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Preface

This edited book is selected from International Conference on Nonlinear Science
and Complexity, held at Budapest, Hungary, during August 6-11, 2012. The aims
of this edited book are to present the new results in the fundamental and frontier
theories and techniques in science and technology, and to stimulate more research
interest in the community of nonlinear science and complexity. This is the fourth of
a series of events held during the last years reflecting the progress in this challenging
area. The first conference on Nonlinear Science and Complexity was held in 2006
at Beijing, China. The second conference was held in 2008 at Porto, Portugal. The
third conference was held in 2010 at Ankara, Turkey. The edited book included 24
chapters selected and extended from 60 accepted papers in NSC 2012 after peer-
review. Presented are the following four issues:

. Fractional dynamics and nonlinearity
. Chaos and complexity

. Discontinuous dynamics

. Engineering and financial nonlinearity

RSN S

In the first topic, eight chapters present Lie group analysis, fractional dynamical
systems and control. The second topic includes six papers on stability, bifurcation,
and chaos in nonlinear dynamics. Discontinuous dynamics constitutes the third topic
and includes four chapters presenting impact vibro-dynamical systems and chaos in
piecewise linear systems. The fourth topic presents six chapters in engineering and
financial nonlinearity.

Herein, editors would like to thank authors and reviewers to support the projects.
The results presented in this edited book will constitute an important contribution
for the progress in scientific arena of nonlinear science and complexity.

Porto, Portugal J. A. Tenreiro Machado
Ankara, Turkey Dumitru Baleanu
Edwardsville, IL, USA Albert C. J. Luo
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Part I
Fractional Dynamics and Nonlinearity



Chapter 1
Nonlinear Self-Adjointness
for some Generalized KdV Equations

M.L. Gandarias and M. Rosa

Abstract The new concepts of self-adjoint equations formulated in Gandarias
(J Phys A: Math Theor 44:262001, 2011) and Ibragimov (J Phys A: Math Theor
44:432002, 2011) are applied to some classes of third order equations. Then, from
Ibragimov’s theorem on conservation laws, conservation laws for two generalized
equations of KdV type and a potential Burgers equation are established.

Keywords Self-adjointness * Conservation laws ¢ Lie symmetries

1.1 Introduction

The classical KdV equation arises in various physical contexts and it models weakly
nonlinear unidirectional long waves. A more complicated equation is obtained if one
allows the appearance of higher-order terms. This equation is non-integrable but still
admits some special wave solutions [16]. This equation,

up + kuy + ouny + Buyex + azpluzux + af(pauttycx + p3uyie,) =0 (1.1)

which will be referred to as a generalized KdV equation, was studied in [3] by
Fokas, who presented a local transformation connecting it with an integrable partial
differential equation (PDE). The higher-order wave equations of KdV type model
strongly nonlinear long wavelength and short amplitude waves. It is for the reason
that the strongly nonlinear character and integrability of these equations attract many
researchers to study them. In [19], for some special sets of parameters, the authors
derived some analytical expressions for solitary wave solutions and they carried

M.L. Gandarias (<) * M. Rosa
Departamento de Matematicas, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain
e-mail: mariluz.gandarias @uca.es; maria.rosa@uca.es

J.A.T. Machado et al. (eds.), Discontinuity and Complexity in Nonlinear Physical 3
Systems, Nonlinear Systems and Complexity 6, DOI 10.1007/978-3-319-01411-1__1,
© Springer International Publishing Switzerland 2014
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out a detailed numerical study of these solutions using a Fourier pseudospectral
method combined with a finite-difference scheme. The integral bifurcation method
was used in [15] to study (1.1) and some new travelling wave solutions with singular
or nonsingular character were obtained for some special sets of parameters. In [16],
Marinakis considered as well the third order approximation

Uz + k“x + OUUy + ,Buxxx + 052,01 “zux + O{,B(,OZMMXXX + ,03ux“xx)
+ 053P4M3Mx + O{ZIB(IOSMZMXXX + PolUlyUxx + /07“3;) =0. (12)

Equation (1.2) is equivalent to an integrable equation recently studied in [17] and the
study in [16] reveals two integrable cases for (1.2). After some changes of variables
for particular values of the parameters, (1.2) is transformed into

4
u; + ulu, + §ui—uuxuxx+u2unx =0 (1.3)

Recently Marinakis proved that (1.3) is integrable.

In [6] (see also [5]), a general theorem on conservation laws for arbitrary differential
equations which do not require the existence of Lagrangians has been proved. This
new theorem is based on the concept of adjoint equations for nonlinear equations.
There are many equations with physical significance that are not self-adjoint.
Therefore, one cannot eliminate the nonlocal variables from conservation laws of
these equations by setting v = wu. In [7], Ibragimov generalized the concept of
self-adjoint equations by introducing the definition of quasi-self-adjoint equations.
Recently, some works have been done in this direction to get conservation laws for
nonlinear wave equations [9]. In [21], Yasar and Ozer have derived conservation
laws for one-layer shallow water wave systems and, by using these conserved
systems, they have found potential symmetries for the plane flow case. In [11], the
authors have proved that the Camassa—Holm equation is self-adjoint and they have
constructed conservation laws for the generalized Camassa—Holm equation using its
symmetries. In [12], the conservation laws for a (1 4+ n)-dimensional heat equation
on curved surfaces have been constructed by using a partial Noether’s approach
associated with partial Lagrangian [14]. In [18], conservation laws were derived for
anonlocal shallow water wave equation. In [20], by using the nonlocal conservation
theorem method [5] and the partial Lagrangian approach [14], conservation laws for
the modified KdV equation were presented. It was observed that only the nonlocal
conservation theorem method leads to the nontrivial and infinite conservation
laws. It happens that many equations having remarkable symmetry properties,
such as the forced KdV equation, are neither self-adjoint nor quasi-self-adjoint.
In [4], Gandarias has generalized the concept of quasi-self-adjoint equations by
introducing the concept of weak self-adjoint equations. Thus, substitution v = h(u)
can be replaced with a more general substitution where 4 involves not only the
variable u but also the independent variables 7 = h(x, ¢, u). In [8], the concept of
quasi-self-adjoint equations has been generalized by introducing the definition of
nonlinear self-adjoint equations. Thus, substitution v = h(u) can be replaced by
a more general substitution where / involves not only the variable u but also its
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derivatives as well as the independent variables v = h(x, ¢, u, u;, u,, ..). This will
be a differential substitution. By using these two recent developments in [2], Freire
and Sampaio have determined the nonlinear self-adjoint class of a generalized fifth
order equation, and by using Ibragimov’s theorem [5], the authors have established
some local conservation laws. In [13], Johnpillai and Khalique have studied the
conservation laws of some special forms of the nonlinear scalar evolution equation,
the modified Korteweg-de-Vries (mKdV) equation with time-dependent variable
coefficients of damping and dispersion

u + uy + a(t)u~+ b(t)ux = 0.

