency • Modal loss factor • Compound
disks • Discontinuous medium • Critical speed

22.1 Introduction

Due to immense potential applications of the flexible thin rotating disks, the
significance of their vibration characteristics has been emphasized in recent years.
Rotating disks are the principal components in various rotating machinery. Their
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applications can vary from space structures to torsional disk dampers and from
turbine rotors to computer storage devices and brake systems. It is known that
dynamic response and stability of rotating disk depends on its rotational speed. It
should be noted that to design a rotating disk, the knowledge of modal vibrations
and critical speeds are essential.

Vibration of rotating disk can occur as two types, in-plane and out-of-plane
bending vibration. In-plane vibration occurs in the radial direction and can be
coupled with the causing torsional vibration. Torsional vibration can occur in the
disk surface angular displacement only which can vary with the radius. Out-of-
plane bending vibration, the so-called transverse vibration, occurs on the direction
occurring perpendicular to the plane of rotation.

Depending on the amplitude of vibrations, the established publications have used
linear or nonlinear approaches. In the linear methods, the effect of higher-order
terms in the strain–displacement relations is neglected. In the nonlinear theory of
vibration, the effects of higher-order strain terms are taken into account and for most
cases they have given approximate solutions. Based on both of these approaches,
disk deflection will become unbounded at critical speeds corresponding to flutter or
and divergence instabilities. In fact, in these unstable cases, the disk deflection is
increased beyond the acceptable range of linear modal, and it is necessary to use
nonlinear analysis for better predictions of the dynamics of spinning disks.

While the linear and nonlinear transverse vibrations of rotating disk have
received higher attention; nevertheless, knowledge of the in-plane vibration of
rotating disks is also essential for design of rotating disks. In practice, the problem
of rotating disks is far more relevant to applications such as computer hard disks,
turbine rotors, and circular saw blades. It should be noted that the vibration analysis
of rotating disks has more complexities than that of a stationary disk subject to a
rotating load. This complexity is due to the Coriolis and centripetal acceleration
terms associated with the relative motion of the spinning disk.

The problems of in-plane vibration of rotating disks have been addressed by a
few investigators. Bhuta and Jones [1] have presented a solution to the symmetric
in-plane vibrations of a thin rotating circular disk for some specific modes.
Burdess et al. [2] presented generalized formulation to consider asymmetric in-plane
vibrations, while the effect of rotational speed on forward and backward traveling
wave was discussed only for the mode with two nodal diameters. In their study, the
equations of motion of a thin rotating disk were derived and a solution was achieved.
Moreover, they studied free and forced vibrations and presented their results for the
stability and resonant behavior of the disk. Before Chen and Jhu [3], in most of
previous studies, the disk was assumed to be full. Chen and Jhu [3] determined the
free in-plane vibration of a thin spinning annular disk and investigated the effects of
clamping ratio on the natural frequencies and stability of disks. They extended their
analysis to study the divergence instability of spinning annular disks clamped at the
inner edge and free at the outer boundary. They also considered the effect of a radius
ratio on the natural frequencies and critical speeds of the disk. Chen and Jhu [4]
derived an analytical solution for the in-plane stress and displacement distributions
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in a spinning annular disk under stationary edge loads. Their numerical results
showed that as the rotational speed of the disk approaches zero, the in-plane stresses
and displacements are shown analytically to recover the solution derived through
the Airy stress function in the classical theory of linear elasticity. Hamidzadeh and
Dehghani [5] investigated the linear in-plane vibration of an elastic rotating disk and
studied the effect of rotational speed and radius ratio on natural frequency and elastic
stability of fixed–free vibration rotating disks. Hamidzadeh [6] also developed an
analytical solution for in-plane vibration of spinning rings. Hamidzadeh’s previous
solution for the rotating disk was extended to investigate an analytical method for the
determination of modal vibration of high speed double-segment compound rotating
disks [7]. More specifically, a systematic approach for a compound rotating disk
based on an established solution for linear in-plane vibration of each segment was
developed by satisfying the displacements and stresses compatibilities. He also
presented variation of the dimension natural frequencies for a number of modes
versus non-dimensional speed of rotation for a fixed–free annular disk for the non-
dimensional speeds ranging from 0 to 1.5 [8]. Deshpande and Mote [9] studied
the stability of a spinning thin disk using a nonlinear strain in order to account
changes in stiffness of the disk due to rotation. Their study suggested that the critical
speeds were different using the linear strain assumption. Sarfaraz and Hamidzadeh
[10] studied the effect of material hysteretic damping of the disk on the natural
frequencies and mode shapes of a fixed–free rotating disk by considering constant
complex elastic moduli.

This research report represents the linear in-plane free vibration of a thin
viscoelastic annular rotating disk. In the development of the analytical solution,
two-dimensional elastodynamic theory is employed and the viscoelastic material
for the medium is allowed by assuming complex elastic moduli. The mathematical
model is reduced to a wave propagation problem and time-dependent and time-
independent modes are considered. The general governing equations of motion are
derived by implementing plane stress theory. The natural frequencies and respective
modal displacements and stresses are achieved by satisfying the inner and outer
boundary conditions. The non-dimensional natural frequencies and modal loss
factors for different boundary conditions are computed and presented for several
modes, specific radius ratios, and material loss factors. Also, the critical speeds for
rotating disks and rings are determined. Furthermore, the influences of embedded
disk segments with a different material at one of the edges of the main disk on modal
parameters are investigated.

22.2 Governing Equations

The material of the disk is assumed to be homogeneous, viscoelastic, and isotropic.
The disk is rotating at a constant angular speed without any acceleration. The two-
dimensional theory of elasticity is applied to derive the stress and strain in polar
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Fig. 22.1 (a) A typical rotating annular disk, (b) geometry of an annual disk in polar coordinate

coordinates. These relationships are then implemented into the dynamic equilibrium
equations to derive the governing equations of motion. Figure 22.1 shows the
radial and tangential displacements of a point in polar coordinates (r, �). As it was
presented by Hamidzadeh [8], equations of motion in terms of dilatation � and
elastic rotation  or the freely rotating annular disk are given by:
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(22.2)

The functions u and v are radial and tangential displacements. ¤, E*, and G* are
Poisson ratio and complex elastic and shear moduli for the viscoelastic medium.
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22.3 Solution to Governing Equation

The following solutions can be assumed for Eq. (22.1):

� D ı0.r/C†�n.r/e
i.n�Cpt/;

 D †i n.r/e
i.n�Cpt/:

)
(22.3)

where �n and  n are time-dependent functions and ı0(r) is a time-independent
function. Also,� is time-dependent dilatation, is time-dependent elastic rotation,
n is any integer number, and p is the frequency of vibration. In the time-independent
part, ı0(r) is only a function of r so the solution of that can be given by
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The governing equation for time dependence is
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The time-dependent equations have a significant role in determining the natural
frequencies and mode shapes of the system. To continue with derivation of the final
solution, it is convenient to introduce the following dimensionless variables:
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where �1 and �2 are non-dimensional speed and non-dimensional frequency.
Substituting modal expression from Eq. (22.3) into governing Eq. (22.1), the two
different ratios of modal elastic rotation to modal dilatation are expressed by the
following equations:
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By using the Bessel function of the first and second kind, the solutions to the
wave operators�n and  n are obtained:
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22.4 Modal Displacements and Stresses

The radial and tangential displacements in terms of time can be written by the
following equations:
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Substituting Eq. (22.9) and these displacements into equations of motions and
rearranging, the result yields the modal solution for the non-dimensional radial and
tangential displacements:
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where prime and double prime (0 and 00) represent first and second derivatives of the
function and m1

* and m1
* can be presented by:
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Similarly, the modal radial and shear stresses can be expressed by the following
relations:
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The non-dimensional modal radial and shear stresses can be obtained by
substituting from Eqs. (22.9) and (22.11) based on stress–strain relation, and after
simplifications they are presented by
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where
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(22.15)

Using Eqs. (22.11) and (22.14), the modal displacements and stresses at any
radius for each part of an annular disk can be expressed in the following form:
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where

ŒAn.r/� D

2

664

a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

3

775 : (22.17)

Elements of An(r) are in terms of material properties and Bessel functions of first
and second kinds. These elements are presented in the above-mentioned paper [8].

