
Chapter 1
Recent Advances on Wideband Spectrum
Sensing for Cognitive Radio

Andrea Mariani, Andrea Giorgetti and Marco Chiani

Abstract Spectrum sensing plays a fundamental role in cognitive radio (CR)
networks allowing to discover spectrum opportunities and enabling primary user
(PU) protection. However, it represents also one of its most challenging aspects due
to the requirement of performing radio environment analysis in a short observation
time and the fact that its performance can be strongly affected by harsh channel
conditions and lack of knowledge about the PU characteristics. In literature, many
techniques have been proposed, starting from the most popular algorithms, such as
energy detection, to the most advanced, such as, e.g., eigenvalue based detection
and cooperative approaches. Most of these techniques have been conceived to assess
the occupancy of PUs within a single frequency band. A better knowledge of the
surrounding radio environment can be reached exploiting wideband spectrum sens-
ing, that consists in a joint observation of multiple bands and joint detection on the
occupancy of each sub-band.Recently, differentwideband approaches have been pro-
posed, mainly derived from advanced spectral analysis techniques such as multitaper
methods and compressive sensing. In this chapter, we propose a novel methodology
for wideband spectrum sensing based on the computation of a frequency domain
representation of the received samples and the use of information theoretic criteria
(ITC) to identify which frequency components contain PU signals. This technique
does not require the setting of a decision threshold, a problem for many spectrum
sensing algorithms due to dependence on unknown parameters or difficulties in the
statistical description of the decision metrics. We provide a general formulation of
the problem, valid for any kind of spectral representation and then focus on the case
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in which discrete Fourier transform (DFT) is used. This choice is motivated by the
simplicity of implementation and the fact that DFT blocks are already available in
many wireless systems, such as OFDM receivers. This wideband spectrum sensing
approach can be adopted by a single CR node in a standalone manner or within a
cooperative sensing scheme. Numerical results show that the algorithm derived for
DFT can be also applied as an approximated approachwhenmore accurate frequency
representations, such as multitaper method (MTM) spectrum estimates, are adopted.
Wideband ITC based sensing can be applied in scenarios in which approaches that
require a high level of sparsity of the received signal (such as compressive sensing)
can not be adopted.

1.1 Introduction

In the last ten years opportunistic spectrum radio assess strategies have gained an
increasing interest both in the academia and industries. This fact has been driven
by two aspects: the so called spectrum scarcity problem and the attempt to reach
a more efficient utilization of the spectrum resources. Indeed, in spite of the nomi-
nal absence of available spectrum, measurements of the radio frequency occupation
indicate that large portions of the licensed bands are not used for significant periods
of time [1]. Thus, a more efficient utilization of the spectrum can be reached through
the adoption of flexible devices, able to analyze the surrounding radio environment,
discover unused spectrum resources and use them without interfering higher priority
users, called PUs. These actions describe the essential characteristics of the oppor-
tunistic spectrum access (OSA), where users with a lower priority, named secondary
users (SUs), “adopt dynamic spectrum access (DSA) techniques to exploit spectral
opportunities”1 [3]. The expression “spectral opportunities” can be generally used
to indicate situations in which the SUs have some occasion to transmit. In this work,
as in most of the CR literature, a spectral opportunity indicates the presence of a
portion of spectrum that is temporarily or locally unused. These unoccupied bands
are often referred as spectrum holes or white spaces.2

TheOSA techniques have been studied in particular in the context of CR.Recently
International Telecommunication Union (ITU) defined a CR system as “a radio sys-
tem employing technology that allows the system to obtain knowledge of its oper-
ational and geographical environment, established policies and its internal state;
to dynamically and autonomously adjust its operational parameters and protocols
according to its obtained knowledge in order to achieve predefined objectives; and
to learn from the results obtained” [5]. Thus we can identify three main key charac-
teristics of CR systems [6]:

1 The SUs are unlicensed or light-licensed users; in the former case the expression “opportunistic
unlicensed access” is often used [2].
2 The expression “white space” is mainly used with reference to digital television (DTV) bands. It
is however accepted as a general term [4].
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• capability to obtain knowledge;
• capability to dynamically and autonomously adjust its operational parameters and
protocols;

• capability to learn.

Therefore the first step in CR/OSA systems is to implement strategies to acquire
information from the radio environment in order to identify ongoing licensed trans-
missions and preserve them [7]. The main task of this stage consists in identifying
which channels are available for opportunistic transmissions, that is equivalent to a
PU detection problem. Secondly, it can be useful to acquire some additional infor-
mation, such as some characteristics of the identified signals, interference measure-
ments, etc.. In literature mainly three solutions have been proposed [2]:

• Geolocation databases;
• Beacon signals;
• Spectrum sensing.

The geolocation database solution is based on the consultation by the SU network
of a database that stores the information on the spectral occupancy in the nodes loca-
tions and additional information, such as themaximumpermitted equivalent isotropic
radiated power in each bands. The advantages of this approach are that it is virtually
error free and is not affected by radio channel characteristics. However, it is a quite
expensive solution. Indeed the secondary nodes require to incorporate some local-
ization technique (e.g. GPS) and Internet connection in order to access the database
information. Moreover, additional costs are related to the design, implementation,
maintenance and administration of the database, and the costs for gathering the PU
occupancy information [8].

The beacon based approach consists in the adoption of a beacon signal that is
broadcasted to the secondary nodes providing the PU occupancy information. This
solution has a very high infrastructural cost, also requiring some modifications of
the current licensed systems. However, some CR networks implementations foresee
the adoption of a cognitive pilot channel (CPC) to support cognitive operations such
as spectrum allocation [9]. This dedicated channel could be also adopted to convey
sensing information towards the SU nodes.

Spectrum sensing (SS) is defined by IEEE as “the act of measuring information
indicative of spectrum occupancy” [4]. It consists therefore in the implementation of
an autonomous process of the SUs, that on the basis of the received signals analyze the
spectrum. It offers the advantage of no infrastructural costs nor modifications in the
licensed systems. Moreover, SS makes the SU network completely autonomous and
capable of a reactive behaviour. The SU nodes implementation costs depend on the
algorithms adopted. The main disadvantages of SS are that its behaviour is generally
related to the tradeoff between performance (e.g. detection rate) and observation time
and the fact that it can suffer adverse radio channel characteristics, leading to the
hidden node phenomenon [7, 10].