The authors use the new conservation theorem [5] and the partial Lagrangian
approach in [14].

In this work we will consider equations (1.2), (1.3) as well as the third order
potential Burgers equation

U :uxxx+3uxuxx+ui. (1.4)

The aim of this work is to determine the subclasses of equations which are weak and
nonlinear self-adjoint. And to determine, by using the Lie generators of equations
(1.2), (1.3), and (1.4) and the notation and techniques of [6], some nontrivial
conservation laws for equations (1.2), (1.3), and (1.4).

1.2 The Class of Nonlinear Self-Adjoint Equations

Recently, the definitions of adjoint equations and self-adjoint equations have been
extended, and the definitions of weak self-adjointness and nonlinear self adjointness
have been introduced.

Consider an sth-order partial differential equation

F(x,u,u(l),...,u(s)):O (1.5)
with independent variables x = (xl, ...,x") and a dependent variable u, where
uay = {ui}, ue) = {uij}, ... denote the sets of the partial derivatives of the first,

second, etc. orders, u; = du/dx’, u;; = 8%u/dx dx/.
The adjoint equation to (1.5) is

F*(x,u, v, u(1y, iy, - - -, Us)s Vis)) = 0, (1.6)
with

S(vF)
Su

F*(x,u,v, M(l),V(l),...,M(S),V(S)) = (1.7)
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where

) 0

9 [od)
— = —~1y'Dj, -+-Dj —— 1.
Su du + g( ) ! ’ 8u,<l...,<l\, ( 8)

denotes the variational derivatives (the Euler-Lagrange operator), and v is a new

dependent variable. Here

D= w2y
i = — Ui — Ujj —
ox! ou jablj

are the total differentiations.

Definition. Equation (1.5) is said to be nonlinear self-adjoint if the equation
obtained from the adjoint equation (1.6) by the substitution v = h(x, u, Uy, .- ),
with a certain function A (x, u, u(yy, . .. ) such that 2 (x, u, u(yy, ...) # constant,

F*(x, U, U, U1y, U(ty, - - - U(s), I/l(s)) = 0,

is identical with the original equation (1.5).
In other words, if

F*(x,u, uq1y, uary, - - - Ugsys Ues)) = A, u,uqy, .. ) FOo,u,uay, ..., ui). (1.9)

In particular:

Definition. Equation (1.5) is said to be self-adjoint if the adjoint equation (1.6) is
equivalent to the original equation (1.5) upon the substitution v = u.

Definition. Equation (1.5) is said to be quasi-self-adjoint if the adjoint equation
(1.6) is equivalent to the original equation (1.5) upon the substitution v = h(u) with
a certain function & (u) such that 4’ (u) # 0.

Definition. Equation (1.5) is said to be weak self-adjoint if the adjoint equation
(1.6) is equivalent to the original equation (1.5) upon the substitution v = h(x, ¢, u)
with a certain function A (x, ¢, u) such that z, # 0 and A, # O or h; # 0.

1.2.1 The Subclass of Nonlinear Self-Adjoint Equations

Let us single out some nonlinear self-adjoint equations from the equations of the
form (1.2)

u + kuy + oquy + Buce, + Olzpllftzux + af(pauttyrx + P3UxULy)
+ Ol3p4"t3ux + Olz:B(pSLtzuxxx + peutuxityy + /07’4i) = 0.
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Theorem. Equation (1.2) is nonlinear self-adjoint for any arbitrary parameters p;,
i=1,...,7

Proof. Equation (1.7) yields

8
F* = 8—M[V(Mt + PUx + cuu, + :Buxxx 4 a2p1u2ux + 063,041,[3ux

+aB (oot + p3xitx) + & B(psuixex + petttitry + pricy))]

= _azﬂPSMZVxxx —aBpuvicy —Bvixx + azﬂpéuuxvxx
— 607 B sty vy + 0B p3ixvix — 30 B prtty Vi + 07 B pg ittty vy
—60” Bpsuttex vy + o B Pty vy — 3B prttyy vy —30” B p7r ()’ vy
+20? B pe (ux)* vy — 60 B ps (ux)? vy — o pauvy — o prutvy — auvy
— PV — Vi — 60> Bpruucity v+ 3% B pe ity xx v — 6% B sty gy v

(1.10)

By substituting v = h(x, ¢, u) and its derivatives

v =h(x,t,u),
v = hyu + hy,
Vx = huux + h)m

Vax = ey + e (hyy iy + hyx) + hx e + By,
Vaxy = huyttxxx + ity (Rt x + Uy (R ttx + uux) + R s + Ruxx)
+2 (Mt + hus) ey + Ryt + e (Ryy i 4 hyxex)
+ Myt + hyxx
into the adjoint equation (1.16) we obtain:
—0? Bhy ps ¥ty — 0 Bhy Pttty — Bhuyttexs — 307 B huy psu® ity
+2a2,3hup6uux Uy — 12052,3hup5uux Uy — 30 B Ny po ittty Uy x
— 6% Bhpruy ity + 30 Bhpotiy ity — 60> Bhps ity iy
+2aBhyp3uyuy =60 B hy Pty —3 B hyy iy uyx
—302Bhuypsulucy + o> Bhy pouis — 6 Bhy psuityy
—3aBhuxprustyy +aBhypsucy—3aBhyprie—3Bhyyuyy
=0 B huuu ps 0 (ux)* + 07 B huu pote (1) — 607 B huy psut (1)
—a B hyuu prut () =30 Bhyp7 (ux)’ +207 Bl pe (uy)’
—60” Bhyps ()" + o Bhuups () =3 Bhyupa (uy)’
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— B huu ()’ =307 Bl psi® ()’ + 207 Bhuy pou ()
— 1207 Bl psu (ux)® =3 Bhyux prut (ux)* =3 Bhy pr ()
+20° Bhy pe ()’ =607 Bl ps ()’ +2a B hux p3 (uy)’
=60 B hux pr (1)? =3 B huux (ux)’ =& by pau® ux =367 B I ps u’ ux
— P hyprid ux + 0 Bhyy pouity — 6> Bhyypsuiny —30 fhyyxprutiny
—ahyuuy +aBhicpzuy—3aBhecprux —hypix =3B hyxuy —hyu
—P e psr® = Bhecxpsu®> —oP hypr> —a Bhyyy pru—aheu
—hxp—Bhixx—h =0
Hence the condition of nonlinear self-adjointness is written as follows:

F* = Av(u, + puy + auity + By + o prutue + o paicuy
+af(pautixx + p3ttitx) + &2 B(psu’ttrry + poutixitex + pyuy))]

