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Preface

The aim of this book, the first of two volumes, is to present selected research that
has been undertaken under COST Action IC0902 ‘‘Cognitive Radio and Net-
working for Cooperative Coexistence of Heterogeneous Wireless Networks’’
(http://newyork.ing.uniroma1.it/IC0902/). COST (European Cooperation in Sci-
ence and Technology) is one of the longest-running European frameworks sup-
porting cooperation among scientists and researchers across Europe.

Written by leading researchers from both academia and major industrial
research laboratories, this book will provide electrical, R&D electronic and
communication engineers, as well as researchers, undergraduate, graduate, and
postgraduate students with a unique and comprehensive overview of recent
advances in cognitive radio (CR) and networks.

The book will allow the reader to have access to avant-garde results, in the CR
and cooperative heterogeneous coexistence field, in a thorough and detailed way.

Topics covered by the book include newly developed techniques on spectrum
sensing algorithms for cognitive white-space systems using either single or mul-
tiple antennas, and novel blind free-bands detectors exploiting cyclic autocorre-
lation function sparsity. The reader will also explore learning and optimization
techniques and mechanisms based on biomimetic approaches for Self-Organiza-
tion in Macro–Femtocell Coexistence; these methods are based on the recently
developed ‘‘Docition’’ concept for cognitive networks. The book further includes
extensive discussions regarding issues related to the implementation of the dif-
ferent steps of the cognitive cycle, and, in particular, on reasoning. Application of
such concepts to cognitive networks allows defining a potential architecture for
their integration into current TCP/IP networks. Indeed, using the cognitive para-
digm represents a way toward (i) addressing the multiple timescales of operation
of a network and (ii) gaining additional information on the cause–effect rela-
tionships between network configuration and performance. A very interesting
chapter that describes how cognitive networking can be implemented to support
green network operation, proposing a test case and demonstrating its potential in a
3G cellular context, is also included in the book. A complete description of the
latest groundbreaking field trials is also available to the reader along with the
current and future market requirements and so-called killer applications. Finally, in
the last chapter, main conclusions and recommendations regarding the available
test beds are reported.
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A brief description of each of the chapters is as follows.
Chapter 1, by A. Mariani et al., focuses on ‘‘Recent Advances on Wideband

Spectrum Sensing for Cognitive Radio’’. Spectrum sensing plays a fundamental
role in cognitive radio networks allowing the discovery of spectrum opportunities
and enabling primary user protection. Many spectrum sensing techniques have
been proposed in the literature, from the most popular algorithms such as energy
detection and feature detectors, to most advanced techniques such as eigenvalue-
based strategies and cooperative approaches. Most of these techniques have been
conceived to assess the occupancy of primary users within a single frequency
band. Improved knowledge of the surrounding radio environment can be reached
exploiting wideband spectrum sensing, which consists in a joint observation of
multiple frequency bands and joint detection on the occupancy of each sub-band.
In this chapter, a novel methodology for wideband spectrum sensing based on an
information theoretic approach is provided. This technique does not require the
setting of a decision threshold, which is a problem for many spectrum sensing
algorithms due to the dependence on unknown parameters or difficulties in the
statistical description of the decision metrics. A general formulation of the prob-
lem is also provided in this chapter, which is valid for any kind of spectral
representation, and then specifies the analysis for the case in which simple DFT is
used. Performance analysis is provided to the reader and is based both on
numerical simulations and laboratory tests using SDR implementation.

Complexity of spectrum activity, and its effect on opportunistic access, is the
topic addressed by I. Macaluso et. al., in Chap. 2. The authors analyse the rela-
tionship between the number of observed channels, the duty cycle (DC), the
complexity of each channel activity, and the performance of a learning-enhanced
technique for opportunistic spectrum access. The findings show that the probability
of finding a free channel among a group of observed ones strongly depends on the
DC and the complexity of the channel activity. Moreover, it is shown that if a
cognitive radio is able to select the channels with best characteristics, reducing the
number of observed channels has little effect on the performance of the learning
algorithm. Hence, a pre-processing phase that a cognitive radio can use to focus on
a subset of channels is introduced, which results in a more effective spectrum
exploitation. In particular, the authors show that a cognitive radio system can use
the DC and the Lempel–Ziv complexity to characterize spectrum usage and select
a subset of channels yielding to best performance of the learning technique. The
reader will notice that the introduction of the pre-processing stage, which is akin to
the orientation phase of the cognitive cycle reduces the number of observed
channels, thus, impacting the amount of resources devoted to the sensing stage.

Chapter 3, by S. Dikmese et al., explores the effect of deviating from the
simplistic signal model commonly utilized in modelling energy detection in
spectrum sensing. The first part of the chapter briefly introduces basic energy
detection models, as well as the concept of wideband, multi-mode spectrum
sensing using Fast Fourier Transform (FFT) and analysis filter bank for spectrum
analysis. The second part of the chapter examines the effects of various forms of
frequency dependency in energy detection. First, the effect of a non-ideal
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frequency response of the sensing receiver is analyzed and related modifications to
optimize energy detection performance are developed. Second, the effects of
various forms of frequency dependency in energy detection are analyzed. Next, the
authors address the case where the sensing window in the time-frequency plane
includes both zones where the PU signal is present and zones where it is absent,
leading to mixed decision statistics. The case of non-flat primary user spectrum is
addressed in the last part of this chapter, and includes the effect of non-flat
transmitted spectra and channel frequency selectivity.

Chapter 4, by D. Riviello et al., focuses on spectrum sensing algorithms and
techniques for secondary users operating in digital TV white-spaces. Here, the
primary signal conforms to the ETSI DVB-T or DVB-T2 standard, and consists in
a continuous sequence of OFDM symbols. Since no further assumptions are made
on primary signal characteristics, results obtained for DVB-T(2) can be straight-
forwardly extended to any standard using OFDM modulation. Note that both
single-antenna and multi-antenna techniques are considered in this chapter; per-
formance is assessed and compared against simple sensing techniques such as
energy detection.

Z. Khalaf and J. Palicot propose in Chap. 5 a new blind free-band detector
exploiting the cyclic autocorrelation function (CAF) sparsity. They first show that
the CAF of a linearly modulated signal is a sparse function in the cyclic frequency
domain. Using this property, the authors propose a new CAF estimator that uses
compressed sensing with Orthogonal Matching Pursuit (OMP). This new proposed
estimator outperforms classic estimators operating under similar conditions. Several
cases are analysed with and without using filtering at the transmission and reception
sides. The impact of a propagation channel is also considered in the analysis. Using
this new CAF estimator, in the second part of this chapter, the performance of two
blind free-bands detectors are analysed and compared. The first is a soft version of
the proposed CAF, where it is assumed that two estimated CAF of two successive
packets of samples have close cyclic frequencies. The second estimator uses the
symmetry property of the Second Order Cyclic Autocorrelation.

Chapter 6, by A. Georgakopoulos et al., addresses novel concepts on inter-
system coexistence and cooperation through cognitive control channels. Cognitive
management systems have been proposed as an extension of the ETSI/RRS
functional architecture in order to enable the coordination of the network elements
with the operators infrastructure. In the functional architecture, two management
systems are presented, namely: (i) the Cognitive Management System for the
Coordination of the Infrastructure (CSCI), which is responsible for the detection of
situations where an Opportunistic Network (ON) would be useful (prior to the
formation of the ON) and (ii) the Cognitive System for the Management of the
Opportunistic Network (CMON), which is responsible for the creation, mainte-
nance and termination of a given ON based on the context and policy information
provided by the CSCI. Both systems are separate functional blocks of the func-
tional architecture and interact with other components via pre-specified interfaces.
For the cooperation of CSCIs and CMONs, specific mechanisms need to be
defined in order to increase the accuracy of obtained knowledge on the context of
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the operational environment. Therefore, this chapter focuses on the definition of
required interfaces that are introduced in order to enable communication between
the cognitive management systems and also to the related groups of information
that is needed to be conveyed between these systems in order to ensure proper
interaction. Furthermore, high-level evaluation of the load associated with the
aforementioned groups of information is provided based on analytical models.

Chapter 7, by S. Nallgonda et al., covers cooperative spectrum sensing with
censoring of cognitive radios, focusing on the case of Rayleigh fading under
majority logic fusion. The chapter starts on a comparative analysis of the per-
formance of cooperative spectrum sensing (CSS) under different hard decision
fusion rules such as AND logic, OR logic and Majority logic. Also soft infor-
mation fusion such as maximal ratio combining (MRC)-based fusion is considered,
if the sensing channel is subject to fading and shadowing, including Rayleigh/
Rician fading and Lognormal shadowing. The impact of fading and shadowing on
the performance of CSS is analyzed in terms of missed detection, false detection
and total error probabilities. Complementary receiver operating characteristics
(RoC) are also discussed under several scenarios of fading and data fusion. The
second part of the chapter focuses on the performance of a CSS scheme with
censoring of CRs, based on the quality of the radio link in the R-channel. In this
chapter, two censoring schemes are investigated: (i) rank-based, where a subset of
SUs, associated with best estimated channel coefficients, are selected out of all
available SUs and (ii) threshold-based, where an SU is selected if its R-channel
amplitude is above some pre-selected threshold level. The performance of these
two censoring-based CSS schemes is studied in the presence of Rayleigh and
Nakagami-m fading in the R-channels, considering majority logic or MRC fusion
rules at FC. Note that the studies presented in this chapter are useful in designing
energy-constrained cognitive radio networks.

Chapter 8, by M.-G. Di Benedetto et al., focuses on the medium access control
(MAC) for distributed cognitive ultra wide band (UWB) networks. It is claimed
that the MAC should be specifically conceived around the impulsive character-
istics of the UWB radio signal, and as such foresee and eventually optimize
strategies for power sharing and management. MAC functions that can benefit
from specific UWB features are discussed, and sensing in the presence of potential
narrowband coexisting networks is analyzed. Interference models for impulsive
communication systems are also taken into consideration and reviewed, with the
aim of defining packet error rate. In particular, the pulse collision model is
compared against traditional interference models based on the standard Gaussian
approximation. Performance evaluation using the proposed models incorporate
theoretical and simulation analyses of MAC properties that are peculiar to
impulsive communications.

The notion of Radio Environmental Maps (REMs) has become very prominent
in the cognitive radio and dynamic spectrum access field. REMs can be seen as
databases or knowledge bases storing different kinds of radio environmental
information, such as locations of transmitters and receivers, models of the prop-
agation environment and various spatial/temporal spectrum usage measurements.

viii Preface

http://dx.doi.org/10.1007/978-3-319-01402-9_7
http://dx.doi.org/10.1007/978-3-319-01402-9_8


L. Gavrilovska et al., address this topic in Chap. 9. An extended study on the
‘‘Integration of Heterogeneous Spectrum Sensing Devices Towards Accurate REM
Construction’’ is reported. The reader is introduced to a recently developed generic
REM construction architecture capable of integrating heterogeneous spectrum
sensing devices by combining the spectrum sensing and the database approach for
accurate radio environmental mapping with a specific focus on the device cali-
bration procedure as a quintessential part of the integration process. Theoretical
and practical aspects related to the realization of a REM prototype are discussed,
as well as on-the-field experimental results obtained with different hardware.

Chapter 10, by A. Galindo-Serrano et al., further addresses the Radio Envi-
ronment Map topic. The main issue here is to introduce an automatic and remote
self-optimization process based on geo-location information exploitation for cel-
lular coverage optimization. Specifically, the REM is used for cellular network
coverage hole detection purposes. This coverage hole detection approach drasti-
cally reduces the required drive tests and enhances the network with self-
responsive capabilities to handle key obstacles toward cellular networks auton-
omy. In this chapter, the REM is handled in a more general Cognitive Radio (CR)
context than TV white-spaces, and it is considered as a mean to represent spatio-
temporal characteristics of the radio environment by using concepts and tools from
spatial statistics, like point processes, spatial random fields, pair correlation
functions, point interaction models, spatial interpolation techniques, etc. Coverage
may in fact be the most important and highest-priority target for cellular operators.

Chapter 11, by A. Imran and L. Giupponi, presents the use of several bio
inspired approaches, called biomimetics, for the design of Self-Organization (SO)
in heterogeneous network scenarios, and in particular the use of learning, game
theory and optimization as Biomimetic approaches for SO in Macro–Femtocell
Coexistence. Mainly, these approaches are further categorized in indirect and
direct biomimetics. Under the concept of indirect biomimetics, the authors discuss
in detail the emerging paradigms in learning theory that have been recently shown
to have strong potential for designing SO solutions in heterogeneous networks
such as Start-up Docition, IQ-Driven Docition, Performance-Driven Docition and
Perfect Docition. The authors further investigate a rather under explored paradigm
of direct biomimetic. Building on case studies of self-organizing systems in nature,
the authors extracte the generic SO design principles, that can be used as a direct
biomimetic approach for designing distributed, scalable and agile solutions, to
many problems in complex heterogamous networks.

Chapter 12, by H. Bogucka and M. Parzy, focuses on a practical perspective of
cooperation and competition for spectrum sharing in cognitive radio networks. In
this chapter, practical issues of cooperation among cognitive radio nodes com-
peting for available resources in decentralized network are considered. It is pon-
dered how the theory of competition and cooperation (game theory) meet the
practice, by discussing the quantitative metrics of the cost of avoiding cooperation
(the Price of Anarchy—PoA), of having limited knowledge of the competitors (the
Price of Ignorance—PoI), and of limited time for learning the network environ-
ment (the Price of Impatience—PoIm) in dynamically changing radio channels.
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This chapter provides the description of practical approaches to spectrum sharing
and allocation, which make use of limited, i.e., intentionally reduced information,
that the CR nodes have to exchange.

Chapter 13, by L. Abarca et al., consists in a synopsis on security threats in
cognitive radio networks (CRNs), specially focusing on the Primary User Emu-
lation (PUE) attack. The chapter includes details on how the location of a trans-
mission source can be a valuable tool to detect PUE attacks, whenever the position
of true primary transmitters is known, as it is the case for TV towers in IEEE
802.22 networks. Due to its wireless nature, CRNs inherit most of the threats
already reported in the literature in the context of wireless networks. However, the
flexibility and reconfigurability capabilities of these networks not only may make
conventional attacks easier but also expose them to new risks. In the first part of
this chapter, the reader has an outline on main threats to cognitive radio networks,
providing a classification of the current threats and detailing the new specific
security challenges. The second part describes the behaviour of the PUE attack,
with its different implementations and variants. The third part describes a novel
method able to detect PUE attacks, based on a cooperative location technique.

Chapter 14, by F. Granelli et al., addresses ‘‘Cognition as a Tool for Green Next
Generation Networks’’, with a focus on reasoning. Network performance is a
multifaceted concept, including simple measures such as throughput as well as
user-level QoS, and a recently added parameter to the equation, i.e., the power
consumption. The need for identifying suitable methodologies to optimize per-
formance from the above viewpoints, including energy saving, is driving interest
of research toward the emergence of the ‘‘green networks’’. Green networking
represents an appropriate scenario where cognition and adaptation are required.
How cognitive networking can be implemented to support green network opera-
tion is discussed in this chapter, also based on a test case that demonstrates its
potentials in 3G cellular contexts.

Chapter 15, by K. Katzis et al., addresses the topic of no less importance
‘‘Testbeds and Implementation Issues’’. Efficient design of CR engines requires the
capability of experimentally verify the proposed solutions, and the identification of
engine components and of corresponding implementation choices is a fundamental
step toward this direction. Within this context, this chapter aims at presenting
testbeds and related implementation issues, including CR engine architecture
regarding its software and hardware components and available technologies,
available platforms and finally implementation issues of CR engines related to
standardization.

We would like to express our sincere thanks to all the contributors for their
contribution and enthusiasm in participating to the creation of this book. The
encouragement and technical support provided by Springer have been crucial to
the realization of this book project. The support of COST throughout the IC0902
Action is gratefully acknowledged.
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We hope that the book will provide the reader with comprehensive treatises of
salient aspects in the field of ‘‘Cognitive Communications and Cooperative HetNet
Coexistence’’. We also hope that the book will motivate the research community,
especially in young researchers, toward solving the several issues that are left open
for future research.

Sapienza University of Rome, Italy Maria-Gabriella Di Benedetto
SUPELEC, France Faouzi Bader
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Chapter 1
Recent Advances on Wideband Spectrum
Sensing for Cognitive Radio

Andrea Mariani, Andrea Giorgetti and Marco Chiani

Abstract Spectrum sensing plays a fundamental role in cognitive radio (CR)
networks allowing to discover spectrum opportunities and enabling primary user
(PU) protection. However, it represents also one of its most challenging aspects due
to the requirement of performing radio environment analysis in a short observation
time and the fact that its performance can be strongly affected by harsh channel
conditions and lack of knowledge about the PU characteristics. In literature, many
techniques have been proposed, starting from the most popular algorithms, such as
energy detection, to the most advanced, such as, e.g., eigenvalue based detection
and cooperative approaches. Most of these techniques have been conceived to assess
the occupancy of PUs within a single frequency band. A better knowledge of the
surrounding radio environment can be reached exploiting wideband spectrum sens-
ing, that consists in a joint observation of multiple bands and joint detection on the
occupancy of each sub-band. Recently, different wideband approaches have been pro-
posed, mainly derived from advanced spectral analysis techniques such as multitaper
methods and compressive sensing. In this chapter, we propose a novel methodology
for wideband spectrum sensing based on the computation of a frequency domain
representation of the received samples and the use of information theoretic criteria
(ITC) to identify which frequency components contain PU signals. This technique
does not require the setting of a decision threshold, a problem for many spectrum
sensing algorithms due to dependence on unknown parameters or difficulties in the
statistical description of the decision metrics. We provide a general formulation of
the problem, valid for any kind of spectral representation and then focus on the case
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2 A. Mariani et al.

in which discrete Fourier transform (DFT) is used. This choice is motivated by the
simplicity of implementation and the fact that DFT blocks are already available in
many wireless systems, such as OFDM receivers. This wideband spectrum sensing
approach can be adopted by a single CR node in a standalone manner or within a
cooperative sensing scheme. Numerical results show that the algorithm derived for
DFT can be also applied as an approximated approach when more accurate frequency
representations, such as multitaper method (MTM) spectrum estimates, are adopted.
Wideband ITC based sensing can be applied in scenarios in which approaches that
require a high level of sparsity of the received signal (such as compressive sensing)
can not be adopted.

1.1 Introduction

In the last ten years opportunistic spectrum radio assess strategies have gained an
increasing interest both in the academia and industries. This fact has been driven
by two aspects: the so called spectrum scarcity problem and the attempt to reach
a more efficient utilization of the spectrum resources. Indeed, in spite of the nomi-
nal absence of available spectrum, measurements of the radio frequency occupation
indicate that large portions of the licensed bands are not used for significant periods
of time [1]. Thus, a more efficient utilization of the spectrum can be reached through
the adoption of flexible devices, able to analyze the surrounding radio environment,
discover unused spectrum resources and use them without interfering higher priority
users, called PUs. These actions describe the essential characteristics of the oppor-
tunistic spectrum access (OSA), where users with a lower priority, named secondary
users (SUs), “adopt dynamic spectrum access (DSA) techniques to exploit spectral
opportunities”1 [3]. The expression “spectral opportunities” can be generally used
to indicate situations in which the SUs have some occasion to transmit. In this work,
as in most of the CR literature, a spectral opportunity indicates the presence of a
portion of spectrum that is temporarily or locally unused. These unoccupied bands
are often referred as spectrum holes or white spaces.2

The OSA techniques have been studied in particular in the context of CR. Recently
International Telecommunication Union (ITU) defined a CR system as “a radio sys-
tem employing technology that allows the system to obtain knowledge of its oper-
ational and geographical environment, established policies and its internal state;
to dynamically and autonomously adjust its operational parameters and protocols
according to its obtained knowledge in order to achieve predefined objectives; and
to learn from the results obtained” [5]. Thus we can identify three main key charac-
teristics of CR systems [6]:

1 The SUs are unlicensed or light-licensed users; in the former case the expression “opportunistic
unlicensed access” is often used [2].
2 The expression “white space” is mainly used with reference to digital television (DTV) bands. It
is however accepted as a general term [4].
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• capability to obtain knowledge;
• capability to dynamically and autonomously adjust its operational parameters and

protocols;
• capability to learn.

Therefore the first step in CR/OSA systems is to implement strategies to acquire
information from the radio environment in order to identify ongoing licensed trans-
missions and preserve them [7]. The main task of this stage consists in identifying
which channels are available for opportunistic transmissions, that is equivalent to a
PU detection problem. Secondly, it can be useful to acquire some additional infor-
mation, such as some characteristics of the identified signals, interference measure-
ments, etc.. In literature mainly three solutions have been proposed [2]:

• Geolocation databases;
• Beacon signals;
• Spectrum sensing.

The geolocation database solution is based on the consultation by the SU network
of a database that stores the information on the spectral occupancy in the nodes loca-
tions and additional information, such as the maximum permitted equivalent isotropic
radiated power in each bands. The advantages of this approach are that it is virtually
error free and is not affected by radio channel characteristics. However, it is a quite
expensive solution. Indeed the secondary nodes require to incorporate some local-
ization technique (e.g. GPS) and Internet connection in order to access the database
information. Moreover, additional costs are related to the design, implementation,
maintenance and administration of the database, and the costs for gathering the PU
occupancy information [8].

The beacon based approach consists in the adoption of a beacon signal that is
broadcasted to the secondary nodes providing the PU occupancy information. This
solution has a very high infrastructural cost, also requiring some modifications of
the current licensed systems. However, some CR networks implementations foresee
the adoption of a cognitive pilot channel (CPC) to support cognitive operations such
as spectrum allocation [9]. This dedicated channel could be also adopted to convey
sensing information towards the SU nodes.

Spectrum sensing (SS) is defined by IEEE as “the act of measuring information
indicative of spectrum occupancy” [4]. It consists therefore in the implementation of
an autonomous process of the SUs, that on the basis of the received signals analyze the
spectrum. It offers the advantage of no infrastructural costs nor modifications in the
licensed systems. Moreover, SS makes the SU network completely autonomous and
capable of a reactive behaviour. The SU nodes implementation costs depend on the
algorithms adopted. The main disadvantages of SS are that its behaviour is generally
related to the tradeoff between performance (e.g. detection rate) and observation time
and the fact that it can suffer adverse radio channel characteristics, leading to the
hidden node phenomenon [7, 10].

The choice of the proper technique to be adopted depends on the particular OSA
problem under investigation. In particular, the characteristics of the PUs (such as
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their temporal dynamics, bandwidth and power) are the most important features to
be considered for choosing the proper strategy. Indeed, the adoption of geolocation
database fits particularly with highly predictable PUs such as TV signals, that are
continuous transmissions broadcasted from known locations. In this case, to evaluate
the presence of a TV signal, it could be sufficient, for example, to enquire a database
on a daily basis. SS instead is the most promising solution for unpredictable signals
that transmit from unknown locations such as programme making and special events
(PMSE) signals (like wireless microphones).

The adoption of CR systems is not limited to the licensed spectrum, but they can
also operate in unlicensed bands, in which different networks with the same right
to access the spectrum are present [11]. Here the main objective is the coexistence
of the CR networks that must share the spectrum resources available in an efficient
way. In this context SS plays a fundamental role in supporting high level cognitive
functionalities such as interference management.

1.1.1 Sensing in the TV White Spaces

In the context the TV white spaces, Federal Communications Commission (FCC)
recently decided to remove the requirement that white space devices (WSDs) should
implement SS [12]. This decision came after some studies on the minimum sensi-
tivity required at the secondary nodes to ensure DTV and PMSE signal protection
in the worst propagation conditions. These analyses showed that common sensing
approaches do not guarantee the detection performance required, leaving the imple-
mentation of sensing algorithms as an optional feature [12]. However, this decision
seems to be moved more by the willing to come up with a regulation on WSDs in
a short time, enabling companies to access the white space market, rather than a
definitive mistrust in SS strategies. Indeed, the FCC states that [12]:

Specifically, we are taking the following actions: While we are eliminating the sensing
requirement for TV Bands Devices (TVBDs), we are encouraging continued development
of this capability because we believe it holds promise to further improvements in spectrum
efficiency in the TV spectrum in the future and will be a vital tool for providing opportunistic
access to other spectrum bands.

Then, while eliminating SS as a mandatory function, FCC strongly encourages
research activities to make possible a sensing based WSDs future generation. In
Europe, on the basis of single user sensing algorithms, the European Communica-
tions Committee (ECC) came to the same conclusion also suggesting the potential
benefit in using a combination of sensing and geolocation database to provide ade-
quate protection to digital TV receivers [13, 14]. It is worthy to note that most
advanced sensing techniques have not been considered in the drawing up of these
rules. For instance, it is emblematic the case of the ECC report 159 in which, while
assessing the benefits of cooperative sensing strategies, the conclusions are drawn
considering single node sensing only [14].
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In conclusion, in the next few years we expect the born of the first generation of
WSDs that probably will be based on geolocation implementation, being the adoption
of SS algorithms not mandatory. In spite of this fact, the research community is
motivated anyway to continue the investigation in new sensing techniques with the
first aim to propose new algorithms with higher detection performances. The most
promising approaches consist in advanced techniques based on cooperation among
SUs and multiple antennas WSDs, that currently has not been deeply analyzed by
regulatory bodies and that deserve more attention in the definition of future rules.
More generally, further efforts in SS research must be motivated by the fact that a
geolocation database based secondary system can adopt OSA strategies, but cannot
be properly considered a cognitive system, due to the lack in autonomy and reactivity
to the environment that characterize the original Mitola’s proposal, and that only SS
can provide. In addition, beyond PU protection, the sensing task has an important
role in supporting higher level cognitive functionalities such as resource allocation
and spectrum efficiency [15, 16].

1.2 Overview of Spectrum Sensing Algorithms

In this section we present an overview of the main algorithms proposed for SS. It
is not simple to provide a unique classification of the sensing techniques, especially
because there are lots of possible approaches and many algorithms can be included in
more than one class. Here we choose to adopt a classification based on the detectors’
practical requirements, defining the following four groups [17]:

• Fundamental detectors
We include in this class the basic detectors, typically proposed for the observation
of a single band by a single antenna receiver.

• Diversity based sensing
These detectors require some kind of diversity to be implemented, such as multiple
antennas or oversampling. We include in this class the eigenvalue based detection
algorithms.

• Cooperative sensing3

These algorithms are based on the adoption of multiple CR nodes.
• Wideband sensing

We include in this group algorithms that are suited for the analysis of multiple
bands observations.

3 Note that cooperative sensing schemes could be included in the class of the diversity based
algorithms, because the adoption of several sensing nodes is essentially a technique for exploiting
spatial diversity. However, we separate the class of cooperative algorithms because they have some
peculiar characteristics that are not common to other diversity based techniques, such as the selection
of the fusion strategy to be adopted, presence of error prone reporting channels, unbalances in the
average received power, etc..
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In the following we review the main characteristics of the first three classes, while
wideband techniques are discussed in the next section.

1.2.1 Fundamental Detectors

Since five years ago, most of the papers on CR introduced sensing asserting that
“sensing algorithms can be classified in energy detector, matched filter and cyclosta-
tionarity detector”. These techniques, indeed, are the very basic strategies that can
be adopted in simple sensing problems in presence of single antenna receivers that
operate on a single frequency band.

• Energy based detection
The energy detector (ED) is the most simple and popular algorithm for signal
detection. Its implementation consists in an estimate of the received power fol-
lowed by a comparison with a decision threshold. Theoretically the ED is derived
as the generalized likelihood ratio test (GLRT) for the detection of a determinis-
tic unknown signal in additive white Gaussian noise (AWGN) or as a sufficient
likelihood ratio (LR) statistic when the signal to be detected is described as a zero
mean Gaussian process. Its statistic has been widely studied in literature (see e.g.
[7, 18, 19]) and due to its simplicity of implementation and analysis, is currently
the standard sensing algorithm adopted, for example, in studies on higher level
CR functionalities and by regulatory bodies [13, 20]. Frequency domain EDs have
also been proposed [21]. The main impairment of the ED is the fact that its sta-
tistic depends on the noise power level, which is required for setting the decision
threshold according to the Neyman-Pearson (NP) approach [18]. In practice, noise
uncertainty can cause performance losses due to an inaccurate threshold setting
and in some cases the presence of the so called SNR wall, which is a minimum
SNR level under which it is impossible to rich the desired probability of detection
(PD) and probability of false alarm (PFA) [22, 23]. It has been demonstrated that in
practical systems proper design of the noise power estimator allows to counteract
the noise uncertainty problem [24]. In particular, the conditions for the avoidance
of the SNR wall are related to the statistical properties of the noise power estimator
[25].

• Feature based detection
When some additional knowledge on the signal to be detected is available, it can
be adopted signal detection. In particular, the most common algorithms in this
class are:

– Autocorrelation based detectors
These algorithms can be adopted when the autocorrelation of the signal to be
detected presents some peculiar peaks. The most popular autocorrelation based
algorithms are the cyclic prefix based algorithms for the detection of orthogonal
frequency-division multiplexing (OFDM) signals [26–28].
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– Waveform based detector
If some portions of the primary signal is known, we can build a detector that
exploits this knowledge, usually correlating the known feature with the received
signal sequence. This can be the case, for example, of signals with known pream-
bles or with some known pilot patterns [29]. The extreme case is the matched
filter (MF) detector, that requires the knowledge of the complete signal sequence.
Even if the MF is often mentioned in SS algorithm surveys, the assumption of
perfect knowledge of the PU sample sequence is unrealistic in practical CR
implementations [26, 28].

– Cyclostationarity based detection
When a signal presents some periodicity in the autocorrelation function, this
corresponds to the presence of some correlation in the frequency domain, called
cyclostationary feature [30]. As for the autocorrelation features in the time
domain, this property can be adopted for detecting PU signals. Many cyclo-
stationary detection algorithms have been proposed in literature, usually based
on the estimation of the cyclic autocorrelation function or the cyclic spectrum
[30–32].

Feature based algorithms are generally used for detecting the presence of specific
PU signals. Being suited for particular communication standards, they are unable
to evaluate the presence of different transmissions. The main impairment of these
tecniques is the susceptibility to synchronization errors and frequency offsets, that
implies the adoption of a synchronization stage [33]. We can consider therefore
the feature based detector architecture as a simplified PU signal receiver chain
that aims at detecting the presence of the PU transmission, without the need of
extracting the information symbols. It is also possible to built general purpose
feature detectors, capable, for example, of identifying any possible autocorrelation
peak or cyclostationary feature. However these algorithms are very expensive from
a computational point of view, time consuming and suffer of synchronization errors
[31, 33].

1.2.2 Diversity Based Sensing

In this section we present some algorithms that can be adopted in presence of some
diversity reception mechanisms. We refer in particular to multiple antennas sys-
tems, that have been widely studied in literature [34]. The same techniques can be
also adopted with oversampled signals. In these situations, from the original sample
sequence we can extract a set of subsequences which number corresponds to the
oversampling factor and use them as they were collected at different antennas [35].
The same algorithms can be also adopted in cooperative sensing systems.4 In all
these cases it is possible to compute the sample covariance matrix (SCM) of the
received samples and derive decision tests based on its functions. These algorithms

4 See footnote 3.
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are generally called “eigenvalue based algorithms”. Alternative approaches are based
on ITC.

• Eigenvalue based detectors
The eigenvalue based algorithms are binary tests in which the decision metric is
a functions of the eigenvalues of the SCM. They have attracted a lot of attention
providing good performance results without requiring the knowledge of the noise
power nor any prior information on the PU signals [36–40]. Considering the most
general scenario, with possible multiple PUs, the GLRT is the so called sphericity
test, well known in statistics literature and recently re-proposed for SS with the
name of arithmetic-geometric mean ratio test (AGM) [36, 40]. Alternatively, in
situations in which we expect to have a single PU, the GLRT is the ratio of maxi-
mum eigenvalue to the trace (MET) [39]. Others metrics have been also proposed,
such as the maximum to minimum eigenvalues ratio (MME) [37], also addressing
the case in which multiple antennas are uncalibrated [40, 41].

• ITC based detectors
A different approach for the detection of PU signals is to estimate the dimension of
the observed sample set. If we receive only noise, the eigenvalues of the covariance
matrix of the observed samples are all equal to the noise power σ 2. Otherwise, if
some signals are present, some of them are greater than σ 2. Estimating the num-
ber of PU signals is thus a model order selection problem, in which the order of
the model is the number of eigenvalues of the covariance matrix, estimated by
the SCM. The selection problem can be solved by means of ITC [38, 42]. If the
estimated model order is greater than zero, it means that at least one PU has been
detected [43]. Mainly Akaike information criterion (AIC) and minimum descrip-
tion length (MDL) have been adopted [43]. This approach allows to implement
detectors that do not need to set a decision threshold. Note that this implies that
we cannot control the tradeoff between false alarm and detection probabilities.

1.2.3 Cooperative Sensing

A very promising solution for improving the sensing performance of the SU net-
works is to exploit cooperation among secondary nodes. In particular, exploiting
the SUs spatial diversity, cooperative strategies can be adopted to counteract channel
effects, such as multipath and shadowing, that cause the hidden node problem [7, 10].
Cooperative SS has reached an increasing attention in the last few years, and many
different schemes have been proposed. We refer to [44] and the references therein
for an extended overview on cooperative techniques and their principal issues. The
main requirement in cooperative sensing is related to the availability of channels for
signaling among the SUs, that in most of the literature studies consist in fixed control
channels.

Cooperative algorithms can be classified on the basis of how SUs share their
sensing data and in which point of the network the final decision is taken. We have
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mainly two approaches, the centralized and the distributed.5 Mixed strategies can be
also adopted.

• Centralized cooperative sensing
In centralized cooperative strategies the sensing information from all the SUs is
reported to a central identity, called fusion center, that takes the global decision.
This information is then provided to the cognitive manager of the network that
will use it for supporting resource allocation strategies. In some cases the global
decision must be sent back to the SUs by means, e.g., of broadcasting [7, 44].

• Distributed cooperative sensing
Distributed schemes differ from centralized ones for the absence of a specific
fusion center. In this case, indeed, the SUs communicate among themselves and
converge to a unified decision taken by each SU on the basis of a common policy
[44].

• Mixed strategies
Besides the centralized and distributed approaches, some mixed strategies can be
adopted. For example, a relay assisted cooperative scheme can be used in situations
in which some SUs experience a weak report channel and the remainders can be
used for forwarding their sensing results to the fusion center [44]. Another solution
is the clustered sensing scheme, in which cluster-heads act as second level fusion
centers, collecting the sensing results from the SUs within their cluster. Then this
data can be shared among other cluster-heads or can be forwarded to a global
fusion center. An example of cluster based cooperative sensing can be found in
[20].

With respect to the information that is shared among the SUs, cooperative strate-
gies can be divided in hard fusion and soft fusion schemes:

• Hard fusion schemes
When the SUs share their local binary decisions on the presence of PUs, we talk
about hard fusion schemes. Locally the SUs can adopt any of the single node
sensing techniques described previously. These schemes are convenient for the
minimum amount of data that must be exchanged among the secondary nodes.
In this case the fusion strategies are typically linear fusion rules such as AND,
OR, and majority rules. Also Bayesian approaches can be adopted, such as the
Chair-Varshney optimal rule [7].

• Soft fusion schemes
In place of the local binary decisions, the SUs can share a richer information, such
as their likelihood ratios, in order to improve the sensing result. Therefore these
schemes generally require a larger amount of data to be shared, mainly depending
on the metric chosen and its representation. It has been demonstrated that in many
practical situations representing the sensing information with few bits is sufficient
for reaching a detection performance equivalent to the unquantized case [45, 46].
If the amount of data to be exchanged is not a problem, algorithms that imply the

5 Note that in some works the term “distributed” is used as a synonym of cooperative, and expressions
such as “non-centralized” are adopted.
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transmission of all the SUs’ observations to the fusion center have been proposed.
In this case eigenvalue based algorithms can be adopted also in the cooperative
case [37, 40, 46].

1.3 Wideband Spectrum Sensing: A Review

Most of the SS techniques proposed in literature have been conceived to assess the
presence of transmissions within a single frequency band [7]. A better knowledge
of the surrounding radio environment can be reached exploiting wideband spectrum
sensing, that consists in a joint observation of multiple bands and joint decision on
the occupancy of each sub-band. The aim of wideband SS is to distinguish which
frequency components contain PU signals from which contain only noise.

Wideband spectrum sensing strategies are generally based on the adoption of
some frequency domain representations of the received samples, and thus are related
to spectral analysis techniques. The scope of spectral analysis is to provide a reliable
estimate of the energy distribution in the frequency domain, and therefore it has a
big impact of the environment awareness of the SUs. In CR contexts non parametric
techniques are the more suitable strategies because they do not require any assump-
tions on the received signal.6 Wideband sensing algorithms are generally constituted
by a spectrum estimation stage followed by the adoption of some metric to evaluate
the occupancy of each sub-band. The starting point of these techniques is the classical
non parametric spectrum estimation theory, based on the periodogram and its deriva-
tives, such as the Welch’s method. The most advanced spectrum estimation approach
in this context is the multitaper method [47–49]. If the SUs know the power spectral
density (PSD) profile of the signal to be detected, the optimum detector in low signal-
to-noise ratio (SNR) regimes assumes the structure of an estimator-correlator [50].

The application of wideband SS is primarily related to hardware front-end require-
ments such as the linearity of analog components and analog-to-digital converters
characteristics [51, 52]. To get around such constraints some wideband techniques
are based on sequential sensing on multiple bands, frequency sweeping or filter-banks
approaches [53–55]. Strategies to reduce hardware complexity have been proposed
in the context of compressed sensing, which is a special signal processing technique
that can be applied to signals with a sparse representation [56, 57]. In the context of
CR, it can be adopted in particular in situations in which the PU signal occupancy
is sparse in the frequency domain. The main advantage of this technique is that it
allows to analyze a large portion of spectrum without requiring a high sampling rate
[57].

Wideband sensing has been also studied in the context of the so called multiband
joint detection, that is based on the maximisation of the aggregate opportunistic
throughput, a metric that takes into account the trade-off between sensing time and

6 Generally, the unique assumption is that the received signal samples are taken from a stationary
random process.
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transmission time in CR systems [58]. In [59, 60] wideband SS has been formalized
as a generalized likelihood ratio (GLR) detector, assuming the presence of a given
amount of unoccupied spectrum. Alternative wideband approaches are based on ITC,
e.g. in [61], where such tools are proposed in a channelized sub-Nyquist scheme. In
[62] standard ITC have been adopted to detect the presence of occupied sub-bands
using an ED in each sub-band, and a similar approach has been applied to multiband
OFDM in [63].

1.4 Wideband Sensing by Model Order Selection

In this section we formulate wideband SS as a model order selection problem solved
using ITC. Most of the sensing algorithms proposed in literature are based on the
adoption of decision thresholds, which setting is a difficult task in practice due to the
dependence on unknown parameters. In particular, considering energy based tech-
niques, including frequency domain analysis, threshold setting depends on the noise
power level that must be properly estimated in real implementations [25]. The pro-
posed wideband approach is blind instead, since it does not require the knowledge of
the noise power nor any a priori information about the number and the characteristics
of the signals present in the observed frequency band.

The proposed wideband sensing technique is based on N observations of a fre-
quency domain vector xi = (

xi,1 . . . xi,q . . . xi,Nb

)T, where i = 1, . . . , N , and Nb is
the number of frequency components considered. We will refer to the elements of
xi as frequency bins.7 The problem can be formulated considering a very general
approach, in which the vector xi can be any kind of frequency domain representa-
tion. For instance, it can be a PSD estimate, the output of a filter bank, a compressed
sampling reconstruction of the spectrum or, simply, the result of a Nb points DFT.

If PU signals are present in the observed frequency band, we assume that they
occupy k∗ frequency bins, while the remaining Nb − k∗ contain only noise. Our
objective is to identify the occupied k∗ bins. In order to accomplish this goal, we
formulate wideband SS as a model order selection problem in which k∗ is the order of
the model [17]. The proposed algorithm estimates k∗ and also identifies the occupied
bins.

Assuming the radio environment is stationary during the overall sensing period,
we collect the N vectors xi in the observation matrix

Y = (x1| . . . |xi | . . . |xN ) . (1.1)

Let us sort all vectors xi such that the power levels of the frequency bins are now
arranged in decreasing order. We denote with x̃i and Ỹ the ordered vectors and
the corresponding ordered matrix, respectively. Thanks to ordering, once the model
order is estimated, the frequency bins containing PU signals are the first k∗ bins of
the vectors x̃i . Thus, after recovering the order of the model, we identify the bins that

7 This is in accordance to the DFT based scenario studied in the following.
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Fig. 1.1 Block diagram of the proposed wideband SS strategy [17]
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Fig. 1.2 ITC based wideband sensing process [17]. First a frequency representation vector xi is
collected (a) and it is ordered (b). Using ITC we obtain k̂ that estimates k∗. Thus the bins that
contain signal components are identified as the first k̂ bins of the ordered vector (c). a Frequency
bins vector. b Ordering. c Selection

contain signal components, and, thanks to a reverse ordering operation, we obtain
the occupancy vector, which is a Nb length binary vector in which the q-th element
is one if the q-th bin is declared occupied. This wideband sensing process can be
represented by the block diagram in Fig. 1.1; the first three steps are depicted in detail
in Fig. 1.2. Note that in practical implementations ordering is based on the estimated
received power in each frequency bin.

For solving the model order selection problem (i.e. estimating k∗) we adopt ITC, a
typical approach used in statistics for choosing the model that better fits data among
a family of possible models [64]. In our problem we have Nb possible models, where
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the k-th corresponds to the case in which we assume that only k ∈ {0, . . . , Nb − 1}
bins are occupied.8

To adopt ITC, we start from the analysis of the log-likelihood of the received
observation matrix, ln f

(
Ỹ|Θ∗), where Θ∗ is the vector that contains the unknown

parameters of the model, which number depends on k∗.9 According to ITC, the best
choice for estimating k∗ is given by

k̂ = arg min
k

{
−2 ln f

(
Ỹ|Θ̂(k)

)
+ P (k)

}
(1.2)

where Θ̂
(k)

is the vector of the estimated parameters in the k-th hypothesis andP(k)

is the ITC penalty term.10 Different choices of the penalty term lead to different
criteria, each one characterized by different performance and complexity. In the next
section we review the most common and simple techniques, adopted throughout this
chapter.

The advantage of using model order selection is that it leads to a blind algorithm
which does not require any a priori knowledge of parameters, such as the noise
power or PU characteristics. In addition, it does not require the setting of thresholds,
avoiding problems such as deriving the exact threshold selection rule. The unique
assumption of the proposed strategy is that at least one frequency bin contains only
noise. This “minimum sparsity requirement” make this method appealing for scenar-
ios in which wideband algorithms that require a high level of sparsity of the received
signal (such as compressive sensing) can not be adopted.

1.4.1 Information Theoretic Criteria

In [65] Akaike first proposed an information theoretic criterion for statistical model
identification based on the observation of N independent, identically distributed
(i.i.d.) samples of the Nb dimensional random variable (r.v.) X, generated by the
“true” distribution f

(
X|Θ∗). The model selection problem consists in identifying

the model that better fits data among a set of possible models

{
f
(

X|Θ(k)
)}

k∈K (1.3)

characterized by the model order k. K is the set of the possible values assumed
by k. Akaike proposed to select the model that minimizes the Kullback-Leibler (K-

8 We will refer to the k-th model also as the k-th hypothesis.
9 Varying the number of occupied frequency bins we have a different set of parameters that describe
the model [64].
10 Using the notation P(k) we emphasize that the penalty depends on k through the vector Θ̂

(k)
.

Note that in general P(k) could also depend on other parameters, e.g. Nb, N and other functions
of the observation.
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L) distance from f
(
X|Θ∗), i.e.

k̂ = arg min
k

E

{

ln
f
(
X|Θ(k)

)

f
(
X|Θ∗)

}

. (1.4)

This criterion is equivalent to minimize the cross entropy

−
∫

f
(
X|Θ∗) ln f

(
X|Θ(k)

)
dX (1.5)

for which a natural estimate, under the k-th hypothesis, is given by the average log
likelihood

1

N

N∑

i=1

ln f
(

xi |Θ̂(k)
)

. (1.6)

Akaike noted that the average log likelihood is a biased estimate of the cross entropy,
and added a penalty term that asymptotically, for large N , compensates the estimation
error. Exploiting the asymptotical chi squared distribution of the log likelihood,
Akaike derived the AIC, in which the penalty term is

PAIC(k) = 2 φ(k) (1.7)

where φ(k) is the number of degrees of freedom in the k-th hypothesis. Alternative
ITC can be derived adopting the Bayesian approach, which chooses the model that
maximizes the posterior probability P

{
Θ(k)|X⎛

[66]. In this context, the most pop-
ular and simple criterion is the Bayesian information criterion (BIC) with penalty
term [66]

PBIC(k) = φ(k) log N . (1.8)

For large enough samples BIC coincides with the MDL criterion, which attempts to
construct a model which permits the shortest description of the data [67]. The AIC and
BIC approaches are the most popular ITC adopted in many statistical and engineering
problems [38, 42, 62, 68]. Although the AIC metric provides an unbiased estimate
of the K-L divergence, in many situations it tends to overestimate the true order of
the model, even asymptotically [69]. In some cases, consistency can be reached by
properly modelling the penalty term [42, 70]. In particular, when the penalty is in
the form P(k) = φ(k) · c, it can be demonstrated that it is required, for N that
goes to infinity, that c/N → 0 to avoid underestimation and c/ log log N → +∞
to avoid overestimation [71]. Further conditions can be derived in order to solve
specific selection problems [72]. Here we consider three consistent criteria, defined
by the penalty terms
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PCAIC1(k) = φ(k) (log N + 1) (1.9)

PCAIC2(k) = 2 φ(k) log N (1.10)

PCAIC3(k) = 3 φ(k) log N . (1.11)

Note that CAIC1 has been proposed by [69] and CAIC2 has been adopted in [68].
An alternative criterion based on the large sample distribution of maximum likeli-

hood (ML) estimators is the consistent AIC with Fisher information (CAICF), which
penalty term is [69]

PCAICF(k) = φ(k) (log N + 2) + log
⎝⎝⎝J

(
Θ̂

(k)
)⎝⎝⎝ (1.12)

where J
(
Θ̂

(k)
)

is the estimate of the Fisher information matrix (FIM) of the obser-

vation and |·| is the determinant operator.
Note that the formulation of the ITC as in (1.2) supports the interpretation of these

techniques as extensions of the ML principle in the form of penalized likelihood. The
penalty term is introduced as a cost for the increased complexity of the model, related
to the presence of unknown parameters that must be estimated [65, 73]. Thus ITC
extend the ML approach in the sense that they take into account both the estimation (of
the unknown parameters) and the decision (among the possible models) processes.
Note that the ML approach performs poorly in model selection problems, always
leading to the choice of the maximum number of parameters considered [66].

1.4.2 DFT Based Wideband Algorithms

In this section we apply the ITC based wideband sensing strategy described in
Sect. 1.4 to the case in which simple DFT is used as spectral representation of the
received signal. We adopt DFT motivated by its simplicity and by the fact that its
implementation can be already available in many systems, such as OFDM receivers.
In particular, we consider two practical situations with uncorrelated and correlated
frequency bins. The first case exploits only the received energy, while the latter jointly
exploits the energy level and spectral correlation to discern PU signals from noise.

At the i-th time instant, the output of the DFT can be expressed as

xi = si + ni (1.13)

where ni represents the AWGN and si is the aggregation of the PUs signals.11 We
assume that the time domain received sample vector is modeled as zero mean complex
Gaussian, that is a common assumption in communications literature.12 Thanks to

11 Including the channel effects.
12 This is a proper assumption for many practical problems, such as the case of OFDM signals, that
are widely adopted in recent communication systems.
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the linearity of the DFT operation, xi is a vector of zero mean complex Gaussian r.v.s
with covariance matrix Σx = E

{
xi xi

H
⎛
. After the collection of N DFT outputs we

order of the vector xi according to the received power in each bin, i.e., according to
the vector

(
ν1, . . . , νq , . . . , νNb

)
, where νq = (1/N )

∑N
i=1

⎝⎝xi,q
⎝⎝2. Thus we obtain

a new vector x̃i with power in each frequency bin in descending order. Note that the
vector x̃i is zero mean with covariance matrix Σ x̃ = E

{
x̃i x̃H

i

⎛
. If the number of

frequency bins containing signals is k, Σ x̃ can be expressed as

Σ x̃ = Σ (k)

⎞
σ 2INb−k (1.14)

where Σ (k) is a k×k submatrix, Ip is a p× p identity matrix, σ 2 is the unknown noise
power at each frequency bin, and

⎠
is the direct sum operator [74]. Note in particular

that Σ (k) = E

{
x̃(k) x̃H

(k)

}
, with x̃T

i =
⎜
x̃T
(k),i ñT

(k),i

⎪
. Then the log-likelihood function

of Ỹ can be expressed as

ln f
(

Ỹ|Θ(k)
)
= − Nb N ln π − N ln |Σ (k)| − N (Nb − k) ln σ 2

− N tr {Σ (k)
−1 S(k)} − N

σ 2 tr {N(k)} (1.15)

where S(k) = (1/N )
∑N

i=1 x̃(k),i x̃H
(k),i and N(k) = (1/N )

∑N
i=1 ñ(k),i ñH

(k),i .

1.4.2.1 Independent Frequency Bins

In the case in which the frequency bins are independent, Σ (k) is diagonal, and the
log-likelihood reduces to

ln f
(

Ỹ|Θ(k)
)
=− Nb N ln π − N

k∑

q=1

ln σ 2
q − N (Nb − k) ln σ 2

− N
k∑

q=1

σ̂ 2
q

σ 2
q

− N

σ 2 tr{N(k)}

where (σ 2
1 , . . . , σ 2

k ) = diag{Σ (k)} and (̂σ 2
1 , . . . , σ̂ 2

k ) = diag{S(k)}. In this case the
parameter vector is given by Θ(k) = (

σ 2
1 , . . . , σ 2

k , σ 2
)
, that can be estimated as

Θ̂
(k) = (

σ̂ 2
1 , . . . , σ̂ 2

k , σ̂ 2
)
, where

σ̂ 2 = tr{N(k)}
(Nb − k)

. (1.16)
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Then, removing the terms that do not depend on k, the log-likelihood can be expressed
as [17]

ln f
(

Ỹ|Θ̂(k)
)

= −N
k∑

q=1

ln σ̂ 2
q − N (Nb − k) ln σ̂ 2. (1.17)

Note that (1.17) corresponds to the result derived in [62]. For the independent fre-
quency components case the number of degrees of freedom corresponds to the length
of Θ(k), i.e. φ(k) = k + 1.

1.4.2.2 Correlated Frequency Bins

In some practical applications, the signals collected present a non negligible spec-
tral correlation (see [75] for some examples). Thus in this section we remove the
assumption that the frequency bins are uncorrelated, and we study the most general
case, assuming no particular structures for the correlation matrix. In this case the
number of degrees of freedom of the model is given by φ(k) = k2 + 1, that accounts
for the k ×k Hermitian matrix Σ (k) and the noise power. Adopting the ML estimates
σ̂ 2 and Σ̂ (k) = (1/N )

∑N
i=1 x̃(k),i x̃H

(k),i , and removing the terms that do not depend
on k, from (1.15) we obtain [17, 76]

ln f
(

Ỹ|Θ̂(k)
)

= −N
k∑

q=1

ln α̂q − N (Nb − k) ln σ̂ 2 (1.18)

where α̂q is the q-th eigenvalue of the sample covariance matrix S(k). In this case the

vector of the unknown parameters is given by Θ̂
(k) = (

α̂1, . . . , α̂k, σ̂
2
)
.

1.4.2.3 Performance Metrics

The performance of the wideband approach can be evaluated in terms of probability to
correctly detect k∗, Pk � P

{̂
k = k∗⎛.13 The probability of incorrect detection can be

evaluated in terms of probability of overestimation, Pover � P
{̂
k > k∗⎛, and the prob-

ability of underestimation, Punder � P
{̂
k < k∗⎛. Note that these performance metrics

are very severe metrics; for example, the cases in which k̂ = k∗+1 and k̂ = k∗+10 are
both considered overestimation events, irrespective of the actual distance from k∗.14

13 Numerical simulations show that the difference between Pk and the probability of correctly
identifying the set of occupied frequency bins is very small, which means that when the algorithms
correctly estimate k∗ they generally correctly estimate also the occupied set. See [17] for some
numerical examples.
14 Note that in some practical applications the adoption of algorithms that tend to overestimate k∗
may be used by means of including a protection margin to preserve low SNR PU transmissions.
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For some practical cases we will also analyze the probability of detection related to
the q-th bin, P q

D .

1.5 Cooperative Wideband Spectrum Sensing

The wideband sensing strategy described in the previous section can be also imple-
mented in a cooperative context in which several CR nodes share their occupancy
vectors to reach a global decision. We denote as

d( j) =
(

d( j)
1 , . . . , d( j)

q , . . . , d( j)
Nb

)T
(1.19)

the occupancy vector of the j-th SU. We assume a centralized approach in which a K
out of M rule is applied to assess the presence of PUs in each frequency bin. To focus
on the performance evaluation of the proposed sensing strategies, we assume that an
error free separate reporting channel is used for sending the local CR decisions to
the fusion center (FC). The q-th element of global occupancy vector, dF, is given by

dF
q =

{
1,

∑M
j=1 d( j)

q ≥ K

0,
∑M

j=1 d( j)
q < K .

(1.20)

The choice of the parameter K determines the specific voting rule. Choosing
K = 1 we implement the OR strategy, which in general allows higher probability of
detection. This approach is the most protective toward PUs, but leads to higher false
alarm probabilities. The approach that minimize the number of false alarm events is
the AND rule, that can be obtained with K = M . However, the AND rule allows the
secondary network to declare a band occupied only when all the nodes agree upon the
presence of PUs, and thus it performs poorly in presence of harsh channel conditions.
In order to reach a good trade-off between false alarm and detection probabilities,
intermediate values of K can be chosen, such as K = M/2 that leads to the so called
majority rule, which in some contexts minimize the total error probability [77].

The probability that the q-th each bin is declared occupied is given by

P q,F
D = P

⎧
⎨

⎩

M∑

j=1

d( j)
q ≥ K

⎫
⎬

⎭
=

M∑

h=K

P

⎧
⎨

⎩

M∑

j=1

d( j)
q = h

⎫
⎬

⎭
(1.21)

and can be derived from the single node probabilities of detection P q
D , with q =

1, . . . , Nb, and the distribution of a Poisson binomial r.v..
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1.6 Numerical Results and Discussion

In this section we show some numerical examples to assess the performance of the
proposed wideband sensing technique. We compare the ITC algorithms to simple
energy based approaches in which the estimated received power of each frequency
bin is compared to the decision threshold. We indicate with ED the ideal ED, which
assumes that the noise power is known exactly, and with EDk the estimated noise
power (ENP)-ED described in [25] in which the Nb − k∗ bins with lower received
power are used for estimating the noise power.15 The threshold is set according to
the Neyman-Pearson criterion considering a probability of false alarm PFA = 0.01.

1.6.1 Independent Frequency Bins

In this section we consider the case of independent frequency bins, that is the most
interesting case in practice due to the fact that most of communication signals are
generated by white data sequences, which give spectral uncorrelated transmissions
[78].

In Fig. 1.3 we consider the proposed wideband SS strategy using DFT with Nb =
128, in presence of a single white Gaussian signal, that occupy exactly 64 bins, and
AWGN. The number of DFT outputs considered is N = 1000. We can see that,
increasing the SNR, all the consistent ITC present a step wise behaviour, assessing
the correct detection probability to a fixed value for high SNR. The AIC instead
confirms its non consistent behaviour. The corresponding probabilities of incorrect
estimation are shown in Fig. 1.4. We can see that at high SNR Punder goes to zero and
an incorrect detection always consists in a false alarm event. Note that this property
is very important in CR scenarios, because it implies that ITC never misdetect the
presence of PUs if the SNR is sufficiently high. Considering the ED based approaches
we can see that they perform quite poorly providing almost 50 % of overestimations
for high SNR levels. In Fig. 1.5 we perform the same analysis of Fig. 1.3 in a Rayleigh
fading scenario. Here we consider frequency-flat fading on all frequency bins. With
respect to the AWGN case we can see that fading has a big impact on the performance
of the wideband algorithms, increasing the SNR value at which they reach a target
probability of correct detection.

From the previous analysis it emerges that CAICF, CAIC2, and CAIC3 are the
ITC algorithms that allows a better sensing performance allowing almost 100 %
probabilities of correct detection of the occupied bins set. Compared to simple ED
strategies, the proposed wideband ITC algorithms allow a more accurate identifica-
tion of the occupied bands.

15 For simplicity, here we do not use the exact distribution of the ordered vector. Thus the ENP-ED
approach adopted can be considered as an approximated strategy valid for large samples use cases.
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Fig. 1.3 Probability to estimate the correct number of occupied bins as function of the SNR. The
number of occupied bins is 64, Nb = 128 and N = 1000

1.6.2 Correlated Frequency Bins

In presence of frequency correlated observations the wideband ITC approach described
in Sect. 1.4.2.2 can be adopted. For simplicity we consider only AIC and BIC, and use
the notation AICi, BICi to denote the adoption of the independence based algorithm
and AICc, BICc for the correlated case.

To study the performance of the algorithms we adopt a set of Gaussian samples,
generated as an autoregressive sequence, in which consecutive samples have a corre-
lation coefficient ρ. In Fig. 1.6 we show Pok assuming ρ = 0.8, k∗ = 64, Nb = 128
and N = 1000. Note that in this case the AIC is the algorithm that provides the better
performance, reaching Pok ≈ 1 at around SNR = −3 dB. Further numerical results
assessing the performance of the wideband ITC based technique in the correlated
frequency case are provided in [76].

1.6.3 Multiband Sensing

In this section we analyze a multiband scenario in which three OFDM like signals
are present in the observed band. The PSD of the spectrum of the three signals is
depicted in Fig. 1.7. In the following we indicate with SNR the SNR of the two lower
frequency signals. Note that the higher frequency signal has a SNR drop of −3 dB.
In Fig. 1.8 we show P q

D when the wideband algorithm proposed in Sect. 1.4.2.1 is
adopted. It is interesting to note that for very low SNR, such as SNR = −20 dB,
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Fig. 1.4 Probabilities to overestimate and underestimate the correct number of occupied bins as
function of the SNR. The number of occupied bins is 64, Nb = 128 and N = 1000. a Probability
of overestimation. b Probability of underestimation

the algorithm that performs better is the AIC. In Sect. 1.6.1 we noted that generally
AIC tends to overestimate the number of bins occupied; this property turns to be
an advantage at low SNR levels allowing a better probability to detect the presence
of signals. On the other hand AIC always leads to a non negligible number of false
alarms in unoccupied bins. From Fig. 1.8b we can see that in this case study all ITC
performs well at SNR = −10 dB.

ITC are conceived for being statistical approaches that choose the model that best
approximates data among a family of models. It is interesting therefore to analyze
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Fig. 1.5 Probability to estimate the correct number of occupied bins as function of the SNR in
Rayleigh fading. The number of occupied bins is 64, Nb = 128 and N = 1000
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Fig. 1.6 Probability to estimate the correct number of occupied bins as function of the SNR in
presence of a frequency correlated signal. The number of occupied bins is 64, Nb = 128 and
N = 1000

if these algorithms provide a good detection performance also when the true model
that underlie the generation of the observation is not in the considered model set.
This case has also an important impact on practical situations in which the exact
statistical description of the collected data is not known or it is too complex to apply
ITC in a rigorous way, and thus algorithms derived for simpler models are adopted.
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Fig. 1.7 Squared magnitude of the signals adopted in the multiband scenario normalized to 0 dB

Here we consider the case in which the spectral representation used is a spectrum
estimate derived using MTM or Welch periodogram, both with Nb points in frequency
domain, and we apply the wideband ITC derived for the DFT analysis in Sect. 1.4.2.
This can be considered an approximated strategy in which these spectrum estimates,
that in general are chi squared distributed, are approximated to Gaussian r.v.s16 [79].
In Figs. 1.9 and 1.10 we can see that the MTM and Welch strategies provide a very
good detection performance that outperforms the DFT based approach for low SNR
levels. Then we can benefit from better spectrum estimates (DFT has a non negligible
spectral leakage) and apply the wideband approach proposed in Sect. 1.4.2.

1.6.4 Cooperative Wideband Sensing

In Sect. 1.5 we introduced a cooperative sensing strategy that extends single user
wideband SS. Here we apply this cooperative approach to the multi band scenario
described in the previous section. In Fig. 1.11 we compare the single user P q

D with
the corresponding cooperative performance with different choices of K when AIC
is adopted. We consider the presence of M = 6 SUs in the AWGN scenario used
in Fig. 1.8. When K = 1 we implement an OR fusion strategy that provide a very
high probability of detection in the occupied bins, but also a very high number false
alarms. When K = M we implement the AND rule that allows a very low probability
of false alarm, at the expense of a low probability of detection. The performance of
the majority rule, with K = M/2, is more balanced providing a small number of
detection errors in both occupied and unoccupied bins.

16 Note that this approximation is valid when the chi squared distribution has a high number of
degrees of freedom.



24 A. Mariani et al.

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AIC
BIC
CAIC1
CAIC2
CAICF
EDk

q

P
q D

P
q D

(a)

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AIC
BIC
CAIC1
CAIC2
CAICF
EDk

q

(b)

Fig. 1.8 Probability of detection for each frequency bin when the DFT is adopted for the multi
band scenario depicted in Fig. 1.7. Nb = 128 and N = 1000. a SNR = −20 dB. b SNR = −10 dB
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Fig. 1.9 Probability of detection for each frequency bin when a 128 points MTM spectrum estimate
is adopted for the multi band scenario depicted in Fig. 1.7. N = 1000. a SNR = −20 dB. b SNR =
−10 dB
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Fig. 1.10 Probability of detection for each frequency bin when a 128 points Welch spectrum
estimate is adopted for the multi band scenario depicted in Fig. 1.7. N = 1000. a SNR = −20 dB.
b SNR = −10 dB
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Fig. 1.11 Probability of detection for each frequency bin in a cooperative sensing scheme with six
SUs. The fusion rule adopted is the K out of M hard combining. Nb = 128 and N = 1000

1.7 Conclusions

In this chapter we proposed a wideband spectrum sensing technique based on ITC.
We described a general approach that can be applied to any spectral representation
and then focused on the simple DFT case. The proposed technique is completely blind
since it does not require any knowledge about the noise power and characteristics
of the signals present in the observed band. In particular we showed that consistent
ITC can reach an almost one probability to correctly identify the number of occupied
bins, outperforming simple ED based approaches. Numerical results revealed that this
wideband approach can be applied both with independent and correlated frequency
components. In particular, the derived DFT based algorithm can be applied as an
approximated approach in situations in which the exact distribution of the observation
is unknown or too complex, such as when advanced techniques like MTM spectrum
estimation are adopted. Wideband ITC based sensing can be applied in scenarios in
which approaches that require a high level of sparsity of the received signal (such as
compressive sensing) can not be adopted.
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Chapter 2
Channel Usage Patterns and Their Impact
on the Effectiveness of Machine Learning
for Dynamic Channel Selection

Irene Macaluso, Hamed Ahmadi, Luiz A. DaSilva and Linda Doyle

Abstract The diverse behavior of different primary users (PU) in various spectrum
bands impacts a cognitive radio’s ability to exploit spectrum holes. This chapter sum-
marizes the results of our previous studies on the impact of the complexity of primary
users’ behavior on the performance of learning algorithms applied to dynamic chan-
nel selection. In particular, we characterize the observable spectrum utilization with
respect to the duty cycle of the channels and to the complexity of the primary user’s
activity. We use the term complexity to refer to the unpredictability associated with
the primary user’s wireless resource usage, which we quantitatively characterize
using Lempel-Ziv complexity. We evaluate the effectiveness of two learning-based
dynamic channel selection algorithms by testing them with real spectrum occupancy
data collected in the GSM, ISM, and DECT bands. Our results show that learn-
ing performance is highly correlated with the level of PU activity, estimated by the
duty cycle, and the amount of structure in the use of spectrum, estimated by the
Lempel-Ziv complexity.

2.1 Introduction

Opportunistic spectrum access may rely on a combination of geolocation databases
and spectrum sensing to detect spectrum holes. In their search for spectrum holes,
secondary users (SUs) can use learning methods to predict the next channel state from
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their past observations on each channel. However, because of the diverse behavior
of primary users in different spectrum bands, spectrum holes exhibit different char-
acteristics, which in turn affect the performance of a learning algorithm [1, 2].

This chapter summarizes the results of our previous studies on the impact of
the complexity of PUs’ behavior on the performance of learning algorithms applied
to dynamic channel selection (DCS) [2, 3]. In particular, we consider two learning
approaches. In [2], we presented a reinforcement learning-based method for spectrum
opportunity prediction; in [3], we presented a Markov process-based learning. We
analyzed the performance of the two approaches with respect to the duty cycle (DC)
of the channels and to the complexity of the PU’s activity, relying on actual spectrum
measurement data.

In both cases we characterized the PU activity by using a measure of complexity
proposed by Lempel and Ziv [4]. Our results showed that the amount of structure
in the PU activity, estimated by the Lempel-Ziv (LZ) complexity, has a significant
impact on the performance of the learning-based DCS approaches. In particular, our
studies showed that the LZ complexity of the PU’s behavior can account for up to a
30 and 20 % difference in the probability of success of reinforcement learning (RL)
and Markov process-based learning respectively.

We begin with a short discussion on the literature of learning algorithms applied
to DCS in Sect. 2.2. Section 2.3 details our use of Lempel-Ziv complexity to quan-
tify the amount of structure in the usage of the bands by the PU. Section 2.4
describes the two learning-based dynamic channel selection approaches. Section 2.5
presents the relationship between the effectiveness of learning-based DCS and the
amount of structure in the usage of the bands by the PU, relying on spectrum measure-
ments conducted at RWTH Aachen and by us at Trinity College Dublin to determine,
for any given time slot and set of channels, whether there is PU activity. We summa-
rize our conclusions in Sect. 2.6.

2.2 Existing Works

In the literature, several learning algorithms have been proposed and applied to pre-
dict the channel state. All these approaches need to learn the channel occupancy
model by observing the PU activity for a certain number of time slots. This phase
is called training or learning period. The learning algorithms are able to make pre-
dictions on the channel state after they are trained. Learning algorithms with higher
accuracy, lower complexity and shorter training time are preferred. In this section
we briefly review some of the existing works.

In [5], Clancy claims that a hidden Markov model (HMM) can be a suitable method
to model the channel occupancy as a function of time. In [6], the authors model the
channel state occupancy of a PU on each channel as a Poisson distribution and use an
HMM to predict the availability of a channel. The HMM is trained with the Baum-
Welsh algorithm (BWA) [7], predicting the presence of PUs to avoid transmission
collisions. An SU will occupy an idle channel until a PU becomes active in that
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channel, then it will switch to another predicted idle channel. Simulation results
show that the probability of collision is reduced compared to a random selection
of channels to be sensed by the SU. An artificial neural network is proposed in [8]
to predict the channel state for the next time slot. In [9], the authors evaluate the
performance of their proposed neural network when the statistics of the channel
are changing. The authors of [10] formulate this problem of efficiently using the
spectrum as a Markov decision process and propose a solution strategy based on
reinforcement learning techniques. In [11], we propose a modified, less complex
HMM. We compare the prediction accuracy of our proposed method with that of
conventional HMM and show that it achieves the same prediction accuracy with
much less computational complexity.

The aforementioned works test their proposed algorithms on data which are gen-
erated based on some assumptions on the probability distribution of the PU activity
(synthetic data), and none of them applies their algorithm on data that are collected
from actual sensing (real data).

There are some recent works which use real data in their studies. In [12], authors
conduct spectrum measurements in Guangzhou city, and then approximate the pre-
diction error with the beta distribution. Kone et al. propose frequency bundling in
[13], where secondary devices build reliable channels by combining multiple unreli-
able frequencies into virtual frequency bundles. Their experiments on real data show
that bundling random channels together can provide sustained periods of reliable
transmission.

The works above only study the performance of their proposed algorithms
and compare them with other learning algorithms. On the other hand, few works
[2, 3] investigated the predictability of the behavior of the PUs and its impact on the
learning performance, which is the main focus of the rest of this chapter.

2.3 Complexity of Primary User Activity

The term complexity is used with different meanings in the literature [14]. In some
domains, e.g. dynamic systems and statistical mechanics, both completely ordered
or disordered sequences are associated with low complexity [15]. In other words,
complexity does not increase monotonically with disorder. In this chapter our goal is
to investigate the effectiveness of learning algorithms in exploiting the regularities of
channel utilization; hence we use the term complexity to refer to the unpredictability,
or uncertainty, associated with the PU’s wireless resource usage. Accordingly, we
adopt a measure of complexity that associates high values of complexity to com-
pletely disordered, i.e. unpredictable, spectrum occupancy sequences.