The choice of the proper technique to be adopted depends on the particular OSA
problem under investigation. In particular, the characteristics of the PUs (such as
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their temporal dynamics, bandwidth and power) are the most important features to
be considered for choosing the proper strategy. Indeed, the adoption of geolocation
database fits particularly with highly predictable PUs such as TV signals, that are
continuous transmissions broadcasted from known locations. In this case, to evaluate
the presence of a TV signal, it could be sufficient, for example, to enquire a database
on a daily basis. SS instead is the most promising solution for unpredictable signals
that transmit from unknown locations such as programme making and special events
(PMSE) signals (like wireless microphones).

The adoption of CR systems is not limited to the licensed spectrum, but they can
also operate in unlicensed bands, in which different networks with the same right
to access the spectrum are present [11]. Here the main objective is the coexistence
of the CR networks that must share the spectrum resources available in an efficient
way. In this context SS plays a fundamental role in supporting high level cognitive
functionalities such as interference management.

1.1.1 Sensing in the TV White Spaces

In the context the TV white spaces, Federal Communications Commission (FCC)
recently decided to remove the requirement that white space devices (WSDs) should
implement SS [12]. This decision came after some studies on the minimum sensi-
tivity required at the secondary nodes to ensure DTV and PMSE signal protection
in the worst propagation conditions. These analyses showed that common sensing
approaches do not guarantee the detection performance required, leaving the imple-
mentation of sensing algorithms as an optional feature [12]. However, this decision
seems to be moved more by the willing to come up with a regulation on WSDs in
a short time, enabling companies to access the white space market, rather than a
definitive mistrust in SS strategies. Indeed, the FCC states that [12]:

Specifically, we are taking the following actions: While we are eliminating the sensing
requirement for TV Bands Devices (TVBDs), we are encouraging continued development
of this capability because we believe it holds promise to further improvements in spectrum
efficiency in the TV spectrum in the future and will be a vital tool for providing opportunistic
access to other spectrum bands.

Then, while eliminating SS as a mandatory function, FCC strongly encourages
research activities to make possible a sensing based WSDs future generation. In
Europe, on the basis of single user sensing algorithms, the European Communica-
tions Committee (ECC) came to the same conclusion also suggesting the potential
benefit in using a combination of sensing and geolocation database to provide ade-
quate protection to digital TV receivers [13, 14]. It is worthy to note that most
advanced sensing techniques have not been considered in the drawing up of these
rules. For instance, it is emblematic the case of the ECC report 159 in which, while
assessing the benefits of cooperative sensing strategies, the conclusions are drawn
considering single node sensing only [14].
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In conclusion, in the next few years we expect the born of the first generation of
WSDs that probablywill be based on geolocation implementation, being the adoption
of SS algorithms not mandatory. In spite of this fact, the research community is
motivated anyway to continue the investigation in new sensing techniques with the
first aim to propose new algorithms with higher detection performances. The most
promising approaches consist in advanced techniques based on cooperation among
SUs and multiple antennas WSDs, that currently has not been deeply analyzed by
regulatory bodies and that deserve more attention in the definition of future rules.
More generally, further efforts in SS research must be motivated by the fact that a
geolocation database based secondary system can adopt OSA strategies, but cannot
be properly considered a cognitive system, due to the lack in autonomy and reactivity
to the environment that characterize the original Mitola’s proposal, and that only SS
can provide. In addition, beyond PU protection, the sensing task has an important
role in supporting higher level cognitive functionalities such as resource allocation
and spectrum efficiency [15, 16].

1.2 Overview of Spectrum Sensing Algorithms

In this section we present an overview of the main algorithms proposed for SS. It
is not simple to provide a unique classification of the sensing techniques, especially
because there are lots of possible approaches andmany algorithms can be included in
more than one class. Here we choose to adopt a classification based on the detectors’
practical requirements, defining the following four groups [17]:

• Fundamental detectors
We include in this class the basic detectors, typically proposed for the observation
of a single band by a single antenna receiver.

• Diversity based sensing
These detectors require some kind of diversity to be implemented, such asmultiple
antennas or oversampling. We include in this class the eigenvalue based detection
algorithms.

• Cooperative sensing3

These algorithms are based on the adoption of multiple CR nodes.
• Wideband sensing
We include in this group algorithms that are suited for the analysis of multiple
bands observations.

3 Note that cooperative sensing schemes could be included in the class of the diversity based
algorithms, because the adoption of several sensing nodes is essentially a technique for exploiting
spatial diversity. However, we separate the class of cooperative algorithms because they have some
peculiar characteristics that are not common to other diversity based techniques, such as the selection
of the fusion strategy to be adopted, presence of error prone reporting channels, unbalances in the
average received power, etc..
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In the following we review the main characteristics of the first three classes, while
wideband techniques are discussed in the next section.

1.2.1 Fundamental Detectors

Since five years ago, most of the papers on CR introduced sensing asserting that
“sensing algorithms can be classified in energy detector, matched filter and cyclosta-
tionarity detector”. These techniques, indeed, are the very basic strategies that can
be adopted in simple sensing problems in presence of single antenna receivers that
operate on a single frequency band.