=—0’Bpsuucsc A —aBpruttyx A —Purcxd—a® Bpouinyug )
—a B psuyucc A —a’ B ps (ux)3 A= ppidue A — o prduc h—ouuy A
—pux A —u A =0 Bhypsi e — o Bhyprtittyyc—Phytix
— 302 B hyypsu s ity 4+ 20> B hy pe ity tuxx — 1202 B hy ps 1ty ity
—3aBhuuprutixuy — 60> Bhprucuyy + 30> Bhpguy gy
— 60’ Bhpsuyiiey + 20 Bhypstty ey —60 B Ry prttyttey —3 B hyy ity iy
—302 Bhyypsuucy + o Bhy poutingy — 6% Bhy psuity
=3aBhyypruttyx +aBhypsuxy—3aBhy ity —3Bhyytyy
=0 B hyu ps 0 (1) + & B huu pou (1) = 66 B huy ps u ()’
—a B huuu pau (ux)’ =307 By pr (ux)® +20° Bhy ps ()
—60” Bhups (1) + o Bhuups () =3 Bhuupa (uy)’
— B huu ()’ =302 Bl psu® (ux)® + 207 B huy pou (1)
— 120 B hyx psu (ux)* =3 B hyux prut (ux)* =36 Bhy pr ()
+206° Bhypo ()? — 60> Bl ps ()’ +2a Bhuy py (u)’
—60 B huxpr () =3B huus ()’ — o hy pse? y — 30> Bl psu® uy
—a? by prut g + 07 Bhyypeuity — 60 Bhy psiity —30 B hyxy pattity
—ahyuuy +aBhypyiuy =3B hyypruy —hypuy
=3B huxxitx —hyuy — o hy o’ —0® Bhyy i psu® —a® hy py i

—aBhixpu—ahyu—hyp—pBhiyy—h =0, (1.11)
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where A is an undetermined coefficient. Hence comparing the coefficients for the
different derivatives of u we obtain that A = —h,, and the following conditions must
be satisfied:
—3Bhuu (@ psiu® +apru+1) =30 Bh (2p7— ps + 2 ps)
+3aBh, (@psu—4apsu+ps—2p) =0,
aBhy (apsu—60psu+ps—3p)—3Bhu (0 psi’ +apru+1) =0,
—B huuu (&2 psu* + o pyu+ 1) — 20> Bhy (07 — ps + 3 ps)
ta Bhu (@peu—6apsu+p3—3p) =0,
3 Bhuux (@ psu* +apru+1)—aBhy (3p7—2ps+ 6ps)
+20a Bhyy (@psu—6apsu+ ps—3py) =0,
afhyy (@pou—6apsu+ p3—3p)
=3B huxx (& psu” +apu+1) =0,
—0’ hy pyil’ + (—0? Bhyyxps — o’ by pr) i
+(—aBhyxxpr—ahy)u—hyk —Bhixx—h =0.
Equations third and fifth are differential consequences of the first and second
equations, respectively.
Consequently, if (1.2) is weak self-adjoint, # = h(x, ¢, u) must satisfy the following
conditions:
—3Bhuu (@ pst® +apru+1)—3e®Bh (2p7— ps + 2 ps)
+3afhy (@psu—4apsu+p3—2p) =0,
aBhy (apsu—60psu+ps—3p)—3Bhu (0 psi® +apru+1) =0,
Ruux (& psu® +apyu+1)—a® Bhy (3p7—2ps+ 6 ps)
+2a, B hyx (@psu—6apsu+ps—3p0) =0,
—o’ hy pair’ + (=0 Bhyyx ps — o hy pr) 1
+(—aBhyxxpr—ahy)u—hyk —Bhixx—h =0.
However, setting 7 = h(u) we get that equation (1.2) is nonlinear self-adjoint for
any arbitrary parameter p; setting & (u) so that it satisfies the following condition:
3B hy (P psu® +apru+1)—3a*Bh (27— ps + 2 ps)
+3aBh, (psu—4apsu+ p3s—2p) =0. (1.12)
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1.2.2 Nonlinear and Weak Self-Adjointness

Equation (1.3) is not self-adjoint; however, we prove that:
Theorem. Equation (1.3) is weak self-adjoint and nonlinear self-adjoint.

‘We substitute

v =h(x,t,u),
v = hyu + hy,
Vy = huux + hx,

Vax = ey + e (hyy iy + hyx) 4l + By,
Vaxx = Myt + e (Ryy iy + e (hyy e + Pu) + R e + uxx)
+2 (Mt + hus) e+ Rty + e (Ryy iy 4 hyxx)
+hyxxttx + iy,

into the adjoint equation

28 \72 x 35 x Ux x
—uzvxxx—7uuxvxx—7uuxxvx—&—uzvx—vt—M=O
3 3
obtaining
35h x Ux x
—huuzu”x—3hwu2uxuxx—14huuuxuxx—%—3h“u2uxx
28 h, ()’

—Thy Uity x — hyyy ti® (ux)3 —Thy,u (ux)3 — — 3l t® (ux)2

3

28hy () )

—14huxu(ux)2— 3hyxy Wity — My 'ty — 7 hyy Uiy

—hyuy —hyxyu> —hyu®> —h, = 0.
Hence, the condition of nonlinear self-adjointness is written as follows:

4 (uy)® A
—uzu”x/\—l—uuxu”k—%—uzux/\—u,)k—huuzu”x

35N uy uy
3

—Bhy P gty — 14 R, iyt — — Bl WPty — Thy iy
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_huuuu2 (ux)3_7huuu (ux)3_ 3
2

—28 hy ()" —3hyxxuu
uxx X

— 14y u (uy)* — 3
—Theyutty —hytty —hy x> —hyu? —h; = 0.

1
— hy i uy

Here A is an undetermined coefficient such that
A+h,=0

and the following conditions must be satisfied:
5h
3hyuu® + 15h,u+ = =0

3hyy > + Thyu =0,

80,
_huuu u2_7huu“_ 9 =0,
28 Iy
3 %

—Bhyuxtt> —14h, u—
—Bhy ey —Theru=0,

—hyyy > —hyu>—h, =0.

a b(x,t)
=+ 7
us u3

3

The solution is
h fr—
(1.13)

where a = constant and b = b(x) satisfies
bixy +b,=0.

Namely the adjoint equation becomes equivalent to the original equation upon the

<
S| &

+

<
Sl 2

substitution
A V—

with a = constant and being b = b(x) any solution of (1.13).
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1.2.3 The Condition of Quasi-Self-Adjointness

Let us see if (1.4) is quasi-self-adjoint.
Equation (1.7) yields

= i[v(_“xxx — 3y yyx — (Mx)3 + uy)]

Su

= Vixx — 33Uy Viy —SUxxVy +3 (ux)2 Ve =V + 6uruc v  (1.14)

*

Setting v = h(u) in (1.14) we have

F* = hyttyxy +3hyuthy ey — 6 Ryttt + 6 Rty tty
P ) =3 () + 31y (uy)® — oy

Using (1.9) yields:

F* — Ay — Uy — 3Uxliey — Mz) =Upxx A+ 3uyuy A+ (ux)3 A=A
Fhyttyxx F3hguuc ity —6hyuc gy +FO6huc g, + hyuu (ux)3
—3 Ny (ux)® + 3 hy (uy)® = hyu = 0.