We quantitatively characterize the structure of a spectrum occupancy sequence
by making use of a measure of complexity proposed by Lempel and Ziv [4]. In
particular, we adopt the normalized Lempel-Ziv complexity, which measures the
rate of production of new patterns in a sequence. The complexity coefficient c is
computed by scanning the sequence and incrementing c every time a new substring
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of consecutive symbols is found. Then c is normalized via the asymptotic limit
n/ log2(n), where n is the length of the sequence [16]. Lempel-Ziv complexity is
a property of individual sequences and it can be computed without making any
assumptions about the underlying process that generated the data. This feature is of
the utmost importance when one is dealing with real data (in our case, sensed channel
status in a variety of frequency bands). Furthermore, LZ complexity is strongly related
to the source entropy. In fact, if the source is ergodic, the normalized LZ complexity
has been proven [17] to be equal to the source entropy almost surely.

It is interesting to note that the LZ complexity is closely related to the concept of
Kolmogorov complexity [18], which measures the complexity of a binary string s as
the bit length of the shortest program that produces s and halts afterwards. Whereas
Kolmogorov complexity refers to the shortest program among all the possible classes
of programs, LZ complexity makes use of one class of programs that can only perform
copy and paste operations [16]. Although Kolmogorov complexity is known to be
algorithmically uncomputable, it should be noted that in the case of ergodic sources
Brudno’s theorem states that the entropy rate of the source is equal to the Kolmogorov
complexity per symbol of almost all emitted strings ([19], as discussed in [20]).
Lempel-Ziv complexity and Kolmogorov complexity are deterministic complexity
measures: by looking for the shortest description that allows to exactly reproduce
the data, they inevitably include the noise in such description.

2.4 Learning and DCS

We consider the problem of an SU searching for a channel to occupy opportunistically
while the PU is inactive in that channel. We do not assume the SU to have any a priori
knowledge of the pattern of activity of the PU or the long-term probability that each
channel is occupied. We explore two alternative learning strategies to decide which
channel to sense prior to each transmission slot: (i) the SU applies reinforcement
learning; (ii) the SU applies Markov-based learning. Our goal is to study the effect
of both the levels of PU activity and the complexity of the PU behavior as defined
in Sect. 2.3 on the effectiveness of learning.

Our model considers a single SU that can use one of N equal-bandwidth frequency
channels opportunistically. Time is slotted and alternates between a sensing phase
and a transmission phase. The SU is allowed to transmit in the time slot if the selected
channel in the sensing phase is still free. The SU’s choice of which channel to attempt
transmission in will therefore affect its performance: the more successful the SU is
in predicting which channel is the least likely to contain PU activity in the next time
slot, the greater its likelihood to opportunistically utillize the channels.

In our study, we rely on spectrum measurements conducted at RWTH Aachen
and by us at Trinity College Dublin to determine, for any given time slot and set
of channels, whether there is PU activity. For each band that we investigate, we
evaluate the adaptation techniques described in Sects. 2.4.1 and 2.4.2 for different
combinations of N channels to be explored by the SU.
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2.4.1 Reinforcement Learning

A secondary user selects one among N channels according to the policy determined
by an RL algorithm. Under the assumption of full observability of the state of the
channels, Q-learning [21] is the most natural candidate. Moreover, as Q-learning
does not require a model of the agent’s environment, it is suitable to deal with real
spectrum occupancy data.

The goal of Q-learning is to find an optimal policy, i.e. the sequence of actions
that maximizes the expected sum of discounted rewards. The idea is to reward an
SU if it selects a free channel, while also including a cost of switching channels
to discourage too frequent channel changes. The SU state at time t is given by
st = [X1,t , . . . , X N ,t , ct ], where Xi,t ∈ {0, 1} indicates whether the i th channel is
free (0) or occupied (1) and ct ∈ {1, . . . , N } is the index of the channel the SU is
accessing at time t . At time t the SU performs an action at ∈ {1, . . . , N }, i.e. it
selects a channel ct+1. At time t + 1 it receives a reward r(t+1)(st, at ):

r(t+1)(st, at ) = (1 − Xat ,t+1) − e(1at ,ct ) (2.1)

where 1at ,ct is 0 if at = ct and 1 otherwise, and e ∈ [0, 0.5].
Based on the received reward, the SU updates the Q-values according to [21]:

Q(st, at ) := Q(st, at ) + αr(t+1) + α(γ max
at+1

Q(st+1, at+1) − Q(st, at )) (2.2)

where 0 ≤ γ < 1 is the discount factor and α is the learning rate. If γ > 0, the agent
takes into account not only the immediate reward but also the delayed reward when
it chooses which action to take.

In a stationary environment Q-learning is proven to converge to the optimal policy
if α → 0 and all the state-action pairs are visited an infinite number of times. During
the learning stage, an exploration strategy is required to allow the agent to visit all
the state-action pairs. A randomized strategy is commonly adopted: the agent selects
a random action with a probability ε and the best estimated action with probability
1 − ε. At the beginning the algorithm starts with a large value of ε, which decreases
as the Q-learning converges.

As the stationary condition is generally not satisfied for real spectrum occupancy
data, we fix the learning factor to 0.1 to allow the agent to adapt to the changes in
the environment. Moreover, we set the ε-value to 0.01 to allow the agent to perform
exploratory actions from time to time in order to discover changes in the environment.

2.4.2 Markov-Based learning

As mentioned earlier, the SU needs to select a channel (from the set of channels
that it can access) for transmission which is the least likely to be occupied by the
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PU. Other than reinforcement learning, we can use Markov process-based learning
algorithms to learn the channels’ occupancy model and predict the availability of the
channels for the next time slot. Here, we study a low complexity Markov process-
based learning algorithm which can accurately predict the channel status of the next
time slot.

Our Markov process-based learning algorithm has K states and M possible obser-
vations, whereS andO represent the sets of possible states and observations, respec-
tively.

We denote sequences of states by x, and we use y to indicate the sequence of
observations. Each element of x, denoted by x(t) ∈ S ,∀t , is the state at time t ; each
element of y, denoted by y(t) ∈ O,∀t , is the observation at time t .

The transition probabilities between the states are stored in a K × K matrix (A).
The distribution of the observation outcomes at each state is described by the respec-
tive column vector of the K × M emission matrix B. We represent this Markov
process by λ = {A, B, π}, where π is the initial state distribution.

The algorithm is trained off-line over a training sequence. In this Markov process-
based learning model, the number of states (i.e. K ) grows dynamically as learning
proceeds. Here, we have two possible observations (M = 2). We observe a zero
when we sense a free channel, and we observe a one by sensing a busy channel.

The transitions between states depend on the length of the string of consecutive
zeros or ones observed. This means that in our system each state represents a num-
ber of observed consecutive zeros or ones. Positive states represent the number of
observed consecutive ones, and non-positive (negative and zero) states represent the
number of observed consecutive zeros.

During the training phase, we create the Markov chain using the training data set
and based on the number of consecutive zeros and ones. Then, it is possible to count
the number of times each particular transition or output observation is applied in a
set of training data. As proven in [7], counting functions for the output observations
provide maximum likelihood estimates for the desired model parameters. Suppose
that the maximum number of negative and positive states in the Markov chain, after
the training, are q and p, respectively. The set of states is S = {sq−, . . . , s0, . . . , sp}
which has the cardinality of N = q + p +1. The elements of transition and emission
matrices will be computed by:

ai, j = fi, j (x)
∑p

k=−q fi,k(x)
∀i, j ∈ {−q, . . . , p}, (2.3)

bi, j = gi, j (x, y)
∑M

m=1 gi,m(x, y)
∀i ∈ {−q, . . . , p}, j ∈ {1, . . . , M}, (2.4)

where ai, j is the transition probability from si to s j , and bi, j is the probability of
o j at si . The counting functions fi, j and gi, j simply count the number of transitions
from state si to state s j and the number of observations o j at state si , respectively.
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During the training process, the transition and emission probabilities over the
observations can be easily calculated by (2.3) and (2.4). As a result, we can predict
the observation by:

y̌(t) =
{

0 p(x(t), 0|λ) ≥ p(x(t), 1|λ)

1 otherwise
, (2.5)

where y̌(t) indicates the predicted observation for time t .
In case of an inaccurate prediction, the system will notice the prediction error after

observing y(t). Since x(t + 1) only depends on the observation outcome rather than
on the predicted result, the system will move to the correct state and errors will not
propagate. Retraining the system is only needed when the statistics of the behavior
of PUs on the channel are changing. To account for this, the system can be retrained
after a certain number of time slots or whenever the prediction accuracy drops below
a certain threshold.

2.5 Results

In this section we analyze the performance of the two learning solutions presented
in Sect. 2.4. The results presented in this section refer to sequences of spectrum
occupancy over 12 h (from 11:00 to 23:00) and duty cycle DC ∈ [0.3, 0.8]. We
examined a number of frequency bands: the 2.4 GHz ISM band, the DECT band, and
the GSM900 and GSM1800 bands. For each band, we considered all the possible
combinations of N = 3 and N = 4 channels to evaluate the RL approach and the
Markov-based learning approach respectively. Each combination corresponds to one
instance of the DCS problem. One of the fundamental issues common to all RL
approaches is the convergence time when the dimension of the state-action space is
large. For this reason, we consider combinations of N = 3 channels in the case of
RL. The convergence time of the Markov process-based learning algorithm increases
linearly with N , thus allowing us to consider combinations of 4 channels. However,
the number of channels that an SU can observe (N ) strongly depends on the hardware
and sensing capabilities of the SU.

Our empirical findings show that the performance benefits of the two learning
algorithms are highly correlated with the level of PU activity observed and the amount
of structure in these observations, estimated by the LZ complexity.

2.5.1 Reinforcement Learning

Each combination of channels corresponds to one instance of the RL problem. For
each instance, we run 103 independent simulations. For each simulation, first we
compute the optimal policy using the Q-learning algorithm and considering only
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Fig. 2.1 ISM band (outdoor), RWTH Aachen dataset. Probability of success of Q-learning as a
function of the average LZ complexity and the probability of at least one free channel existing. Each
point represents a particular instance of Q-learning applied to N = 3 channels. The total number of
possible combinations which we analyzed is
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Fig. 2.2 GSM1800 band (outdoor), RWTH Aachen dataset. Probability of success of Q-learning
as a function of the average LZ complexity and the probability of at least one free channel existing.
Each point represents a particular instance of Q-learning applied to N = 3 channels. The total
number of possible combinations which we analyzed is

(15
3

) = 455, where 15 is the number of
channels with DC ∈ [0.3, 0.8]

the first hour of the sequences of spectrum occupancy. Then, the resulting policy is
evaluated over the remaining 11 h. For each simulation the probability of success is
computed according to the number of times that a free channel was selected over the
length of the spectrum occupancy sequences. The probability of success of each RL
instance is the average over the 103 simulations.

Figures 2.1, 2.2 show the probability of success of Q-learning for the ISM band
and the GSM1800 band respectively, as a function of the average LZ complexity
and the probability of at least one free channel existing p f = 1 − ∏N

i=1 δ1,i , where
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δ1,i is the duty cycle of the i-th channel. The LZ complexity of each channel is
computed using the algorithm described in [16], while the average value is used as
an approximation of the complexity of each combination of channels.

As expected, the probability of success increases with p f . However, it can be
observed that the performance of RL is also strongly dependent on the complexity
of the PU behavior. For example, for the ISM band (see Fig. 2.1), the values for
the average LZ complexity span a considerable range and we can easily observe
that, when p f remains constant, the RL performance decreases when LZ complexity
increases.

Both the average LZ complexity and p f do not cover the same range for each
band. As it can be observed in Figs. 2.1 and 2.2 the DC values, and therefore the p f

values, span almost the same range of values for both the ISM band and the GSM1800
band. However, the GSM1800 channels exhibit a less structured, i.e. more complex,
activity on average than the ISM channels. Accordingly, the performance in the ISM
band is on average better.

The data collected by us at TCD exhibits a significantly lower LZ complexity than
the measurements taken in Aachen (see Fig. 2.3). Accordingly, the performance of
RL in the ISM band in TCD is significantly better than the performance in the ISM
band for the Aachen dataset.

In any case, all the frequency bands examined by us exhibit the same kind of rela-
tionship between average LZ complexity, p f and the performance of RL, confirming
that the LZ complexity is a valid metric for the analysis of learning performance.

2.5.2 Markov-Based Learning

We test the Markov process-based learning algorithm on exactly the same sets of
channels that we have used for the RL algorithm. Unlike the RL algorithm, to measure
the prediction accuracy of the Markov process-based learning algorithm for each
combination of channels we need to run the algorithm only once. In other words,
averaging the prediction accuracy results over a number of independent simulations
is not required because the prediction accuracy of the Markov process-based learning
algorithm over the same test set having the same training set will always be the same.

The data set is recorded over 12 h and it consists of 25000 samples. We train the
Markov process-based algorithm over the first 1000 data samples (∼first 30 min)
and test it over the remaining 24000 samples. At each time slot the algorithm either
selects the channel with the highest predicted probability of being free, or predicts
that all the channels are busy.

Figures 2.4, 2.5 show the probability of success as a function of average LZ com-
plexity and the probability of at least one free channel existing. We use the same data
sets that we have used for measuring the performance of the Q-learning algorithm,
and we compute the probability of success over all possible combinations of existing
channels in the dataset for N = 4.
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Fig. 2.3 ISM band (indoor), TCD dataset. Probability of success of Q-learning as a function of
the average LZ complexity and the probability of at least one free channel existing. Each point
represents a particular instance of Q-learning applied to N = 3 channels. The total number of
possible combinations which we analyzed is

(17
3

) = 680, where 17 is the number of channels with
DC ∈ [0.3, 0.8]

0.88 0.9 0.92 0.94 0.96 0.98
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

p
f

A
ve

ra
ge

 L
em

pl
e−

Z
iv

 c
om

pl
ex

ity

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Psuc

Fig. 2.4 ISM band (outdoor), RWTH Aachen dataset. Probability of success of Markov process-
based learning algorithm as a function of the average LZ complexity and the probability of at least
one free channel existing. Each point represents a particular instance of the algorithm applied to
N = 4 channels. The total number of possible combinations which we analyzed is

(15
4

) = 1365,
where 15 is the number of channels with DC ∈ [0.3, 0.8]

Similar to the Q-learning algorithm results, in Figs. 2.4, 2.5, we see that the prob-
ability of success using Markov process-based learning algorithm increases with p f

and it also strongly depends on the complexity of the PU behavior. In these two
figures we again observe the same phenomenon. For any given p f , the probability
of success has an inverse relation with the average LZ complexity, i.e., when the PU
behavior is more complex the probability of success reduces and vice versa.

In Fig. 2.6, we apply the Markov process-based learning algorithm to the data
collected from DECT band. For the DECT band, the average LZ complexity is
always greater than 0.93. Accordingly, the probability of success is only moderate.
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Fig. 2.5 GSM1800 band (outdoor), RWTH Aachen dataset. Probability of success of Markov
process-based learning algorithm as a function of the average LZ complexity and the probability of
at least one free channel existing. Each point represents a particular instance of Markov process-
based learning algorithm applied to N = 4 channels. The total number of possible combinations
which we analyzed is

(15
4

) = 1365, where 15 is the number of channels with DC ∈ [0.3, 0.8]
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Fig. 2.6 DECT band (indoor), RWTH Aachen dataset. Probability of success of Markov process-
based learning algorithm as a function of the average LZ complexity and the probability of at least
one free channel existing. Each point represents a particular instance of Markov process-based
learning algorithm applied to N = 4 channels. The total number of possible combinations which
we analyzed is

(10
4

) = 210, where 10 is the number of channels with DC ∈ [0.3, 0.8]

From the above results, we can conclude that, if possible, it is more beneficial to
observe channels (and frequency bands) with higher probability of being free and
lower complexity for opportunistic access.
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2.6 Conclusions

In this chapter, we presented two learning algorithms that are used to predict the avail-
ability of a channel. Moreover, we analyzed the probability of success in finding an
unoccupied channel for these algorithms. Our findings show that the performance of
both algorithms strongly depends on the behavior of PUs. This means that, although
the duty cycle of a channel is the metric usually taken into the account in previous
works on learning algorithms applied to DCS, the complexity of PU behavior plays
an equally important role.

We also showed that both learning algorithms performed similarly. Both algo-
rithms performed the same for the combinations of channels with high probability of
success, while the Markov process-based learning algorithm performed better on the
channel combinations with low probability of success. The additional observed chan-
nel on Markov process-based scenarios might be the reason of its better performance
on low quality channel combinations.
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Chapter 3
Analysis and Optimization of Energy Detection
for Non-Flat Spectral Characteristics

Sener Dikmese, Tero Ihalainen and Markku Renfors

3.1 Introduction

Spectrum sensing is one of the key elements of cognitive radio (CR) systems. Among
various alternative spectrum sensing algorithms energy detection, also known as
radiometer, is the most widely considered one. In spite of its shortcomings, notably its
sensitivity to the uncertainty of the sensing receiver noise level, it is widely considered
as a useful tool in cognitive radio and various other applications of radio scene
analysis. Most of the studies on energy detection utilize a simplistic signal model,
where the whole frequency band under sensing contains either noise only or noise
plus a primary user (PU) signal, both with constant power spectral density (PSD). In
practice, the sensing receiver has non-ideal frequency response, the transmitted PSD
is not flat, the frequency-selective multipath channel has an effect on the received
PU PSD, and the sensing window does not necessarily coincide with the frequency
channel and time period of the PU transmission. The purpose of this chapter is to
investigate the effects of these deviations from the basic model on the energy detector
performance.

Energy detection is commonly formulated as a Neyman-Pearson type binary
hypothesis testing problem, which is governed by probability distributions of the
chi-square or gamma type [1, 2]. This model has also been extended to Nakagami
and Rayleigh fading channels in [3]. Elaborating this model in the intended direc-
tion leads to elaborate analytical formulations, employing generalized forms of the
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chi-square distribution. Instead of trying this, we utilize the widely used approach of
Gaussian approximation of the actual probability distribution functions (PDFs) of the
decision statistic [4]. This will be seen to lead to relatively simple and intuitive mod-
els for the considered energy detection problems. The results are validated through
computer simulation based experimental results, showing clearly better agreement
with the developed models than with the simplistic models where the frequency
dependency is ignored. Similar methods have been recently used, for example, for
analyzing linear cooperative spectrum sensing [5–7].

This chapter is organized as follows. Section 3.2 introduces briefly the basic energy
detection model, as well as the idea of wideband, multi-mode spectrum sensing
utilizing fast Fourier transform (FFT) or analysis filter bank for spectrum analysis.
Then in Sect. 3.3, the effects of various forms of frequency dependency in energy
detection are analyzed. First, the effect of non-ideal frequency response of the sensing
receiver is analyzed and a simple metric for characterizing the effect is presented.
Next, we address the case where the sensing window in time-frequency plane includes
both zones where the PU signal is present and zones where it is absent, leading to
mixed decision statistic. This model has applications in the detection of a reappearing
PU during secondary transmission, as well as in spectrum sensing in situations where
the frequency range of the PU signal is unknown. Moving-average processing is
proposed as an effective way of handling these situations. Finally, the case of non-
flat primary user spectrum is addressed, considering both the effects of non-flat
transmitted PU spectrum and channel frequency selectivity.

3.2 Basic Energy Detection Schemes

3.2.1 Analytical Model

We start with the very basic spectrum sensing problem setting, which can be formu-
lated as a binary hypothesis testing problem [1, 2]:

H0 : y[n] = w[n]
H1 : y[n] = sPU [n] + w[n]. (3.1)

Here y[n] is the signal observed by the sensing receiver. Under hypothesis H0, i.e.,
in the absence of the primary user, it consists only of zero-mean, complex, circularly
symmetric, wide-sense stationary white (uncorrelated) Gaussian noise w[n]. Under
hypothesis H1 the PU signal sPU[n] is present, along with the channel noise, and
also the PU signal is modeled as as zero-mean, complex, circularly symmetric, wide-
sense stationary white Gaussian sequence. In energy detection, the test statistic is
obtained as

T (y) = 1

N

N−1∑

n=0

∣
∣y[n]∣∣2

, (3.2)
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Fig. 3.1 Illustration of the binary hypothesis testing problem assuming Gaussian approximation
of the test statistic. Also examples of experimental probability distributions are shown

where N is the length of the observation sequence, referred to as sample complexity.
For tractability of the later developments, we adopt the Gaussian approximation for
the probability distributions [4]:

T (y)|H0 ∗ N
(
σ 2

n , 1
N σ 4

n

)

T (y)|H1 ∗ N
(
σ 2

PU + σ 2
n , 1

N (σ 2
PU + σ 2

n )2
)
.

(3.3)

Here σ 2
PU and σ 2

n are the variances of the PU signal and noise sequences, respectively.
The hypothesis testing problem is illustrated in Fig. 3.1. The false alarm probability
PFA and detection probability PD , can be expressed as:

PFA = Pr(T (y) > λ|H0) = Q

(
λ − σ 2

n√
σ 4

n /N

)
(3.4)

PD = Pr(T (y) > λ|H1) = Q

(
λ − (σ 2

n + σ 2
PU)

√
(σ 2

n + σ 2
PU)

2
/N

)
, (3.5)

where Q(·) is the standard Gaussian complementary cumulative distribution
function. The PU signal variance cannot be assumed to be known due to the unknown
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channel characteristics. Hence, the threshold value, λ, is commonly calculated based
on the assumed noise variance and targeted false alarm probability as follows:

λ = Q−1(PFA)

√
σ 4

n /N + σ 2
n . (3.6)

The sample complexity N is chosen in such a way that the missed detection prob-
ability, PMD = 1 − PD , becomes small enough for the minimum PU power level
expected to be detectable.

We make use of the equations in [4], that relate the sample complexity to PFA,
PMD, and the operating SNR = σ 2

PU/σ 2
n . In case there is no uncertainty and the noise

variance is completely known, the required sensing time in samples, N̂ , to achieve
target PFA and PMD writes:

N̂ =
[
Q−1(PFA) − Q−1(1 − PMD)(1 + SNR)

]2

SNR2 . (3.7)

On the other hand, when the energy detector is assumed to operate under a noise
level uncertainty of x = ±10log10ρ dB, the sample complexity can be approximated
[4] according to

N̂ ∈
[
Q−1(PFA) − Q−1(1 − PMD)

]2

[
SNR − (ρ − 1

ρ
)
]2 . (3.8)

This introduces the so-called SNR wall: For example, with 0.1 dB uncertainty of
the noise variance, the sensing time grows without limits when the SNR approaches
−13.3 dB. An experimental study of the effects of noise uncertainty can be found
in [8]. The noise power estimation problem is addressed in [9], indicating ways to
mitigate the SNR wall effects.

3.2.2 FFT and Filter Bank Based Flexible Schemes for Multiband
Sensing

Most of the latest broadband wireless systems are based on multicarrier modu-
lation. Especially, cyclic prefix based orthogonal frequency division multiplexing
(CP-OFDM) techniques are characterized by simplicity and robustness of the receiver
signal processing functions. However, alternative multicarrier techniques have been
considered increasingly in the recent developments. Especially, filter bank multi-
carrier (FBMC) techniques have been shown to have various potential benefits in
the cognitive radio context [10, 11]. When considering multicarrier techniques for
CR, we can make use of the existing signal processing blocks (the FFT of an OFDM
receiver or the analysis filter bank (AFB) of an FBMC receiver) for spectrum sensing
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Fig. 3.2 Block diagram for energy detection with FFT/AFB based spectrum analysis

purposes. A block diagram for FFT or AFB based energy detection algorithms with
weighting process (to be discussed in Sect. 3.3) is shown in Fig. 3.2.

The main benefits of FBMC waveforms over OFDM include good spectral local-
ization of the transmitted signal spectrum, as well as high frequency selectivity of
receiver signal processing. These characteristics help to improve the interference
control especially in scenarios where the users are not precisely synchronized with
each other. From the spectrum sensing point of view, the benefits of AFB are promi-
nent in high-dynamic-range scenarios, i.e., when performing spectrum sensing in
the presence of strong transmissions at nearby frequencies. In these cases, the spec-
trum leakage of basic FFT processing degrades the sensing performance significantly
[10–12]. However, in the considerations of this chapter the differences between FFT
and AFB based methods are not essential.

We focus here on spectrum sensing in a wideband multichannel receiver, where
energy detection is carried out at subband level at the output of an FFT or AFB, which
is used for splitting the received signal into relatively narrow signal bands. The output
of these blocks is expressed as yk[m] where k = 0, . . . , K − 1 is the subband index
and m is the subband sample index. Typically, the sampling rate of the subbands is
equal to the analog-to-digital converter (ADC) sampling rate divided by the number
of subbands in the filter bank, K , in which case the system is critically-sampled.
In case of FBMC/OQAM (offset quadrature amplitude modulation) [13, 14], 2x
oversampling of the subband signals is also commonly considered. In the spectrum
sensing context, the subband signals can be expressed as

yk[m] = wk[m] H0 (3.9a)

yk[m] = sk[m] + wk[m] H1. (3.9b)

Here sk[m] is the transmitted signal by a primary user as it is present at the mth
FFT or AFB output sample in subband k, and wk[m] is the corresponding noise
sample. When additive white Gaussian noise (AWGN) only is present, the noise in
each subband is modeled as a zero-mean Gaussian random variable with variance
σ 2

n , i.e., wk[m] ∗ N (0, σ 2
n ). The PU signal can also be modeled as a zero-mean

Gaussian variable sk[m] ∗ N (0, σ 2
k ) where, σ 2

k is the PU signal variance (power)
in subband k.

The subband-wise test statistics can be obtained in the same way as in Eq. (3.2).
However, it is possible to calculate the test statistic over multiple subbands and over
a certain subband sample interval:
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Fig. 3.3 Illustration of different integration zones in time-frequency plane

T (ym0,k0) = 1

Nt N f

k0+→N f /2∞−1∑

k=k0−≥N f /2≈

m0∑

m=m0−Nt +1

|yk[m]|2. (3.10)

Here N f and Nt are the averaging filter lengths in frequency and time, respectively.
It follows from Parseval’s theorem that for a spectral component fully covered by
the subband integration range, FFT based subband integration and full-band time-
domain integration over the same time interval give the same decision statistic. In
this case N = N f Nt . The same applies also to critically-sampled orthogonal filter
banks. Assuming that the PU spectrum is flat over the sensing band, the probability
distribution of the decision statistic can be modeled as follows:

T (ym0,k0)|H0 ∗ N
(
σ 2

n ,
1

Nt N f
σ 4

n

)
(3.11a)

T (ym0,k0)|H1 ∗ N
(
σ 2

PU + σ 2
n ,

1

Nt N f
(σ 2

PU + σ 2
n )2

)
. (3.11b)

The threshold value λ can be obtained from Eq. (3.6) with N = N f Nt and the false
alarm probability can be obtained from Eq. (3.4).

FFT/AFB processing makes it possible to tune the sensing frequency band to the
expected band of the PU signal, as well as sensing multiple PU bands simultaneously.
Figure 3.3 illustrates the tradeoffs in choosing the integration range in the time-
frequency plane.
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In a cognitive radio system, spectrum sensing is needed both for initial sensing
for a transmission opportunity, as well as for monitoring of the spectrum during SU
system operation, in order to detect rapidly a possible reappearing PU. Multicar-
rier transmission techniques have a high commonality of receiver processing and
spectrum sensing as selected time-frequency zones can be left unused for spectral
monitoring purposes, while data transmission continues on the others [15].

3.3 Energy Detection in the Presence of Frequency Variability

Our target in this section is to develop tractable models for energy detection in cases
where the PU signal and/or noise are not white within the sensing frequency band.
The spectrum of the PU signal part is determined by the spectrum of the transmitted
waveform, channel frequency response and the sensing receiver filter, whereas the
spectrum of the channel noise depends on the receiver filter frequency response only.
First, a generic analytic model for the decision statistic is developed. This model is
then applied for different scenarios in later sections.

3.3.1 Analytical Modeling

We start with a basic setup where a complex, zero-mean, wide-sense stationary,
non-white Gaussian distributed signal y[n] with variance σ 2

y is entering an energy
detector. The goal is to derive the mean and variance of the test statistic calculated
according to Eq. (3.2). Our approach is based on splitting signal y[n] to K approxi-
mately frequency-flat subbands using FFT or orthogonal AFB. Then the test statistics
calculated directly for y[n] and from the subband samples yk[m], k = 0, . . . , K −1,
m = m0, . . . , m0 + N/K − 1 (assuming that N is an integer multiple of K ) are the
same.

Now the subband sample sequences can be assumed to be independent and each
of them is wide-sense stationary, zero-mean, and can be assumed to be white with
variance σ 2

yk
. The overall test statistic is obtained as a combination of the subband-

wise test statistics. If we use Gaussian approximation for the subband-wise test
statistics, then the overall test statistic can be interpreted as a linear combination of
Gaussian variables. Its mean and variance can be expressed as:
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Table 3.1 Theoretical versus experimental β-values

Theoretical β Experimental β

SNR = 0 dB SNR = −6 dB SNR = −99 dB

FIR1 1.24 1.15 1.22 1.24
FIR2 1.57 1.48 1.56 1.57
ITU-R Veh A channel 1 1.31 1.14 1.28 1.31
ITU-R Veh A channel 2 2.38 2.18 2.33 2.36

μT (y) = 1

K

K−1∑

k=0

μT (yk ) = 1

K

K−1∑

k=0

σ 2
yk

= σ 2
y (3.12a)

σ 2
T (y) = 1

K 2

K−1∑

k=0

σ 2
T (yk )

= 1

K 2

K−1∑

k=0

1

N/K
σ 4

yk
= 1

NK

K−1∑

k=0

σ 4
yk

= 1

N
σ 4

y · 1

K

K−1∑

k=0

(σyk

σy

)4
. (3.12b)

Based on the Central Limit Theorem [1], the true distribution approaches the
Gaussian approximation when the number of subband samples grows.

We can express the distribution of the test statistic as

T (y) ∗ N
(
σ 2

y ,
β

N
σ 4

y

)
(3.13)

where

β = 1

K

K−1∑

k=0

(σyk

σy

)4
. (3.14)

From this formulation, we can see that the value of β characterizes the effect
of non-flat signal spectrum on the required sample complexity for reaching certain
level of test statistic variance. Clearly, the minimum value of β is one, so the required
sample complexity is minimized when the signal is white.

Table 3.1 shows a comparison of the theoretical β-values versus experimental
β-values in example cases, including finite impulse response (FIR) filters and fre-
quency selective channel responses. The experimental β-values are obtained as the
ratio of the simulated test statistic variance to the theoretical test statistic variance
without frequency dependency. The simulated variances are calculated from 100000
simulation instances with the same filter or channel frequency response but indepen-
dent 16-QAM-modulated data sequences and noise sequences, using 1k FFT length
and sample complexity of 1000 samples.

The FIR filters are two cases of the decimation-by-2 filters considered in
Sect. 3.3.2, one with order 10 and β = 1.57, the other with order 19 and β = 1.24.
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The used channel model is ITU-R Vehicular A model with 30.72 MHz sampling
rate and 78 taps. Two different channel instances are shown in Table 3.1. Check-
ing 100000 independent channel instances, the range of theoretical β-values was
[1.13, 2.47] and in 90 % of the cases it is in the range [1.47, 1.99]. A general obser-
vation from Table 3.1 is that for white Gaussian input signal (the SNR = −99 dB
case), the developed theoretical model applies quite well in the considered cases.
The PU signal is modeled as 16-QAM signal, which does not follow the Gaussian
distribution. For the 0 dB SNR, the experimental β-value is significantly smaller
than the theoretical one, i.e., the theoretical model is pessimistic in terms of sensing
performance. With SNR = −6 dB, the match is already rather good.

3.3.2 Effects of the Frequency Response of Sensing Receiver

Here we focus on analyzing the effects of non-ideal sensing receiver frequency
response on the performance of energy detection. Any practical receiver would
include a chain of multiple filtering stages, but for clarity of discussion, we assume
a single stage model, referred to as sensing filter. Depending on the relative band-
widths of the PU signal and sensing filter, different scenarios need to be considered.
Throughout this section, we assume an idealized model where the channel noise is
white and PU signals have ideally band-limited spectra, i.e., constant power spectrum
in the passband and stepwise transition bands.

3.3.2.1 Partial Band Sensing

The most simple situation to analyze is the case where both the noise and PU signal
are white in the considered sensing band. This would be applicable, for example,
for the case where a relatively narrow frequency slot between active SUs is used for
spectrum monitoring. We assume that the signal power level is scaled to be constant
under different choices of the sensing filter.

Now the sensing filter frequency response affects the observed signal in the same
way under H0 and H1. More precisely, the variances of the test statistics are affected
by the same factor β, while the means of the test statistic are not affected. Then the
sample complexity needs to be increased by the factor of β to compensate the effects
of the sensing filter.

Let us assume that after down-conversion by the receiver front-end, the sensing
frequency band is located in the angular frequency range [−ωc, ωc]. Then the ideal
solution would be an ideal lowpass filter with cut-off frequency of ωc. FFT or AFB
processing can be used for approximating well such an ideal sensing filter. On the
other hand, we can use the subband model as a tool for analyzing and optimizing basic
time-domain sensing filter designs. Using the developed model, we can evaluate the
impact of practical filter design on the required sample complexity, trying to find
a good compromise between the filter complexity and sensing performance. Let us
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assume that Fk , k = 0, . . . , K − 1 are uniformly spaced samples of the amplitude
response of the sensing filter in the range [−ωc, ωc]. To normalize the signal variance,
we assume that

K−1∑

k=0

F2
k = K . (3.15)

Then we obtain:

β = 1

K

K−1∑

k=0

F4
k . (3.16)

As an example, we consider how the β-value depends on the filter order and
frequency response parameters when using linear-phase FIR filters designed using
the Parks-McClellan algorithm, i.e., equiripple passband and stopband. We assume
that the sensing bandwidth is half of the sampling rate, i.e., ωc = π/2 and that
40 dB stopband attenuation is required to suppress the spectral components outside
the sensing band to a level which does not effect the sensing performance. Figure 3.4
shows the results for three cases: (i) ±0.1 dB passband ripple, (ii) ±1 dB passband
ripple, (iii) optimized case. The optimized case is found by exhaustive search covering
different combinations of passband edge frequency and passband ripple. We can see
that for low filter orders, the sensing performance is rather sensitive to the filter
design.

As another example, we consider subband-wise sensing using an AFB. In [15] the
idea of using narrow sensing subbands interlaced with data subcarriers was proposed
for spectrum monitoring purposes. In FBMC/OQAM with typical spectrally well-
contained prototype filter design, a group of three unused subcarriers provides an
empty gap of two subcarrier spacings between active groups of secondary users’
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data carriers, as shown in Fig. 3.5. Then the center subband can be used for spectrum
sensing during data reception without interference from adjacent groups of active
data subcarriers. Figure 3.6 shows the frequency response of the PHYDYAS filter
bank prototype filter [13, 16] in relation to the response of an ideal lowpass filter with
the same subchannel spacing. This prototype response is the baseband equivalent of
all subband filters of the FBMC receiver. Since the filter response is far from the
ideal one, it is important to examine its effect on the spectrum sensing performance.

In the FBMC/OQAM receiver, subchannel processing (e.g., fractionally-spaced
equalization / frequency domain fine synchronization) is carried out at 2x oversam-
pled rate [13, 16]. In other words, complex-valued subchannel samples are processed
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instead of the real-valued ones, which are finally sufficient for data reception at the
end of the subchannel processing chain. In the spectrum sensing context, it is interest-
ing to evaluate the possible benefit from using oversampled subband signals instead
of critically-sampled ones.

We assume that both the noise and PU signal power spectra are flat withing the
sensing gap. Let’s start with the case of ideally lowpass filtered and critically-sampled
subband signals. In this case we obtain Nt independent uncorrelated observations per
subband. The same applies also to the critically-sampled AFB subband observations,
as the subband filter is of the root-raised cosine (RRC) type.

In case of 2x oversampled subband signals, and ideal sensing filter would have
double bandwidth comparing with the critically-sampled case and the sample com-
plexity would be doubled as well. In order to analyze the effect of non-ideal subband
filter, we can apply the model developed above. By sampling the subband frequency
response at K uniformly spaced frequencies, we can calculate using Eq. (3.16) that
for the subband filter β = 1.646. This means that the required sample complexity
using the oversampled subband sequence is about 1.65 times higher than when using
an ideal filter with 2x oversampling. On the other hand, the required sample complex-
ity with oversampled subband signal is 0.82 times the required sample complexity
with critically-sampled subband signal [17]. It is clear that the use of oversampled
subband sequences provides significant benefit only in single subband wide sens-
ing, and possibly also in edge subcarriers when the integration range includes a few
subcarriers.

This analysis has been validated experimentally, through simulation based com-
plementary receiver operation characteristic (CROC) plots shown in Fig. 3.7.
A CROC plot represents the detection probability, PD , as a function of PFA. We
can see that the experimental data, obtained from an FBMC test-bed (with PHY-
DYAS prototype filter) exploiting sensing subband based energy detection, matches
quite well with the analytical model (β = 0.82), much better than with the simplistic
basic model with β = 1.

3.3.2.2 Band Edge Detection and Transmission Burst Detection

Typically, it is assumed that the center frequency and the bandwidth of the PU signal
are known. Further, it is commonly assumed that the PU is either absent or active
during the whole sensing interval used for constructing the test statistic. In practice, it
may happen that the PU becomes active during the measurement period (reappearing
PU) [18], or the sensing frequency band does not match the frequency band of the
PU signal. In such cases, only some fraction of the integration window matches the
time-frequency zone of the PU activity. Such a transient phase, in time or frequency
direction, and the related test statistic distributions are illustrated in Fig. 3.8 [15].

The distribution of the transient phase test statistic, T (y)
∣∣
TR , can be derived as

follows. The integration window can virtually be split into two distinct sub-windows
such that one of them contains only those observation samples before PU becomes
active (N − N1 samples; see Fig. 3.8) while the other one contains the rest N1
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samples. The distributions corresponding to the sample subsets within these virtual

sub-windows write N
(
σ 2

n , 1
N−N1

σ 4
n

)
and N

(
σ 2

PU + σ 2
n , 1

N1
(σ 2

PU + σ 2
n )2

)
, respec-

tively. The overall sequence of N samples can be interpreted as a linear combination
of these independent normal random variables using relative weights of N−N1

N and
N1
N , respectively. Next, by making use of the following property of the normal dis-

tribution: given

{
X1 ∗ N (μ1, σ

2
1 )

X2 ∗ N (μ2, σ
2
2 )

⇒ aX1 + bX2 ∗ N (aμ1 + bμ2, a2σ 2
1 + b2σ 2

2 )

(3.17)

we obtain an expression for the mixture-distribution as

T (y)
∣∣
TR ∗ N

(
σ 2

n + N1

N
σ 2

PU,
1

N

(
(1 − N1

N
)σ 4

n + N1

N
(σ 2

PU + σ 2
n )2

))
. (3.18)

Figure 3.9 shows that the developed model matches quite well with experimental
transient phase energy detection performance. One effective way to handle such
transient situations (i.e., unknown PU channel band edges and/or transmission burst
timing) is moving average filtering. In FFT or AFB based energy detection, moving
average processing can be carried out in time and/or frequency direction to locate
the PU transmission in time or frequency.
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3.3.3 Effects of Non-Flat Primary User Spectrum

3.3.3.1 Generic Analysis

In the flexible multiband sensing scheme of Fig. 3.2, after the receiver front-end
and ADC, FFT or AFB is used to split the signal into relatively narrow subbands.
Depending on the bandwidth of the candidate PU signal, a number of consecutive
subbands is combined in the sensing process, possibly after weighting to optimize
the energy detection performance for non-flat PU signals. Two different ideas are
applied for the weighting process. (i) Constant weights are optimal for a PU signal
with flat power spectrum, and they may provide a good approximation also for a non-
flat spectrum, if the number of subbands is selected properly. This is also a natural
choice if there is no prior information about the PU spectrum. (ii) Optimized weights
can be found if there is prior information about the PU power spectrum. Naturally, a
frequency selective channel has an effect on the spectrum of the received signal, and
the channel cannot be assumed to be known. If the channel can be assumed to be flat
fading, then the power spectrum of the received signal has the same shape as that of
the transmitted signal, and weighting process can be used. Even in case of frequency
selective channel, weights derived from the transmitted spectrum give some gain in
average performance according to the simulation results.

Under both H0 and H1 the decision statistic is approximated as a sum of inde-
pendent Gaussian variables with different variances, and the resulting distributions
can again be assumed to be Gaussian with zero mean. Hence the probability distri-
bution of the decision statistic Tκ for center frequency κ can be written for arbitrary
weighting coefficients as

f (Tκ)|H0
∗ N

⎛

⎝
κ+N f∑

k=κ−N f

w2
kσ

2
n , 1

N

κ+N f∑

k=κ−N f

w4
kσ

4
n

⎞

⎠

f (Tκ)|H1
∗ N

⎛
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κ+N f∑

k=κ−N f

w2
k(σ

2
k + σ 2

n ), 1
N

κ+N f∑

k=κ−N f

w4
k(σ

2
k + σ 2

n )2

⎞

⎠ .

(3.19)

Here N = Nt N f is the overall sample complexity, as in Sect. 3.2.2. To simplify
the notation, we assume that the window size in frequency direction is odd, N f =
2N f + 1. The integration in frequency direction takes the weighted average of the
time filter outputs, with the weight value wk for subband k. The PU signal power in
subband k is denoted by σ 2

k . Next we address the problem of optimizing the subband
weights.
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For arbitrary weight values, the false alarm probability PFA is formulated as [12]

PFA = Q

⎛
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When the signal is present, probability of detection PD with arbitrary weight
values can be expressed as

PD = Q
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The threshold value λ can be calculated as

λ = Q−1
(

PD
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(3.22)

Here SNRk = σ 2
k /σ 2

n . To obtain the optimum threshold value λ, it is required
to have the knowledge of the noise power and subband powers of the primary sig-
nal. Then the required sample complexity for given detection probability can be
calculated as

N̂ =
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In practice, the required time record length Nt is determined based on the targeted
minimum detectable PU power level. When using optimum weighting coefficients,
the frequency block length N f should be chosen to include all subbands which essen-
tially contribute to the decision statistics. Including extra subbands adds complexity
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but should not harm the sensing performance, because the corresponding weights
become small.

Assuming that the weights are normalized for constant noise power level (i.e.,∑
w2

i = 1), and taking partial derivatives of Eq. (3.23) with respect to the weights,
the optimum weight values can be obtained as:

wk
2 = 1

κ+N f∑

k=κ−N f

σ 2
k

σk
2 = σ 2

k

σ 2
PU

. (3.24)

where σ 2
PU is the total power of the PU signal.

It is not a surprise that this solution can be seen as an approximation of matched
filtering [19] in the sense that squared magnitude response of the sensing filter is
approximately the same as the transmitted power spectrum [8]. Alternatively, this
can be seen as maximum ratio combining of statistically independent variables. Both
models result in the maximization of the SNR in the presence of PU.

It is interesting to consider the gain of using optimum weights instead of con-
stant weights, which would be a conceptually simpler approach, even though the
difference in implementation complexity is minor. In case of constant weights, it is
important to choose optimum number of subbands. Subbands with small PU power
level contribute to the noise variance under H0, but might actually reduce the SNR
under H1, thus reducing the sensing performance. Given the PSD of the PU, the
optimum number of subbands can be found numerically based on Eq. (3.23) for
target values of PFA, PD , and PU SNR.

3.3.3.2 Bluetooth Case

Frequency selective channel has to be assumed in most of the practical wireless com-
munication scenarios, and in those cases, knowledge of the received PU signal power
spectrum cannot be assumed. However, for certain short-range and/or narrowband
cases, flat-fading channel model is commonly assumed. Bluetooth is one important
example of such systems [20].

The ISM band around 2.4 GHz is an unlicensed frequency band which is utilized
by various applications, including 802.15 based Bluetooth (BT) devices, cordless
phones, WLAN signals, and even microwave ovens introduce interferences on cer-
tain part of this band. The frequency hopped frequency shift keying (FH-FSK) -based
802.15 Bluetooth signal has 79 different frequency channels at center frequencies
starting from 2.402 GHz and ending at 2.480 GHz, with 1 MHz spacing. The nominal
bandwidth of BT signal is 1 MHz and the hopping rate is 1600 hops/sec. We con-
sider first a simplified scheme with continuous BT signal at the 33rd channel. The
corresponding BT signal spectrum can be seen in Fig. 3.10.

In the following, we consider the performance of the multiband spectrum sensing
scheme with weighting process to sense a BT signal and spectral holes. Assuming
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challenging spectrum sensing scenario with low SNR (negative in dBs), the spectral
dynamic range is very small, and there are hardly any differences between FFT and
AFB. Therefore, we show the results only for FFT. We assume 83.5 MHz sampling
rate and 1024 subbands covering the ISM band. For 1 MHz sensing bandwidth of the
Bluetooth signal, the sensing window consists of 11 subbands. In this example, we
target at −5 dB SNR in spectrum sensing, false alarm probability of 0.1 and detection
probability of 90 %.

With a simplified, non-frequency-selective model, the required sample complexity
for the target SNR, PD and PFA is obtained from Eq. (3.7) as N̂ = 89. If the BT
power was equally distributed within the 11 subbands, 8 samples from each of these
subbands would almost reach the target. When using just the center subband for
sensing, 89 is a lower bound for the time record length. Table 3.2 shows the number of
required subband samples needed with the BT signal for different sensing bandwidths
and with optimized and constant weights. For instance, when the optimum weight
values are used for all 11 subbands of the Bluetooth signal, the required number of
subband samples is calculated as 45, which corresponds to a lower time record length
than the hoping interval (50 samples). Since most of the BT energy is concentrated
on the center subbands, we may consider using only 3 or 5 subbands in sensing (0.25
or 0.42 MHz bandwidth, respectively), and the corresponding results are also seen
in Table 3.2, both with optimum weighting and constant weights.

We can see that almost the same time record length can be used when sensing a
single subband at the BT center frequency as when sensing the whole 1 MHz BT band
with constant weights. With constant weights, 3 subbands is the optimum choice for
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Table 3.2 Required time record length in subband samples for different weighting schemes in
bluetooth sensing

Bluetooth SNR (dB) Weight factors 11 subbands 5 subbands 3 subbands 1 subband

0 Constant 12 8 8 15
Optimum 7 7 8

−3 Constant 39 25 23 41
Optimum 21 21 23

−4 Constant 60 37 34 60
Optimum 31 31 33

−5 Constant 92 56 51 89
Optimum 45 46 49

−6 Constant 143 84 77 132
Optimum 68 69 73

−7 Constant 223 131 117 200
Optimum 104 105 111

all the considered SNR values. Using optimum weights, the sensing time can be
reduced by about 10 %, and most of this benefit is gained by using only 5 subbands.

3.3.3.3 Simulation Results

Figure 3.11 shows the Receiver Operating Characteristic (ROC) curves in Bluetooth
sensing for analytic and FFT based simulation models with constant weight values
and optimum weight values. The time record length is chosen as 50 samples, due to the
hopping limit corresponding to approximately 625µs. The simulated performance is
slightly worse than the analytical model. This is probably due to the poor frequency
localization of FFT based spectrum analysis. To compensate the difference, the time
record length should be increased by about 10 %. But we are still able to reach false
alarm and detection probabilities of 0.1 and 0.9 at −5 dB SNR with 50 samples.

Figure 3.12 shows the detection probability with constant and optimum weight
values as a function of the active Bluetooth SNR for AWGN channel. The time record
length is again 50 samples and the desired false alarm and detection probabilities are
chosen as 0.1 and 0.9, respectively. The constant weight case uses 3 subbands, which
provides the best detection probability performance. With optimum weight values
using 11 subbands, the highest detection probability performance is achieved again,
but the benefit over the constant weight case is marginal. In this low dynamic range
case, there is no big difference in detection probability between FFT and AFB.

3.3.3.4 Moving Average Processing for Bluetooth

In the previous discussion we have ignored the frequency hopping characteristic of
the BT system. One critical issue is that if the time record for calculating the decision
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Fig. 3.11 ROC curves in Bluetooth sensing with time record length of 50 samples for constant
weights (upper) and optimum weights (lower)

statistic is not aligned with the received BT burst, the detection performance will be
greatly degraded, as discussed in Sect. 3.3.2.2. To avoid this problem, we can use
the moving average (recursive running sum) approach in calculating the decision
statistic.
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3.3.4 Effects of Fading Frequency Selective Channel

Most of the spectrum sensing publications, and also this report so far, have focused
on the AWGN channel case. However, in most cognitive radio scenarios, the channel
is frequency selective and fading. Next we discuss briefly about these issues.

The previous models based on Gaussian approximation of the PDF’s can be
extended to this situation as follows:

T (y)|H0 ∗ N
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σ 2
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Nt N f
σ 4

n

)
(3.25a)
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Here SNR = σ 2
PU/σ 2

n is the overall PU SNR and SNRk = σ 2
k /σ 2

n are the subband-wise
SNR’s. Fk , k = 1, . . . , N f are the channel amplitude responses of the subbands
satisfying

N f∑

l=1

F2
k = N f . (3.27)

This condition basically means that the received PU signal power is assumed to be
constant. In general, since spectrum sensing is commonly assumed to operate with
low PU SNRs, and since the channel frequency response affects only the variance
of the decision statistic under H1, the effect of the frequency selective channel on
the energy detection performance is minor. We can extend the numerical results
of Sect. 3.3.1 by calculating the βch-values for the ITU-R Vehicular A channel.
Recalling that the theoretical β-values are in the range [1.13, 2.47], the corresponding
range of βch-values is [1.03, 1.37] for 0 dB SNR and [1.01, 1.06] for −6 dB SNR.

In conclusion, we can say that the effect of channel frequency selectivity on
spectrum sensing with clearly negative SNR’s is in practice very small, and the
sensing performance is determined by the temporal variations of the received PU
signal power, i.e., the channel fading characteristics [3].

3.4 Concluding Remarks

We have explored the effects of different forms of frequency selectivity on energy
detection performance. Using a generic Gaussian approximation based model, we
first developed a simple metric for evaluating the effect of the sensing receiver fre-
quency response on the required time record length. This metric can be used for
optimizing the sensing filter, but the development of effective procedures for this
purpose are left as topics for future studies. Next, we considered the effect of mis-
aligned time-sensing window on the decision statistics and proposed moving average
processing as a way to search for the best match in cases where the frequency range
or burst timing of the PU signal is not known by the sensing receiver. Then we
addressed the problem of known, non-flat PU spectrum, considering Bluetooth as an
example case. Optimum weights were derived for FFT or filter bank based sensing
where the PU signal band is divided into approximatively flat subbands. However,
it was concluded that the use of constant weights is practically as good, if the range
of subbands is chosen properly. Finally, the effect of stationary frequency selective
channel was analyzed. It was found out that with typical PU SNRs, clearly negative
in dB scale, the frequency selectivity has a minor effect on the sensing performance,
while the energy detection performance is primarily determined by the temporal
variations of the total received signal power.
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Chapter 4
Spectrum Sensing Algorithms for Cognitive TV
White-Spaces Systems

Daniel Riviello, Sergio Benco, Floriana Loredana Crespi, Andrea Ghittino,
Roberto Garello and Alberto Perotti

Abstract This chapter describes a set of spectrum sensing algorithms to be employed
for the detection of Ortogonal Frequency Division Multiplexing transmissions in the
TV bands (470–790 MHz), like DVB-T signals. Spectrum sensing techniques take
a crucial role to support geo-referenced TV White-Spaces (TVWS) databases and
to maintain them up-to-date over time. When considering a single-antenna spec-
trum sensing unit, very effective methods for detecting OFDM signals are based on
DVB-T cyclic prefix and pilot pattern feature detection. Starting from these, further
improvements can be obtained using multi-antenna techniques. This chapter shows
performance analysis of feature-based single-antenna and multi-antenna techniques
in order to derive trade-offs and conclusions.
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Table 4.1 Main parameters of DVB-T

2k mode 8k mode

Symbol duration (TU ) 224 µs 896 µs
Guard interval duration (Δ) 7 − 56 µs 28 − 224 µs
Number of active subcarriers 1705 6817
Subcarrier spacing (approx.) 4464 Hz 1116 Hz
CP duration ratio (Δ/TU ) 1/4, 1/8, 1/16, 1/32
Constellations QPSK, 16-QAM, 64-QAM
Code rate 1/2, 2/3, 3/4, 5/6, 7/8

4.1 Introduction

The huge interest in the TV White-Spaces (TVWS) has recently determined the
development of novel Machine-to-Machine (M2M) standards such as the Weight-
less standard, secondary user rural broadband internet access (i.e. the IEEE 802.22
standard), and other proprietary protocols. In UK and USA the regulatory process
is almost terminated, so that a huge number of large companies have demonstrated
interest in the management of large TVWS databases. These databases are required to
inform secondary users about primary transmitters presence and thus must be up-to-
date over time and assessed by field test trials. In 2013 large-scale TVWS networks
have been deployed for end-user testing purposes in the USA and South Africa. The
crucial importance of precise and up-to-date information provided by such TVWS
databases represents one of the weak points of the future TVWS broadband net-
works. In order to guarantee the highest primary detection sensitivity, future TVWS
secondary networks must rely on master units able to perform either TVWS data-
base access and advanced spectrum sensing. Currently, in the TVWS domain, the
most relevant primary signal, is represented by ETSI Digital Video Broadcasting
- Terrestrial (DVB-T) broadcast transmissions [1]. The transmitted DVB-T signal
consists of a sequence of fixed-duration OFDM symbols. From a spectrum sensing
point of view, important DVB-T parameters (see also Table 4.1) are represented by:
channel bandwidth (that ranges from 5 to 8 MHz), the OFDM Cyclic Prefix (CP)
length (that ranges from 1/32 to 1/4 of the OFDM symbol length), and the presence
of OFDM pilots (continual and scattered ones). The presence of pre-determined pat-
terns (and their periodic repetition) in the transmitted DVB-T signal determines the
cyclo-stationary property shown by the OFDM signal.

In order to accurately assess the performance of the studied sensing algorithms in
a realistic scenario consisting of real DVB-T primary signals, a SDR transmitter has
been implemented using GNU Radio [2]. The GNU Radio framework can ease the
development of DVB-T compliant DSP blocks that can be used to generate a DVB-T
signal [1]. Two custom GNU Radio blocks have been developed: a DVB-T encoder
and a DVB-T modulator. These blocks comply with a subset of the DVB-T physical
layer parameters. The OFDM mode with 8k subcarriers and cyclic prefix 1/4 has
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been used in the spectrum sensing tests. The DVB-T encoder block receives the input
Transport Stream (TS) containing a set of multiplexed TV and radio channels and,
after encoding, sends the stream to the modulator. The output of the OFDM modulator
is the sampled complex envelope (IQ stream) ready to be up-converted by a radio
front-end device (in our case, a Universal Software Radio Peripheral, USRP). The
SDR DVB-T transmitter has been successfully tested against commercial receivers to
verify its correct behavior. The processing performed by the encoder and modulator
blocks are summarized in Figs. 4.1 and 4.2. The whole project has been described
in [3].

4.2 Single Antenna Spectrum Sensing Algorithms

An effective approach to performing spectrum sensing in the TVWSs consists in the
exploitation of the intrinsic structure of OFDM signals. Spectrum sensing techniques
able to detect a number of signal “features” in the received signal can be devised.
Such features must uniquely characterize the DVB-T transmission in order to allow
efficient signal detection.
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Nu
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Nc

Fig. 4.3 OFDM symbol structure with cyclic prefix

Single-antenna feature-based detectors exhibit much better performance in case
of unknown noise variance (unlike energy detection-based techniques), but require
much longer sensing time for synchronization in order to achieve that performance.
In the following subsection, these single-antenna CP-based feature detectors will be
analyzed and their performance assessed.

4.2.1 Cyclic Prefix Based Detector

The cyclostationary properties of OFDM signals in DVB-T transmissions are due to
the presence of a cyclic repetition of signal segments in the time domain.

We briefly recall the OFDM symbol structure in Fig. 4.3, where Ns is total number
of samples per symbol, Nu is the number of useful samples and Nc the number of
cyclic prefix samples.

The number of samples Ns , Nu and Nc can be obtained through the following
relationship:

Ns = Nmode · (1 + CP) · 7

8B
· fs

Nc = Nmode · CP · 7

8B
· fs

Nu = Ns − Nc (4.1)

where Nmode = 8192 for 8k mode or Nmode = 2048 for 2k mode. Moreover, CP is
the ratio of cyclic prefix duration and the OFDM symbol duration, B is the signal
bandwidth in MHz, and fc is the sampling frequency, in Msamples/s.

As already mentioned, the detector operates asynchronously with the primary
signal. The first detection technique we present is based on the computation of the
autocorrelation (AC) of the received signal in order to detect its cyclostationary
features. The autocorrelation function must be computed in the range [0, Ns] in
order to be sure to detect at least one cyclic repetition. The expression for the AC
function used for detection is the following:



4 Spectrum Sensing Algorithms for Cognitive TV White-Spaces Systems 75

RCP
xx [n] = 1

Nc

∣∣
∣∣∣

Nc−1∑

k=0

x∗[n − k]x[n − k − Nu]
∣∣
∣∣∣
. (4.2)

where x[n] is the received primary signal, modeled as

x[n] = p[n] + w[n]. (4.3)

Here, p[n] is the transmitted primary signal and w[n] is additive white Gaussian
noise and the Signal-to-Noise Ratio (SNR) is equal to E[|x[n]|2]/E[|w[n]|2]. If
detection is performed in very low SNR conditions, it may be necessary to improve the
sensitivity by extending the observation window to K consecutive OFDM symbols
(KNs samples), thus the new AC function is

R̃CP
xx [n] = 1

KNc

∣∣∣
∣∣∣

K−1∑

j=0

Nc−1∑

k=0

x∗[n − k − jNs]x[n − k − jNs − Nu]
∣∣∣
∣∣∣
. (4.4)

which reduces to (4.2) for K = 1. The AC functions (4.2) and (4.4) exhibit a
peak shape with the maximum value achieved synchronously with the end of the
OFDM symbol. Based on this observation, the proposed test statistic for the CP-based
detector based on (4.2) and (4.4) is:

TCP = maxi {R̃CP
xx [i]}

E j {R̃CP
xx [ j]} ≷ θCP. (4.5)

Here, the numerator denotes the peak of the whole autocorrelation function while the
denominator denotes the temporal mean of the AC computed only at samples j , with
j ∈ J , while θC P denotes the threshold. If we denote with ϕ = argmaxn(R̃CP

xx [n])
the peak of the AC function, the set J is defined as

j ∈ J = N\Q

N = {n ∈ N : 0 → n → K Ns}
Q = {q ∈ N : ϕ − Nc → q → ϕ + Nc}. (4.6)

Basically the mean of the autocorrelation is computed for all those samples whose
“distance” from the instant with the peak (maximum of the AC) is larger than Nc

samples. This way, neither part of the cyclic prefix is comprised in the summation of
(4.4) and hence the estimation of the correlation noise is improved. The aforemen-
tioned mean is used to perform the calibration of the threshold θC P [4].

Figure 4.4 shows the amplitude of the CP-based autocorrelation function with an
observation window of respectively K = 1 and K = 10 symbols with an infinite
SNR. Results with realistic SNR values will be given later in the following sections.
We observe that, for K = 10, the ratio of the peak value over the maximum value
observed outside the cyclic prefix window is improved with respect to K = 1.
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Fig. 4.4 Amplitude of the CP-based auto-correlation—1 symbol versus 10 symbols observation

4.2.2 Pilot-Based Detector

The DVB-T signal contains pilot subcarriers that can be used for channel estimation
and signal synchronization at the receiver, therefore their values are known at the
receiver. We can define an expression of the OFDM signal in terms of complex enve-
lope where only the pilot carriers are active, while data and Transmission Parameter
Signalling (TPS) carriers are set to zero:

sp(t) = e− j2π fct
∑

p,l,k:(l,k)∈A

cp,l,k · Ψp,l,k(t) (4.7)

where the set A defines the position of the continual and scattered pilot, while indices
p, l and k correspond, respectively, to the DVB-T frame, to the OFDM symbol and
to the subcarrier. cp,l,k is the pilot symbol and Ψp,l,k(t) is the corresponding IFFT
basis function. If such deterministic signal is sampled at the rate 1/Ts , we obtain the
sequence:

sp[n] = sp(nTs), n = 0, 1, . . . (4.8)

We know that continual pilots have the same carrier positions for all symbols, while
scattered pilots take the same position every four symbols. Thus, since every symbol
contains Nu+Nc samples, the sequence sp[n] is cyclic with period 4(Nu+Nc), which
means that it is completely determined by the vector: (sp[0], sp[1], sp[2], . . . , sp[4
(Nu + Nc) − 1]). We can therefore apply a matched filtering approach to detecting
the DVB-T incumbent by defining the following test statistic:

TP = max
τ∈{0,1,...,4(Nu+Nc)−1}

∣
∣∣∣∣

M−τ−1∑

k=0

sp[k]x∗[k + τ ]
∣
∣∣∣∣

(4.9)
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where M is the total number of samples observed by the detector. As in the previous
case, the determination of the threshold value may be performed empirically. In order
to perform such computation, the detector is usually fed with pure white noise whose
energy is computed and then the test statistic is derived. Once the desired false alarm
probability is chosen, the threshold is set accordingly [5, 6].

4.3 Multi-Antenna Spectrum Sensing Algorithms

In this section we focus on a special class of detectors based on a multi-sensor/
multi-antenna approach which will try to overcome the limitations of single sensor
detectors. It is known that the performance of an energy detector drops if the actual
value of the noise variance is different from the nominal value, the larger the uncer-
tainty of the noise variance, the worse the performance. As far as the feature detectors
are concerned, such approaches are quite sensitive to synchronization errors. In case
of very low SNR the synchronization loops might not be able to provide the required
accuracy for the carrier frequency and clock rate estimates. All these reasons motivate
the search for asynchronous multi-sensor detectors robust to noise uncertainty.

Multiple-input multiple-output (MIMO) technology has reached considerable
maturity, since it is already part of many wireless standards (LTE, IEEE 802.11,
IEEE 802.16, etc.) it is very likely for future CR terminals to incorporate it. The
basic idea is to exploit the fact that, if the channel is being used by the PU, then some
spatial correlation should be present in signals at different antennas. On the other
hand, when the signal is absent, all contributions will correspond to thermal noise,
thus spatial correlation should be absent [7].

All the presented detectors are non parametric, i.e. they don’t assume any prior
knowledge of the signal and all their test statistics will be expressed as a function of
the eigenvalues of the sample covariance matrix of the received signals, hence a new
matricial system model is provided. All the eingenvalue-based algorithms are based
on results from Random Matrix Theory (RMT) [8, 9]. Among them, we will present
the energy detector for the multi-antenna eigenvalue-based case and methods based
on Likelihood Ratio Tests (LRT) or generalized LRT.

The algorithms will be divided in two classes:

1. those that assume a known noise level;
2. those that estimate it from data.

4.3.1 System Model

We assume that the detector computes its test statistic from K sensors or antennas and
N time samples. Let’s denote with y[n] = {y1[n], . . . , yK [n]}T the K × 1 received
vector at time n, where the element yk[n] is the discrete baseband complex sample
at receiver k.
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Under hypothesis H0, the received vector consists of K complex Gaussian noise
samples with zero mean and variance σ 2

v

y[n] |H0 = v[n] (4.10)

where v[n] ∞ NC(0K×1, σ
2
v IK×K ). On the contrary, under hypothesis H1 the

received vector contains signal plus noise

y[n] |H1 = hs[n] + v[n] (4.11)

where s[n] is the transmitted signal sample, generally modeled as a Gaussian random
variable with zero mean and variance σ 2

s , while for our simulation it will be drawn
from a 8k DVB-T signal; h is a K × 1 unknown complex channel vector. In this
model a flat Rayleigh fading channel is considered, so basically every received signal
is multiplied by a complex constant. For our simulation we considered also another
channel model (the 6-path Typical Urban [10]), which will be described in the next
section.

If we are under H1, the SNR is defined as follows:

ρ � E≥x[n]≥2

E≥w[n]≥2 = σ 2
s ≥h≥2

Kσ 2
v

(4.12)

The received samples are stored by the detector in the K × N matrix

Y � {y[1], . . . , y[N ]} = hs + V (4.13)

where the 1 × N signal vector s is defined as

s � {s[1], . . . , s[N ]} (4.14)

and the K × N noise matrix V as

V � {v[1], . . . , v[N ]}. (4.15)

At this point we can define the sample covariance matrix R as follows:

R � 1

N
YY H . (4.16)

Let λ1 ≈ · · · ≈ λK be the eigenvalues of R sorted in decreasing order.
The detector computes the test statistic T and compares it against a pre-defined

threshold θ , if T > θ it decides forH1, otherwiseH0. Usually, the decision threshold
θ is determined as a function of the target false alarm probability. False alarm and
detection probability are defined as follows:
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Pd = P(T > θ | H1)

Pf a = P(T > θ | H0). (4.17)

All the described test statistics are non-parametric, i.e. they do not assume any
prior knowledge about the signal to be detected. In general all test have only two
parameters: the number of samples N and the number of sensors K .

The methods are divided into two groups: methods for known or for unknown
noise level. In the first group, the noise variance σ 2

v is assumed to be known and
appears explicitly in the test statistic. Methods belonging to the second group, on the
contrary, do not require such information, i.e. the noise level is estimated in the test
statistic.

4.3.2 Algorithms with known noise variance

1. Energy Detection (ED): the test statistic is the average energy of the received
samples, normalized by the noise variance [11, 12]:

TED = 1

KNσ 2
v

K∑

k=1

N∑

n=1

|yk(n)|2 = ≥Y≥2
F

KNσ 2
v

(4.18)

where ≥ · ≥F denotes the Frobenius norm. Note that it is possible to express TED

in terms of the eigenvalues λi by exploiting the equivalence ≥Y≥2
F = tr(YY H ),

thus obtaining

TED = 1

Kσ 2
v

tr(R) = 1

KNσ 2
v

K∑

i=1

λi . (4.19)

2. Roy’s Largest Root Test (RLRT): this method tests the largest eigenvalue of the
sample covariance matrix against the noise variance. The test statistic is

TRLRT = λ1

σ 2
v

. (4.20)

The RLRT was originally developed in [13]. Performance analysis can be found,
for example, in [14]. For Gaussian signals and not too low signal-to-noise ratio,
the RLRT is the best test statistics in this class.

3. Likelihood Ratio Tests (LRT): different LRT-based detectors were given in [15].
The complete, noise-dependent, log-likelihood ratio test statistic is given by

TLRT = 2(N − 1)

[
log

(
σ 2K

v

det R

)
+

(
tr R
σ 2

v
− K

)]
. (4.21)
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For this statistic, expressions of the false-alarm probability have been derived by
means of numerical integration techniques. Performance analysis for this test can
be found, for example, in [15].

4.3.3 Algorithms with unknown noise variance

1. Eigenvalue Ratio Detector (ERD): the test statistic (also called maximum-
minimum eigenvalue, or condition number test) is the ratio between the largest
and the smallest eigenvalue of R

TERD = λ1

λK
. (4.22)

A complete performance analysis can be found in [16, 17].
2. Noise-independent LRT (LRT-): an alternative log-likelihood ratio was derived

in [15], under the assumption of unknown noise variance:

TLRT− = 2(N − 1)






1
K

∑K
i=1 λi

(∏K
i=1 λi

⎛1/K

⎝


⎞

K

. (4.23)

In statistics, this method has been known for many years as the sphericity test
[18]. Performance analysis for cognitive radio applications plus an expression for
the false alarm probability of this detector can be found in [15].

3. Generalized Likelihood Ratio Test (GLRT): this method uses as test statistic
the ratio

TGLRT = λ1
1
K tr(R)

. (4.24)

Performance analysis can be found for example in [19].
It is interesting to note that the GLRT is equivalent (up to a nonlinear monotonic
transformation) to [20]:

TGLRT ⇒ = λ1
1

K−1

∑K
i=2 λi

. (4.25)

The denominator of TGLRT ⇒ is the maximum-likelihood (ML) estimate of the noise
variance assuming the presence of a signal, hence the GLRT can be interpreted
as a largest root test with an estimated σ̂ 2

v instead of the true σ 2
v .

A comparative analysis of these algorithms based on numerical simulation for
both known and unknown noise variance will be performed in the next section.
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4.4 Channel Models

We consider three different channel models. For each of them we describe how the
K × N matrix Y of received samples has been calculated.

4.4.1 Additive White Gaussian Noise Channel Model

In this case we generated a matrix S of size K × N where each row of S is equal to
the 1 × N signal vector s. Hence:

Y = S + V . (4.26)

This channel model will be used to evaluate the performance of the CP-based
detector and to compare it against the eigenvalue-based detectors with unknown
noise variance.