• Energy based detection
The energy detector (ED) is the most simple and popular algorithm for signal
detection. Its implementation consists in an estimate of the received power fol-
lowed by a comparison with a decision threshold. Theoretically the ED is derived
as the generalized likelihood ratio test (GLRT) for the detection of a determinis-
tic unknown signal in additive white Gaussian noise (AWGN) or as a sufficient
likelihood ratio (LR) statistic when the signal to be detected is described as a zero
mean Gaussian process. Its statistic has been widely studied in literature (see e.g.
[7, 18, 19]) and due to its simplicity of implementation and analysis, is currently
the standard sensing algorithm adopted, for example, in studies on higher level
CR functionalities and by regulatory bodies [13, 20]. Frequency domain EDs have
also been proposed [21]. The main impairment of the ED is the fact that its sta-
tistic depends on the noise power level, which is required for setting the decision
threshold according to the Neyman-Pearson (NP) approach [18]. In practice, noise
uncertainty can cause performance losses due to an inaccurate threshold setting
and in some cases the presence of the so called SNR wall, which is a minimum
SNR level under which it is impossible to rich the desired probability of detection
(PD) and probability of false alarm (PFA) [22, 23]. It has been demonstrated that in
practical systems proper design of the noise power estimator allows to counteract
the noise uncertainty problem [24]. In particular, the conditions for the avoidance
of the SNRwall are related to the statistical properties of the noise power estimator
[25].

• Feature based detection
When some additional knowledge on the signal to be detected is available, it can
be adopted signal detection. In particular, the most common algorithms in this
class are:

– Autocorrelation based detectors
These algorithms can be adopted when the autocorrelation of the signal to be
detected presents some peculiar peaks. The most popular autocorrelation based
algorithms are the cyclic prefix based algorithms for the detection of orthogonal
frequency-division multiplexing (OFDM) signals [26–28].
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– Waveform based detector
If some portions of the primary signal is known, we can build a detector that
exploits this knowledge, usually correlating the known feature with the received
signal sequence. This can be the case, for example, of signalswith known pream-
bles or with some known pilot patterns [29]. The extreme case is the matched
filter (MF) detector, that requires the knowledge of the complete signal sequence.
Even if the MF is often mentioned in SS algorithm surveys, the assumption of
perfect knowledge of the PU sample sequence is unrealistic in practical CR
implementations [26, 28].

– Cyclostationarity based detection
When a signal presents some periodicity in the autocorrelation function, this
corresponds to the presence of some correlation in the frequency domain, called
cyclostationary feature [30]. As for the autocorrelation features in the time
domain, this property can be adopted for detecting PU signals. Many cyclo-
stationary detection algorithms have been proposed in literature, usually based
on the estimation of the cyclic autocorrelation function or the cyclic spectrum
[30–32].

Feature based algorithms are generally used for detecting the presence of specific
PU signals. Being suited for particular communication standards, they are unable
to evaluate the presence of different transmissions. The main impairment of these
tecniques is the susceptibility to synchronization errors and frequency offsets, that
implies the adoption of a synchronization stage [33]. We can consider therefore
the feature based detector architecture as a simplified PU signal receiver chain
that aims at detecting the presence of the PU transmission, without the need of
extracting the information symbols. It is also possible to built general purpose
feature detectors, capable, for example, of identifying any possible autocorrelation
peak or cyclostationary feature. However these algorithms are very expensive from
a computational point of view, time consuming and suffer of synchronization errors
[31, 33].

1.2.2 Diversity Based Sensing

In this section we present some algorithms that can be adopted in presence of some
diversity reception mechanisms. We refer in particular to multiple antennas sys-
tems, that have been widely studied in literature [34]. The same techniques can be
also adopted with oversampled signals. In these situations, from the original sample
sequence we can extract a set of subsequences which number corresponds to the
oversampling factor and use them as they were collected at different antennas [35].
The same algorithms can be also adopted in cooperative sensing systems.4 In all
these cases it is possible to compute the sample covariance matrix (SCM) of the
received samples and derive decision tests based on its functions. These algorithms

4 See footnote 3.
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are generally called “eigenvalue based algorithms”. Alternative approaches are based
on ITC.

• Eigenvalue based detectors
The eigenvalue based algorithms are binary tests in which the decision metric is
a functions of the eigenvalues of the SCM. They have attracted a lot of attention
providing good performance results without requiring the knowledge of the noise
power nor any prior information on the PU signals [36–40]. Considering the most
general scenario, with possible multiple PUs, the GLRT is the so called sphericity
test, well known in statistics literature and recently re-proposed for SS with the
name of arithmetic-geometric mean ratio test (AGM) [36, 40]. Alternatively, in
situations in which we expect to have a single PU, the GLRT is the ratio of maxi-
mum eigenvalue to the trace (MET) [39]. Others metrics have been also proposed,
such as the maximum to minimum eigenvalues ratio (MME) [37], also addressing
the case in which multiple antennas are uncalibrated [40, 41].

• ITC based detectors
A different approach for the detection of PU signals is to estimate the dimension of
the observed sample set. If we receive only noise, the eigenvalues of the covariance
matrix of the observed samples are all equal to the noise power σ 2. Otherwise, if
some signals are present, some of them are greater than σ 2. Estimating the num-
ber of PU signals is thus a model order selection problem, in which the order of
the model is the number of eigenvalues of the covariance matrix, estimated by
the SCM. The selection problem can be solved by means of ITC [38, 42]. If the
estimated model order is greater than zero, it means that at least one PU has been
detected [43]. Mainly Akaike information criterion (AIC) and minimum descrip-
tion length (MDL) have been adopted [43]. This approach allows to implement
detectors that do not need to set a decision threshold. Note that this implies that
we cannot control the tradeoff between false alarm and detection probabilities.

1.2.3 Cooperative Sensing

A very promising solution for improving the sensing performance of the SU net-
works is to exploit cooperation among secondary nodes. In particular, exploiting
the SUs spatial diversity, cooperative strategies can be adopted to counteract channel
effects, such asmultipath and shadowing, that cause the hidden node problem [7, 10].
Cooperative SS has reached an increasing attention in the last few years, and many
different schemes have been proposed. We refer to [44] and the references therein
for an extended overview on cooperative techniques and their principal issues. The
main requirement in cooperative sensing is related to the availability of channels for
signaling among the SUs, that in most of the literature studies consist in fixed control
channels.

Cooperative algorithms can be classified on the basis of how SUs share their
sensing data and in which point of the network the final decision is taken. We have
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mainly two approaches, the centralized and the distributed.5 Mixed strategies can be
also adopted.