Comparing the coefficients for u,, we obtain A+/4, = 0 and the following conditions
must be satisfied:

3hyu—9h,+6h =0,
hMLlLl_Shuu+2hLl =0. (115)

From (1.15) we get that
h(u) = ae* + be*,

where a = constant and b = constant. We can state the following:

Theorem. Equation (1.3) is not self-adjoint and it is quasi-self-adjoint, upon the
substitution

h(u) = ae* + be*,

where a = constant and b = constant.
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1.2.4 The Condition of Weak Self-Adjointness

Let us see if (1.4) is weak self-adjoint.
Equation (1.7) yields

F* = i[V(_uxxx —3uyuyy — (”x)3 + u;)]
Su

= Vyxx — 3Ux Vxx — SUxx Vx + 3 (ux)2 Ve =V + 6uyuv. (1.16)
Setting v = h(x,t,u) in (1.16) we have
F* = ey + 3 Mgty thyy =6 byttt + 6 Rty thx — 3 hy iy + 3Ry ttx
e () =3 @) + 3y () + 3he ()7 + 3hux ()
=6 Iy ()> =3Pyt + 3huyy e = hytty + hyxx = hy.
Equation (1.9) yields:

F* — AUy — ey — 3ttyliyy —ui) =Uppx A+ 33Uty A+ (ux)3 A—u A
Fhytexx +3hyg byt —6hy gty + 6 Mgy — 3Ryt + 3hyy Uy
Fhu ) =3 by () +3hy () + 3he ()7 + 3 b (uy)?

— 6N ()" = 3Pyt + 3hur e — hyty + hyxx —hy = 0.

Comparing the coefficients of the u derivatives we obtain that A = —h, and the
following conditions must be satisfied

3hyy—9h,+6h =0,
3hyx+3he =0,
huwu =3 hyw +2hy =0,
3hy +3hyyx —6h,x =0,
3hyy —9h, +3hyy +3hyxx =0,
hyxx—hy =0. (1.17)
From (1.17) we get that
h(x,t,u) = a(x,t)e",
where a = a(x, t) must satisfy the linear equation

a; — Ay = 0.
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We can state the following:

Theorem. Equation (1.3) is weak self-adjoint, upon the substitution
h(u,x,t) = a(x,t)e",
where a = a(x,t) satisfies

a; — Ay = 0.

1.2.5 The Condition of Nonlinear Self-Adjointness

Let us see if (1.4) is nonlinear self-adjoint.
Equation (1.7) yields

8
F* = —[v(—ttxxx — 3ty iy — (1x)> + ;)]
Su
= Vyxx — 33Uy Vyx — 33Uy vy +3 (ux)2 Ve — Vi + 6 Uy Uy V. (1.18)

Setting v = h(u, uy) in (1.18) and denoting u, = w we have

F* = hW'WXXX + 3hWW'WXWXX - 3hWWWXX + 3hMWWWXX + hMWXX + hW'WW' (WX)3
—3h,w (wx)2 + 3Nuw (wx)2 —3h, (wx)2 + 30, (wx)2 + 3, wwy
+ 3hue W Wy — 6hupWwy + 3huwwy — 6h,wwy + 6hwwy — hy,w,

+ MW = 3w’ + 3hw® — hyu,.
Using (1.9) and the derivative with respect to x of (1.4)
—ty s = Stxthyxx =3 (Uxx)’ =3 () tyy + U =0
which in terms of w can be written as
~Wyxx —3WWyy —3 (wx)2—3w2wx +w, =0
yields:
F* — pu(=ttxx = Stxttry = 3 () = 3 () thx + )
— AUy — Uy — Uy — ui) = — (—uxxx — BUylUyy — (ux)3 + u,) A

+ hux Uxxx + 3thuX UxxUxxx — 3hux UxUyxxx + 3hquuxuxxx + hytxxx

+ huquuX (uxx)3 - 3huxux Ux (uxx)2 + 3hquuX Ux (uxx)2 - 3hux (”xx)z
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+ 3huux (”xx)z + 3hux Mi”xx + 3huuu1 Mi”xx - 6huu1 Mi”xx + 3huttxuxy
— 6hy Uty + Ohu Uy — thMxt + huuu(ux)3 - 3huu(ux)3 + 3hu(”x)3 — hyuy

- ,Uv (_uxxxx - 3uxuxxx - 3 (“xx)2 - 3 (“x)2 Uxx + “tx) = O
Setting u, = w

- (—wxx —3ww, —w + uf) A—Uu (—wxxx —3ww, — 3 (wx)2 —3wlw, + w,)

+ 3hWW'WXWXX - 3hWWW7CX + BhMW'WWXX + hMWXX + hWW’W (WX)3 - 3hWW'W (WX)2
+ 3huVVWW (VVX)2 - 3hW (‘/VX)2 + 3huw (WX)Z + Shwwzwx + 3hMMWW2WX
— 6h W Wy + 3hwwy + ByWerx — 6hawwy + 6hwwy — hyuwy + By’
— 3w + 3hw® — hyu, = 0.
Comparing the coefficients for «,, we obtain A + i, = 0.

Comparing the coefficients for w,, we obtain u + h, = 0 and the following
conditions must be satisfied:

J— (1.19)
hy —2h = 0. (1.20)

From (1.19) we get that

2i

h(u,w) = ce™w.

We can state the following:

Theorem. Equation (1.4) is nonlinear self-adjoint, upon the substitution

2,

h(u,uy) = ce™uy.

1.2.6 General Theorem on Conservation Laws

We use the following theorem on conservation laws proved in [6].

Theorem. Any Lie point, Lie-Bdicklund or nonlocal symmetry

) 0 ad
X :g’(x,u,u(l),...)g —i-r)(x,u,u(l),...)% (1.21)
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of equation (1.5) provides a conservation law D;(C') = 0 for the system of
differential equations (1.5) and (1.6). The conserved vector is given by

¢ ez e[ (22) oy (22

au,- BMij BMijk
0L .7 .7
+D;(W)[——Dk(—)+~'}+DjDk(W)[ —}+
Oujj Oujjk dujk
(1.22)

where W and £ are defined as follows:

W:r)—f;‘juj, fva(x,u,u(l),...,u(s)). (1.23)

We will write generators of point transformation group in the form

9 9
X = | 2 7 o
PR L

by setting # = x' and x = x2. The conservation law will be written

D, (CYY+ D.(C? =0. (1.24)

1.2.7 Conservation Laws for a Subclass of Self-Adjoint
Equations

Let us apply the general theorem on conservation laws to the self-adjoint equation
(1.2) with

p3 =202, p7 = ps — 3ps. ps = p3/4.
ps=p3. p2=1/p.  ps=0,
p1=1/4p.