22.5 Natural Frequency Equation

To determine the modal parameters, the boundary conditions must be satisfied.
For example, for the fixed–free boundary conditions, it is required that the modal
displacements at the inner edge and the modal radial and shear stresses at the outer
edge must be zero. By implementing the boundary conditions in Eq. (22.16) and
combining them, displacements and stresses at the boundaries are related in the
following form:
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>>;
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Considering that the matrix [An(b)][An(a)]� 1 is presented in the following form:

ŒAn.b/� ŒAn.a/�
�1 D

2

664

d11 d21 d31 d41
d21 d22 d23 d24

d31 d32 d33 d34
d41 d42 d43 d44

3

775 : (22.19)

Then Eq. (22.18) can be reduced to the following expression in terms of the inner
boundary stresses:

�
d31 d32
d41 d41
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�
D


0

0

�
: (22.20)

In order to obtain a nonzero solution for the stresses, the determinant of the
matrix in Eq. (22.20) must be zero. This results in the frequency equation for the
system:

ˇ̌
ˇ̌d31 d32
d41 d41

ˇ̌
ˇ̌ D 0 (22.21)
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The above equation is a function of circumferential wave number n, and other
dimensionless parameters including �1. For given values of n, a/b,¤,�1, and
material loss factor �m there are infinite real values for�2 that satisfy this equation.
It should be noted that the dimensionless frequencies in the rotating coordinate
system are given by the absolute values of �2:

�R D j�2j (22.22)

However, for viscoelastic disk, since modulus of elasticity for damping material
is complex, then �2 in Eq. (22.22) would be complex. In order to obtain the
modal loss factor and the natural frequencies for the viscoelastic rotating disks, the
following procedures are implemented:

��
2 D x C iy D p

x2 C y2ei˛;

˛ D tan�1 y
x
;

��2
2 D �

x2 C y2
�
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��2
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x2 C y2
�

cos 2˛ Œ1C i tan 2˛� ;
��
2 D �2 .1C i�L/ :

9
>>>>>>>=

>>>>>>>;

; (22.23)

where �L is modal loss factor and is obtained in following form:

�L D tan 2˛ (22.24)

and the natural frequencies are given by:

�2 D
vuut

x2 C y2q
1C �2L

: (22.25)

For mode shapes n> 0, if the direction of oscillating wave is the same as that of
rotation of the disk (p> 0) in rotating coordinates, the wave is defined as forward
wave in rotating coordinates. If the direction of oscillating wave is opposite to that of
rotation of the disk (p< 0) in rotating coordinates, the wave is defined as backward
wave in rotating coordinates. For mode shapes n< 0, if the direction of oscillating
wave is the same as that of rotation of the disk (pF > 0) in fixed coordinates, the wave
is defined as forward wave in fixed coordinates. If the direction of oscillating wave is
opposite to that of rotation of the disk (pF < 0) in fixed coordinates, then the wave
defined as backward wave in fixed coordinates. Thus, the relation between natural
frequency in fixed coordinates (pF) and rotating coordinates (p) and the relation
between dimensionless natural frequencies in fixed and rotating coordinate system
can be presented by the following equations:

�F D j�2 C n�1j for �2 > 0 (22.26a)

�F D j�2 � n�1j for �2 < 0: (22.26b)
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Mode shapes for the in-plane free vibration of a rotating disk can be identified
by the number of circular node numbers (m) and the number of nodal diameters (n).
It should be noted that the lower modes (m D 0, 1, 2, 3 and n D 0, 1, 2, 3) have been
found to be the dominant modes of vibration for vibration of the rotating disks.

22.6 Natural Frequencies and Critical Speeds

The lowest frequency at which the disk vibrates freely is called the fundamental
mode. When the disk is excited at one of its resonance frequencies, respective nodal
circle(s) and nodal diameter(s) appear. To determine the natural frequency of the
system, the boundary conditions must be satisfied both at the inner radius of the
disk (r D a) and the outer radius of disk (r D b). Considering that for the fixed–
free rotating disks the modal displacements are zero at the inner radius and modal
stresses are zero at the outer radius, then non-dimensional natural frequencies can be
determined for any particular non-dimensional rotating speed and a given geometry
by using Eq. (22.21).

The variations of the dimensionless natural frequencies of a thin annular disk
with Poisson ratio of 0.3 and no material damping in the fixed coordinate for a
number of modes are presented here. The boundary conditions considered are free–
free, fixed–free, and free–fixed. It should be noted that critical speed for rotating
disk is the speed of rotation at which the resonant frequency is zero. Needless to say
that in general the annular disk has infinite number of natural frequencies with any
combinations of positive integer values for n or m. Thus there are infinite possible
numbers of critical speeds for any rotating disk. In this section, the results of the
proposed solution are compared with the available data [2, 9]. The comparisons
demonstrated excellent agreement among the present result and the available data.
This comparison is depicted in Fig. 22.2.

Figure 22.3 presents the variation of dimensionless critical speeds for different
modes of free–free boundary conditions versus radius ratios of the rotating disks.
Illustrated results show that as the radius ratio increases, the critical speed decreases.
In addition, for mode numbers of n D 2 and higher, the critical speed reduces to
zero where radius ratio approaches to one. Figure 22.4 demonstrates the variation
of dimensionless critical speed for fixed–free rotating disk versus radius ratio for
different wave numbers of n. As depicted, since the disk is fixed at the inner and
free at the outer radius, as the radius ratio increases, the critical speed increases, and
for n D 0, as the radius ratio approaches zero, the critical speed approaches to zero.

Figure 22.5 shows the variations of dimensionless natural frequencies that are
experienced in fixed coordinates for free–free conditions versus dimensionless
speed for different modes (m, n) and a radius ratio a/b D 0.1. Figures 22.6 and 22.7
show the same results for disk with similar geometry for two different boundary
conditions of fixed–free and free–fixed. The presented results are extended for a
wide range of dimensionless rotational speed well beyond the speeds previously
presented in the established publications. Please note that labels b and f refer to the
backward and forward waves in the presented figures.
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22.7 The Modal Loss Factor of Viscoelastic Rotating Disk

The main objective of this section is to provide an accurate method for predicting
the natural frequencies and modal loss factors for in-plane vibration of a rotating
annular disk made of viscoelastic material for a specified boundary conditions. The
material damping considered is based on typical hysteretic damping with complex
elastic moduli. The viscoelastic material can provide the needed structure stiffness
with possibility of dissipating vibration energy. To determine the influence of mate-
rial loss factor on the non-dimensional natural frequencies and their corresponding
modal loss factors, computed results for a certain radius ratio of a/b, Poisson’s ratio
of 0.3, and wide range of material loss factors are provided in this section.