4.4.2 Flat Rayleigh Fading Channel Model

With this model we assume that the coherence bandwidth, defined as the inverse of
the delay spread, is much larger than the observed bandwidth. Under this assumption,
our 1 × N signal vector s is simply multiplied by a complex constant modeled as a
Rayleigh random variable. We will have K random variables, one for each sensor,
represented by the K × 1 channel vector. Hence,

Y = hs + V . (4.27)

In addition, the following normalization has been performed:

K∑

i=1

hi h
∗
i = K (4.28)

hence the energy of the channel vector is normalized to the number K of antennas.

4.4.3 Typical Urban 6-Path Channel Model

This channel models the terrestrial propagation in an urban area. It has been defined
by COST 207 as a typical urban (TU6) profile and consists of 6 paths having wide
dispersion in delay and relatively strong power [10].
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Table 4.2 Typical urban profile (TU6)

Tap number Delay τi (µs) Average gain γi (dB) Doppler spectrum

1 0.0 −3 Classical
2 0.2 0 Classical
3 0.5 −2 Classical
4 1.6 −6 Classical
5 2.3 −8 Classical
6 5.0 −10 Classical

This profile is a frequency- and time-selective Rayleigh fading channel model.
Given x(t) and y(t) the input and output signal respectively, it can be expressed as
follows:

y(t) =
M∑

i=1

γi e
− jθi x(t − τi ) (4.29)

where:

• M is the number of paths equal to 6;
• γi is the average path gain of the i th path (listed in Table 4.2);
• θi is the phase shift from scattering of the i’th path, modeled as a uniformly

distributed random variable in [−π, π ];
• τi is the relative delay of the i th path (listed in Table 4.2);

where the classical doppler spectrum is defined as:

G( f ; fD) = 1
⎠

1 − ( f/ fD)2
. (4.30)

In our simulation the Doppler spread fD has been set to 10 Hz, corresponding to a
pedestrian mobile profile.

This channel has been implemented in our simulation setup as a Finite Impulse
Response (FIR) filter. We generated K realizations of this channel and performed
the convolution (filtering) with the input signal for each realization. We generated a
K × N matrix X where each row corresponds to N samples of our K filtered signals.
Hence the model yields:

Y = X + V . (4.31)

By storing all K channel realization in a K×M matrix H , the following normalization
has been performed:
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≥H≥2
F =

K∑

i=1

6∑

j=1

hi j h
∗
i j = K (4.32)

i.e. we performed the same normalization as the flat fading case.

4.5 Performance Assessment and Trade-Offs

The performance of the different sensing methods on the various channels have
been evaluated by simulation (performed within Matlab). For each simulation we
computed:

• the Receiver Operating Characteristic (ROC) curve obtained by plotting the
detection probability versus the false alarm one;

• the detection probability as a function of the signal-to-noise ratio, by fixing the
false alarm probability Pf a = 10−2.

For our simulation we used the Monte Carlo method. In order to estimate the
values of Pf a and Pd we performed for each SNR value NT = 10000 trials.

For each trial we generated two instances of the matrix Y : the first one has been
computed as in (4.26), (4.27) or (4.31) (signal plus noise case); the second one
instead as V = N (only noise case). In this way, we computed two instances of the
covariance matrix R and two test statistics for each algorithm: T1 and T0 respectively.
Once all the trials have been performed, we generated a vector of threshold values
from the smallest T0 to the largest T1 statistic. At this point we simply computed each
i th element of the Pf a vector by counting how many T0 values are greater than the
i th threshold value. Similarly, each i th element of the Pd vector has been computed
by counting how many T1 values are greater than the i th threshold value. Each value
of both Pf a and Pd vectors are finally divided by the number of trials.

A short description of the simulation algorithm in pseudocode follows:

1: NB = 1000 ⊂ NB = number of threshold values
2: for all SNR values do
3: for i = 1 ⊆ NT do
4: compute σ 2

s
5: compute σ 2

v

6: generate K × N random Gaussian noise matrix V as a function of SNR
7: if chan = AWGN then
8: Y 1 ← S + V ⊂ Y 1 = signal+noise Y
9: else if chan = flat-fading then

10: Y 1 ← hs + V
11: else ⊂ chan = TU6
12: Y 1 ← X + V
13: end if
14: Y 0 ← V ⊂ Y 0 = only-noise Y
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Fig. 4.5 Eigenvalue-based detectors, DVB-T 8k PU signal, flat fading channel, N = 50, K = 10,
ROC curves (SNR = −10 dB)

15: compute R1 ← (1/K )Y 1Y H
1 ⊂ signal+noise

16: compute R0 ← (1/K )Y 0Y H
0 ⊂ noise-only

17: for all detectors do
18: compute signal+noise test statistic T1(i)
19: compute only-noise test statistic T0(i)
20: end for
21: end for
22: for all detectors do
23: create vector of thresholds θ of NB equally spaced values from min(T 0)

to max(T 1)

24: create vector of NB elements P f a
25: create vector of NB elements Pd
26: for i = 1 ⊆ NB do
27: for j = 1 ⊆ NT do
28: if T0( j) > θ(i) then
29: Pf a(i) ← Pf a(i) + 1
30: end if
31: if T1( j) > θ(i) then
32: Pd(i) ← Pd(i) + 1
33: end if
34: end for
35: Pf a(i) ← Pf a(i)/NT

36: Pd(i) ← Pd(i)/NT

37: end for
38: end for
39: end for
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Fig. 4.6 Eigenvalue-based detectors, DVB-T 8k PU signal, flat fading channel, N = 50, K = 10,
Pd versus SNR (Pfa = 0.01)
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Fig. 4.7 Eigenvalue-based detectors, DVB-T 8k PU signal, flat fading channel, N = 200, K = 4,
ROC curves (SNR = −10 dB)

4.5.1 Results

All the ROC performance curves have been evaluated at SNR = −10 dB. Such
a challenging scenario corresponds to the so-called “hidden node problem” in the
Wireless Regional Access Network (WRAN) cognitive radio scenario and has been
chosen to emphasize the differences among the methods.

First of all, performance of eigenvalue-based algorithms has been evaluated and
compared with different sets of parameters: by default we assumed N = 50 acquired
samples for each antenna and K = 10 sensors.
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Fig. 4.8 Eigenvalue-based detectors, DVB-T 8k PU signal, flat fading channel, N = 200, K = 4,
Pd versus SNR (Pfa = 0.01)
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Fig. 4.9 GLRT detection probability as a function of time (samples) and sensors through flat-fading
channel, SNR = −15 dB, Pfa = 0.01

4.5.1.1 Eigenvalue-Based Algorithms

Figures 4.5 and 4.6 refer to a DVB-T 8k signal with N = 50 samples and K = 10
sensors. In both examples we can observe that the best algorithm for known noise
variance is the RLRT, while GLRT is the best under unknown variance. These results
are in agreement with the results provided in the literature for Gaussian signals.

Secondly, in Figs. 4.7 and 4.8 the observation interval has been increased to
N = 200, whereas the number of sensors reduced to K = 4.

Finally, in Fig. 4.9 we plot the detection probability of GLRT as a function of the
observation interval (expressed both in time units and number of received samples
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Fig. 4.10 Eigenvalue-based detectors, DVB-T 8k PU signal, TU6 channel model, N = 50, K = 10,
ROC curves (SNR = −10dB)
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Fig. 4.11 Eigenvalue-based detectors, DVB-T 8k PU signal, TU6 channel model, N = 50, K = 10,
Pd versus SNR, Pd versus SNR (Pfa = 0.01)

per sensor) and the number of sensors for a specific SNR value of −15 dB, while the
false alarm probability remains fixed to 10−2. The channel is Rayleigh flat-fading.

Under a more realistic model, the TU6 channel, the performance of the algorithms
are different, as it can be observed in Figs. 4.10 and 4.11. We can see how both GLRT
and RLRT lose their predominant position when the received model is different from
the linear mixture one: simple energy detection becomes highly competitive in this
case. The difference between algorithms with known and unknown noise variance is
larger, too.
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Fig. 4.12 CP-based versus eigenvalue-based (unknown σ 2
v ) detectors, DVB-T 8k PU signal, flat

fading channel, N = 50, K = 10, ROC curves (SNR = −10dB)
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Fig. 4.13 CP-based versus eigenvalue-based (unknown σ 2
v ) detectors, DVB-T 8k PU signal, flat

fading channel,N = 200, K = 4, Pd versus SNR (Pfa = 0.01)

4.5.1.2 CP-Based Versus Eigenvalue-Based (unknown σ 2
v ): AWGN Channel

In this last section we compare the eigenvalue-based algorithms for unknown noise
variance against the technique exploiting the cyclic prefix autocorrelation of the
received signal. Here, the AWGN channel model is adopted. In Figs. 4.12 and 4.13 we
can observe that the performance of this algorithm is similar to that of the GLRT. This
single-antenna algorithm does not require the computation of the sample covariance
matrix eigenvalues, but resorts to a precise knowledge of the signal characteristics.
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4.6 Conclusions

In this chapter, we analyzed and compared different sensing methods for DVB-T
signals, a key element of cognitive systems operating in the TV white-spaces. First
we considered feature-based techniques, which exploit OFDM peculiar characteris-
tics. Then, we described multi-sensor algorithms that exploit the sample covariance
matrix. The performance of these algorithms with real DVB-T signals have been
assessed on different channel models. We believe that the presented results will
be useful for researchers and designers who want to compare trade-off in terms of
performance and efficiency of the different techniques in realistic conditions.
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Chapter 5
New Blind Free-Band Detectors Exploiting
Cyclic Autocorrelation Function Sparsity

Ziad Khalaf and Jacques Palicot

Abstract In this chapter, we will firstly show that the Cyclic Autocorrelation
Function (CAF) of a lineary modulated signal is a sparse function in the cyclic
frequency domain. Then using this property we propose a new CAF estimator, using
compressed sensing technique with the Orthogonal Matching Pursuit (OMP) algo-
rithm. This new proposed estimator outperforms the classic estimator used in [1]
under the same conditions, using the same number of samples. Furthermore, since
our estimator does not need any information, we claim that it is a blind estimator
whereas the estimator of [1] is clearly not blind because it needs the knowledge of
the cyclic frequency. Many cases will be analysed: with and without the impact of a
propagation channel at the reception. Using this new CAF estimator we propose two
blind free bands detectors in the second part of this chapter. The first one is a soft
version of the algorithm proposed in [2], that assumes that two estimated CAF of
two successive packets of samples, should have close cyclic frequencies. The second
one [3] uses Symmetry Property of the Second Order Cyclic Autocorrelation. Both
methods outperform the cyclostationnarity detector of Dantawate-Giannakis of [1].
The second method outperforms the first one. Finally we study the complexity of the
new proposed detectors and compare it to the complexity of [1].

5.1 Introduction

The wireless communication systems continue to grow [4] to become essential nowa-
days. This growth was accompanied by an increase in the demand of the spectrum
resources needed by the wireless technology. This high demand made the spectrum
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resources scarce. To solve this problem of spectrum scarcity, Joseph Mitola III [5]
in 2000 introduced the idea of Cognitive Radio that relies on the idea of dynamic
spectrum allocation. Cognitive Radio is widely expected to be the next Big Bang in
the future wireless communication [6].

In 2002, the FCC (Federal Communications Commission), regulator and spectrum
management in the United States, published a report [7] on the use of frequencies in
which it is noted that, 70 % of cases, the spectrum is under-utilized according to time
or space. The problem of spectrum scarcity is in fact an artificial problem mainly due
to the current policy of static spectrum management is responsible. This policy of
spectrum management is managed by the World Administrative Radio Conference
(WARC), which updates the radio regulations that assign the use of radio spectrum
in the world. To solve the current problem of spectrum management, new dynamic
radio spectrum access approaches are developed, where opportunistic access is the
most common because it tackles the cause of the shortage of frequencies. In fact,
this approach proposes a new user called Secondary Users (SU) that can access
the frequency resources allocated to Primary Users (PU) when they are not using
them. Thus, the spectral efficiency is increased by allowing the transmission of SU
over the free detected bands. These systems are called cognitive radio because, in
addition to the autonomous detection of free bands, they must also be able to change
their transmission parameters to meet the needs of the users and the constraints of
availability of frequencies and the resources (band, signal to noise ratio (SNR)...).

Cognitive Radio (CR) and their resulting Cognitive Wireless Networks (CWN)
have become one of the most studied in the wireless communications paradigms.
The CR as initially defined in the work of Mitola [5] is a radio that can find, collect
and learn from their environment and take action to make life easier for the user and
to optimize the resources. An important application, often associated with cognitive
radio is the Dynamic Spectrum Access (DSA). The dynamic spectrum access is the
re-use of radio frequencies dismissed by the PU, by SU, i.e. when the PU does not
use these frequencies at a given moment or in a given region of space [8], leaving
part of the spectrum temporarily empty and available for secondary users. Work on
dynamic spectrum access has become so important that the DSA is often regarded
as the essential feature of cognitive radio.

As part of this work we are interested in the spectrum sensing problem which i.e.
the detection of PU in the licensed spectrum, in the context of cognitive radio. We
are not interested in a particular band (GSM or TV, for example), or to a particular
system. The objective of this chapter is to propose effective methods of PU detection
using the minimum a priori information about the signal to be detected and having
short observation time.

In Sect. 5.2 we exploit the sparsity property of the Cyclic Autocorrelation Function
to propose a new blind estimator based on the compressed sensing to estimate the
Cyclic Autocorrelation Vector (CAV) which is a particular vector of the CAF for a
fixed lag τ . Two metrics will be used to evaluate this estimate. The first, the mean
squared error (MSE) compares the estimated vector with the theoretical reference
obtained using the CAF. The second metric, denoted MSEαf , compares the estimated
value of the cyclic frequency with its theoretical value. We show by simulation that
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the new estimator gives better results than those obtained with the conventional
(unbiased) estimator used in [1], which is not blind, in the same conditions and
using the same number of samples. In Sect. 5.3 the proposed estimator in Sect. 5.2
is used to propose two blind detectors using fewer samples than the second order
temporal detector of [1] requires, which is based on the classical estimator of the
CAF. The first algorithm uses only the sparsity property of the CAV while the second
detector uses in addition to the sparsity, the symmetry property of the CAV, allowing
to get better detection performance. Both detectors, besides being blind, are more
efficient than the non-blind detector of [1] in the case of a small number of samples.
The performance of these detectors in several simulation environments are evaluated
by comparing them to the cyclostationary detector. Finally, the complexity of these
new detectors are studied and compared to that of non-blind detector of [1]. Finally
Sect. 5.4 concludes this work and propose future perspectives.

5.2 A New Cyclic Autocorrelation Estimator Using
Compressed Sensing

As written in [8], in the most realistic case, when the transmitted sequences by the
primary network are not a priori known by the secondary network, it is always
possible to isolate some intrinsic properties of the transmitted signals in order to
identify them. In particular, any redundancy character in an informative signal allows
to differentiate it from a purely non colored Gaussian signal. This is always true,
in principle, to a telecommunications signal [9]. We note in particular, the case of
the OFDM modulation that conventionally uses a large cyclic prefixes, generating a
temporal redundancy of the transmited signal.

In this chapter, we will exploit the sparsity property of the CAF to propose a
new estimator based on compressed sensing, to estimate the Cyclic Autocorrelation
Vector (CAV), which is a particular vector of the CAF for a for a fixed delay τ . As
mentioned in the introduction two metrics will be used to evaluate this estimation. The
first, the Mean Square Error (MSE) compares the estimated CAV with the theoretical
reference obtained using the CAF. The second metric, denoted MSEαf , compares the
estimated value of the theoretical cyclic frequency. The simulation results of this
new estimator show lower values of MSE and the MSEαf than those obtained with
the conventional estimator (5.7) used in [1] under the same conditions and using the
same number of samples. Several cases will be analyzed: at the reception using a
filter at the transmission side with and without the addition of a propagation channel.
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Fig. 5.1 The theoretical norm of the cyclic autocorrelation function of a BPSK

5.2.1 CAF and Sparsity

As presented in [10], the theoretical expression of the CAF of a linearly modulated
signal, with the symbol period, Ts and a given lag τ , is given by Eq. (5.1).

Rxx(α, τ ) =
{

σ 2
d

Ts
e−j2παε

∫ ∗
−∗ g(t − τ

2 )g∈(t + τ
2 )e−j2παtdt α = k

Ts
, k → Z

0 elsewhere
(5.1)

With ε an unknown delay, g(t) the temporal impulse response of the transmission
filter, g∈(t) denotes the complex conjugate of g(t) and σ 2

d the power of a symbol.
From Eq. (5.2) it is clear that the CAF is a sparse function in the cyclic frequencies
domain α because it takes non-zero values for the values of α which are multiple
integer of the fundamental cyclic frequency.

To simplify, we take σ 2
d equal to 1, thus the expression of the CAF can be given

by:

Rxx(α, τ ) =
{ 1

Ts
e−j2παε

∫ ∗
−∗ g(t − τ

2 )g∈(t + τ
2 )e−j2παtdt α = k

Ts
, k → Z

0 elsewhere
(5.2)

We can also check the sparsity property of the CAF by looking at Fig. 5.1 which
shows the norm of the cyclic autocorrelation function of a BPSK signal for a fixed
lag τ .

We define the Cyclic Autocorrelation Vector (CAV) as a particular vector of the
CAF for a fixed lag τ = τ0 and over a cyclic frequency domain [αmin, αmax]. The
CAV is given by:

r(τ0)
yy = [Ryy(αmin, τ0), Ryy(αmin + δα, τ0), . . . , Ryy(αmax, τ0)]T (5.3)
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with δα represents the resolution step.
From (5.2) it is easy to derive the theoretical expression for the norm of the CAF,

using a rectangular temporal window g(t) defined as follows:

g(t) =
{

1 |t| ∞ Ts
2

0 elsewhere
(5.4)

thus, the obtained result is as follows:

||Ryy(α, τ )||2 =
{

| (Ts−τ)
Ts

sinc(α(Ts − τ))|
0 for α ≥= k

Ts
, k → Z

(5.5)

Equation (5.5) will be used as our theoretical reference in the calculation of the MSE
of the vector obtained by estimating the CAV with several techniques in the rest of
the work; we note then:

R||ref||
yy (α, τ ) = ||Rref

yy (α, τ )||2 = ||Ryy(α, τ )||2 (5.6)

5.2.2 Classic Estimation of the Cyclic Autocorrelation Vector

In order to estimate the CAV as defined in (5.3), we must first estimate the CAF (see
Sect. 5.2.1) on the various sets (αmin, τ0), (αmin + δα, τ0), . . ., (αmax, τ0).

A classical estimation of the CAF of a process y(t) on a set (α, τ ) can be made
using the unbiased estimator used in [1]:

R̂cl
yy(α, τ ) ≈= 1

N

N−1∑

k = 0

y(kTe)y(kTe + τ)e−j2παkTe (5.7)

with Te is the sampling period. Therefore the vector r̂(τ0)
yy (α) of Ñ elements represents

the conventional estimator of the CAV noted CÂVclassic is given by Eq. (5.8):

VÂCclassic = r̂(τ0)
yy (α) = [R̂cl

yy(−αmax, τ0), R̂cl
yy(−αmax + δα, τ0), . . . , R̂cl

yy(αmax, τ0)]T
(5.8)

with δα = 2 · αmax

Ñ
= 1

Ñ · Te
represents the resolution step. Note that r(τ0)

yy (α) can

also be estimated using the FFT operator applied to the product y(kTe) · y(kTe + τ)

[11]. We define:
fτ (kTe) = y(kTe)y(kTe + τ) (5.9)

By replacing in (5.7), we can write:
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R̂cl
yy(α, τ ) ≈= 1

N

N−1∑

k = 0

fτ (kTe)e
−j2παkTe (5.10)

We define the vector fτ as follows:

fτ = [fτ (0), fτ (1 · Te), . . . , fτ ((Ñ − 1) · Te)]T (5.11)

By observing Eq. (5.10), we can see that the vector r̂(τ0)
yy (α) which is the estimated

CAV of the signal y(t) in the domain [−αmax, αmax] is the Discrete Fourier Transform

(DFT) of the vector fτ0 multiplied by
1

Ñ
:

r̂(τ0)
yy (α) = 1

Ñ
DFT(fτ0) (5.12)

So r(τ0)
yy (α) can also be estimated using the FFT operator according to (5.12) we can

write:

r̂FFT = 1

Ñ
FFT(fτ0) (5.13)

This estimator (5.13) will not be used in our simulations, because by using it, the
number of samples N used to build the vector fτ0 is almost equal to the number of
elements Ñ of the estimated vector r̂FFT , (N = Ñ + ⇒τ0/Te⊂ ≈= Ñ). But in this
chapter it is sometimes interesting to vary the number of samples N to estimate a
vector of size Ñ fixed, making the estimator CÂVclassic best suited.

5.2.3 Blind Estimation of the Cyclic Autocorrelation Vector
Using Compressed Sensing

In this section we introduce a new method based on compressed sensing to blindly
estimate the CAV i.e. without the need to know a priori value of the fundamental
cyclic frequency in opposition to the classical method. In addition, using the same
number of samples, with the compressed sensing we show that a better estimation is
obtained.

Equation (5.12) will be used to justify the choice of the dictionary A in the sparse
representation of the CAV as will be explained below.

It is proposed in this work to exploit the sparsity property of the CAV r(τ0)
yy (α)

as it does contain non-zero elements only for few specific values of α. We can
therefore reconstruct the vector r̂(τ0)

yy (α) on the discrete interval of size Ñ having δα

as a resolution step which is equal to 2·αmax
Ñ

, using only n samples (or observations)

instead of Ñ (n < Ñ) with the classical method given by (5.12).
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We therefore propose to apply a sparse representation, which is based on the
representation of the first n elements of fτ0 over a complex value redundant base
formed of Ñ equidistant cisodes equispaced in frequency by a step δα , or equivalently
over the columns (atoms) of the matrix A called the dictionary, which is a sub-matrix
formed by the n first lines of F∈, the complex conjugate of the Fourier square matrix
F of dimension Ñ (as r̂(τ0)

yy (α) is simply a scaled version of the DFT of fτ0 from (5.12),
A is then constructed using the lines of F∈). We also note that all atoms should be
normalized to 1, so they all get the same chance of being selected by applying any
algorithm of inverse reconstruction.

We recall that the element (p, q) of the Fourier matrix F of order Ñ is equal to
e−2iπ(p−1)(q−1)/Ñ . The matrix F is a complex symmetric matrix (F = FT ). We also
note that FF∈ = ÑIÑ with IÑ the identity matrix. So the DFT of a signal y of size Ñ
is given by ȳ = Fy and the Inverse Discrete Fourier Transform (IDFT) of ȳ is given
by y = (1/Ñ)F∈ȳ.

We define b(τ0) the vector consisting of the first n elements of fτ0 , so the problem
is to solve the following inverse problem:

Ar(τ0) = b(τ0) (5.14)

The solution r̂(τ0) of (5.14), which is a vector of Ñ elements, represents the estimation
of the CAV over the interval [−αmax,+αmax]. For complexity reasons we use the
Orthogonal Matching Pursuit (OMP) algorithm [12] in order to solve the problem
(5.14). We note the estimated CAV using the compressed sensing CÂVCS , which
is equal to v̂l the solution of the OMP after his last iteration l and is given by the
following equation:

CÂVCS = v̂l (5.15)

It is therefore noted that the estimator (5.15) is a blind estimator and therefore the
atoms in the dictionary are not necessarily selected to be an integer divisor of the
fundamental cyclic frequency. A sparse approximation is then made; the more δα is
small the more the obtained approximation is better, unlike the classical estimator
CÂVclassic given by (5.8), that requires a priori knowledge of the fundamental cyclic
frequency in order to estimate the CAV on the exact values of cyclic frequencies oth-
erwise a vector composed of estimation noise is obtained and the spikes representing
the cyclic frequencies are not observed.

5.2.3.1 Model Checking

It is found that the CÂVCS of Ñ elements (obtained with the estimator (5.15)) can be
reconstructed from only n < Ñ samples for a given lag τ0 by applying the technique
of compressed sensing, in fact we plot on Fig. 5.2 the CAV of a BPSK modulation
without filtering at the transmission side by using:
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Fig. 5.2 The norm of the CAV of a modulated signal using a BPSK, with a fundamental cyclic
frequency αf = 1

Ts
= 104 Hz and τ0 = 3 · Te, obtained by using (5.8), also compared to the

theoretical curve (5.5), and to the norm of the CAV obtained after using the estimator (5.15). For
both estimators, (5.8) and (5.15), 1000 samples have been used

• the sparse representation using the estimator (5.15) with a fixed number of itera-
tions, using a dictionary A of size (n, Ñ) with n = 1000 and Ñ = 4000,

• the classical estimator (5.8) using 1000 samples,
• the theoretical curve representing the norm of the CAV given by (5.5).

In our example we have chosen arbitrarily and without loss of generality, τ0 = 3 ·Te,
with Te the sampling period. The fundamental cyclic frequency of the BPSK used in
the simulation of the transmitted signal is equal to αf = 1

Ts
= 104 Hz and Ts = 20Te

represents the symbol period of the BPSK modulation. It can be seen in Fig. 5.2 that
when we use the same number of samples (1000) to estimate the CAV using the
OMP, we obtain better estimates than the curve obtained using (5.8) compared to the
theoretical curve (5.5). One can check on Fig. 5.3 (a scaled version of Fig. 5.2), that
the estimation noise is obtained using (5.8), by cons it is not observed any estimation
noise on the curve obtained with the compressed sensing method. In addition, a very
good estimate of the position of the spikes that are located on integer multiples of
the fundamental cyclic frequency are observed using the compressed sensing. This
result validates the sparse model of the CAV for telecommunications signals.

5.2.4 Performance Analyses of the New Blind Estimator

In this section we define two metrics, the MSE and the MSEαf in order to compare the

quality of our proposed estimator CÂVCS and the classical estimator CÂVclassic. The
first metric (the MSE) compares the estimated CAV with the theoretical reference
given by Eq. (5.5). The second metric (MSEαf ) compares the estimated value of the
cyclic frequency with the theoretical value of the cyclic frequency.
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Fig. 5.3 A scaled version of the Fig. 5.2, in order to show the estimation noise obtained when
estimator (5.8) is used

Fig. 5.4 The MSE at the reception as function of the SNR for both estimation methods using 300
samples with and without a propagation channel

5.2.4.1 Mean Square Error (First Criterion)

To evaluate the error of the estimation of the CAV which is represented by the vector
r̂(τ0)

yy (α) of Ñ elements; a criterion is to calculate the MSE of ||r̂(τ0)
yy (α)||2 compared

with the Ñ elements of the reference R||ref||
yy (α, τ0) defined in (5.6), the Ñ elements

correspond to the theoretical values obtained using (5.5). We can then write:

MSE = 1

Ñ

∑

αi→Bα

(||r̂(τ0)
yy (αi)||2 − R||ref||

yy (αi, τ0))
2 (5.16)

withBα = {α|α = k · δα;α → [αmin, αmax]} which means that the MSE is calculated
on a w = [αmin, αmax]. We note that in our study tude αmin = −αmax . We also note
that the number of atoms Ñ of the dictionary A is equal to 4000 in all the simulations
of this chapter unless otherwise is stated.
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5.2.4.2 MSE at the Reception

To observe the evolution of the MSE at the reception (with filtering at the transmis-
sion) as function of the SNR we plot in Fig. 5.4 the curve representing the MSE as a
function of SNR for a fixed number of samples equal to 300 by averaging the value
of the MSE over 1000 independent tests and this for both estimation methods. As
expected the higher the SNR is, the smaller the MSE becomes regardless of the used
estimation method. We introduce ΔMSE defined as the difference between the MSE
of the classical method and the MSE of the OMP method. It is noted that for all
values of SNR, ΔMSE is always greater than 10 dB highlighting the advantage of
using the sparse representation method to estimate the CAV in the presence of noise
and a filter at the transmission.

5.2.4.3 The MSE at the Reception with a Propagation Channel

In this part the filtered signal at the transmission passes through a propagation channel
then marred by an additive noise. The pattern of transmission can be expressed by
the input output relationship of the channel which is written, by noting C(.) the
corresponding function to the channel and b a white Gaussian noise:

y = C(x) + b (5.17)

The transformation C in our study will be taken as a linear filtering with time invariant
and finite impulse response. The channel used in the simulations of this chapter is
described in detail in the Appendix.

A. Simulation results of the MSE at the reception using a propagation channel
In this section we calculate the MSE at the reception for 300 samples using the
channel defined in the Appendix, in the simulations. A Nyquist filter is used at the
transmitter with a roll-off factor β = 0.5. The result is shown in Fig. 5.4 for both
estimators (5.8) and (5.15). A small increase in the MSE is observed compared to
the case that there is no propagation channel, (cf. Fig. 5.4). In addition we note that
our new proposed estimator based on compressed sensing is always better than the
classical estimator even in the most realistic case.

5.2.5 Analyzing the Error in the Estimation of the Position
of the Cyclic Frequency: The MSEαf

The MSE defined in the previous section can be misleading in the evaluation of the
estimated CAV, in fact after getting the CAV using the OMP, the vector obtained
after performing a limited number of iterations contains by defaults too many zero
elements, so it is highly correlated with the theoretical equation of CAV which
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contains many zero elements as well. This large number of zero elements induces a
lower MSE and this regardless of the position of the cyclic frequencies because their
number is relatively small. To solve this problem and to better compare the different
estimators of the CAV in a more precise manner, the estimation error on the position
of the cyclic frequency (or estimated) should also be evaluated. We consider two
cases with filtering at the reception with and without the addition of a propagation
channel.

5.2.5.1 The Evaluation Parameter

To evaluate the estimation of the value of the cyclic frequency we evaluated the
average of the Mean Square Error noted MSEαf between the estimated value and
the theoretical value of the cyclic frequency. The normalized MSEαf is defined as
follows:

MSEαf =
Ntrial∑

i = 1

(α̂i − αf )
2

T2
s · Ntrial

(5.18)

We recall that αf = 1
Ts

is the fundamental cyclic frequency of the BPSK used in the
simulation of the transmitted signal. A perfect estimator has a MSEαf perfectly equal
to zero. It should be noted that the bias of the estimator (5.15) depends directly on the
resolution step δα , in fact, in the most favorable case (sufficient number of samples
and without noise at the reception) the bias is always less than δα as the atoms takes
discrete values and therefore the estimate is discrete. Therefore, the more δα is small
the smaller is the bias. In the particular case where δα is equal to an integer divisor of
the fundamental cyclic frequency a perfectly zero bias can be achieved (under certain
conditions on the number of samples and the SNR). In our simulation examples and
to make a fair comparison between the two methods (5.8) and (5.15), the step δα

in equal to an integer divisor of the cyclic frequency since the new estimator is
compared to the non-blind estimator (5.8) and therefore the choice of the atoms must

exactly match the values of the discrete interval I ⊆
ALPHA = [αf

2 ,
3.αf

2 ] which is exactly
centered on the value of the cyclic frequency. That is why under certain conditions,
ideal estimates with a bias perfectly zero can be achieved.

5.2.5.2 Comparison of the Different Estimators Using the MSEαf Parameter

To compare the performance of two estimators (5.8) and (5.15) using the MSEαf

criterion, several comparisons are made:

• calculation of the MSEαf at the reception, using (5.8) and (5.15), with filtering at
the transmission.

• calculation of the MSEαf at the reception, using (5.8) and (5.15), with filtering at
the transmission and a propagation channel (most realistic case).
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Before making these comparisons we will explain in detail in 5.2.5.2. A and B how
the estimate of the cyclic frequency α̂ is made with each of the two estimation meth-
ods (5.15) and (5.8) respectively.

A. The estimation of the cyclic frequency using compressed sensing
In this sub section is described how to estimate the cyclic frequency using the tech-
nique of compressed sensing (5.15). The cyclic frequency chosen for this comparison
is the fundamental cyclic frequency αf = 1

Ts
= 10 kHz, the step δα of the dictionary

A is equal to 50 Hz, the number of atoms in the dictionary is equal to 4000 represent-
ing the interval IALPHA from αmin = −100 kHz till αmax = 100 kHz. After solving
the inverse problem using a fixed number of iterations of the OMP, it is considered
that the value α̂, which represents the estimate of αf , is the value corresponding to
the abscissa of the atom of the CÂVCS having the largest norm and located within

the range of I ⊆
ALPHA = [αf

2 ,
3.αf

2 ] = [5000, 15000], which is centered on αf and of

width αf . We note that the bounds of the interval I ⊆
ALPHA are

αf
2 and

3.αf
2 since all

values outside this range will be closer to a cyclic frequency other than αf such as
α = 0, α = 2αf , α = 3αf ... So it is not appropriate to consider that the external
value of the interval I ⊆

ALPHA is an estimate of αf .

B. The estimation using the classical estimator
To compare the classical estimation method (5.8) with the one that uses the com-
pressed sensing we apply the estimator (5.8) on the same discrete interval I ⊆

ALPHA
used with (5.15) and this is to give both estimation methods the same resolution and
thus to make a fair comparison, then the abscissa of the norm of the CÂVclassic with a
maximum value is considered as the estimated value of the cyclic frequency. In fact,
the theoretical norm of the CAV is maximal at the position of the cyclic frequency
(and zero elsewhere). These estimates are repeated on a large number of tests in order
to calculate the MSEαf , using (5.18).

5.2.5.3 MSEαf at the Reception

To simulate the results at the reception we fixed a total number of samples equal to
1000 for each estimator, then we add an additive Gaussian noise. 1000 independent
tests where made in the case of each estimator for each value of the signal to noise
ratio SNR. We obtain the curve representing the MSEαf as a function of the SNR in
Fig. 5.5. We therefore conclude that with additive Gaussian noise and filtering issue
the MSEαf obtained with the method using compressed sensing is always lower than
that the one obtained with the classical estimator (5.8).
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Fig. 5.5 The curves of the MSEαf obtained using the estimator (5.8) and the compressed sensing
method for 1000 samples as function of the SNR with and without a propagation channel

5.2.5.4 MSEαf at the Reception with the Addition of a Propagation Channel

In this subsection the filtered signal at the transmission is convoluted with a propaga-
tion channel then an additive noise is added. The pattern of the transmission can be
expressed by the input output channel relationship which is written by noting C(.)

the corresponding function to the channel and b a white Gaussian noise:

y = C(x) + b (5.19)

The transformation C in our study will be taken as a linear filtering with finite impulse
response and time-invariant described in the Appendix. We calculate the MSEαf using
a Nyquist filter at the transmission with β = 0.5 convolved with the channel defined
in the Appendix, for many SNR by setting the number of samples to 1000, and
this for both estimation methods. In Fig. 5.5 we observe the simulation results. An
increase of the MSEαf is observed after the introduction of the propagation channel
compared to the results without the propagation channel. In addition we note that
the method using the compressed sensing is better than the conventional estimator
which allows us to conclude that in the more realistic case the new proposed method
is always more advantageous than the classical method without omitting that the
classical method must be repeated over several “candidates” of αf against the new
totally blind method, which is performed only once.

5.3 Reduced Complexity Blind Detection Using Sparsity

In the previous section we introduced a new estimator of the cyclic autocorrelation
for a given lag which is based on the compressed sensing. It has been verified by
simulation that the two criteria already defined (the MSE and the MSEαf ) for the
evaluation of the quality of the estimate of the CAV are always better for our new
estimator compared to the classical estimator used in [1], even in the most realistic
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case when using a filter at the transmission and a propagation channel. In this section
we will use the estimator that we have proposed previously. We propose two blind
detectors using fewer samples than the second order temporal detector of [1] requires
which is based on the classical estimator of the CAF. Both detectors are blind they
are also more efficient than the non-blind detector of [1].

Mainly two detection methods that are based on the new estimator will be pro-
posed, the first is based on the comparison of the cyclic frequencies obtained in two
consecutive slots, and therefore in this case it is assumed that two consecutive slots
both belong either to H0 or to H1 with H1 and H0 denote the binary hypotheses that
a primary user is present and absent, respectively. This last assumption is realistic
because the size of the used slots is very small. The second detection method, in
addition to the sparsity property of the CAF will use its symmetry property. This
symmetry, which is exploited in addition to the sparsity property of the CAF, will
improve the detection performance compared to the first method that only exploits
the sparsity property.

5.3.1 Slot Comparison Methods (Hard and Soft)

5.3.1.1 Slot Comparison Methods: The Hard Version

To choose between H0 and H1, the Slot Comparison Method (SCM) takes two con-
secutive slots of size ns for each slot. Note that this method can be applied using
several slots, but for complexity reasons of we will use only 2 slots. Both slots are
denoted s1 = [y(0), y(1), . . . , y(ns − 1)]T = [y1(0), y1(1), . . . , y1(ns − 1)]T and
s2 = [y(ns), y(ns + 1), . . . , y(2ns − 1)]T = [y2(0), y2(1), . . . , y2(ns − 1)]T . It is
assumed that two consecutive slots belong to the same event (both are either in H0
or H1). The idea of this test is to estimate the CAVs r̂(τ0)

y1y1
(α) and r̂(τ0)

y2y2
(α) of size

(Ñ, 1) by exploiting their sparsity property (using only ns samples for each estimate)
then by comparing the obtained cyclic frequencies for each slot (or equivalently by
comparing the indexes of the elements with a maximal norm in the CAV. We note by
index the position of the non zero element in the CAV which is an integer between
1 and the maximal size of the estimated CAV with the new estimator). Note that
the index representing the cyclic frequency α = 0 is not taken into account because
under H0 or under H1, a non-zero value will be obtained for α = 0 because it repre-
sents the value of the classical autocorrelation of the received signal for τ = τ0. Then
if the obtained indexes of the cyclic frequencies r̂(τ0)

y1y1
(α) and r̂(τ0)

y2y2
(α) are identical

or close, H1 is retained otherwise H0 is chosen as the noise have no cyclic frequency.
To estimate r̂(τ0)

y1y1
(α), (resp. r̂(τ0)

y2y2
(α)) one must solve the system Ar(τ0)

1 = b(τ0)
1

(resp. Ar(τ0)
2 = bτ0

2 ) given by (5.14) using the OMP. We recall that b(τ0)
1 (resp. b(τ0)

2 )
is constructed using the ns first elements of the vector f(1)

τ0
, (resp. f(2)

τ0
) as defined

in (5.11) with the samples of the slot s1 (resp. s2). Then after obtaining b(τ0)
1 and
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b(τ0)
2 using the 2ns samples of the slots s1 and s2, we solve both inverse problems

Ar(τ0)
1 = b(τ0)

1 and Ar(τ0)
2 = b(τ0)

2 using the OMP.

The obtained vectors r̂(τ0)
1 and r̂(τ0)

2 that respectively represents r̂(τ0)
y1y1

(α) and

r̂(τ0)
y2y2

(α) are compared together. More precisely, what should be compared are the

positions (or indexes) of the elements of the vectors r̂(τ0)
1 and r̂(τ0)

2 that correspond
to the estimated cyclic frequency (the index of the estimated cyclic frequency cor-
responds to the index of the element of the estimated vector r̂(τ ) having the highest
norm. We note index1 and index2 the indexes corresponding to the cyclic frequencies
of r̂(τ0)

1 and r̂(τ0)
2 respectively). We recall that we do not take into account the indexes

that are corresponding to the cyclic frequency α = 0, since under both hypotheses
(H0 or H1) the cyclic frequency zero, represents the classique autocorrelation of the
received signal and takes a non zero value, making it impossible to perform the test
at the cyclic frequency zero. Then if |index1 − index2| < k we consider that s1 and
s2 have the same cyclic frequency and the boolean variable Δ is then fixed to 1.
Otherwise if |index1 − index2| ← k, Δ is then set to zero. We note that by choosing
the variable k, which can take any integer value between 1 and Ñ (the size of the
vector r̂(τ0)), we can fix the performances of the detector as function of the false
alarm rate. We note that r̂(τ0)

y1y1
(α) and r̂(τ0)

y2y2
(α) have to be estimated several time over

many values of τi, i → {1, 2, . . . , M} to increase the chances of detection, since it is
not necessary that R(α, τ ) takes a non zero value for any value of τ , even if α is a
cyclic frequency of the received signal. In fact if we take a look at the expression of
the norm of the CAF given by (5.5), we can conclude that it is equal to zero, whatever
the value of α is (α non zero), for the following values of τ :

τ = Ts + kπ

α
, k → Z (5.20)

By repeating the same test over many τi (by comparing all the r̂(τi)
1 and r̂(τi)

2 together
one by one) we obtain M boolean values (Δ1,…,ΔM ), and the final decision will be
taken using the rule of decision OR:

Γ =
M∑

i = 1

Δi (5.21)

We also note that when a boolean variable takes the value 1 the algorithm stops and
takes the decision, minimizing the complexity of calculation. Here are the algorithm
lines:
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s1 ← [y1(0), . . . , y1(ns − 1)]T

s2 ← [y2(0), . . . , y2(ns − 1)]T

for i = 1 M do
b(τi)

1 ← calculation of the ns elements of f(1)
τi

b(τi)
2 ← calculation of the ns elements of f(2)

τi

r̂(τi)
1 ← OMP(A, b(τi)

1 )

r̂(τi)
2 ← OMP(A, b(τi)

2 )

index1 ← index(max(|r̂(τi)
1 |))

index2 ← index(max(|r̂(τi)
2 |))

note: index1 and index2 are chosen without taking into account the indexes of the zero
cyclic frequency
if |index1 − index2| < k then

Δi = 1
else

Δi = 0
end if
Γ ← ∑i

l=1 Δl
if Γ ← 1 then

H1 is chosen
end if

end for
H0 is chosen

5.3.1.2 Slot Comparison Methods: The Soft Version

After introducing the SCM, we propose in this section an enhanced method of this
last one that we will call SCMS (Slot Comparison Method Soft version). There is
no added complexity on the SCMS method compared to the SCMS. The only added
modification is going to be only on the decision making rule. In fact rather than
using the boolean variables Δi and to make the choice H1 if one of these variables is
“true”, the idea of the SCMS is to save the differences between the indexes δi of the
cyclic frequencies of s1 and s2. This difference δi will be saved for each lag τi, with
i starting from 1 to M. Finally we calculate the mean value of the variables δi using:

δ̄ = 1

M

M∑

i = 1

δi (5.22)

And finally the final decision H1 will be taken if δ̄ is lower than k, and k starting from
1 to Ñ . It is then evident that the smaller k is the smaller pfa. These are the algorithm
lines of the SCMS:
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s1 ← [y1(0), . . . , y1(ns − 1)]T

s2 ← [y2(0), . . . , y2(ns − 1)]T

for i = 1 to M do
b(τi)

1 ←calculation of the ns first elements of f(1)
τi

b(τi)
2 ←calculation of the ns first elements of f(2)

τi

r̂(τi)
1 ← OMP(A, b(τi)

1 )

r̂(τi)
2 ← OMP(A, b(τi)

2 )

index1 ← index(max(|r̂(τi)
1 |))

index2 ← index(max(|r̂(τi)
2 |))

note: index1 and index2 are chosen whiteout taking into account the indexes of the zero
cyclic frequency
δi ← |index1 − index2|

end for
δ̄ ← 1

M

∑M
i=1 δi

if δ̄ < k then
H1 is chosen

else
H0 is chosen

end if

5.3.1.3 Performance Detection of the SCM, SCMS
and the Cyclostationary Detector

In order to observe the performance gain of the SCMS over the SCM and the cyclo-
stationary detector, we plot the ROC curves on Fig. 5.6 of these different detectors
using the same signal as in Sect. 5.2.1 with M = 5, ns = 200 (i.e. ntot = 2ns = 400
is the total number of samples used globally for each detector), and the SNR = 0 dB.
The result is shown on Fig. 5.6. It clearly shows the improved detection performance
using the soft method against the hard method (SCM) while keeping the same com-
plexity with the same blind property. For these reasons, in the remainder of this
chapter, the SCMS is used for the remaining analyzes and comparisons.

Now we compare our proposed test (the SCMS) to the second order detector of
cyclostationarity in the time domain published in [1] requiring the a priori knowledge
of the cyclic frequency of the transmitted signal (in this case αf = 1

Ts
). To make a

fair comparison we used 400 samples for cyclostationary detector, and using the
same set of delays τi i.e. (M = 5). Then we plot on the same Fig. 5.6, the results
obtained with the cyclostationary detector for the same SNR. The conclusion is that
under the same conditions, except that the cyclostationary detector has additional
information that is the a priori knowledge of the cyclic frequency αf , our new detector
(SCMS) outperforms the cyclostationary detector. Note that for a robust detection,
cyclostationary detector requires a large number of samples [13], which explains
the poor performance of cyclostationary detector obtained with a small number of
samples.
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Fig. 5.6 The ROC curves of the SCM, SCMS and the cyclostationary detector for a total number
of samples equal to 400 and an SNR = 0 dB

5.3.1.4 The Effect of the Propagation Channel

To study the impact of the propagation channel on the performance of the SCMS and
the cyclostationary detector, we evaluate the performances of these two detectors
based on the SNR with and without a propagation channel. Note that in both cases
a filter at the transmission is used to simulate a realistic situation.

We choose to see the impact of the Rayleigh channel of unit variance (each sample
is multiplied by a coefficient which follows a Rayleigh distribution with unit variance
and these coefficients are i.i.d., this model of Rayleigh channel is used throughout
this chapter). The Rayleigh channel is selected because it is a very severe channel
that is normally used to represent in digital communications, situations where the
transmitter is not in direct vision with the receiver.

In Fig. 5.7 we plot the probability of correct detection for a false alarm set to 10 %
as function of the SNR for the SCMS and the cyclostationarity detector using a total
of 400 samples and with M = 5 for both methods. We observe a degradation of the
two detection methods after the introduction of the Rayleigh channel inducing a loss
of 4 dB in term of SNR for the SCMS. In fact, before the introduction of channel the
100 % detection probability is achieved for SNR = 4 dB, and after its introduction
this probability is reached for SNR = 8 dB. Regarding the cyclostationarity method
a slight degradation is also observed, also the cyclostationary detector is already
degraded due to the low number of used samples.

5.3.2 The Symmetry Method

In this section we propose another blind detection method based not only on the
sparsity property of the CAF but also on its symmetry properties with respect to the
axis α = 0 for a given lag τ .
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Fig. 5.7 The probability of detection as a function of the SNR for a given false alarm rate set to
10 % for the SCMS and the cyclostationary detector. Two cases are considered: with and without a
propagation channel for both detection methods

5.3.2.1 Symmetry Property

We recall from [24] that for real values of y(t), Ryy(α, τ ) represents the following
symmetry properties:

Ryy(α,−τ) = Ryy(α, τ ) (5.23)

Ryy(−α, τ) = R∈
yy(α, τ ) (5.24)

with R∈
yy(α, τ ) represents the complex conjugate of Ryy(α, τ ). By taking the two

members of the Eq. (5.24) we obtain:

||Ryy(−α, τ)||2 = ||Ryy(α, τ )||2 (5.25)

We can also verify the property of the Eq. (5.25) by looking on Fig. 5.1. We can
observe on Fig. 5.1 the symmetry of the CAF around α = 0.

The main idea of this detector is to partially estimate the CAV using few samples
with the OMP. After the partial reconstruction of the CAV, the property of symmetry
around α = 0 is tested. If the obtained CAV checks approximately (5.25) then H1 is
selected, otherwise it is H0. It is important to note that under H0 the CAV is theoret-
ically symmetrical and therefore satisfies the property (5.25) for real values of y(t)
under H1 and H0, but under H0, when few iterations are used for the reconstruction
of the CAV with the OMP, the probability of obtaining a symmetric CAV is very low.
This last point will be explained in details later.

5.3.2.2 The Symmetry Method SM

Let b(τ0) the vector defined previously (cf. Sect. 5.3.1), constructed using the first n
elements received from y(t). We fix l (odd) the number of iteration of the OMP in
order to solve b(τ0) = Ar(τ0). Then after obtaining the solution vector r(τ0)

l , it will
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be composed of null elements except l non zero elements (equal to the number of
iterations of the OMP). We define by IND(τ0)

sym the index of symmetry of the vector

r(τ0)
l . To calculate the index IND(τ0)

sym we ignore the element of r(τ0)
l corresponding

to α = 0 (having the largest amplitude), then IND(τ0)
sym is obtained by calculating the

mean value of the absissa of the l−1 remaining elements. The more IND(τ0)
sym is closer

to sero the more the symmetry is considered ideal. An ideal symmetry is obtained
when the estimation is perfect i.e. for IND(τ0)

sym = 0. IND(τ0)
sym is obtained using the

following equation:

IND(τ0)
sym = 1

l − 1

l∑

j = 2

αj (5.26)

Before taking the final decision we note that rτi
l should be estimated over different

values τi, i → {1, 2, . . . M}, and this to increase the probability of detection since
it is not necessary that R(α, τ ) takes zero value for any value of τ even if α is a
cyclic frequency of the received signal (cf. Eq. 5.20). The algorithm should then
calculates M different values of IND(τi)

sym (using M times the OMP algorithm) and the
final decision will be made using the equivalent index obtained by combining all the
indexes making then a soft decision:

IND(equ)
sym = 1

M

M∑

i = 1

|IND(τi)
sym| (5.27)

Finally IND(equ)
sym will be compared to a positive threshold ξ to decide between H0 or

H1. We note that the more ξ is large the more the probabilities of detection and false
alarm increases and vice versa. These are the algorithm lines of the SM:

s ← [y1(0), . . . , y1(ntot − 1)]T

for i = 1 to M do
b(τi) ←calculation of the ntot first elements of fτi

r̂(τi)
l ← OMP(A, b(τi))

α1 ← the number 1 selected atom of r̂(τi)
l

.

.

αl ← the number l selected atom of r̂(τi)
l

IND(τi)
sym = 1

l−1

∑l
j=2 αj

end for
IND(equ)

sym = 1
M

∑M
i=1 |IND(τi)

sym|
if IND(equ)

sym < ξ then
H1 is chosen

else
H0 is chosen

end if
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5.3.2.3 The Choice of the Number of Iterations

The objective of the detection algorithm is not to make a complete reconstruction of
the CAV. The goal is only to detect the existence of a signal in the band. For this reason
it is wise to choose l in order to maximize the detection performance and minimize
the complexity of the algorithm at the same time. In the following subsections we
will explain in detail why it is wise to choose an odd number of iterations l on the
one hand and a minimum of iterations on the other hand.

A. An odd number of iterations
The number of iterations l must be an odd number in order to evaluate correctly
the |INDτ0

sym|, since as it was mentioned the algorithm needs to verify the symmetry
around α = 0. The element in rτ

l having the highest amplitude corresponds to α = 0,
and is obtained with high probability after the first iteration of the OMP (since for
α = 0, the CAV have the highest amplitude cf. (5.5) ). Then the l −1 (even) non zero
elements remaining represents the cyclic frequencies which theatrically are pairwise
symmetric with respect to α = 0. In fact, for each cyclic frequency α must be another
cyclic frequency on −α and having the same norm.

B. A minimal number of iterations
Two main reasons make sense to choose a minimum number of iterations (l = 3).
The first reason is related to the complexity of the OMP, which directly depends on
the number of iterations l, and therefore choosing a minimum value of l is equivalent
to minimizing the complexity of the detection algorithm. Note that the complexity of
this algorithm is the same as that of the OMP that is given by [14] multiplied by M,
and is given by O(M ·ntot ·l ·Ñ), with ntot is the total number of samples used to detect,
and Ñ is the total number of atoms used to define the dictionary. The second major
reason to choose a minimal l is to minimize the false alarms. Although Eq. (5.25)
holds under H0 and H1 symmetry method can always be used to distinguish between
H0 and H1, in fact under H1 when the OMP is applied, it is likely that the symmetric
atoms around α = 0 and close to the value of the fundamental cyclic frequency will be
selected consecutively after consecutive iterations as they have the same norm (which
is different from zero because of the symmetry in fact by definition the OMP selects
the most correlated atoms with the residual vector after each iteration). In contrast,
under H0 the CAV is zero, because the noise does not have cyclic frequencies except
for α = 0 (takes the value of the classical autocorrelation). For this reason under H0
atoms are not selected with a specific order and minimizing the probability of having
a symmetric reconstructed CAV rτ

l with a low value of l. We note that under H0,
the number of iterations l increases, a more complete reconstruction of rτ

l will be
made and the probability of generating a symmetric vector increases inducing more
false alarms. This last result was shown by simulation in [15]. For these reasons it is
desirable to work with a minimum number of iterations l to minimize the complexity
and maximize the performance of detection for a given false alarm rate.
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Fig. 5.8 The probability of detection as a function of the SNR for a given false alarm rate equal to
15 % with a total number of samples equal to 160 for the SCMS and the SM

5.3.2.4 Simulation Results and Performance Comparison of the SM

In this section we use the same BPSK modulation used previously. A small dictionary
A of size (160, 512) is used (i.e. ntot = 160). The number of iterations l is fixed to 3 for
the previously mentioned reasons. We compare the performances of the SM detector
with the SCMS that was previously proposed. Figure 5.8 show the probability of
detection as function of the SNR for a fixed false alarm fixed to 15 % by using a total
number of samples equal to 160 for both methods in order to make a fair comparison.
Two different group of lag τi are used in the simulations and this for both detection
methods. The first group is formed by only two values of τ (M = 2), and the other is
constituted of five different values (M = 5). We can conclude firstly that whatever
the group of the used lags (M = 2 or M = 5) the SM outperforms in performance
the SCMS. We can also verified that when the number of lags M increase that the
detection performance increases for both detection methods (as expected). Finally
we can observe that for M = 5, the SM achieve 90 % of detection versus only
42 % for the SCMS, and this is in the same simulations conditions and for the same
complexity.

5.3.2.5 The Influence of the Transmission Channel

To study the impact of the propagation channel on the performance of the SM we
evaluate the performance of this method as function of the SNR, with and without a
propagation channel. Note that in both cases a transmission filter is used in order to
be in a realistic situation. We selected the same channel used in Sect. 5.3.1.4, which is
a Rayleigh channel with unit variance. On Fig. 5.9 we plot the probability of correct
detection for a fixed false alarm set to 10 % as a function of the SNR for the SM
with and without propagation channel, using a total of 160 samples where M = 5
for both cases. We observe the degradation of the SM after the introduction of the
Rayleigh channel that induced a loss of 2 dB in SNR for the SM. In fact, before the
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Fig. 5.9 The probability of detection of the SM as function of the SNR for a false alarm rate equal
to 10 % and a sample number equal to 160. We distinguish two case: with and without a propagation
channel

introduction of the channel, the detection probability 100 % is achieved for an SNR
of 4 dB, and after its introduction this probability is reached for an SNR of 6 dB.

5.3.2.6 Complexity Analysis and Observation Time for the SCMS,
the SM and the Cyclostationnary Detector

The complexity of the new SCMS detector is the same as that of the OMP which
is given in [14], multiplied by 2 · M, knowing the OMP is used 2 · M times. We
note that the complexity of the OMP is equal to O(l1 · l2 · l3), where l1, l2, and l3
are the number of lines of the dictionary, the number of atoms, and the number of
iterations respectively. We found then that the complexity of the SCMC is then equal
to O(2 · ns · M · S · Ñ), with S the number of iterations used by the OMP. In practice
S is equal to 3, because after filtering only the zero cyclic frequency and the two
fundamental cyclic frequency at ±αf appears in the CAF for a given delay τ .

We calculated the complexity of the second order time domain cyclostationarity
detector [1], we find that the result is equal to O(M · N ⊆ · (L + 1) + 4 · M · L2 + 8 ·
M3 + 6 · M2 + 2 · M) ≈= O(M · N ⊆ · (L + 1) + 4 · M · L2), where L (odd) is the size
of the spectral window used in the cyclic test. We note that in all the simulations of
this chapter L is equal to 41) and N ⊆ represents the total number of samples used by
the cyclostationarity detector.

Finally the complexity of the SM, is none other than the complexity of the OMP,
multiplied by M, because the OMP is called M times before choosing between H0
or H1. So the complexity of the SM is given by O(M · ntot · Ñ · l), with Ñ the total
number of atoms used in the dictionary to solve the inverse problem and l is the
number of iterations of the OMP. So the expressions of the complexities of SM and
SCMS are the same.

Figure 5.10 shows the probability of detection for a Pfa equal to 10 % for an SNR
of 0 dB as function of the total number of samples for the three detectors (SM, SCMS
and the cyclostationnarity detector) under the same conditions and using a filter at
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Fig. 5.10 The probability of detection Pd for a given false alarm set to 10 % for an SNR = 0 dB, as
function of the number of samples (observation time) for the SM, SCMS and the cyclostationarity
detector

Table 5.1 Comparison of the number of samples and complexities between the SM, the SCMS
and the cyclostationary detector for the same (Pd , Pfa) performance

Detection method SM SCMS Cyclostationary Detector

Complexity O(M · ntot · l · Ñ) O(2 · M · ns · S · Ñ) O(M ·N ⊆ ·(L+1) + 4·M ·L2)

Needed samples to achieve:
(Pd , Pfa) = (0.9, 0.1)

100 1255 3170

log (Number of operations) 13.55 16.08 13.45
a priori information Blind method Blind method αf = 1

Ts

the transmission. It is clear that the SM outperforms the two other methods and the
SCMS outperforms the cyclostationarity detector. For example, for a probability of
detection equal to 90 % the SM reaches a gain in the observation time equal to 12
compared to the SCMS, and a gain of 31 compared to the cyclostationnarity detector.

Table 5.1 shows a comparison between the complexity (number of operations)
and the number of samples (observation time) corresponding to the SCMS the SM
and the cyclostationary methods. For a probability of detection equal to 90 % the
SM reaches a gain in the observation time equal to 12 compared to the SCMS, and
a gain of 31 compared to the cyclostationnarity detector.

5.4 Conclusion

In this work, we proposed a new estimator which estimates the CAV of the received
signal. This new estimator uses the compressed sensing to make the estimation. In
fact it uses sparsity property of the cyclic autocorrelation vector in the cyclic fre-
quencies domain. We defined two metrics to assess the quality of estimation of this
estimator. The first metric calculates the mean square error between the estimated
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cyclic autocorrelation vector and its corresponding theoretical value. The second
metric calculates the mean square error of the estimated position of the cyclic fre-
quency in the cyclic autocorrelation vector. These metrics are used in order to make
a comparison between the unbiased estimator of the cyclic autocorrelation vector
and our new estimator. In the different simulation cases, our new estimator showed
better performance than the classical unbiased estimator. We note in addition that the
proposed new estimator based on the compressed sensing, is a blind estimator and
does not require any knowledge on the value of the cyclic frequency of the received
signal in opposition to the classical unbiased estimator. In the future it would be
interesting to calculate theoretical values of these new metrics for different estima-
tors depending on the number of samples and the SNR. Also it would be interesting
to calculate the analytical expression of the Cramer-Rao bound of our new estimator.

In the second part of this work we proposed two types of blind detectors that are
based on our new estimator of the cyclic autocorrelation vector. The first detector,
the SCMS takes two consecutive slots of the same size, assuming that these two slots
belong to the same hypothesis. Then from these two slots, the new blind estima-
tor estimates the two corresponding CAV. Then by comparing these two vectors, if
they contain close cyclic frequencies it is stated that the band is busy, otherwise it
is declared free because the noise does not contain cyclic frequencies. The second
detector, the SM, in addition to the sparsity property, uses the property of symme-
try of the cyclic autocorrelation vector. If the estimated vector exhibits symmetry
around the axis α = 0, the band is declared occupied. For a small number of sam-
ples, the performance of the SCMS, have exceeded those of the time second order
cyclostationnary detector (which is not blind) proposed in [1] and in all the simula-
tions conditions. Also for the same detection performance the SCMS needs 2.5 less
times smaller observation time than that [1] with a slightly greater complexity. As
for the SM, for a small number of samples, it was shown that it is not more complex
than the SCMS. In addition, the MS outperforms the SCMS (thus also exceeds the
detector [1]) and this in all the simulation conditions. The better performance of the
MS compared to SCMS are due to the use of the symmetry property that is used as
additional a priori information. We have seen that the MS can achieve a gain in the
observation time equal to 30 compared to the cyclostationary detector of [1].

In this chapter, we focused on the evaluation of the observation time, simulations
and analysis of the complexity of the proposed new blind methods. In future work,
it would be useful to find explicit expressions for the detection thresholds depending
on the desired probability of false alarm. In addition it is very important to implement
these architectures and to test them on real signals to evaluate the use of these detectors
and compare their total execution time (which is equal to the computation time added
to the observation time),with the total execution time of the cyclostationary detector.
Also it would be interesting to study these new detectors in a MIMO context using
multiple antennas. The collaborative aspect using these new detectors should also be
studied. Finally it would also be useful in the future to offer new detection algorithms
based on the new estimator of this chapter.
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Table 5.2 Attenuation and delay of the channel response h

Trajet 1 2 3 4 5 6

Attenuation in dB 0 −1 −9 −10 −15 −20
Delay in Te 0 4 6 8 14 20

Appendix

In this Appendix we will describe in a little more detail by giving the coefficients of
the channel used in the simulations of Sect. 2.

One way to represent the impulse response of a multipath channel, is by a discrete
number of pulses as follows:

c(t, τ ) =
l∑

i = 1

ai(t)δ(τ − τi) (5.28)

where ai(t) is the attenuation at the time t of the traject i, and τi represents the delay
of the traject i. For a time-invariant channel the response is:

c(τ ) =
l∑

i = 1

aiδ(τ − τi) (5.29)

with coefficients ai invariant in time. In the simulations the used coefficients ai are
given in the Table 5.2.

From Table 5.2 we can conclude the impulse response of the channel using the z
transform:

C(z) = 1 + 0.79 · z−4 + 0.12 · z−6 + 0.1 · z−8 + 0.03 · z−14 + 0.01 · z−20 (5.30)
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Chapter 6
Intersystem Coexistence and Cooperation
Through Control Channels
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Abstract The emerging wireless world is expected to be characterized from the
demand for new, diversified applications/services, the expanded use of wireless and
the need for increased efficiency in resource provisioning and utilization. Therefore,
the resource usage in an opportunistic manner would provide a solution towards
this direction. Opportunistic networks (ONs) and Cognitive Management Systems
(CMSs) for cellular extensions are one of the emerging communication paradigms in
wireless mobile communications. For the cooperation of CMSs, specific mechanisms
need to be defined in order to increase the accuracy of obtained knowledge on the
context of the operational environment. Also, a cooperation mechanism is required
for efficient coordination between the infrastructure and the devices in the scope
of an ON. Therefore, Control Channels (CCs) are required for the exchange of
information and the coordination between CMSs. Consequently, this work focuses
on the definition of the needed interfaces that are introduced in order to enable
communication between the cognitive management systems and also to the related
groups of information that is needed to be conveyed between these systems in order
to ensure proper interaction. Finally, an indication of the amount of information
conveyed through CCs is provided in order to be able to assess the impact to the
network of control-related transmitted information.
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6.1 Introduction

The emerging wireless world is expected to be characterized from the demand for
new, diversified applications/services, the expanded use of wireless and the need for
increased efficiency in resource provisioning and utilization. Therefore, the resource
usage in an opportunistic manner would provide a solution towards this direction.
Opportunistic networks (ONs) and cognitive management systems (CMSs) for cellu-
lar extensions are one of the emerging communication paradigms in wireless mobile
communications. Operator-governed ONs use the basic concepts of opportunistic
networking and extend them by proposing coordination mechanisms which cooper-
ate with the infrastructure. ONs enable pervasive communications in an environment
where disconnection and reconnection may frequently occur and link performance
and availability are highly dynamic and they make use of available network resources
such as spectrum, nearby nodes etc. in an opportunistic manner. Operator-governance
in such cases is realized through the use of CMSs which acquire operators policies
and proceed with the establishment of an operator-governed ON.

Control Channels (CCs) have been identified as a key feature required for support-
ing CMSs in their operation, through the provision of the information and knowledge
[1–4]. It should be noted that, by processing the information acquired through CCs,
there can be more elaborate knowledge that can be generated through machine learn-
ing, and, therefore, there can be efficient intersystem coexistence and cooperation
and a reactive or proactive response to situations. Moreover, it can be seen that the
CC concept comprises information on all the layers of the protocol stack, e.g., rang-
ing from spectrum sensing and spectrum awareness to various application and user
requirements.

Investigation of ONs in literature is not a new topic. Specifically authors in [5] pro-
vide a conceptual point of view of the opportunistic networking paradigm by focus-
ing on Delay-Tolerant Networks (DTNs). Also, the idea of an expanding network by
dynamically adding new nodes has been examined by authors in [6]. The coexistence
of ONs with network infrastructure is empirically analyzed in [12], where it is con-
cluded that after a certain point, the benefits of additional infrastructure deployments
are minor and the utility of the system remains stable. On the other hand, the OneFIT
project [14, 15] has proceeded to the definition of the operator-governed ONs by
extensively studying and evaluating various facets of ONs under specific scenarios
and operating conditions. Finally, the possibility of extending ad-hoc networks with
the support of infrastructure, (i.e., hybrid networks according to [13]) has been
investigated as a way of improving the connectivity in large scale ad-hoc networks,
while authors in [7] provide solutions with respect to data storage, carrying and
forwarding in an ON.

In addition, authors in [8] presented a technique based on a fittingness factor for
the selection of the spectrum to be assigned to a set of radio links that belong to an
ON, among pairs of terminals and infrastructure nodes is considered. In [9], a mod-
ular decision flow for the selection of Radio Access Technology (RAT), frequency,
and bandwidth for operator-governed ONs, was presented, in order to ensure fair
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operation for the whole ON and adequate quality levels for each user. Moreover,
authors in [10] studied the probability of finding a supporting device that can relay
traffic to the infrastructure through ON with respect to the range of the air interface
and to the density of the supporting devices. Furthermore, authors in [11] presented
a decision making system that can select the most suitable techniques for obtaining
spectrum availability information in ONs from cognitive control channels, databases,
and spectrum sensing techniques.

To this extent, this work supports the idea that CMSs are a vital component of
operator-governed ONs and evaluates the impact to the network of the conveyed
information through control channels which are used for the cooperation of the
CMSs.

The rest of the chapter is structured as follows. Section 6.2 deals with basic
scenarios while Sect. 6.3 analyzes the main functional blocks, including an overview
of CMSs. Section 6.4 provides essential information related to the cooperation
between CMSs through the CCs, while Sect. 6.5 includes an indicative evaluation of
the conveyed information through CCs. Finally, the chapter concludes at Sect. 6.6.

6.2 Scenarios

In order to be able to show the benefits of intersystem coexistence and cooperation
through CCs, we have to define a few scenarios that make use of the CCs as enablers
for conveying information so as to proceed to ON establishment [17]. One of the
scenarios deals with the opportunistic coverage extension which offers extension
of the infrastructure coverage of a macro Base Station (BS). In this scenario, it
shall be assumed that an area is not well-covered, so an operator-governed ON is
needed to be established upon operator’s request in order to provide connectivity
to non-covered places. For the realization of the scenario, a device which is out of
the infrastructure’s coverage will search for neighboring, ON-enabled devices which
have direct access to a BS and are willing to help, in order to connect to it. This
device will act as an intermediate node between the out-of-infrastructure coverage
device and the infrastructure (BS). Eventually, the benefits from such an approach
would affect various stakeholders. For example, users who cannot access directly the
infrastructure, can now be served via intermediate users under operator governance
of the created ON. On the other hand, operators shall experience increased revenue
from the fact that extra users can now be served through their infrastructure (without
having to establish permanent, new infrastructure elements in order to cover small
portions of non-covered areas).

Another situation would involve a device which experiences low quality of
communication (e.g., decreased bitrates, increased communication delay) due to
the congestion of infrastructure elements (BSs). Therefore, the redirection of traffic
through an operator-governed ON that avoids the congested element would be a fea-
sible solution. This is the opportunistic capacity extension scenario which enables
devices to maintain the required level of communication by redirecting ON-enabled
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Fig. 6.1 Envisaged scenarios

devices to neighboring, non-congested BSs. Alternatively, users can be assigned to
available small cells in the problematic area.

From the opportunistic capacity extension, operators and end-users would actually
benefit from the fact that users can now be served with better quality of communi-
cation, since excessive amount of users in a BS is redirected to neighboring non-
congested BSs. Therefore, previously congested BS is now relieved and even the
users who remain attached to this BS are benefited from the congestion resolution.
Additionally, reduction of load and energy consumption will be observed to the
infrastructure elements.

Figure 6.1 illustrates situations which may occur in a cellular network, without
the use of operator-governed ONs. Consequently, there are some terminals with
ON capabilities which are out of infrastructure coverage and other terminals which
are in coverage and are willing to help. All these challenges are tackled with the
formation of operator-governed ONs. To that respect, terminals with ON capabilities
have the ability to connect to each other and form an ON in order to gain access to the
infrastructure. Also, users located to the congested BS can exploit the opportunity
of nearby terminals or small cells in order to redirect traffic to alternate BSs with
better quality of communication (e.g., higher bitrate etc.). In order to make all these
solutions possible, novel functional entities are proposed in the following sections
which enable the creation, monitoring, management and termination of operator-
governed ONs.