• Centralized cooperative sensing
In centralized cooperative strategies the sensing information from all the SUs is
reported to a central identity, called fusion center, that takes the global decision.
This information is then provided to the cognitive manager of the network that
will use it for supporting resource allocation strategies. In some cases the global
decision must be sent back to the SUs by means, e.g., of broadcasting [7, 44].

• Distributed cooperative sensing
Distributed schemes differ from centralized ones for the absence of a specific
fusion center. In this case, indeed, the SUs communicate among themselves and
converge to a unified decision taken by each SU on the basis of a common policy
[44].

• Mixed strategies
Besides the centralized and distributed approaches, some mixed strategies can be
adopted. For example, a relay assisted cooperative scheme can be used in situations
in which some SUs experience a weak report channel and the remainders can be
used for forwarding their sensing results to the fusion center [44]. Another solution
is the clustered sensing scheme, in which cluster-heads act as second level fusion
centers, collecting the sensing results from the SUs within their cluster. Then this
data can be shared among other cluster-heads or can be forwarded to a global
fusion center. An example of cluster based cooperative sensing can be found in
[20].

With respect to the information that is shared among the SUs, cooperative strate-
gies can be divided in hard fusion and soft fusion schemes:

• Hard fusion schemes
When the SUs share their local binary decisions on the presence of PUs, we talk
about hard fusion schemes. Locally the SUs can adopt any of the single node
sensing techniques described previously. These schemes are convenient for the
minimum amount of data that must be exchanged among the secondary nodes.
In this case the fusion strategies are typically linear fusion rules such as AND,
OR, and majority rules. Also Bayesian approaches can be adopted, such as the
Chair-Varshney optimal rule [7].

• Soft fusion schemes
In place of the local binary decisions, the SUs can share a richer information, such
as their likelihood ratios, in order to improve the sensing result. Therefore these
schemes generally require a larger amount of data to be shared, mainly depending
on the metric chosen and its representation. It has been demonstrated that in many
practical situations representing the sensing information with few bits is sufficient
for reaching a detection performance equivalent to the unquantized case [45, 46].
If the amount of data to be exchanged is not a problem, algorithms that imply the

5 Note that in someworks the term“distributed” is used as a synonymof cooperative, and expressions
such as “non-centralized” are adopted.
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transmission of all the SUs’ observations to the fusion center have been proposed.
In this case eigenvalue based algorithms can be adopted also in the cooperative
case [37, 40, 46].

1.3 Wideband Spectrum Sensing: A Review

Most of the SS techniques proposed in literature have been conceived to assess the
presence of transmissions within a single frequency band [7]. A better knowledge
of the surrounding radio environment can be reached exploiting wideband spectrum
sensing, that consists in a joint observation of multiple bands and joint decision on
the occupancy of each sub-band. The aim of wideband SS is to distinguish which
frequency components contain PU signals from which contain only noise.

Wideband spectrum sensing strategies are generally based on the adoption of
some frequency domain representations of the received samples, and thus are related
to spectral analysis techniques. The scope of spectral analysis is to provide a reliable
estimate of the energy distribution in the frequency domain, and therefore it has a
big impact of the environment awareness of the SUs. In CR contexts non parametric
techniques are the more suitable strategies because they do not require any assump-
tions on the received signal.6 Wideband sensing algorithms are generally constituted
by a spectrum estimation stage followed by the adoption of some metric to evaluate
the occupancy of each sub-band. The starting point of these techniques is the classical
non parametric spectrum estimation theory, based on the periodogram and its deriva-
tives, such as theWelch’s method. The most advanced spectrum estimation approach
in this context is the multitaper method [47–49]. If the SUs know the power spectral
density (PSD) profile of the signal to be detected, the optimum detector in low signal-
to-noise ratio (SNR) regimes assumes the structure of an estimator-correlator [50].

The application ofwideband SS is primarily related to hardware front-end require-
ments such as the linearity of analog components and analog-to-digital converters
characteristics [51, 52]. To get around such constraints some wideband techniques
are based on sequential sensing onmultiple bands, frequency sweeping or filter-banks
approaches [53–55]. Strategies to reduce hardware complexity have been proposed
in the context of compressed sensing, which is a special signal processing technique
that can be applied to signals with a sparse representation [56, 57]. In the context of
CR, it can be adopted in particular in situations in which the PU signal occupancy
is sparse in the frequency domain. The main advantage of this technique is that it
allows to analyze a large portion of spectrum without requiring a high sampling rate
[57].

Wideband sensing has been also studied in the context of the so called multiband
joint detection, that is based on the maximisation of the aggregate opportunistic
throughput, a metric that takes into account the trade-off between sensing time and

6 Generally, the unique assumption is that the received signal samples are taken from a stationary
random process.
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transmission time in CR systems [58]. In [59, 60] wideband SS has been formalized
as a generalized likelihood ratio (GLR) detector, assuming the presence of a given
amount of unoccupied spectrum. Alternative wideband approaches are based on ITC,
e.g. in [61], where such tools are proposed in a channelized sub-Nyquist scheme. In
[62] standard ITC have been adopted to detect the presence of occupied sub-bands
using an ED in each sub-band, and a similar approach has been applied to multiband
OFDM in [63].

1.4 Wideband Sensing by Model Order Selection

In this section we formulate wideband SS as a model order selection problem solved
using ITC. Most of the sensing algorithms proposed in literature are based on the
adoption of decision thresholds, which setting is a difficult task in practice due to the
dependence on unknown parameters. In particular, considering energy based tech-
niques, including frequency domain analysis, threshold setting depends on the noise
power level that must be properly estimated in real implementations [25]. The pro-
posed wideband approach is blind instead, since it does not require the knowledge of
the noise power nor any a priori information about the number and the characteristics
of the signals present in the observed frequency band.

The proposed wideband sensing technique is based on N observations of a fre-
quency domain vector xi = (

xi,1 . . . xi,q . . . xi,Nb

)T, where i = 1, . . . , N , and Nb is
the number of frequency components considered. We will refer to the elements of
xi as frequency bins.7 The problem can be formulated considering a very general
approach, in which the vector xi can be any kind of frequency domain representa-
tion. For instance, it can be a PSD estimate, the output of a filter bank, a compressed
sampling reconstruction of the spectrum or, simply, the result of a Nb points DFT.