Let us find the conservation law provided by the following symmetry of (1.2):

d u 1 0
X=t——(z4+—)—. 1.25
dt (2 + apz)Bu ( )
1
In this case, we have that W = —g — — —tu, and (1.22) yield the conservation
apr
law (1.24) with
2k
cl = _M + DX(BI),

20



1 Nonlinear Self-Adjointness for some Generalized KdV Equations 17

C2:_a2:3u3uxx_Salguzuxx_zﬂuu _ﬂkuxx_azlguz (M)r)2

4 k2 4k A o 8 k2

_abu(ux)z_a2u4_5au3_pu2_@_Dt(Bl)7
4p 16k 12 a
where

2 3 2 2 2 2 2
,_(ePBtuw’  aftu o Bru (uy)” Pt (uy)

B —( 4 + +Btu) ucy + 8 o2 - )

t uxz a?tut atu’ tu?
4P
2 16p 3 2

We simplify the conserved vector by transferring the terms of the form D, (. ..) from
C' to C? and obtain:

o _ul@ut2p)
N 2a ’
c? = _azﬁu3uxx B S5a B u? _2/3uu”_ﬁku” _052/3u2 (ux)2
4 p? 4k a 8 p?
abu (uy)? o2ut Sau , plu
— — — —pu——.
4p 6o 12 °

1.2.8 Conservation Laws for a Subclass of Self-Adjoint Third
Order Equations

Let us apply the general theorem on conservation laws to the quasi-self-adjoint

equation (1.3).
In this case, we have

4
L = (u, + vlu, + §ui — Ul Uyy + uzuxxx)v. (1.26)

Let us find the conservation law provided by the following obvious scaling
symmetry of (1.3):

d ud
X=t———-—. 1.27
ot 2 0u ( )
In this case, we have that W = —g — tu; and (1.22) yield the conservation law

(1.24) with
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2 4
Cl:_ k +Dx ktM%MVV_Zkt (MX) +3ktu}
2 / X A 2 s
2us 3u3 4
CZ:kM%MXX_Zk (MX)2+ku% D ktu%u _2kl(ux)2+3ktu%
e a e L i |

We simplify the conserved vector by transferring the terms of the form D, (.. .) from
C! to C? and obtain

C! :_L
2u%7
k us 2k (uy)® | ku
C? = u Mxx_ (ux) us
3 9u3 4

1.2.9 Conservation Laws

Let us apply general theorem on conservation laws to the weak self-adjoint and
nonlinear self-adjoint equation

Uy — Uyxx — SUyllyy — Mi =0, (1.28)

with h(x,t,u) = a(x,t)e" where a = a(x,t) satisfies
A —Axxx =0 (1.29)

and h(u, u,) = e®u,, u, = w. In this case we have
&L = (“t — Uyxx — SUxllyy — “i)v- (1.30)

1. Let us find the conservation law provided by the following symmetry of (1.4):

9 3t 9 1.31
VEaa + 5 (1.31)
and h(u, x,t) = a(x,t)e", where a = a(x,t) satisfies (1.29).
In this case, we find that W = —xu, — 3fu, and (1.22) yield the conservation
law (1.24) where after simplifying the conserved vector by transferring the terms
of the form D, (...) from C! to C? we obtain:

C'=e"(ayx+3ay,,t+a),
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2
C?>=—ace"ucxx —aye" (uy)® X +ayceuyx —are"x —3a,t e uyy
2 2
—aeuyx —3arte” (uy) —ae" (uy) +3a;t e uy
+2aye"uy —3a;ccte" —3ay,e",

and a = a(x,t) satisfies (1.29).

. Let us find the conservation law provided by the following symmetry of (1.4):

d d

and h(u, x,t) = a(x,t)e", where a = a(x,t) satisfies (1.29).

In this case, we find that W = —kju, — kpu, and (1.22) yield the conservation
law (1.24), where after simplifying the conserved vector by transferring the terms
of the form D,(...) from C' to C? we obtain:

1
C = _(axka +akl) euux’
C?>=—a,kyeuyy —axkye"uy, —a, ks e" (ux)2 —ay ke (ux)2

+a;ckreu, +ayckieuy +acckreu +akyetu;,

where a = a(x, t) satisfies (1.29).

. Let us find the conservation law provided by the following symmetry of (1.4):
0 0
=ki—+k— 1.33
VR TR (139

and h(u, uy) = u.e?.

In this case, we find W = —kju, — ku, and (1.22) yield the conservation law
(1.24) where after simplifying the conserved vector by transferring the terms of
the form D,(...) from C' to C? we obtain:

k> e (”x)4 _

3 ke (uy)?,

Cl = _k2 6214 (”xx)z +
4k2€2u (ux)3 Uxxx
3

+2k e Uy sty 4 6k2e® (xx)® + 3kae® (1) (uxx)® — k1™ (uyx)?

kae™ (uy)®
3

2 2u 2u 2 2u
C 2kre™ Uy tyxxx — koe (uxxx) + 2k Uyt yy —

_2k262M (”x)4 Uxy + 4k132u (ux)z Uxy — + klezu (th)4 .

. Let us find the conservation law provided by the following symmetry of (1.4):
a d
=x—+3t— 1.34
VoY% T (139

and h(u, uy) = u.e.
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In this case, we find that W = —xu, —3tu, and (1.22) yield the conservation law
(1.24), where, after simplifying the conserved vector by transferring the terms of
the form D.(...) from C' to C? we obtain:

Cl = —e® () x + 3te™ (uyx)” — 1™ (uy)*,

C? = 2e™u ttyyrx — ™ (u,m)2 X + 4e (ux)2 Upex + e (MX)4 X
- 6Zezuuxxuxxxx + 3t82u (”xxx)z - 6tezuuxuxxuxxx
41 (1) sy — 18167 ()’ — 916 (ur)? (t2r)?

+ 61e2 (ux)4 Uypy — 2™ Uty + 1 (ux)(J .

1.3 Conclusions

In

this work we have considered three third order equations: a potential Burgers

equation and two third order wave equations of the KdV type. We have determined
the subclasses of these equations which are weak and nonlinear self-adjoint. By
using the general theorem on conservation laws proved by Nail Ibragimov, we found
some conservation laws for some of these partial differential equations without
classical Lagrangians.