6.3 Functional Architecture Overview and Cognitive
Management Systems

In order to achieve operator-governance of ONs, decisions and policies from the
operator are utilized. Specific management entities need to be introduced in order to
be able to obtain this kind of input and proceed to decision making and enforcement.
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To that respect, the management and control functionalities for ONs shall be an
addition to existing functionalities in operators’ networks.

Therefore, the proposed Functional Architecture (FA) is an extension of an exist-
ing architecture as defined in ETSI [1, 19] and is about “Functional Architecture
for the Management and Control of Reconfigurable Radio Systems”. New building
blocks (which are also defined as CMSs) need to be added to the previously defined
FA so as to facilitate the cognitive management and control of operator-governed
ONs as proposed in [16, 18]. These are:

• The Cognitive Management System for the Coordination of the Infrastructure
(CSCI) which is responsible for the detection of situations where an ON would be
useful (prior to the formation of the ON);

• The Cognitive System for the Management of the Opportunistic Network (CMON)
which is responsible for the creation, maintenance and termination of a given ON
based on the context and policy information provided by the CSCI.

CMSs such as CSCI and CMON, capitalize on management and knowledge mech-
anisms as envisaged in cognitive radio principles [20]. To this extent, as already
defined in [16, 18] the CSCI is responsible for the ON suitability determination
phase, which is executed before the actual ON creation and deals with issues like
“is it possible for an ON to be established right now, under the current operating
conditions, current neighboring nodes etc.?” If the answer to this is positive, then the
decision is forwarded to the CMON which will deal with the creation, maintenance
and termination of the ON.

Apart from the CSCI and CMON functional blocks, further, legacy functionalities
include the following [1, 19]:

• Dynamic Spectrum Management (DSM);
• Dynamic, Self-Organizing Network Planning and Management (DSONPM);
• Joint Radio Resources Management (JRRM);
• Configuration Control Module (CCM).

Figure 6.2 provides an overview of the aforementioned main functional blocks.
CMSs are realized through the introduction of CSCI and CMON to the functional
architecture. For the communication between the functional entities specific inter-
faces have been proposed [16, 18]. These interfaces include the CI interface which
stands for the Coordination with the Infrastructure and connects different CSCI
instances; the OM interface which stands for the Opportunistic Management and
connects different CMON instances; the CS interface which enables the connection
of the CSCI/CMON with the DSM; the CD interface which deals with the communi-
cation among the DSONPM and CSCI/CMON and can be used by the CSCI/CMON
to retrieve information on the configuration of the operators network; the OJ inter-
face which is located among the JRRM and the CSCI/CMON; and the OC interface
which is located among the CCM and the CSCI/CMON.
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Fig. 6.2 Main functional blocks and interfaces

6.4 Cooperation Between Cognitive Management Systems
Through Control Channels

For the cooperation of CSCIs and CMONs, specific mechanisms need to be defined in
order to increase the accuracy of obtained knowledge on the context of the operational
environment. Also, a cooperation mechanism is required for efficient coordination
between the infrastructure and the devices in the scope of an ON. Therefore, CCs
are required for the exchange of information and the coordination between CMSs.

Such control channels can be based on the exploitation and evolution of two
concepts: the cognitive pilot channel (CPC) and the cognitive control radio (CCR)
(as defined by ETSI). The CPC can be seen as an enabler for providing information
from the network to the terminals and vice-versa (e.g., available RATs, spectrum,
bands etc.) [14].

Specific data structures have been developed so as to formulate the structure of
the information that needs to be exchanged through CCs for supporting the vari-
ous scenarios described before by mainly containing information on the context of
operation, on the profiles of the involved nodes, on the policies to be obeyed, on the
decisions made, as well as on knowledge derived for all the above [21].

Profiles: Profiles are divided into terminal, base station and user profiles. Terminal
and BS profiles include “General capabilities” like ID of the node, type of the node, IP
address of the node etc.; “Communication capabilities” like communication interface
capabilities, available/supported RATs, available/supported spectrum bands, sens-
ing techniques etc.; “Computing capabilities” like CPU, memory data etc.; “Storage
capabilities” like available size of caching/storage etc.; “Energy capabilities” like
total capacity and characteristics of available batteries etc. and finally “ON capabil-
ities”, e.g., maximum number of allowed/supported nodes to be used in an ON etc.
In addition, “User Profiles” include information related to behavior aspects of users
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(e.g., how many times do they use an application etc.), the subscribed applications
and the associated user class.

Context: Accordingly context information is divided into terminal and base station
context. Terminal and BS context include “General status” such as ON node’s current
location, timestamp of collected context, mobility characteristics (applicable only to
moving terminals), etc.; “Communication status” such as current RAT utilized for the
communication, demand and quality of communication offered per application (i.e.,
requested and offered bitrate, delay etc.), user class etc.; “Computing status” such
as the current utilization of the CPU/ memory etc.; “Storage status” such as current
utilization of storage/caching space; “Energy status” such as the current level of the
battery and finally “ON status” such as lifetime of the current ON, amount of data
transmitted through the current node which participates in an ON etc.

Information on Decisions: Information on decisions is divided into ON decisions,
infrastructure decisions and terminal decisions. Specifically, ON decisions may
include decisions related to path selection (ON nodes and links utilized in an ON) as
well as spectrum selection (central frequency, bandwidth, sensing technique utilized,
transmission constraints etc.). Additionally, infrastructure and terminal decisions
cover aspects on communication (e.g., RAT to be operated etc.), storage (e.g., amount
of storage space to be utilized etc.) and computing (e.g., percentage of CPU or mem-
ory to be used etc.).

Knowledge: Knowledge is related to acquired context and decisions made. To that
respect, through registered values obtained during the time of operation, knowledge
mechanisms can support decisions by assessing context, previous decision made and
the performance achieved through the decision. In the case that the performance was
satisfactory and similar context is observed then the same decision can be enforced.
Apparently, this would lead to faster decision making for similar contexts of opera-
tion.

Policies: Policies represent rules of the network operator that can be imposed
for certain reasons. To that respect, network operator policies shall include commun-
ication-related policies (e.g., what are the allowed interfaces etc.); computing-related
policies (e.g., what is the allowed CPU/memory usage etc.); storage-related policies
(e.g., what is the allowed storage size) and energy-related policies (e.g., what is the
allowed energy consumption).

Figure 6.3 that follows provides an overall representation of the information
conveyed.

6.5 Evaluation of Conveyed Information Through
Control Channels

The following section provides evaluation of the information conveyed through CCs.
The analysis is conducted for the CSCI/CMON interfaces between different nodes.
Specific test cases are considered for the evaluation as provided in Table 6.1. Testcases
take into account the following attributes:
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Fig. 6.3 Information conveyed through Control Channels

Table 6.1 Considered test cases

Attribute Value for case 1 Value for case 2 Value for case 3

Total BSs 7 7 7
Non-congested BSs 6 6 6
Congested BSs 1 1 1
Terminals in non-congested BSs 15 20 25
Terminals in congested BS 40 80 160
Terminals switching to ONs 12 24 48
No. of created ONs 12 24 48
No. of links per ON 2 2 2
No. of interfaces in BSs 1 1 1
No. of interfaces in terminals 2 2 2
No. of RATs (per interface) 1 1 1

• Number of BSs;
• Non-congested BSs;
• Congested BSs;
• Terminals in non-congested BSs;
• Terminals in congested BS;
• Terminals switching to ONs;
• Number of created ONs;
• Number of links per ON;
• Number of interfaces in BSs;
• Number of interfaces in terminals;
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Fig. 6.4 Mapping of messages and related information to procedures

• Number of RATs (per interface).

Evaluation is taking place by considering a scenario related to capacity extension.
Also, for the exchange of messages an agent-based, Java prototype has been devel-
oped by using the Java Agent Development Platform (JADE) [22]. JADE acts as a
middleware on top of a customized version of the Opportunistic Network Environ-
ment (ONE) [23] simulator, so as to realize transmission of messages among func-
tional entities. Customization of the ONE has provided the flexibility to include also
communication with infrastructure (simulated base stations). Therefore, a specific
message sequence chart (MSC) is provided in order to show which kind of mes-
sages are being considered. Also messages are grouped onto specific procedures.
For the procedures 1–6 and 8, triggered-based events are considered (i.e., messages
are being exchanged only upon request/trigger and not periodically). On the contrary,
for procedure 7 a periodic exchange of messages is also considered (i.e., messages
can be exchanged on periodic basis e.g., every 1 s etc.). The considered procedures
are illustrated in Fig. 6.4.

The chart in Fig. 6.5 shows the impact of each procedure 1–6 and 8 which involve
trigger-based messages. Periodic messages are not exchanged during these proce-
dures, because the procedures are executed only when they are instructed from the
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Fig. 6.5 Load associated with specific procedures

Fig. 6.6 Total signaling load for each case

CMSs. Each procedure is evaluated separately for each one of the testcases. Also,
the chart in Fig. 6.6 illustrates the total signaling load for each testcase.

The chart in Fig. 6.7 provides an estimation of the periodic load which is consid-
ered to take place during procedure 7. Specifically, during this procedure, terminal
context is considered to be sent periodically (every 1, 5 or 30 s) in order to know the
status of the nodes involved in the ON (e.g., their current location, current energy
level, current links etc.). It is observed that as long as the intervals of transmis-
sion are more closely defined, the load per second (bytes/s) is higher (for each case
considered).
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Fig. 6.7 Calculation of periodically exchanged load associated with procedure 7

6.6 Conclusions

The emerging wireless world introduces new challenges and requirements that need
to be tackled in order to allow key players to be innovative and stay competitive in the
wireless telecommunications market. As a result, solutions comprising opportunistic
usage of available resources for addressing the new challenges are proposed in this
work. The design, development and validation of global and cost-efficient solutions to
address the above appear to be of major importance. Novel functional architectures of
communication systems become necessary. The definition of new functional blocks
and interfaces is presented in this work. New functional blocks comprise CMSs
which are responsible for the creation, maintenance and termination of ONs. The
cooperation of CMSs through CCs provides solutions to problems such as coverage
and capacity extension through the creation of ONs. Finally, the impact to the network
of the conveyed information through control channels is evaluated in order to be able
to use it as an indication. It is concluded that control messages related to the operation
of ONs are rather small in terms of size.
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Chapter 7
Cooperative Spectrum Sensing with Censoring
of Cognitive Radios in Fading Channel Under
Majority Logic Fusion

Srinivas Nallagonda, Sanjay Dhar Roy, Sumit Kundu, Gianluigi Ferrari
and Riccardo Raheli

Abstract In a cooperative spectrum sensing (CSS) scheme, the detection of the
presence of activity of a primary user (PU) is improved by the fact that several cog-
nitive radio (CR) users send, through reporting channels (R-channels), their sensed
information on the activity of this PU to a common base station (BS). The bene-
fits are particularly relevant in scenarios where the sensing channels (S-channels)
towards the PU of interest of CR users are affected by severe fading or shadowing.
However, in a CSS scheme with R channels affected by fading or shadowing as
well, there may be erroneous reception, at the BS, of decisions from CR users: this
can be counter-acted by using censoring of CR users. In this chapter, we discuss
the performance of CSS with censoring of CR users based on their R-channels’ sta-
tuses. Two schemes of censoring are considered: (i) rank-based censoring, where a
pre-defined number of CR users, associated with the best R-channels, are selected;
and (ii) threshold-based censoring, where CR users, whose R-channel fading coef-
ficients exceed a pre-determined threshold, are selected. The performance of both
censoring schemes is evaluated considering two different R-channel fading condi-
tions: (i) Rayleigh fading and (ii) Nakagami-m fading. In both cases, majority logic
fusion is considered at the BS (also denoted re-interpreted as fusion center, FC). The
impact of various network parameters—such as censoring threshold, number of CR
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users, average S-and R-channels’ SNRs, channel estimation (CE) quality, and fading
severity—on the performance of the considered CSS schemes will be evaluated in
terms of missed detection and total error probabilities.

7.1 Introduction

Cognitive radio (CR1) has been proposed [1] as a promising technique to solve the
conflicts between spectrum scarcity and spectrum under utilization. CR systems allow
CR users to share the spectrum with primary users (PUs) either opportunistically or
without creating any intolerable interference to PU. Spectrum sensing is an important
feature of CR technology since it is necessary to detect the presence of PUs accurately
and quickly in order to find availability of unused spectrum, i.e., the spectrum holes.
Accurate sensing of spectrum holes is a hard task because of the time-varying nature
of wireless channels [2], including fading and shadowing. Due to severe multipath
fading in sensing channel (S-channel) between a PU and a CR user, the CR user
may fail to detect the presence of the PU. The detection/sensing performance can be
improved, by limiting the negative impact of fading, if different CR users are allowed
to cooperate by sharing their detected information on the activity status of PUs: this
is the essence of cooperative spectrum sensing (CSS). Therefore, CSS improves the
detection performance when all CR users sense the PU individually and send their
sensing information in the form of 1-bit binary decisions (1 or 0) via ideal (noiseless)
reporting channels (R-channels) to a fusion centre (FC)—the FC corresponds to the
base station (BS). In CSS schemes, the local decisions on PUs’s activity status sent
by several CR users are combined at FC to obtain a global decision. In general, the
sensing information reported to the FC by several CR users can be combined in two
different ways: through (i) soft or (ii) hard combining. According to a soft combining
approach, CR users transmit the entire local sensing samples or the complete local
test statistics which are combined using any one of possible diversity combining
technique such as likelihood ratio test (LRT), maximal ratio combining (MRC), and
equal gain combining (EGC) [3–5]. In [3] the authors consider soft information
combining of the signals received via multiple antennas of a single CR. In [4], the
LRT fusion is discussed in case of wireless sensor networks. In [6], an optimal
soft combination scheme based on neyman-pearson (NP) criterion is proposed to
combine the weighted local observations. The proposed scheme reduces to EGC at
high SNR and reduces to MRC at low SNR. In the presence of hard combining, CR
users make a local decision (hard decision on the PU activity status) and transmit the
one bit decision for hard combining. A hard decision combining fusion rule—such as
OR-logic, AND-logic, and majority-logic—is implemented at FC to make the final
decision on the presence or absence of a PU [7–9].

1 Note that with the generic term CR we also refer to a secondary (cognitive) user (SU). The context
eliminates any ambiguity.
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In many wireless applications, it is of great interest to check the presence and
availability of an active communication link when the signal is unknown. In such
scenarios, one appropriate choice consists in using an energy detector (ED) which
measures the energy in the received waveform over an observation time window
[10, 11]. The existing literature energy detector-based on single CR user [11, 12] and
cooperative CR users [13–16] spectrum sensing, typically assumes popular fading
models such as Rayleigh and Nakagami-m (m being the fading severity parameter).
In these cases, R-channels are assumed to be ideal and S-channels are considered as
Rayleigh and Nakagami-m fading channels. However, in many practical situations
R-channels may not be noiseless (ideal) channels. Though most works on spec-
trum sensing assume noiseless R-channels [7–9, 12–16], the presence of fading in
R-channels is likely to affect the decisions sent by CR users where the FC is far from
CR users. If the R-channel connecting a CR user to the FC is heavily faded, the deci-
sion received at the FC is likely to be erroneous with respect to that transmitted by
the CR user. If this is the case, it is better to stop transmitting decisions from such CR
user and, thus, the use of censoring is expedient. The CR users whose R-channels are
estimated as reliable by the FC are censored, i.e., they are allowed to transmit. The
CR users which are not participating in improving the detection performance may be
stopped, so that the system complexity can be reduced and the detection performance
can be improved. This will further reduce the energy consumption for an energy-
constrained network. Therefore, censoring of CR users is necessary to improve the
performance of CSS. The R-channels are considered as noisy and Rayleigh faded
in [17, 18], in the context of a sensor network where sensors report their decisions to
a FC. Censoring of sensors, as proposed in [19, 20], and channel-aware censoring of
sensors, as discussed in [21], can be well applied in the context of energy detection
based CSS.

In our present discussion, we consider both R-channel and S-channel to be (i)
Rayleigh faded and (ii) Nakagami-m faded. Similar fading scenario is considered
in S-channel and R-channel i.e., both S-channel and R-channel as Rayleigh faded
or Nakagami-m faded. Though all the CR users detect PUs using energy detec-
tors, only those CR users censored based on quality of R-channels are allowed to
transmit. The censoring decision is taken by FC based on estimation of R-channel.
In [23], the performance of CSS systems with censoring of CR users under both
majority-logic fusion and maximal ratio combining (MRC) fusion has been evalu-
ated only in Rayleigh faded environments, considering CR users’ censoring on the
basis of the qualities of their R-channels. Using minimum mean square estimation
(MMSE)-based estimation of the R-channels, the FC selects the subset of CR users
among all the available ones (say K out of N) which have the highest channel coef-
ficients, i.e., the CR users associated with best estimated channel coefficients are
selected. However, in an alternative censoring scheme, based on channel threshold-
ing, is considered and analyzed in [24] in the context of distributed detection in a
(non-cognitive) sensor network where a number of sensors observe a common binary
phenomenon. In [25], the performance of CSS schemes with channel thresholding-
based censoring of CR users with Rayleigh fading and majority-logic fusion at the
FC is evaluated. The investigation of majority-logic fusion schemes where both
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S- and R-channels are Nakagami-m faded is an interesting research extension. The
Nakagami-m distribution provides flexibility in describing the fading severity of the
channel and encompasses special cases such as Rayleigh fading (for m = 1) [5].

In the current chapter, we consider the same system model of [23, 25] and evaluate
the performance of CSS with censoring of CR users based on quality of R-channels.
More precisely, we analyze the performance of CSS schemes with censored CR users
in Nakagami-m faded environments (with special case given by Rayleigh faded envi-
ronment), considering a network of N CR users. Each CR user makes local observa-
tion on the activity of the PU using energy detectors. We consider two schemes on
channel quality-based censoring. The first scheme consists of rank-based censoring:
using MMSE-based estimation of the R-channels, the FC selects the subset of CR
users among all the available ones (say K out of N) which have the highest channel
coefficients, i.e., the CR users associated with best estimated channel coefficients
are selected. The second censoring scheme is threshold-based: a CR user is selected
to transmit its decision if the estimated R-channel fading coefficient exceeds a given
threshold (denoted as censoring threshold and indicated as Cth). The channel esti-
mation is either perfect (no estimation error) or imperfect (with an estimation error).
Accordingly, for each censoring strategy, there are two possibilities, namely perfect
or imperfect channel estimation. The FC employs coherent reception to fuse the
binary local decisions received from the censored CR users, in order to obtain a final
decision regarding the presence or absence of PUs. Low complexity majority-logic
fusion of the decisions received from the selected CR users is considered in present
case. The overall probability of missed detection is selected as the key performance
metric and is evaluated, through simulations, under several channel and network
conditions.

The main contributions of this chapter can be summarized as follows.

• Closed-form expressions of the estimation error variances for Rayleigh and
Nakagami-m fading channels are presented. These expressions are expedient to
evaluate the performance of CSS with censoring based on imperfect channel esti-
mation.

• The performance, in terms of missed detection and total error probabilities under
both perfect and imperfect channel estimation strategies, is investigated. The
effects of Nakagami-m fading, S- and R-channel SNRs on the performance of
the considered CSS schemes are investigated.

• The impact of the R-channel estimation error on the detection performance in the
considered fading scenarios is evaluted.

• Direct performance comparisons between perfect and imperfect channel estimation
schemes, for various values of the main channel and network parameters, are car-
ried out.

• In threshold-based censoring scenarios, novel analytical expressions, as functions
of the censoring threshold Cth, for the selection of CR users are derived in Rayleigh
and Nakagami-m fading channels. In particular, the probability mass functions
(PMF) of the number of censored CR users is analyzed.
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• The impact of the number of available CR users and of the average R-channel
SNRs on the average missed detection and average total error probabilities of CSS
schemes is investigated.

• In threshold-based censoring schemes, the impact of the censoring threshold on the
average missed detection and average total error probability, with the derivation
of an optimized censoring threshold.

• The performances of several hard-decision fusion strategies are also evaluated and
compared with each other under various fading channels.

The rest of the chapter is organized as follows. In Sect. 7.2, the basics of CSS are
introduced. In Sect. 7.3, the performance of CSS in faded environments (Rayleigh
and Nakagami-m) under several hard decision fusion rules is studied. In Sect. 7.4,
two different censoring methods such as Rank-based and threshold-based censoring
have been analyzed under both perfect and imperfect channel estimation schemes.
Finally, conclusions are drawn in Sect. 7.5.

7.2 Cooperative Spectrum Sensing

Detection of PU by a single CR user may not be accurate due to impairment in
S-channel or hidden node problem which necessitates the use of cooperation among
many CR users. In such cases, as anticipated in Sect. 7.1, detection/sensing perfor-
mance can be improved, by alleviating the effects of fading, if different CR users are
allowed to cooperate by sharing their detection information, i.e., considering CSS.
Therefore, CSS improves the detection performance where all CR users employ
identical EDs and sense the PU individually and send their sensing information in
the form of 1-bit binary decisions (1 or 0) via R-channels to FC. The hard decision
combining fusion rule (OR, AND, and majority-logic fusion rules) is performed at
FC using a counting rule to make the final decision regarding the presence or absence
of a PU [7–9, 12, 15]. In case of soft decision combining, the CR users can transmit
the entire local sensing samples or the complete local test statistics to FC. Existing
receiver diversity techniques [3–5], such as LRT, EGC, and MRC, can be utilized at
the FC for soft combining of local observations or test statistics. The performance
of CSS with hard decision fusion in faded environments is investigated in the next
section.

7.3 Impact of Fading on Cooperative Spectrum Sensing

The energy detection method is the common method for detection of unknown signals
in noise [10, 11]. The block diagram of an energy detector is shown in [10, 11] which
consist of one band pass filter (BPF), one signal squarer, one integrator and one
decision device. The input BPF selects the center frequency and the corresponding
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bandwidth of interest (with width W ). The output of the BPF filter is passed to
a squaring device to measure the received energy. Then an integrator is placed to
determine the observation interval, T . Finally, the output of the integrator, denoted
as Y , is compared with a detection threshold to decide on the presence/absence of a
PU signal. We assume that all CR users use the same energy detector and the identical
threshold (denoted as λ). The received signal xi(t) at the input of the i-th CR user
can be expressed as

xi(t) =
{

n(t) : H0
hi(t)s(t) + n(t) : H1

(7.1)

where s(t) is the PU signal with energy Es and n(t) is the noise waveform. The noise
n(t) is modeled as a zero-mean white Gaussian random process. The Rayleigh faded
S-channel coefficient for the i-th CR user is denoted as hi(t). H1 and H0 are the two
hypotheses associated with presence and absence of a PU respectively. Each CR user
has an energy detector to detect on the presence or absence of a useful signal.

We consider a network of N CR users sensing the spectrum of a PU, as shown
in Fig. 7.1. Each CR user makes its own decision regarding the presence of the PU,
and forwards the binary decision (1 or 0) to FC for data fusion. We consider only
one FC and all CR users are equipped with single antenna. The PU is located far
away from all CR users. All CR users are assumed to be relatively close to each
other. The distance between any two CR users is shorter than the distance between
a PU and a CR user and the distance between a CR user and the FC. For simplicity,
we assume that the average SNR in the S-channel is the same for each CR user.
We consider that the S-channels are faded, while the R-channels are ideal channels
(noiseless). According to the sampling theorem, the noise process can be expressed
as follows [26]:

n(t) =
∗∑

j=−∗
nj sinc(2Wt − j) (7.2)



7 Cooperative Spectrum Sensing with Censoring of Cognitive Radios 139

where sinc(x) = sin(πx)/(πx) and nj = n(j/(2W)). One can easily show that

nj ∈ N (0, N01W); →j (7.3)

where N01 is the one-sided noise power spectral density,W is the one-sided bandwidth
and N (μ, σ 2) is a Gaussian distribution with mean μ and variance σ 2.

When the PU is absent (i.e., H0 is true), each CR user receives only the noise
signal at the input of the ED and the noise energy can be approximated, over the time
interval (0, T), as follows [10, 11]:

∫ T

0
n2(t) dt = 1

2W

2u∑

j=1

n2
j (7.4)

where u is the time-bandwidth product. If we define n∞
j = nj/

≥
N01W , the decision

statistic at i-th CR user, denoted as Yi in case of H0, can be written as [10, 11]:

Yi =
2u∑

j=1

n∞2
j . (7.5)

In particular, Yi is the sum of the squares of 2u standard Gaussian variates with zero
mean and unit variance. Therefore, Yi has a central χ2 distribution with 2u degrees
of freedom.

The same approach can be applied in the presence of the signal s(t) of a PU,
by replacing {nj} in (7.4) with nj + sj, where sj = s(j/(2W)). In this case, the
decision statistic Yi has a non-central χ2 distribution with 2u degrees of freedom and
non-centrality parameter 2γs,i [10, 11]. More precisely:

Yi ∈
{

χ2
2u : H0

χ2
2u(2γs,i) : H1

(7.6)

In a non-faded environment, the detection and false alarm probabilities for the
i-th CR user can be expressed as follows [7, 16]:

Pd,i = Pr[Yi > λ|H1] = Qu

(√
2γs,i,

≥
λ
)

(7.7)

Pf ,i = Pr[Yi > λ|H0] = Γ (u, λ/2)/Γ (u) (7.8)

where γs,i is the instantaneous S-channel SNR, Γ (·) is the incomplete gamma func-
tion [27], and Qu(·, ·) is the generalized Marcum Q-function of order u [28]. The
expression for the probability of false alarm (Pf ,i) for the i-th CR user, as given in
Eq. (7.8), remains the same when fading is considered in the S-channel, owing to the
independence of Pf ,i from the SNR γs,i. For a chosen value of Pf ,i, the corresponding
detection threshold λ can be set following Eq. (7.8). The ED thus compares Yi with
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its preset detection threshold λ and takes a hard binary decision about the presence
of a PU.

When hi is time-varying, because of fading, Eq. (7.7) returns the probability
of detection as a function of the instantaneous SNR γs,i. In this case, the average
probability of detection at the i-th CR user can be derived by averaging (7.7) over
fading statistics [7–9] and can be given the following expression:

P̄d,i =
∫ ∗

0
Qu

(≥
2x,

≥
λ
)

fγ (x) dx (7.9)

where fγ (x) is the probability density function (pdf) of γ under fading.

7.3.1 Rayleigh Fading Channel

If the received signal amplitude at the i-th CR user has a Rayleigh distribution, then
the SNR (γs,i) has the following exponential pdf [5, 11]:

fγ (γs,i) = 1

γ̄s
exp

(
−γs,i

γ̄s

)
; γs,i ≈ 0 (7.10)

where γ̄s is the average SNR of the S-channel. The average Pd at the i-th CR user in
this case, P̄d,i,Ray can now be evaluated by substituting (7.10) in (7.9), thus obtaning:

P̄d,i,Rayl = exp

(
−λ

2

) u−2∑

k=0

1

k!
(

λ

2

)k

+
(

1 + γ̄s

γ̄s

)u−1

×
(

exp

(
− λ

2(1 + γ̄s)

)
− exp

(
−λ

2

) u−2∑

k=0

1

k!
(

λγ̄s

2(1 + γ̄s)

)k
)

. (7.11)

7.3.2 Nakagami-m Fading Channel

If the received signal amplitude at the i-th CR user follows a Nakagami-m distribution,
then γs,i has the following gamma pdf [5, 11]:

fγ (γs,i) =
(

m

γ̄s

)m γ m−1
s,i

Γ (m)
exp

(
−mγs,i

γ̄s

)
; γs,i ≈ 0 (7.12)

where m is the Nakagami fading parameter. The average probability of detection at
the i-th CR user in the case of Nakagami-m channel P̄d,i,Nak can be evaluated by
substituting (7.12) in (7.9), obtaining:
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P̄d,i,Naka = α

[

G1 + β

u−1∑

n=1

(λ/2)n

2n! 1F1

(
m; n + 1; λγ̄s

2(m + γ̄s)

)]

(7.13)

where 1F1(·; ·; ·) is the confluent hypergeometric function [27, Sect. 9.2]

α = 1

Γ (m)2m−1

(
m

γ̄s

)m

(7.14)

β = Γ (m)

(
2γ̄s

m + γ̄s

)m

exp

(
−λ

2

)
(7.15)

and

G1 = 2m−1(m − 1)!
(

m
γ̄s

)m
γ̄s

m + γ̄s
exp

(
− mλ

2(m + γ̄s)

)

⎛
(

1 + m

γ̄s

) (
m

m + γ̄s

)m−1

× Lm−1

(
− λγ̄s

2(m + γ̄s)

)
+

m−2∑

n=0

(
m

m + γ̄s

)n

Ln

(
− λγ̄s

2(m + γ̄s)

)⎝

 (7.16)

where Ln(·) is the Laguerre polynomial of degree n [27, Sect. 8.970]. We can also
obtain an alternative expression for P̄d,i,Ray by setting m = 1 in (7.13)—this expres-
sion is numerically equivalent to the one in (7.11). As already discussed in Sect. 7.3,
all CR users in the network use identical EDs (with the same threshold λ) which
make hard binary decisions and transmit them to the FC via noiseless R-channels.

Assuming independent decisions, the fusion rule according to which k-out of-N
CR users are needed to make a final decision on the presence/absence of a PU can
be characterized by a binomial distribution based on Bernoulli trials, where each
trial represents the decision process of each CR user. The generalized formula for
the overall probability of detection, according to a generic k-out of-N rule, is given
by [8, 29]:

Qd =
N∑

l=k

(
N

l

)
P̄l

d(1 − P̄d)N−l (7.17)

where P̄d is the average probability of detection for each individual CR user as defined
by generalized Eq. (7.9). The overall probability of detection under OR-fusion rule
(i.e., 1 out of N rule) can be evaluated by setting k = 1 in Eq. (7.17):

Qd,OR =
N∑

l=1

(
N

l

)
P̄l

d(1 − P̄d)N−l = 1 − (1 − P̄d)N . (7.18)
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The performance with AND-fusion rule (i.e., N out of N rule) can be evaluated by
setting k = N in Eq. (7.17):

Qd, AND =
N∑

l=N

(
N

l

)
P̄l

d(1 − P̄d)N−l = P̄N
d . (7.19)

Finally, for the case of majority-fusion rule, or simply for (N/2+1) out of N rule, the
probability of detection, denoted as Qd,Maj, can be evaluated by setting k = ⇒N/2⊂
in Eq. (7.17).

The overall probability of false alarm (Qf ) for the considered fusion rules (OR,
AND, and Majority fusion rules) can be evaluated by replacing P̄d with Pf in
Eqs. (7.17), (7.18) and (7.19), respectively. It is of interest to observe that the proba-
bility of false alarm (Pf ) is independent of the SNR (γs), so that it remains same for
all fading channels. It may also be observed that in order to evaluate Qd for a spe-
cific fading channel, we need to consider the appropriate expression for P̄d (namely,
P̄d,i,Ray or P̄d,i,Naka in Eqs. (7.17) to (7.19)) to obtain the performance in Rayleigh
or Nakagami-m channels, respectively.

In Fig. 7.2, the probability of detection Qd is shown, as a function of the S-channel
SNR, considering AND, OR, and majority logic hard decision fusion rules. For each
fusion rule, Nakagami-m fading channel is considered. The OR and majority fusion
rules for Rayleigh fading channel are also shown for comparison purposes. In all
cases, there are N = 3 cooperating CR users, Qf = 0.1, and u = 5. In the case
of CSS in a Nakagami-m fading channel, for a particular value of the average SNR
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(namely, 6 dB), the probability of detection is above 0.82, 0.36 and 0.01 for the OR,
majority logic, and AND fusion rules, respectively. We can say that OR fusion rule
performs better than the AND and the majority logic fusion rules. In the presence
of Rayleigh fading, the CSS with OR fusion rule outperforms the schemes with
the other fusion rules. Furthermore, in all cases of logic fusions we observe that the
performance of CSS in Nakagami-m fading channel is better than the performance in
Rayleigh fading channel—this is expected, as the Nakagami-m (with m = 3) fading
is less severe than Rayleigh fading. Therefore, in the presence of such a Nakagami-m
fading, the number of reliable S-channels is higher than the number in the Rayleigh
fading case.

7.4 Censoring of CR User

As already discussed in Sect. 7.3, the performance of CSS, considering S-channels
as noisy-faded and R-channels as ideal, has been well studied. However, in many
practical situations R-channels may not be noiseless (ideal) channels. Though most
works on spectrum sensing assume noiseless R-channels [7–9, 12–16, 29], the pres-
ence of fading in R-channels is likely to affect the decisions sent by CR users where
the FC is far from CR users. If the R-channel connecting a CR user to the FC is
heavily faded, the decision received at the FC is likely to be an erroneous version
of that transmitted by the CR user. In such cases, it is better to stop transmitting
decisions from this CR user and, thus, censoring is expedient in these scenarios. The
CR users whose R-channels are estimated as reliable by the FC are censored, i.e.,
they are allowed to transmit. The CR users which are not participating in improving
the detection performance may be stopped, so that system complexity can be reduced
and the detection performance can be improved. Therefore, censoring of CR users
is necessary to improve the performance of CSS. The cooperative spectrum sensing
network with censoring of CR users is shown in Fig. 7.3. We assume that both S-and
R-channels are modeled as noisy and faded.

As anticipated in Sect. 7.1, in this section we study the performance of two censor-
ing schemes, namely: (i) rank-based censoring and (ii) threshold- based censoring.
The FC employs coherent reception to fuse binary local decisions received from cen-
sored CR users to obtain a final decision regarding the presence or absence of PUs.
The overall probabilities of missed detection and total error are selected as the key
performance metrics and are evaluated, through simulations, under several channel
and network conditions. In [29], it is shown that the total error probability (given
as the sum of the probabilities of missed detection and false alarm) is a decreasing
function of number of available CR users in the network when majority-logic fusion
is performed at the FC. One can easily expect that as the number of available CR
users in the network increases, the performance of majority-logic fusion, in terms
of total error probability, is better than that with AND-logic (where the probability
of missed detection is a decreasing function of the probability of false alarm) and
OR-logic (where the missed probability of detection is a decreasing function of the
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Fig. 7.3 Cooperative spectrum sensing network with censoring: illustrative scenario

probability of false alarm) fusions. This is why, in the current section, low-complexity
majority-logic fusion of the decisions received from the selected CR users is consid-
ered. A CR user takes an individual hard binary decision and, if censored, transmits
its decision, using binary phase shift keying (BPSK) as modulation format, to the
FC over the corresponding faded R-channel.

Transmissions between the CR users and the FC are carried out in two phases.
In the first transmission phase, each CR user sends one training symbol to enable
the FC to estimate all fading channel coefficients between FC and N number of CR
users corresponding to N participating CR users. Minimum mean square estimation
(MMSE) of the R-channel coefficients is obtained at the FC using training symbols
sent by the CR users to the FC. The signal from the k-th CR user received at the FC is:

yk = skhk + nk; k ⊆ {1, 2, . . . , N} (7.20)

where Sk is BPSK symbol (
≥

Eb,−≥
Eb) indicating H1 and H0, respectively. The

R-channel fading coefficient is denoted as hk and ni ∈ CN(0, σ 2
n ) is the sample of

AWGN. The complex Gaussian channel noise samples {nk} and faded R-channel
coefficients {hk} are mutually independent. We assume that the FC estimates the k-th
CR user’s fading coefficient hk according to an MMSE estimation strategy on the
basis of the observable yk as follows [22–24]:
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ĥk = E
⎞
hk |yk

⎠ =
≥

Eb

Eb + σ 2
n

yk . (7.21)

We model the k-th R-channel estimation error (h̃k) as the difference between the
actual and the estimated k-th R-channel coefficients, i.e., h̃k = hk − ĥk , where hk
is the actual k-th R-channel coefficient while ĥk is its estimate. The channel estima-
tion is either perfect (with no estimation error) or imperfect (with estimation error).
Accordingly, two censoring schemes are considered: one is based on perfect chan-
nel estimation (ĥk = hk) while the other is based on imperfect channel estimation
(ĥk = hk − h̃k). After the first phase, K (out of N) CR users, selected on the basis
of rank-based censoring (the selected CR users are associated with the best K esti-
mated channel coefficients) and threshold-based censoring (the selected K CR users
have estimated channel coefficients exceeding the predefined threshold Cth). The
FC informs the selected CR users via one-bit feedback (we assume that feedback
channels are error-free). In the second transmission phase, the K selected CR users
send their local binary BPSK modulated decisions to the FC over the corresponding
R-channels. The fading coefficients of R-channels are assumed to be fixed over a
symbol transmission time, as the channel is assumed to be slowly faded.

The signal, received from the k-th selected CR user, at the FC is [22–24]:

yk,d = mkhk + nk,d; k ⊆ {1, 2, . . . , K} (7.22)

where the channel noise nk,d ∈ CN(0, σ 2
n ) and mk ⊆ {≥Eb,−≥

Eb} is the BPSK
modulated binary decisions.

Since the communication channel is noisy and affected by fading, a decision
received by the FC might differ from the one sent by the corresponding CR user. The
decision received from the k-the selected CR user is

uk =
{

1
0

if
if

the
the

received
received

decision
decision

in
in

favor
favor

of
of

H1
H0

(7.23)

where k ⊆ {1, 2, . . . , K}. The FC finally makes a global decision according to the
following general majority logic-like fusion rule u0 = Γ (u1, . . . , uK ) [17]:

u0 = Γ (u1, . . . , uk) =

⎜
⎪⎪⎪⎪⎪⎪⎪⎧

⎪⎪⎪⎪⎪⎪⎪⎨

H1 if
K⎩

k=1
uk > K

2

H0 if
K⎩

k=1
uk < K

2

H0 or H1 if
K⎩

k=1
uk = K

2 .

(7.24)

In other words, if the number of decisions in favor of H1 is larger than the number
of decisions in favor of H0, the FC takes a global decision in favor of H1 and vice
versa. Sometimes, if the number of decisions in favor of H1 is equal to the number
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of decisions in favor of H0, then the FC flips a coin and takes a decision in favor of
either H0 or H0.

7.4.1 Rank-Based Censoring

According to this censoring scheme, K (out of N) CR users—those with the best
estimated channel coefficients (i.e., the highest ones)—are selected, as already
discussed above section.

7.4.1.1 Rank-Based Censoring in Rayleigh Faded Channel

The R-channel coefficient hk (for the k-th selected CR user) is modeled as a zero-
mean complex Gaussian random variable with variance σ 2 = 1(hk ∈ CN(0, σ 2)),
as in [22], and nk ∈ CN(0, σ 2

n ). The complex Gaussian channel noise samples
{nk} and Rayleigh faded R-channel coefficients {hk} are mutually independent. For
the k-th Rayleigh faded R-channel, the fading coefficient (hk = αkexp(jθk), where
θk ∈ U(−π, π) can be expressed, in terms of hkI and hkQ, as

hk = hkI + jhkQ (7.25)

where hkI = αk cos θk and hkQ = αk cos θk .
The amplitude |hk | is Rayleigh distributed only when hkI , hkQ ∈ CN(0, σ 2

n /2) [5].
The estimated k-th R-channel coefficient can be obtained by substituting (7.20) in
(7.21), obtaining:

ĥk =
≥

Eb

Eb + σ 2
n

(√
Ebhk + nk

)

= Eb

Eb + σ 2
n

hk +
≥

Eb

Eb + σ 2
n

nk (7.26)

where hk = hkI + hkQ, with hkI , hkQ ∈ N (0, 1/2) given by (7.26) (assuming
normalized fading power E(α2) = 1), and nk is also complex Gaussian, i.e.,
nk = nkI + nkQ where nkI , nkQ ∈ N (0, σ 2

n /2). From (7.26), the estimation error
coefficient for the k-th R-channel h̃k = hk − ĥk can be expressed as

h̃k = hk

(
1 − Eb

Eb + σ 2
n

)
−

≥
Eb

Eb + σ 2
n

nk

= hk
σ 2

n

Eb + σ 2
n

−
≥

Eb

Eb + σ 2
n

nk . (7.27)
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As seen from (7.27), the term h̃k is a complex quantity and can also be written in
terms of real and imaginary parts, i.e.,

h̃k = h̃kI + jh̃kQ (7.28)

where

h̃kI = σ 2
n

Eb + σ 2
n

hkI −
≥

Eb

Eb + σ 2
n

nk,I

h̃kQ = σ 2
n

Eb + σ 2
n

hkQ −
≥

Eb

Eb + σ 2
n

nk,Q.

From the theory of Gaussian random variables, it is well known that if Z = aX + bY
where X ∈ N (mX , σ 2

X) and Y ∈ N (mY , σ 2
Y ) then

Z ∈ N (mZ , σ 2
Z ); mZ = amX + bmY , σ 2

Z = a2σ 2
X + b2σ 2

Y . (7.29)

This implies that both h̃kI and h̃kQ that appear in (7.28) can be written in terms of
their means and variances as follows:

h̃kI ∈ N

(

0,

(
σ 2

n

Eb + σ 2
n

)2
1

2
+ Eb

(Eb + σ 2
n )

2

σ 2
n

2

)

(7.30)

h̃kQ ∈ N

(

0,

(
σ 2

n

Eb + σ 2
n

)2
1

2
+ Eb

(Eb + σ 2
n )

2

σ 2
n

2

)

. (7.31)

The mean and variance of h̃k are 0 and σ 2
h̃,Rayl

, respectively, i.e., h̃k ∈ N (0, σ 2
h̃,Rayl

)

[21, 22], where

σ 2
h̃,Rayl

= 2

[(
σ 2

n

Eb + σ 2
n

)2
1

2
+ Eb

(Eb + σ 2
n )

2

σ 2
n

2

]

= σ 4
n + Ebσ

2
n

(Eb + σ 2
n )

2 = σ 2
n

Eb + σ 2
n

=
(

1 + Eb

σ 2
n

)−1

= 1

1 + γ̄R
. (7.32)

The k-th Rayleigh faded R-channel estimation error coefficient can be generated
using the following distribution:
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Fig. 7.4 Performance of CSS network with censoring of CR users under perfect and imperfect
channel estimation for various values of average R-channel SNR (γ̄R) and average S-channel SNR
(γ̄s) in Rayleigh fading (CE stands for channel estimation, N = 20, Pf = 0.05 and u = 5)

|h̃k | =
⎫

h̃2
kI + h̃2

kQ; h̃kI ∈ N

⎬

⎭0,
σ 2

h̃,Rayl

2

⎤

⎥ , h̃kQ ∈ N

⎬

⎭0,
σ 2

h̃,Rayl

2

⎤

⎥ .

(7.33)

The following results are obtained using MATLAB-based simulations for both
perfect and imperfect channel estimation schemes. S-channels and R-channels are
both considered to be Rayleigh faded. The missed detection (Qm) and the total error
(Qm + Qf ) probabilities are evaluated considering the impact of several network
parameters, such as the probability of false alarm (Pf ) in each CR user, the average
R-channel SNR (γ̄R), and the average S-channel SNR (γ̄s).

In Fig. 7.4, the probability of missed detection is shown as a function of K . The
performance of CSS with censoring under both perfect and imperfect channel esti-
mation schemes is evaluated. Two values of S-channel average SNR (15 dB, 20 dB)
and two values of R-channel average SNR (−5 dB, −7 dB) are considered. With
both perfect and imperfect channel estimation, the probability of missed detection
reduces for increasing values of the number of selected CR users, as well as of the
S- and R-channel SNRs. The probability of incorrect reception from CR users at
the FC reduces with higher R-channel SNR. As expected, for a given value of the
R-channel SNR, Qm is higher with imperfect channel estimation, as channel-based
censoring leads to the selection of a group of CR users which may not be the best
ones due to error in channel estimation. Furthermore, according to (7.32), an increase
in the R-channel SNR leads to a decrease in estimation error variance and this, in
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Fig. 7.5 Total error probability versus the number of selected CR users (K) under perfect and imper-
fect channel estimation for various values of (γ̄R) and Pf in Rayleigh fading (γ̄s = 20dB, N = 20,
and u = 5)

turn, reduces the average estimation error. A reduced estimation error leads to a
further reduction of Qm. In particular, in the case of imperfect channel estimation
with K = 10, Qm decreases by 25.77 % when the R-channel SNR increases from
−7 to −5 dB. Similarly, in the case of perfect channel estimation, Qm decreases by
17.80 % for the same values of K and R-channel SNR. Higher values of the S-channel
SNRs improves the detection of the PU at the CR user. For example, as the S-channel
SNR increases from 15 to 20 dB, and K = 10, Qm decreases by 58.57 and 49.15 % in
case of perfect and imperfect channel estimation, respectively. Under perfect channel
estimation, by censoring, the FC selects CR users with best R-channel coefficients
which means that decisions sent by selected CR users to the FC have low probabil-
ity of getting flipped. As the FC uses a majority-logic fusion, it achieves a floor in
the missed detection performance at a certain number of CR users, i.e., no further
improvement in detection performance is obtained by increasing the number of CR
users beyond this.

In Fig. 7.5, the total error probability is shown as a function of the number of
selected CR users for various values of the probability of false alarm (Pf ), and
R-channel SNR. The number of available CR users is 20 and S-channel SNR is
fixed at 20 dB. As the R-channel SNR increases from −7 to −5 dB, the total error
probability reduces for both the cases of perfect channel and imperfect channel
estimation. Higher R-channel SNR reduces probabilities of incorrect reception from
CR users at the FC. As expected, for a given value of the R-channel SNR, the
total error probability is higher with imperfect channel estimation, as channel-based
censoring leads to the selection of a group of CR users which may not be the best
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ones due to error in channel estimaton. Furthermore, according to (7.32), an increase
in the R-channel SNR leads to a decrease in the estimation error variance σ 2

h̃,Rayl
and

this, in turn, reduces the average estimation error. A reduced estimation error leads
to a further reduction of the total error probability as CR users with higher reliability
in R-channels are selected. In particular, in case of perfect channel estimation, when
the selected number of CR users is 10 and the R-channel SNR increases from −7 to
−5 dB, the total error probability reduces by 18.28 %. However, in case of imperfect
channel estimation, the total error probability decreases by 26.97 % for the same
values of network parameters. Further the impact of Pf is also depicted in Fig. 7.5.
Different Pf corresponds to setting of different threshold levels (λ) at an energy
detector. In all cases, two values of Pf , namely 0.05 and 0.0005, are considered. As
Pf increases from 0.0005 to 0.05, the total error probability decreases for both perfect
and imperfect channel estimation. This is because as Pf increases from 0.0005 to 0.05
the value of detector threshold is lowered from 31 to 18. Thus number of decisions of
CR users in favor of hypothesis H1 increases. So the total error probability decreases.
For example, in case of imperfect channel estimation, as Pf increases from 0.0005 to
0.05 with the number of selected CR users is 10, the total error probability decreases
by 3.84 %, while in case of perfect channel estimation, the total error probability
decreases by 6.86 %.

7.4.1.2 Rank-Based Censoring in Nakagami-m Faded Channel

The Nakagami-m distribution can be obtained from the Gamma distribution [3]. More
precisely, if X ∈ gamma(r, s) then the k-th CR users’ Nakagami-m fading channel
coefficient (hk) is obtained by setting r = m, s = Ω/m(Ω is the Nakagami-m
fading power which is normalized to unity, i.e., Ω = 1) and considering hk = ≥

X.
The estimated k-th Nakagami-m faded R-channel coefficient can be expressed as
ĥk = hk − h̃k and, taking into account the independence between hk and h̃k , it
follows that σ 2

ĥ,Naka
= σ 2

h,Naka + σ 2
h̃,Naka

, where σ 2
ĥ,Naka

is the estimated variance of

Nakagami-m fading coefficient (ĥk), σ 2
h,Naka is the actual variance of hk and σ 2

h̃,Naka

is the error variance of h̃k . The analytical expressions for actual, estimated and error
variance of Nakagami-m distribution can be derived using σ 2

h,Naka as

σ 2
h,Naka = Ω



⎛1 − 1

m

(
Γ (m + 1

2 )

Γ (m)

)2
⎝

 (7.34)

σ 2
ĥ,Naka

= Ω̂



⎛1 − 1

m

(
Γ (m + 1

2 )

Γ (m)

)2
⎝

 (7.35)
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where Ω̂ is the estimated Nakagami-m fading power (which is not equal to 1). It can
be shown that the error variance for Nakagam-m fading channel (σ 2

h̃,Naka
) is given as:

σ 2
h̃,Naka

= 1

(1 + γ̄R)2



⎛Ω + γ̄R − Ω

m

(
Γ (m + 1

2 )

Γ (m)

)2
⎝

 . (7.36)

Setting m = 1 and assuming Γ (m + 1/2) ∈= 1 in (7.36), one derives the expres-
sion for estimated error variance in Rayleigh channel (σ 2

h̃,Rayl
), which matches with

Eq. (7.32).
From (7.34), (7.35) and (7.36), it follows that

Ω̂ =
1 +

(
1

1+γ̄R

)
− 1

m

(
1 +

(
1

1+γ̄R

)2
)(

Γ (m+ 1
2 )

Γ (m)

)2

1 − 1
m

(
Γ (m+ 1

2 )

Γ (m)

)2 . (7.37)

The estimated Nakagami-m faded coefficient for the k-th CR user, in the case of

imperfect channel estimation, can be generated using ĥk =
⎦(

gamma(m, Ω̂/m)
)

.

The following results are obtained using MATLAB-based simulations for both
perfect and imperfect channel estimation schemes. The performance of CSS has been
evaluated in Nakagami-m faded environment. S-channel and R-channel fading are
considered to be same, i.e., Nakagami-m fading in S-channel and Nakagami-m fading
in R-channel with same Nakagami parameter. The missed detection probability (Qm)
is evaluated by varying the Nakagami fading parameter m and the average R-channel
SNR γ̄R.

In Fig. 7.6, the missed detection probability is analyzed as a function of the num-
ber of selected sensors. The impact of the Nakagami fading parameter (m) and of
the average R-channel SNR, with both perfect and imperfect channel estimation, is
analyzed. Two values of R-channel SNR (−5 and −7 dB) and three different val-
ues of m (1, 2 and 3) are considered for this figure. The performance with m = 1
corresponds to that of Rayleigh fading as in Fig. 7.4. For increasing values of K , of
the R-channel SNR, and of the parameter m, the missed detection probability (Qm)

decreases at the FC significantly, for both perfect and imperfect channel estimation.
When the R-channel SNRs increase, the noise effect reduces in the R-channel so that
the FC receives a larger number of correct decisions and this leads to a reduction in
the missed detection probability. Higher values of the R-channel SNR reduces the
probability of incorrect reception from CR users at the FC. As seen earlier in Fig. 7.4,
for a given value of the R-channel SNR, the missed detection probability is higher
with imperfect channel estimation than with perfect channel estimation. Further-
more, according to (7.36), an increase in the R-channel SNR leads to a decrease in
the estimation error variance σ 2

h̃,Naka
and this, in turn, reduces the average estimation
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Fig. 7.6 Performance of CSS with censoring of CR users under perfect and imperfect channel
estimation for various values of average R-channel SNRs (γ̄R) in Nakagami-m faded envi-
ronment, impact of fading parameter (m) on imperfect channel estimation is also depicted
(γ̄s = 20 dB, N = 30, Pf = 0.05 and u = 5)

error. A reduced estimation error leads to a further reduction of the missed detec-
tion probability. When fading parameter increases from 1 to 3, the fading severity in
the channel decreases so that the FC receives more correct decisions which lead to
further reduction in missed detection probability.

7.4.2 Threshold-Based Censoring

In this censoring scheme, a CR user (say the k-th) is selected for transmission if
the amplitude of the corresponding estimated R-channel fading coefficient ĥk is
above Cth. This approach involves two transmission phases: in the first phase, the
FC estimates the R-channel corresponding to each CR user; in the second phase, the
FC censors a CR user if the corresponding estimated channel coefficient exceeds a
chosen threshold.

7.4.2.1 Threshold Based Censoring in Rayleigh Faded Channel

If the amplitude of the estimated R-channel fading coefficient is a Rayleigh distributed
random variable with parameter σ . The probability of selecting a CR user is [24, 25]:
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p = Pr
(
|ĥk | > Cth

)
= exp

(

− C2
th

2σ 2

)

. (7.38)

The probability of selecting K CR users from N available CR users can then be
expressed as follows [24, 25]:

P(K) =
(

N
K

)
pk(1 − p)N−K (7.39)

where p is the probability of selecting a CR user which is obtained from Eq. (7.38).
Let Pm(error|K) indicate the conditional missed detection probability when deci-

sions from K CR users are fused. Given P(K), the probability of selecting K CR users
in (7.39), the average probabilities of missed and false detection can be expressed as
follows [24, 25]:

Q̄m = P (missed detection) =
N∑

K=0

Pm(error|K)P(K) (7.40)

Q̄f = P (false detection) =
N∑

K=0

Pf (error|K)P(K). (7.41)

Therefore, the average total error probability (an error occurs either with a missed
detection or a false detection) can be expressed as follows:

Q̄ = Q̄m + Q̄f . (7.42)

The average missed detection probability (Q̄m) and the average false alarm probability
(Q̄f ) are functions of the chosen censoring threshold Cth, as the PMF {P(K)} of the
number of censored CR users depends on Cth.

The following results are obtained, as in the previous sections, using MATLAB-
based simulations. The performance of CSS for both perfect and imperfect channel
estimation cases been evaluated in Rayleigh faded environments considering the
impact of various network parameters, such as the censoring threshold (Cth), the
number of available CR users (N), and the average R-channel SNRs (γ̄R).

In Fig. 7.7, the binomially distributed PMF of the number of selected CR users
is shown, for various values of the censoring threshold Cth, under both cases of
perfect and imperfect channel estimation schemes in Rayleigh faded channel. It can
be observed that for small values of the censoring threshold a larger number of CR
users are likely to be selected, while the PMF tends to concentrate on small values
for higher values of the censoring threshold for both the channel estimation (CE)
cases. For example, for a censoring threshold of 0.8, it is seen that K = 16 CR users
have highest probability (0.13) of being selected under perfect channel estimation
scheme. Similarly, in case of imperfect channel estimation scheme it is found that
K = 21 CR users have highest probability (0.16) of being selected for the same
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Fig. 7.7 PMF of the number of censored CR users for different censoring thresholds (Cth) under
both perfect and imperfect channel estimation in Rayleigh faded channel

value of Cth. It can also be observed that as the censoring threshold increases, the
PMF moves towards the origin for both channel estimation schemes. This is due
to the fact that increasing the censoring threshold decreases the number of selected
CR users. The obtained results show that the PMF of the number of selected CR
users under imperfect channel estimation shifts to the right side of the PMF of the
number of selected CR users under perfect channel estimation for a particular value
of censoring threshold. According to Eq. (7.32), in the case of imperfect channel
estimation, depending on the estimation error a larger number of CR users can be
selected, for a fixed value of R-channel SNR, with respect to the case with perfect
channel estimation. The binomially distributed PMF of the number of selected CR
users, as obtained through simulations, matches exactly with result obtained based
on the analytical expression given in Eqs. (7.38) and (7.39).

Figure 7.8 shows the impact of censoring threshold on the average missed
detection probability, under perfect and imperfect channel estimation. Two different
values of the average R-channel SNR (−5 and −7 dB) and two values of the available
number of CR users (i.e. N = 10 and 30) are considered. It can be seen from the
figure that as the censoring threshold increases, the average missed detection proba-
bility attains a minimum value in corespondence to an “optimal” censoring threshold,
beyond which it increases and finally saturates to 0.5. The optimum censoring thresh-
old is found to be different for the cases with perfect and imperfect channel estimation
strategies and it depends on the number N of CR users and on the average R-channel
SNR. For example, in the case of perfect channel estimation, as seen from the figure
that an optimum censoring threshold is found to exist near 0.5 for N = 10 and average
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Fig. 7.8 Average missed detection probability as a function of Cth for various values of N and γ̄R
under perfect and imperfect channel estimation in Rayleigh fading channel (γ̄s = 20 dB, Pf = 0.05,
and u = 5)

R-channel SNR=−7 dB. Similarly, in case of imperfect channel estimation as seen
from the figure an optimum censoring threshold is found to exist near 0.4 for N = 10
and average R-channel SNR=−7 dB. This behavior of the average missed detection
probability is due to the changing PMF of the number of censored CR users for var-
ious values of the censoring threshold. For very small values of the threshold, even
unreliable links tend to be selected, and the average probability of missed detection is
rather high. On the other hand, as the censoring threshold is increased to a very high
level, no CR user is selected to transmit, i.e. P(0) = 1, and the FC takes a decision
by flipping a fair coin resulting in an average missed detection probability of 0.5.
Therefore, there exists an optimal value of the censoring threshold, in correspon-
dence to which the average probability of missed detection is minimized. Further,
as expected, it can be seen that a larger number of CR users, as well as a higher
average R-channel SNR, leads to a reduced average missed detection probability in
correspondence to the optimized censoring threshold.

Figure 7.9 shows the impact of censoring threshold on the average total error
probability (sum of average missed detection and average false alarm probabilities)
under perfect and imperfect channel estimation. As censoring threshold increases,
the average total error probability attains a minimum value at an ‘optimal’ censoring
threshold level and thereafter increases with further increase in censoring threshold
to finally attain a value of 1.0 (average missed detection probability reaches a value
of 0.5 and average false alarm probability reaches a value of 0.5). There exists an
optimal value of the censoring threshold, in correspondence to which the average
total error probability is minimized. It can be seen that a high value of R-channel
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Fig. 7.9 Average total error probability as a function of Cth for various values of N and γ̄R under
perfect and imperfect channel estimation in Rayleigh fading channel (γ̄s = 20 dB, Pf = 0.05, and
u = 5)

SNR as well as higher number of CR users leads to a reduced average total error
probability in correspondence to the optimized Cth for both perfect and imperfect
channel estimation cases. The optimum censoring threshold is found to be different
for perfect and imperfect cases. For example, in perfect channel estimation case,
the optimum censoring threshold is found to exist near 0.3 for N = 30 and average
R-channel SNR of 5 dB. Similarly, in imperfect channel estimation case, the optimum
censoring threshold is found to exist near 0.4 for N = 30 for the same value of
R-channel SNR.

7.4.2.2 Threshold-Based Censoring in Nakagami-m Faded Channel

If the amplitude of estimated R-channel fading coefficient is a Nakagami-m-
distributed random variable, the probability of selecting a CR user can be expressed
as follows:

p = Pr
(
|ĥk | > Cth

)
= 1 − γ

(
m, m

Ω
C2

th
)

Γ (m)
(7.43)

where γ (s, x) = ∫ x
0 ts−1 e−t dt is the lower incomplete gamma function. The

performance in Nakagami-m faded R-channels can be evaluated by substituting the
expression of p given by (7.43) into (7.39), (7.40), (7.41) and (7.42). More details
are presented in the following.
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Fig. 7.10 PMF of the number of censored CR users for different censoring thresholds (Cth) under
perfect channel estimation in Nakagami-m faded channel

As before, the following results are obtained using MATLAB-based simulations.
The performance of CSS has been evaluated for both perfect and imperfect channel
estimation schemes in Nakagami-m faded environments for various network para-
meters, such as the Nakagami fading parameter, the censoring threshold (Cth), the
number of available CR users (N), and the average R-channel SNRs (γ̄R).

In Fig. 7.10, the binomially-distributed PMF of the number of selected CR users is
shown for various values of the censoring threshold Cth. The impact of the Nakagami
fading parameter m on the PMF is investigated. It can be observed that for small values
of the censoring threshold, larger numbers of CR users are likely to be censored, while
the PMF tends to concentrate on small values for higher values of the censoring
threshold as observed in case of Rayleigh fading case in Fig. 7.7. It is also observed
that when m increases, larger numbers of CR users are likely to be censored. The
binomially distributed PMF of the number of selected CR users as obtained based on
our simulation testbed matches exactly with result obtained based on the analytical
expression given in Eqs. (7.39) and (7.43), which validates our simulation testbed.
The binomially distributed PMF of the number of selected CR users as obtained for
m = 1 matches exactly with result obtained for Rayleigh (Fig. 7.7) under perfect
channel estimation.

Figure 7.11 shows the effects of Nakagami fading parameter, number of available
CR users in the network, and R-channel SNR on the average missed detection prob-
ability under both perfect and imperfect channel estimations. We observe that for a
fixed value of Cth when fading parameter as well as R-channel SNR increase, the
average probability of missed detection decreases for both perfect channel estimation
and imperfect channel estimation. When R-channel SNR increases, the effect of noise
reduces in the channel so that the FC receives more correct decisions which leads to
reduction in average missed detection probability. As expected, for a given value of
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Fig. 7.11 Average missed detection probability as a function of Cth for various values of N, m and
γ̄R under perfect and imperfect channel estimation in case of Nakagami-m fading (γ̄s = 20 dB, Pf =
0.05, and u = 5)

the R-channel SNR, the missed detection probability is higher with imperfect chan-
nel estimation. Furthermore, according to (7.36), an increase in the R-channel SNR
leads to a decrease in the estimation error variance σ 2

h̃,Naka
and this, in turn, reduces

the average estimation error. A reduced estimation error leads to a further reduction
of the average missed detection probability. When fading parameter increases from 1
to 3, the fading severity in the R-channel as well as in S-channel decreases so that the
FC receives more correct decisions which leads to reduction in average missed detec-
tion probability. We observe that the results obtained for fading parameter m = 1
match exactly with the results obtained for Rayleigh fading as shown in Fig. 7.8.
As in the case of Rayleigh faded channel, an optimal censoring threshold exists in
present Nakagami-m fading case also, which minimizes the average probability of
missed detection. Further this optimum threshold also depends on the number of
CR users, fading parameter (m), average R-channel SNR, and channel estimation
schemes i.e., perfect and imperfect estimation.

In Fig. 7.12, the impact of censoring threshold, number of available CR users
and R-channel SNR on the average total error probability (sum of average missed
detection and average false alarm probabilities) is shown for Nakagami-m fading.
The performance comparison between perfect and imperfect channel estimation is
evaluated. It is seen from the figure that as Cth increases, the average total error prob-
ability attains a minimum value at an optimal Cth level and thereafter increases with
further increase in Cth to finally attain a value of 1.0 (both average missed detection
probability and average false alarm probability reach a value of each 0.5). The opti-
mal value of Cth, in correspondence to minimum average total error probability is
found to depend on channel and network parameters.
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7.5 Conclusion

In this chapter, the performance of cooperative spectrum sensing (CSS) using energy
detection with and without censoring in Rayleigh and Nakagami-m faded channels
has been investigated. The performance of a few hard decision fusion rules (OR-logic,
AND-logic, and majority-logic) has been analyzed in a comparative way, considering
meaningful performance metrics and evaluating the impact of several system parame-
ters. Our results show that the CSS using energy detection and no censoring achieves
highest probability of detection with OR-logic fusion, with respect to majority-logic
and AND-logic fusions, under the same average SNR conditions in both Rayleigh
and Nakagami-m fading channels. We have also investigated the performance of
CSS with CR users censored on the basis of the quality of the R-channels, consider-
ing both Rayleigh and Nakagami-m faded channels. The performance with perfect
and imperfect channel estimation has been analyzed, in a comparative way, under
majority-logic fusion. Our results show that missed detection and total error prob-
abilities reduce for increasing values of the number of selected CR users, regarless
of the channel estimation quality (perfect or imperfect). However, in the presence of
perfect channel estimation no further improvement, in terms of missed detection and
total error probabilities, is obtained by increasing the number of CR users beyond
a given limit. The Nakagami-m fading parameter and the R-/S-channel SNRs have
a significant impact on the missed detection probability. With Rayleigh fading and
majority-logic fusion, as the false alarm probability at each CR user increases, the
total error decreases for both perfect and imperfect channel estimation. The censor-
ing threshold for the selection of CR users has a significant impact on the average
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missed detection probability. Depending on the configuration of relevant network
parameters, such as the available number of CR users and the average R-channel
SNRs, there exists an optimal censoring threshold, which corresponds to the min-
imum average missed detection and total error probabilities, for both perfect and
imperfect channel estimation. The framework presented in this paper is useful in
designing a cooperative spectrum sensing scheme able to prolong, by minimizing
the number of “useless” transmission acts, the lifetime of an energy-constrained
cognitive radio network.
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Chapter 8
Medium Access Control in Cognitive Impulse
Radio UWB Networks

Luca De Nardis, Guido Carlo Ferrante and Maria-Gabriella Di Benedetto

Abstract Impulse Radio Ultra Wide Band (IR-UWB) is a candidate technology in
the deployment of cognitive underlay networks. Medium Access Control protocols
for IR-UWB networks were however conceived in the past moving from consider-
ations related to performance of the UWB networks, rather than from the need to
coexist with other wireless systems. This chapter analyses existing MAC protocols
for low rate IR-UWB networks, and focuses on two specific protocols: the (UWB)2

MAC, and the MAC of the IEEE 802.15.4a standard that leveraged the access strategy
proposed by (UWB)2. Characteristics of the two MAC protocols are reviewed, and
the performance of the (UWB)2 MAC is analysed by means of computer simulations,
adopting an accurate model for Multiple User Interference. Results confirm the suit-
ability of the (UWB)2 protocol for low rate IR-UWB networks. Finally, the chapter
discusses potential improvements and adaptations to be introduced for (UWB)2 to
meet the coexistence requirements imposed by operation of the UWB network in a
cognitive fashion.

8.1 Introduction

The increasing interest towards the creation of smart environments, where people
and objects interact thanks to seamless wireless connectivity, is leading to a renewed
attention towards low data rate and low cost networks for mixed indoor/outdoor
communications, capable of supporting sensor and ad-hoc networking. The interest
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towards low data rate networks led, back in 2003, to the definition of the IEEE
802.15.4 standard for low rate, low complexity, and low power wireless networks [1].
The 802.15.4 standard also formed the basis for the definition of the ZigBee industrial
standard, providing a comprehensive solution for low data rate networking spanning
from physical layer to application [2].

IEEE 802.15.4/ZigBee lacked, however, a feature that was deemed important in a
broad range of applications for low rate networks, namely, the capability of accurately
determine the mutual distance, and in turn the position, of network terminals and of
objects and individuals associated to them. This issue was addressed by the IEEE
802.15.4a Task Group [3], which defined an amendment to the original standard [4],
adopting the Impulse Radio Ultra Wide Band (IR-UWB) technology as an alternative
solution for the physical layer [5, 6]. IR-UWB was selected due to its interesting
properties, in particular:

• an inherently high temporal resolution that provides good robustness in the pres-
ence of multipath, thereby allowing communication despite obstacles and Non-
Line-Of-Sight (NLOS) propagation conditions;

• the capability of providing accurate ranging, thanks to its high temporal resolution,
and thus to support the operation of positioning algorithms.

IR-UWB is also characterized by the capability of operating with extremely low
power spectral density values, thanks to its ultra wide frequency band. This fea-
ture resonates with a recent trend in wireless communications, that called for more
flexibility and efficiency in the use of the radio spectrum by means of reuse and coex-
istence between multiple radio systems and eventually led to the concept of cognitive
radio [7]. UWB is a perfect candidate for the deployment of so called underlay cogni-
tive radio networks, capable of operating simultaneously with other systems, thanks
to its high coexistence capabilities. Higher layer design should however take into
account the specific features of UWB in order to take full advantage of the possi-
bilities offered by this technology. This is true in particular for the Medium Access
Control sub-layer. Since the early stage of research on UWB networks, two different
approaches were followed in MAC design: a conservative approach, that aimed to
adopt existing solutions originally proposed for narrowband and wideband/CDMA
networks, and a more innovative one that proposed solutions specifically designed
to take advantage of the features of the IR-UWB signal. Algorithms following the
former avenue of research included solutions derived from DS-CDMA networks,
such as in [8, 9], or TDMA-based schemes, such as in the protocol proposed for
the planned sister standard to 802.15.4a, IEEE 802.15.3a, focusing on high speed,
short range UWB systems, to be derived from the 802.15.3 PAN standard [10], but
never released and eventually withdrawn. More innovative proposals considered the
impulsiveness of the IR-UWB signal and its impact of the performance of multiple
access, such as the protocol proposed in [11], aiming at the minimization of trans-
mitted power and maximization of transmission covertness for military applications,
and the Uncoordinated Baseborn Wireless medium access control for UWB networks
((UWB)2) protocol, originally proposed in [12], considering both communications
and ranging/positioning aspects, and proposing an uncoordinated approach inspired
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to the Aloha protocol. The (UWB)2 idea was proposed jointly with a Multi User
Interference (MUI) model specific to IR-UWB systems, named Pulse Collision
model. The (UWB)2 approach for propagation over AWGN channels was validated
in [13]. In [14] the (UWB)2 was revisited by redefining the structure of both control
and DATA MAC Protocol Data Units (MACPDUs) based on the PDU structure of
the original IEEE 802.15.4 MAC standard in order to guarantee compatibility of the
new MAC protocol with both distributed and centralized network topologies defined
in the 802.15.4 standard, and the performance analysis of the (UWB)2 protocol orig-
inally carried out in [12] was extended to the case of multipath-affected channels,
for both indoor and outdoor channel scenarios in Line Of Sight (LOS) and Non-Line
Of Sight (NLOS) conditions. Channel parameters were obtained from the channel
model proposed within the 802.15.4a Task Group, and a set of channel realizations
were considered for each selected scenario. Finally, [14] included MUI in the perfor-
mance analysis based on an enhanced version of the Pulse Collision model specific
for IR-UWB [13], which took into account multipath. This MUI model was used to
analyze performance of (UWB)2 by simulation, as a function of channel, network
size, and user bit rates.