Figures 22.8, 22.9, and 22.10 show variation of dimensionless modal loss factors
versus dimensionless speed for a fixed–free viscoelastic rotating annular disk with a
radius ratio 0.2 and different wave numbers. The presented results are for hysteretic
damping with material loss factors of 0.05, 0.1, 0.3, 0.5, and 0.7. As shown, each
curve presented in Fig. 22.11 depict the effect of different material loss factors on
the non-dimensional natural frequencies for the mode associated with m D 2 and
n D 2. It could be observed that by increasing wave number of n, modal loss factors
are decreased.
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22.8 Natural Frequencies of Rotating Rings

Vibration abatement and structural stability in high speed rotating rings is one of
the most prevalent problems in engineering practice. An important step in the study
of these rotating structural components is the evaluation of the modal parameters
such as mode shapes, natural frequencies, and critical speeds. This information
has immense practical importance when designing for these components. It is
known that in-plane motion of a point in the medium is combination of radial and
circumferential displacements, and the natural frequencies depend on the rotational
speed. The literature on dynamic response of rotating rings is mainly restricted to
the application of shell or curved beam theories. The ring-like components is of
great interest in mechanical systems. For the in-plane vibration of rings, they can be
modeled by annular disks with radius ratios very close to one. Thus the general
governing equation and natural frequency equation for the rotating annular disk
are also valid to determine all the model parameters for ring when its boundary
conditions are satisfied. Figures 22.12 and 22.13 show the variation of dimensionless
natural frequencies in fixed coordinate versus dimensionless speed of a ring with
radius ratio of 0.9 for two different boundary conditions of free–free and fixed–free
and different wave numbers of n D 0, 1, 2, and 3 and m D 0.
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22.9 Effect of Embedded Different Material
on Natural Frequencies

This section presents non-dimensional natural frequencies versus dimensionless
rotating speeds for compound rotating annular disks with added disk segments with
different materials at the inner or outer edge of the main disk. Figure 22.14 illustrates
small embedded segments of higher stiffness and density at one of the edges of
the rotating disk. Computation was performed to determine the effect of an added
disk segment on the dimensionless natural frequency at different rotating speeds.
This was done by considering the general solution for stresses and displacement
at inner and outer edges of the main disk and the added disk segment using
Eq. (22.14). The frequency equation for each mode can be determined by satisfying
the compatibility of stresses and displacements at the interface between the main and
the added disk segment as well as the boundary conditions of the compound disk.
Analysis was conducted for three cases with the same inner to outer radius ratio of
0.2 and fixed–free boundary conditions. In case I, the disk is a single disk made of
aluminum. Case II is for an aluminum main disk with added steel disk segment at the
inner edge, and case III is an aluminum main disk with added steel disk segment at
the outer edge. Non-dimensional frequencies in rotating coordinates for these three
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Fig. 22.12 Variation of dimensionless natural frequency versus dimensionless speed for different
modes of a free–free ring with a radius ratio 0.9 for different modes
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Fig. 22.13 Variation of dimensionless natural frequency versus dimensionless speed for different
modes of a free–fixed ring with a radius ratio 0.9 for different modes
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E = 180 GPa
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r = 7.7 gr/cm3
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Fig. 22.14 Case (a): The disk has small segment of higher mass around of outer edge. Case (b):
The disk has small segment of higher mass around of inner side

cases for a wide range of dimensionless rotating speeds and for t1 D (b � a)/c D 0.05
and t2 D (c � b)/c D 0.05 are illustrated in Fig. 22.15a.

Similar results for t1 D t2 D 0.15 are shown in Fig. 22.15b. The presented results
are for n D 0, and m D 0, 1, 2, 3, and 4. The modulus of elasticity, mass density,
and Poisson’s ratio for aluminum disk and steel are assumed to be (180 GPa,
7,700 kg/m3, and 0.305) and (69 GPa, 2,700 kg/m3, and 0.335), respectively.
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Fig. 22.15 Variation of dimensionless natural frequencies versus dimensionless speed of rotation
for fixed–free disks with/without added segment for t D 0.05 and t D 0.15 for radius ratio of 0.2,
n D 0 and m D 0, 1, 2, 3, 4

22.10 Conclusion

In this research report, an analytical method has been developed to determine
the natural frequency and critical speed for in-plane vibration of a homogeneous,
isotropic viscoelastic rotating disk for a wide range of rotational speeds. The modal
vibration characteristics of in-plane vibration for annular rotating disks are studied
for different types of boundary conditions, i.e., free–free, fixed–free, and free–
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fixed. The proposed method of solution in this investigation can be effectively
applied to determine the modal vibration characteristics of a high speed rotating
annular disk. The provided method is capable of computing dimensionless natural
frequencies for all modes at any rotating speeds. Furthermore, modal loss factor
and stability of a rotating disk with hysteretic material damping ratio have been
computed by considering complex natural frequencies. It was observed that the
effect of rotational speed on natural frequency depended on the radius ratio, the
mode of vibration, Poisson’s ratio, stiffness, mass density of the material, and
material damping. The presented solution is also capable of determining modal
information for the in-plane vibration of rings by considering the radius ratio of
the ring, which is slightly less than 1. Moreover, it was observed that a small
segment of a material of higher density and elasticity modulus attached around
the inner side of rotating annular disk induced higher natural frequencies and
promotes a better dynamic stability for a disk. The presented results can provide
a guideline to assist designers by choosing appropriate geometry and material
properties to avoid critical speeds and possible resonances for obtaining desired
operating speed.
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Chapter 23
Patent Licensing: Stackelberg Versus
Cournot Models

Oana Bode and Flávio Ferreira

Abstract In the present study we consider, on one hand, a differentiated
Stackelberg model, and, on the other hand, a differentiated Cournot model, when
one of the firms engages in an R&D process that gives an endogenous cost-reducing
innovation. The aim of this study is two fold. The first is to study the licensing of the
cost-reduction in the Stackelberg model. The second is to do a direct comparison
between Stackelberg model and Cournot model. We analyse the implications of
these types of licensing contracts over the R&D effort, the profits of the firms,
the consumer surplus and the social welfare. By using comparative static analysis,
we conclude that the degree of the differentiation of the goods assumes a great
importance in the results.

Keywords Industrial organization • Optimization • Licensing • Differentiated
Stackelberg model • Differentiated Cournot model

23.1 Introduction

The aim of the present chapter is to study the case of a patent licensing contract when
the patentee is an insider and the innovation size is endogenous, in a differentiated-
good duopoly. First, we do the analyses considering a Stackelberg model, then we
do a direct comparison between the Stackelberg and Cournot patent licensing cases.
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We recall that the Stackelberg competition is a dynamic leadership model. It
is a strategic game in economics in which the leader firm moves first and then
the follower firms move sequentially, in a quantity competition. In contrast to the
Cournot model, in which the firms choose simultaneously their quantities, in the
Stackelberg model the decisions are made sequentially. So, the Cournot competition
is an economic model used to describe an industry structure in which firms compete
on the amount of output they will produce, which they decide independently of each
other and at the same time. So, when competing in a Cournot model, firms do not
cooperate, choose simultaneously the quantity of output it will produce in the market
for a specific good, have market power (i.e. each firm’s output decision affects the
good’s price) and are economically rational and act strategically, usually seeking to
maximize profit given their competitors’ decisions.

On the other hand, we recall that patent licensing covers a wide range of well-
known situations. For example, a production firm might achieve the license for a
proprietary production technology from another firm which owns it, in order to gain
a competitive edge, rather than expending the time and money trying to develop its
own technology.

The theoretical literature regarding patent licensing in the Cournot or Stackelberg
model is vast and reveals three types of licensing contract: (per-unit) royalty
licensing, fixed-fee licensing and two-part tariff licensing (fixed-fee plus royalty).
Two types of licensors are revealed, namely, the outsider licensor (when it is an
independent R&D organization and not a competitor of the licensee in the product
market; for example, [8, 9, 12]) and the insider licensor (when competes with the
licensee; for example, [4,10,15,17–20]). There exists vast literature focusing on the
decision of the optimal licensing contract by the patentee [1, 2, 5, 6, 11].