Acknowledgements The support of DGICYT project MTM2009-11875 and Junta de Andalucia
group FQM-201 is gratefully acknowledged.
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Chapter 2

Weak Self-Adjointness and Conservation
Laws for a Family of
Benjamin-Bona-Mahony-Burgers Equations

M.S. Bruzén

Abstract Ibragimov introduced the concepts of self-adjoint and quasi-self-adjoint
equations. Gandarias generalized these concepts and defined the concept of weak
self-adjoint equations. In this paper we consider a family of Benjamin-Bona-
Mahony-Burgers equations and we determine the subclass of equations which are
self-adjoint, quasi-self-adjoint and weak self-adjoint. By using a general theorem
on conservation laws proved by Ibragimov we obtain conservation laws for these
equations.

Keywords Weak self-adjointness  Conservation laws

2.1 Introduction

Nonlinear PDEs that admit conservation laws arise in many disciplines of the
applied sciences including physical chemistry, fluid mechanics, particle and quan-
tum physics, plasma physics, elasticity, gas dynamics, electromagnetism, magneto-
hydro-dynamics, nonlinear optics, and the bio-sciences. Conservation laws are
fundamental laws of physics. They maintain that a certain quantity, e.g. momentum,
mass, or energy, will not change with time during physical processes.

In [16] (see also [15]) Ibragimov proved a general theorem on conservation
laws for arbitrary differential equations which do not require the existence of
Lagrangians. This new theorem is based on the concept of adjoint equations
for nonlinear equations. There are many equations with physical significance
which are not self-adjoint. Therefore one cannot eliminate the nonlocal variables
from the conservation laws of these equations. Ibragimov in [15]) extended the
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concept of self-adjointness to quasi-self-adjointness. In [9] extended the concept of
quasi-self-adjointness to weak-self-adjointness. Next, in [17] Ibragimov introduced
a new concept: nonlinear self-adjointness.

Symmetry groups have several different applications in the context of nonlinear
differential equations [3-5]. For example, they are used to obtain exact solutions
and conservation laws of partial differential equations (PDEs) [8, 10]. The classical
method for finding symmetry reductions of partial differential equations is the Lie
group method [13, 18, 19]. The fundamental basis of this method is that, when a
differential equation is invariant under a Lie group of transformations, a reduction
transformation exists. For PDEs with two independent variables a single group
reduction transforms the PDE into an ordinary differential equation (ODE), which
in general is easier to solve.

The Benjamin-Bona-Mahony-Burgers (BBMB) equation

A = — ey — AUy + Puy + (g(w)), =0, 2.1

where u(x,t) represents the fluid velocity in the horizontal direction x, « is a
positive constant, 8 € R and g(u) is a C?-smooth nonlinear function appears
in [11]. Equation (2.1) is the alternative regularized long-wave equation proposed
by Peregrine [20] and Benjamin [2]. In [5, 6] we studied similarity reductions of
the BBMB equation (2.1) and we derived a set of new solitons, kinks, antikinks,
compactons, and Wadati solitons.

Wang et al. [21] introduced a method which is called the %-expansion method to
look for travelling wave solutions of nonlinear evolution equations. In [7] we found
the functions g(u) = u™ for which we can apply the %-expansion method to (2.1).
We obtained new travelling wave solutions which did not appear in [5,6]. In [1] the
%-expansion method is used to establish travelling wave solutions for special form
of the generalized (2.1) witha = 0, 8 = 1, and g(u) = % The solutions given in
[1] were obtained by Bruzén and Gandarias in [7] and Kudryashov in [12].

The aim of this work is to determine, for (2.1), the subclasses of equations which
are self-adjoint, quasi-self-adjoint, and weak self-adjoint. We also determine, by
using the notation and techniques of the work [15,16], some nontrivial conservation
laws for (2.1). The paper is organized as follows. In Sect.2.2 we determine the
subclasses of equations of (2.1) which are self-adjoint, quasi-self-adjoint, and weak
self-adjoint. In Sect. 2.3 we give the Lie symmetries of (2.1) equation obtained by
Bruzén and Gandarias in [5-7]. In Sect. 2.4 we obtain some nontrivial conservation
laws for (2.1). Finally, in Sect. 2.5 we give conclusions.

2.2 Determination of Self-Adjoint Equations

In [16] Ibragimov introduced a new theorem on conservation laws. The theorem is
valid for any system of differential equations where the number of equations is equal
to the number of dependent variables. The new theorem does not require existence
of a Lagrangian and this theorem is based on a concept of an adjoint equation for
nonlinear equations.
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Definition 1. Consider an sth-order partial differential equation

F(X,M,M(l),...,u(s)) =0 (2.2)
with independent variables x = (x!,...,x") and a dependent variable u, where
uay = {ui}, upy = {u;}, ... denote the sets of the partial derivatives of the first,
second, etc. orders, u; = du/0x’, u;; = 0°u/dx'dx’/. The adjoint equation to
2.2)is

F* (X, u, v, u(1), V(1)s - - - s U(s)s V(s)) = 0, (2.3)
with

S(VF)
F* (X, u, v, U1y, V(1)s - - - s U(s)s V(s)) = TP 2.4)

where

§ 0 d

— = —+ -1)’D;, ---D; —— 2.5

Su du ;( ) ! ’ 8u,<1...,1\, ( )

denotes the variational derivative (the Euler-Lagrange operator), and v is a new
dependent variable. Here

D= Ly, Ly
P = e Uy — Ui e
ax! du ’au,»

are the total differentiations.

Proposition 1. Given the generalized BBMB equation (2.1), by applying definition
(1), the adjoint equation to (2.1) is defined by

F* = —OUxx — Zully — ,BMx T+ Uy — Uy (2.6)

2.2.1 Weak Self-Adjoint Equations

We use the following definitions given in [15, 16].

Definition 2. Equation (2.2) is said to be self-adjoint if the equation obtained from
the adjoint equation (2.3) by the substitution

v =u, 2.7

F*(-xs uvvv M(l)s v(l)s L) M(S)vv(s))

is identical to the original equation (2.2).
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Definition 3. Equation (2.2) is said to be quasi-self-adjoint if the equation
obtained from the adjoint equation (2.3) is equivalent to the original equation
(2.2) upon the substitution

v = h(u), (2.8)

with a certain function & (u) such that 4’ (u) # 0.
And the following definition given in [9].
Definition 4. Equation (2.2) is said to be weak self-adjoint if the equation obtained
from the adjoint equation (2.3) by the substitution

v=h(x,tu), 2.9)
such that A, (x,t,u) # 0, h,(x,t,u) # 0, is identical to the original equation, i.e.