The MAC defined in the IEEE 802.15.4a standard released in 2007 took an inter-
mediate approach: it leveraged some of the innovative ideas proposed in the above
protocols, such as the support for ranging and adoption of an Aloha-like medium
access approach, as proposed in (UWB)2, but framed such ideas in a typical Personal
Area Network MAC protocol, not dissimilar from the pre-existing 802.15.3/802.15.4
MAC protocols.

In the above framework, this chapter focuses on the analysis of the (UWB)2 MAC,
and discusses how this protocol might be evolved to take into account the specific
requirements of underlay UWB networks, and recent advances in UWB technology,
such as the introduction of Time Reversal [15, 16] for increased spatial and temporal
focus of UWB emissions.

The chapter is organized as follows. Section 8.2 summarizes the (UWB)2 MAC
protocol and the IEEE 802.15.4a MAC, as the only standard currently defined for
low rate UWB communications. Section 8.3 reviews the Pulse Collision MUI model,
used then in Sect. 8.4 to evaluate the performance of (UWB)2 in presence of mul-
tipath and variable traffic conditions. Section 8.5 discusses potential extensions and
evolution of the (UWB)2 MAC so to support cognitive UWB networks by taking
into account coexistence issues and novel UWB features such as Time Reversal
algorithms. Section 8.6 draws conclusions.

8.2 (UWB)2 and IEEE 802.15.4a MAC Protocols

8.2.1 The (UWB)2 MAC

The high temporal resolution of IR-UWB signals has the beneficial side effect of
reinforcing robustness to MUI, in particular for low data rate applications [5]. As a
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consequence, access to the medium in low data rate UWB networks can be based
on a most straightforward solution, Aloha [12, 17], by which devices transmit in an
uncoordinated fashion. Thanks to the resilience to MUI offered by impulse radio,
correct reception for multiple simultaneous links can be obtained. An Aloha-like
approach may also favor lowering costs, since it does not rely on specific physical
layer (PHY) functions, such as carrier sensing, and may thus be adapted with little
effort to different PHYs.

As for the duty cycle of emitted signals, low data rate scenarios usually lead to an
average Pulse Repetition Period (PRP), the average time between two consecutive
pulses emitted by a device, on the order of 10−4 − 10−5 s, with an average duration
of emitted pulses typically on the order of 10−10 s. Theoretically, the duty cycle can
thus be as low as 10−6. However, a detailed analysis of this issue requires introducing
the channel model in order to take into account propagation effects on pulse duration.

When Time Hopping (TH) is the selected coding technique, TH Code Division
Multiple Access (TH-CDMA) is a natural choice for multiple access. The adoption
of TH-CDMA can introduce an additional degree of freedom, since the effect of
pulse collisions is further reduced by the adoption of different codes on different
links. Two factors cooperate in determining the robustness to MUI: low duty cycle
of emitted signals, and association of different TH-Codes with different links.

(UWB)2 is a multi-channel MAC protocol that is based on the combination of
Aloha with TH-CDMA [12]. (UWB)2 adopts the combination of a common code
for signaling, where terminals share the same code, and code collisions are avoided
thanks to phase shifts between different links, and Transmitter codes for data trans-
fers, where each terminal has a unique code for transmitting, and the receiver switches
to the code of the transmitter for receiving a packet.

The (UWB)2 protocol applies the multi-code concept to the specific case of a
TH-IR UWB system. (UWB)2 adopts a Hybrid scheme based on the combination of
a common control channel, provided by a Common TH code, with dedicated data
channels associated to Transmitter TH codes. The adoption of a Hybrid scheme can
be motivated as follows:

1. It simplifies the structure and the operation of the receiver, since data packet
transmissions (and corresponding TH codes) are first communicated on the con-
trol channel.

2. It provides a common channel for broadcasting. This is a fundamental property
for supporting the operation of higher layers protocols. Broadcast messages are
for example required for routing and distributed positioning protocols.

As regards code assignment, several solutions have been proposed in the literature for
distributed code assignment [18, 19]; as an alternative, a function creating a unique
association between MAC ID and Transmitter Code can be adopted, similarly to the
approach adopted in Bluetooth.

(UWB)2 does not assume that synchronization between transmitter and receiver is
available at the beginning of packet transmission, due to clock drifts in each terminal
that, in case of low data rate networks, may lead to significant differences between
times measured at each terminal. As a consequence, a synchronization trailer long
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enough to guarantee a minimum required synchronization probability is included into
the packet structure. The length of the trailer depends on current network conditions,
and is provided to the MAC by the synchronization logic.

(UWB)2 also supports the ranging feature provided by UWB. Distance informa-
tion between transmitter and receiver can be in fact collected during control packets
exchanges. Such information can enable optimizations of several MAC features, and
allow the introduction of new functions at other layers, such as distributed posi-
tioning. Procedures adopted in (UWB)2 for transmitting and receiving packets were
defined in [12] and are described later in the Chapter. The procedures have two main
objectives:

1. To exchange information required to allow transmitter and receiver to move to a
dedicated code for subsequent data transmissions, such as the adopted synchro-
nization trailer, hopping sequence and length.

2. To perform ranging. Since no common time reference is available, a three-way
handshake is required to collect distance information at both ends of the link by
estimating the round-trip-time of signals in the air.

It is assumed that, at each terminal T, MAC Protocol Data Units (MACPDUs) result-
ing from the segmentation/concatenation of MAC Service Data Units (MACSDUs)
are stored in a transmit queue. It is also assumed that T is able to determine how
many MACPDUs in the queue are directed to a given receiver R.

8.2.1.1 Transmission Procedure

The transmission procedure is triggered by the arrival of one or more MACPDUs in
the transmit queue. The procedure comprises the following steps:

1. The ID of the intended receiver R is extracted from the first PDU in the queue.
2. T determines the number NPACKETS of MACPDUs in the queue that have R as

their destination.
3. T checks if other MACPDUs were sent to R in the last TACTIVE seconds. If this

is the case, T considers R as an Active receiver, and moves to step 5 below.
4. If R is not an Active receiver, T generates a Link Establish (LE) packet composed

of the following fields:

• SyncTrailer Used for synchronization;
• TxNodeID The MAC ID of transmitter T ;
• RxNodeID The MAC ID of receiver R;
• THFlag This flag is set to true if the standard TH code associated to TxNodeID

is going to be used for the transmission of data PDUs. Conversely, if the trans-
mitter is proposing to use a different TH code the flag is set to false.

• THCode (optional)—This field is used when the THFlag is set to false to provide
the information on the TH-code to be adopted for DATA pdus. In the original
definition of (UWB)2 no guidelines were provided on how to select the TH code;
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as discussed in Sect. 8.5, TH code selection might take into account coexistence
issues.

5. Terminal T sends the LE packet and waits for a Link Confirm (LC) response
packet from R.

6. If the LC packet is not received within a time TLC , the LE packet is re-transmitted
for a maximum of NLC times, before the transmission of the MACPDU is con-
sidered as failed.

7. Following the reception of a LC packet, T switches to the TH code declared in
the LE packet and transmits the data PDU structured as detailed in Sect. 8.2.1.3.

8. Once the transmission is completed, T checks again the status of the data queue,
and repeats the procedure until all MACPDUs in the transmit queue are served.

8.2.1.2 Reception Procedure

A terminal R in Idle state listens to the Common TH code. When a SyncTrailer is
detected, R executes the following procedure:

1. R checks the RxNodeID field. If the value in the field is neither the MAC ID of R
nor the broadcast ID, the reception is aborted and the reception procedure ends.

2. if the RxNodeID field contains the MAC ID of R, since R is assumed in Idle state,
MACPDUs directed to this terminal will necessarily be LE packets; otherwise, if
the Rx NodeI D field contains the broadcast ID, R processes the payload and the
resulting MACSDU is passed to higher layers.

3. Following the reception of the LE packet, R creates a LC packet, composed of:

• SyncTrailer Used for synchronization:
• TxNodeID The MAC ID of of transmitter T ;
• RxNodeID The MAC ID of receiver R;

4. R sends the LC packet and moves in the Active state, listening on the TH code
indicated in the LE packet. If no data packet is received within a time TDATA the
receiver falls back to Idle state and the procedure ends.

5. When a data packet is received, R processes the payload, and extracts NPACKETS

from the header. If NPACKETS >0, R remains in Active state, since at least NPACKETS

more data packets are expected to be received from T. If NPACKETS = 0, R goes
back to the Idle state.

Note that multiple reception procedures could be run at the same time, assuming that
the receiver is capable of listening to multiple TH-codes at the same time. Finally, the
exchange of LE/LC packets can also be triggered on a periodic basis for the purpose
of updating distance information, based on a three-way exchange involving LE, LC
and DATA PDUs.
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8.2.1.3 The (UWB)2 MACPDU Format

The format of the MACPDU originally proposed in [12] was revisited and modified
in order to take into account the characteristics of the future IEEE 802.15.4a PHY in
[14]. The revised MACPDU is composed of a header, a payload, and a trailer. The
standard header, shared by all PDUs and up to 23 bytes long, is derived from the
802.15.4 header and is organized as follows:

• frame control (2 bytes)
• sequence number (1 byte)
• destination PAN identifier (2 bytes)
• destination address (2/8 bytes)
• source PAN identifier (2 bytes)
• source address (2/8 bytes)

In the case of LE control packets (link set-up phase of (UWB)2), the header includes
the following additional fields:

• Time Hopping flag (1 bit), used to inform destination whether the standard Time
Hopping code or a different one is going to be adopted in the DATA transmission;

• Time Hopping code (0/2 bytes), used for communicating the TH code to the
destination (e.g., by including the code identifier, assuming that all nodes share a
common codebook).

In the case of DATA PDU, the header contains the 1 byte additional field NPDU that
indicates to the destination the number of additional DATA PDUs that will be sent
from the source. If NPDU is different from 0, the destination will keep on listening on
the DATA TH code and wait for additional DATA PDUs. The length of the payload
is set to 0 for LE and LC PDUs, while the ACK PDU has a 2 byte payload containing
the status of the corresponding DATA PDU. Finally, DATA PDUs have a payload
length of up to 103 bytes. All PDUs include a 2 byte trailer consisting of a CRC code
evaluated on the entire PDU. The above PDU structure leads to a maximum PDU
length of 129 bytes, corresponding to the case of a DATA PDU with full header (24
bytes), full payload (103 bytes), and the 2 byte trailer.

8.2.2 The IEEE 802.15.4a MAC

The MAC of the 802.15.4a standard shares most of its features with the original
802.15.4 one. Two classes of devices are defined: Full-Function Devices (FFD), that
implement all network functionalities, and Reduced-Function Devices (RFD), that
only support a reduced set of functionalities. RFD devices can be dedicated to simple
tasks, such as measuring and reporting the variations of a physical parameter (e.g.
temperature, wind or humidity).

RFD and FFD devices organize in Personal Area Networks (PANs). A PAN is
controlled by a coordinator, in charge of setting up and maintaining the PAN. Only
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Fig. 8.1 Example of star
topology (Dark blue circle
PAN coordinator; light blue
circles FFD devices; white
circles RFD devices)

FFD devices can become PAN coordinators, while RFD devices can associate to an
existing PAN by communicating with the PAN coordinator.

A PAN can be organized according to either of the two following network
topologies:

• star topology—In this topology, devices only establish links with the coordinator,
which is thus involved in all communications. The star topology is thus better
suited for network architectures where a device is connected to a power outlet, and
can thus act as the coordinator for a long time without exhausting its battery. Star
topology is presented in Fig. 8.1.

• peer-to-peer topology—In this topology, FFD devices can communicate directly as
long as they are within physical reach, while RFD devices, due to their limitations,
are still limited to communications with the coordinator. Peer-to-peer topology is
presented in Fig. 8.2.

The peer-to-peer topology is best suited for more complex topologies, thanks to its
higher flexibility. The standard does not however include the definition of algorithms
to create and manage large network topologies e.g. involving multiple hops.

8.2.2.1 Access Strategies

Medium access is one of the aspects where the 802.15.4a standard introduced signif-
icant variations with respect to 802.15.4. In the following the original 802.15.4 MAC
is first described, and, next, the modifications introduced in 802.15.4a are discussed.

Access to the medium within a PAN is based on a combination of random access
and scheduled access. Medium access within a PAN is controlled by the coordinator,
that selects one of two alternative operation modes:

• beacon-enabled
• nonbeacon-enabled

In the beacon-enabled mode, the PAN coordinator broadcasts a periodic beacon
containing information about the PAN. The period between two consecutive beacons
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Fig. 8.2 Example of peer-
to-peer topology (Dark blue
circle PAN coordinator; light
blue circles FFD devices;
white circles RFD devices)

defines a superframe, characterized by a structure divided in 16 slots. The first slot is
always occupied by the beacon, while the other slots are used for data communication
by means of either random or scheduled access. Random access slots form the so-
called Contention Access Period (CAP), while scheduled access slots, referred to
in the standard as Guaranteed Time Slots (GTS), form the Contention Free Period
(CFP) of the superframe. GTS slots can be assigned by the PAN coordinator to devices
running applications with low latency requirements. The beacon contains information
related to PAN identification, synchronization, and superframe structure.

The beacon-enabled modality is only adopted when the PAN has a star topology,
and foresees two data transfer modes:

1. Transfer from a device to the coordinator—a device willing to transfer data to
the coordinator uses a slotted Carrier Sensing Multiple Access with Collision
Avoidance (CSMA-CA). A description of the CSMA-CA protocol adopted in
the standard is provided later in this section for both slotted and unslotted ver-
sions. The coordinator may confirm the successful data reception with an optional
acknowledgement packet within the same slot.

2. Transfer from the coordinator to a device—when the coordinator has data pending
for a device, it announces so in the beacon. The interested device selects a free slot
and sends a data request to the coordinator, indicating that it is ready to receive
the data. Slotted CSMA-CA is adopted to send the request. When the coordinator
receives the data request message, it selects a free slot and sends data using slotted
CSMA-CA as well.

An example of superframe with both CAP and CFP is shown in Fig. 8.3. In the
nonbeacon-enabled mode there is no explicit synchronization provided by the PAN
coordinator. This mode is particularly suited for PANs adopting the peer-to-peer
topology, but can be adopted in PANs adopting a star topology as well.

Peer-to-peer topology allows for a third transfer mode in addition to the two
defined above: the peer-to-peer data transfer, in which devices exchange data without
involving the PAN coordinator, thus allowing more complex topologies and larger
networks. On the other hand, due to the lack of a superframe, the nonbeacon-enabled
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Fig. 8.3 Example of superframe in beacon-enabled modality

modality does not allow the use of GTS slots, and random access is adopted for
medium sharing in all transfer modes.

As described above, in the random access phase devices adopt a protocol to access
the medium, either slotted on unslotted depending on the selected PAN operation
mode. It should be noted, however, that although the access protocol is referred as
CSMA-CA, the CSMA-CA implementation in 802.15.4 significantly differs from the
one in IEEE WLAN standards, such as the 802.11 family, where the access protocol
foresees the use of Request To Send (RTS) and Clear To Send (CTS) packets [20];
in the CSMA-CA protocol in 802.15.4 no Collision Avoidance packets are used,
and the implementation is actually closer to a CSMA scheme. The protocol can be
summarized as follows.

In a nonbeacon-enabled network, when a device needs to send data it picks a
random backoff delay, defined as a multiple of a backoff time unit. When the backoff
delay expires, the device performs a Clear Channel Assessment (CCA) operation,
listening to the channel in order to determine if it is idle. If this is the case the device
immediately transmits the data packet; otherwise the device repeats the procedure
with a new, larger backoff delay.

In a beacon enabled network the devices use a slotted version of the previous
protocol to access the medium in the CAP portion of the superframe. The main
differences compared to the unslotted version are the following:

1. the backoff delay unit is set to the duration of a slot in the superframe, and the
beginning of the random delay interval always coincides with the beginning of a
slot.

2. at the end of the random backoff delay the device performs a CCA operation at
the beginning of the next slot; if the channel is idle, however, the device does not
transmit the data packet immediately, but repeats the CCA for a number of slots
defined by the value of a parameter called Contention Window. If the channel is
idle for all the slots within the Contention Window the device transmits the data.
If during one of the slots in the Contention Window the channel is detected to be
busy, the device repeats the procedure by picking a new, larger backoff delay.

The most significant difference in the 802.15.4a MAC is the introduction of Aloha as
an alternative channel access strategy, based on research results such those obtained
for the (UWB)2 showing that, thanks to the MUI robustness guaranteed by the IR-
UWB signal structure, the Aloha approach provides satisfactory throughput in UWB
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networks [12] for light and medium traffic loads, thus allowing to eliminate the
collision avoidance and the corresponding additional access delay. The robustness
of the Aloha approach adopted in the 802.15.4a standard is furthermore increased by
the possibility of adopting a Time Hopping scheme, introducing a different delay on
each burst in a packet and thus further reducing the probability of packet loss due to
collisions. The CSMA-CA access was however kept as an option, in order to address
high-density and high-traffic scenarios where the MUI robustness of the IR-UWB
may prove not sufficient to provide good performance, and to support alternative
physical layers.

8.3 BER Evaluation Under the Pulse Collision Model

8.3.1 System Model

We assume IR-UWB transmissions with Pulse Position Modulation (PPM) and TH
coding. Signals generated at TX are described as follows:

sT X (t) = √
ETX

∑

j
p0

(
t − jTS − θ j − εb∗ j/Ns∈

)
, (8.1)

where p0(t) is the energy normalized waveform of the transmitted pulses, ET X is the
transmitted energy per pulse, TS is the average pulse repetition period, 0 → θ j < TS

is the TH time shift of the j-th pulse, ε is the PPM shift, bx is the x-th bit of a binary
source sequence b, NS is the number of pulses transmitted for each bit, and ∗x∈ is
the inferior integer part of x . Propagation for link m occurs over a multipath-affected
channel with impulse response given by:

h(m) (t) = X (m)

L(m)∑

l=0

K∑

k=0

α
(m)
k,l δ

(
t − Δt (m) − T (m)

l − τ
(m)
k,l

)
, (8.2)

where X (m) is the amplitude gain, L(m) is the number of clusters, K is the number
of paths that are considered within each cluster, δ(t) is the Dirac function, Δt (m)

is the propagation delay, T (m)
l is the delay of the l-th cluster with respect to Δt (m),

τ
(m)
k,l is the delay of the k-th path relative to the l-th cluster arrival time, and α

(m)
k,l is

the real-valued tap weight of the k-th path within the l-th cluster. Tap weights are
energy-normalized and thus verify:

L(m)∑

l=0

K∑

k=0

(
α

(m)
k,l

)
2 = 1. (8.3)
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For all channel parameters in Eq. 8.2, statistical characterization is suggested in
[21] for 9 different propagation environments, i.e., (i) residential LOS, (ii) residential
NLOS, (iii) office LOS, (iv) office NLOS, (v) outdoor LOS, (vi) outdoor NLOS, (vii)
industrial LOS, (viii) industrial NLOS, and (ix) open outdoor environment NLOS
(farm, snow-covered open area). For link m, both channel gain X (m) and propagation
delay Δt (m) depend on distance of propagation D(m) between TX and RX. For X (m),
in particular, one has:

X (m) = 1

/√
10(P L(m)/10), (8.4)

where P L(m) is the path loss in dB, which can be modelled as indicated in [21].
Reference TX and RX are assumed to be perfectly synchronized. The channel output
is corrupted by thermal noise and MUI generated by Ni interfering and asynchronous
IR-UWB devices. The received signal at RX input writes:

sR X (t) = ru (t) + rmui (t) + n (t) , (8.5)

where ru(t), rmui (t), and n(t) are the useful signal, MUI, and thermal Gaussian noise
with double-sided power spectral density N0/2, respectively. By denoting as 0 the
reference link between TX and RX, the useful signal ru(t) writes as follows:

ru (t) = ∞
E0

∑
j

L(0)∑

l=0

K∑

k=0
α

(0)
k,l ·

·p0

(
t − jTS − θ

(0)
j − εb∗ j/NS∈ − Δt (0) − T (0)

l − τ
(0)
k,l

)
,

(8.6)

where E0 = (
X (0)

)2
ETX is the total received energy per pulse.

As for rmui (t), we assume all interfering signals to be characterized by the same TS ;
thus:

rmui (t) =
Ni∑

n=1

∞
En

∑
j

L(n)∑

l=0

K∑

k=0
α

(n)
k,l ·

·p0

(

t − jTS − θ
(n)
j − εb(n)⌊

j/N (n)
S

⌋ − Δt (n) − T (n)
l − τ

(n)
k,l

)

,

(8.7)

where index n represents the wireless link between the n-th interfering device and

RX. In Eq. 8.7, En = (
X (n)

)2
ET X , and Δt (n) are the received energy per pulse and

the delay for link n. The terms θ
(n)
j , b(n)

x and N (n)
S in Eq. 8.7 are the time shift of the

j-th pulse for user n, the x-th bit, and the number of pulses per bit, respectively for
user n. Both TH codes and data bit sequences are assumed to be randomly generated
and correspond to pseudonoise sequences, that is, θ

(n)
j terms are assumed to be

independent random variables uniformly distributed in the range [0, TS), and b(n)
x

values are assumed to be independent random variables with equal probability to
be 0 or 1. Based on the above assumptions, the Ni relative delays Δt (0) − Δt (n),
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with n = 1, . . . , Ni may be reasonably modelled as independent random variables
uniformly distributed between 0 and TS .

As well known, the optimum receiver structure for Eq. 8.6 consists of a RAKE
receiver composed of a parallel bank of correlators, followed by a combiner that
determines the variable to be used for the decision on the transmitted symbol. Each
correlator of the RAKE is locked on one of the different replicas of the transmitted
waveform p0(t). The complexity of such a receiver increases with the number of
multipath components that are analyzed and combined before decision, and can be
reduced by processing only a sub-set of the components that are available at the
receiver input [22]. Such a reduction, however, entails a decrease in the available
useful energy in the decision process, together with a consequent decrease in receiver
performance. As a result, system designers have the possibility to trade the cost
of the devices with the performance of the physical layer. For some application
scenarios, for example, it might be better to have very cheap devices with modest
performance with respect to high-priced terminals with better performance. In the
examined scenario, we adopt a basic IR receiver that analyzes a single component of
the received signal. This basic receiver is composed by a coherent correlator followed
by an ML detector [22]. In every bit period, the correlator converts the received signal
in Eq. 8.5 into a decision variable Z that forms the input of the detector. Soft decision
detection is performed. For each pulse, we assume that the correlator locks onto
the multipath component with maximum energy. By indicating with lM and kM the
cluster and the path of the maximum energy multipath component for the reference
user, the input of the detector Z for a generic bit bx is as follows:

Z =
⎛ (x+1)NS TS+ΔT (0)

x NS TS+ΔT (0)

sR X (t) mx

(
t − ΔT (0)

)
dt (8.8)

where
ΔT (0) = Δt (0) + T (0)

lM
+ τ

(0)
kM ,lM

(8.9)

and where

mx (t) =
(x+1)NS∑

j=x NS

(
p0

(
t − jTS − θ j

) − p0
(
t − jTS − θ j − ε

))
. (8.10)

By introducing Eq. 8.5 into Eq. 8.8, we obtain: Z = Zu + Zmui + Zn , where Zu is
the signal term, Zmui is the MUI contribution, and Zn is the noise contribution, which
is Gaussian with zero mean and variance σ 2

n = NS N0ξ (ε), where ξ (ε) = 1−R0 (ε),
and where R0 (ε) is the autocorrelation function of the pulse waveform p0(t) [22].
Bit bx is estimated by comparing the Z term in Eq. 8.8 with a zero-valued threshold
according to the following rule: when Z is positive decision is 0, when Z is negative
decision is 1.
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8.3.2 BER Estimation Under the Pulse Collision Approach

According to Sect. 8.3.1, the average probability of error on the bit at the output of the
detector for independent and equiprobable transmitted bits is: B E R = Prob{Z <

0|bx = 0} = Prob{Zmui < y}, where y = Zu + Zn is a Gaussian random variable
with mean:

μy = NSξ (ε)

⎝(
α

(0)
lM ,kM

)2
E0 = NSξ (ε)

√
Eu (8.11)

and variance σ 2
y = NS N0ξ (ε). The quantity Eu in Eq. 8.11 indicates the amount

of useful energy conveyed by the maximum multipath contribution. The average
BER at the receiver output can be evaluated by applying the Pulse Collision (PC)
approach [23]. First, we compute the conditional BER for a generic y value, i.e.,
Prob{Zmui < y|y}, and we then average over all possible y values, that is:

B E R =
⎛ +≥

−≥
Prob {Zmui < −y|y} pY (y) dy. (8.12)

Next, we expand the conditional BER in order to take into account collisions
between pulses of different transmissions. In a bit period, the number of possible
collisions at the input of the reference receiver, denoted with c, is confined between
0 and NS Ni , with NS pulses per bit and Ni interfering users. Thus:

B E R =
NS Ni∑

c=0

PC (c)
⎛ +≥

−≥
Prob { Zmui < −y|y, c } pY (y) dy, (8.13)

where PC (c) is the probability of having c collisions at the receiver input. For inde-
pendent interferers, PC (c) can be expressed through the binomial distribution:

PC (c) =
(

NS Ni

c

⎞
(P0)

c(1 − P0)
NS Ni −c, (8.14)

where P0 is the basic collision probability, which is defined as the probability that
an interfering device produces a non-zero contribution within a single TS . Given the
receiver structure in Eq. 8.8, we approximate P0 as follows:

P0 = Tm + ε + τMAX

TS
. (8.15)

where Tm is the time duration of the pulse waveform p0(t), and τMAX is the maximum
among the values of the root mean square delay spread for the Ni channels between
the interfering devices and RX. Note that Eq. 8.15 provides acceptable P0 values if
TS > Tm +ε+τMAX , which is reasonable for LDR systems with long pulse repetition
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periods. This condition guarantees that no Inter Frame Interference (ISI) is present
at the receiver, even in the presence of multipath propagation.

As regards Prob(Zmui < y|y, c), we adopt the linear model introduced in [23],
that is:

Prob (Zmui < −y | y, c ) =⎠
⎜⎜⎜⎜⎪

⎜⎜⎜⎜⎧

1 for y → −ζ (n)

1 − PC (c)
2

(
1 + y

ζ (c)

)
for ζ (n) < y → 0

PC (c)
2

(
1 − y

ζ (c)

)
for 0 < y → ζ (n)

0 for y > ζ (n) ,

(8.16)

where ζ(c) indicates the maximum interference contribution that can be measured
at the output of the correlator. Based on [23], we propose here the following approx-
imation for ζ(c):

ζ(c) =
Ni∑

j=1

(⎨
c − j + 1

Ni

⎩ ⎫

E ( j)
int

Tm + ε

τ
( j)
rms

)

, (8.17)

where {Eint (1), Eint (2), . . . , Eint (Ni )} are the interfering energies {E1, E2, ...,

ENi } of Eq. 8.7, sorted in descending order so that Eint ( j) ≈ Eint ( j + 1) for
j = 1, . . . , Ni −1. The expression in Eq. 8.17 indicates that the value of the maximum
interference contribution at the receiver output is computed privileging dominating
interferers, that is, those users with the highest interfering energies. Note that in
Eq. 8.17 we multiply the value of j-th interfering energy Eint ( j) by (Tm+ε)/τrms( j).
This operation indicates that only part of the energy associated with a colliding pulse
contributes to Z in Eq. 8.8, corresponding to the ratio between the correlator window
(Tm + ε) and the length of the pulse at the receiver, approximated by τrms( j). By
introducing Eq. 8.16 into Eq. 8.13, one has:

B E R ⇒ 1
2 er f c

(√
1
2

NS Eu
N0

ξ (ε)
)

+
Ni NS∑

c=0

PC (c)2

2 Ω
(

NS Eu
N0

ξ (ε) ,
ς(c)2

NS N0ξ(ε)

)
,

(8.18)

where

Ω (A, B) = 1
2 er f c

(√
A
2 −

√
B
2

⎞

+ 1
2 er f c

(√
A
2 +

√
B
2

⎞
− er f c

(√
A
2

⎞
.

(8.19)

The first term in Eq. 8.18 only depends on the signal to thermal noise ratio at
the receiver input, while the second one accounts for MUI. The proposed approach
was demonstrated to guarantee high accuracy in estimating receiver performance for
impulse-based transmissions, even in the presence of scarcely populated systems,
systems with dominating interferers, or low-rate systems [23].
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Table 8.1 Channel scenario
characteristics

Path loss at d = 1 m Path loss exponent

43.9 dB 1.79

Table 8.2 Simulation settings

Parameter Setting

L 3
Number of nodes 20
Area 30 m × 30 m
Network topology Random node positions
Channel model See Eq. 8.2 and [21]
Application-layer user bit rate R 40 kb/s
Transmission rate 966 kb/s
Power 36.5 µW (FCC limit for Bandwidth = 0.5 GHz)
Packet traffic model Poisson generation for data connection, Constant Bit Rate flow

during connection, uniform distribution for destination node
Average connection interarrival

time
From 100 to 6.25 s

DATA MACPDU length 824 bits (+208 bits for header and trailer)
Interference model Pulse collision (see Sect. 8.3)
Physical layer settings Ns = 4, Ts = 258.8 ns Tm = 2 ns, Reed Solomon (43, 51) FEC

8.4 Performance Analysis

The (UWB)2 protocol described in Sect. 8.2.1 was tested by simulation. Simulation
results were averaged over L different simulation runs. In each simulation run, N
nodes were randomly located inside a square region with area A. Next, a realization
of the channel impulse response, path loss, and delay spread was generated for
each pair of nodes, with characteristics depending on the considered propagation
scenario. These quantities were used by the interference module for introducing errors
on the received packets, according to the MUI model described in Sect. 8.3.2. The
CM1 scenario defined within IEEE 802.15.4a was considered during simulations,
corresponding to indoor propagation in residential environments in Line-Of-Sight
(LOS) conditions [21]. The corresponding settings for the path loss at a reference
distance and path loss exponentare presented in Table 8.1.

During all simulations, the maximum size of 1288 bits was adopted for the
PHYPDU. This value was obtained by considering as PHY payload a full size
MACPDU of 129 bytes coded with a Reed Solomon (43, 51) Forward Error
Correction code, in compliance with the specifications for the UWB PHY of the
IEEE 802.15.4a standard [24]. The 1224 coded bits were then combined with a
PHY synchronization trailer of length 64 bits, leading to a size of 1288 bits for each
PHYPDU. Table 8.2 presents the main simulation settings.
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Fig. 8.4 Example of bit region identification during a packet reception in OMNeT++; 4 Bit
Regions (BR1–BR4) are identified based on the variations in the set of interfering packets

8.4.1 Interference Modeling

The impact of interference was modeled building on an approach recently proposed in
[25], that guarantees an accuracy significantly higher than previous solutions avail-
able in OMNeT++ frameworks, such as INET [26] and MixiM [27], in order to
ensure a correct analysis of the impact of the proposed optimization on network per-
formance. The approach in [25] keeps track of all transmitted packets and, for each
packet reception, determines the interference level in every symbol period. Consec-
utive bits subject to the same interference are grouped into so called bit regions:
Figure 8.4 shows an example of packet reception where four different regions are
identified due to varying interference conditions. In [25] average Bit Error Probabil-
ity (BEP) was then evaluated for each bit region according to the Standard Gaussian
Approximation. In this work, oppositely, for each bit region the BEP was evaluated
by adopting the Pulse Collision model, and the number of bit errors per region was
randomly determined according to the BEP. Again according to [25] the total number
of bit errors generated in the packet was compared with the maximum number of
errors admitted for the packet as determined by the adoption of a Reed-Solomon code
with a coding rate RSrate = 0.843 (corresponding to the RS(51, 43) code proposed
in the IEEE 802.15.4a standard) in order to decide if the packet is correctly received
or discarded.
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Fig. 8.5 Goodput as a function of the connection generation interval for Pure Aloha and Slotted
Aloha access strategies (Circles Pure Aloha; Squares Slotted Aloha)

8.4.2 Simulation Results

Performance of (UWB)2 was analyzed as a function of:

• application connection generation interval
• access strategy (pure vs. slotted).

As originally observed in [14], the comparison between pure and slotted Aloha was
motivated by the fact that, as well known, in narrowband networks, slotted Aloha
guarantees a higher (up to two times) throughput with respect to pure Aloha, thanks
to a reduced probability of packet collision. The goal of this comparison was to verify
whether this performance gap can be also observed in low bit rate UWB networks,
where the negative impact of packet collisions is mitigated by the high processing
gain.

Figure 8.5 presents the goodput, defined as the ratio between delivered packets
and transmitted packets, for both Pure Aloha and Slotted Aloha access strategies as
a function of the connection generation interval.

Figure 8.5 shows that in all cases goodput is greater than around 99.5 % for both
Pure and Slotted Aloha. Figure 8.6 presents the delay measured in the same simula-
tions. Figure 8.6 shows that the delay experienced by DATA PDUs for Pure Aloha is
close to its minimum possible value, given by the DATA PDU transmission time. On
the other hand, the additional delay in PDU transmission introduced by the slotted
time axis leads to higher delays as shown in the same Fig. 8.6. These results are
justified by the high robustness of IR-UWB to MUI, as shown by the comparison of
Figs. 8.7 and 8.8, showing the percentage of packets subject to MUI and the Packet
Error Rate (PER), respectively, for both Pure Aloha and Slotted Aloha. Results show
that although the interference due to collisions increases with the offered traffic, until
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Fig. 8.6 Delay as a function of the connection generation interval for Pure Aloha and Slotted Aloha
access strategies (Circles Pure Aloha; Squares Slotted Aloha)

50 25 12.5 6.25 50 25 12.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Connection generation interval (s)

P
er

ce
nt

ag
e 

of
 p

ac
ke

ts
 s

ub
je

ct
 to

 M
U

I

Fig. 8.7 Percentage of packets subject to MUI as a function of the connection generation interval
for Pure Aloha and Slotted Aloha access strategies (Circles Pure Aloha; Squares Slotted Aloha)

almost 100 % of them are subject to MUI, the PER increases only slightly. In addition
results confirms, as expected, that Slotted Aloha reduces the number of collisions.

It can be expected that, as the number of users and/or the offered traffic increases,
the packet delay will increase faster in the case of the Pure Aloha mode, due to the
higher maximum goodput guaranteed by the Slotted Aloha mode. However, in the
conditions analysed in this work, that correspond to a significant traffic load for a low
data rate network, the Pure Aloha mode is still the best solution, as it provides high
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Fig. 8.8 Packet Error Rate as a function of the connection generation interval for Pure Aloha and
Slotted Aloha access strategies (Circles Pure Aloha; Squares Slotted Aloha)

throughput while leading to lower delays. This confirms and reinforces the original
findings presented in [12, 14].

8.5 MAC for Cognitive UWB Underlay Networks

The (UWB)2 MAC was originally conceived taking into account the characteristics
of TH-IR-UWB signals, with the goals of maximizing the performance of low rate
UWB networks and providing support for the ranging feature. The evolution towards
cognitive UWB networks to be deployed according the underlay approach calls
however for a revision of this MAC protocol for IR-UWB networks, so to address the
coexistence issues posed by the presence of other systems co-located with the UWB
network. Two main research areas related to the further development of (UWB)2

were identified, and will be discussed in the following subsections:

• Introduction of specific coexistence-related information in control MAC packets,
to be piggybacked during LE/LC exchanges or distributed by means of dedicated
broadcast packets.

• Support for novel features developed for IR-UWB technology, in particular with
regards to the Time Reversal technique.
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8.5.1 Information Exchanges Related to Coexistence

The LE/LC exchange part of the (UWB)2 may be adapted so to support the exchange
of coexistence-related information. Information elements that might be exchanged
between transmitter and receiver include as an example sensing data and decisions
related to the presence of devices belonging to other networks. Although the LE/LC
exchange is a one-to-one exchange between transmitter and receiver, it is worth
noting that it takes place on the common code that all devices can access at any time.
A device may thus acquire information regarding all of its neighbours by extracting
it from LE/LC packets exchanged by them, even if not directly involved in the
exchange. In addition, in very low traffic scenarios, where LE/LC exchanges may
not be frequent enough, broadcast packets may be added to the protocol definition.

A second aspect of (UWB)2 that may be adapted to improve coexistence of low
rate cognitive UWB networks with narrowband and wideband systems is the hybrid
multi-code approach adopted in the MAC. It is well known that codes may be used
to shape the spectrum of a UWB signal, allowing, to some extent, to introduce
spectrum holes in specific frequency bands, guaranteeing improved coexistence with
systems operating at those frequencies [28, 29]. This solution might be adopted in
(UWB)2, taking into account measurements taken by both transmitter and receiver
in the selection at the transmitter side of the TH code that minimizes the interference
to devices operating in the neighbourhood of the transmitter-receiver pair.

8.5.2 Support for IR-UWB Novel Features

Time Reversal (TR) is a coding technique that consists in pre-filter the transmitted
signal with an impulse response consisting in a temporally inverted copy of the
channel impulse response between transmitter and receiver [15]; the precoding filter
compensates for temporal and spatial dispersion introduced by the channel, leading
to temporal and spatial focusing of the signal. The TR technique has been adopted
in the acoustics field in the last twenty years both for communications [15, 30] and
positioning, in combination with Direction of Arrival estimation algorithms based
on subspace decomposition [31, 32].

More recently, TR was proposed as a solution for UWB communication systems
given the strong similarities between IR-UWB and acoustic signals [11, 16]. The
adoption of TR may significantly increase the coexistence capabilities of UWB
systems: on one hand, temporal correlation leads in fact to higher efficiency in the use
of available power, guaranteeing the same received power at the intended receiver
using a lower transmitted power; on the other, spatial focusing leads to higher energy
in the point in space occupied by the intended receiver, thus further reducing the
power in other locations. TR may thus help in meeting coexistence requirements in the
deployment of cognitive UWB networks. In further analogy with acoustical signals,
TR can also improve DOA estimation accuracy in UWB systems, as discussed in [33].
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The effective introduction of TR in UWB networks depends on support by the
MAC layer, that should provide the information required to implement it. An aspect
in particular that requires the support of the MAC is related to the spatial focusing
property previously described, and the relation between the topology of primary and
secondary network. As mentioned before, spatial focusing leads to higher received
power at the position occupied by the receiver; more in general, this will correspond to
a higher power in a small region centered around the position of the intended receiver;
a primary receiver in close proximity to a UWB reciever would thus potentially
be subject to higher interference. In order to address this issue, an exclusion zone
should be defined around the position of the intended receiver, and TR should only
be adopted if no victim receivers lie within such exclusion zone. The MAC entity
running at the receiver would thus be in charge of determining whether a potential
victim receiver lies within the exclusion zone, and to communicate this information
to the transmitter.

8.6 Conclusions

This book chapter focused on the analysis of MAC issues in cognitive underlay IR-
UWB networks. Existing MAC protocols were reviewed, and the performance of the
(UWB)2 MAC, originally proposed in [12], was evaluated by means of computer
simulations in the OMNeT++ simulation environment, with accurate real-time
evaluation of Multi User Interference measured according to the Pulse Collision
model described in [14]. Performance evaluation confirmed the suitability of the
multi-channel Aloha approach proposed in [12] for low data rate UWB networks,
thanks to the inherent robustness to MUI guaranteed by the impulsive nature of the
IR-UWB signal.

The chapter focused next on discussing the adaptation of the (UWB)2 MAC for
operation of cognitive UWB underlay networks in coexistence-aware application
scenarios. Both support for the exchange of data and coexistence-aware selection
of MAC parameters and introduction of novel features recently proposed for the
IR-UWB technology, in particular Time Reversal, were addressed. Research aspects
identified as a result of this discussion will be the subject of future work.
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Chapter 9
Integration of Heterogeneous Spectrum Sensing
Devices Towards Accurate REM Construction

Liljana Gavrilovska, Vladimir Atanasovski, Valentin Rakovic
and Daniel Denkovski

Abstract This chapter introduces a recently developed generic REM construction
architecture capable of integrating heterogeneous spectrum sensing devices, combin-
ing the spectrum sensing and the database approach for accurate radio environmental
mapping. It elaborates on the required interfaces and data structures, architectural
components and toolboxes for spectrum data collection, storage, processing and
usage. Different spectrum sensing devices possess diverse sensing, processing and
hardware capabilities in terms of sensitivity, data resolution, gains, sweeping time,
processing power, antennas etc. This yields various practical implementation chal-
lenges in order to facilitate their integration into a single REM construction platform.
The practical challenges vary from code compatibility and processing limitations up
to device calibration. This chapter places a particular focus on the device calibration
procedure as a quintessential part of the integration process and discusses in details its
theoretical and practical aspects. Furthermore, the book chapter elaborates on a pro-
totype implementation based on the developed REM architecture and several types
of spectrum sensing devices: USRP2, SunSPOTs and TI eZ430 RF2500. All hetero-
geneous devices are upgraded with custom developed software for interfacing to the
REM prototype and providing versatile spectrum measurement capabilities based
on different energy detection techniques. The performances of the developed proto-
type and the gains of using a larger scale heterogeneous measurement platform for
REM constitution are validated in terms of Radio Interference Field (RIF) estimation
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via spatial interpolation, source localization, propagation model estimation and sta-
tistical analysis of spectrum occupancy. All presented evaluations, discussions and
conclusions stem from the authors’ own practical work in the field.

9.1 Introduction

Wireless devices, applications and services attract an increased interest due to their
ubiquitous and pervasive vision for anytime and anywhere connectivity. This imposes
serious challenges in front of the spectrum management aspect of wireless networks
resulting in a necessity for more spectrum resources and a necessity for more opti-
mized usage of current spectrum resources. Many empirical studies [1, 2] show that
there exists a handful of available spectrum for secondary use making the Dynamic
Spectrum Access (DSA) [3, 4] and Cognitive Radio (CR) [3–6] preferred approaches
towards more optimal and more efficient spectrum utilization in future wireless net-
works. However, recent advances in the field also show that the available spectrum for
secondary use is time, location and scenario dependent [7]. Therefore, the appropri-
ate solutions for more efficient spectrum management must encompass appropriate
business models and scenarios that first and foremost protect the primary users in
the network and, at the same time, satisfy the requirements of the secondaries in the
most appropriate manner.

The answer to the previously raised problems lies in environment-aware, self-
configurable and learning-capable techniques for optimization of wireless systems.
These techniques inevitably yield a mindset shift from theoretically possible, but
not quantifiable and tangible solutions, to real-world experimentation and operation
tools with distinct potentials and benefits in real-world scenarios. This is where the
notion of Radio Environmental Maps (REMs) finds its place and serves its envisioned
purpose.

REMs were originally envisioned as a two-dimensional representation of the radio
field strength [8]. Today, they are foreseen as a rich hierarchical database or knowl-
edge base that stores various kinds of radio environmental information, which can be
subsequently used for a plethora of optimization procedures in different secondary
spectrum access scenarios [9–15]. The REM stored information can be either directly
measured (empirical) or indirectly derived (through modeling) and classified as:

• Static information, e.g. locations of transmitters and/or receivers, terrain model
etc. and

• Dynamic information, e.g. propagation environment, up-to-date spectrum mea-
surements, users activity patterns etc.

As a result, REMs represent a powerful enabler and/or facilitator for reliable
DSA and, more generally, for improving the environmental awareness and spectral
efficiency of wireless networks. The range of REM beneficiaries is manifold:
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• Regulators and dedicated public bodies, which can use the REMs for large-scale
estimation of spectrum usage in order to track compliance to regulations, estimate
frequency planning effectiveness etc.;

• Cellular network operators, which can interpret measured results through drive
tests or mobile subscribers in order to perform Minimization of Drive Tests
(MDTs) [16], network planning and fault detection etc. and

• Consumers, which can perform self-optimization and/or learning of patterns and
habits leading to higher QoS, lower prices etc.

The focal point of REMs is their ability to measure, collect and efficiently represent
radio environmental information. This subsequently represents a tremendous aid in
the optimization of wireless networks technology chain. The measurement capability
within REM solutions requires the usage of various market available and custom built
devices capable of performing various, often user-defined and user-specific, measure-
ments. The variety of measurement devices imposes their inevitable heterogeneity as
a potential problem regarding their mutual operation, reliability and accuracy. There-
fore, the integration of various spectrum sensing devices in a single REM solution
is intertwined with specific implementation problems such as calibration, operating
ranges, accuracy etc.

This chapter discusses the most important aspects of the integration of hetero-
geneous spectrum sensing devices in a single REM construction architecture. The
analysis tackles the actual REM construction approach along with the associated
problems stemming from the heterogeneity of the spectrum sensing devices within
the REM architecture. It pinpoints the most optimal way, regarding architecture com-
plexity and performance reliability, to accurate REM construction and the need for
intelligent management of available spectrum sensing resources leading to increased
reliability and accuracy of the constructed REM even with the usage of low-end
devices.

9.2 How to Construct Accurate REM?

REMs represent a technology enabler for DSA. They are capable of increasing the
level of radio environmental awareness, thus facilitating various resource manage-
ment procedures within wireless networks. Their strongest asset is the ability to
provide different accurate and up-to-date information on the radio environment to all
interested stakeholders. Therefore, the REM construction approach must encompass
a strong and unambiguous capability for reliable radio field estimation.

REMs operation requires a clearly defined and distinct feasibility of a certain
practical DSA solution. REMs are enablers rather than solutions in wireless networks
and must be treated as such under all possible circumstances. The feasibility of a
certain DSA solution can be seen from a [1]:
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• Technical side (i.e. realistic assumptions of the behavior of all network entities such
as primaries, secondaries, transmitters, receivers etc. and their mutual interactions
such as interference, blocking etc.) and

• Commercial side (i.e. quantification of the available spectrum usage and develop-
ment of appropriate business models and scenarios).

In any case, the feasibility of a DSA solution defines the requirements that must
be met by the enabling REM. Both technical and commercial aspects of the feasi-
bility directly influence the design and the applicability of the REM. Having these
boundaries in mind, the crucial question now becomes the design of an efficient,
practically deployable and operational REM, which must be capable of monitoring
and interpreting the REM-related information in the most optimal way.

The following section discusses the possible approaches towards accurate REM
construction. It pinpoints their advantages and disadvantages and elaborates on the
most important REM architecture design concepts.

9.2.1 Possible Approaches

The focal aspect of every REM design is the capability to accurately assess the
spectrum occupancy in order to accurately decide on possible spectrum opportunities.
As a result, the spectrum opportunity detection techniques directly influence and
dictate the possible REM construction approaches. Currently, there are two distinct
spectrum opportunity detection techniques [7], i.e.:

• Sensing-based spectrum opportunity detection and
• Database-based spectrum opportunity detection.

The sensing-based technique requires that secondary devices employ a certain
detection method in order to assess the monitored spectrum. It is a device-centric
method not dependent on any network infrastructure and information exchanges
with the network. The secondary devices independently or cooperatively decide
upon spectrum opportunities using detection methods ranging from blind to signal
specific [17]. However, most practical detection techniques usually rely on blind
techniques, specifically energy detection and its derivatives (e.g. FFT (Fast Fourier
Transform) Averaging Ratio—FAR [18], Higher-Order-Statistics—HOS [19] etc.)
due to their simplicity for practical deployments and real-time operation.

The database-based technique requires that secondary wireless devices report their
location to a centralized database and obtain available spectrum information. This
is a network-centric method where all related calculations are performed within the
centralized database framework residing in the network infrastructure. The secondary
devices do not need a sensing capability in this case.

Possible REM construction approaches directly stem from the spectrum opportu-
nity detection techniques. Therefore, it is necessary to carefully analyze and scruti-
nize their advantages and disadvantages in order to find the optimal way to construct a
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Table 9.1 Comparison between sensing-based and database-based opportunity detection
techniques

Sensing-based Database-based

Implementation complexity Variable High
Location of detection

decision
Distributed Centralized

Suitable for Dynamic radio environments Static radio environments
Advantages Plenty of market available

devices
Robustness

Disadvantages Heterogeneity (requires
calibration); Inability to
control the aggregate
interference

Obsolete data for dynamic
radio environments

Possibility for practical
deployments

Yes Yes

practically feasible REM solution. For instance, the major drawbacks of the sensing-
based techniques lie in the heterogeneity of the market available devices for spectrum
sensing and the inability to control the aggregate interference. The heterogeneity is
reflected in a variety of possible devices in different price and complexity ranges
leading to necessary trade-offs with the corresponding solutions reliability and accu-
racy (i.e. the higher the price the more accurate and reliable the spectrum sensing
solution will likely be). These issues can be partly overcome with accurate calibra-
tion of the various devices and even turn the drawback into a practical advantage
for applications with limited resources on the sensing side [10]. Additionally, there
are complex sensing methods found in the literature that significantly increase the
precision and the reliability, but these methods often require offline calculations lim-
iting their practical real-time operation in an integrated REM solution. However, the
inability to control the aggregate interference using only spectrum sensing methods
is the major limiting factor for practical deployments. Therefore, the regulators pre-
fer the database-based technique [20], which is more robust and rugged completely
stripping the spectrum sensing requirement. Table 9.1 compares the major charac-
teristics of the sensing-based and the database-based spectrum opportunity detection
techniques.

It is evident that both techniques (and REM construction approaches) exhibit
advantages under certain circumstances. The sensing-based technique is more flexi-
ble and dynamic providing real-time radio environmental information even for low
cost devices (with appropriate calibration). Additionally, most of the wireless devices
on the market inherently possess the capability to perform spectrum sensing by
measuring the RSS values. The database-based technique can provide accurate and
reliable information for static radio environments (e.g. TVWS—TV white spaces)
and provide extensive set of spectrum related information real-time (e.g. historical
spectrum occupancy, locations of primary static transmitters and receivers etc.).
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Fig. 9.1 Generic REM construction approach

It is clear that the optimal way towards accurate REM construction should embrace
the benefits of both approaches [2]. The synergy between them allows using their com-
plementarity in order to derive a practically deployable and accurate REM architec-
ture for various applications [9, 10]. Figure 9.1 depicts a possible REM construction
approach based on the joint sensing-based and database-based detections combined
in a single architecture.

More details on the actual data model and the necessary architectural components
descriptions are given in the following text.

9.2.2 Architectural Cornerstones

The REM architecture design, besides the functional architectural blocks, requires
appropriate data model capable of capturing all possible parameters of interest in
various scenarios of subsequent REM usage. The data model allows the REM to serve
its purpose of technology enabler for DSA and must be open for future extensions.
The minimal data model set for practical REM development comprises:

• Transmitter locations, configurations and types;
• Radio Interference Fields (RIFs);
• Service areas;
• Receiver information;
• Propagation information;
• Activity/usage information;
• Received signal strength distributions.
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This information should be sufficient for real-time and offline calculations of the
most important radio environment parameters for majority of dynamic and static
DSA solutions. However, the REM architecture must be easily extensible in terms
of new data of interest for a future particular scenario.

The architectural design essentially incorporates two major architectural compo-
nents, i.e.:

• REM backend and
• REM users.

The REM backend is responsible for acquiring, storing and processing of radio
environmental information important for subsequent usage by the REM users. It
comprises:

• Sensing Devices (SDs) that perform spectrum measurements using various tech-
niques (e.g. blind detection, signal specific detection, cooperative detection etc.);

• Spectrum Data Server(s) (SDS) that store the measured and the processed REM
information and

• REM Processing Center (RPC) that calculates the REM and other various impor-
tant radio environmental parameters. The most important features of the RPC are
data fusion, spatial interpolation of sparse RSS measurements, statistical analysis
of the radio environment including propagation estimation, localization of trans-
mitters and basic RRM (Radio Resource Manager) functionalities (this list is not
exhaustive and should be easily updated in future if needed).

The REM users represent various entities that benefit from the radio environmental
information. These can be RRM blocks within a DSA solution, policy manager, GUIs
for REM visualization and other entities using the radio environment information for
some optimization procedure. The REM users are diverse and the REM architecture
must be capable of closely following their requirements in various scenarios of
interest.

There are also other important aspects towards design and development of REM
construction architecture. All previously mentioned architectural blocks must com-
municate using transparent interfaces and corresponding protocols. Also, the RPC
must be easily extendable in order to accommodate future possible REM needed
calculations. These aspects ensure that the REM architecture is scalable, modular
and easily extensible towards future envisioned usage.

9.2.3 Integration

Figure 9.2 depicts the integration of all previously discussed aspects of REM con-
struction in a single and unified architecture [9, 10]. It clearly shows the synergy
between the sensing-based approach (using heterogeneous SDs) and the database-
based approach (using a centralized storage).
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Fig. 9.2 General REM construction architecture

The most important features of a general REM construction architecture can
be summarized as heterogeneity of sensing devices, modularity and scalability/
extensibility. The following sections will discuss in more details these features and
show how to integrate heterogeneous market available devices in the relevant REM
sensing pool while providing reliable and accurate management of the REM infor-
mation.

9.3 Heterogeneity in the Spectrum Sensing Pool

The SDs represent the ensemble of network entities that are responsible for and
contribute to REMs with active spectrum monitoring functionalities. They are the
cornerstone of the REM architecture, acquiring the measurements information from
the surrounding environment and hence, facilitating the up-to-date tracking and sur-
veillance of various radio environment events. Such events can refer to dynamic
changes in the propagation phenomena, appearance of transmitters in the targeted
area and tracking of their respective service areas, monitoring the changes of the
signal strength of respective radio emissions, as well as the imposed (aggregate)
interference in the measurement area.

With respect to the REM data model and architectural requirements the most
important tasks of the SDs in the REM context are the signals detection, identification
and classification. Tightly related to their hardware capabilities, the spectrum sensing
devices can perform blind or feature based signal detection [17]. While the blind
detection is preferable due to the low implementation complexity and feasibility to
most of the radio hardware, the feature based detection implies the need of more
complex radio hardware/software. Furthermore, the feature based detection requires
the prior knowledge on the underlying signal models. This requirement cannot always
be complied in practice, especially in dynamic and diverse (in terms of lower layer
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Fig. 9.3 Classification of sensing devices and their price/performance tradeoff

implementations) radio networks deployments, such as the cognitive radio networks.
In such deployments, besides the signal detection capabilities, the sensing devices
can/should provide additional signal identification and classification capabilities. The
measured signals should be associated with the specific radio technology, activity
times, as well as other signal specific metrics, such as RSS, Signal-to-Noise (and/or
Interference) Ratios etc. All these sensing inputs can be of a great importance towards
the accurate data processing and construction of different types of REMs.

9.3.1 Classification of Heterogeneous Sensing Devices

The spectrum sensing process can often combine multiple and heterogeneous types
of sensing hardware involved in the REMs construction. The REM architecture envi-
sions and allows for the usage of the measurement capabilities of existing infrastruc-
ture components such as base stations, terminals etc., or a dedicated sensor network.
These different types of SDs should be seamlessly integrated into the REM architec-
ture, i.e. the referred should support heterogeneous SD deployments. However, the
different sensing devices posses diverse sensing, processing and hardware capabili-
ties, in terms of sensitivity, dynamic range, time/frequency versatility, data resolution,
gains, sweeping time, processing power, antenna(s), measurement metrics etc. Due
to the diversity of the available hardware and its capabilities, the implementation of
heterogeneous sensing devices into a single REM statistical-inference platform is far
from a trivial process and implies many practical implementation challenges: device
interfacing, time/frequency/power calibration, data formats unification etc.

With respect to the sensing/processing capabilities and the price, the market avail-
able measurement devices can be classified as high-, mid- and low-end devices [10]
(Fig. 9.3, Table 9.2). The high-end devices, i.e. the signal/spectrum analyzers, offer
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Table 9.2 Classification of sensing devices and their performances

High-end Mid-end Low-end

Examples Signal/spectrum
analyzers, base
stations etc.

Software Defined
Radios, mobile
terminals etc.

Low price, light
weight
wireless
sensors etc.

Price High (10 k euros
and above)

Medium (1 k up to
10 k euros)

Low (up to 1 k
euros)

Time/frequency/power
resolu-
tion/versatility

High Medium/high Low

Sensing performances
(accuracy,
reliability, dynamic
range, sensitivity)

High Medium Low

On-board processing
capabilities and
memory

High Medium Low

Sensing software Available Available/custom
made

Custom made

Detection capabilities IQ detection IQ detection
possible

Energy detection

Power consumption High Medium Low
Mobility Low Medium High
Large scale

deployments
possibility

Low Medium High

the highest performance and capabilities at the highest price. Besides the basic energy
detection capabilities, they are also capable to perform IQ (In-phase Quadrature)
detection of the emitted signals, and hence, feature detection, identification and clas-
sification techniques are also feasible using these radio devices. The mid-end sensing
devices (Software Defined Radios, mobile terminals, etc.) are a trade-off between
price and performance while offering a set of advanced measurement capabilities.
Although they usually possess lower sensitivity and lower time/frequency/power res-
olutions compared to the high-end devices, they can also perform IQ detection, and
therefore, can be viable solutions for the implementation of more advanced feature
detection and identification techniques. The low-end devices, (e.g. low cost sen-
sors) represent low-price spectrum sensing solutions. They possess limited sensing
capabilities and often require custom development of sensing software to extract
the Received Signal Strength (Indicator), RSS(I), as a common metric. Therefore,
the only feasible REM techniques are the energy based ones. However, due to the
low price of the devices, large-scale sensor deployments are possible allowing for
experimentation in the area of cooperative energy detection, RSS-based single and
multi-source localization etc.
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Fig. 9.4 ROC comparison for the different SDs and input power of −96 dBm. SunSPOT and TI
eZ430 RF2500 perform 100 samples averaging in dBm domain, while USRP2 performs 100 samples
averaging in mW domain

The heterogeneity of the market available devices represents both a challenge
and an advantage in a variety of scenarios. The challenge lies in the necessity for
calibration using a benchmark device, while the advantage lies in the flexibility for
small-scale and large-scale practical deployments depending on the scenarios needs.

9.3.2 Implemented Heterogeneous Sensing Devices

The practical realization (prototype) [9, 10] of the generic REM architecture com-
prises several sensing device solutions, i.e. a high-end Anritsu MS2690A signal
analyzer [21], mid-end USRP2 SDR devices [22] and two low-end sensing devices:
Texas Instruments (TI) eZ430 RF2500 [23] and Sun SPOTs sensors [24]. In order
to be adapted to the envisioned REM evaluation applications, the devices sensing
performances need to be extensively assessed and an appropriate input/output power
calibration is required [10].

The calibration process involves generation and reception of various signals with
different power levels and known constant amplitudes by both a high-end spectrum
analyzer and the measurement device. The Anritsu MS2690A signal analyzer can
be used as a signal generator as well, emitting signals with different waveforms and
power levels. In addition to the high sensing precision and reliability, this provides
that the Anritsu MS2690A can be used as a reference for the calibration of the mid-
and low-end spectrum sensing devices.

Figure 9.4 plots the ROC curves for all inspected mid- and low-end sensing devices
for an input power of−96 dBm [10]. The low cost devices use their optimized sensing
cases, i.e. the SunSPOT and TI eZ430 RF2500 perform 100 samples averaging in
dBm domain. The best detection performances are offered by the TI eZ430 RF2500
spectrum sensor, once again proving that the referred has a high sensitivity when



198 L. Gavrilovska et al.

used in proper manner. However, it should be noted that the USRP2 did not use
the highest gain setting, while the other two devices were optimized for sensitivity.
When the USRP2 uses the highest gain setting it would most probably provide the
best detection performances [25].

Table 9.3 summarizes the hardware capabilities of the implemented low- and
mid-end SDs in the REM prototype, compared to the reference Anritsu MS2690A,
serving as a rationale for the obtained sensing performances.

The REM prototype, developed based on the generic REM architecture, can be fur-
ther extended with additional sensing devices. Legacy radio hardware such as mobile
terminals, laptop computers etc., can be also incorporated in the REM prototype pro-
viding large-scale deployment possibilities. However, the SDs sensing performances,
accuracy and reliability need to be extensively assessed and an appropriate device
calibration is required to obtain reliable and accurate REMs.

9.4 Management of REM Information

The REM backend framework is responsible for gathering, storing and processing
of the REM information. The REM backend is also responsible for providing REM
information to the REM users (Fig. 9.5). This allows various instantiations of the
REM concept within different scenarios depending on the actual REM user profile.
This section describes the implementation aspects of all backend components and
the different interfaces, which enable the management of REM information and form
the cornerstone of the REM concept.

As already introduced in Sect. 9.2, the REM backend framework comprises of
three main components (Fig. 9.5), i.e. Spectrum Data Server(s) (SDS), Sensing
Devices (SDs) and a REM Processing Center (RPC). This section provides informa-
tion and details on the REM information management process regarding the three
REM backend components and their interconnecting interfaces.

9.4.1 REM Backend Components and Interfaces

This section describes the REM information management based on the implemen-
tation of the SDs, the SDS and the RPC along with their associated functionalities
and features.

9.4.2 Spectrum Data Server (SDS)

The Spectrum Data Server is the main component in charge of storing and managing
the raw and the processed REM information as well as the active SD information.
The storage database and its structure are depicted in Fig. 9.6, and consist of the
following tables:



9 Integration of Heterogeneous Spectrum Sensing Devices 199

Ta
bl

e
9.

3
Se

ns
in

g
de

vi
ce

ha
rd

w
ar

e
ca

pa
bi

lit
ie

s

Pe
rf

or
m

an
ce

m
et

ri
c

A
nr

its
u

M
S2

69
0A

U
SR

P2
T

I
eZ

43
0

R
F2

50
0

Su
n

SP
O

T

Fr
eq

ue
nc

y
ba

nd
s

50
H

z–
6

G
H

z
D

au
gh

te
rb

oa
rd

de
pe

nd
en

t
2.

4–
2.

48
5

G
H

z
2.

25
3–

2.
74

G
H

z
R

es
ol

ut
io

n
ba

nd
w

id
th

s
30

H
z–

20
M

H
z

19
5

kH
z–

25
M

H
z

58
kH

z–
81

2.
5

K
H

z
2

M
H

z
(I

E
E

E
80

2.
15

.4
co

m
pl

ia
nt

)
Fr

eq
ue

nc
y

st
ep

s
V

ar
io

us
V

ar
io

us
25

kH
z–

40
5

kH
z

1
M

H
z

Fr
eq

ue
nc

y
sw

itc
hi

ng
de

la
ys

N
eg

lig
ib

le
<

20
0
µ

s
<

80
9
µ

s
1

m
s

Sa
m

pl
in

g
ty

pe
IQ

IQ
R

SS
I

R
SS

I
Sa

m
pl

in
g

pe
ri

od
>

15
ns

(b
an

dw
id

th
de

pe
nd

en
t)

>
40

ns
(d

ec
im

at
io

n
de

pe
nd

en
t)

<
31

0
s

(b
an

dw
id

th
de

pe
nd

en
t)

12
8
µ

s

Se
ns

iti
vi

ty
−1

55
dB

m
/H

z
−1

64
dB

m
/H

z
(f

or
R

FX
24

00
)

−8
3

dB
m

(8
12

kH
z)

;
−1

04
dB

m
(2

03
kH

z)

−9
1

dB
m

(2
M

H
z)

D
at

a
re

so
lu

tio
n

32
bi

ts
(f

or
ea

ch
,I

an
d

Q
)

14
bi

ts
(f

or
ea

ch
,I

an
d

Q
)

8
bi

ts
8

bi
ts

O
n-

bo
ar

d
pr

oc
es

si
ng

ca
pa

bi
lit

ie
s

1.
5

G
H

z
In

te
lC

el
er

on
M

50
M

H
z

32
bi

tR
IS

C
C

PU
16

M
H

z
16

bi
tR

IS
C

C
PU

18
0

M
H

z
32

bi
t

A
R

M
92

0T
O

n-
bo

ar
d

m
em

or
y

1
G

B
R

A
M

m
em

or
y

1
M

B
SR

A
M

1
K

R
A

M
/3

2
K

R
O

M
51

2
K

R
A

M
/4

M
Fl

as
h

Sp
ur

io
us

Fr
ee

D
yn

am
ic

R
an

ge
(S

FD
R

)
88

.5
dB

c
(a

t1
0

kH
z

R
B

W
)

88
dB

(w
ith

m
an

ua
lg

ai
n

co
nt

ro
l)

N
/A

N
/A

Po
w

er
co

ns
um

pt
io

n
N

ot
an

is
su

e
N

ot
an

is
su

e
40

0
nA

(D
ee

p
sl

ee
p)

/
13

.3
m

A
(A

ct
iv

e)
33

µ
A

(D
ee

p
sl

ee
p)

/
10

4
m

A
(A

ct
iv

e)



200 L. Gavrilovska et al.

Fig. 9.5 REM backend archi-
tecture

• The SDs table (i.e. Sniffers) is used to keep sensor information such as SD addresses
(IP and MAC), SD location (the current location of the SD expressed in Cartesian
coordinate system), SD status (Active, Idle or Off) and SD capabilities (referring

Fig. 9.6 SDS data storage structure
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to the different types of SDs, i.e. USRP2, TI eZ430, SCALDIO). This table carries
valuable information enabling the REM backend to be aware of and track the active
SDs in the network.

• The Measure type table is used to store the measurement types that can be per-
formed by the sensor devices specified by start and end frequency, resolution
bandwidth, number of measurement points, sweep time and measurement type
(referring to the min, mean and max hold detectors). Each SD is associated to an
entry in this table corresponding to its current measurement configuration.

• The Results table stores the raw measurement results as Binary Large Object
(BLOB) data from the active SDs in the network. The BLOB data approach enables
the database to store large quantities of measurement information without affecting
the overall performance of the SDS component. Besides the measurement data,
this table also stores information about the location (useful for the case of Radio
Interference Field construction) and time the data was collected, as well as the SD
and measurement configuration that were used to perform the given measurement.

• The REMs table stores pixel images of the Radio Interference Field Estimation
(RIFE) maps for a given frequency range and time. Moreover, the RIFE maps are
also stored as BLOBs in the SDS in order to minimize the quantity of the stored
data.

• The Propagation Models table is used to store propagation model information of
the vicinity. The propagation model information comprises of information data
such as center frequency (carrier frequency for the given propagation model),
bandwidth, type of the model (static (i.e. predefined) or estimated (i.e. estimated
by the SDs)), the number of distances i.e. points on which the propagation model is
valid and the results (defined as the pathloss in dependence of the distance) stored
as BLOB data.

• The Estimated Transmitters table stores information regarding the active transmit-
ting devices in the area regarding their location (expressed in Cartesian coordinate
system), operating frequency (i.e. frequency range), time (time at which they were
detected as active) as well as the estimated transmit power. The detection method
of the transmitters can be either a predefined administrator input (e.g. informa-
tion of TV broadcast towers) or estimated input using the SDs to detect the active
transmitter (e.g. a self-organizing networks use case, like the Femtocell scenario).

• The Communication Devices table stores information regarding the active network
devices that utilize the stored REM information, i.e. the active REM users regard-
ing their addresses (IP and MAC), location (the current location of the device
expressed in Cartesian coordinate system), capabilities (frequency range, max
bandwidth, noise floor, minimal and maximal transmit power), current configu-
ration (current transmit power and bandwidth), status (idle, receiver, transmitter,
transceiver), device type (LTE femtocell, LTE TWVS) etc. Similar to the SDs, this
table facilitates the REM backend to be aware and serve the active REM users in
the network.

The presented SDS structure only reflects the generic data storage format and
architecture regarding the REM information management. The SDS is considered
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to be modular and can be either upgraded with additional information fields and
tables or demoted by excluding some of the generic fields and tables depending on
the specific requirements of the underlying use-cases and scenarios. For example, in
scenarios where the database storage has low memory requirements it is essential to
construct the SDS by utilizing only a subset of all information fields in order not to
overload the database storage capacity.

9.4.3 Sensing Devices (SDs)

The REM backend supports several different types of SDs (like, USRP2, TI eZ430,
SCALDIO, etc.), which were presented and elaborated in more details in the previous
section. Regarding the REM information management, the SDs are developed to
support multiple functionalities like device registration/deregistration to the SDS,
real-time periodic and triggered spectrum measurements as well as remote and on-
the-fly reconfiguration.