If PU signals are present in the observed frequency band, we assume that they
occupy k∗ frequency bins, while the remaining Nb − k∗ contain only noise. Our
objective is to identify the occupied k∗ bins. In order to accomplish this goal, we
formulate wideband SS as amodel order selection problem inwhich k∗ is the order of
the model [17]. The proposed algorithm estimates k∗ and also identifies the occupied
bins.

Assuming the radio environment is stationary during the overall sensing period,
we collect the N vectors xi in the observation matrix

Y = (x1| . . . |xi | . . . |xN ) . (1.1)

Let us sort all vectors xi such that the power levels of the frequency bins are now
arranged in decreasing order. We denote with x̃i and Ỹ the ordered vectors and
the corresponding ordered matrix, respectively. Thanks to ordering, once the model
order is estimated, the frequency bins containing PU signals are the first k∗ bins of
the vectors x̃i . Thus, after recovering the order of the model, we identify the bins that

7 This is in accordance to the DFT based scenario studied in the following.
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Fig. 1.1 Block diagram of the proposed wideband SS strategy [17]

frequency

(a)

frequency

(b)

frequency

k

(c)

Fig. 1.2 ITC based wideband sensing process [17]. First a frequency representation vector xi is
collected (a) and it is ordered (b). Using ITC we obtain k̂ that estimates k∗. Thus the bins that
contain signal components are identified as the first k̂ bins of the ordered vector (c). a Frequency
bins vector. b Ordering. c Selection

contain signal components, and, thanks to a reverse ordering operation, we obtain
the occupancy vector, which is a Nb length binary vector in which the q-th element
is one if the q-th bin is declared occupied. This wideband sensing process can be
represented by the block diagram in Fig. 1.1; the first three steps are depicted in detail
in Fig. 1.2. Note that in practical implementations ordering is based on the estimated
received power in each frequency bin.

For solving themodel order selection problem (i.e. estimating k∗) we adopt ITC, a
typical approach used in statistics for choosing the model that better fits data among
a family of possible models [64]. In our problem we have Nb possible models, where
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the k-th corresponds to the case in which we assume that only k ∈ {0, . . . , Nb − 1}
bins are occupied.8

To adopt ITC, we start from the analysis of the log-likelihood of the received
observation matrix, ln f

(
Ỹ|Θ∗), where Θ∗ is the vector that contains the unknown

parameters of the model, which number depends on k∗.9 According to ITC, the best
choice for estimating k∗ is given by

k̂ = argmin
k

{
−2 ln f

(
Ỹ|Θ̂(k)

)
+ P (k)

}
(1.2)

where Θ̂
(k)

is the vector of the estimated parameters in the k-th hypothesis andP(k)

is the ITC penalty term.10 Different choices of the penalty term lead to different
criteria, each one characterized by different performance and complexity. In the next
section we review the most common and simple techniques, adopted throughout this
chapter.

The advantage of using model order selection is that it leads to a blind algorithm
which does not require any a priori knowledge of parameters, such as the noise
power or PU characteristics. In addition, it does not require the setting of thresholds,
avoiding problems such as deriving the exact threshold selection rule. The unique
assumption of the proposed strategy is that at least one frequency bin contains only
noise. This “minimum sparsity requirement” make this method appealing for scenar-
ios in which wideband algorithms that require a high level of sparsity of the received
signal (such as compressive sensing) can not be adopted.

1.4.1 Information Theoretic Criteria

In [65] Akaike first proposed an information theoretic criterion for statistical model
identification based on the observation of N independent, identically distributed
(i.i.d.) samples of the Nb dimensional random variable (r.v.) X, generated by the
“true” distribution f

(
X|Θ∗). The model selection problem consists in identifying

the model that better fits data among a set of possible models

{
f
(

X|Θ(k)
)}

k∈K (1.3)

characterized by the model order k. K is the set of the possible values assumed
by k. Akaike proposed to select the model that minimizes the Kullback-Leibler (K-

8 We will refer to the k-th model also as the k-th hypothesis.
9 Varying the number of occupied frequency bins we have a different set of parameters that describe
the model [64].
10 Using the notation P(k) we emphasize that the penalty depends on k through the vector Θ̂

(k)
.

Note that in general P(k) could also depend on other parameters, e.g. Nb, N and other functions
of the observation.
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L) distance from f
(
X|Θ∗), i.e.

k̂ = argmin
k

E

{

ln
f
(
X|Θ(k)

)

f
(
X|Θ∗)

}

. (1.4)

This criterion is equivalent to minimize the cross entropy

−
∫

f
(
X|Θ∗) ln f

(
X|Θ(k)

)
dX (1.5)

for which a natural estimate, under the k-th hypothesis, is given by the average log
likelihood

1

N

N∑

i=1

ln f
(

xi |Θ̂(k)
)

. (1.6)

Akaike noted that the average log likelihood is a biased estimate of the cross entropy,
and added a penalty term that asymptotically, for large N , compensates the estimation
error. Exploiting the asymptotical chi squared distribution of the log likelihood,
Akaike derived the AIC, in which the penalty term is

PAIC(k) = 2φ(k) (1.7)

where φ(k) is the number of degrees of freedom in the k-th hypothesis. Alternative
ITC can be derived adopting the Bayesian approach, which chooses the model that
maximizes the posterior probability P

{
Θ(k)|X}

[66]. In this context, the most pop-
ular and simple criterion is the Bayesian information criterion (BIC) with penalty
term [66]

PBIC(k) = φ(k) log N . (1.8)

For large enough samples BIC coincides with the MDL criterion, which attempts to
construct amodelwhich permits the shortest description of the data [67]. TheAICand
BIC approaches are themost popular ITC adopted inmany statistical and engineering
problems [38, 42, 62, 68]. Although the AIC metric provides an unbiased estimate
of the K-L divergence, in many situations it tends to overestimate the true order of
the model, even asymptotically [69]. In some cases, consistency can be reached by
properly modelling the penalty term [42, 70]. In particular, when the penalty is in
the form P(k) = φ(k) · c, it can be demonstrated that it is required, for N that
goes to infinity, that c/N → 0 to avoid underestimation and c/ log log N → +∞
to avoid overestimation [71]. Further conditions can be derived in order to solve
specific selection problems [72]. Here we consider three consistent criteria, defined
by the penalty terms
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PCAIC1(k) = φ(k) (log N + 1) (1.9)