F*|,_, = AF. (2.10)

Given the generalized BBMB equation (2.1) we apply definition (4). Taking into
account the expression (2.6) and using (2.9) and its derivatives we rewrite (2.10)
uthuuuxx - ahuuxx + htuuxx - ahxx + “thuuuui - O{huu“i + htuuui
_Zahux“x + zuthuux“x + Zutxhuuux - guhuux - ,Bhuux + thux“x
_guhx - ,th + “thuxx + zutxhux + “txxhu - “thu + htxx - ht
=AM—cuyy + guur + Bux —uxx + ). (2.11)
Comparing the coefficients for u,,, we obtain A + h, = 0 and the following
conditions must be satisfied:
huxx = 07
h[ u = 20 ]’lu = 0,
thx —Z(Xhux = 0,
htuu - ahuu = 07

hyuu = 0,
hux =0,
huw =0,

M = 0,

ahex +guhy +Bhe—hixy +h =0. (2.12)
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Table 2.1 Weak self-adjoint equations (2.1)
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Case; o B g(u) h
k k
1. Arbitrary Arbitrary ks — (2—'—]{& kix+ku+kyt + ks
1
k k
2. 0 Arbitrary k3 — (2—'—]{& kiexp(—kt)
1
3. Arbitrary Arbitrary Arbitrary C
4. 0 Arbitrary Arbitrary kiu+ ko

Solving the system (2.12) we obtain that h = k e?>*' u + a(x,t) and «, B, g(u) and

a(x,t) must satisfy the equation

2ake* utargitacB+aacy—ai,,+a; =0. (2.13)

From (2.13) we obtain

e Forg(u) = k; — 3

(ko +Bki) u

, with k1 # 0 and o arbitrary constant

h=k x+kyt+ks.

e Forg(u) = k; — 3
1

h=kix+ku+kyt+ ks.

* For « and B arbitrary constants and g arbitrary function

(ky + Bk u

,withk; Z0anda =0

h = C, with C constant.

¢ For o = 0, B arbitrary constants and g arbitrary function

Consequently, we deduce that

h=kyu+ k.

Proposition 2. Equation (2.1) is weak self-adjoint in cases given in Table 2.1.
We remark that for « = 0, B arbitrary constants and g arbitrary function equation
(2.1) is self-adjoint. For o and B arbitrary constants and g arbitrary function (2.1)

is quasi-self-adjoint with h = C.

2.3 Classical Symmetries

To apply the Lie classical method to (2.1) we consider the one-parameter Lie group
of infinitesimal transformations in (x, ¢, u) given by

x* = x +ef(x,t,u) + 0O(e%),

(2.14)
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t* =t +et(x,t,u) + O(e?), (2.15)
u* = u+en(x,t,u) + O(), (2.16)

where € is the group parameter. We require that this transformation leaves invariant
the set of solutions of (2.1). This yields to an overdetermined, linear system of
equations for the infinitesimals &£ (x, ¢, u), t(x, ¢, u), and n(x,t, u). The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form

d el ad
v:é(x,t,u)a —i—r(x,t,u)g +n(x,t,u)ﬁ. (2.17)

Having determined the infinitesimals, the symmetry variables are found by solving
the characteristic equation which is equivalent to solving the invariant surface
condition

n(x,t,u) —&(x,t, u)% —t(x,1, u)% =0. (2.18)
ox ot

The set of solutions of (2.1) is invariant under the transformation (2.14)-(2.16)
provided that

pr®v(A) =0 when A =0,
where pr®v is the third prolongation of the vector field (2.17) given by

d
pr’v =v + E X,t,u —
7 n ( )auj

where
n’ (x,t,u®) = D;(n—Eux — tur) + Eugy + nuye,

with J = (j1,...,jk), | < jx <2y 1 <k <3.Hence we obtain the following ten
determining equations for the infinitesimals:

7. =0,
7, =0,
£, =0,
£ =0,
Nuu = 0,
ot + 1y =0,
2Nux —Exx = 0,
Nuxx — 2Ex = 0,
Nx&u — &Mxx + Pix — Nexx + 10 = 0,
—0tExx — ubx — BEx — &uT — BT — N&uu + 2000ux + 20ux = 0. (2.19)
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From system (2.19) § = &(x), r = t(¢) and n = y(x,t)u + §(x,t) where o, B, £,
7, ¥, 6, and g satisfy

yi+at =0,
zyx_Sxx =0,
yxx_zgx :07

20V + 2V — Guuy — by — gubc —BE — g — BT — 88w =0,

_au)’xx+guu)’x+,8u)’x_u)’txx+u)’t+8xgu_a8xx+,38x_8txx+5t =0.
(2.20)

From (2.20) we obtain

e—2x

8
(kg + 2ks) e* (kg —2ks) e™ k4 — 4k,
- 8 * 8 T

y = ((ks + 2ks) e** + (ki — 8at) €™ — ky + 2k3)

§

)

and o, B, 7, 8, and g are related by the following conditions:

((gu + B —200) ks + (28, + 2 B — 4a) k3) ue™
+ (—datiu+ 8, (4gu + 4B) — 48y — 481y + 46;) 2*
+((gu+B+2a)ks+(—2g,—2B—4a) k3) u=0, (2.21)

(Guks + 2 guks) u+ (28, +2B) ka + (4g, + 4B) k3) e**
+ ((Aguky — 80tguut) u + 8guT + 8 BT + 88gu) €2 + (2 guiks — guuks) u
+(—2g,—28) kg + (4g, +4B) ks = 0. (2.22)

Solving system (2.21)-(2.22) we obtain that if g is an arbitrary function the only
symmetries admitted by (2.1) are

E=ki, 1=k, n=0. (2.23)
: d . o
The generators of this are v; = ™ (corresponding to space translational invariance)
X

Ja . . . . .
and v, = % (time translational invariance). In the following cases (2.1) has extra
symmetries:

Q) Ifa =0, g(u) = —Pu+ u(++1)(au + byt a #£0,

k
E=ky, t=kat+ks, n:—ﬁ(au+b).
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Besides v; and v,, we obtain the infinitesimal generator

au+b

V3:ta[_ 3,,.

(i) fa #0,8 # 0and g(u) = au + b,
E=k, =k, n=468x.1),
where § satisfy

0y — guax - ,38)( + 8 — 6, =0.

2.4 General Theorem on Conservation Laws

Much of the research on conservation laws centers around applications of Noether’s
theorem, which requires the existence of a Lagrangian. Anco and Bluman developed
a procedure. The advantage of this procedure is that, in the Lagrangian case, it
bypasses the actual formulation of the Lagrangian, and more importantly, it is
applicable to non-Lagrangian systems.

Given a PDE (2.2) a conservation law for (2.2) is a relation of the form

V-C=D,(CH+D,(CH=0 (2.24)

where C = (C!, C?) represents the conserved flux and density, respectively, and
D, D, denote the total derivative operators with respect to x and ¢, respectively.
If (2.24) is a conservation law for (2.2), then it can be shown that there exists an
operator A such that

V.C=AWF

The operator A is called the characteristic of the conservation law.