All of the SDs, regardless of their type, exploit the same unified protocol and
interface between the SD-SDS in order to exchange the required information with
the SDS. The SD-SDS protocol, i.e. the SS interface, defines the communication
over the referred interface including several protocol messages: registration mes-
sage, measurement report message, reconfiguration message, measurement request
message, fusion report message and de-registration message. Upon activation, the
SDS address and TCP port are provided to the SD in order to create a TCP connection
between them. Moreover, the initial configuration parameters of the SD are specified
at the startup. After the initialization, the SD registers to the SDS by sending registra-
tion message containing information about the SDs type (e.g. SCALDIO or USRP2,
mobile terminal etc.), SDs address (i.e. MAC and IP), measurement parameters (e.g.
detection type, measurement mode, resolution bandwidth, start frequency, end fre-
quency, sweep time, etc.) (Fig. 9.7). If the SD entry already exists in the SDS, then it
is updated with the renewed information contained in the last registration message.
If not, a new SD entry is created. While active, the SDs upload dynamic information
in the SDS using the measurement report message, as described in Fig. 9.7. The SDS
can send a reconfiguration message at any time during the operation mode of the SD
(Fig. 9.7). The RPC can initiate sending of this message when the actual SDs config-
urations cannot support the required data processing tasks (e.g. the band of interest
differs in the RPC from the one that the SDs are monitoring). In the same fashion the
RPC can trigger a measurement request message, which initiates an asynchronous
measurement process of the SDs. Every SD is obligated to de-register from the SDS
before going offline using the deregistration message. This action is required so the
SDS can be aware of the active SDs set in the network.
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Fig. 9.7 Message sequence chart (MSC) of the SD-SDS protocol operation

9.4.4 REM Processing Center (RPC)

The main goal of the RPC is to perform the required processing tasks in the REM
backend (e.g. interpolation and RIF Estimation, node localization, propagation model
estimation, radio environmental statistics etc.). It is designed to be scalable and
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extensible due to the need of different processing modules, which depend on the
underlying scenario and use case. The prototype RPC implementation includes three
processing modules (also denoted as toolboxes):

• Spatial interpolation toolbox. The spatial interpolation toolbox is in charge for the
data fusion and construction of the RIFE maps. It utilizes the aspects of spatial
interpolation, like pure IDW or IDW modified Shepards method techniques [26,
27] and other more complex techniques such as Kriging [28], radial basis func-
tion [29], polyharmonic spline, thin plate spline [30], triangulated irregular net-
work, Gradient plus Inverse Distance Squared [31] etc. The toolbox is built on two
generic processing functions:

– Interpolate function—calculates the RIFE map and uses multiple input parame-
ters in terms of the size of the interpolation area, number of interpolation points,
fusion algorithm parameters (where the fusion algorithm parameters reflect the
characteristics of the measured radio environment).

– Interpolate point function—calculates the RIF output at a single interpolation
point with known Cartesian coordinates. The Interpolate function utilizes the
output parameters of this function in order to calculate the complete RIFE map.

The spatial interpolation toolbox can select the interpolation technique of interest
based on the requirements of the given scenario. For example, if the scenario
requires highly precise RIFE maps, regardless of the real-time operation of the
RPC and number of SDs, the toolbox can utilize the Kriging approach (e.g. a
Minimisation of Drive Tests [16] scenario). In scenarios where the SDs are sparse
and scattered and real-time operation of the RPC is of crucial importance, the
best solution is to exploit the IDW approaches (e.g. a Self Organizing Femtocell
scenario).

• Statistical analyses toolbox. This toolbox processes radio environmental statistical
information such as the propagation model estimation, the empirical probability
models (empirical probability density functions—epdf and cumulative density
functions—ecdf), duty cycles (i.e. historical spectrum occupancy) etc. The toolbox
utilizes multiple processing functions in order to process the required statistical
information:

– Propagation model function—estimates the path loss model in the area of inter-
est. It returns the estimation of the pathloss as a function of the distance. The
function utilizes the duration of the estimation period, center frequency and
channel bandwidth as input parameters in the estimation process.

– Empirical density function—calculates the empirical probability models i.e. the
epdf or the ecdf function depending on the request.

– Duty cycle function—calculates the duty cycle of the radio environment at a
given time and location of interest.

The statistical analyses toolbox can be easily upgraded with additional function-
alities which can give better insight of activity/usage of the radio environment
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Table 9.4 RPC interface functions

Name Description

Get active SDs set Returns the active SD set and their configuration and
capabilities

Extract measurement data
form single SD

Returns measurement data entry or entries from a single SD

Extract measurement data
form multiple SD

Returns measurement data entry or entries from all active SD

Extract specific raw
measurement data

Returns measurement data entry or entries from all active SD
regarding a specific frequency range, location area and
time period

Reconfigure SD Reconfigures a given SD for a specified SD ID, with specified
parameters for detection type, measurement mode,
resolution bandwidth, start frequency and end frequency,
sweep, time, etc.

Request measurements Request measurements for a specified SD or group of SDs

in terms of its spatio-temporal and spectral statistics (e.g. Semi-Markov On-Off
periods, activity models for certain bands of interest).

• Transmitter localization toolbox. The transmitter localization toolbox is responsi-
ble for performing an estimation of the transmitter location and estimation of its
transmit power. The toolbox comprises of one generic processing function which
returns information about the location of the transmitter (in Cartesian coordinate
system) as well as its estimated transmit power based on variety of algorithms,
which can perform single-source as well as multi-source localization [32, 33].

The RPC modules are connected to external interfaces, i.e. SDS-RPC interface,
RPC-RDU interface, in order to communicate with the other architectural blocks
of the REM. The communication between the SDS and the RPC is defined by the
SDS-RPC protocol i.e. the SF interface. Since the referred entities are collocated
together, their interactions are defined by several interface functions initiated by the
RPC, Table 9.4.

The execution of these procedures can be triggered by the RDU, when a spe-
cific calculation or data processing is required. For example, if a REM calculation is
required at a location area, in a specified time period and frequency band, the active
SDs data is filtered within the specified boundaries using the extract specific raw
measurement data function and is combined using some of the interpolation meth-
ods mentioned above. Whenever a required calculation is not supported because of
insufficient amount of data a reconfiguration of the active SDs can be initiated by
the RPC calling the reconfigure SD function. An example of a set of interactions
considering the RPC is illustrated on the message sequence chart in Fig. 9.8, in the
following section.
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Fig. 9.8 Message sequence chart (MSC) illustrating the operation of SDS-RPC protocol as well
as RPC-RDU protocol

9.4.5 REM Users and Interfaces

The REM users represent various cognitive and non-cognitive network entities capa-
ble of exploiting the REM information in order to increase the secondary system
performance. These entities can vary from network management nodes such as RRM
blocks within a DSA solution [9, 10] up to spectrum policy managers. The REM
users can also be exemplified as visual representation tools of the REM information
(i.e. GUIs for REM visualization). As depicted in Fig. 9.2, the RDU has a direct
communication only with the RPC via the RPC-RDU protocol, i.e. the FP inter-
face. For the most simplistic case, when the RDU is represented with a REM GUI,
the RPC-RDU protocol is defined with two messages that are used for exchanging
the information about the fused (processed) data sent over the FP interface, i.e. the
FData req and FData rsp messages. As depicted in Fig. 9.8, the RDU requests the
fused data, i.e. RIFE map from the RPC by sending the FData req message. After
receiving the FData req message, the RPC starts to calculate the requested data
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based on the parameters in the message. When the calculation is finished the RPC
sends the processed data to the RDU in the FData rsp message.

The FData req message carries parameters that are needed by the RPC for the
fusion process, such as start and end frequency (i.e. the frequency band), the location
area for which the REM is being used. The last information carried by FData req
message is about the nature of the requested REM. For example, the give RDU can
request a real time REM (in this case a real time RIFE map) or a long term RIFE that
has been processed for a larger period of time (hours, days, etc.). The scenario of
message exchange in order to provide the required RIFE map derivation is presented
on the MSC in Fig. 9.8. The notion from the example can be extended to more
generic cases when the requested data can be a structure of REM information (e.g.
RIFE map + Transmitter localization + epdf, etc.).

This section provided a high level overview of the REM information management
via the REM backend architecture. Moreover, the section pinpointed the implemen-
tation facets of the REM backend components and interfaces and discussed about
its generic and flexible nature. This generic and flexible nature enables the REM
backend (as well as the REM information management) to be further developed
and enhanced regarding the specific considerations that arise from the underlying
use-cases and scenarios.

9.5 Conclusions

Future wireless networks inevitably yield increased network performance and more
optimized usage of available network resources due to the ever-increasing users
needs. The problem of practical DSA and CR deployments is the limitation in terms
of available spectrum dependency on time, location and scenario and lack of clearly
defined commercial business model and scenario. The REM technology proves to
be a viable solution towards embodying self-x characteristics in future wireless
networks. The symbiosis of spectrum sensing and database represents an anchor
for collection, storage and processing of valuable radio field information leading to
potential benefits for a manifold of wireless stakeholders.

This chapter discussed the details of a developed and operable REM prototype
that can be used in various scenarios. For instance, the presented REM backend can
provide sufficient radio environment information in mobile networks in order to Min-
imize Drive Tests (MDTs) [16], which is currently being tackled by 3GPP and other
standardization bodies. Also, the presented REM technology can be utilized to facil-
itate the process of LTE implementation in TVWS [13]. Finally, REMs can be used
to perform dedicated spectrum monitoring on certain bands of interest and secure
valuable information such as transmitters locations, spectrum utilization, potential
spectrum holes etc. The unique feature of the presented REM approach here (i.e. the
synergy between sensing-based and database-based spectrum opportunity detection)
allows its usage both in static and dynamic scenarios and also allows for extensibil-
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ity and accommodation towards future possible regulations (e.g. implementation of
explicit regulatory rules in the RPC).

However, there are several aspects of the REM prototype and the REM approach in
general that need to be settled prior to its more widespread practical implementation.
The spectrum sensing portion of the architecture requires research and develop-
ment of possible self- and auto-calibration techniques of the heterogeneous market-
available devices. This can ensure transparent integration of future spectrum sensing
solutions. Furthermore, it is expected that there will be low-power, low-cost, pow-
erful and reliable spectrum sensing solutions to be deployed in handheld devices,
which stresses the importance of the calibration further on. Finally, the practical
implementation of spectrum sensing solution will require methods other than pure
energy detection (e.g. cyclostationarity-based detection etc.). The database portion
of the REM architecture can benefit from novel techniques and methods for optimal
data organization and datamining. This can guarantee quick and on-time REM infor-
mation fetch and applicability of the REM architecture in various scenarios. Finally,
the overall REM technology should be upgraded with more reliable RIF synthesizing
methods, algorithms to track moving and multiple transmitters etc.

The REM technology is a valuable aid in the process of optimization of future
wireless networks. If designed appropriately, it can provide sufficient radio field
information for usage in various static and dynamic scenarios. This will ensure
development of spectrum-efficient wireless solutions capable of meeting the future
networking requirements.
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Chapter 10
Cellular Coverage Optimization: A Radio
Environment Map for Minimization of Drive
Tests

Ana Galindo-Serrano, Berna Sayrac, Sana Ben Jemaa,
Janne Riihijärvi and Petri Mähönen

Abstract Coverage is one of the most important targets that has to be achieved by
cellular operators. Without coverage provisioning, concepts like service, or Quality
of Service (QoS) cannot be considered. Therefore, cellular coverage prediction and
enhancement is a basic and prevailing area of research in wireless communications.
Our work introduces an automatic and remote self-optimization process based on
exploitation of geo-location information for cellular coverage optimization. Specif-
ically, we use Radio Environment Maps (REMs) for cellular network coverage hole
detection purposes. We define REM as an intelligent entity which stores incoming
radio environmental data and also interpolates this data to benefit from the spatial
correlation that exists in it. Furthermore, with the standardization of Minimization of
Drive Tests (MDT) in 3GPP, geo-location based solutions/applications are increas-
ingly becoming feasible and popular. The proposed REM-based coverage hole detec-
tion approach drastically reduces the required drive tests and enhances the network
with self-responsive capabilities to handle key obstacles towards cellular networks
autonomy.
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10.1 Introduction

Coverage estimation is the first step for cellular network deployments. It consists of
the signal strength estimation in the area to be served through sophisticated planning
tools. These planning tools apply comprehensive propagation models to the terrain
profile, also considering the building layout. Despite the accuracy of these planning
tools and the efforts put by the operators in the coverage estimation and deployment
phase, the existence of coverage holes is almost impossible to avoid since the net-
work is always subject to unforeseen changes in the propagation environment, or
equipment failures. Therefore, the coverage optimization process is required dur-
ing the operational phase. The coverage optimization has two stages, the coverage
hole prediction and the solution deployment, which remedies or removes the cover-
age problem in the uncovered zones. The solution deployed to solve coverage holes
needs to be timely and cost-effective, i.e., providing full coverage without creating
excessive interference to the already covered neighboring areas. The success of the
given solutions is directly related to the accuracy of coverage hole location and shape
information, which comes from the coverage hole prediction approach.

This chapter focuses on coverage hole prediction, and showcases how to use the
powerful mathematical tools coming from spatial statistics as a cognitive solution to
these problems. So far, operators have adopted the following procedure to deal with
coverage prediction: (1) to perform drive tests, which consist of geographically mea-
suring different network metrics and indicators with motor vehicles equipped with
specialized mobile radio measurement equipments and Global Positioning System
(GPS), and (2) to analyze the collected measurements for coverage prediction. On the
one hand, drive tests generate a tremendous amount of data to be processed, allowing
the operators to get realistic network information close to the actual user experience.
This is a very useful and desired information by operators [1]. With the processed
drive test measurements, the operator can have a realistic picture of the network
in terms of coverage and service quality, and find the right optimization solutions
through the modification of one or several network parameters such as the transmis-
sion power, antenna locations, antenna orientations and tilts, etc. On the other hand,
drive tests are quite an inefficient means to solve the coverage problems since they:
(1) imply large Operational Expenditure (OPEX), (2) incur delays in detecting and
predicting the coverage holes, (3) are an undesirable source of pollution, and (4)
provide an incomplete picture of the “ground-truth” since they are limited to roads
and other regions accessible by motor vehicles.

All these disadvantages make mandatory for operators to make the most of the
information collected through the drive tests, and to minimize the use of them. For
this purpose, the 3rd Generation Partnership Project (3GPP) standardization body has
been working on the minimization of the use of drive tests for Long Term Evolution
(LTE) since Release 9 [2]. In Release 10, a Minimization of Drive Tests (MDT)
work item [3, 4] for Universal Terrestrial Radio Access Network (UTRAN) was
also included. The main focus of MDT in Release 10 is on coverage optimization.
Release 11 focuses on Quality of Service (QoS) verification, further improvements
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in coverage optimization, positioning enhancement and the study of other MDT use
cases [5].

The key idea of the MDT proposed by 3GPP is to take advantage of the (esp.
geo-location) measurement capabilities of the new advanced User Equipments (UEs)
as well as of the radio measurements performed as part of the Radio Resource Man-
agement (RRM) procedures. The main characteristic of MDT is that the UEs report
their geo-located measurements to the network upon operator request. The collected
MDT measurements are at operator’s direct disposition to ease any kind of (auto-
mated as well as manual) network operation, management and optimization task.
Hence, MDT also acts as a valuable input to the Self-Organized Network (SON)
functionalities whose main goals are to decrease operational expenses, increase the
autonomy of networks and allow the achievement of an automatic, near optimal
network quality in next generation networks [6].

The use of location information for maximizing the efficiency of wireless network
resource utilization also appears as a fundamental component, called as loca-
tion/environment awareness, in Cognitive Radio (CR), put forward by Mitola in [7].
The first work where spatial information exploitation appears explicitly in wireless
networks was the Available Resource Map (ARM) introduced by Krenik, which is
proposed as a real-time map of all radio activities in the network for CR applica-
tions in Unlicensed Wide Area Networks (UWAN) [8]. Then, it was extended to the
Radio Environment Map (REM) concept by Zhao [9], who defined it as an integrated
database for enhancement of CR systems, mainly for dynamic spectrum access pur-
poses (such as TV whitespaces). Such a REM stores environmental information,
past experience and radio knowledge with the aim of improving the network perfor-
mance as well as aiding in self-optimization and management. Shortly after, a more
comprehensive/cognitive version of REMs, also called as Interference Cartography
(IC), has been proposed for a mesh-like REM structure where the location points are
found on a rectangular grid [10–12], and we refer to the minimum area of the regular
grid as a pixel. In our work, we consider this broader view of the concept of REM,
where the main idea is to: (1) spatially interpolate the collected geo-located mea-
surements (i.e. drive test measurements and MDT measurements) in order to predict
the measurement values at those pixels where measurements are not available, and
(2) to request additional measurements at intelligently chosen pixels to enhance the
quality of those predictions. This chapter falls in this latter line of work and unless
otherwise stated, REM will mean IC.

In the literature on spatial statistics, there are several powerful spatial interpo-
lation techniques that can be used. Among them, we have selected the Bayesian
kriging interpolation, introduced by Kitanidis in [13], as it takes into account the
various uncertainties in the models used, and does not underestimate the standard
errors of predictions. Furthermore, it automatically calculates the interpolation model
parameters through a process of sub-settings and simulations, all this at the cost
of an increment in the computation complexity1 as the number of measurements

1 The computational complexity of classical kriging interpolation is roughly O(n3), where n is the
number of available measurements. In practice several thousands of measurements can be processed
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increases [14]. Particularly in our problem, this disadvantage does not entail a draw-
back since we are dealing with a semi-static REM whose construction is an offline
process that in practice would be activated by the operator once per day or even a week
(for comparison, classical drive test-based coverage prediction is often performed
just once per year due to the amount of efforts and costs involved).

The work presented in this chapter is the continuation of the work presented
in [15, 16], where the Bayesian kriging method was used for the REMs generation.
Differently from these works, in this chapter we give a more realistic evaluation
of the REM-based coverage hole prediction, since in the present analysis, a more
realistic coverage hole definition is considered. A coverage hole frequently consists
of neighboring uncovered pixels. Thus, a set of neighboring N pixels constitute a
single coverage hole, but not N separate coverage holes, as assumed in the pixel-based
analysis presented in [16].

First, this chapter presents the mathematical details of Bayesian kriging, applied
to the problem of coverage prediction in cellular networks. We analyze the perfor-
mance of the interpolation process for a LTE network modeled with a grid size of
25 m × 25 m, in a dense urban environment. Results obtained with real network
measurements show that the chosen spatial interpolation approach is indeed a very
efficient and promising means of processing the MDT data which is expected to
overcrowd the operator databases in the near future, in terms of improving the qual-
ity of the coverage predictions. Second, we adopt the notion of neighboring pixels
in defining a coverage hole and perform the performance analysis. Our aim is to
measure the gains introduced by the use of REMs in coverage hole prediction where
coverage hole is defined in a more realistic sense, as described above. We first present
a local coverage analysis where it is assumed that operators have a rough knowledge
about the areas with coverage problems where they apply the REM to perform the
coverage analysis in these areas. Then, a more comprehensive solution is presented,
the global coverage analysis, which consists of the construction of a REM over the
Base Station (BS) coverage region to automatically determine the potential areas
with coverage problems.

To the best of our knowledge, automated coverage analysis based on spatial
statistics has been studied extensively so far for sensor networks but not for cel-
lular networks. So our line of work is the first to introduce spatial statistics in cellular
coverage studies and to perform realistic performance evaluations. However, the
significance of this work reaches beyond: considering that MDT measurements are
currently on their way to overcrowd the operator databases, operators are in need
of cost effective, feasible and well-performing solutions that allow them make use
of the valuable information for high quality network performance, and this chapter
provides a cognitive radio-inspired candidate solution.

The remainder of this chapter is organized as follows. Section 10.2 presents in
detail the Bayesian kriging interpolation method for coverage prediction. Section 10.3

(Footnote 1 continued)
on a typical computer in the time scales discussed in the text. Further, recent approximation tech-
niques yield very good results with linear complexity [27, 28]. We have taken first steps to apply
these techniques for REM construction in [29] with very promising initial results.
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presents the algorithm used for the REM construction and methodology implemented
for the coverage hole detection. The initial analysis is performed locally and then
the solution is extended to a global analysis of the coverage region. Section 10.4
presents results evaluating the interpolation process performance and the local and
global coverage hole detection processes. Finally, Sect. 10.5 summarizes our main
conclusions.

10.2 Coverage Prediction with Bayesian Kriging

In this section we summarize the steps to be followed for applying Bayesian kriging
in cellular coverage prediction. First, we present the used network model and our
assumptions. Second, we introduce the prediction method and, finally, we explain
how the parameters used in our model are estimated.

10.2.1 Modeling and Assumptions

We consider the Down Link (DL) transmission of a cellular radio access network
with a given BS transmitter equipped with an omnidirectional antenna. Let y(xi)

denote the DL received power (in dBm) at location xi. Assuming that the fast fading
effects are averaged out by the receivers, y(xi) can be expressed as

y(xi) = p0 − 10α log10 di + s(xi) + zi, (10.1)

where p0 is the transmitted power (in dBm), α is the pathloss coefficient, di is the
distance (in m) between the transmitter and the receiver location xi, s(xi) is the shadow
fading factor (in dB), and zi is the zero-mean additive noise term which incorporates
the uncertainties of the measurement process and all other random effects due to the
propagation environment. Note that for directional antennas we can use the same but
modifying Eq. 10.1 by including the antenna pattern.

Equation (10.1) is the well-known large-scale propagation model in the logarith-
mic scale, which models the wireless channel as the sum of a deterministic linear
pathloss term and two stochastic terms: shadowing and noise. This model is one of
the most widely used wireless channel models due to its simplicity and to its overall
ability to represent the main characteristics of the wireless channel behavior in a
variety of important wireless environments. The random noise process is assumed
to consist of independent and identically distributed Gaussian samples, which are
also independent of the shadowing term. Shadowing is a zero-mean Gaussian ran-
dom variable that is spatially correlated according to the exponential correlation
model [17]

E
{
s(xi)s(xj)

} = rij = 1

θ
exp

(
−dij

φ

)
, (10.2)
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where 1
θ

is the shadowing variance in dB, dij is the Euclidean distance between
locations xi and xj, and φ controls the correlation distance of the shadowing.

We assume that such power measurements are carried out by a set of N receiving
terminals, located at the set of locations x = {x1, x2, . . . , xN }. Arranging these
measurements in a N × 1 column vector y(x), we obtain the vector-matrix relation

y = Xβ + u, (10.3)

where

X =





1 −10 log10(d1)
...

...

1 −10 log10(dN )




 , β =

[
p0
α

]
, and u =






s(x1) + z1
...

s(xN ) + zN




 . (10.4)

Here, X is a N × 2 deterministic matrix of known functions of the measurement
locations x, β is the 2 × 1 parameter vector of the spatial mean and u is a N × 1
multivariate Gaussian vector whose covariance matrix is Qyy(θ, φ, τ ) = 1

θ
(Ryy(φ)+

τ IN ), where 1
θ

Ryy(φ) is the N × N covariance matrix of the spatially correlated
shadowing term whose (i, j)th entry is equal to rij of Eq. (10.2), and IN is the N × N
identity matrix. Note that the variance of the noise process is τ

θ
. Note also that y, X

and u are functions of the locations x.

10.2.2 Prediction

The aim is to predict the received power values at locations where we do not have
measurements. Let x0 denote the M×1 vector of those locations. The same underlying
model is assumed for the predictions, namely

y0 = X0β + u0, (10.5)

where y0 is the M ×1 vector of received power values at locations x0, X0 is the M ×2
matrix of deterministic effects for y0 and u0 is the M × 1 stochastic vector whose
covariance matrix is denoted by Q00(θ, φ, τ ). Note that for notational convenience,
the dependence of y, X and u (y0, X0 and u0 resp.) on x (x0 resp.) is not shown in
Eqs. (10.3–10.5).

Putting the measurements and the predictions together, we obtain the multivariate
Gaussian model given by

[
y0
y

]
∗ N

([
X0
X

]
β,

[
Q00(θ, φ, τ ) Q0y(θ, φ, τ )

Qy0(θ, φ, τ ) Qyyθ, φ, τ

])
, (10.6)
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where Q0y(θ, φ, τ ) and Qy0(θ, φ, τ ) are the cross-covariance matrices between y0
and y. Note that Q0y = QT

y0, where [ · ]T denotes the matrix transpose.
The model parameters β, θ , φ and τ are unknown. Therefore, they have to be

estimated from the existing measurement dataset. However, those parameters are not
completely unknown to us: we have some prior knowledge on their probable values.
For example, we can say that the radiated power p0 is close to the power at the antenna
feeder, the propagation pathloss coefficient α is around 3.5 in urban areas [18] and
the shadowing standard deviation

∈
1/θ typically ranges between 8 and 11 dB for

typical outdoor Above RoofTop to Below RoofTop scenarios [19]. Including this
prior information into the model helps us to enhance the prediction quality. Besides,
the Gaussian assumption of the stochastic component vector, u, in the chosen model,
provides tractability in the complex analytical derivations of the Bayesian inference
framework. However, we emphasize that the Gaussian nature of the problem is firmly
grounded on experiments, and is not simply assumed for mathematical convenience.

The task of predicting the received power values at locations x0 is equivalent to
finding an estimator ŷ0 of the random vector y0 given measurements y. This esti-
mator is preferably a linear function of measurements y which minimizes a given
loss/risk/cost function. In the Bayesian context, this is equivalent to the Bayes esti-
mator which minimizes a given posterior expected loss/risk/cost (a.k.a. Bayes risk).
The most commonly used risk function is the squared error risk, or the Mean Squared
Error (MSE), resulting in the estimate

ŷ0 = min
y→

0

E

{
(y0 − y→

0)
T (y0 − y→

0)|y
⎛

= E {y0|y} , (10.7)

which is equivalent to the posterior mean E {y0|y}. For the MSE Bayes estimator of
Eq. (10.7), the Bayes risk (or the MSE) is the posterior variance

MSE = 1

M
E

{
(y0 − ŷ0)

T (y0 − ŷ0)|y
⎛

= 1

M
E

{
(y0 − E {y0|y})T (y0 − E {y0|y})|y

⎛

= 1

M
trace (cov {y0|y}). (10.8)

For the MSE Bayes estimator, we need to calculate the marginal posterior (or
Bayesian) pdf p(y0|y), or at least its moments such as mean E {y0|y} and covariance
cov {y0|y}. In the following, we will present a brief derivation of these calculations.

We start by the following expression for the Bayesian pdf:

p(y0|y) =
⎝⎝⎝⎝

τ,φ,θ,β

p(y0|β, θ, φ, τ, y)p(β, θ, φ, τ |y). (10.9)

The first integrand in Eq. (10.9) is the conditional pdf of y0 given y and the model
parameters. Assuming that Qyy is non-singular, it can be shown (see Proof 1 in [20])
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that this pdf is Gaussian with mean X0β + Q0yQ−1
yy (y − Xβ) and covariance matrix

Q00 − Q0yQ−1
yy Qy0. Note that for notational convenience, the dependence of Q0y and

Qy0 on the model parameters is not shown here, and in integral expressions measures
of integration are omitted when there is no danger of confusion.

The second integrand in Eq. (10.9) is the joint posterior pdf of the model
parameters which can be decomposed into the product of two joint posterior pdfs:

p(β, θ, φ, τ |y) = p(β, θ |φ, τ, y)p(φ, τ |y). (10.10)

We can express the first joint posterior pdf p(β, θ |φ, τ, y) as the product of a likeli-
hood term and a prior pdf given by

p(β, θ |φ, τ, y) = c1(y, φ, τ ) p(y|β, θ, φ, τ )p(β, θ |φ, τ), (10.11)

where c1(y, φ, τ ) =
[⎞⎞

β,θ
p(y|β, θ, φ, τ )p(β, θ |φ, τ)

⎠−1
is a normalizing constant

which can be computed numerically, p(β, θ |φ, τ) is the joint prior pdf of β and θ

(with φ and τ known), and p(y|β, θ, φ, τ ) is the likelihood term which is Gaussian
with mean y − Xβ and covariance Qyy:

p(y|β, θ, φ, τ ) = (2π)−N/2
⎜⎜Qyy

⎜⎜−1/2 exp

[
−1

2
(y − Xβ)T Q−1

yy (y − Xβ)

]
.

(10.12)
An important issue in Bayesian inference is the choice of prior distributions. It is
common practice to choose functional forms that facilitate the involved analytical
treatments. Such functional forms are called as conjugate priors, meaning conjugate
to the likelihood function, such that the posterior distribution has the same functional
form as the prior distribution. Conjugate priors have been identified for the most
widely used distribution functions [14].

In order to find the conjugate prior for p(β, θ |φ, τ), we rewrite the likelihood
p(y|β, θ, φ, τ ) of Eq. (10.12) in the following form (see Proof 2 in [20]):

p(y|β, θ, φ, τ ) = (2π)−N/2|Syy|−1/2θρ/2 exp

[
−θ

2
(β − b)T H(β − b)

]

× θκ/2 exp

[
−1

2
κqθ

]
, (10.13)

where

Syy = θQyy = Ryy + τ IN (10.14)

H = XT S−1
yy X (10.15)

Hb = XT S−1
yy y (10.16)

ρ = rank(H) (10.17)
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κ = N − ρ (10.18)

q = yT S−1
yy (y − Xb)/κ. (10.19)

Note that the expression in Eq. (10.13) is a proper pdf if ρ = rank(X). Otherwise, it
represents only ρ < rank(X) linear combinations of β.

The functional form of Eq. (10.13) calls for the Normal-Gamma-2 density as the
conjugate prior for p(β, θ |φ, τ) [14], given by

p(β, θ |φ, τ) = (2π)−ρ∞/2|H ∞|1/2θρ∞/2 exp

[
−θ

2
(β − b∞)T H ∞(β − b∞)

]

×
(

κ ∞q∞

2

)κ ∞/2

Γ −1
(

κ ∞

2

)
θκ ∞/2−1 exp

[
−1

2
κ ∞q∞θ

]
(10.20)

with ρ∞ = rank(H ∞). This pdf represents a multivariate Gaussian random vector β

whose covariance matrix is scaled with a random variable whose inverse θ is Gamma
distributed.

The joint posterior pdf p(β, θ |φ, τ, y) is obtained by replacing Eqs. (10.12–10.20)
in Eq. (10.11) and is also a Normal-Gamma-2 density

p(β, θ |φ, τ, y) = (2π)−ρ∞∞/2|H ∞∞|1/2θρ∞∞/2 exp

[
−θ

2
(β − b∞∞)T H ∞∞(β − b∞∞)

]

×
(

κ ∞∞q∞∞

2

)κ ∞∞/2

Γ −1
(

κ ∞∞

2

)
θκ ∞∞/2−1 exp

[
−1

2
κ ∞∞q∞∞θ

]
(10.21)

with the following parameters (see Proof 3 in [26]):

H ∞∞ = H ∞ + H (10.22)

H ∞∞b∞∞ = H ∞b∞ + Hb (10.23)

ρ∞∞ = rank(H ∞∞) (10.24)

κ ∞∞ = ρ∞ + κ ∞ + ρ + κ − ρ∞∞ (10.25)

q∞∞ = κ ∞q∞ + yT S−1
yy y + b∞T H ∞b∞ − b∞∞T H ∞∞b∞∞

κ ∞∞ . (10.26)

The second joint posterior of Eq. (10.10), p(φ, τ |y), can be expressed as follows:

p(φ, τ |y) = c2(y)p(y|β, θ, φ, τ )p(β, θ |φ, τ)p(φ, τ )
1

p(β, θ |φ, τ, y)
. (10.27)

Here c2(y) =
[⎞⎞⎞⎞

β,θ,φ,τ
p(y|β, θ, φ, τ )p(β, θ |φ, τ)p(φ, τ )

⎠−1
is a function of y

only and can be numerically evaluated. Using Eqs. (10.12) and (10.20– 10.21) in the
above equation and simplifying the terms we obtain
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p(φ, τ |y) = c2(y)(2π)−(N+ρ∞−ρ∞∞)/2|Syy|−1/2|H ∞|1/2|H ∞∞|−1/2

× Γ −1
(

κ ∞

2

)
Γ

(
κ ∞∞

2

)(
κ ∞q∞

2

)κ ∞/2 (
κ ∞∞q∞∞

2

)−κ ∞∞/2

p(φ, τ ). (10.28)

The joint prior p(φ, τ ) can be written as the product of the marginal densities p(φ)

and p(τ ), since the noise process is assumed independent of the shadowing process.
Furthermore, we assume discrete pdfs for p(φ) and p(τ ). Therefore,

p(φ, τ ) =
⎪

k

⎪

l
φkτlδ(φ − φk)δ(τ − τl), (10.29)

where δ( · ) is the Dirac delta function. Then, Eq. (10.28) takes the following form:

p(φ, τ |y) = c2(y)(2π)−(N+ρ∞−ρ∞∞)/2|H ∞|1/2Γ −1
(

κ ∞

2

)
Γ

(
κ ∞∞

2

)(
κ ∞q∞

2

)κ ∞/2

×
⎪

k

⎪

l
φkτl|Syy(φk, τl)|−1/2|H ∞∞(φk, τl)|−1/2

×
(

κ ∞∞q∞∞(φk, τl)

2

)−κ ∞∞/2

δ(φ − φk)δ(τ − τl). (10.30)

Note that in the above equation, Syy, H ∞∞ and q∞∞ are functions of φ and τ .
Now, we can return to the Bayesian pdf of Eq. (10.9) and rewrite it as follows:

p(y0|y) =
⎝⎝⎝

θ,φ,τ

[⎝

β

p(y0|β, θ, φ, τ, y)p(β|θ, φ, τ, y) dβ

]

× p(θ |φ, τ, y)p(φ, τ |y) dθ dφ dτ. (10.31)

The inner integral, p(y0|θ, φ, τ, y), is the marginalization (w.r.t. β) of a joint Gaussian
pdf, and therefore is Gaussian with the following mean and variance [13]:

E{y0|θ, φ, τ, y} = (X0 − Q0yQ−1
yy X)(H ∞ + XT Q−1

yy X)−1

H ∞b∞ + [Q0yQ−1
yy + (X0 − Q0yQ−1

yy X)

(H ∞ + XT Q−1
yy X)−1XT Q−1

yy ]y (10.32)

var{y0|θ, φ, τ, y} = (Q00 − Q0yQ−1
yy Qy0)+

(X0 − Q0yQ−1
yy X)(H ∞ + XT Q−1

yy X)−1

(X0 − Q0yQ−1
yy X)T . (10.33)

Then, the Bayesian pdf p(y0|y) can be rewritten as:

p(y0|y) =
⎝⎝

φ,τ

[⎝

θ

p(y0|φ, θ, τ, y)p(θ |φ, τ, y)dθ

]
p(φ, τ |y) dφ dτ . (10.34)
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The inner integral is recognized as a Student distribution [14] with mean and
covariance matrix of

E{y0|φ, τ, y} = (X0 − S0yS−1
yy X)H ∞∞−1H ∞b∞

+ [S0yS−1
yy + (X0 − S0yS−1

yy X)H ∞∞−1XT S−1
yy ]y (10.35)

cov{y0|φ, τ, y} = κ ∞∞q∞∞

κ ∞∞ − 2
[S00 − S0yS−1

yy Sy0

+ (X0 − S0yS−1
yy X)H ∞∞−1

(X0 − S0yS−1
yy X)T ], (10.36)

where S00 = θQ00, S0y = θQ0y and Sy0 = θQy0 are the scaled covariance and
cross-covariance matrices respectively.

Finally, using Eqs. (10.30 and 10.35–10.36), the posterior mean MSE Bayes
estimator can be calculated as

E{y0|y} =
⎪

φ,τ

p(φ, τ |y)E{y0|φ, τ, y} (10.37)

and the covariance is given by

cov{y0|y} =
⎪

φ,τ

p(φ, τ |y)[cov{y0|φ, τ, y} + (E{y0|φ, τ, y}

− E{y0|y})(E{y0|φ, τ, y} − E{y0|y})T ]. (10.38)

10.2.3 Model Parameter Estimation

Estimation of the model parameters is carried out by calculating their posterior
expectations, i.e. evaluating

E {β|y} =
⎝

β

βp(β|y) dβ

=
⎝

β

β

⎝⎝

φ,τ

p(β|φ, τ, y)p(φ, τ |y) dφ dτ dβ

=
⎝⎝

φ,τ

[⎝

β

βp(β|φ, τ, y) dβ

]
p(φ, τ |y) dφ dτ

=
⎝⎝

φ,τ

E {β|φ, τ, y} p(φ, τ |y) dφ dτ (10.39)

and
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E {θ |y} =
⎝

θ

θp(θ |y) dθ

=
⎝

θ

θ

⎝⎝

φ,τ

p(θ |φ, τ, y)p(φ, τ |y) dφ dτdθ

=
⎝⎝

φ,τ

[⎝

θ

θp(θ |φ, τ, y) dθ

]
p(φ, τ |y) dφ dτ

=
⎝⎝

φ,τ

E {θ |φ, τ, y} p(φ, τ |y) dφ dτ . (10.40)

To calculate the above expressions, we need the marginal posteriors for θ and β,
which become

p(β|φ, τ, y) = π− ρ∞∞
2

⎜⎜⎜⎜
H ∞∞

q∞∞

⎜⎜⎜⎜

1
2

κ ∞∞− ρ∞∞
2 Γ −1

(
κ ∞∞

2

)
Γ
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(10.41)

and

p(θ |φ, τ, y) =
(

κ ∞∞q∞∞

2

) κ∞∞
2

Γ −1
(

κ ∞∞

2

)
θ

κ∞∞
2 −1 exp

[
−θ

2
κ ∞∞q∞∞

]
. (10.42)

Equations (10.41) and (10.42) are obtained by integrating (10.21) w.r.t β and θ respec-
tively. Equation (10.41) is a ρ∞∞-multivariate Student distribution with κ ∞∞ degrees of
freedom, scaling matrix q∞∞H ∞∞−1 and mean b∞∞ while (10.42) is a Gamma-2 distribu-
tion with mean q∞∞−1 and variance 2/(κ ∞∞q∞∞2). Then we can rewrite Eqs. (10.39–10.40)
as

E {β|y} =
⎝⎝

φ,τ

b∞∞p(φ, τ, y)p(φ, τ |y) dφ dτ (10.43)

and

E {θ |y} =
⎝⎝

φ,τ

1

q∞∞(φ, τ, y)p(φ, τ |y)
dφ dτ . (10.44)

Considering the discrete nature of p(φ, τ |y), the two integrals of Eqs. (10.43) and
(10.44) become weighted sums of pdfs, hence the posterior parameter expectations
become weighted averages of the conditional parameter expectations:

E {β|y} =
⎪

φk ,τk

p(φk, τk |y)b∞∞(φk, τk, y) (10.45)

E {θ |y} =
⎪

φk ,τk

p(φk, τk |y)
1

q∞∞(φk, τk, y)
. (10.46)



10 Cellular Coverage Optimization 223

These equations form the foundation for our coverage prediction algorithm introduced
in the following.

10.3 REM Construction

Based on partial information regarding the network coverage, the operator can use
the Bayesian kriging technique, described above, to construct a full map over the
area under analysis. To do so, we assume the existence of a REM manager, a soft-
ware framework for carrying out such spatial data interpolation [21], located at the
network’s Operation and Maintenance (O&M) center. The REM manager has two
main tasks, namely (1) to collect the received power information in the analyzed area,
making use of the reports stored by the Trace Collection Entity (TCE) as well as other
network performance estimation tools such as drive tests and measurement request to
specific UEs; and (2) to perform the coverage estimation. With the Bayesian kriging
technique, the operator will have an automated and remote representation of the net-
work coverage, avoiding or minimizing drive tests and the expends and delays they
imply. The coverage estimation algorithm proposed in this work assumes that the
area of interest is spatially discretized. We consider a regular grid and we refer to the
minimum area of the grid as a pixel. We assume that the measurements performed by
any UE inside this pixel corresponds to only one location, for instance the center of
the pixel. We define p as the minimum percentage of required measurements, which
corresponds to the minimum percentage of pixels with available measurements. The
coverage estimation algorithm can be summarized then in the following steps:

1. The REM manager sends measurement requests to the UEs until it collects a
required percentage of pixels with available measurements, p, in order to per-
form the interpolation process. To achieve p, two options are possible: (1) the
REM manager broadcasts the locations where the measurements are required,
and only the UEs in these locations report their measurements; or (2) the REM
manager requests that all the UEs report their locations with additional informa-
tion such as velocity or battery life, and then chooses the UEs that should perform
and report the measurement. While in the first option, the signaling overhead is
minimized, an algorithm that compares the requested location to the current UE
locations and makes the decision of performing and reporting the measurement,
needs to be implemented by the UEs. The second option is simpler, from an
implementation point of view, as the UEs are only asked to report their location
and measurements. Besides, it is worth pointing out that the delay in waiting for
the required UEs measurements will be always lower than the required time to
perform and process the drive tests. Therefore, we can affirm that the delays asso-
ciated with the automated methodology are not significant in comparison with
those in manual coverage analysis.

2. Once the minimum required measurements are gathered, the REM manager
performs the Bayesian kriging interpolation, presented in Sect. 10.2, to estimate
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the signal power values in those points where it lacks information. Finally, the
REM manager constructs the REM by overlapping the available real measure-
ments with the interpolated ones.

The details of the REM functional architecture can be found in [22]. In [16], an
initial application of the Bayesian kriging to coverage REM construction is presented,
where a preliminary performance analysis on pixel-level coverage is also given. The
proposed methodology does not imply any modification in the existing network
entities. This makes its deployment very straightforward and cost-effective.

As discussed in the introduction, the work we present in this chapter is a
continuation of the work presented in [16]. Differently from [16], we give here a
more realistic evaluation of the REM-based coverage hole prediction, since in the
present analysis a more realistic coverage hole definition is considered. In [16], a
non-covered pixel was considered as a coverage hole, independently from the fact
that its neighboring pixels were covered or not. However, in reality, a coverage
hole frequently consists of neighboring uncovered pixels. Two pixels are considered
neighbor pixels when there is at least a common edge between them. Thus, a set of
neighboring N pixels constitute a single coverage hole, and not N separate cover-
age holes. Therefore, we define a coverage hole as N neighboring uncovered pixels,
and we use this definition in performance evaluations. An important parameter to
define is the minimum number of neighboring uncovered pixels which an operator
considers as an area with coverage problems where some actions have to be taken.

10.3.1 Local Coverage Hole Analysis

In this section we present the local coverage hole analysis, the introduced solution
for operator to analyze specific regions with coverage problems. A more detailed
work in this subject can be found in [23].

The data we have used for the local coverage analysis consist of 3G received pilot
powers, i.e. Received Signal Code Power (RSCP) values. The geo-located RSCP
measurements are obtained with a very accurate planning tool which uses a sophis-
ticated ray-tracing propagation model developed and used for operational network
planning [24]. The propagation model uses specific environment information such
as terrain profile, height, clutter, building data, etc. and is calibrated through repeated
drive tests. Therefore, the RSCP data obtained from this tool and used in this chapter
can be considered as real measurements reflecting the “ground-truth” on the coverage
situation in the area of interest.

We consider an urban area of 2000 m × 2000 m in the south west of Paris, whose
received signal power map is presented in Fig. 10.1. In what follows we refer to the
map obtained from this RSCP data as the real coverage map. This map has a grid
granularity of 25 m × 25 m.

We define a minimum RSCP coverage threshold of δ = −123 dBm and those pix-
els where the received RSCP is below this threshold are considered to be uncovered.
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Fig. 10.2 RSCP coverage map used as the ground-truth

This threshold is chosen for specific operator coverage requirements for 3G net-
works. Figure 10.2 represents the binary map of the real coverage map, where the
uncovered pixels are represented in black and the covered pixels are represented in
white. Another important parameter to define is the minimum number of neighbor-
ing uncovered pixels which an operator considers as an area with coverage problems
where some corrective actions have to be taken. Considering the environment (urban)
and the grid size (25 m×25 m), we define a coverage hole to be formed by the typical
value of N = 4 neighboring pixels.
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In dealing with coverage holes over a geographical zone of operation, usually
a practical approach taken by operators is to prioritize (groups of) coverage holes
rather than handling all the coverage holes at once. Therefore, those coverage holes
that have the potential to have a larger (negative) impact on operator’s prioritized
targets are dealt with higher priority than the others. In this chapter, we adopt a similar
local approach and consider a typical prioritization aspect by focusing on the largest
coverage hole (i.e. coverage hole with the largest geographical area). Therefore, the
proposed analysis is carried out on the neighboring area around the largest coverage
hole, as can be seen Fig. 10.2.

Operators already have an idea on such neighboring areas thanks to traditional
network diagnostics based on human-expert processing of alarm tickets, customer
complaints and routine drive-test measurements collected from the neighborhood.
When such an area is suspected to have a coverage hole, the traditional method to deal
with this situation is to send out drive test equipment and experts specifically to that
area to perform detailed/thorough drive tests and analyze the obtained measurements
in order to: (1) detect the presence and (2) accurately identify the shape of the coverage
hole for further (corrective) actions.

The REM-based analysis proposed in this chapter is meant to replace this phase
of detailed/local drive test measurement collection and analysis, by using geo-
located measurements reported by UEs present around the coverage hole. Although
UEs cannot report immediate measurements when they are within a coverage hole,
mechanisms such as logged Radio Link Failure (RLF) reporting exist in the MDT
framework which allow the UEs to log the measurements when they lose the network
connection and report the logged measurements as soon as they get reconnected [3].
Furthermore, measurements could be requested to UEs inside the coverage hole,
attached to other technologies. In this way, valuable geo-located data related to the
coverage loss can be used by the network operator. Thus, instead of performing a
second round of (local and dedicated) drive test measurements and manually process-
ing/analyzing those measurements, the operator constructs a remote representation
of the local network coverage (i.e. REM) over the suspected area, hence minimizing
the overall number of drive tests and the expenses/delays they imply.

In Fig. 10.3a, we can see the binary map of the larger coverage hole found in the
real coverage map after applying the minimum RSCP coverage threshold of δ, and

−124

−122

−120

−118

(a) (b) (c)

Fig. 10.3 Real and interpolated ground-truth maps. a Larger coverage hole. b Available measure-
ments for interpolation. c Resulting map after interpolation
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zoomed in Fig. 10.2. To obtain this map, let M denote the matrix representation of
the real coverage map of the region under analysis with M (r, c) as the RSCP value
at the rth row and the cth column (r = 1, ..., R; c = 1, ..., C). P , with P(r, c) as its
entry at the rth row and cth column (r = 1, ..., R; c = 1, ..., C), which is constructed
as follows:

• Each value in M , M (r, c), where r ≥ R and c ≥ C is compared to δ

• If M (r, c) < δ we set P(r, c) = 0
• If M (r, c) ≈ δ we set P(r, c) = 1

Figure 10.3b represents the operator’s (partial) view on the zoomed area: colored
pixels show locations where the operator has network measurements and black pixels
show locations where there are no measurements. The automated construction of
REM uses spatial statistics, the Bayesian kriging presented in Sect. 10.2, to have a
realistic representation of the ground-truth. Thus, the REM manager estimates the
RSCP values in the black pixels and obtain the ground-truth map by adding them with
the network measurements. Then, the minimum RSCP coverage threshold is applied
to the REM, obtaining a map as the one presented in Fig. 10.3c, which shows the
coverage hole estimated after one realization of the proposed local coverage analysis
algorithm.

10.3.2 Global Coverage Estimation

In this section we explain the global coverage analysis, where the existent areas with
coverage problems are determined remotely and automatically. In reference [25] a
more comprehensive analysis is presented, including results for a rural scenario.

Considering that we are currently in the deployment phase of LTE technology,
it is more relevant and timely to address coverage issues in LTE rather than in 3G,
which has been in use since nearly 10 years now. Therefore, for the global coverage
analysis, we align our coverage detection and prediction work with LTE. For this
purpose, we translate/map the RSCP measurements in 3G, presented in the previous
section, to their equivalent metric in LTE, namely the Reference Signal Received
Power (RSRP).

RSCP is the received power on the Common Pilot Channel (CPICH) measured
over the 5 MHz 3G carrier bandwidth, and the RSRP is the linear average of the
received powers on the time-frequency resource elements that carry cell-specific
reference signals over the 15 kHz LTE carrier bandwidth. Assuming that we use
the same overall bandwidth (5 MHz) for both systems, we can apply the solution
presented in [26] to obtain the wideband RSRP, which is the sum of the RSRP
values measured over all reference subcarriers in the bandwidth. Due to the similarity
between RSRP and RSCP, authors in [26] propose to compute the wideband RSRP
based on the measured RSCP values through the following equation:
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RSRP5 MHz = RSCP + 10 log

(
RSTx power

CPICHTx power

)
+ Δpl + Δlb (10.47)

where Δpl is the over-the-air path loss difference between the carrier frequencies
of the two technologies and Δlb is the link budget difference between LTE and 3G
systems. Δlb includes Node B and device antenna gains, receiver’s noise figure and
feeder loss differences.

In the solution presented in [26], the authors assume the usual cell planning strat-
egy for a new technology roll-out deployment, where the existent sites are reused,
antennas have the same coverage size and beamwidths, with the same antenna
azimuths and tilt settings. Therefore, it is assumed that transmitter and receiver
antenna gains are the same for both technologies. The extension of results given by
Eq. (10.47) to a 20 MHz LTE system is straightforward: we change the considered
bias, which would imply also a change in the considered RSRP threshold.

For the global coverage hole analysis we consider the obtained RSRP values after
applying the previous solutions for the same BS as for the local coverage analysis
case. We consider a 1000 m × 1000 m region, whose received signal power map is
presented in Fig. 10.4. We reduce the size of the map regarding the local coverage
hole analysis, presented in previous section, to reduce the computational complexity
of the algorithm, since the interpolation process is performed in the whole coverage
area rather that in a particular region with coverage problems, as it was the case in
the local analysis. Therefore, in the global analysis we focus on the coverage holes
at the cell-edge.

Operators do not have the whole information on the ground-truth as in Fig. 10.4.
Instead, they have a partial map where they lack coverage information in some
pixels. Figure 10.5 represents an example of such a partial coverage map that the
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Fig. 10.5 RSRP measurements available for interpolation in the urban scenario

operator could potentially have, for p = 50 % of pixels with available information.
In Fig. 10.5, black pixels represent those grid areas where operator lacks the RSRP
information. With such a map at hand, the operators carry out detailed analysis to
perform coverage detection and prediction. These analysis are performed manually
by human experts, combining information coming from other sources such as alarm
tickets, customer complaints etc. Needless to say, this process is long, expensive and
cumbersome. To add to these drawbacks, additional drive tests may be needed in
cases/areas where the available information is deemed insufficient and the coverage
problem too important. What we propose instead, is to replace this manual process
by an efficient automated process that uses the available measurements, avoiding
or minimizing drive tests together with the expenses and delays they imply. The
proposed automated process applies Bayesian kriging to the partial map of Fig. 10.5
to obtain a REM which provides RSRP predictions in the black pixels. The obtained
REM is then used for the global coverage analysis.

We define a minimum RSRP threshold δ = −124 dBm and those pixels where
the received RSRP is below this threshold are considered to be out of coverage.
Similarly as for the 3G network case presented in the previous section, this threshold
is chosen for specific operator network coverage requirements for a 4G network but
it is not related to Eq. 10.47. Applying this threshold to the real coverage map we
obtain a binary map, P , of Fig. 10.6, where the uncovered pixels are represented
in black, and the covered pixels are represented in white, is obtained following the
same algorithm as explained in previous section. As for the local analysis, in this
case we also consider that a coverage hole is formed by the minimum typical value
of N = 4 neighboring pixels.

To determine the existent coverage holes we construct a new matrix N , where at
the end all the values will be zeros, except those determined as belonging to a coverage
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Fig. 10.6 Binary coverage map for δ for the urban scenario

hole. The algorithm we have developed to analyze the global binary coverage matrix,
P , and generate matrix N consist in the following steps.

• The analysis is performed row by row. Those uncovered pixels without an left-hand
side neighbor uncovered pixel, are consecutively numerated.

• In that row, those pixels in the right-hand side of an uncovered pixel take the
right-hand side pixel number.

• The indexes of the uncovered pixels are stored in current row variable.
• Once the analysis of a row is finished, we compare the positions of the pixels

detected in that row, stored in current row variable, with the values in previous
row variable, which stores the positions of the uncovered pixels detected in the
previous row, in order to determine which pixels belong to the same coverage
hole. Finally, the current row indexes become the previous row and the process is
repeated for the next row in the matrix.

10.4 Coverage Analysis and Simulation Results

The performance evaluation presented in the section, first corresponds to the inter-
polation process performance, second to the coverage hole detection for the local
analysis and third to the coverage hole detection for the global analysis. In particular,
the results presented in this chapter are obtained for a random selection of the pixels
where the operator lacks information for reasons of simplicity. In reality, the measure-
ment locations are expected to follow certain mobility patterns. The incorporation of
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realistic mobility patterns in measurement locations is part of our ongoing research
work. In what follows we first introduce the performance evaluation metrics used.

10.4.1 Performance Evaluation

To present the gains obtained by the REM in coverage analysis, we define the fol-
lowing metrics, where predicted coverage hole refers to a coverage hole detected in
the REM, and real coverage hole refers to those coverage holes in the real map. The
following metrics consider the coverage hole concept, of N uncovered neighboring
pixels.

• Coverage hole detection probability is the probability for a real coverage hole to
be correctly detected, as a function of c. This probability is evaluated by dividing
at each snapshot, the number of detected coverage holes by the total number of
real coverage holes, and averaging the resulting ratio over the iterations.

• Pixel detection probability is the detection probability of the pixels forming the
coverage holes. We estimate the amount of pixels forming a coverage hole that
are detected when considering only network measurements and the increment
introduced by the use of REM.

• The average number of detected coverage holes is the number of the real coverage
holes that are correctly detected, averaged over the iterations. A coverage hole is
considered as correctly detected if c % of the pixels of this coverage hole belong
to a predicted coverage hole (so called in the reminder the “corresponding” real
coverage hole).

Also, to present the results we use the following definitions:

• Average percentage of measured pixels, which is equal to the number of coverage
hole pixels measured by the operator, divided by the number of pixels forming the
coverage hole.

• Average percentage of detected pixels with REM which is equal to the number
of coverage hole pixels measured by the operator plus those (uncovered) pixels
correctly estimated by the REM, divided by the number of pixels forming the
coverage hole.

These average percentage values are obtained over a statistically significant
number of independent “snapshots” where at each snapshot, the available measure-
ment pixels are uniformly chosen. Results presented for the local and the global
coverage analysis have been calculated for different percentages of available mea-
surements, p = {50, 60, 70, 80, 90} % used in the interpolation process. Having
80–90 % of measurements may seem excessive. However, when we translate p into
a more tangible metric, such as the number of measurements per square meter, we
obtain q = {0.08, 0.096, 0.112, 0.128, 0.144} UE measurements per square meter,
which is a small amount due to the static nature of the problem and the size of the
grid.
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Table 10.1 Accuracy of predictions

Measures (dB) p = 50 % p = 80 %

80 % errors −5 to 3 −2 to 4
MAE range 2.55 to 3.25 2.00 to 3.05
MAE peak 2.75 2.45

10.4.2 Bayesian Kriging Accuracy Evaluation

We evaluate the Mean Absolute Error (MAE) obtained when performing the interpo-
lation process in those pixels without signal power information. The MAE measures
the average magnitude of the errors in a set of forecasts, without considering their
direction. We compare the obtained MAE when p = {50, 80} % measurements and
we summarize the obtained results in Table 10.1.

As expected, when “low” amount of measurements are available, i.e. p = 50 %,
the obtained errors are higher than for the case of “high” amount of available measure-
ments, i.e. p = 80 %, since the interpolation process is more accurate. In particular,
when p = 50 %, the MAE goes from around 2.55 to 3.25 dB with a peak in 2.75 dB,
and when there is a higher number of available measurements, p = 80 %, the MAE
goes from 2 to 3.05 dB with a peak in 2.45 dB. Therefore, when p is increased form
50 to 80 %, the histogram moves to the left. Thus, we can affirm that in average the
accuracy of predictions improves by 0.3 dB. When analyzing the distribution of the
error for p = {50, 80} % measurements in a typical realization we obtain an 80 % of
the errors distributed between −5 and 3 dB for p = 50 % and between −2 and 4 dB
for p = 80 %.

10.4.3 Coverage Hole Detection: Local Analysis

In this section we evaluate the accuracy of the proposed pixel-wise methodology for
realistic coverage hole detection. Due to the uniform distribution followed to select
the pixels with available measurements, the average percentage of measured pixel
values correspond almost exactly to the percentage of available measurement values.
As the number p of measurements available for the interpolation process increases,
the average number of the coverage hole pixels known by the operator also increases,
as presented in Table 10.2. The REM introduces a 20 % of additional knowledge
on the coverage hole pixels to the network measurements, when p = 50 %. The
knowledge on the coverage hole pixels reaches an approximate value of 94 % for
p = 90 % when REM is used.

Comparing the probability of detecting a coverage hole for the cases when the
REM is constructed and when only network measurements are used, we can conclude
that the detection probability significantly increases with the use of REM. Table 10.3
summarizes the coverage hole detection probability for both cases for the highly
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Table 10.2 Average known coverage hole pixels for only network measurements and REM

p (%) Av. percentage of Av. percentage of detected
measured pixels pixels with REM

50 50.1 71.1
60 59.9 76.6
70 70 82.4
80 80 88.2
90 90.1 93.7

Table 10.3 Average probability of coverage hole detection for only network measurements and
REM

p (%) c = 90 % network c = 90 % REM
measured

50 10.7 44.7
60 23.4 56.8
70 41.5 70
80 65.5 83.6
90 88.7 94.8

demanding requirement of coverage hole detected pixels c = 90 %. For a low amount
of measurements, p = 50 %, the coverage hole detection probability increases 34 %
when REM is used and for high amount of available measurements, p = 90 %,
the coverage hole detection probability still increases by about 6 % with the REM.
Furthermore, a very striking fact is that, for achieving a 70 % coverage hole detection
probability, the REM requires 70 % of available measurements, whereas without the
REM, we need more than 80 % of measurements to achieve the same detection
probability. Thus, REM saves up more than 10 % of measurements for the same
performance level of coverage hole detection.

10.4.4 Coverage Hole Detection: Global Analysis

In this section we present the results obtained for the global coverage analysis
introduced in Sect. 10.3.2. Table 10.4 presents the average number of detected cov-
erage holes, when using only network measurements and when using the REM. The
number of real coverage holes for the analyzed scenario is 10. Results presented
in Table 10.4 were obtained for c = 70 %. As it was expected, when the REM is
used, the predicted coverage holes increase with the number of measurements used
in the interpolation process, p. These results give the notion of the average misdetec-
tion in the coverage hole detection, since the difference between the number of real
coverage holes and the average number of detected coverage holes are the average
real coverage holes misdetected.
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Table 10.4 Comparison of existent and predicted coverage holes with and without the REM in the
urban scenario

p (%) Network measurements REM

50 3.93 5.55
60 5.6 7.36
70 8.11 8.97
80 9.4 9.66
90 9.96 10

Table 10.5 Average probability of coverage hole detection for different percentages c of pixels for
which measurements are available (see end of Sect. 10.4.1), when using REM in the urban scenario

p (%) REM coverage hole detection (%)
c = 50 % c = 70 % c = 90 %

50 83.5 55.5 24.1
60 91.2 73.6 32.1
70 97.8 89.7 47.2
80 99.1 96.6 66
90 100 100 89.9

Specifically, in Table 10.4, it can be observed that in average, more than the half
of the coverage holes are predicted when the REM is applied, even for the case
of low amount of available measurements, p = 50 %. For this case, the prediction
probability increases in more than 15 % when the REM is applied, in comparison to
the case when only measurements are used.

Table 10.5 presents the coverage hole detection probability for c = {50, 70, 90}%
when the REM is used. It can be observed that, when half of the coverage hole
pixels are required to be detected, c = 50 %, the coverage hole is detected in more
than 80 %, even for low amounts of available measurements, i.e. p = 50 %. It can
be observed that for the highly demanding case of c = 90 %, the coverage hole is
detected in more than 45 % of the snapshots when p is above 70 %, and the detection
probability doubles for p = 90 %.

10.5 Conclusions

In this chapter we have presented a cognitive tool, the REM, for automated and
remote coverage hole prediction. This cognitive tool uses geolocated measurement
data and exploits techniques from spatial statistics, specifically, the Bayesian kriging
interpolation method. We have presented detailed mathematical derivations for the
developed interpolation method and we have evaluated the prediction performance of
the interpolation process for cellular coverage prediction. Then, we have introduced
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the concept of coverage hole to perform the coverage analysis. We presented two
coverage estimation algorithms, one for local analysis and one for the global cover-
age estimation. The proposed REM-based solutions have been shown to improve the
coverage hole detection probability with regards to the case when only network mea-
surements are considered. We therefore can affirm that the proposed solutions allow
a remote and automated cellular coverage prediction, that enhances the accuracy of
the coverage hole detection with a limited required number of measurements.

The proposed automated solution replaces the long and expensive task of manual
coverage hole analysis and it allows the operators to rapidly deploy solutions which
overcome the coverage problem. The obtained results demonstrate that the REM-
based automated coverage detection and prediction is a promising approach for future
cognitive cellular networks, which is definitely worth further investigation.
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Chapter 11
Use of Learning, Game Theory and
Optimization as Biomimetic Approaches for
Self-Organization in Heterogeneous Networks

Ali Imran and Lorenza Giupponi

Abstract In this chapter, we present the use of several bio inspired approaches
called biomimetics for the design of Self-organization (SO) in heterogeneous network
scenarios. Mainly these approaches are further categorized in indirect biomimetics
and direct biomimetics depending on whether the inspiration from the biological
systems is used indirectly or it is applied as it is to design SO. Under the umbrella of
indirect biomimetics we discuss in detail the emerging paradigms in learning theory
that have been recently shown to have strong potential for designing SO solution in
heterogeneous networks. In the second part of the chapter, we investigate a rather
under explored paradigm of direct biomimetic. Building on a case study of a self-
organising systems in nature we extract generic SO design principles that can be used
as a direct biomimetic approach for designing distributed, scalable and agile solutions
to many problems in complex heterogamous networks. We demonstrate this direct
biomimetic approach through a use case of a heterogeneous network scenario with
outdoor fixed relays. By exploiting one to one mapping between a natural SO system
and our system model we systematically apply the bio-inspired design principle
directly and obtain a distributed SO solution to the problem under consideration. The
performance of this solution is evaluated through numerical results and substantial
gains are observed. Finally we conclude this chapter with remarks on some important
considerations and limitations of the use of biomimetic approaches.
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Acronyms

BS Base Station
BSOF Biomimetic Self Organisation Framework
CCDF Complementary Cumulative Distribution Function

ITW Iterative Waterfilling
LTE Long Term Evolution
ML Machine Learning

MDP Markov Decision Process
OFR Outdoor Fixed Relay

OFDMA Orthogonal Frequency Division Multiple Access
RB Resource Block

RRM Radio Resource Management
RL Reinforcement Learning

RNC Radio Network Controller
SIR Signal to Interference Ratio

SINR Signal to Noise and Interference Ratio
TD Time Difference

UTRAN UMTS Terrestrial Radio Access Network
SO Self-organization

11.1 Introduction to Biomimetics: A Bio Inspired Design
Approach

Nature contains plethora of enormously complex systems that are quite perfect in
their design and operation. Biomimetic is a recently evolved branch of science that
investigates such natural systems with aim to exploit their working principles for
improvement in design and operation of man made systems.

In nature, there are myriad of examples of self-organizing behavior, for example,
ant colonies finding shortest routes to food sources, termites collectively building
complex constructions without using a blueprint, fish schools organizing themselves
without a leader, and swarms of fireflies in south-east Asia synchronously emit-
ting light flashes. The fact the SO is originally a bio inspired phenomenon and the
abundance of SO in biological systems makes Biomimetics a perfect paradigm for
investigating the constituents and working principles of SO with aim to design SO in
engineering systems through these inspirations. There are two different approaches
in Biomimetics: the direct and the indirect approach. We use both of them in this
chapter and therefore explain them briefly below:

• Direct Biomimetics: In the direct (or top-down) approach, an engineering problem
is tackled by looking for natural systems solving an equivalent problem. The
biological solution and its principles are then analyzed and re-built in a technical
application. Examples of the direct approach are the design of airplane wings that
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directly copy the gliding flight of birds or design of camera that copies design of
human eye etc.

• Indirect Biomimetics: In contrast, the indirect (or bottom-up) approach of bio-
inspired design involves, first, the derivation of principles by analyzing natural
systems. The principle is then abstracted from its biological context and used in
the technical applications where it could be suitable. Examples of such indirect
approach are the concept of artificial intelligence, which attempts to exploit the
human learning behavior, or the concept of game theory, which aims to exploit the
findings from dynamics of a free economy in various engineering applications.

The rest of this chapter is organized as follows. In Sect. 11.2, we discuss a key indi-
rect biomimetic approaches, i.e., learning and discuss some useful taxonomy, besides
some interesting result. In learning theory, we particularly focus on an emerging para-
digm of docitive learning and demonstrate how it is more promising in heterogeneous
network scenario compared to conventional learning techniques. While the indirect
approaches are currently more popular in the literature for developing solutions for
wireless systems, in Sect. 11.3, we present a direct biomimetic approach for devel-
oping SO solutions for heterogeneous networks. To this end, we establish one to
one analogy of our system model with a SO system in nature that addresses a prob-
lem analogous to ours. Based on this analogy we demonstrate the novel approach
of developing SO solution for heterogeneous network scenario, by use of direct
biomimetics. The presented solution is developed for capacity enhancement on the
backhaul access links for the Outdoor Fixed Relay (OFR) scenario, by SO of macro
Base Station (BS) antenna tilts. Finally, Sect. 11.4 summarizes the main conclusions
of this chapter.

11.2 Indirect Biomimetic Approaches

We introduce in this section a set of algorithms that can be used to solve RRM
and self-organizing problems, they are all based on learning theory. We discuss
the appropriateness of using them for different problems, we introduce some basic
technical details and we introduce a useful taxonomy.

11.2.1 Overview of Learning Theory Based Approaches

A particularly interesting framework in realistic decentralized wireless networks is
the literature of Reinforced Learning (RL). The reason is that RL provides model free
and online learning features, which makes it suitable for taking decisions in realistic
wireless settings characterized by a high degree of dynamism due to e.g., lognormal
shadowing, fast fading, mobility of users, multiuser scheduling, random femtocell
nodes activity patterns, etc. The majority of studies that can be encountered in RRM
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literature, applying RL techniques, are formulated for centralized settings where
all decisions are taken by a single entity e.g., Radio Network Controller (RNC)
in UTRAN systems. RL in single agent systems possesses a firm foundation in
the theory of Markov Decision Processes (MDP) and can be shown to optimally
perform. Small cell systems, however, cannot be formulated through a centralized
learning process due to their deployment model, scalability and signaling overhead
constraints. We therefore focus on decentralized learning processes based on RL.
In this case, (1) the intelligent decisions are made by multiple intelligent and unco-
ordinated nodes; (2) the nodes partially observe the overall scenario; and (3) their
inputs to the intelligent decision process are different from node to node since they
come from spatially distributed sources of information. This distributed system can
be mapped onto a multi-agent system, which consists of multiple nodes who are
similarly and simultaneously adapting. The topic of learning in distributed systems
has actually been studied in game theory since 1951 when Brown proposed the fic-
titious play algorithm [1]. The underlying assumption of fictitious play is that an
agent assumes that its opponents sample the actions from some fixed distribution,
i.e. at each time step opponents use a stationary mixed strategy. Then, each agent
in the game estimates its opponents strategies by keeping a score of the appearance
frequencies of the different actions. This means that, each agent needs to know the
strategies followed by the other players in the game.

In Machine Learning (ML), the literature of single agent learning is extremely
rich, while it is only in recent years that attention has been focused on distributed
learning aspects, in the context of multiagent learning. It has been yielding some
enticing results, being arguably a truly interdisciplinary area and the most significant
interaction point between computer science and game theory communities. The the-
oretical framework to formulate RL problems can be found in MDP for the single
agent system, and in stochastic games, for a multiagent system. In what follows, we
give a brief introduction of learning in single and multiagent systems.

11.2.2 Learning in Single-Agent Systems

A MDP provides a mathematical framework for modeling decision-making processes
in situations where outcomes are partly random and partly under the control of
the decision maker. A MDP is a discrete time stochastic optimal control problem.
Here, operators take the form of actions, i.e. inputs to a dynamic system, which
probabilistically determine successor states. A MDP is defined in terms of a discrete-
time stochastic dynamic system with finite state set S = {s1, . . . , sk}. Time is
represented by a sequence of time steps, t = 0, 1, . . . ,∗. At each time step, a
controller observes the system’s current state and selects an action, which is executed
by being applied as input to the system. Let us assume that s is the observed state, and
that the action is selected from a finite set of admissible actions A = {a1, . . . , al}.
When the controller executes action a ∈ A , the system state at the next step changes
from s to v, with a state transition probability Ps,v. We further assume that the
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Fig. 11.1 Learner-
environment interaction

application of action a in state s incurs an immediate cost c(s, a). When necessary,
we refer to states, actions, and immediate costs by the time steps at which they occur,
by using st , at and ct , where at ∈ A , st ∈ S and ct = c(st , at ) are, respectively,
the state, action and cost at time step t . A graphic representation of the learner-
environment interaction is shown in Fig. 11.1, here by the use of ct+1 and st+1 we
aim to emphasize that, as consequence of the performed action at time t, at , in the
next time step, the agent receives a cost ct+1 and finds itself in a new state v = st+1.
To sum up, a MDP consists of:

• a set of states S .
• a set of actions A .
• a cost function C : S × A → R.
• a state transition function P : S ×A → Π(S ), where a member of Π(S ) is a

probability distribution over the set S (i.e. it maps states to probabilities).