Nowadays, patent licensing is an important area of research which is becoming
increasingly relevant because of the present trend of globalization and technology
transfer between firms across countries. It takes place in many industries. It can
be seen as a source of profit for the patentee (innovator) who earns rent from the
licensee by transferring a new technology. In [21], the authors made an interesting
and useful study concerning the intensity of licensing to affiliated and non-affiliated
companies, its evolution, the characteristics, motivations and obstacles met by
companies doing or willing to license, pointing out at the end the fact that patent
licensing is widespread.

23.2 The Basic Framework

We consider a duopoly model where two firms, denoted by F1 and F2, produce a
differentiated good. The inverse demand functions are given by pi D 1� qi � dqj ,
where:

• pi represents the price of the firm Fi , i D 1; 2;
• qi and qj represent the outputs of firms Fi and Fj , i; j D 1; 2, i ¤ j ;
• d represents the degree of the differentiation of the goods, d 2 .0; 1/.
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The duopoly market is modeled either as a Stackelberg competition or as a
Cournot competition. Initially, both firms have identical unit production cost ci D c,
with i D 1; 2 and 0 < c < 1. We consider that one of the firms can engage in
an R&D process in order to improve its technology. This allows a reduction of
its production costs by an amount that we call innovation size. The cost-reducing
innovation creates a new technology that reduces innovating firm’s unit cost by
the amount of k, while the amount invested in R&D is k2=2. So, the innovation
size is endogenous. There are many papers that use this approach to model process
innovations, as [14, 16]. However, in other papers the innovation size is exogenous,
as [5, 7].

In case that the duopoly market is modeled as a Stackelberg competition and
there will be a technology transfer between the two firms, we consider the following
five stages game. In the first stage, the innovator firm (the leader firm F1) decides
the value of the innovation size. In the second stage, the innovator firm F1 decides
whether to license the technology or not, because licensing reduces the marginal
cost of the follower firm F2. If decides to license it, then it charges a payment from
the licensee (a per-unit royalty, a fixed-fee or a combination of both royalty and
fixed-fee). In the third stage, the firm F2 decides whether to accept or reject the
offer made by the firm F1. Then, both firms represent the players of a Stackelberg
game. So, in the fourth stage the firm F1 decides its output; and in the last stage, the
firm F2 being aware of the leader’s output, chooses the output to produce.

The game will be solved by using backward induction. We also analyse, in each
duopoly competition, the consumer surplus CS and the social welfare W , that are,
respectively, defined by

CS D q21 C 2dq1q2 C q22
2

and W D �1 C �2 C CS:

23.3 Stackelberg Competition

In the present section we analyse the benchmark case and the case of licensing
by a two-part tariff in a differentiated-good Stackelberg duopoly,1 when the leader
firm (firm F1) engages in an R&D process that gives an endogenous cost-reducing
innovation. The results of this study are given in [3].

23.3.1 Benchmark Case: Pre-licensing

In the pre-licensing situation, if there exists no licensing between the two firms, firm
F1 owns a cost advantage on the market compared with firm F2: c1 D c � k and

1Throughout the paper we use the notation superscript S to refer to the Stackelberg competition.
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c2 D c. Depending on the value of the differentiated parameter d , two cases can
occur. Let d1, 0 < d1 < 1, be such that d21 C 2d1 � 2 D 0:2 Hence, we have the
following:

(A) if 0 < d < d1, then firm F2 competes with firm F1 with its old technology and
gets positive profit (non-drastic innovation);

(B) if d1 � d < 1, then firm F2 find unprofitable to produce any positive output
(drastic innovation). In this case, firm F1 gains the monopoly.

The profit functions of firm F1 and firm F2 are, respectively, given by3

�S1;nl D .1 � qS1;nl � dqS2;nl � c C kSnl /q
S
1;nl � .kSnl /

2=2

and

�S2;nl D .1 � qS2;nl � dqS1;nl � c/qS2;nl :

(A) By using backward induction, standard computations yield that, in the case of
non-drastic innovation, the optimal innovation size and firms’ optimal outputs
are, respectively, given by

kSnl D .2 � d/.1 � c/
2.1� d2/ ; qS1;nl D .2 � d/.1� c/

2.1� d2/
(23.1)

and

qS2;nl D .2 � 2d � d2/.1 � c/

4.1� d2/
: (23.2)

Therefore, firms’ profits, consumer surplus and social welfare are, respectively,
given by

�S1;nl D .1 � c/2.2 � d/2

8.1� d2/
; �S2;nl D .1� c/2.2 � 2d � d2/2

16.1� d2/2
; (23.3)

CSSnl D .1 � c/2.5d4 C 4d3 � 20d2 � 8d C 20/

32.1� d2/2
(23.4)

and

W S
nl D .1 � c/2.3d4 C 28d3 � 32d2 � 40d C 44/

32.1� d2/2 : (23.5)

2We note that d1 ' 0:732:
3Throughout the paper we use the notation subscript nl to refer to the pre-licensing case.



23 Patent Licensing: Stackelberg Versus Cournot Models 413

From (23.2), we conclude that for 0 < d < d1 the innovation is non-drastic,
and for d � d1 the innovation is drastic, where d1, 0 < d1 < 1, is such that
d21 C 2d1 � 2 D 0.

(B) In the case of drastic innovation, firm F1
0s monopoly arises.4 Hence, we have

firm F2
0s output QqS2;nl D 0, and so Q�S2;nl D 0. Furthermore, we obtain that

QkSnl D .1 � c/.4 � 2d � d2/

2d
; QqS1;nl D 1 � c

d
; (23.6)

Q�S1;nl D .�8C 16d � 4d3 � d4/.1 � c/2

8d2
; (23.7)

QCSSnl D .1 � c/2
2d2

and QW S
nl D .1 � c/2.�d4 � 4d3 C 16d � 4/

8d2
: (23.8)

By evaluating the effects of the degree d of the differentiation of the goods
over the amount that reduces the leader’s unit cost, the profits of both firms
(leader and follower), the consumer surplus and the social welfare, we state the
following.

Theorem 1. If there exists no technology transfer, then:

(i) For d 2 .d2; d1/ (resp., d 2 .0; d2/ [ Œd1; 1/), the optimal innovation size
decreases (resp., increases) with the differentiation of the goods5;

(ii) For d 2 .0; 0:5/[ .d3; 1/ (resp., d 2 .0:5; d3/), the profit of the innovator firm
increases (resp., decreases) with the differentiation of the goods6;

(iii) For d 2 .0; d4/[ Œd1; 1/ (resp., d 2 .d4; d1/), the consumer surplus increases
(resp., decreases) with the differentiation of the goods7;

(iv) For d 2 .0; d5/ [ Œd1; 1/ (resp., d 2 .d5; d1/), the social welfare increases
(resp., decreases) with the differentiation of the goods.8

Proof. From (23.1) and (23.6), it is easy to see that

@kSnl
@d

< 0; 8 d 2 .0; d2/; @kSnl
@d

> 0; 8 d 2 .d2; d1/;

and
@ QkSnl
@d

< 0; 8 d 2 Œd1; 1/:

4Throughout the paper we will add a 	 to identify the values we get in the drastic innovation case.
5We note that 0 < d2 < 1 is such that d22 � 4d2 C 1 D 0, i.e. d2 ' 0:268.
6We note that 0 < d3 < 1 is such that d43 C 2d33 C 8d3 � 8 D 0, i.e. d3 ' 0:812:
7We note that 0 < d4 < 1 is such that d44 � 5d34 � 3d24 C 10d4 � 2 D 0, i.e. d4 ' 0:219.
8We note that 0 < d5 < 1 is such that 7d45 � 13d35 � 9d25 C 28d5 � 10 D 0, i.e. d5 ' 0:458:
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Furthermore, from (23.3) and (23.7), we get, respectively,