The conservation laws determined via Noether’s theorem need to have a
Lagrangian formulation. Noether’s theorem connects conservation laws with
variational symmetries with infinitesimal generators

We use the following theorem on conservation laws proved in [16]. Any Lie
point, Lie-Bédcklund, or non-local symmetry

. 0 0
X :g’(x,u,u(l),...)w +n(x,u,u(1),...)$ (2.25)
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of Eq. (2.2) provides a conservation law D; (C) = 0 for the simultaneous system
(2.2), (2.3). The conserved vector is given by

ceeaw[PE_p (PE 4 b (L) -
au, BMU a“uk

+D; (W)[aﬁ —Dk( oL )+~'}+DJ»D;{(W)[ 0L _i|_lr_

Uijj 3Mijk a“ijk
(2.26)
where W and L are defined as follows:
Wzn—f;‘juj, Eva(x,u,u(l),...,u(S)). (2.27)

The proof is based on the following operator identity (N.H. Ibragimov, 1979):
. ) .
X+ Di(§) = We + DN, (2.28)

where X is operator (2.25) taken in the prolonged form:

.0 8 d ad
XZSIW +§l +§l1lza +eee

¢ =Di(n) _MjDi(Sj)v Ciin = Diy (&) —ujiy Diy (E7), ...

For the expression of operator A/ and a discussion of the identity (2.28) in the
general case of several dependent variables, see [14] (Sect. 8.4.4).

We will write the generators of a point transformation group admitted by (2.1) in
the form

ad ad ad
X=¢_—+8—+n—
o T T

by setting # = x!, x = x2. The conservation law will be written as (2.24)

Now we use the Ibragimov’s Theorem on conservation laws to establish the
conservation laws of (2.1). We have obtained that equation (2.1) is self-adjoint when

it has the following form
Uy — xer + Puy + (g(u), = 0. (2.29)
In this case, the formal Lagragian is
L= v(ur — ey — cttxx + Pux + (g(u)),).

For o and B arbitrary constants, g(u) arbitrary functionand 2 = C, (2.29) admits
the generator v; + v,. In this case we obtain trivial conservation laws.
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Equation (2.29) admits the generator

1
vy = tot — —(au + b)du,
an

and the normal form for this group is

1
W=——(@au+b)—1tu.
an
The vector components are

C]_tutvxx Wiy  bVey UV TUicVe UiV
3 3n 3an 3n 3 3n

21 b
kt (au+ bY gy — et OV

3 n  an
C2 = _Zut_tvx _ UtVx _ UrVx ZZM[Vtx 2uvtx
3 3n 3 3 3n
2bvyy UxVt TUsxVy 2t UiV UV
3an 3n 3 3 3n
2 x k + b n
YV ket (au+ bY' upy — kulau+b)"v
3 n
bk b)"
_Dk@ut by .30,
an
Setting v = u in (2.30)
Cl = Lty tcx Zuuxx + bux«\' _ (“x)2 _ TusxUy
3 3n 3an 3n 3
2t 2 p
tktu(au + by u, — e 22
3 n an
c? = _tunux _ 2u:uy Uty 2tUltyry TU Uy
4 2 2b
Ullyy 4 Ullyy Urx _ktu (au + b)n ”
3n 3 3an
B ku? (au + b)" 3 bku (au + b)" . 0
n an

We simplify the conserved vector by transferring the terms of the form D, (. ..) from
C' to C? and obtain
()’ u(au+b)
n an
c? Qau+b)uie  k(au+b)"*' 2a(n + Du+ bn)
an ann+1)(®n+2)

c'=

(2.32)
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(ky+Bki)u

ky
kyt + k3 (2.29) admits the generator v; + v;. In this case, we do as before and we
obtain

For g(u) = k3 — , with k; # 0, o arbitrary constant and 7 = ky x +

c' = (kzz + k12)u

ky?
C?=—a (k> + ki) uy — (k2 + k1D ury — ko (k—+k1 u  (2.33)
1
k k
Forg(u):kg,—(z_'_kﬁ,withkl#Oanda:Oandh=k1x+ku+

1
ko t + k3 (2.29) admits the generator v; 4 v,. In this case, we proceed as before and
we obtain the conservation law (2.33) with o = 0.

2.5 Conclusions

In this work we have considered a generalized Benjamin-Bona-Mahony-Burgers
equation (2.1). We have determined the subclasses of equations (2.1) which are
self-adjoint, quasi-self-adjoint, and weak self-adjoint. By using a general theorem
on conservation laws proved by Nail Ibragimov we found conservation laws for
some of these partial differential equations without classical Lagrangians.
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Chapter 3
Some Analytical Techniques in Fractional
Calculus: Realities and Challenges
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Abstract In the last decades, much effort has been dedicated to analytical aspects
of the fractional differential equations. The Adomian decomposition method and
the variational iteration method have been developed from ordinary calculus
and become two frequently used analytical methods. In this article, the recent
developments of the methods in the fractional calculus are reviewed. The realities
and challenges are comprehensively encompassed.
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3.1 Introduction

We review the basic definitions of the Riemann-Liouville (R-L) and the Caputo
derivatives. For additional details readers can refer to references [19,21, 30, 58, 60,
61,65,70].

Definition 1. Let f(¢) be a function of class €, i.e. piecewise continuous on
(to, +00) and integrable on any finite subinterval of (¢y, +00). Then for t > f,
the Riemann-Liouville integral of f(¢) of B order is defined as

ot 0= 5 | (=0 f@de, G0

1
r'p) Ji
where f is a positive real number and I"(-) is Euler’s Gamma function.

The fractional integral satisfies the following equalities,

WIl o1 f(0) = o IP F@), =0, u >0, (3.2)

I'(p+1)
It =t = ————(t — 1), v >0, u>—1. 3.3
f()t( 0) F(M+U+1)( 0) V= H ( )
Definition 2. Let f(z) be a function of class € and « be a positive real number
satisfyingm — 1 < @ < m, m € N, where N7 is the set of positive integers. Then,
the Riemann-Liouville derivative of f(z) of order « is defined as (when it exists)
o dm m—o
f()Dt f([) = W (f()lt f(t)) ’ Z > tO- (34)
Defining for complementarity ,,D° = 1, the identity operator, then ,,D* f(t) =
f@O@ifa=mm=0,1,2,....
Note that the Riemann-Liouville fractional derivative , DY f(¢) is not zero for
the constant function f(t) = C ifa > Oand o ¢ N*.
For the power functions, the following holds

I'(p+1)

L )

(t — )¢, (3.5)

where u > —1,0<m—1<a <m, t > t.

Definition 3. Let « be a positive real number, m — 1 < « < m, m € N, and
f m(¢) exist and be a function of class €. Then the Caputo fractional derivative of
f(¢) of order « is defined as

WD f(t) = I L@, t > 1. (3.6)

Defining for complementarity ,,D° = I, the identity operator, then ,, D% f(t)
= fOW)ifa=m,m=0,1,2,....
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For the Caputo fractional derivative, the following equality holds
wD%aot” +ait" "+ a,)=0, m