The state transition function probabilistically specifies the next state of the envi-
ronment as a function of its current state and the agent’s action. The cost function
specifies expected instantaneous cost as a function of current state and action. The
model is a Markov model if the state transitions are independent of any previous
environment states or agent actions. The objective of the MDP is to find a policy that
minimizes the cost of each state st . As a result, the aim is to find an optimal policy for
the infinite-horizon discounted model, relying on the result that, in this case, there
exists an optimal deterministic stationary policy [2].

RL problems model the world using MDP formulism. In the literature, three ways
have been identified to solve RL problems. The first one consists of the knowledge
of the state transition probability function from state s to state v, Ps,v(a), and is
based on dynamic programming. The second and third forms to solve RL problems,
on the other hand, do not rely on this previous knowledge and are based on Monte
Carlo and Time Difference (TD) methods. As a result, Monte Carlo and TD are
primarily concerned with how an agent ought to take actions in an environment so as
to minimize the notion of long-term cost, that is, so as to obtain the optimal policy,
when the state transition probabilities are not known in advance. When state transition
probability is not known, but a sample transition model of states, actions and costs
can be built, Monte Carlo methods can be applied to solve the MDP problem. On
the other hand, if the only way to collect information about the environment is to
interact with it, TD methods have to be applied. TD methods combine elements of
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dynamic programming and Monte Carlo ideas, they learn directly from experience
which is a characteristic of Monte Carlo methods and they gradually update prior
estimate values, which is common of dynamic programming. TD methods allow an
online learning which is crucial for long-term/continuos applications.

RL algorithms are based on the computation of value functions, i.e. the state-value
function, V (s), or the state-action value function, Q(s, a), which measure how good,
based on the future expected cost, is for an agent to be in a given state or to execute
an action in a given state, respectively. The expected costs for the agent in the future
are given by the actions it will take and therefore, the value functions depend on the
policies being followed. The state-value of state s is defined as the expected infinite
discounted sum of costs that the agent gains if it starts in state s and then executes
the complete decision policy π ,

V π (s) = Eπ

{ ∗∑

t=0

γ t ct | st = s

}

(11.1)

where 0 ∞ γ < 1 is a discount factor which determines how much expected future
costs affect decisions made now.

Similarly, the Q-value Q(s, a) represents the expected decreased cost for execut-
ing action a at state s and then following policy π thereafter.

Qπ (s, a) = Eπ

{ ∗∑

t=0

γ t ct | st = s, at = a

}

(11.2)

Solving a RL problem means to find the best return in the long term. This is
defined as finding an optimal policy, which is the one giving minimum expected
return. We define the optimal value of state s as:

V ≥(s) = min
π

V π (s) (11.3)

According to the principle of Bellman’s optimality [2], the optimal value function
is unique and can be defined as the solution to the equation:

V ≥(s) = min
a



C(s, a) + γ
∑

v∈S
Ps,v(a)V ≥(v)



 (11.4)

which asserts that the value of state s is the expected cost C(s, a) = E{c(s, a)}, plus
the expected discounted value of the next state, v, using the best available action.
Given the optimal value function, we can specify the optimal policy as:

π≥(s) = arg min
a



C(s, a) + γ
∑

v∈S
Ps,v(a)V ≥(v)



 (11.5)
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Applying the Bellman’s criterion in the action-value function, first we have to find
an intermediate minimum of Q(s, a), denoted by Q≥(s, a), where the intermediate
evaluation function for every possible next state-action pair (v, a≈) is minimized, and
the optimal action is performed with respect to each next state v. Q≥(s, a) is:

Q≥(s, a) = C(s, a) + γ
∑

v∈S
Ps,v(a) min

a≈∈A
Q≥(v, a≈) (11.6)

Then, we can determine the optimal action a≥ with respect to the current state s.
In other words, we can determine π≥. Therefore, Q≥(s, a≥) is minimum, and can be
expressed as:

Q≥(s, a≥) = min
a∈A Q≥(s, a) (11.7)

11.2.3 Learning for Multiagent Systems

The characteristics of the distributed learning systems, as mentioned before, are as
follows: (i) the intelligent decisions are made by multiple intelligent and uncoor-
dinated nodes; (ii) the nodes partially observe the overall scenario; and (iii) their
inputs to the intelligent decision process are different from node to node since they
come from spatially distributed sources of information. These characteristics can be
easily mapped onto a multiagent system, where each node is an independent intel-
ligent agent. The theoretical framework is found in stochastic games [3] described
by the five-tuple {N ;S ;A ; P; C}. Here, |N | = N is the set of agents, indexed
1, 2, . . . , N ;S = {s1, s2, . . . , sk} is the set of possible states, or equivalently, a
set of N-agent stage games; A is the joint action space defined by the product set
A 1 × A 2 × · · · × A N , where A f = {a f

1 , a f
2 , . . . , a f

l } is the set of actions (or
pure strategies) available to the f th agent; P is a probabilistic transition function
defining the probability of migrating from one state to another provided the execu-
tion of a certain joint action or, equivalently, it specifies the probability of the next
stage game to be played based on the game just played and the actions taken in it;
C = {c1 × c2 × · · · × cN }, where c f is the immediate cost of the f th agent in a
certain stage of the game, which is a function of the joint actions of all N nodes.

In multiagent systems, the distributed decisions made by the multiple nodes
strongly interact among each other. These kind of problems are usually modeled
as non-cooperative games. The simplest and most common interpretation of a non-
cooperative game is that there is a single interaction among players (“one-shot”),
after which the payoffs are decided and the game ends. However, many, if not all
strategic endeavors occur over time, and in a state dependant manner. That is, the
games, and so the environment in which the nodes make decisions progress over
time, passing through an infinite number of states, and the current game is decided
based on the history of the interactions. Stochastic games form a natural model for
such interactions. A stochastic game is played over a state space, and is played in
rounds. In each round, each player chooses an available action simultaneously with
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and independently from all other players, and the game moves to a new state under
a possible probabilistic transition relation based on the current state and the joint
actions [3]. We distinguish in this context two different forms of learning. On the
one hand, the agent can learn the opponent’s strategies, so that it can then devise
a best response. Alternatively, the agent can learn a strategy of his own that does
well against the opponents, without explicitly learning the opponent’s strategies.
The first approach is sometimes referred to as model-based learning, and it requires
at least some partial information of the other players strategies. The second approach
is referred to as model-free learning, and it does not necessarily require to learn a
model of the strategies played by the other players.

We will discuss in the following a very partial sample of multiagent learning
techniques, which we consider representative for the aim of this taxonomy:

• Model-based approaches: This approach, generally adopted in game theory liter-
ature, is based on building some model of the other agents strategies, following
which, the node can compute and play the best response strategy. This model is then
updated based on the observations of their actions. As a result, these approaches
require knowledge or observability of the other agents’ strategies, which may pose
severe limits from the feasibility point of view in terms of information availability
and signalling overhead. The best known instance of this scheme is fictitious play
[1], which is a static game that simply counts the plays of the other agents in the
past. Different variations of the original schemes exist, for example those consid-
ering that the agent does not play the exact best response, but assigns a probability
of playing each action. Other algorithms in literature that can be classified into
this group are the Metastrategy [4] and the Hyper-Q algorithms [5].

• Model-free approaches: A completely different approach, commonly considered
by the AI literature, is the model-free approach, also known as TD learning, which
avoids building explicit models of other agents’ strategies. Instead, over time, each
agent learns how properly the various available actions work in the different states.
TD methods typically keep memory of the appropriateness of playing each action
in a given state by means of some representation mechanism, e.g., lookup tables,
neural networks, etc. This approach follows the general framework of RL and has
its roots in the Bellman equations [2]. TD methods can be roughly classified into
two groups, i.e. on-policy and off-policy methods. On-policy methods learn the
value of the policy that is used to make decisions and off-policy methods can learn
about policies other than that currently followed by the agent [6].

In Fig. 11.2, we present a useful taxonomy summarizing the discussion of this section.
We consider the femtocell system as a distributed system given its deployment model.
Distributed systems are commonly modeled by means of stochastic games, where
players select their actions independently from the other agents in the system. Since
we aim to perform an online learning in such a way that agents can adapt to the
environmental changes automatically, we formulate the problem through RL. In the
problem we are considering, building explicit models of other agents’ strategies
is highly complex. The solution is then found through model-free techniques, also
known as TD learning methods, which construct the knowledge based on experience.
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Fig. 11.2 Taxonomy of the formulation of the given problem

Among TD learning methods, typical learning approaches are Q-Learning, Sarsa,
Actor-Critic, etc.

11.2.4 Improving the Learning Process

In decentralized multiagent systems, the environment perceived by a given agent is
not stationary, as in turn it would be in the case of single-agent scenarios, since it
consists of other nodes who are similarly adapting. This may generate may generate
oscillating behaviors that not always reach an equilibrium. The dynamics of learn-
ing may thus be long and complex, with complexity increasing with an increasing
observation space. A possible solution to speed up the learning process and to create
rules for unseen situations, is to facilitate expert knowledge exchange among learners
[7, 8]. We introduced then in [9] an emerging framework for femtocells, referred to as
docition, from “docere”= “to teach” in Latin, which relates to nodes teaching other
nodes. This concept perfectly fits a femtocell network scenario, where a femtocell is
active only when the users are at home, so that it can take advantage of the decision
policies learnt by the neighbor femtocells, which have been active during a longer
time. Depending on the degree of docition among nodes, the following cases can be
distinguished:

• Start-up Docition: Docitive radios teach their policies to any newcomers joining
the network. In this case, again, each node learns independently; however, when
a new node joins the network, instead of learning from scratch how to act in the
surrounding environment, it learns the policies already acquired by more expert
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neighbours. Gains are due to a high correlation in the environments of adjacent
expert and newcomer nodes. Policies are shared by exchanging Q-tables.

• IQ-Driven Docition: Docitive radios periodically share part of their policies with
less expert nodes, based on the degree and reliability of their expert knowledge.
Policies are shared by exchanging (a weighted version) of the entire Q-table or
rows thereof, corresponding to states that have been previously visited.

• Performance-Driven Docition: Docitive radios share part or the entirety of their
policies with less expert nodes, based on their ability to meet prior set performance
targets. Example targets are maximum created interference, achieved capacity.

• Perfect Docition: The multi-user system can be regarded as an intelligent system
in which each joint action is represented as a single action. The optimal Q-values
for the joint actions can be learned using standard centralized Q-learning. In order
to apply this approach, a central controller should model the Markov decision
process MDP and communicate to each node its individual actions. Alternatively,
all nodes should model the complete MDP separately and select their individual
actions; whilst no communication is needed here, they all have to observe the joint
actions and individual rewards. Due to an exponential growth of the states, this
approach is typically not feasible.

11.2.5 Results

Results presented in this chapter considers a single Long term Evolution (LTE) het-
erogeneous scenario where femtocells coexist with the macro deployment. Docition,
implemented over a Q-Learning algorithm is compared to two benchmarks:

• Distance-Based Non-Cognitive. The rationale behind this reference algorithm is
that femtocell f selects the transmission power of Resource Block (RB) r based on
its distance from the macrouser using that RB. Notice that this reference algorithm
is only proposed as a non-cognitive benchmark for comparison purposes, and for
its implementation we make the hypothesis that the femto network has at least
some approximate knowledge of the position of the macrousers, which is a quite
difficult hypothesis in a realistic cellular network.

• Iterative Waterfilling (ITW). It is a non-cooperative game where agents are selfish
and compete against each other by choosing their transmit power to maximize
their own capacity, subject to a total power constraint.

To evaluate the proposed docitive approaches we divide the femtocells in the
scenario into two groups. In the first group, we have the docitive or teaching entities
and in the second group we have the learning entities, which start their learning
process 500,000 learning iterations later than the docitive ones. The given results
were obtained for the second group of femtocells in order to show the improvement
achieved when agents take advantage of acquired knowledge of other comparable
entities in the system. In the startup case, learning entities update their Q-tables at
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Fig. 11.3 Macrocell capacity as a function of femtocell density

the beginning of the learning process based on the selected docitive entity policies.
In the IQ-Driven case, learning entities update every 10,000 learning iterations the
Q-values of those rows with lower knowledge, i.e. higher Q-values.

Figure 11.3 shows the macrocell capacity as a function of the femtocell density.
It can be observed that learning techniques do not jeopardize the macrocell capac-
ity, maintaining it at a desired level independently of the number of femtocells. On
the other hand, with the distance-based reference algorithm, the macrocell capacity
decreases when the number of femtocells increases, since the reference algorithm
does not adaptively consider the aggregated interference coming from the multiple
femtocells in the power allocation process. Furthermore, the ITW algorithm dra-
matically reduces the macrocell capacity due to its selfish power allocation policy.
Finally, with respect to the implementation, it is worth mentioning that the Q-learning
approaches only need feedback from the macro network about the Signal to Noise and
Interference Ratio (SINR) at the macrousers. However, the non-cognitive distance-
based approach relies on stronger hypotheses, such as the positions of the macrousers.

As for the performance of docition, Fig. 11.4 shows performances in terms of
precision, i.e. oscillations around the target SINR. We assumed a 50 % femtocell
occupation ratio, composed of the probability that a femtocell is present and that it is
switched on. In particular, it represents the Complementary Cumulative Distribution
Function (CCDF) of the variance of the average SINR at the control point with respect
to the set target of SINRT h = 20 dB. It can be observed that due to the distribution
of intelligence among interactive learners the paradigm of docition stabilizes the
oscillations by reducing the variance of the SINR with respect to the specified target.
More precisely, at a target outage of 1 %, we observe that the IQ-Driven docition
outperforms the startup docition by a factor of two, and the Q-learning algorithm by
about an order of magnitude.
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Fig. 11.5 Probability of being above the power threshold as a function of the learning iterations
for different docitive cases

Figure 11.5 shows the average probability that the total power at femtocells is
higher than P F

max as a function of the learning time when docition is applied. It
can be observed that the docitive approaches better satisfy the constraint in terms
of total transmission power since the early stages of the learning process. More in
particular, for the startup docition case, after docition, the femtocell continues with
its learning process adapting the knowledge to its own situation. On the other hand,
for the IQ-Driven docition case, since the learner agent periodically updates the
knowledge corresponding to states of the environment where it performs poorly, the
agent presents a very accurate behavior during all the learning process. This accurate
behavior is achieved thanks to the continuous adjustment in the agent policy.
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11.3 Direct Biomimetic Approach

In this section we present the use of direct biomimetic approach to develop a SO
framework for spectral efficiency enhancement on the access link between OFR and
their donor BS through adaptation of system wide BS antenna tilts in a distributed
manner.

The rest of this section is organized as follows: First a case study of SO system in
nature is presented to analyse how a SO solution to a complex optimisation problem is
achieved in the natural system. A generic Biomimetic Self Organisation Framework
(BSOF) is extracted from this analysis. Then we present the system model and
problem formulation. The BSOF is applied to our problem by exploiting a one to
one mapping between the two systems. Finally, selected numerical results are also
presented to demonstrate the gain the SO solution can achieve without relying on
global coordination.

11.3.1 A Biomimetic Self Organization Framework

As explained earlier, myriad of systems in nature exhibit perfect self organization e.g.
school of shoaling fish, swarming insects, herding sheep, synchronously flashing fire
flies, and flocking birds to name a few. This provides us with an opportunity to devise
and extract the generic principles of SO from nature. Here we take one specific case
study to investigate the underlying principles of self organization in such system with
aim to come up with a generic design and operational framework for self organization.

11.3.2 Revisiting SO in Nature: Flock of Common Cranes

A flock of common cranes is one of the myriad of perfect examples of SO system in
nature. We consider the case study of flock of common cranes to further delve into
their SO group flight phenomenon as shown in Fig. 11.6. A flock of common cranes
adapts its flight attributes and flies such that the average flight efficiency of the whole
flock is maximised by minimising the average air drag each bird faces by up to 70 %
compared to individual bird flight efficiency [10] by dynamically maintaining group
flight optimal delta formation during flight. Most importantly, it does so:

• without a leader and without global information exchange or coordination among
all birds of the flock i.e. no explicit global signalling and no central control
(Scalability)

• without swaying from the long term direction of flight or breaking apart even in
face of changing wind and weather conditions (Stability)

• without loosing their ability of acutely execute individual as well as collective
maneuvering to avoid predator attacks and large hurdles (Agility)



250 A. Imran and L. Giupponi

Fig. 11.6 A flock of common cranes optimises its flight efficiency by nearly 70 % through self
organization i.e. by maintaining near V-formation through simple individual actions of cohesion,
separation and alignment executed by each bird

It has been investigated that each birds individually executes and maintains a
certain set of simple flight attributes such that the flock is always in near V-formation
that happens to be the optimal formation for group flight efficiency [11]. For common
cranes, nature has solved the complex problem of group flight efficiency optimisation
to a much simpler problem of maintaining a V-formation. Nurture on the other hand
has taught them, how to control their own flight attributes with reference to their
immediate i.e. line of sight neighbours to maintain the V-formation while flying.
This attributes have been identified to be barely three i.e. cohesion, separation and
alignment [12].

1. Separation: Each bird tries to avoid crowding neighbours
2. Alignment: Each bird tries to steer towards average heading of neighbours
3. Cohesion: Each bird tries to steer towards average position of neighbours

Figures 11.6 and 11.7 explains how cohesion, separation and alignment executed by
each bird during flight results into an over all V-formation and hence flight efficiency
optimization.
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Fig. 11.7 Main elements of self organization working in flock of common cranes

11.3.3 Constituents of SO

By inspection of the above example, three main components of SO can be identified:

1. A specific objective e.g. maximization of flight efficiency.
2. A goal which is effectively a much simpler manifestation of the same objective

e.g. formation of V shape.
3. A small set of simple functions which are performed by the entities of the system

to achieve that goal e.g. separation, alignment and cohesion in this case.

In order to put our future discussion in a consistent context we will refer to these
three identified components of a SO as SO-Objective, SO-Goal and SO-Function
respectively.

11.3.3.1 Relationship Between SO-Objective and SO-Goal

A pivotal observation to be made here is that in a system with SO, the complex
SO-Objective (e.g. the maximisation of flight efficiency in this case study) is not
dealt with, as it is, by each bird, rather it is first mapped to a much simpler goal
having equivalent semantics (i.e. flying in V shape), as it is an optimal formation to
minimize aerodynamic drag and hence maximise group flight efficiency [10]. Thus
a crucial step to achieve SO is translating the complex SO-Objective into a simpler
SO-Goal. Next equally important step in design of SO is design of such simple
SO-Functions that can achieve the SO-Goal(s).
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11.3.3.2 Designing SO-Functions

Simplicity of SO-Functions is one of the basic properties for achieving SO and its
associated benefits. Other then that following general characteristics of SO-Functions
are worth noting in all natural systems with SO:

1. SO-Functions do not require any discriminative abilities e.g. each bird in the flock
can perform all the three SO-Functions i.e. separation, alignment and cohesion.

2. SO-Functions do not require explicit or global co-ordination among entities of
system e.g. in bird flock example separation, alignment and cohesion are per-
formed by each bird by relying on its local observation only.

So far, we have explicated three basic constituents of SO i.e. SO-Objective, SO-Goal,
and SO-Functions and have figured out the characteristics of each of them. Next, we
need to determine the key operational principle of SO i.e. the nature of interaction of
self organizing entities in order to target a common SO-Goal. The full understanding
of this operational principle is crucial in designing appropriate SO-Functions in a
real world engineering system. Following section investigates the type of mutual
behavior among entities of the natural system with SO.

11.3.3.3 Coopetition: An Interesting Principle Behind SO Functions

A probe into the mutual behavior among the birds, in the example of bird flock,
deciphers that SO-Functions executed by each bird are neither purely cooperative
towards other birds nor purely competitive. A pure cooperative behavior among
birds will require explicit communication which is not the case in the bird flock. On
the other hand, a pure competitive behavior among birds will result in a conflict of
interests and will not result in common SO-Goal e.g. instead of single well maintained
V-shape multiple independent subgroups with different shape can result or all birds
might flight in straight line in parallel to each other as result of pure competition.
This implies that a system cannot evolve to SO if the individual entities of the system
behave either in pure cooperative fashion or pure competitive fashion.

A cautious inquisition of the above case study shows that the three SO-Functions
enacted by each bird are a well composed combination of both cooperative and com-
petitive behavior towards other birds. In fact SO-Function: ‘Separation,’ exhibits
a kind of cooperative behavior towards other birds as by executing it each bird is
being friendly to other by giving it more space. The SO-Function: ‘Alignment,’ has
dominantly competitive nature as by executing it each bird is trying to reach the
same destination as its peers in a rush to avail the resources (food etc) available
at that destination. Whereas, SO-Function: ‘Cohesion,’ is an intricate amalgam of
both cooperation and competition as by executing it birds tend to push into their
neighbor birds but simultaneously maintaining a threshold separation. In essence,
SO-Functions executed by the entities of a SO system are such that their mutual
behavior is neither pure competition nor cooperation. Rather, it is a judicious com-
bination of both of these extreme attitudes. The most suitable term to embody this
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Fig. 11.8 A Biomimmetic Self Organising Framework (BSOF) inspired by case studies of self
organization in nature

type of behavior is coopetition: a neologism introduced in the field of economics to
represent cooperative competition [13]. Hence, it is neither competition nor cooper-
ation but coopetition among system’s entities which is more suitable for emergence
of SO behavior on system level.

11.3.4 A Generic Biomimetic Self Organization Framework

Building on the above findings through analysis of SO in natural systems, we can
infer a general framework to design SO in a system which is based on three steps:

1. Identification of SO-Objective.
2. Mapping of SO-Objective into simple SO-Goal.
3. Identification of functionalities bearing the characteristics of SO-Functions that

are executable under the principle of coopetition to achieve the SO-Goal. These
three steps are illustrated in Fig. 11.8. We call this generic frame work BSOF i.e.
Biomimetic Self Organization Framework.
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11.3.5 An Application of BSOF in Heterogeneous Networks

11.3.5.1 System Model and Assumptions

Assumptions and Nomenclature: We consider multicell cellular relay enhanced cel-
lular system. We assume a frequency reuse of one with interference limited scenario.
BSs and RSs are multiplexed in time (or frequency) such that there is no cross inter-
ference among the backhaul (BS-R) and coverage (BS-user and RS-user) links. It is
assumed that all user devices have omnidirectional antennas with 0 dB gain. Simi-
larly, RSs are also equipped with omnidirectional antennas with a constant gain in
all directions. We use spectral efficiency in b/s/Hz as optimization metric and we
define it as the long term average bandwidth normalized throughput on link given
by log2(1 + SI R), where SIR stands for Signal to Interference Ratio. Due to the
geometrical context of the following analysis, by referring to BS, RS and users we
mean the location of their antennas unless specified otherwise. Symbol tilde e.g. x̃
is used to denote optimal value of variable x and symbol hat e.g. x̂ is used to denote
an approximation of a variable x .

System Model: We consider the downlink scenario of a sectorised multi cellular
network as shown in Fig. 11.9. Each BS has three cells (sectors) and each cell has
at most one RS station placed at an arbitrary location, to cover random hotspots
of users. Let B denote the set of points corresponding to the transmission antenna
location of all BS cells, R the set of points representing the locations of the RSs
antennas in the system and U the set of points representing the antennas of all the
user devices randomly located in the system. The geometric SIR on the backhaul
link of a RS located at point r ∈ R associated with bth cell, can be written as:

γ b
r = PbGb

r Grα
(
db

r

)−β

∑
⇒b́∈B\b

(
Pb́Gb́

r Grα
(

db́
r

)−β
⎛ b, b́ ∈ B, r ∈ R (11.8)

where Pb is the transmission power of the bth cell, db
r and db́

r are the distances
between the b and b́ transmitting cell antenna locations and receiving RS antenna
location r . α and β are the pathloss model coefficient and exponent, respectively.

The operator ‘\’ in B\b means all elements of B excluding b. Gb
r and Gb́

r are the
antenna gains perceived at RS r , from BS b and b́, respectively. For 3GPP LTE and
LTE-A the three dimensional antenna pattern can be modelled as proposed in [14],
and with the simplifications introduced in[15]. Using the geometry in Fig. 11.9, the
perceived antenna gain from a bth BS, at location r , of a RS can be written in dBs
as follows:

Gb
r = 10

−1.2

⎝

λv

(
ψb

r −ψb
tilt

Bv

⎛2

+ λh

(
φb

r −φb
a

Bh

⎛2
)

(11.9)
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Fig. 11.9 Illustration of geometrical background of the analysis

where ψb
r is the vertical angle at the bth BS, in degrees from reference axis (horizon)

to the r th RS. ψb
tilt is the tilt angle of the bth cell, as shown in Fig. 11.9. The φb

a is the
angle of the azimuth orientation of the antenna with respect to the horizontal reference
axis, i.e. positive x-axis. φb

r is the angle of location r of the RS from the horizontal
reference axis, at BS b. Subscripts h, a and v denote horizontal, azimuth and vertical,
respectively. Thus Bh and Bv represent the horizontal and vertical beamwidths of
the BS antenna, respectively, and λh and λv represent the weighting factors for the
horizontal and vertical beam patterns of the antenna in the 3D antenna model [14],
respectively.

We assume that all the BSs transmit with the same power and all RS antennas have
unity gain i.e. Gr = 1. For the sake of simplicity, we use the following substitutions:

cb
k = B2

v λh

λv

(
φb

r − φb
a

Bh

⎛2

; cb́
k = B2

v λh

λv

⎝
φb́

r − φb́
a

Bh

)2

(11.10)

hb
r = α

(
db

r

)−β ; hb́
r = α

(
db́

r

)−β ; μ = −1.2λv

B2
v

(11.11)
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Using the substitutions in (11.8)–(11.11) the SIR on the backhaul link of the r th RS
can be determined as:

γ b
r = hb

r 10
μ

((
ψb

r −ψb
tilt

)2+ cb
r

)

∑
⇒b∈B\b́



hb́
r 10

μ

((
ψ b́

r −ψ b́
t ilt

)2+ cb́
r

⎛



(11.12)

Note that γ b
r is a function of ψ B

tilt = ⎞
ψ1

tilt , ψ
2
tilt , ψ

3
tilt ...ψ

B
tilt

⎠
, where B = |B|,

but for the sake of simplicity, we will show this dependency only where necessary.
Similarly, the geometric SIR perceived by a user at a location u, being served by the
bth BS cell is given by:

γ b
u = PbGb

uα
(
db

u

)−β

∑
⇒b́∈B\b

(
Pb́Gb́

uα
(

db́
u

)−β
⎛ b, b́ ∈ B, u ∈ U (11.13)

where db
u and db́

u are distances between the b and b́, and user location u. Following
the same steps as above, the SIR for the BS-user link can be written as:
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(11.14)

11.3.6 Designing a Self Organising Solution

11.3.6.1 Problem Formulation: Identifying SO-Objective

This section describes the application of first step of BSOF i.e. identifying the
SO-objective, that is formulating the actual problem.

We aim to minimise the radio resources required by the backhaul link in order
to maximise the net gain of RSs in terms of system wide capacity. To achieve this
objective, we propose to optimise system-wide BS antenna tilts such that it maximize
the SE all the backhaul links in the system. The tilt optimisation is carried out on a
long time scale of hours to day, so that only the path loss remains as the dominant
factor in the determination of the channel gain, as the fast fading and the shadowing
are averaged out and consequently can be neglected. Since the adaptation of the BS
antenna tilts while it aims to maximise the SE of the BS-RS backhaul links, has an
impact on the BS-user links, we also have to take into account the BS-user links in
the optimisation problem. Let |R| denote the cardinality of the set R, i.e. |R| = R,
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and Ú the users located in the sectors that contain a RS, where Ú ⊂ U . The rest
of the users are located in sectors without RS and their locations will be given by
the set U \Ú . The average SE of users in the sectors with RS can be anticipated
to be not critically affected by the BSs tilt adaptations, as a significant proportion
of them is served by the RSs. Furthermore, since the RSs are usually located to
cover hotspot areas in the cells, the tilt optimization with respect to RS locations
will naturally optimize tilts with respect to majority of users in those cells. On the
other hand, the users in cells that are only served by the BS are the users who has
to be exclusively taken into consideration in the optimisation problem as they can
be significantly affected by the antenna tilt configurations of their cell and neighbor
cells, while optimising tilts with respect to backhaul links. By taking these users into
account, our problem of maximising system wide BS-RS and BS-user link average
spectral efficiency ζ through optimisation of system-wide BS antenna tilts can be
mathematically written as (11.15). In (11.15) the second summation term represents
the users in sectors without RS deployment.

max
ψ B

tilt



⎜


1

|R|
∑

⇒r∈R
log2

(
1 + γ b

r

(
ψ B

tilt

))
+ 1

⎪⎪⎪U \Ú
⎪⎪⎪

∑

⇒u∈U \Ú
log2

(
1 + γ b

u

(
ψ B

tilt

))


⎧


(11.15)

Note that (11.15) is a nonlinear multi variable optimisation problem. Its solution
would require global cooperation among all cells in the system, which would make
it not distributed and consequently not in line with the basic idea of online local
self-organisation [16, 17]. Furthermore, as we will see in subsequent sections, the
objective function in (11.15) is non-convex and characterised by a large number
of the optimisation variables, i.e. ψ B

tilt = ⎞
ψ1

tilt , ψ
2
tilt , ψ

3
tilt . . . ψ B

tilt

⎠
, meaning that

we are dealing with a large scale optimisation problem. Therefore, numerical or
exhaustive search based heuristics are also not a practically feasible approach either.
In the following section we present a novel biologically inspired approach to solve
this problem in order to develop a pragmatic distributed self-organising solution.

11.3.6.2 Transforming SO-Objective into SO-Goals

This section describes the second step of BSOF i.e. simplifying the SO-objective
to SO-Goal. We present the following theorem that paves the way to determine the
SO-Goal i.e. a simpler and decomposable manifestation of (11.15).

Theorem 11.1 For given antenna tilts of neighbouring cells the antenna tilt ψ̃b
tilt

of a cell without RS is optimal for maximising the SE, if it satisfies the following
condition:

∑

⇒u∈U b

(
(ψb

u − ψ̃b
tilt )

γ̃ b
u

1 + γ̃ b
u

⎛
= 0, U b ⊆

⎪⎪
⎪U \Ú

⎪⎪
⎪ (11.16)
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Fig. 11.10 The optimal tilt ψ̂b
tilt cab be mapped to a set of points equidistant distant from the BS.

Any of the points on this equidistant curve can be taken as the Center of Gravity (CG) of the user
geographical distribution for which the optimal tilt angle is calculated

where γ̃ b
u is the SIR perceived by user u in cell b, when its antenna is tilted by ψ̃b

tilt
degrees.

Summation in (11.16) sums over all user in the cell.

Proof The SE in (11.15) is a twice differentiable function of the tilt, therefore, the
proof of Theorem 11.1 can be easily obtained by finding the optimality conditions
through the first derivative of the sum of the SE at all user locations, and by means of
the second derivative test confirming that this condition provides a maximum point.
Details are omitted for space limit.

As a result, Theorem 11.1 provides a method to calculate the optimal tilts that
maximize the BS-user link SE, in cells without RS. The following corollary can be
directly deduced from Theorem 11.1:

Corollary 11.1 For given tilt angles of neighbouring cells, the optimal tilt angle
ψ̃b

tilt of cell b is the tilt angle that optimizes the SE at any point p. Where p belongs
to a set of points Pb in that cell such that Pb = {p|, d(p ← b) = db}, and where
db = (

Hb − H p
)
/ tan(ψ̃b

tilt ).H
b and H p are the heights of the bth cell antenna

and point p, respectively. d(p ← b) denotes the distance between the location of
cell b antenna and the user location p.

Proof This corollary follows from Theorem 11.1, from the fact that the optimal tilt
angle ψ̃b

tilt given by Theorem 11.1 can be transformed into a set of certain points
Pb, which lie at distance db from the cell antenna b. This is illustrated in Fig. 11.10.

Notice that, according to Theorem 11.1 and its subsequent corollary, the tilt angle
of bth cell, optimized for any of the points in set Pb, optimizes the average spectral
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efficiency in that cell. Thus, taking advantage of Theorem 11.1 and its corollaries,
the users in cells without RS can be represented by a single point in each cell which
cam act as focal point of user geographical distribution in a cell (see Fig. 11.10) for
tilt optimisation. Such focal point of each cell can be used to constitute a set of points
V across the cells defined as:

V =
B\B́⎨

b=1

pb, pb ∈ Pb (11.17)

where set B\B́ denote cells that do not contain RS, by using definition of V
in (11.17), in conjunction with Theorem 11.1, the second term of the right hand
side in (11.15) can be written as:

∑
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log2

(
1 + γ b

u

(
ψ B

tilt

))
=

∑

⇒v∈V
log2

(
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v

(
ψ B

tilt

))
(11.18)

Substituting (11.18) in (11.15), the optimization problem can be written as (11.19).

max
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(11.19)

Note that, since |V | = number of cells that do not have a RS , |V | < |B|,
which further implies that|V | �

⎪⎪⎪U \Ú
⎪⎪⎪. This means that the second summation in

(11.19), is a summation over a much smaller number of terms, compared to (11.15),
which significantly simplifies the problem. For further simplification, if we define a
set S = {R ∪ V }, based on arguments presented above through (11.16)−(11.18)
the optimization problem in (11.19) can be written as:

max
ψ B

tilt

ζ
(
ψ B

tilt

)
= max

ψ B
tilt

1

|B|
∑

⇒s∈S
log2

(
1 + γ b

s

(
ψ B

tilt

))
(11.20)

The points in set S are shown in Fig. 11.11, where circles represent RSs, i.e. points
in set R; and stars represent the focal point of users’ geographical distribution in
each cell with no RS, i.e. points in set V . For ease of discussion, we will refer to
points in set S as Centre of Gravity (CGs) of the cells. Note that as highlighted in
Sect. 11.3.3.1, (11.20) is the required simplified manifestation of the original problem
in (11.15).
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Fig. 11.11 Circles represent points in set R i.e. RS locations and stars represent points in set V
i.e. focal points of user distributions in a cell determined through Theorem 11.1 and its corollaries.
Stars and circles together make set S

11.3.6.3 Decomposing SO-Goal to Design SO-Functions

This section describes the third step of BSOF i.e. decomposing the SO-Goal into
SO-Functions.

While the complexity of the problem in (11.15) has been significantly reduced
in (11.20), still we are dealing with a large scale optimization problem over a vector of
variables ψ B

tilt . The resulting dependency of the potential solution over all the BS tilts
in the system, prevents it from being a practical solution from implementation point
of view. Due to the dependency of the SIR in (11.20) on all the antennas in the system,
any direct solution (11.20) would require a global cooperation among all the cells
of the system. The system wide signalling required to achieve this cooperation will
make such solution too slow and complex to cope with the on-the-run deployment
or switching on and off of the RSs. As discussed above, a SO solution will require
a further decomposition of (11.20) into local subproblems. Such decomposition is
common in SO systems in nature, as it is explained for the case study of flock
of common cranes, in [10] and [18]. We refer to the same case study and more
in particular to the result, discussed in the above references, according to which,
for achieving the flock-wide objective of flying in V-formation, each crane merely
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relies on the observation of its immediate two neighbours, on its two sides. Thus,
although cranes do not achieve the perfect V shape, they can still achieve up to 70 %
gain in group flight efficiency [10]. To exploit the same principle in our problem,
we compromise on the global optimisation perspective and we propose the novel
concept of triplet to enable a local problem decomposition. A triplet consists of
three immediate neighbour cells as it is illustrated in the enlarged part of Fig. 11.11.
The key idea is that, as it happens for the cranes, each cell observes (tilts and CG
locations) of its immediate two neighbours cells, when optimising its own tilts. In
this way, tilts are optimised within each of the N = B

B̂
triplets independently, where

B̂ is the size of the triplet, i.e. three in this case. As a result, the problem in (11.20)
can be approximated as:

max
ψ B

tilt

ζ̂
(
ψ B

tilt

)
= max

ψ B
tilt

1

|B|
∑

⇒s∈S
log2(1 + γ̂ b

s ) (11.21)

where γ̂ b
s is the approximate SIR at point s (CG) that takes into account the obser-

vations from the only two other members of the triplet, and can be rewritten as:
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where b represents the antenna location of the cell which point s lies. B̂ represents

a triplet, such that
⎪⎪⎪B̂

⎪⎪⎪ = B̂ = 3. ψ B̂
tilt is the vector of tilt angles of the B̂ sectors

within the triplet. Now consider the following propositions:

Proposition 11.1 As β and the cell radius grows large, ζ̂ becomes a closer approx-
imation of ζ.

Proof Proposition 11.1 can be easily proved by putting large values of β and d
in (11.14) and (11.22).

Proposition 11.2 If the SIR is given by γ̂ b
s , the maximum aggregate throughput

achieved in the system by optimizing the tilts within each triplet independently, is the
same as the throughput achieved by optimizing the system-wide tilts. Mathematically,
ζ̂N ,max = ζ̂max , where ζmax is the maximum average SE that can be achieved by
solving the optimization problem in (11.21) and

ζ̂N ,max = 1

|N |
∑

⇒n∈N

⎩
⎫

⎬
max
ψ

Tn
tilt

1

|Tn|
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⇒s∈Sn

log2

(
1 + γ̂ b

s

(
ψT n

tilt

))
⎭
⎤

⎥
(11.23)
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where Sn ⊂ S , Tn is the nth triplet and |Sn| = |Tn| = Tn = 3,⇒n ∈ N , ψ
Tn
tilt is

the vector of tilt angles of sectors within nth triplet such that

Sn ∩ Sn≈ = Φ and Tn ∩ Tn≈ = Φ,⇒ �= n
≈

where n, n
≈ ∈ N (11.24)

N is set of all the triplets, such that |N | = |B|
|Tn| = N is the total number of triplets

in the system.

Proof Since |N | × |Tn| = |N | × |Sn| = |B| = |S | and in right hand side of
(11.23) all the terms are mutually exclusive hence the proposition.

Note that each term in the summation in (11.23) is now a very small scale optimiza-
tion problem over three tilt angles within each triplet. Next we present a methodology
to solve this subproblem.

11.3.6.4 Solving the SO-Function

This section describes the final step of BSOF i.e. solving the local sub-problem to
enable the execution of SO-Functions.

To enable execution of SO-Function, the following subproblem needs to be solved
for each of the N triplets locally and independently:

ζ̂ = log2
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max
ψ1

tilt ,ψ
2
tilt ,ψ

3
tilt
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(
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2
tilt , ψ

3
tilt

)
(11.26)

subject to: ψ1
tilt , ψ

2
tilt , ψ

3
tilt < π

2
where ζ̂ is given by (11.25). We drop the subscript n to simplify the notation and
since the following analysis is valid for any triplet. Notice that (11.26) is still a non
convex optimization problem. However, compared to our original problem in (11.15),
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the problem in (11.26) is now a small scale optimization problem, as the number of
optimization parameters is only three with limited range of 0◦ < ψ < 90◦. Since the
search space of this problem is now reasonably small (≈90×90×90 = 729,000), any
of exhaustive search based evolutionary heuristics listed in [17] can be used to find
the solution of (11.26). Alternatively, a solution can also be determined using a non
linear optimization techniques that can tackle a non-convex optimization objective.
For example, since the objective function is twice differentiable and the constraint is
also differentiable, an option could be to solve (11.26) through Sequential Quadratic
Programming SQP. To this end, the problem can be written in the standard form as:

min
ψ

−ζ̂ (ψ) (11.27)

subject to: g j
(
ψ j

)
< 0, j = 1, 2, 3

where ψ = [ψ1, ψ2, ψ3] and g j
(
ψ j

) = ψ j − π
2 .

The Lagrangian of the problem in (11.27) is given by:

L (ψ , λ) = ζ̂ (ψ) −
3∑

j=1

λ j (ψ j − π

2
) (11.28)

If Ĥ denotes the approximation of the Hessian matrix H, then we can define a
quadratic subproblem to be solved at the i th iteration of SQP as follows:

min
w∈RJ

1

2
wT Ĥ (L (ψ , λ) )i w + �ζ̂ (ψ)i w (11.29)

subject to: w j + ψ ji − π
2 < 0 j = 1, 2, 3

At each iteration the value of Ĥ can be updated using the Broyden-Fletcher-
Goldfarb-Shannon BFGS) approximation method. Once the Hessian is known the
problem in (11.29) is a quadratic programming problem that can be solved using
standard methods such as the gradient projection [19].

Based on the above steps of the SQP, the problem in (11.26) can be solved within
each triplet independently. The solution provides the optimal tilt angles to be main-
tained by each of the three cells in the triplet for given locations of CGs, within that
triplet. The execution of these local solutions in each triplet results in the achieve-
ment of the system-wide objective in (11.20), which was a close manifestation of the
original system wide objective in (11.15). Since the solution is distributed, i.e. exe-
cutable in each triplet independently and autonomously, the near optimal tilt angles
can always be maintained locally to maximise system-wide SE on the backhaul links,
as well as on the coverage links, despite the impromptu deployment or removal of
RSs. In the following we refer to the developed framework as SOT (Self-Organisation
of Tilts).
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Fig. 11.12 ζ̂
3 plotted for a stand alone triplet against tilts of two sectors while third is fixed at 0◦ for

three different CG locations within the triplet. It can be seen that optimal tilt angles for maximum
spectral efficiency change as locations of CG’s change

11.3.7 Results

In this section, first we present the numerical results for a single triplet cellular
system, which can be readily obtained from the analysis presented above. These
results indicate the gains theoretically achievable by the proposed solution. This is
followed by performance results of the SOT evaluated by implementing it in a full
scale system level simulator. These results evaluate the gain that can be obtained
by the proposed SOT in more practical and realistic scenarios, with shadowing and
interference from multiple tiers of cells.

11.3.7.1 Numerical Results

Numerical results for three different sets of locations of CGs are plotted in Fig. 11.12.
These results can be obtained by plotting (11.25) with β = 4, Bv = 10◦, Bh = 70◦,
a cell radius of 600 m, BS and CG height of 30 and 10 m respectively. In addition, we
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Table 11.1 System level
simulation parameters

Parameters Values

System topology 19*3 sector/cells
BS transmission power 39 dB m
BS Inter site distance 1,200 m
BS height 32 m
RS height 10 m
User height 1.5 m
User antenna 0 dB (Omini

directional)
RS antenna 0 dB (Omini

directional)
BS antenna horizontal beamwidth, Bh 70◦
BS antenna vertical beamwidth, Bv 10◦
BS antenna vertical Gain Weight, λv 0.5
BS antenna vertical Gain Weight, λh 0.5
BS antenna maximum gain, Gmax 18 dB
BS antenna maximum attenuation, Amax 20 dB
Frequency 2 GHz
Pathloss model Urban Macro [20]
Shadowing STD for BS-user links 8 dB
Shadowing STD for BS-RS links 4 dB

normalise ζ̂ by 3, i.e. the number of cells in the triplet. ζ̂
3 is plotted in Fig. 11.12 and it

represents the average SE in per cell in a triplet. It can be seen that by optimising the
antenna tilts the average SE at the CGs can change from 3.9 to 5.3, 3.7 to 4.7 and 2.1
to 2.8 b/s/Hz, respectively (in figures from top to bottom), depending on the location
of CGs that represent either RS or focal points of user distribution. By determining
the optimal tilt angles for given locations of CGs in each triplet, the SOT can always
set the antenna tilts for maximum SE. The values of SE achieved by optimal tilts
determined through the SOT, compared to the SE achievable with the wide range
of other tilts, imply that the SOT in general can maintain a substantial gain in SE,
compared to a large range of arbitrary tilting.

11.3.7.2 System Level Simulation Results

For system level proof of concept we use an Orthogonal Frequency Division Mul-
tiple Access (OFDMA) based generic cellular system where some cells contain
randomly located RS and other cells are served by the BS only as would be the case
with LTE-A. Table 11.1 shows the summary of simulation parameters. We compare
the performance of the SOT against three fixed antenna tilting benchmarks of low,
medium and high tilts, i.e. 0◦, 15◦, 30◦. Performances are evaluated for both back-
haul and coverage links on the downlink, in terms of SE (b/s/Hz). Figure 11.13 plots
the average SE with the fixed tilts and with the SOT implementation. It can be seen
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Fig. 11.13 Average spectral efficiency on BS-RS and BS-user links

that with T ilt = 0◦, the SE is worst and with T ilt = 15◦ the SE in general improves.
However, with T ilt = 30◦, the SE starts decreasing again. This is due to the fact
that with high tilting values, although the interference decreases, the coverage on
the cell edge starts decreasing as well. On the other hand, the SOT provides a sub-
stantial boost in average spectral efficiency. This is because, the SOT allows tilts
to be optimised locally, based on the location of RS and CG of user geographical
distributions, in individual cells. It can be observed that for BS-user links, the SOT
yields a gain of 3.1798 − 1.9651 ≈ 1.2 b/s/Hz compared to the worst fixed titling
(T ilt = 0) and 3.1798 − 2.4772 = 0.7 b/s/Hz compared to the best fixed tilting
options. On the other hand, on the backhaul links the same gains are observed to be
1.64 and 1.1 b/s/Hz, respectively, which are larger than that achievable on BS-user
links because of obvious reasons that RS can be better represented with single point
compared to a user distribution. However, it can be inferred from both numerical and
simulation results that the SOT provides significant gains in SE, and the exact gain
in each triplet depends on the RS and users’ geographical distribution.

11.4 Conclusions and Considerations in Use of Biomimetics

In this chapter, use of directly and indirectly bio inspired techniques has been
presented for enabling self-organization for macrocell and femtocell coexistence.
Indirect biomimetics, techniques inspired by learning theory are explored and their
performance is compared via simulation results. Another contribution of the chapter
is a novel demonstration of use of direct biomimetic approaches for developing
SO for a system-wide antenna tilt adaption problem which is a large scale non
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linear optimization problem. The target scenario considers outdoor fixed relay based
femtocells coexisting with macro system. Results show that proposed biomimetic
solution can yield substantial gain in spectral efficiency without resorting to central
control or system wide signalling.

Although, this chapter demonstrated biomimetics as a rich and promising para-
digm for design of SO, but there are some consideration and implications that must
be apprehended while applying Biomimetics, particulary the direct approach of Bio-
mimetics to engineering systems. These limitations mainly arise due to the notable
differences between biological and engineering systems. Due to these differences
some functionalities of biological systems are hard to mimic and it is not technically
feasible or even possible to achieve such functionality in engineering system may be
because of lack of their understanding or because of technological limitations. Exam-
ples of such not mimicable functionalities so far are the intelligence of human brain,
or 100 % efficiency of conversion process of chemical energy to electromagnetic
energy i.e. light in fire flies.

Thus, Biomimetics instead of all its potential might not be an appropriate approach
when: (i) the biological solution is too difficult to rebuild with technical means or
(ii) a technical solution can be more efficient by taking advantage of mechanisms
that cannot be found in the biological paradigm. A mistake to be avoided is to stick
to biological solutions just because of their seeming elegance.
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Chapter 12
Cooperation and Competition for Spectrum
Sharing in Cognitive Radio Networks:
The Practical Perspective

Hanna Bogucka and Marcin Parzy

Abstract The goal of the flexible, efficient and fair spectrum allocation is to increase
the spectrum utilization of radio resources in future wireless systems. According to
the cognitive radio (CR) concept, the nodes are expected to sense their radio envi-
ronment, take decisions on their operation in the network and learn from their past
actions to better adjust to the network dynamics process in various unplanned situa-
tions. The CR node can take actions resulting from the input information processing,
although in most cases this information is incomplete or inaccurate. CR node may
acquire the necessary information needed for its efficient operation by accessing the
control or management channel(s) or by interaction with other nodes. Unfortunately,
control channels may not always be available and the neighbouring nodes may not
be interested in cooperation due to the cost of the spectrum and energy resources.
Therefore, the major challenge for a CR node is to operate efficiently with incomplete
or limited knowledge on the network and cooperate with its competitors. For CR,
game theory provides interesting tools to study competition and cooperation among
rational and intelligent players taking decisions with limited or incomplete infor-
mation. CR nodes can exchange information, cooperate or learn because they were
programmed to perform such tasks. Such processes have the associated cost, usually
expressed in consumed energy, time or spectrum. These costs must be balanced with
benefits. Therefore, the GT models must be carefully selected and evaluated for the
application in resource sharing to comprise with practical limitations of the dynamic
CR networks. In this work the practical issues of cooperation among cognitive radio
nodes competing for available resources in the decentralized networks are considered.
It is pondered how the theory of competition and cooperation (game theory) meet the
practice, by discussing the quantitative metrics of the cost of avoiding cooperation
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(the Price of Anarchy—PoA), of having limited knowledge of the competitors (the
Price of Ignorance—PoI). Some practical approaches to the spectrum sharing and
allocation problem are also presented, which make use of representative, intention-
ally reduced information that the CR nodes have to exchange. One of the presented
methods is based on the repeated game against the network-nodes community using
the aggregated knowledge of its possible behavior. The other one is based on the
coopetition methodology, which combines the advantages of both cooperative and
competitive approaches. It is shown that the problem of radio resource allocation
in wireless systems can be solved efficiently by using these not-optimal but prac-
tical approaches, by presenting some indicative results: the information-data sum-
throughput, Jain’s fairness index, PoA, PoI, and the network welfare function equal
to the sum-throughput net.

12.1 Introduction

Opportunistic spectrum access as well as flexible and efficient spectrum allocation
procedures are considered as measures to increase the utilization of the scarce radio
resources in future wireless communication networks. Apart from the spectral effi-
ciency, fairness in resources distribution is also in the focus of research towards the
cognitive, opportunistic and dynamic spectrum access. For the future communication
concepts, such as Cognitive Radio (CR), the nodes are expected to sense their radio
environment, take decisions on their operation in the network and learn from their
past actions to better adjust to the network dynamics. Thus, CR nodes are expected
to have a certain degree of intelligence.1 The study on the definitions of intelligence
and the so-called cognitive intelligence direct us to the observation that the ability
of active information processing to better adjust to the varying environment, as well
as effectiveness of the decision making process in various unplanned situations are
the indicators of intelligence and are used for its testing [1]. The intelligence of a
living being as well as of a machine (a CR node), can be evaluated based on its
actions resulting from the input information processing, although in most cases this
information is incomplete or inaccurate. In order to acquire the information nec-
essary for its efficient operation, a CR node has to have an access to the control
(management) channels or to interact and cooperate with other nodes. On the other
hand, these control channels and centralized manager may not always be available,
and the neighboring nodes in the CR network area are often competitors in acquiring
resources necessary for their operation, namely the spectrum and energy resources.
Thus, the major challenge for an intelligent CR node is to operate efficiently while

1 Note, that these mentioned features of a CR are a subset of abilities mentioned in the definition
of intelligence as “a very general mental capability that, among other things, involves the ability
to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly, and
learn from experience” [1]. The quoted document [1] was a public editorial statement signed by
fifty-two researchers in fields allied to intelligence testing that claimed to present those findings
widely accepted in the expert community.
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possessing an incomplete knowledge on the network environment and to cooperate
with its competitors.

The centralized spectrum allocation procedures usually apply some optimization
procedures that require the Channel State Information (CSI) of all links in the net-
work, and involve a significant amount of the overhead traffic, which in turn occupies
the scarce radio resources. These procedures are not in our focus, since we concentrate
on CR concept, which incorporates discussed intelligence of devices, not solely on
the opportunistic, but centrally managed spectrum access. Moreover, as said before,
optimization theory may not be the right tool when the initial conditions and boundary
values are unknown or uncertain. Interestingly, game theory provides tools to study
competition and cooperation among rational (intelligent) players taking decisions
based on limited or incomplete information, and possibly learning from their past
decisions outcomes [2–6]. Note that our CR nodes are such intelligent and highly-
rational players, because contrary to the living beings, they are machines that can be
programmed in such a way, to behave and respond rationally to the outside world
stimuli. They can be also programmed to exchange information, cooperate and learn,
however in practice, the volume of exchanged information, the range of cooperation
and the time needed to learn may be restricted. This is because these processes have
the associated cost, usually expressed in the amount of consumed resources (energy,
time and spectrum), that must be balanced against the benefits. There exist metrics
that allow to study the benefit of the network operation in terms of some predefined
welfare function resulting from a certain degree of cooperation among the players,
from the learning process as well as from handling the incompleteness of the infor-
mation. These metrics must be addressed to find the trade-offs between efficiency of
the network operation and its cost. For example, the cooperation among all the mobile
CR nodes in a network would result in their optimized operation, however the neces-
sary exchange of the information would require a lot of control traffic comparable in
volume to the actual information-data traffic. Competitive behavior and distributed
decision making could also converge to some optimal operation point, if the learning
process was properly designed, however every learning algorithm requires time to
converge, which may be not acceptable in highly-dynamic radio environment. Thus,
the game-theory models must be carefully selected and evaluated for the application
in CR resource sharing to comprise with practical limitations of the dynamic CR
networks.

12.2 Typical Game Models and Their Inappropriateness
for Cognitive Radio Resource Sharing

Engineers tend to see some contradiction between theory and practice. On the other
hand, they say that if the theory does not apply in practice, it means that the theory is
wrong. It can be observed that recently, application of game theory for considering
and solving the practical problems of wireless networks has attracted a considerable
attention (see [5, 6] and the references therein). It allows for studying competition
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Fig. 12.1 Distributed cognitive radio network scenario

between the nodes, as well as possible cooperation for their broadly understood
common communication benefit. Theories, however, even if attractive for provid-
ing useful solutions to the stated problems, may turn out impractical, if their basic
assumptions are difficult to be met. Let us discuss, what practical game models could
be applied for solving the problem of spectrum sharing among the nodes in CR net-
works. For this purpose, we consider some major game types that result from their
typical categorization. It is not our goal to provide a short course on game theory,
rather we aim at indicating most popular game models and discuss their appropri-
ateness for the application in our general scenario of spectrum sharing.

Our considered distributed CR network is presented in Fig. 12.1, in which a num-
ber (K ) of intelligent wireless devices are competitors in sharing available spectrum
resources, i.e. a number (N ) of spectrum units, called orthogonal frequency chan-
nels. It is assumed that one channel can be only assigned to one player, namely
the CR node. A spectrum unit has the bandwidth narrow enough to be considered
a flat-fading channel for each player. An example of the multiple access technique
using such orthogonal channels is the well-known Orthogonal Frequency Division
Multiple Access (OFDMA), in which case the network nodes share a set of acces-
sible subcarriers. Every player’s strategy is a combination of channels to be used
for her communication. The players which are able to sense the resources avail-
ability, can communicate and exchange some information. There is no centralized
management, however the CR nodes may have an access to some signaling channels,
such as the master-node signaling or the so-called Cognitive Pilot Channel (CPC),
in which some necessary signaling data are transmitted. The goal of each player is
to acquire as much spectrum bandwidth as possible to maximize its transmit-data
throughput, that is also understood as its own benefit. The CR network performance
as a whole is usually evaluated according to the efficiency of the spectrum-resources
usage (sum-throughput net) as well as to the fairness of these resources distribution.



12 Cooperation and Competition for Spectrum Sharing in Cognitive Radio Networks 273

12.2.1 Cooperative Versus Non-cooperative Games
and the Price of Anarchy

The first categorization that is usually made in game theory is to divide games as
cooperative and non-cooperative ones. The analysis of non-cooperative games is
usually focused on searching the equilibrium point, i.e. the strategy set of the players,
such that any deviation by a player from her respective strategy could only result
in a worse payoff for this player. It is worth mentioning that equilibrium can be
defined in a number of ways (the Nash Equilibrium—NE is the most known), and
proving of its existence and uniqueness is often a difficult analytical problem. In
cooperative games, the players are allowed to cooperate, bargain their assets and
form coalitions to increase their benefit, or to increase the broadly defined welfare.
The solution of a cooperative game is called bargaining solution, an example of which
is Nash Bargaining Solution (NBS). The popular metric that measures the cost of
lack of cooperation between the players is the Price of Anarchy (PoA), defined as
the ratio between the worst possible Nash equilibrium (the worst-case outcome at
any equilibrium in a non-cooperative game) and the social optimum, as a measure
of the performance of the system, as it was defined in [7]:

PoA = maxs∗S W (s)
mins∗E W (s)

, (12.1)

where W (s) is the value of the welfare function resulting from the adopted vector
of strategies s, S is the Cartesian product of the players’ sets of strategies, and E
is a subset of S containing vectors of strategies that are in equilibria. The natural
candidate for W (s) is the sum of players utilities ui (s):

W (s) =
∑

i

ui (s) (12.2)

The PoA reflects the players’ common gain (welfare), if they play the cooperative
game versus non-cooperative equilibrium for the same number of players K , their
strategies and individual outcomes.2 To be precise in some cases the ‘min’ and ‘max’
in (12.1) can be inversed due to the goal of the optimization of W (s). In such defined
PoA, the worst equilibrium utility may be 0 as social utility; thus the denominator
could be 0 and the PoA becomes infinite.

The welfare of the community of the CR network nodes is often defined as the
network sum-throughput net (the control-traffic necessary for successful communi-
cation is subtracted from the total traffic) over the available spectrum bandwidth.
Note, that for the CR nodes to cooperate and maximize the sum-throughput, the

2 Note, that sometimes PoA is defined using the cost function rather than welfare, i.e. the maximal
cost resulting from the non-cooperative game equilibrium over the minimal cost resulting from the
cooperation of the players.
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Channel State Information (CSI) of all links must be exchanged between them. The
CSI for each possible link consists of the quality indicators, e.g. Signal-to-Noise
power Ratios (SNRs), for each available frequency channel. Given the nodes mobil-
ity, and the channels dynamics in the coherence time, the volume of this information
to be exchanged can be comparable to the actual information-data traffic. Alterna-
tively, the CSI of the nodes links can be delivered to a master node or other central
element that can solve the cooperative game and inform the players on the assigned
spectrum. If we apply the complete-information non-cooperative game model to our
scenario, again the all-players CSI has to be made known to all other players, what
is completely impractical. Thus, even if the PoA is moderate in our CR network
scenario, the achieved common welfare (sum-throughput net) is very poor, because
of the communication cost of providing complete information to the players.

12.2.2 Complete versus Incomplete Information Games
and the Price of Ignorance

Another typical distinction is made between the complete-information and incom-
plete -information games. In the first case, it is assumed that the players have complete
information on the game rules, every player’s set of strategies and payoffs resulting
from the combination of the chosen strategies. Incomplete information means that
a player does not know the other players’ payoff functions, i.e. either their mathe-
matical definitions (which translate to the players’ goals)3 or the parameters of the
defined functions (which reflect how much the other players value their goals). The
incomplete-information games can also refer to the uncertainty concerning the play-
ers’ behavior and associated set of strategies, and are treated as Bayesian games,
i.e. using some probabilities of the possible sets of strategies for the players, it is
assumed with some probability, that a particular player will behave in a way to take
a particular set of options. A metric describing the cost of not having the complete
information is the Price of Ignorance (PoI), introduced in [8], and defined as the
change in the network performance under partial knowledge as compared to that of
the network under global knowledge:

PoI = max
s∗E,s∈∗E∈

Wknowledge(s) − Wignorance(s∈)
Wknowledge(s)

, (12.3)

where E and E∈ are sets of strategies in equilibrium for the case of played complete and
incomplete information game respectively. The performance W can be understood as
the network achieved welfare, and can be defined in a number of ways, e.g. the total

3 Note that imperfect information means something else, i.e. the information about the other players’
payoffs or actions is known but may contain an error, that usually has to be accepted if other actions
to minimize or eliminate this error are not undertaken.
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network power saving or its spectral efficiency (sum-throughput over the available
bandwidth) as in [8], or sum-throughput net. Moreover, in [8] the authors showed
that while local knowledge has little effect on the maximum transmission power used
by the network, it has a significant effect on the spectral performance. The ignorance
can be understood as either uncertainty of the information or as possessing complete
(certain) information, which is however reduced representation of the information
describing the players’ environmental conditions and options in detail.

As mentioned in the previous section, providing the complete information on all
the channels quality of all players to all other players in the considered CR network
is associated with a huge communication cost. Applying the Bayesian game model
to the considered problem is even more impractical, because the fading statistics
of all channels for all players are required to consider every player behavior with a
given probability. In a dynamic radio environment these statistics change with time.
Moreover, it seems impractical to consider the channel gains probability density
functions with high granularity because it exponentially increases the computational
complexity of calculating the equilibrium point.

12.2.3 Single Stage Versus Repeated Games

Another distinction is often made between single-stage games (when a game is played
just once) and repeated (multi-stage) games. In repeated games, the players choose
their actions at every stage taking their overall payoff into account over a certain
horizon of time (multiple stages of the game). It has been found that the optimal
method of playing a repeated game is to play a socially optimum strategy. In wireless
communication networks, due to the lack of information of the other players payoff
function parameters (the other players’ CSI), repeated games are considered, which
usually serve determination of these parameters by the rest of the players. At each
game stage, the players take their past experience into account, and apply a learning
mechanism to get a complete-information on the other players and approach the
social optimum, depending on the applied model. A popular example of such games
application is distributed power control in wireless networks. Practical application
of such a game for power control is possible due to the fact, that the players do not
have to know all other players complete CSI or transmit powers for calculating their
payoff, but the aggregated result of the actions taken by them, i.e. the interference
power. In the spectrum sharing games, in general this is not possible. We will come
back to the issue of aggregating the other player’s behavior in the next section.

It is important to note that repeated games with learning typically assume infinite
horizon, i.e. infinite number of game repetitions. In practice, the game is stopped at a
certain moment, when the social goal of the network is achieved, however the players
do not know when. Learning in repeated games requires a number of iterations to
converge. In dynamically changing radio environment, the CR nodes may not have
enough time to learn and adjust their strategies to achieve the global optimum, i.e.
the network maximum welfare. Limited computational resources may also lead to
the decision of stopping the game before the learning convergence result is achieved.
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Apart from social optimum in games with infinite time horizon the players may
play any Nash equilibrium which weakly dominates the min–max payoff profile of
the constituent stage game. When Nash equilibrium dominates the min-max payoff
the players has no incentives to deviate by simply play the min–max strategy at every
stage. According to the folk theorem [9] the Nash equilibrium to be feasible it must
lie in the convex hull of the set of possible payoff profiles of the stage game.

12.2.4 Fairness

Let us note, that apart from the network welfare defined as spectral efficiency or sum-
throughput fairness should be considered in spectrum sharing algorithms, because it
translates to the nodes perceived quality of experience. The Jain’s fairness index [10]
is broadly adopted as a metric to measure fairness of resource allocation in wireless
networks. Its value ranges from 1/K (when one player is allocated all resources) to
1 (when all players achieve the same throughput, regardless of their links quality).
In this work the cooperation is considered to improve the fairness and the resource
distribution process especially in cases when the CR nodes compete for the resources.

Many fairness metrics can be used in resource distribution such as max-min rule
or a generalized proportional fairness based on NBS and coalitions which was pre-
sented in [11]. Such an approach is quite interesting and similar to the coopetition
approach presented in Sect. 12.3.2. But the coopetition model is more flexible and
allows for controling the trade–off between the spectral efficiency and fairness. Thus
the nodes may choose which metric is more important for them in the current game.
In our opinion such algorithms should be strongly desired. The trade-off between
the efficiency and fairness was considered deeply last years, especially in [12] and
in [13]. In [12] the authors addressed this problem by managing the system fairness
index. They proposed two adaptive utility-based resource allocation frameworks for
subcarriers assignment and power allocation for non–real–time and real–time ser-
vices. In [13] the authors presented the comprehensive tutorial about the downlink
packet scheduling in LTE (Long Therm Evolution). In LTE it is important to pro-
vide fair and efficient transmission using the time and frequency resources, channel
condition and QoS requirements. The authors presented the state of the art and key
design issues for new packet scheduling algorithms.

12.3 Practical Approaches to Resource Sharing
with Reduced Information

As discussed in the previous section, the major problem encountered when applying
game theory models to resource sharing in the CR network is a huge (impractical)
communication cost of exchanging information necessary for the nodes cooperation
and for the application of complete information game models.
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Below, we consider two promising practical approaches to solve this problem. The
first one is based on narrowing the required information for non-cooperative game by
treating all other players as one, namely the Network Nodes Community (NNC), and
by limiting the players in resources they can acquire at a time as a remedy for greedy
behavior of the players. It has been shown in [14, 15], that such a limitation may be
advantageous for achieving high network spectral efficiency. The second approach
is also based on reducing the information required in the game, however the social
behavior is coerced by the coopetition model [16], which combines competition
and cooperation between the network nodes. In both cases the key is the required
information reduction, i.e. in a spectrum sharing game, the other players’ CSI is
reduced to a representative value, which can be made completely known to every
player. It allows to consider these games as complete-information games, and to
apply them in practical systems.

12.3.1 Game Against the Community

As mentioned above, the complete-information non-cooperative game models have
been formulated, and have practical application for distributed interference manage-
ment, due to the fact that the necessary complete information on the interference
level actually aggregates the power levels of all players and can be available for each
player, since the nodes can measure it locally. In [15], distributed subcarriers alloca-
tion method has been presented for a network of the OFDMA-based opportunistic
radios. Definition of this game involves aggregation of the players, in such a way
that each player (the network node) can view all other players as one, namely the
NNC. The complete information required in this game does not include the individ-
ual CSI of the other network nodes, but only the local (single-link) CSI. This way
non-cooperative game with full information is reasonable and practically applicable
in the dynamically changing network scenarios.4 The complete-information game is
defined as the extensive-form game, i.e. the players take decisions one after another,
as they appear in the network, what requires an admission control or collision avoid-
ance mechanism, which however maybe decentralized as in stochastic medium-
access control.5 The individual players’ set of strategies consist of possible numbers
i of spectrum units (orthogonal channels) they can acquire at the game respective
stages when they take their decisions. The NNC set of strategies J = { j} consist
of numbers j of spectrum units it can occupy at a particular game stage, given the
fact that after every stage the available resources shrink, i.e. once a player acquires

4 An observation can be made that also in every day life, whenever individuals share limited common
resources, e.g. parking places in a city, they act by viewing the rest of the community as a whole,
and play against this community, e.g. against other drivers willing to occupy available parking lots,
and do not consider each individual other player and her possible payoff.
5 The users can access the channel randomly, use the mechanism similar to 802.11 or a mechanism
based on the token exchange. Please, note that it is assumed that users can detect collisions and
react for them.
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Fig. 12.2 An algorithm for the game against the Network Nodes Community

some spectrum resources, these resources are not available for the NNC in the next
stage and this player is removed from, the NCC. The players are also limited in the
maximum number of spectrum units, they can take at a time (i → I ). The algorithm
of the game is presented in Fig. 12.2. The game is fully distributed. First, selection
of a player is done based on the random access with collision avoidance. Although
it is a distributed action, it involves other players. Decision is made by each player
individually. A player removal from the NNC can also be done in a distributed fasion,
simply by tagging the players who have already made their decisions in the game.
The minimum signalling is required in a control channel to start and finish the game.
Here, we do not specify the details of these mechanisms.

The payoff function p(k)
i, j applied to assist player k at the game stage, in which she

takes her decision is defined as follows:
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Fig. 12.3 Data sum-throughput averaged over the available bandwidth versus the number of CR
nodes for the repeated game against the network nodes community

p(k)
i, j =






1

N

∑

n∗S(k)
i

log2(1 + α(k)γ (k)
n )





· {N (k) − i − j}, (12.4)

where p(k)
i, j is the number of channels available at the kth stage of the game (note

that N = N (1)), γ
(k)
n is the kth player’s (estimated) SNR in channel n, whose index

n belongs to the set S(k)
i of indices of the kth CR node’s i estimated highest-SNR

channels (the cardinality of S(k)
i is i , and i → I , since we restrict each player from

occupying more than I spectrum units at a time), and α(k) is the so-called SNR-
gap, depending on the kth player’s target Bit Error Probability (BEP) Pe. One may
interpret Eq. (12.4) as the total normalized throughput (throughput divided by the
spectrum unit bandwidth), which could be obtained by the NNC in the next stage, in
case it occupied the remaining channels and had the same average spectral efficiency
as the considered player. The first factor in Eq. (12.4) is the contribution of player k
to the network spectral efficiency, while the second represents the network potential
to serve other nodes. This way, in the decision-making on how many SCs to occupy,
the players factor the social aspect of the network (to serve multiple nodes) and not
just their own benefit.6

In Fig. 12.3, simulation results of the applied game against the NNC for spectrum
sharing are presented as the sum-throughput in the example OFDMA system. The
assumed number of CR nodes (players) K ranges from 4 to 128, and N = 256

6 Note that in [15], additionally pricing component has been included in formula (12.4), however
when such a Social-Behaviour Model is used, and when I is properly chosen, optimal pricing
parameter can be close to zero.
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orthogonal subcarriers are available. Rayleigh fading outdoor rural channel with
exponentially decaying power profile is assumed. The total transmit power in the
system is limited and fixed to K · Pnode, where Pnode is the average transmit power
per the CR node. The players have random SNR of uniform distribution ranging from
10 to 35 dB. The target BEP is assumed to be 10−4, the same for all users. The results
are compared against classical centralized approaches: max-SNR, which provides
the highest throughput, and Round-Robin algorithm, which is considered to provide
good fairness. Note that, the game against the NNC is efficient when the number of
players in high enough to be able to occupy all available resources (higher than 16
in our case) and when the maximum number of channels that can be acquired at a
time is well adjusted (in our case I = N/K , and thus, it is possible that all players
get their fair share of the resources. When I increases the efficiency increases while
the fairness decreases and vice versa).