PCAIC2(k) = 2φ(k) log N (1.10)

PCAIC3(k) = 3φ(k) log N . (1.11)

Note that CAIC1 has been proposed by [69] and CAIC2 has been adopted in [68].
An alternative criterion based on the large sample distribution of maximum likeli-

hood (ML) estimators is the consistent AICwith Fisher information (CAICF), which
penalty term is [69]

PCAICF(k) = φ(k) (log N + 2) + log
∣∣∣J

(
Θ̂

(k)
)∣∣∣ (1.12)

where J
(
Θ̂

(k)
)
is the estimate of the Fisher information matrix (FIM) of the obser-

vation and |·| is the determinant operator.
Note that the formulation of the ITC as in (1.2) supports the interpretation of these

techniques as extensions of theML principle in the form of penalized likelihood. The
penalty term is introduced as a cost for the increased complexity of themodel, related
to the presence of unknown parameters that must be estimated [65, 73]. Thus ITC
extend theMLapproach in the sense that they take into account both the estimation (of
the unknown parameters) and the decision (among the possible models) processes.
Note that the ML approach performs poorly in model selection problems, always
leading to the choice of the maximum number of parameters considered [66].

1.4.2 DFT Based Wideband Algorithms

In this section we apply the ITC based wideband sensing strategy described in
Sect. 1.4 to the case in which simple DFT is used as spectral representation of the
received signal. We adopt DFT motivated by its simplicity and by the fact that its
implementation can be already available in many systems, such as OFDM receivers.
In particular, we consider two practical situations with uncorrelated and correlated
frequency bins. The first case exploits only the received energy,while the latter jointly
exploits the energy level and spectral correlation to discern PU signals from noise.

At the i-th time instant, the output of the DFT can be expressed as

xi = si + ni (1.13)

where ni represents the AWGN and si is the aggregation of the PUs signals.11 We
assume that the timedomain received sample vector ismodeled as zeromean complex
Gaussian, that is a common assumption in communications literature.12 Thanks to

11 Including the channel effects.
12 This is a proper assumption for many practical problems, such as the case of OFDM signals, that
are widely adopted in recent communication systems.
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the linearity of the DFT operation, xi is a vector of zero mean complex Gaussian r.v.s
with covariance matrix Σx = E

{
xi xi

H
}
. After the collection of N DFT outputs we

order of the vector xi according to the received power in each bin, i.e., according to
the vector

(
ν1, . . . , νq , . . . , νNb

)
, where νq = (1/N )

∑N
i=1

∣∣xi,q
∣∣2. Thus we obtain

a new vector x̃i with power in each frequency bin in descending order. Note that the
vector x̃i is zero mean with covariance matrix Σ x̃ = E

{
x̃i x̃Hi

}
. If the number of

frequency bins containing signals is k, Σ x̃ can be expressed as

Σ x̃ = Σ (k)

⊕
σ 2INb−k (1.14)

whereΣ (k) is a k×k submatrix, Ip is a p× p identitymatrix, σ 2 is the unknown noise
power at each frequency bin, and

⊕
is the direct sum operator [74]. Note in particular

thatΣ (k) = E

{
x̃(k) x̃H(k)

}
, with x̃Ti =

[
x̃T(k),i ñT

(k),i

]
. Then the log-likelihood function

of Ỹ can be expressed as

ln f
(

Ỹ|Θ(k)
)
= − NbN ln π − N ln |Σ (k)| − N (Nb − k) ln σ 2

− N tr {Σ (k)
−1 S(k)} − N

σ 2 tr {N(k)} (1.15)

where S(k) = (1/N )
∑N

i=1 x̃(k),i x̃H(k),i and N(k) = (1/N )
∑N

i=1 ñ(k),i ñH
(k),i .

1.4.2.1 Independent Frequency Bins

In the case in which the frequency bins are independent, Σ (k) is diagonal, and the
log-likelihood reduces to

ln f
(

Ỹ|Θ(k)
)
=− NbN ln π − N

k∑

q=1

ln σ 2
q − N (Nb − k) ln σ 2

− N
k∑

q=1

σ̂ 2
q

σ 2
q

− N

σ 2 tr{N(k)}

where (σ 2
1 , . . . , σ 2

k ) = diag{Σ (k)} and (̂σ 2
1 , . . . , σ̂ 2

k ) = diag{S(k)}. In this case the
parameter vector is given by Θ(k) = (

σ 2
1 , . . . , σ 2

k , σ 2
)
, that can be estimated as

Θ̂
(k) = (

σ̂ 2
1 , . . . , σ̂ 2

k , σ̂ 2
)
, where

σ̂ 2 = tr{N(k)}
(Nb − k)

. (1.16)
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Then, removing the terms that do not depend on k, the log-likelihood can be expressed
as [17]

ln f
(

Ỹ|Θ̂(k)
)

= −N
k∑

q=1

ln σ̂ 2
q − N (Nb − k) ln σ̂ 2. (1.17)

Note that (1.17) corresponds to the result derived in [62]. For the independent fre-
quency components case the number of degrees of freedom corresponds to the length
of Θ(k), i.e. φ(k) = k + 1.

1.4.2.2 Correlated Frequency Bins

In some practical applications, the signals collected present a non negligible spec-
tral correlation (see [75] for some examples). Thus in this section we remove the
assumption that the frequency bins are uncorrelated, and we study the most general
case, assuming no particular structures for the correlation matrix. In this case the
number of degrees of freedom of the model is given by φ(k) = k2 + 1, that accounts
for the k ×k Hermitian matrixΣ (k) and the noise power. Adopting the ML estimates
σ̂ 2 and Σ̂ (k) = (1/N )

∑N
i=1 x̃(k),i x̃H(k),i , and removing the terms that do not depend

on k, from (1.15) we obtain [17, 76]

ln f
(

Ỹ|Θ̂(k)
)

= −N
k∑

q=1

ln α̂q − N (Nb − k) ln σ̂ 2 (1.18)

where α̂q is the q-th eigenvalue of the sample covariance matrix S(k). In this case the

vector of the unknown parameters is given by Θ̂
(k) = (

α̂1, . . . , α̂k, σ̂
2
)
.