@�S1;nl

@d
< 0; 8 d 2 .0; 0:5/; @�S1;nl

@d
> 0; 8 d 2 .0:5; d1/;

@ Q�S1;nl
@d

> 0; 8 d 2 Œd1; d3/;
@ Q�S1;nl
@d

< 0; 8 d 2 .d3; 1/;

and

@�S2;nl

@d
< 0; 8 d 2 .0; d1/:

Based on (23.4), (23.5) and (23.8), we obtain that

@CSSnl
@d

< 0; 8 d 2 .0; d4/; @CSSnl
@d

> 0; 8 d 2 .d4; d1/;

@ QCSSnl
@d

< 0; 8 d 2 Œd1; 1/;

and

@W S
nl

@d
< 0; 8 d 2 .0; d5/; @W S

nl

@d
> 0; 8 d 2 .d5; d1/; @ QW S

nl

@d
< 0; 8 d 2 Œd1; 1/:

We note that if there exists no technology transfer and the innovation is non-
drastic (d 2 .0; d1/), then the profit of the licensee firm increases with the
differentiation of the goods.

23.3.2 Two-Part Tariff Licensing

Now we study in our differentiated Stackelberg duopoly model, the situation when
there can be a technology transfer from the leader firm (the innovator) to the follower
firm, based on a two-part tariff licensing contract, i.e. both fixed-fee and a royalty
per-unit of output.9

Firm F1
0s total profit in this case will be its own profit in the product market due

to competition plus the fixed-fee it charges and the royalties it receives, i.e.

�S1;l D .1 � qS1;l � dqS2;l � c C kSl /q
S
1;l � .kSl /

2=2C f S
l C rSl q

S
2;l :

9Throughout the paper, we use the notation subscript l to refer to the two-part tariff licensing case.
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Firm F2
0s profit is given by

�S2;l D .1 � qS2;l � dqS1;l � c C kSl � rSl /q
S
2;l � f S

l :

By using backward induction, standard computations yield that the profits of
firms F1 and F2 are, respectively, given by

�S1;l D 2r2.1C 2d � 2d2/� 4r.1 � c/.2 � d2/ � .1 � c/2.2 � d/2

2.5d2 � 4d � 4/
Cf S

l (23.9)

and

�S2;l D
�
.1 � c/.4 � 2d � d2/� rd.3 � 2d/�2

.4C 4d � 5d2/2 � f S
l :

Now, in order to determine the maximum fixed-fee that the leader firm can
charge, we have to consider both non-drastic and drastic innovation cases.

For the case of non-drastic innovation (d 2 .0; d1//, the maximum fixed-fee that
the leader firm can charge is such that the follower’s profit equals its no-licensing
profit, i.e �S2;l D �S2;nl . It results that the optimal royalty and the optimal cost
reduction are, respectively, given by

rSl D .1� c/.3d4 � 5d3 � 4d C 8/

2.3d4 � 3d3 � 7d2 C 6d C 2/
and kSl D .1 � c/.2d � 3/

3d2 � 3d � 1 : (23.10)

Hence, the maximum fixed-fee is given by

f S
l D .1 � c/2g.d/

16.d2 � 1/2.3d4 � 3d3 � 7d2 C 6d C 2/2
; (23.11)

where g.d/ D �9d12 � 18d11 C 205d10 � 234d9 � 393d8 C 684d7 C 296d6 �
848d5 � 4d4 C 592d3 � 256d2 � 64d C 48:

Under the above circumstances, we get at the end that the optimal outputs and
profits for the leader and follower firms, and the consumer surplus and social
welfare, in the non-drastic innovation case, are, respectively, given by

qS1;l D .1 � c/.2 � d/.3d2 � d � 4/

2.2� d2/.3d2 � 3d � 1/
; qS2;l D .c � 1/.5d3 � 9d2 C 4/

2.2� d2/.3d2 � 3d � 1/ ;

�S1;l D .1� c/2h.d/

16.d C 1/2.d � 1/2.3d4 � 3d3 � 7d2 C 6d C 2/
;

�S2;l D .1 � c/2.d 4 C 4d3 � 8d C 4/

16.d2 � 1/2 ;
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CSSl D .1� c/2.15d5 � 45d4 C 17d3 C 39d2 � 8d � 20/
4.d2 � 2/.3d2 � 3d � 1/2

(23.12)

and

W S
l D .1 � c/2.33d5 � 75d4 � 37d3 C 163d2 � 48d � 40/

4.d2 � 2/.3d2 � 3d � 1/2 ; (23.13)

where h.d/ D �3d8 C 15d7 C 3d6 � 82d5C 50d4 C 132d3� 100d2� 88d C 72:

Standard computations yield that the leader firm can license its technology based
on a two-part tariff in the non-drastic innovation case, because its total profit (market
profit C fixed-fee C per-unit royalty) exceeds the profit it makes with no-licensing,
i.e. �S1;l > �

S
1;nl ; 8 d 2 .0; d1/:

For the case of drastic innovation (d 2 Œd1; 1/), the maximum fixed-fee that the
leader firm can charge is such that the follower’s profit equals its no-licensing profit,
i.e. Q�S2;l D Q�S2;nl . We get that

Qf S
l D .1� c/2.5d3 � 9d2 C 4/2

4.3d4 � 3d3 � 7d2 C 6d C 2/2
: (23.14)

Also, we obtain that the optimal royalty, optimal cost reduction and optimal leader’s
output are the same as in the non-drastic innovation case, i.e. QrSl D rSl ;

QkSl D kSl
and QqS1;l D qS1;l ; 8 d 2 Œd1; 1/: Furthermore, we get that the leader’s profit is

Q�S1;l D .1 � c/2.3d3 � 2d2 � 10d C 10/

2.3d4 � 3d3 � 7d2 C 6d C 2/
:

Obviously, QqS2;l D 0 and Q�S2;l D 0: Therefore, we get that the consumer surplus and
social welfare are, respectively, given by

eCSSl D .1 � c/2.2 � d/2.3d2 � d � 4/2

8.d2 � 2/2.3d2 � 3d � 1/2 (23.15)

and

QW S
l D .1 � c/2i.d/

8.d2 � 2/2.3d2 � 3d � 1/2 ; (23.16)

where i.d / D 36d7 � 51d6 � 222d5 C 405d4 C 212d3 � 644d2 C 128d C 144:

We note that in this case the leader firm can license its technology based on a
two-part tariff, since its total profit (market profit C fixed-fee C royalties) exceeds
the profit it makes with no-licensing, i.e. Q�1;l > Q�1;nl ; 8 d 2 Œd1; 1/: So, we have
the following result.
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Theorem 2. A two-part tariff licensing strictly dominates no-licensing.

Furthermore, by evaluating the effects of the degree d of the differentiation of
the goods over the optimal innovation size, the optimal royalty rate, the maximum
fixed-fee that can be charged by the leader firm, the consumer surplus and the social
welfare, we conclude the followings.

Theorem 3. If the innovation is non-drastic and the technology is licensed by a
two-part tariff, then:

(i) The optimal innovation size increases with the differentiation of the goods;
(ii) For d 2 .0; d6/ (resp., d 2 .d6; d1/), the optimal royalty rate increases (resp.,

decreases) with the differentiation of the goods10;
(iii) The maximum fixed-fee that the innovator firm can charge increases with the

differentiation of the goods;
(iv) The consumer surplus increases with the differentiation of the goods;
(v) The social welfare increases with the differentiation of the goods.