1.4.2.3 Performance Metrics

The performance of thewideband approach can be evaluated in terms of probability to
correctly detect k∗, Pk � P

{̂
k = k∗}.13 The probability of incorrect detection can be

evaluated in terms of probability of overestimation, Pover � P
{̂
k > k∗}, and the prob-

ability of underestimation, Punder � P
{̂
k < k∗}. Note that these performancemetrics

are very severemetrics; for example, the cases inwhich k̂ = k∗+1 and k̂ = k∗+10 are
both considered overestimation events, irrespective of the actual distance from k∗.14

13 Numerical simulations show that the difference between Pk and the probability of correctly
identifying the set of occupied frequency bins is very small, which means that when the algorithms
correctly estimate k∗ they generally correctly estimate also the occupied set. See [17] for some
numerical examples.
14 Note that in some practical applications the adoption of algorithms that tend to overestimate k∗
may be used by means of including a protection margin to preserve low SNR PU transmissions.
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For some practical cases we will also analyze the probability of detection related to
the q-th bin, P q

D .

1.5 Cooperative Wideband Spectrum Sensing

The wideband sensing strategy described in the previous section can be also imple-
mented in a cooperative context in which several CR nodes share their occupancy
vectors to reach a global decision. We denote as

d( j) =
(

d( j)
1 , . . . , d( j)

q , . . . , d( j)
Nb

)T
(1.19)

the occupancy vector of the j-th SU.We assume a centralized approach in which a K
out of M rule is applied to assess the presence of PUs in each frequency bin. To focus
on the performance evaluation of the proposed sensing strategies, we assume that an
error free separate reporting channel is used for sending the local CR decisions to
the fusion center (FC). The q-th element of global occupancy vector, dF, is given by

dF
q =

{
1,

∑M
j=1 d( j)

q ≥ K

0,
∑M

j=1 d( j)
q < K .

(1.20)

The choice of the parameter K determines the specific voting rule. Choosing
K = 1 we implement the OR strategy, which in general allows higher probability of
detection. This approach is the most protective toward PUs, but leads to higher false
alarm probabilities. The approach that minimize the number of false alarm events is
the AND rule, that can be obtained with K = M . However, the AND rule allows the
secondary network to declare a band occupied onlywhen all the nodes agree upon the
presence of PUs, and thus it performs poorly in presence of harsh channel conditions.
In order to reach a good trade-off between false alarm and detection probabilities,
intermediate values of K can be chosen, such as K = M/2 that leads to the so called
majority rule, which in some contexts minimize the total error probability [77].

The probability that the q-th each bin is declared occupied is given by

P q,F
D = P

⎧
⎨

⎩

M∑

j=1

d( j)
q ≥ K

⎫
⎬

⎭
=

M∑

h=K

P

⎧
⎨

⎩

M∑

j=1

d( j)
q = h

⎫
⎬

⎭
(1.21)

and can be derived from the single node probabilities of detection P q
D , with q =

1, . . . , Nb, and the distribution of a Poisson binomial r.v..
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1.6 Numerical Results and Discussion

In this section we show some numerical examples to assess the performance of the
proposed wideband sensing technique. We compare the ITC algorithms to simple
energy based approaches in which the estimated received power of each frequency
bin is compared to the decision threshold. We indicate with ED the ideal ED, which
assumes that the noise power is known exactly, and with EDk the estimated noise
power (ENP)-ED described in [25] in which the Nb − k∗ bins with lower received
power are used for estimating the noise power.15 The threshold is set according to
the Neyman-Pearson criterion considering a probability of false alarm PFA = 0.01.

1.6.1 Independent Frequency Bins

In this section we consider the case of independent frequency bins, that is the most
interesting case in practice due to the fact that most of communication signals are
generated by white data sequences, which give spectral uncorrelated transmissions
[78].

In Fig. 1.3 we consider the proposed wideband SS strategy using DFT with Nb =
128, in presence of a single white Gaussian signal, that occupy exactly 64 bins, and
AWGN. The number of DFT outputs considered is N = 1000. We can see that,
increasing the SNR, all the consistent ITC present a step wise behaviour, assessing
the correct detection probability to a fixed value for high SNR. The AIC instead
confirms its non consistent behaviour. The corresponding probabilities of incorrect
estimation are shown in Fig. 1.4. We can see that at high SNR Punder goes to zero and
an incorrect detection always consists in a false alarm event. Note that this property
is very important in CR scenarios, because it implies that ITC never misdetect the
presence of PUs if the SNR is sufficiently high. Considering the EDbased approaches
we can see that they perform quite poorly providing almost 50% of overestimations
for high SNR levels. In Fig. 1.5we perform the same analysis of Fig. 1.3 in a Rayleigh
fading scenario. Here we consider frequency-flat fading on all frequency bins. With
respect to the AWGNcasewe can see that fading has a big impact on the performance
of the wideband algorithms, increasing the SNR value at which they reach a target
probability of correct detection.

From the previous analysis it emerges that CAICF, CAIC2, and CAIC3 are the
ITC algorithms that allows a better sensing performance allowing almost 100%
probabilities of correct detection of the occupied bins set. Compared to simple ED
strategies, the proposed wideband ITC algorithms allow a more accurate identifica-
tion of the occupied bands.

15 For simplicity, here we do not use the exact distribution of the ordered vector. Thus the ENP-ED
approach adopted can be considered as an approximated strategy valid for large samples use cases.
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Fig. 1.3 Probability to estimate the correct number of occupied bins as function of the SNR. The
number of occupied bins is 64, Nb = 128 and N = 1000

1.6.2 Correlated Frequency Bins

In presenceof frequency correlatedobservations thewideband ITCapproachdescribed
in Sect. 1.4.2.2 can be adopted. For simplicity we consider onlyAIC andBIC, and use
the notation AICi, BICi to denote the adoption of the independence based algorithm
and AICc, BICc for the correlated case.