Proof. Based on (23.10), we obtain that
@kSrf
@d

< 0; 8 d 2 .0; 1/:
Furthermore, we get that

@rS2
@d

< 0; 8 d 2 .0; d6/; and
@rS2
@d

> 0; 8 d 2 .d6; d1/:

From (23.11), standard computations yield that @f
S
2

@d
< 0; 8 d 2 .0; d1/:

Furthermore, based on (23.12) and (23.13), we get that

@CSSrf

@d
< 0; 8 d 2 .0; d1/; and

@W S
rf

@d
< 0; 8 d 2 .0; d1/:

Theorem 4. If the innovation is drastic and the technology is licensed by a two-part
tariff, then:

(i) For d 2 Œd1; d7/ (resp., d 2 .d7; 1/), the optimal innovation size increases
(resp., decreases) with the differentiation of the goods11;

(ii) The optimal royalty rate decreases with the differentiation of the goods;
(iii) The maximum fixed-fee that the innovator firm can charge increases with the

differentiation of the goods;
(iv) The consumer surplus decreases with the differentiation of the goods;
(v) For d 2 Œd1; d8/ (resp., d 2 .d8; 1/), the social welfare increases (resp.,

decreases) with the differentiation of the goods.12

10We note that 0 < d6 < 1 is such that 6d66 � 42d56 C 125d46 � 156d36 C 14d26 C 112d6 � 56 D 0;

i.e. d6 ' 0:721:
11We note that 0 < d7 < 1 is such that 6d27 � 18d7 C 11 D 0; i.e. d7 ' 0:855:
12We note that 0 < d8 < 1 is such that 54d108 � 99d98 � 621d88 C 1866d78 � 42d68 � 4446d58 C
3146d48 C 3020d38 � 3276d28 � 344d8 C 736 D 0; i.e. d8 ' 0:863:
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Proof. We easily get that

@ QkSrf
@d

< 0; 8 d 2 Œd1; d7/; and
@ QkSrf
@d

> 0; 8 d 2 .d7; 1/:

Also, we note that
@QrSrf
@d

> 0 and @ Qf S2
@d

< 0; 8 d 2 Œd1; 1/:
From (23.15) and (23.16), we obtain that

@eCSSrf

@d
> 0; 8 d 2 Œd1; 1/;

@ QW S
rf

@d
< 0; 8 d 2 Œd1; d8/; and

@ QW S
rf

@d
> 0; 8 d 2 .d8; 1/:

23.4 Stackelberg Model Versus Cournot Model

In this section we do a direct comparison between our differentiated Stackelberg
duopoly models and the ones of Cournot discussed by Li and Ji [13].

We recall that in the Stackelberg model, the innovation is non-drastic (resp.,
drastic) for d 2 .0; d1/ (resp., d 2 Œd1; 1/), where d1 ' 0:732. In the Cournot
model studied by Li and Ji [13], the innovation is non-drastic (resp., drastic) for
d 2 .0; d9/ (resp., d 2 .d9; 1/), where d9 ' 0:806:

We begin by comparing the cost-reduction for those two models.13

Theorem 5. (i) If there exists no technology licensing and the goods are suf-
ficiently differentiated (d 2 .0; d10/) (resp., sufficiently homogenous (d 2
.d10; 1)), then the innovator firm invests more (resp., less) in R&D under
Stackelberg competition than under Cournot competition;

(ii) If there exists a technology transfer based on a two-part tariff licensing
contract, then the innovator firm invests less in R&D under Stackelberg
competition than under Cournot competition.

We continue by investigating the profits of the innovator firms.14

Theorem 6. (i) If there exists no technology licensing and the goods are suf-
ficiently differentiated (d 2 .0; d11/) (resp., sufficiently homogenous (d 2
.d11; 1/)), then the profit of the innovator firm is higher (resp., lower) under
Stackelberg competition than under Cournot competition;

(ii) If there exists a technology transfer based on a two-part tariff licensing
contract, then the profit of the innovator firm is lower under Stackelberg
competition than under Cournot competition.

13 We note that d10 ' 0:747:
14We note that d11 ' 0:828:
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Furthermore, we make a direct comparison of the consumer surplus for those two
models.15

Theorem 7. (i) If there exists no technology licensing and the goods are suf-
ficiently differentiated (d 2 .0; d9/) (resp., sufficiently homogenous (d 2
.d9; 1/)), then the consumer surplus is higher under Stackelberg competition
than under Cournot competition (resp., the same in both models);

(ii) If there exists a technology transfer based on a two-part tariff licensing contract
and the goods are sufficiently differentiated (d 2 .0; d12/) (resp., sufficiently
homogenous (d 2 .d12; 1/)), then the consumer surplus is lower (resp. higher)
under Stackelberg competition than under Cournot competition.

Comparing now the social welfare for those two models, we get the following.16

Theorem 8. (i) If there exists no technology licensing and the goods are suf-
ficiently differentiated (d 2 .0; d10// (resp., sufficiently homogenous (d 2
.d10; 1/)), then the social welfare is higher (resp., lower) under Stackelberg
competition than under Cournot competition;

(ii) If there exists a technology transfer based on a two-part tariff licensing contract
and the goods are sufficiently differentiated (d 2 .0; d13/) (resp., sufficiently
homogenous (d 2 .d13; 1/)), then the social welfare is lower (resp., higher)
under Stackelberg competition than under Cournot competition.

23.5 Conclusions

The present chapter studied the licensing, one of the most used methods for
technology transfer between firms. We analysed the benchmark case and the
licensing case by a two-part tariff in a differentiated Stackelberg duopoly model
when one of the firms engages in an R&D process that gives an endogenous cost-
reducing innovation. We saw that in both cases, i.e. no-licensing or licensing by
means of a two-part tariff, the innovation can be either non-drastic (both firms
compete on the market using their own technologies or using the same technology,
and get positive profit) or drastic (the non-innovator firm find it unprofitable to
produce any output), depending on the degree of the differentiation of the goods.

We computed explicitly the main variables, i.e. the optimal innovation size; the
optimal outputs the profits; the consumer surplus; and the social welfare, in both
non-drastic and drastic innovation cases. Furthermore, we did a comparative static
analysis and concluded that the degree of the differentiation of the goods represents
a great importance in the results.

15We note that d12 ' 0:928:
16We note that d13 ' 0:941:
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Furthermore, we compared our results obtained in the Stackelberg model and the
results obtained by Li and Ji [13] in the Cournot model. We note that in each case
we get different results, depending on if there exists no technology licensing; or if
there exists technology licensing by means of a two-part tariff.
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Chapter 24
Privatization and Government Preferences
in a Mixed Duopoly: Stackelberg
Versus Cournot

Fernanda A. Ferreira and Flávio Ferreira

Abstract We analyse the relationship between the privatization of a public firm and
government preferences for tax revenue, by considering a (sequential) Stackelberg
duopoly with the public firm as the leader. We assume that the government payoff is
given by a weighted sum of tax revenue and the sum of consumer and producer
surplus. We get that if the government puts a sufficiently larger weight on tax
revenue than on the sum of both surpluses, it will not privatize the public firm. In
contrast, if the government puts a moderately larger weight on tax revenue than
on the sum of both surpluses, it will privatize the public firm. Furthermore, we
compare our results with the ones previously published by an other author obtained
in a (simultaneous) Cournot duopoly.