To study the performance of the algorithms we adopt a set of Gaussian samples,
generated as an autoregressive sequence, in which consecutive samples have a corre-
lation coefficient ρ. In Fig. 1.6 we show Pok assuming ρ = 0.8, k∗ = 64, Nb = 128
and N = 1000. Note that in this case the AIC is the algorithm that provides the better
performance, reaching Pok ≈ 1 at around SNR = −3 dB. Further numerical results
assessing the performance of the wideband ITC based technique in the correlated
frequency case are provided in [76].

1.6.3 Multiband Sensing

In this section we analyze a multiband scenario in which three OFDM like signals
are present in the observed band. The PSD of the spectrum of the three signals is
depicted in Fig. 1.7. In the following we indicate withSNR the SNR of the two lower
frequency signals. Note that the higher frequency signal has a SNR drop of −3 dB.
In Fig. 1.8 we show P q

D when the wideband algorithm proposed in Sect. 1.4.2.1 is
adopted. It is interesting to note that for very low SNR, such as SNR = −20 dB,
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Fig. 1.4 Probabilities to overestimate and underestimate the correct number of occupied bins as
function of the SNR. The number of occupied bins is 64, Nb = 128 and N = 1000. a Probability
of overestimation. b Probability of underestimation

the algorithm that performs better is the AIC. In Sect. 1.6.1 we noted that generally
AIC tends to overestimate the number of bins occupied; this property turns to be
an advantage at low SNR levels allowing a better probability to detect the presence
of signals. On the other hand AIC always leads to a non negligible number of false
alarms in unoccupied bins. From Fig. 1.8b we can see that in this case study all ITC
performs well at SNR = −10 dB.

ITC are conceived for being statistical approaches that choose the model that best
approximates data among a family of models. It is interesting therefore to analyze
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Fig. 1.5 Probability to estimate the correct number of occupied bins as function of the SNR in
Rayleigh fading. The number of occupied bins is 64, Nb = 128 and N = 1000
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Fig. 1.6 Probability to estimate the correct number of occupied bins as function of the SNR in
presence of a frequency correlated signal. The number of occupied bins is 64, Nb = 128 and
N = 1000

if these algorithms provide a good detection performance also when the true model
that underlie the generation of the observation is not in the considered model set.
This case has also an important impact on practical situations in which the exact
statistical description of the collected data is not known or it is too complex to apply
ITC in a rigorous way, and thus algorithms derived for simpler models are adopted.
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Fig. 1.7 Squared magnitude of the signals adopted in the multiband scenario normalized to 0 dB

Here we consider the case in which the spectral representation used is a spectrum
estimate derived usingMTMorWelch periodogram, bothwith Nb points in frequency
domain, and we apply the wideband ITC derived for the DFT analysis in Sect. 1.4.2.
This can be considered an approximated strategy in which these spectrum estimates,
that in general are chi squared distributed, are approximated to Gaussian r.v.s16 [79].
In Figs. 1.9 and 1.10 we can see that the MTM and Welch strategies provide a very
good detection performance that outperforms the DFT based approach for low SNR
levels. Thenwe can benefit from better spectrum estimates (DFT has a non negligible
spectral leakage) and apply the wideband approach proposed in Sect. 1.4.2.

1.6.4 Cooperative Wideband Sensing

In Sect. 1.5 we introduced a cooperative sensing strategy that extends single user
wideband SS. Here we apply this cooperative approach to the multi band scenario
described in the previous section. In Fig. 1.11 we compare the single user P q

D with
the corresponding cooperative performance with different choices of K when AIC
is adopted. We consider the presence of M = 6 SUs in the AWGN scenario used
in Fig. 1.8. When K = 1 we implement an OR fusion strategy that provide a very
high probability of detection in the occupied bins, but also a very high number false
alarms.When K = M we implement the AND rule that allows a very low probability
of false alarm, at the expense of a low probability of detection. The performance of
the majority rule, with K = M/2, is more balanced providing a small number of
detection errors in both occupied and unoccupied bins.

16 Note that this approximation is valid when the chi squared distribution has a high number of
degrees of freedom.
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Fig. 1.8 Probability of detection for each frequency bin when the DFT is adopted for the multi
band scenario depicted in Fig. 1.7. Nb = 128 and N = 1000. a SNR = −20 dB. b SNR = −10 dB
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Fig. 1.9 Probability of detection for each frequency bin when a 128 pointsMTM spectrum estimate
is adopted for the multi band scenario depicted in Fig. 1.7. N = 1000. a SNR = −20 dB. b SNR =
−10 dB
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Fig. 1.10 Probability of detection for each frequency bin when a 128 points Welch spectrum
estimate is adopted for the multi band scenario depicted in Fig. 1.7. N = 1000. a SNR = −20 dB.
b SNR = −10dB
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Fig. 1.11 Probability of detection for each frequency bin in a cooperative sensing scheme with six
SUs. The fusion rule adopted is the K out of M hard combining. Nb = 128 and N = 1000

1.7 Conclusions

In this chapter we proposed a wideband spectrum sensing technique based on ITC.
We described a general approach that can be applied to any spectral representation
and then focused on the simpleDFTcase. The proposed technique is completely blind
since it does not require any knowledge about the noise power and characteristics
of the signals present in the observed band. In particular we showed that consistent
ITC can reach an almost one probability to correctly identify the number of occupied
bins, outperforming simpleEDbased approaches.Numerical results revealed that this
wideband approach can be applied both with independent and correlated frequency
components. In particular, the derived DFT based algorithm can be applied as an
approximated approach in situations inwhich the exact distribution of the observation
is unknown or too complex, such as when advanced techniques like MTM spectrum
estimation are adopted. Wideband ITC based sensing can be applied in scenarios in
which approaches that require a high level of sparsity of the received signal (such as
compressive sensing) can not be adopted.
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