Keywords Stackelber duopoly • Cournot duopoly • Mixed duopoly • Privatiza-
tion • Tax rate

24.1 Introduction

Tariff revenue may be an important source of government revenue for developing
countries that do not have an efficient tax system. Brander and Spencer [1] have
shown that a tariff has a profit-shifting effect in addition to its effect on tariff
revenue. Larue and Gervais [9] studied the effect of maximum-revenue tariff in
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a Cournot duopoly. Ferreira and Ferreira [5] examined the maximum-revenue
tariff under international Bertrand in competition with differentiated products when
rivals’ production costs are unknown. Clarke and Collie [3] studied a similar
question, when there is no uncertainty on the production costs.

Furthermore, studies of mixed oligopoly models have been increasingly popular
in recent years.1 Some authors study Cournot models and others study Stackelberg
models. In the first model the firms move simultaneously and in the second one
the firms move sequentially, with at least one firm acting as a leader. We can say
that the main concerns of these privatization studies are the welfare effect and the
method of privatization. Chao and Yu [2] examined how either partial privatization
or foreign competition affects the optimal tariff and found that foreign competition
lowers the optimal tariff rate but partial privatization raises it. White [11] and Fjell
and Heywood [7] introduced a subsidy into the mixed model. In these studies, the
objective function of both the government and the public firm is the social welfare.
Matsumura [10] considered an objective function that is a weighted average of a
modified social welfare and the profit of the firm. The modified social welfare allows
the government to prefer consumer surplus to the profits of the two firms.

Kato [8] considered a mixed (simultaneous) Cournot duopoly by assuming that
the government puts a larger weight on tax revenue than on the sum of consumer
and producer surplus, whereas the public firm only cares about the sum of consumer
and producer surplus. In this context, he studied the relationship between the
privatization of the public firm and the government preferences for tax revenue.
He concluded that (1) the government sets a higher tax rate in a mixed duopoly than
in a privatized duopoly; and (2) whether the government privatizes the public firm
depends on the government preference for tax revenue.

In this paper, we consider the same objective functions for both the government
and the public firm as in Kato’s paper, but we analyse a mixed (sequential)
Stackelberg market competition (see also Ferreira and Ferreira [6]). So, in our paper,
the game runs as follows. First, the government chooses the tax rate t . Then, instead
of a simultaneous decision on the quantities, the public firm chooses first the output
level q1 to produce, and after that and knowing this decision, the private firm chooses
the output level q2 to be produced. Furthermore, we compare the results in the
two duopoly models: sequentially Stackelberg move model versus simultaneously
Cournot move model.

The organization of this chapter is as follows. After this introductory section, we
present and discuss the mixed model. In Sect. 24.3, we study the privatized model.
Section 24.4 yields the results gained by a direct comparison between both the
mixed and privatized models. In Sect. 24.5, we compare the main results concerned
with both sequential and simultaneous move models. Conclusions are presented in
Sect. 24.6.

1For a detailed survey, see De Fraja and Delbono [4].
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24.2 The Mixed Duopoly

In this section, we consider a mixed Stackelberg duopoly where a public firm F1 is
the leader and a private firm F2 is the follower that produce homogeneous goods.
The inverse demand function is given by

p D a �Q;

where a > 0 is the demand parameter, p is the market price andQ D q1 C q2 is the
total output, where q1 and q2 are the outputs of the public firm and the private firm,
respectively. Both firms have the same production cost functionC.qi / D q2i =2, with
i D 1; 2. The government imposes a specific tax rate t on both firms.

The model consists in the following three-stage game:

• In the first stage, the government chooses the tax rate t .
• In the second stage, the public firm F1 chooses the output level q1.
• In the third stage, the private firm F2 chooses the output level q2.

The payoff of the private firm is its profit:

�2 D .a � q1 � q2/q2 � q22
2

� tq2I

the payoff of the public firm is the sum of consumer and producer surplus:

W D .q1 C q2/
2

2
C .a � q1 � q2/.q1 C q2/� q21 C q22

2
� T;

where T D t.q1 C q2/ is the tax revenue; the government’s payoff is given by:

U D W C .1C ˛/T;

where the parameter ˛ represents the weight of the government preference for the
tax revenue. We will consider that the government puts a larger weight on T than
on W , so we set ˛ � 0 (the other situation is inconsistent with reality). If ˛ D 0,
the weight is the same on T and on W ; For ˛ > 0, as ˛ becomes larger, the more
the government cares about T .

As usual in dynamic games, we solve our problem by backwards induction.
Maximizing the private firm’s profit �2, we obtain

q2 D a � q1 � t
3

:

Now, using this result and maximizing the objective function W of the public firm,
we get

q1 D 5.a � t/

14
;
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and, then,

q2 D 3.a � t/

14
:

So, the government’s payoff U can now be rewritten as follows:

U D .a � t/.9a C t.16˛ C 7//

28
:

Maximizing this objective function, the optimal tax rate in the mixed duopoly is
given by2

tM D a.8˛ � 1/

16˛ C 7
:

Thus, if ˛ > 1=8, the optimal tax rate is positive; and if 0 � ˛ < 1=8, the optimal
tax rate is negative, so the government subsidizes the firms.

Proposition 1. The tax rate imposed by the government increases with the weight
of the government preference for the tax revenue.

Proof. The result follows since @tM =@˛ D 72a=.16˛C 7/2 > 0. ut
Based on the expressions above, we get the following result.

Proposition 2. In the mixed duopoly, the equilibrium outcomes are:

qM1 D 20a.˛ C 1/

7.16˛ C 7/
;

qM2 D 12a.˛ C 1/

7.16˛ C 7/
;

QM D 32a.˛ C 1/

7.16˛ C 7/
;

UM D 16a2.˛ C 1/2

7.16˛C 7/
;

�M2 D 216a2.˛ C 1/2

49.16˛C 7/2
:

We note that as ˛ becomes larger, the quantity produced by each firm, and
therefore the total quantity in the market, decreases. This is due to the fact that
the optimal tax rate is positively correlated with respect to ˛.

2Throughout the paper, we use the notation superscript M to refer to the mixed duopoly.
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24.3 The Privatized Duopoly

Now, let us consider the model where the public firm is privatized without cost. So,
in this case, the objective function of firm F1 is its profit:

�1 D .a � q1 � q2/q1 � q21
2

� tq1:

Utilizing the same way of calculation as in the previous section, the output of the
leader privatized firm F1 is given by

q1 D 2.a � t/

7

and the output of the follower private firm F2 is given by

q2 D 5.a � t/

21
:

So, the government’s payoff U can now be rewritten as follows:

U D .a � t/.20aC t.33˛ C 13//

63
:

Maximizing this objective function, we obtain that the optimal tax rate in the
privatized duopoly is given by3

tP D a.33˛ � 7/

2.33˛C 13/
:

Thus, if ˛ > 7=33, the optimal tax rate is positive; and if 0 � ˛ < 7=33, the optimal
tax rate is negative, so the government subsidizes the firms.

Proposition 3. The tax rate imposed by the government increases with the weight
of the government preference for the tax revenue.

Proof. The result follows since @tP =@˛ D 330a=.33˛C 13/2 > 0. ut
Based on the expressions above, we get the following result.

Proposition 4. In the privatized duopoly, the equilibrium outcomes are:

qP1 D 33a.˛ C 1/

7.33˛ C 13/
;

qP2 D 55a.˛ C 1/

14.33˛C 13/
;

3Throughout the paper, we use the notation superscript P to refer to the privatized duopoly.
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QP D 121a.˛ C 1/

14.33˛C 13/
;

U P D 121a2.˛ C 1/2

28.33˛C 13/
;

�P1 D 363a2.˛ C 1/2

14.33˛C 13/2
;

�P2 D 9075a2.˛ C 1/2

392.33˛C 13/2
:

24.4 Effects of Privatization

We have derived preprivatization and postprivatization equilibria, and now we
will examine the effects of privatization upon market equilibrium. The following
proposition summarizes our results.

Proposition 5. At equilibrium,

(1) tM > tP ;
(2.1) QM > QP , for ˛ > 15=176;
(2.2) QM < QP , for ˛ < 15=176;
(3.1) UM > UP , for ˛ > 15=176;
(3.2) UM < UP , for ˛ < 15=176;

(4) �M2 < �P2 .

We observe that the optimal tax rate in the mixed duopoly is always higher than
that in the privatized duopoly. Furthermore, since

@.tM � tP /

@˛
D �138a.44˛

2 C 88˛ C 29/

.16˛ C 7/2.33˛ C 13/2
< 0;

the difference in the optimal tax rates between the mixed and privatized duopoly
cases becomes smaller, when ˛ becomes larger. We also note that when the
aggregate output in the mixed market is larger than that in the privatized market, the
government’s payoff in the mixed duopoly is also larger than that in the privatized
duopoly.

From the above proposition, we conclude that if the government puts a suf-
ficiently larger weight on tax revenue than on the sum of both surpluses, i.e., if
˛ > 15=176, the government does not privatize the public firm. In contrast, if the
government puts a moderately larger weight on tax revenue than on the sum of both
surpluses, i.e., if 0 � ˛ < 15=176, the government will privatize the public firm.
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24.5 Stackelberg Model Versus Cournot Model

In this section, we do a direct comparison between our Stackelberg duopoly model
and the ones of Cournot discussed by Kato [8].

We recall that the equilibrium outcomes in the mixed Cournot duopoly are the
following4 (see Kato [8]):

tMQ D a.15˛ � 1/
2.15˛C 7/

:

qM1;Q D 3a.˛ C 1/

15˛ C 7
;

qM2;Q D 3a.˛ C 1/

2.15˛C 7/
;

QM
Q D 9a.˛ C 1/

2.15˛C 7/
;

UM
Q D 9a2.˛ C 1/2

4.15˛C 7/
I

and the equilibrium outcomes in the privatized Cournot duopoly are the following:

tPQ D a.4˛ � 1/
8˛ C 3

;

qP1;Q D a.˛ C 1/

8˛ C 3
;

qP2;Q D a.˛ C 1/

8˛ C 3
;

QP
Q D 2a.˛ C 1/

8˛ C 3
;

U P
Q D a2.˛ C 1/2

8˛ C 3
:

We begin by comparing the tax rate imposed by the government for those two
models.

Theorem 1. 1. In the mixed duopoly,

(i) for ˛ > 1=8, the government imposes a higher tax rate if the firms act
simultaneously than if they act sequentially;

4We use the notation subscript Q to refer to the Cournot duopoly.
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(ii) for 1=15 < ˛ < 1=8, if the firms act sequentially, the government imposes
a positive tax rate; and if the firms act simultaneously, the government
subsidizes both firms;

(iii) for ˛ < 1=15, the government subsidizes both firms and the subside is
higher if the firms act sequentially than if they act simultaneously.

2. In the privatized duopoly,

(i) for ˛ > 1=4, the government imposes a higher tax rate if the firms act
sequentially than if they act simultaneously.

(ii) for 7=33 < ˛ < 1=4, if the firms act simultaneously, the government
imposes a positive tax rate; and if the firms act sequentially, the government
subsidizes both firms;

(iii) for ˛ < 7=33, the government subsidizes both firms and the subside is
higher if the firms act simultaneously than if they act sequentially.

Proof. The results follow since

tM D a.8˛ � 1/
16˛ C 7

> 0 , ˛ > 1=8I tMQ D a.15˛ � 1/

2.15˛C 7/
> 0 , ˛ > 1=15I

tP D a.33˛ � 7/

2.33˛C 13/
> 0 , ˛ > 7=33I tPQ D a.4˛ � 1/

8˛ C 3
> 0 , ˛ > 1=4I

tM � tMQ D � 7a.˛ C 1/

2.15˛C 7/.16˛C 7/
< 0

and

tP � tPQ D 5a.˛ C 1/

2.8˛ C 3/.33˛C 13/
> 0:

ut
We continue by comparing the outputs produced by each firm and the aggregate

quantity in the market.

Theorem 2. (i) In the mixed duopoly, the public firm F1 produces more if the firms
act simultaneously than if they act sequentially (with the public firm as the
leader).

(ii) In the privatized duopoly, the privatized firm F1 produces less if the firms act
simultaneously than if they act sequentially (with the privatized firm as the
leader).

(iii) In the mixed duopoly, the private firm F2 produces less if the firms act
simultaneously than if they act sequentially (with the public firm as the leader).

(iv) In the privatized duopoly, the initial private firm F2 produces more if the firms
act simultaneously than if they act sequentially (with the privatized firm as the
leader).
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(v) In the mixed duopoly, the aggregate quantity in the market is higher (resp.,
lower) if the firms act simultaneously than if they act sequentially (with the
public firm as the leader), for ˛ > 7=48 (resp., ˛ < 7=48).

(vi) In the privatized duopoly, the aggregate quantity in the market is lower (resp.,
higher) if the firms act simultaneously than if they act sequentially (with the
public firm as the leader), for ˛ > 1=44 (resp., ˛ < 1=44).

Proof. The results (i)–(iv) follow since

qM1 � qM1;Q D � a.˛ C 1/.36˛C 7/

7.15˛C 7/.16˛C 7/
< 0;

qP1 � qP1;Q D a.˛ C 1/.33˛C 8/

7.8˛ C 3/.33˛ C 13/
> 0;

qM2 � qM2;Q D 3a.˛ C 1/.8˛ C 7/

14.15˛C 7/.16˛ C 7/
> 0

and

qP2 � qP2;Q D � a.˛ C 1/.33˛ C 8/

14.8˛C 3/.33˛ C 13/
< 0:

Result (v) follows since

QM �QM
Q D � a.˛ C 1/.48˛ � 7/

14.15˛C 7/.16˛ C 7/

is negative if, and only if, ˛ > 7=48; and result (vi) follows since

QP �QP
Q D a.˛ C 1/.44˛ � 1/

14.8˛C 3/.33˛ C 13/

is positive if, and only if, ˛ > 1=44. ut
Furthermore, we make a direct comparison of the government’s payoff for those

two models.

Theorem 3. (i) In the mixed duopoly, the government’s payoff is higher (resp.,
lower) if the firms act simultaneously than if they act sequentially (with the
public firm as the leader), for ˛ > 7=48 (resp., ˛ < 7=48).

(ii) In the privatized duopoly, the government’s payoff is lower (resp., higher) if the
firms act simultaneously than if they act sequentially (with the public firm as
the leader), for ˛ > 1=44 (resp., ˛ < 1=44).

Proof. Result (i) follows since

UM � UM
Q D � a2.˛ C 1/2.48˛ � 7/

28.15˛C 7/.16˛ C 7/
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is negative if, and only if, ˛ > 7=48; and result (ii) follows since

UP � UP
Q D a2.˛ C 1/2.44˛ � 1/

28.8˛C 3/.33˛ C 13/

is positive if, and only if, ˛ > 1=44. ut

24.6 Conclusions

We analysed the relationship between the privatization of a public firm and
government preferences for tax revenue in a Stackelberg duopoly with the public
firm as the leader. We concluded that if the government puts a sufficiently larger
weight on tax revenue than on the sum of both surpluses, it will not privatize the
public firm. In contrast, if the government puts a moderately larger weight on tax
revenue than on the sum of both surpluses, it will privatize the public firm.

Furthermore, we compared our results obtained in the (sequential) Stackelberg
model and the results obtained by Kato [8] in the (simultaneous) Cournot model.
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