12.3.2 Coopetition

Coopetition is a neologism combining the notion of cooperation and competition.
Originally coopetition was defined in [16]. This approach is based on the fact that
cooperation creates an added value to the resulting product (outcome) of this coop-
eration and that this added value can be distributed among competitors who have
created it. According to the popular definition, coopetition is the behavior of two
or more competitors cooperating in some areas of their usual activities or business.
They ussually cooperate because they want to decrease common costs.

The idea of applying coopetition in resource sharing is to let the players compete
for resources using reduced and representative information about their CSI, and then
to form coalitions and cooperate to refine the resulting spectrum allocation. The
applied algorithm is presented in Fig. 12.4.

In the first phase, each CR node of the network calculates a compact metric, which
represents their spectrum demands, and their CSI. A good example of such metric
representative for the CSI is the effective SNR used as channel quality indicator
(CQI). The effective SNR [17, 18] may be calculated for the whole available fre-
quency band. Such compact (reduced) information can be exchanged by the nodes or
transmitted to a master node at relatively low cost, expressed in the volume of traf-
fic. Such metrics allow for signalling reduction and provides necessary information
which can improve the system performance and fairness than in system without the
knowledge about other nodes. In the competition phase, non-cooperative game model
with complete information is applied, e.g. the Cournot oligopoly model [3, 4]. The
Cournot competition has been considered in [19–21] for radio resource allocation
in flat fading channels or in the channels described by the CQI. The game outcome
is the number of the spectrum units “won” (acquired) by each player, however the
exact location of these units on the frequency axis is not resolved at this stage, yet.
These acquired numbers of spectrum units constitute the players’ assets reflecting
their input to possible coalitions in the next phase of the algorithm.
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Fig. 12.4 Coopetition algorithm for spectrum sharing

In the cooperation phase, the coalition games can be used to decide how the final
resource allocation will be. The coalitions are formed just to define the order of spec-
trum allocation. The stronger the coalition in terms of their assets (the total number
of acquired channels), the higher priority in the order of acquiring the resources. A
good option is to form a coalition that can obtain the majority of resources, yet having
enough flexibility in sharing them between the coalitionists. Flexibility of a coalition
c is defined as the number of possible combinations of choosing nc channels from a
set of N (c) channels available for this coalition. In such a case, the strongest player
with the highest assets would form a coalition with possibly the weakest player, who
would assure the least majority of gained assets (e.g. 51 % of remaining available
resources), because weak players (with a small number assets) in the coalition allow
for higher flexibility in resource distribution.7 The strongest coalition (with the high-
est number of channels) is the first one for the particular channels selection. The
second strongest coalition has to sense the spectrum again and selects a subset of
remaining channels, etc. As a result of the cooperation phase the concrete allocation
of the spectrum units (frequency channels) to the players is done. In the considered

7 This approach is similar to Parliamentary Games, in which after elections, the players have some
assets (sits in the parliament), and form coalitions to distribute resources (government positions).
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Fig. 12.5 Data sum-throughput averaged over the available bandwidth for various coopetition
scenarios

option of coalition’s formation, the players with the higher number of resources
are prioritized. The main goal for this phase is to mix the “strongest” players with
the highest number of resources, in average having high link quality with the weak
players having worse channels quality. This improves fairness in resource sharing.
Finally, the transmit power is adjusted by each player. For this purpose the classic
water-filling can be applied, fixed power allocation per subcarrier or the so-called
game against the nature in case of the CSI uncertainty (imperfect CSI) [22].

In Figs. 12.5 and 12.6, simulation results of the applied coopetition methodology
for spectrum sharing are presented as the sum-throughput and Jain’s fairness index
in the example OFDMA system. The assumed system parameters are the same as in
the previous subsection, however a fixed number of players K = 8 has been adopted.
Different game types refer to the parameters of the Cournot game, defined in [21],
i.e. C1, C2 and C3 respectively refer to the game outcome in case of NE without any
minimum resource assignment, of NE with guaranteed minimum resource assign-
ment, and of the behavior of players maximizing their payoff. The letters ‘c’ and
‘a’ in the game-type refer to constant values of the cost-function parameters in the
Cournot formulation (fixed cost equal to 0, and the spectrum unit cost equal to 1), and
to adapted valued of these parameters (For details of the Cournot game formulation,
refer to [19] and [21]). The coopetition results presented in Figs. 12.5 and 12.6 are
compared with the results obtained for pure competition using the Cournot game
only (without the cooperation phase), in which the the players choose their resources
according to their strength starting from the strongest one, with a pure cooperative
complete-information game NBS (as defined in [23]), and with the Round-Robin
and max-SNR algorithms outcomes.
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Fig. 12.6 Jain’s fairness index for various coopetition scenarios

Table 12.1 Indicative network quality metrics

Model PoA PoI Fairness Net-throughput

Game against the community 0.36 0.43 0.82 2.1
Coopetition (C1c-type) 0.15 −0.38 0.42 5.1
Cournot competition 0.14 −0.43 0.39 5.3
Cooperation (NBS) 1 0.78 1 2.8

Note, that coopetition significantly increases spectral efficiency of the network
in comparison with cooperative NBS and Round-Robin solutions, and its fairness is
improved when compared with pure Cournot competition and max-SNR algorithms.

Here above, we have presented the game models outcomes—the network effi-
ciency expressed in terms of the information-data sum-throughput. As mentioned
above, the key idea in the presented games is to reduce the information that must
be exchanged by the nodes. In Table 12.1, we present the values of some consid-
ered metrics that reflect the cost of this reduction for the considered examples of
game models (game against the NNC with I = N/K , coopetition of C1c type,
pure Cournot competition and cooperative complete-information game defined in
[23] for number of players K = 8. The PoA and PoI are calculated for the reduced
complete-information games outcomes with respect to unreduced (full CSI) com-
plete information games. The welfare considered for PoA and PoI calculation is the
network sum-throughput-net (maximum data throughput minus the control traffic
necessary for required information exchange), i.e. the effective spectral efficiency. It
is assumed that the channel coherence time allows to represent either the complete
CSI per channel or the reduced information (effective SNR) in average of 2 bits per
an OFDM symbol.
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12.4 Conclusion

The question of how the theory of competition and cooperation applies to practical
spectrum sharing in wireless cognitive radio networks is often posed by wireless com-
munication engineers and researchers, who understand practical limitations of these
networks. These limitations refer to limited knowledge of the wireless environment
of the nodes, and thus limited possibilities of cooperation. Gathering the complete
information comes on a significant communication cost of the order of actual data
traffic. We have presented two practical approaches to this problem, which make use
of intentionally reduced information that the CR nodes have to exchange. In particular
the coopetition methodology, which combines the advantages of healthy competition
and limited cooperation seems to be a good idea compromising the benefit (network
welfare) versus the above mentioned cost. The fairness of resources distribution using
this methodology is also increased when compared to pure competitive behavior of
nodes.
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participation in the European COST Action IC0902.

References

1. Editorial: Mainstream science on intelligence. Intelligence 24(1), 13–23 1997 [also in Wall
Street Journal on December 13, 1994]

2. Straffin, P.: Game Theory and Strategy. The Mathematical Association of America, Washington
(2002)

3. Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell Publishers,
Oxford (2006)

4. Watson, J.: Strategy Introduction to Game Theory. W.W. Norton & Company, New York (2002)
5. MacKenzie, A., DaSaliva, L.: Game Theory for Wireless Engineers. Morgan & Claypool Pub-

lishers, California (2006)
6. Lasaulce, S., Tembine, H.: Game Theory and Learning for Wireless Networks: Fundamentals

and Applications. Academic Press, Boston (2011)
7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the 16th Sympo-

sium on Theoretical Aspects of Computer Science, 1999
8. Komali, R.S., Thomas, R.W., DaSiva, L.A.: The price of ignorance: distributed topology control

in cognitive networks. IEEE Trans. Wireless Commun. 9(4), 1434–1445 (2010)
9. Ratliff, J.: A folk theorem sampler. Great Introductory Notes to the Folk Theorem (1996)

10. Jain, R., Chiu, D.M., Hawe, W.: A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer Systems. DEC Research, Report TR-301 (1984)

11. Han, Z., Ji, Z., Liu, K.J.R.: Fair multiuser channel allocation for OFDMA networks using nash
bargaining solutions and coalitions. IEEE Trans. Commun. 53(8), 1366–1376 (2005)

12. Rodrigues, E.B., Casadevall, F.: Control of the trade-off between resource efficiency and user
fairness in wireless networks using utility-based adaptive resource allocation. IEEE Commun.
Mag. 9, 90–98 (2011)

13. Capozzi, F., Piro, G., Grieco, L., Boggia, G., Camarda, P.: Downlink packet scheduling in LTE
cellular networks: key design issues and a survey. IEEE Commun. Surv. Tutorials 99, 1–23
(2012)



12 Cooperation and Competition for Spectrum Sharing in Cognitive Radio Networks 285

14. Perlaza, S.M., Debbah, M., Lasaulce, S., Bogucka, H.: On the benefits of bandwidth limiting in
decentralized vector multiple access channels. In: Proceedings of 4th International Conference
on Cognitive Radio Oriented Wireless Networks and Communications, Germany (2009)

15. Bogucka, H.: Optimal resource pricing coercing social behavior in wireless networks. In:
Proceedings of the IEEE International Communications Conference (ICC), Kyoto (2011)

16. Brandenburger, A.M., Nalebuff, B.J.: Co-opetition: A Revolutionary Mindset That Combines
Competition and Co-operation: The Game Theory Strategy Thats Changing the Game of Busi-
ness. Doubleday Publication Press, New York (1996)

17. Nortel: Effective SIR computation for OFDM system-level simulations. TSG-RAN WG1 35,
R03–1370 (2003)

18. Kliks, A., Zalonis, A., Dagres, I., Polydoros, A., Bogucka, H.: PHY abstraction methods for
OFDM and NOFDM systems. J.Telecommun. Inf. Technol. 3, 116–122 (2009)

19. Niyato, D., Hossain, E.: Microeconomic models for dynamic spectrum management in cogni-
tive radio networks. Microeconomic models for dynamic spectrum management in cognitive
radio networks. Springer, New York (2007)

20. Niyato, D., Hossain, E.: A game-theoretic approach to competitive spectrum sharing in cogni-
tive radio networks. In: Proccedings of the IEEE Wireless Communications and Networking
Conference, Hong Kong (2007)

21. Parzy, M., Bogucka, H.: Coopetition practical methodology for efficient sharing of radio
resources in wireless networks. In: Proceedings of the 4th International ICST Workshop on
Game Theory in Communication Networks (Gamecomm), Paris, France (2011)

22. Bogucka, H.: Game theoretic model for the OFDM water-filling algorithm with imperfect
channel state information. In: IEEE International Communications Conference (ICC) (2008)

23. Chee, T.K., Lim, C.-C., Choi, J.: A cooperative game theoretic framework for resource alloca-
tion in OFDMA systems. In: 10th IEEE Singapore International Conference on Communication
systems (ICCS), Singapore (2006)



Chapter 13
Cooperative Detection of PUE Attacks in CRNs

Olga León, Juan Hernández-Serrano and Miguel Soriano

Abstract Cognitive radio networks (CRNs) act as secondary users of the spectrum
left unused by licensed services or primary users thus improving spectrum usage.
However, the specific features of CRNs give rise to new security threats, such as
the primary user emulation (PUE) attack, in which a malicious user impersonates
a primary transmission to prevent the CRN from using a vacant band. With the
aim of detecting such kind of attacks, in this chapter we describe a cooperative
localization method specifically suited to CRNs. Localization is a powerful PUE-
detection technique in several scenarios where the position of the primary users is
well known, e.g. TV towers in IEEE 802.22 standard. Simulations results show the
goodness of the proposed method and its suitability to typical CRN scenarios.

13.1 Introduction

Cognitive Radio Networks (CRNs) [4] are regarded to be a possible solution to the
current underutilization of the spectrum by allowing Cognitive Radios (CRs) to act
as secondary users of the spectrum left unused by licensed services or primary users.
Thus, spectrum sensing is a crucial task in order to detect vacant bands or white
spaces and avoid interfering primary transmissions. If a primary signal is detected
in the operation channel, the CRN must switch to another band (a process known as
spectrum handoff). Besides, if another secondary user is already operating in such
band, self-coexistence mechanisms are needed to share the spectrum fairly.
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Due to the specific characteristics of CRNs, new threats have arisen [13, 25].
In particular, the community research has paid special attention to the Primary
User Emulation (PUE) attack, which can severely undermine the primary detec-
tion process. In the PUE attack [10], an attacker emulates a primary transmission in
order to prevent secondary users from using a vacant band. Consequently, there is a
need for providing effective methods so as to distinguish between legitimate primary
transmissions and fake ones (PUE attacks).

Research on this topic has been generally based on the recently approved standard
IEEE 802.22 WRAN Wireless Regional Area Networks (WRANs) [1], that defines
a centralized network composed by a Base Station (BS) and a set of CRs. In such
kind of networks, two different types of primary users are defined: TV emitters and
wireless microphones. Most of the existing countermeasures for the PUE attack are
based on energy measurements of the received signal that are provided by members
of the CRN. These measurements are combined in a fusion center, typically the
BS, in order to detect whether a given emitter is a legitimate primary user or not.
However, these approaches can be easily overcome by an attacker by selecting an
optimal position and properly adjusting its transmission power.

Location of the transmission source can be a valuable tool to detect such attacks
whenever the position of true primary transmitters is known, as it is the case of TV
towers in IEEE 802.22 WRAN networks. In [26] we presented a cooperative location
method to effectively deal with PUE attacks in such scenarios. In this method, the
position of a potential attacker is estimated based on a set of time measures, which
are derived from the feedback provided by members of the CRN. Besides, a heuristic
approach is adopted to improve the accuracy of the estimation. The decision about
the existence of a primary user or an attacker is then performed by comparing the
position estimate with the known positions of true primary users.

The work presented in this chapter is based on [26]; work that is complemented
with background knowledge that makes the proposal easier to understand for a non-
specific audience. The chapter is structured as follows. Section 13.2 provides an
overview of the threats to CRNs. Section 13.3 is devoted to describe the PUE attack,
its variants and the proposed countermeasures. Section 13.4 analyzes several location
techniques used in wireless networks and their suitability for CRNs, and describes the
localization method to detect PUE attacks. In Sect. 13.5 the goodness of the proposed
method is proved via simulation and finally, in Sect. 13.6 we provide the conclusions
of this work.

13.2 Security Threats in CRNs

Wireless networks are growing in popularity due to its easy deployment and their
ability to provide high-speed access to portable devices, and to areas where running
cable is not an option. However, malicious users can also take advantage of such ease
of access and mobility to attack from any location. As wireless communications use
the air as the physical media, they are more easily accessed by an attacker and
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Table 13.1 Attacks to CRNs (new specific ones in bold)
Physical Link Network Transport

Spoofing∗ / sybil∗ [15, 22]

Jamming∗ Packet injection
PUE* [11] Selfish [22] Jellyfish [2]
Learning engine* [13] Selective forwading [22] lion* [24]
Common control channel* [35] False feedback [22, 28] Key depletion* [28]

Worm/sink-hole [22]

thus intrinsically more vulnerable than its wired counterparts to attacks such as
eavesdropping, data modification, impersonation or Denial of Service (DoS).

Due to its wireless nature, CRNs inherit most of the threats already reported
in the literature in the context of wireless networks. However, the flexibility and
reconfigurability capabilities of these networks can make them even more sen-
sitive to conventional attacks but also expose them to new security implications
[7, 13, 25].

In the context of CRNs, we define an attack as an action that achieves at least one
of the following goals:

• Unacceptable interference to primary users. Because of the attack, the commu-
nication channel of the primary/licensed users is diminished or becomes unusable,
i.e., a DoS attack.

• Missed opportunities for secondary users. An attacker could prevent secondary
users from using available spectrum bands, by reducing the channel performance
or denying service to secondary users, among others.

• Access to private data. An attacker could try to access data without authorization.
As a consequence data must be secured by cryptographic primitives.

• Modification of data. An attacker could try to modify the data exchanged between
several entities to its own advantage. Thus, integrity of data must be assured.

• Injection of false data. Injection of false data could lead the CRN to behave in an
unpredictable way or to follow the attacker guidelines. Therefore, authentication
of information sources must be guaranteed.

As in any other type of network, the last three threats may be overcome by pro-
viding basic security services such as confidentiality, integrity and authentication.
However, the remaining threats are specific to CRNs and constitute the base for
several attacks that will be described throughout this section.

Table 13.1 depicts a taxonomy of the attacks to CRNs according to the layer that
is the target of the attack. Specific attacks to CRNs appear in bold. Next we provide
an overview of these attacks based not only on the target layer but also on whether
the attacker is a member of the CRN (inside attacks) or not (outside attacks). While
any attack in the table can be carried out by the actual CRN members (often with an
increased scope), some attacks can also be performed by outsiders; such attacks are
marked with an asterisk in the table.
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13.2.1 Outside Attacks

Outside attacks are those carried by an entity from outside the victim CRN, i.e.,
attacks that can be executed by a non-authorized entity. As a result, we assume
the attacker cannot log in (spoof) the victim network. Obviously, when the attacker
spoofs an authorized identity can also execute insider attacks (those performed by
authorized entities). For this reason, authentication/authorization at the link layer
should be mandatory to secure the network.

The Sybil attack is a form of spoofing attack in which the attacker spoofs multiple
identities, and hence it can gain a larger influence than a simple spoofing attack.
This attack, which was originally intended to attack the redundancy mechanisms of
peer-to-peer storing systems, is also commonly used to attack routing protocols, data
aggregation mechanisms, voting systems, avoid detection of malicious users, etc.

Notice that it cannot be assumed that an outside attacker, although it is not autho-
rized, has no knowledge about the victim network. Quite the opposite, the attacker
may know the sensing protocols, the potential primary users, etc. and hence execute
more specific attacks.

One of the most known attacks to wireless networks at the physical layer is jam-
ming. Within the simplest form, a jamming attack involves the radiation of radio
signals that intentionally1 disrupt communications in the victim network. If the gen-
erated interferences are big enough, they can substantially decrease the performance
of communications or completely interrupt them, thus implementing a DoS attack.
In CRNs, however, interferences can be also created by fake primary users, lead-
ing to the PUE attack, which will be describe more in detail in Sect. 13.3, or the
learning engine attack. Learning engine attacks are based on disrupting the learning
mechanisms used by CRs by altering the sense medium, thus leading CRs to wrong
decisions with regard to network configuration [13].

A jamming attack can also lead to a common control channel attack when the target
channel is the one used by members of the CRN to share information about spectrum
availability/usage. Note that the lack of knowledge about available bands may prevent
the CRN from operating, i.e., leads to a DoS attack. Besides, because these channels
carry sensitive information, they must be secured in order to guarantee confidentiality,
authentication and integrity of the data by means of cryptographic primitives, and
thus prevent an eavesdropper from obtaining information about the operation of the
CRN. As we will see in Sect. 13.3, an attacker may use this information to perform
a more damaging attack, such as the PUE attack.

Finally, CRNs are also exposed to cross-layer attacks, which exploit the vulnerability
of a given layer but are targeted to disrupt an operation at a different layer. Because
these attacks involve different layers they are especially difficult to detect. However,
the amount of cross-layer attacks that can be performed by outsiders is somehow

1 The term jamming is used for intentionally disruption of communications while the term inter-
ferences usually refers to unintentionally one.
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limited, since they can only access the physical or the link layer. As an example, an
outsider could perform a key depletion attack [28] or the Lion attack [20, 24], which
is based on the PUE attack and will be described in Sect. 13.3.

13.2.2 Inside Attacks

An inside attacker can perform any of the outside attacks presented in the previous
section but also others that take advantage of its authorization to use the network. In
the following, we present an overview of such attacks and classify them according
to the TCP/IP model layer in which they are performed.

Attacks to CRNs at the link layer are mainly targeted to the cooperative sens-
ing mechanisms. It is well known that cooperation among CRs improves spectrum
sensing, but it is always assumed that secondary users are honest and willing to
cooperate. However, a given CR may report false measurements either because it has
been compromised or due to malfunctioning; or it may decide to not cooperate in
order to increase its benefit (for example, saving energy) sinking in selfish behavior.
Both type of behaviors can increase the probability of wrong decisions regarding
spectrum opportunities [9].

At the network layer, most attacks focus on the routing protocols, either producing
a DoS or modifying the protocol behavior to acquire a profit. Note that these attacks
may only affect to distributed CRNs in which, typically, the used routing protocols are
the same as in other existing wireless networks. Thus, well-known attacks to routing,
especially the ones targeted to ad-hoc routing such as the selective forwarding attack,
the sink hole attack or the worm-hole attack [23], can also be executed against CRNs.

Finally, most attacks at the transport layer are based on disrupting TCP connec-
tions. As an example, packet injection aims at producing a DoS or gaining access to
protected resources by injecting forged packets into an existing connection. Another
example are cross-layer attacks, such as the Jellyfish attack [2], which is performed
at the network layer by means of packet disordering, packet dropping and packet
delay but targeted to degrade the throughput of TCP connections.

13.3 The Primary User Emulation (PUE) Attack

13.3.1 Description of the Attack

CRNs act as secondary users of the licensed spectrum and must not interfere with
primary transmissions. An adversary could take advantage of this feature in order
to disrupt communications within a CRN by performing a PUE attack. In a PUE
attack, first coined in [10], an attacker pretends to be a primary user or incumbent
by transmitting a signal with similar characteristics to a primary signal or replying a
real one. If the attack succeeds, it prevents the CRN from using a vacant band.
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Moreover, with previous knowledge on the CRN operation, the attacker can force
PUE attacks whenever the CRN switches from one channel to another, leading to a
DoS. The attacker can gather information about the channel being used by the CRN
in the following ways:

• By performing spectrum sensing until finding the new channel of operation of the
CRN. In order to minimize the search time, the attacker may discard some channels
directly, e.g., channels already in use by primary users. Moreover, if the attacker
lies in the CRN area, it can estimate the most likely CRN channel by means of its
own sensing measures.

• By eavesdropping the common control data of the CRN (if exists). This threat can
be easily overcome by securing the channel by means of cryptographic primitives,
as it is already recommended by the IEEE 802.22 WRAN standard.

The impact of the PUE attack depends on several factors, such as the location
of the attacker or the sensing mechanism used by the CRN. Selecting an optimal
position to perform the attack will cause many secondary users reporting the existence
of a primary transmission, and therefore will lead the CRN to look for another
portion of the spectrum. Moreover, if the sensing mechanism used by the CRN
looks for specific characteristics of the signal, the fake signal should fulfill several
requirements with regard frequency, code, modulation, etc., in order to appear as a
legitimate one. Although in this case the PUE attack is harder to perform, it is still
quite feasible because the attacker can program its CR device in order to match the
transmission parameters of a primary user, or even transmit a real primary signal
previously recorded.

The most widespread sensing mechanism used for primary detection is energy
detection [8], which simply relies on an energy threshold in order to take a decision
about the existence of a primary. Because energy detection is unable to discriminate
between primary and secondary signals, the 802.22 standard suggests the use of quiet
periods in the CRN in which transmissions are not allowed. This allows perform-
ing spectrum sensing while avoiding the potential interferences that secondary users
could produced. Thus, any transmission detected during that period may be consid-
ered as a primary signal if the received power at CRs is above a given threshold.
This threshold plays an essential role since the lower the threshold, the higher the
detection probability but also the easier to perform a PUE attack.

Although frequency handoffs could also be forced by means of jamming, there
are fundamental differences which may motivate an attacker to perform specifically a
PUE and not simply jam the channel. First, a CRN is required to perform a frequency
handoff upon detection of a primary transmission, even if the remaining channels
offer worse transmission conditions. If the channel is jammed, the victim CRN may
just perform the handoff if the overall transmission conditions are below a certain
threshold and a better channel is available. Moreover, note that the cost of a PUE
attack comes down to transmit a signal similar to a primary signal, e.g., TV or
wireless microphones signals, or replay a real one. Besides, with the same effort
or amount of resources the scope of a PUE attack can be much larger. Even if the
fake primary transmission is only detected in a small area of the CRN, it can force a
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frequency handoff and affect the whole CRN. On the contrary, the fact of degrading
the communication channel only in a small area should not be enough to force the
CRN to perform such handoff.

13.3.2 Variants of the Attack and Their Scope

The basic PUE attack is targeted to force a frequency handoff in a CRN. However, it
must be noted that an attacker may also perform a PUE attack aiming at disrupting the
learning process of CRs, i.e., to perform a learning engine attack (see Sect. 13.2.1). If
a successful PUE attack is performed on a given channel during the learning phase of
the CRN, that channel may be considered to be occupied during the whole operation
of the CRN. Thus, the effect of this variant lasts for a longer period of time than in
the basic attack.

PUE attacks can also be used to perform cross-layer attacks, such as the Lion
Attack [20, 24]. The Lion attack is performed at the physical-layer and targeted to
the transport layer, aiming to degrade the throughput of TCP connections established
in CRN. It is based on performing a PUE attack in order to force a frequency handoff
in the CRN, which leads to the interruption of all communications in the network
for a given period of time. This interruption can have a harmful impact over the
throughput of TCP connections due to the interaction with its congestion control
mechanisms [5].

A smart version of the attack could be implemented based on the knowledge of
the value of the retransmission timer of the TCP connection. In typical CRNs such
as WRAN 802.22 networks [14], the Round-Trip-Time (RTT) value for in-network
communications is around some hundreds of microseconds. Although the value of
the retransmission timer, from now on RTO (Retransmission TimeOut), is variable
and depends on the RTT estimations, most implementations round off its RTO to
a minimum value of typically 100 or 200 ms, much higher than the real RTT. This
fact will lead the TCP sender to make use of a fixed value for the RTO, which will
be doubled for each unsuccessful attempt. The attacker can take advantage of this
information to force handoffs at the specific instants in which retransmission attempts
are performed and produce a DoS [20].

13.3.3 Countermeasures

Protecting CRNs from PUE attacks is indispensable and requires devising robust
techniques for verifying the authenticity of primary signals, such as TV broadcast
systems or wireless microphones. The simplest way to achieve it would be to embed a
signature in an incumbent signal or to use an authentication protocol between primary
and secondary users. However, these approaches do not conform to the requirement
established by the Federal Communications Commission (FCC) [17], which states
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that no modification to the incumbent system should be required to accommodate
opportunistic use of the spectrum by secondary users.

Under such demand, most proposals appeared in the literature are based on energy
measurements and usually make use of hypothesis testing to reach a decision about
the existence of an attacker [11, 12, 21]. As energy detection is typically used in
CRNs with spectrum sensing purposes, it is also often the preferred mechanism to
detect PUE attacks, as it does not require extra hardware in CRs.

Energy-based approaches can generally deal with PUE attacks, assuming primary
users with known and fixed locations, and with transmission powers considerably
higher than an attacker [11]. Despite it, in network environments where primary users
are mobile and transmit with low power transmission, i.e. wireless microphones, they
are prone to fail in detecting such attacks.

There exist alternative countermeasures such as Radio Frequency Fingerprinting
(RFF) [3], which is based on the fact that the radio signal emitted by a radio trans-
mitter when it is activated exhibits a transient behavior with respect to instantaneous
frequency and amplitude, known as the fingerprint of a radio device. This method
requires recording a wide variety of signals emitted by both CRs and incumbents,
extracting the transient portion that reflects the unique attributes of each device for
each signal, and storing the different patterns or fingerprints. Another disadvantage
is that, as the transient behavior of emissions vary due to aging and degradation
of the devices, the set of fingerprints must be periodically updated. In spite of its
complexity, the advantage of this technique is that it can be applied to identify any
transmitter, no matter whether it has a fixed location or it is mobile.

In IEEE 802.22 WRAN networks two types of primary users are defined: TV and
wireless microphone transmissions. When a PUE attack is based on wireless micro-
phones, energy-based techniques are not applicable because wireless microphones
are low power devices with a transmission range of at most 100–150 m. Anti-PUE
schemes based on cooperative energy sensing, where decisions are taken based on
measurements performed by many CRs, would probably fail on detecting such attack:
due to the large dimension of CRNs, most of the CRs would not be in the range of
the emitter. Moreover, wireless microphones are usually mobile, a fact that makes
even more difficult to determine whether a given source is legitimate or not.

Being aware of the difficulty of detecting such attacks and against the requirement
established by the FCC, the 802.22 Working Group (WG) proposed the use of a
beacon protocol [6]. In this approach, wireless microphones should send a special
signal before starting transmission for signaling their presence. It could be embedded
additional information, such as digital signatures, in the beacon signal, thus allowing
to easily authenticate the device.

In [27], the authors proposed an approach similar to random frequency hopping,
where secondary users randomly select a channel to transmit, avoiding PUE attacks.
Although it represents an effective countermeasure to avoid PUE attacks and can
also deal with traditional jamming attacks, it leads the CRN to continuously per-
form frequency handoffs, implying the interruption of all communications until the
CRN is completely operating at a new frequency. Moreover, the success of this
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countermeasure strongly depends on the number of available channels when the
attack is performed: lack of alternative channels can lead to a DoS.

Finally, an effective countermeasure to mitigate the impact of the PUE attack on
TCP connections, i.e., the Lion attack, could be to make TCP aware of the interrup-
tions caused by frequency handoffs. In [24], a cross-layer solution is proposed. This
proposal is a modified version of Freeze-TCP in which the TCP sender gets infor-
mation physical disconnections and freezes its transmission and congestion control
parameters during the frequency handoff.

13.4 Detection of PUE Attacks Based on Cooperative
Localization

In this section, we describe a cooperative location method to estimate the position of
an emitter and detect PUE attacks in CRNs [26]. The proposed method is intended to
be applied to infrastructure-based CRNs based on the IEEE 802.22 WRAN standard,
where primary users are TV towers.

In order to detect primary emitters in the CRN channel of operation, either legit-
imate or fake, all CRs perform spectrum sensing and report their measurements to
the BS. The BS acts as a data fusion center and takes a decision about the existence
of a primary transmission based on these reports. If there is evidence of the presence
of a primary user, the CRN applies a localization method to estimate the position
of the emitter. The transmission is considered to be legitimate whenever its position
matches any of the known TV transmitters’ positions. Otherwise, it is assumed that
a PUE attack is being performed.

The location method is based on the Time Difference of Arrival (TDoA) technique
[31] and applies multilateration in order to estimate the position of the emitter. In
particular, Series-Taylor estimation is used to solve the system of equations derived
from the set of TDoA measures. On the one hand, TDoA does not require the collab-
oration of the node to be located and provides higher accuracy than other techniques
such as RSS (Received Strength Signal). Series-Taylor estimation is a commonly
used approach for node’s location because it provides higher accuracy than most
of the non-iterative methods. Besides, it is preferable to filter schemes such as the
Extended Kalman’s filter, which exhibit higher complexity and provide no signifi-
cantly improvement when the node to be located is static.

In the following we provide a detailed description of this method. We first describe
the existing location techniques and justify the use of TDoA in our proposal. Then, we
present the assumptions that have been considered for its design. Next, we describe
the steps to follow in order to obtain TDoA measurements and to apply Series-Taylor
estimation in order to derive the position of the emitter.
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13.4.1 Background on Location Techniques

Physical location of RF transmission sources has been a hot topic for many years
in wireless applications, especially for those related to military and safety purposes,
but recently its interest has even increased due to its application to a wide variety of
civil services such as E-911 telephone service, traffic routing, fleet management, etc.

Wireless location techniques fall into two main categories: mobile based and
network based. In mobile-based location systems, a given mobile node determines
its position by means of signals received from some BSs or from the global posi-
tioning system (GPS). Network-based technologies rely on measurements of certain
distance-dependent parameters performed at the BS or at nodes whose position is
well known. Typically, these parameters are Received Signal Strength (RSS), Angle
of Arrival (AoA) and Time of Arrival (ToA).

GPS-based techniques rely on devices that report their position which have been
computed by precisely timing the signals sent by GPS satellites. Obviously, this will
not be the case of an attacker device, and as a consequence GPS-based techniques
are not suitable for locating an attacker but an actual legitimate node of the network.

RSS-based techniques rely on the fact that the signal strength varies inversely
with the square of the distance in free space. Therefore, assuming that the path loss
model is known, it is possible to locate a transmission source by measuring the
signal strength received at several nodes. Although RSS measurements are relatively
inexpensive and simple to implement in hardware [32], they are susceptible of high
errors due to the dynamics of indoor/outdoor environments, mainly due to multipath
signals and shadowing. The effect of shadowing is usually modeled as log-normal
and leads to RSS-based estimates with variance proportional to its range. Therefore,
although there have been some successful attempts in order to apply RSS-based
location techniques to CRNs [11], they are limited to ranges of at most 2 km and
a great number of sensor nodes, from hundreds to thousands, cooperating in the
localization process. As a result, RSS-based techniques may not be suited for IEEE
802.22 WRAN networks: first, in these networks the BS range is up to 100 km; and
second, since these networks are targeted to rural environments, one cannot expect
cooperation of such a great amount of nodes during the location process.

In ToA, distances from the node to be located to some reference nodes are com-
puted by measuring the signal propagation time. Usually [33], measurements are
obtained by transmitting a signal to the node we wish to locate, which immediately
replies with its own signal. The time elapsed since the transmission of the signal
until the reception of the reply is then used to estimate the distance between both
nodes. As in mobile-based approaches, it requires the collaboration of the node to
be located and therefore we cannot either apply ToA in CRNs to obtain the posi-
tion of a potential attacker. Time Difference of Arrival (TDoA) techniques bypass
the need of cooperation by computing the differences in ToA measurements for a
given signal’s source at two or more pairs of nodes. However, TDoA requires a tight
synchronization among the nodes that cooperate in the location process.
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Finally, the angle of arrival (AoA) method can be used to locate an emitter by
measuring the direction of the received signal at different reference nodes and apply-
ing simple triangulation. However, this technique is extremely affected by multipath
and requires every reference node to have a directional antenna or antenna arrays for
locating purposes [34]; an strong requirement in CRNs.

From the previous reasoning, only TDoA can be used in IEEE 802.22 WRAN
networks for locating a PUE attacker. RSS-based techniques are not accurate enough
for long-range links, and GPS an AoA-based require new specific hardware. In the
following subsections we go into detail in how TDoA ideally works and how to apply
it to non-ideal (noisy) real channels.

13.4.1.1 TDoA

TDoA utilizes cross-correlation to calculate the difference in the ToA of an emitter
signal at two or more pairs of nodes, thus requiring at least two TDoA measurements
(three nodes or more) to locate an emitter on a surface, and three measurements (at
least four nodes) to locate the emitter on the 3-dimensional space. As a drawback, it
requires a tight synchronization among the nodes. Next, we describe how to apply
TDoA in a 2-dimensional space.

Let (x, y) be the position of the emitter to be located. Such position is within the
range of n receivers at positions (xi, yi) with i ∈ [1, n], and a reference receiver node
(typically the BS) that actually knows the position of all receivers. For the sake of
simplicity, we will assume that the reference node is located at position (0, 0) and
the other nodes’ positions are relative to the former. From the previous assumptions,
the TDoA measurement between the pair made up of receiver i and the reference
node, when the propagation velocity is vp, can be expressed as in (13.1) as a function
of (x, y).

fi(x, y) =
√

(x − xi)2 + (y − yi)2 − √
(x)2 + (y)2

vp
(13.1)

Ideally, the intersection of 2 or more different of the above hyperbolas unequiv-
ocally determines the emitter position (x, y). If we apply the same reasoning to
a 3-dimensional space, with two receivers at known locations, an emitter can be
located onto a hyperboloid. A third receiver provides then a second TDoA measure-
ment and hence locates the emitter on a second hyperboloid. The intersection of
both hyperboloids describes a curve on which the emitter lies. If a fourth receiver
is now introduced, a third TDoA measurement is available and the intersection of
the resulting third hyperboloid with the curve already found with the other three
receivers defines a unique point in space. This process is known as multilateration
or hyperbolic positioning.

However, in practice measurements are subjected to errors and the surfaces rarely
intersect. In this case, the TDoA measurement may be expressed as in (13.2) with
Δi(x, y) the error performed in the ith TDoA measurement; and the Euclidean
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distance error ei(x, y) derived from measurement τi as in (13.3) as a function of
the emitter position (x, y).

τi = fi(x, y) + Δi(x, y) (13.2)

ei(x, y) = vpΔi(x, y) = vpτi − vp · fi(x, y) (13.3)

The fact of minimizing the localization error can be posed as an optimization
problem and solved using, for example, a Least Squares (LS) method or an extended
Kalman-Bucy filter. Since Kalman-Bucy provides no significant improvement in
accuracy when the emitter to be located is usually stationary [18], we have decided
to apply a LS method based on Taylor-Series Estimation, an iterative scheme which
starts with a rough initial guess and improves the guess at each step by determining
the local linear least-sum squared-error correction.

By applying a LS method, we aim at minimizing the sum of squared errors per-
formed in the set of TDoA measurements. Nevertheless, since every node has differ-
ent environment conditions (e.g. different SNRs), not all the measurements have the
same reliability. Therefore, assuming that the measurements performed by each node
are statistically independent, a Weighted Least Squares (WLS) approach is preferred.
In the WLS technique a different weight is assigned to each measurement according
to its reliability, and then the target is to minimize the expression in (13.4).

n∑

i=1

wie
2
i (x, y) (13.4)

This problem is usually simplified by finding the offset in the x and y axes (δx, δy)

that minimizes the quadratic sum of a linearized approximation of ei(x, y) around a
guess (xv, yv) of the true emitter’s position. This linearized form, denoted as êi(x, y),
is obtained as in (13.5) by expanding ei(x, y) in Taylor’s series around the guess
(xv, yv) keeping only the first order coefficients aix and aiy, defined as in (13.6).

êi(xv + δx, yv + δy) = ei(xv, yv) + aixδx + aiyδy (13.5)

aix = ∂ei(x, y)

∂x

∣∣∣
∣
x = xv

aiy = ∂ei(x, y)

∂y

∣∣∣
∣
y = yv

(13.6)

Upon (δx, δy) is obtained, the guess of the emitter’s position is updated as
(x→

v, y→
v) = (xv + δx, yvδy) and, under convergence conditions (which clearly depend

on the initial guess), the guess is being refined by successive iterations until (δx, δy)

are below a given threshold.
The process of obtaining the value of (δx, δy) that minimizes (13.4) is easily

obtained by operating with the matrix representation of the linearized forms of the
error as in (13.7) with vectors and matrices defined as in (13.8).
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ê = A × δ + e (13.7)

ê =






ê1
ê2
...

ên






A =






a1x a1y

a2x a2y
...

...

anx any






δ =
(

δx

δy

)
e =






vpτ1 − f1(xv, yv)

vpτ2 − f2(xv, yv)
...

vpτn − fn(xv, yv)






(13.8)

Then, assuming that Â is full rank, the value of δ that minimizes expression in
(13.9) can be obtained as in (13.10), with W a diagonal n × n matrix where each
diagonal element wii represents the weight assigned to measurements of node i.

n∑

i = 1

wiiê
2
i (xv + δx, yv + δy) = êTWê = (Aδ + e)TW(Aδ + e) (13.9)

δ = −[ATWA]−1ATWe (13.10)

13.4.2 Assumptions

In order to develop the proposed method, the following assumptions have been
adopted:

• CRs are randomly located and their position is fixed and known to the BS.
• The BS has a database with the true position of TV primary emitters and their

respective frequencies of operation.
• The PUE attacker remains at a fixed position and can have different capabilities

regarding power transmission.
• The BS is responsible for scheduling quiet periods with sensing purposes, in which

no station is allowed to transmit in the channel to be sensed. As recommended
by the IEEE 802.22 WRAN standard, two different types of sensing mechanisms
are used: fast sensing, which can be performed frequently and generally relies
on energy-based sensing techniques, and fine sensing, which is based on more
complex techniques that allow obtaining specific features of the signal but require
a longer observation time. As we will further explain, the proposed localization
method will be embedded in the fine sensing process.

• The measurements performed by each node are normally distributed with zero
mean [19] and statistically independent. The latter can be assumed if CRs are
distanced more than a few hundred of meters [30].
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13.4.3 Acquisition of Valid TDoA Measures

In order to detect primary transmitters (no matter whether they are real or fake ones),
all the anchor nodes within the CRN perform sensing and report their measurements
to the BS, which is responsible for making a decision about the existence of a primary
transmission in the CRN band of operation. Once a potential primary transmission
is detected, the CRN performs a localization method to know whether this source
of primary transmissions is legitimate (by comparing its position with known TV
transmitters’ positions) or fake (a PUE attack). In order to apply the localization
technique explained in Sect. 13.4.1.1, a set of at least two TDoA measurements are
required. However, as mentioned before, the accuracy of these measurements has a
strong impact on the position estimation and highly depends on a tight synchroniza-
tion between the CRN nodes and the BS. Many synchronization proposals on the
state of the art [31] can be applied to CRNs but their accuracy is at most in the order
of microseconds which could lead to errors of hundreds of meters. For this reason,
in the following we propose a method to synchronize reports from several anchor
nodes in order to obtain accurate TDoA measurements. The chosen solution is fairly
straight forward and can be summarized in five steps.

1. When the localization process starts, the BS first requests all the CRN anchor
nodes to start recording the primary signal and then starts its own recording.

2. During the recording, the BS sends a marker signal through the CRN operation
antennas and every anchor node will add this marker to its record at the precise
instant it has received it. The marker signal is a predefined signal that any anchor
node can recognize.

3. Every anchor node sends the recording with the marker to the BS. Since the BS
knows the physical position of every anchor node, it can compute the elapsed
time since the BS has sent the marker until it has been received. Consequently,
the BS is able to synchronize the recordings. Assuming that the BS is placed on
(0, 0), the elapsed time can be defined as in expression (13.11) with i the anchor
node receiving the marker, (x, y) its position and vp the propagation velocity.

Δti =
√

x2
i + y2

i

vp
(13.11)

4. Once the records have been synchronized, the BS derives the set of TDoA mea-
surements by computing the delays between the recordings of every anchor node
and its own one.

5. Finally, by applying the least squares method described in 13.4.1.1, the BS makes
an estimation of the position of the emitter.

Figure 13.1 summarizes the first four steps. The signal on the top is the one
recorded by the BS just after the synchronization marker is sent (step 2). The other
two signals represent the recordings of two different anchor nodes. Since both nodes
send the recording with the marker, the BS can synchronize the recordings: the time
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Fig. 13.1 Obtaining TDoA measurements from synchronized recordings

when the BS sent the marker is exactly the time when the anchor node i received
the marker minus Δti. Once the recordings are synchronized, the BS just needs to
compute the delay between recordings that actually corresponds to the TDoA mea-
surements τ1 and τ2.
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13.4.4 Applying WLS Position Estimation to Guess the Emitter’s
Position

As explained in Sect. 13.4.1.1, the set of TDoA measurements leads to a non-linear
system of equations with no unique solution; an optimization problem that we have
decided to solve by means Taylor-Series estimation. Therefore, it is required to select
an initial estimation of the position of the emitter (xv, yv) and the weights assigned
to each measurement in the WLS method.

Assuming that the measurements performed by each node are statistically inde-
pendent, the weight wi assigned to the TDoA measurement obtained from the pair
node i and the BS can be computed as the inverse of the error variance of such
measure.

The error in ToA measurements is modeled as a normally-distributed random vari-
able whose variance is derived by means of the Cramér-Rao Lower Bound (CRLB)
[19], which provides a lower bound on the variance in a multipath-free channel. In
the case of TDoA, as any observation is computed as the difference of two ToA
observations, any observation between a node i and the BS can be modeled as
τi ∞ N

(
fi(x, y), σ 2

i + σ 2
0

⎛
, with σi as in (13.12) the variance of the measurements

from anchor node i, σ0 the variance of the BS’s measures, B the signal bandwidth
and SNRi the signal-to-noise relation at anchor node i.

σ 2
i ≥ 1

8π2 · B2 · SNRi
(13.12)

In the IEEE 802.22 WRAN standard, the Hata model for suburban areas has been
proposed for the path loss calculation [16]. As a result, assuming that the CRN nodes
have isotropic antennas, the SNRi at a given anchor node i can be expressed as in
(13.13), with ΔLp as in (13.14), SNR0 the signal-to-noise ratio at the BS, di and d0
the distances from the emitter to the anchor node i and the BS respectively, and hb
the current altitude of the emitter to be located.

SNRi(dB) = SNR0(dB) − ΔLp(dB) (13.13)

ΔLp(dB) = ⎝
44.9 − 6.55 · log10(hb)

]
log

di

d0
(13.14)

The main disadvantage of iterative WLS estimators is that the convergence
depends on the goodness of the initial guess. As a result, the choice of the initial
guess (xv, yv) plays a crucial role. In order to improve the choice of the initial guess,
we propose to proceed as follows.

The BS defines an m-by-n matrix with m the number of potential initial guesses
and n the number of anchor nodes. This matrix stores precomputed values of TDoA
measurements for the m initial guesses. p out of the m positions match the position of
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Fig. 13.2 Positions for TDoA measurements in database

real primaries (already known to the BS), the remaining ones are obtained by drawing
a grid on the area and taking the central point of every single cell (see Fig. 13.2).

When the localization process starts, the BS first collects the recordings and the
following steps are performed:

• The BS computes the Euclidean distances between the vector containing the TDoA
measurements performed by the n anchor nodes and each of the m rows of the
matrix containing the TDoA measurements stored at the BS’s database. These
distances are sorted in ascending order and stored in a vector V .

• The BS selects the first element of V as the initial guess and applies the iterative
WLS algorithm.

– If the algorithm does not converge, the BS selects the following element of V
as a new initial guess and restarts the iterative WLS algorithm. If there are no
more initial guesses, the algorithm ends without converge.
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– If the algorithm converges, the output of the WLS method is the estimation of
the emitter’s position.

Intuitively, the first element of V , which denotes the position that minimizes the
distance between the TDoA measurements and its precomputed TDoA measure-
ments, should be the closest one to the real position of the emitter. However, small
differences in any of the axes may mix up the elements of V . In any case, the closest
precomputed solution will always be within the first positions of V , so we change the
initial guess whenever the algorithm does not converge by selecting the next element
in V .

The initial error estimation is therefore the Euclidean distance in the coordinate
system between the chosen element of V (precomputed position) and the emitter’s
real position. Obviously, a more accurate estimation can be obtained by reducing the
cell size at the expense of a higher cost in terms of allocated memory and computation
time.

We set a maximum value for the error (δxmax , δymax ) and perform as many iterations
as needed until the error in both axes is below these thresholds. The decision about
the existence of a primary user or an attacker will then be made according to the
value estimated in the last iteration.

13.5 Performance Evaluation

In this section we evaluate the goodness of the proposed method which has been
programmed in Matlab [29]. Simulation results for different scenarios are provided.

13.5.1 Simulation Scenario

In order to evaluate the performance of the proposed location method, we have
considered a CRN following the IEEE 802.22 WRAN standard, which is composed
by a BS located at the origin and a set of CR nodes uniformly distributed within a
square area of 30×30 km2, as shown in Fig. 13.2, and the following assumptions
have been made:

• The BS is located at the origin (see Fig. 13.2)
• 10–100 anchor nodes are randomly placed in the area.
• Primary TV transmitters are located outside the CRN perimeter at well-known

positions, at distances ranging from 30 to 150 km far away from the BS.
• The sensing area is divided into a grid of 256 square cells of 150000≈

256
= 9375 m side.

As explained in 13.4.4, we assume that the BS stores a database with the potential
TDoA measurements for transmission sources located at the center of every cell.
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• The Hata model for suburban areas is used for modeling the radio frequency
propagation. The choice relies on the fact that IEEE 802.22 WRAN networks are
intended to be deployed over rural areas.

• The primary signal is received at the BS with different SNR values ranging from
−10 to 10 dB (worst to best conditions).

• All the provided results are obtained from 10,000 experiments of every different
case.

We have also considered a malicious user performing a PUE attack from different
positions both inside and outside the CRN area.

13.5.2 Methodology

The proposed method may introduce a significant overhead in terms of control data
transmission and lost of capacity of the CRN. Because of this, there is a need for
analyzing the amount of extra time needed to carry on the location process. The results
of this analysis are shown in Sect. 13.5.4. Besides, the efficiency of this method in
detecting PUE attacks relies on the accuracy of the estimated position of the emitter.
Thus, in order to prove the goodness of our proposal, in Sect. 13.5.3 we evaluate it
in terms of location error. In particular, we provide elliptical confidence intervals of
the error that are derived from a set of samples as follows.

Figure 13.3 represents the normalized cumulative histogram of the position esti-
mation error obtained in 1000 simulations, when an attacker is located at (8000 m,
1000 m), 100 anchor nodes are cooperating in the location process and assuming a
SNR=−10 dB at the BS. The confidence levels of 50, 95 and 99 % are represented
in the figure with red lines and they correspond to distance errors of approximately
8.66, 20.76 and 27.56 m respectively. Notice that under these conditions, with proba-
bility 0.99 the error represents at most just a 27.56≈

(8000)2+10002
∞ 0.34 % of the distance

between the attacker and the BS.
Figure 13.4 represents the mean of the distance error and the confidence intervals

for a varying number of anchor nodes cooperating in the localization process. The
figure clearly shows that cooperation actually improves the estimation of the emitter’s
position, leading in the worst case (n = 10) to an error around 450.7 m, and in the
best case (n = 100) to an error of approximately 9.07 m with a 99 % confidence
interval.

By plotting the error samples on a 2-dimensional Cartesian coordinate system
as in Fig. 13.5, it can be seen that these errors spread over an elliptical area with
the real emitter’s position in the center of the ellipse and an angle as in (13.15)
between the abscissa and the ellipse’s major axis. Therefore, the confidence levels
can be represented as ellipses and thus they provide an improved idea about the error
dispersion.

ϕ = arctan
y

x
+ k k =

⎞
π if x < 0
0 if x ≥ 0

(13.15)
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Fig. 13.3 Normalized cumulative histogram of the estimator error. Attacker at (8000, 1000 m),
SNR=−10 dB, n=100
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Fig. 13.4 Confidence interval of error. Attacker at (8000, 1000 m), SNR=−10 dB, n=100

In order to obtain the eccentricity of the ellipse we project every error (exi =
xi − x,eyi = yi − y) to the major and minor ellipse axes as in (13.16) with E→

x
the vector with the projected error values e→

xi
over the major axis of every iteration
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Fig. 13.5 Elliptical confidence interval. Attacker at (8000, 1000 m), SNR=−10 dB, n=100

and E→
y the vector with the projections on the minor axis e→

yi
. Then, we can compute the

eccentricity as in (13.17) with MAD(E→
x) and MAD(E→

y) the mean absolute deviation
of the error in each of the projected axis obtained as in (13.18).

e→
xi

= ei cos (θ) e→
yi

= ei sin (θ)

θ = arctan
⎠

y−yv
x−xv

⎜
− ϕ + k k =

⎞
π if x − xv < 0
0 if x − xv ≥ 0

(13.16)

ε =
⎪

1 −
(

MAD(E→
y)

MAD(E→
x)

)2

(13.17)

MAD(E→
x) = 1

n

n∑

i=1

|e→
xi
| MAD(E→

y) = 1

n

n∑

i=1

|e→
yi
| (13.18)

Once the eccentricity of the ellipse has been obtained, plotting the one that contains
a given confidence level (%) of the samples is fairly straight forward. Ellipses in
Fig. 13.5 delimit the elliptical confidence interval related to confidence levels of 50,
95 and 99 %. MAD(E→

x) ∞ 4.54 m and MAD(E→
y) ∞ 7.7 m are presented as arrows

with origin at the emitter position. As it can be seen, under these conditions, in the
99 % of the cases the estimation error is limited to just 30.55 m on the major axis
(worst case) which represents a position error of just 30.55≈

80002+10002 ∞ 0.37 % of the
distance between the emitter and the BS.
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Fig. 13.6 Elliptical confidence interval. Attacker at (8000, 1000 m). a SNR=−10 dB.
b SNR=10 dB

13.5.3 Evaluation of the Location Error

In this section we show the simulation results with regard location error by means of
elliptical confidence intervals, which have been obtained as explained in Sect. 13.5.2.

Figure 13.6a and b show the 99 % elliptical confidence intervals for a reception
SNR of −10 and 10 dB respectively and a varying number of anchor nodes. Under
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the worst conditions (SNR=−10 dB) the error in the major axis ranges from approx-
imately 30 m, when 100 anchor nodes are cooperating, to around 491 m when there
are only 10. Under good reception conditions (SNR=10 dB) the error ranges just
from roughly 3.3 m with 100 anchor nodes to 40 m with 10 nodes. In any case, even in
the worst conditions, these errors are acceptable considering a network deployment
over an area of 30-by-30 km2.

Notice that, as the variance of the TDoA measurements is inversely proportional
to the (linear) value of the SNR, the estimation error increases as the SNR decreases
proportionally to the square of the variance. In our simulations we have considered
SNR1 =10 dB and SNR2 =−10 dB. As a consequence, the linear relation between
the respective variances will be σ 2

2 = 100σ 2
1 , meaning that, for a given number of

cooperating nodes, the error will be approximately ten times bigger when the SNR
is −10 dB than when it is 10 dB.

We have seen until now how the SNR and the number of anchor nodes could
affect the accuracy of the estimator when the attacker is within the BS range.
Now we evaluate an example of attacker placed outside the CRN, specifically at
(−75000 m, 50000 m).

Figure 13.7a and b show the 99 % elliptical confidence intervals for reception
SNR −10 and 10 dB respectively and a varying number of anchor nodes. The error
is now much greater than when the attacker was inside the CRN and, in the worst
case (SNR=−10 dB), the 99 % confidence interval ranges in the ellipse’s major axis
from values around 1.39 km with 10 anchor nodes to 137 m with 100. Despite the
error increasing due to the distance to the CRN, once again, the achieved accuracy
is enough in order to detect a PUE attack. Notice that the attacker could succeed if
it was at 1.39 km far away or nearer from a real TV emitter. In the improbable case
of an attacker having such great transmission capabilities and being so close to a
legitimate TV transmitter, the attacker would represent an even higher threat to the
primary network. Obviously, such an unlikely situation is out of the scope of the
CRN prevention mechanisms.

When a primary source is located, its estimated position is checked to be within the
chosen elliptical confidence interval α of the known legitimate primary transmitters.
As a result, the probability of false negative, that is to say that the attacker succeeds,
depends on two factors: (1) a probability of 1 − α of error when the localization
method succeeds to obtain an estimation; and (2) the probability that the localization
method fails or does not converge. During the proposal evaluation, we checked that
the probability of non-convergence of our proposed method is always less than 10−4

regardless of the position of the attacker and the reception SNR. As a result, the
probability of false negative can be approximated as just the former.

Anyhow, after detection of a PUE attack, the CRN should try to counteract the
attack, e.g. by reporting the attack to the authorities or ignoring the primary signal
and continuing interfering with it. Consequently, a false positive, that is to say, a
legitimate emitter that is considered as an attacker, could lead to an unnecessary waste
of resources and to interfere with the primary networks,which is strictly forbidden by
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Fig. 13.7 Elliptical confidence interval. Attacker at (−75000, 50000 m). a SNR=−10 dB.
b SNR=10 dB

CRN regulations [17]. According to this, minimizing the probability of false positive
is much more important than minimizing the probability of false negatives.

In the case of our proposal, the probability of false positive can be just expressed
as 1 − α. Consequently, if the assumed error is obtained from the 99 % confidence
level, the probability of false positive is 1 %. However, a probability of 1 % is likely
to be much higher than the CRN requirements. Anyway, the solution to minimize
such probability is rather simple: as mentioned before, the probability of m esti-
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mations being out of the confidence interval centered at the primary emitter posi-
tion (already known) is just Pf = (1 − α)m and, therefore, for a given Pf at least
mmin = ⇒log1−α Pf ⊂ estimations should be carried out. For example, if we want
a probability of false positive of 10−6 with a confidence level of 99 %, 3 different
estimations (with different TDoA measures) are required every time the localization
process is started.

13.5.4 Evaluation of the Location Process Time

The aim of this section is to show that the duration of the localization process con-
forms to the specifications of the IEEE 802.22 WRAN standard. This standard estab-
lishes that the total amount of time required for detecting a primary user in a given
channel, i.e., the channel detection time, must be bounded to 2 s [1].

The location-process time depends on (1) the time needed by the CRN anchor
nodes to record the primary signal and transmit their recordings to the BS; and (2) the
WLS computational time at the BS. The WLS method has a polynomial complexity
of O(n3) that can be solved in nowadays machines in the order of milliseconds or
at most hundreds of milliseconds (∞150 ms in a Pentium 4, 32-bits, 2.4 GHz CPU,
1 GB RAM). Consequently, in the following we focus on obtaining the time needed
by the anchor nodes in order to record the potential primary transmission and send
it back to the BS.

As shown in Fig. 13.8, an IEEE 802.22 WRAN frame is divided into a downstream
(DS) subframe and an upstream (US) subframe. The DS subframe is used to send
data from the BS to the nodes, and contains the necessary information for nodes to
synchronize (frame preamble) and about the bandwidth allocation (US-MAP and
DS-MAP). The US subframe is used to transmit data from the nodes to the BS
according to the bandwidth allocation established in the DL subframe. The anchor
nodes will then use the UL subframe in order to send their recordings to the BS.

In the IEEE 802.22 WRAN standard every frame is made of 26–42 symbols,
each one are divided into 60 subchannels, and each subchannel into 28 sub-carriers,
4 of them are pilots and then the remaining 24 are addressed for data transmission.
As a result, the number of data bits per subchannel and per OFDMA symbol is
24 · log2 M · C, with M the number of symbols of the modulation and C the coding
rate.

Let us denote Lrecord , the amount of bits to be recorded by every anchor node;
S as in (13.19) the number of slots that should be assigned to every anchor node in
order to transmit the recorded data; and Sul the number of symbols per subchannel
assigned to the US subframe, i.e., for data transmission from the CRs to the BS. Then,
considering the 58 available subchannels for transmitting data on the US frame, the
number of frames Fl needed to transmit the recordings from n anchor nodes can be
computed as in (13.20).

S =
⎧

Lrecord

24 · log2 M · C

⎨
(13.19)
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Fig. 13.8 IEEE 802.22 WRAN frame structure

Fl =
⎧

n · S

58 · Sul

⎨
(13.20)

In order to correlate the recording made by a given node and the BS, each recording
should be at least as long as the maximum propagation delay within the network.
Considering a typical IEEE 802.22 WRAN scenario with a BS range of 30 Km, the
maximum propagation delay is approximately 100µs. Therefore, we have considered
that every anchor records 2 complete ATSC DTV frames, that is 2 · 77µs = 144µs.
Assuming the worst scenario, when the primary signal comes from a DTV source
transmitting at the maximum data rate of 19.4 Mbps, every anchor node should then
record Lrecord = 144µs·19.4 Mbps = 3348 bits.

Table 13.2 shows the number of frames and the corresponding time needed for
transmitting the anchors’ recordings to the BS in the previous scenario. We have
chosen representative values for the number of cooperating anchor nodes n, modu-
lation and coding rate, and symbols per US subframe Sul. It can be observed that the
minimum amount of time needed for transmitting the anchors’ recordings to the BS
is one frame or 10 ms for 64-QAM 5

6 modulation and 10 anchor nodes. However,
in order to obtain accurate estimations of the emitter’s position, a greater number of
cooperating anchor nodes is needed. Table 13.2 clearly shows that the time needed to
transmit the recordings, despite it grows with the number of anchor nodes, is limited
to a few hundred of milliseconds even for 100 anchor nodes.
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Table 13.2 Frames/time for
localization process

Mod. (CR) Sul Fl (time)
n = 10 n = 100

QPSK
( 1

2

⎛
10 3 (30 ms) 25 (250 ms)
20 2 (20 ms) 13 (130 ms)

16-QAM
( 2

3

⎛
10 1 (10 ms) 10 (100 ms)
20 1 (10 ms) 3 (30 ms)

64-QAM
⎠

5
6

⎜
10 1 (10 ms) 5 (50 ms)
20 1 (10 ms) 3 (30 ms)

From the previous reasoning, we can conclude that the location process time,
including both the transmission and computational times, is in the order of hundreds
of milliseconds. This is a very promising result that actually meets FCC requirements
regarding primary-signal detection time: the detection of a primary transmission and
the necessary handoff must be done in less than 2 s [1].

13.6 Conclusions

CRNs rely on spectrum sensing mechanisms to identify white spaces in the spectrum
left unused by primary users. A malicious user can take advantage of this feature by
emulating a primary transmission, i.e., perform a PUE attack, and prevent the CRN
from using available bands.

In this chapter we have described a cooperative method to effectively detect PUE
attacks based on TDoA location. The method can be applied to infrastructure-based
networks where the location of primary users is known, as it is the case of TV emitters
in WRAN 802.22 networks. The rationale behind it is to estimate the location of the
emitter and compare it with the known positions of primary users so as to identify
potential attacks.

During the location process, CRs are requested to record a fragment of the received
signal and send it to the BS, which derives a set of TDoA measurements by correlating
the signal received by itself with those coming from the CRs. The non-linear system
of equations given by this measurements is then solved by applying Taylor series
estimation, which applies a WLS criterion in order to obtain a position estimate while
minimizing the sum of squares error. When applying a WLS method, estimation
accuracy can be improved with respect to the basic LS mechanism by assigning
more weight to those measurements that are expected to be more reliable.

The method poses several challenges that we have addressed as follows. First,
TDoA measurement require a tight synchronization between the BS and the CRs. In
order to overcome this problem, the BS transmits a marker signal which is recorded
by the CRNs together with the emitter’s signal, and allows to synchronize every
pair of recordings. Second, Taylor series estimation requires an initial guess of the
emitter position and the convergence of the algorithm strongly depends on it. In order
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to obtain this initial guess, we have proposed to use a database with pre-stored TDoA
measures.

Our proposal has been evaluated via simulation under a set of scenarios with dif-
ferent environment conditions and different positions for the attacker. The goodness
of the method has been proved based on two different metrics: location accuracy
and duration of the location process. The simulation results show that an attacker
can be easily identified whenever the PUE attacker is located inside the CRN or at
a position relatively far away from true primary users. As the bigger the distance
between the emitter and the CRN, the lower the location accuracy, the attack could
be performed by selecting a position near a primary user, thus increasing the prob-
ability of a successful PUE attack. However, this would require a big amount of
resources with regard to power transmission and this probably wouldn’t be available
to most attackers. Besides, such attack would probably interfere primary transmis-
sions, pushing the responsibility of detecting it and providing the corresponding
countermeasures to the primary network. Finally, the amount of time required to
perform the location process has been shown to be bounded to reasonable values,
meaning that the overhead introduced by the method does not represent a significant
decrease of the CRN capacity.

We can conclude that the proposed method can effectively deal with PUE attacks
and prevent CRNs from losing spectrum opportunities. However, further work is
needed in order to refine the method and improve its performance. On the one hand,
position accuracy could be improved by applying hybrid-mechanisms which rely on
different types of measures. Given that the inherent spectrum sensing mechanisms of
CRNs already require RSS measures, an interesting approach would be to evaluate the
performance of location methods by combining RSS and TDoA measures. Besides,
a more realistic model where the effect of multipath is taken into account should be
evaluated. Multipath is one of the major sources of TDoA measurements errors, but
it is also difficult to model because it depends on the particular characteristics of the
terrain where the network has been deployed.
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Chapter 14
Cognition as a Tool for Green Next
Generation Networks

Fabrizio Granelli, Oliver Holland and Nelson L.S. da Fonseca

Abstract The chapter discusses issues related to the implementation of the different
steps of the cognitive cycle, especially focusing on reasoning, and applies this to
energy saving for green networking. The application of cognition to networking and
communications can be readily implemented into current TCP/IP networks. Indeed,
the use of the cognitive paradigm represents a way: (i) to address the multiple tem-
poral and spatial fluctuations in the operation of a network, and (ii) to gain and take
advantage of additional causal information related to the network configuration and
its performance. Network performance is a multi-faceted concept, including simple
measures such as throughput as well as far more complicated or subjective mea-
sures such as user-level QoS. Recently, an additional parameter has been added to
this equation: energy consumption. The need for identifying suitable methodologies
to optimize performance from the above viewpoints, also including the contradic-
tory requirement to save energy, is driving research interests towards the emergence
of “green networks”. Green networking represents an appropriate scenario where
cognition and associated radio adaptation can immensely contribute to the given
objectives. This chapter describes how cognitive networking can be implemented to
support green network operation, proposing a test case demonstrating its potential in
a 3G cellular context. Experimental results based on real traffic data demonstrate the
capability of a 3G base station to implement cognition to the purpose to save energy
without any a-priori information.
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14.1 Introduction

As communication networks and the Internet become pervasive and exceed the
threshold of a billion connected devices, and, therefore, their management becomes
increasingly complex. Moreover, the plethora of applications and services run over
the global communications highway are generating novel, diverse and fast-changing
requirements. In coping with the complexity in managing future communication
networks and to make them flexible to services’ requests, the paradigm of cognitive
communications emerged.

In its early stages the concept of cognitive communications was often applied
primarily to the enablement of better spectrum utilization, giving rise to “spectrum
sensing cognitive radio” and similar embodiments. It has been more recently extended
to encompass whole networks, leading to the “cognitive networking” paradigm.
However, there’s still a significant gap between theoretical/simulation studies and
the actual implementation of these concepts, such that significant steps forward in
introducing cognitive functionalities towards autonomic network management can
be realized.

Autonomic network management is indeed extremely relevant in current and
future networks, given the short timescales and spatial densities at which management
actions need to be performed, and the complex relationships among the operating
parameters of networks. Such decision making becomes increasingly difficult when
you have conflicting goals in network management such as to provide target QoS
guarantees while minimizing energy consumption. Based on such considerations,
this chapter describes how the cognitive paradigm can represent a useful tool for the
design of green next-generation networks.

The structure of the chapter is as follows. First, Sect. 14.2 surveys the state-of-the-
art and research challenges in cognitive networking, while Sect. 14.3 focuses on the
key functionality of automated reasoning. Section 14.4 discusses how cognitive net-
working can be used in the framework of green networking, and Sect. 14.5 provides
a test case related to 3G cellular networks. Finally, Sect. 14.6 concludes this chapter
with some final remarks and identification of future research challenges related to
this subject.

14.2 Research Challenges in Cognitive Networking

14.2.1 Guiding Principles

A pioneering work envisioning cognition-enhanced networks has been undertaken by
Clark et al. [1], focusing primarily on the ability of a network to selfrecover. Motivated
by the fact that further improvement of existing works was not likely to reach the target
goal, they introduced a key component defined 3 Knowledge Plane (KP), basically a
distributed cognitive system equipped with reasoning and learning capabilities and
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designed as a closed-loop control system. According to the researchers view, the KP
spans both vertically through the protocol stack and horizontally across the network
nodes, and should be designed taking into consideration some precise goals:

• take advantage of the different observations that can be made in different points
of the network, that is, it should exploit observation diversity;

• to implement a unified approach to solve problems, avoiding ad-hoc solutions;
• to include network edges, in order to exploit their knowledge;
• to be able to function in dynamical, continuously changing environments, also in

the presence of misleading and/or incomplete information, and under conflicting
high-level goals.

It is important to note that these basic principles are shared by virtually all other
cognitive networking-related work in the literature. In fact, Clarks KP represents a
possible instantiation of the cognitive loop. However, there seems to be no agreement
in the literature on which cognitive network model should be taken as a reference,
but a proliferation of architectures based on the KP concept, with minor adjustments.

The first formal research about cognitive networks has been performed by Thomas
et al. [2], proposing the following features for a cognitive network: (i) extensibility,
flexibility, and proactivity; (ii) the capability by the decision process to use network
metrics as input and provide actions as output; (iii) the capability to achieve higher
performance levels with respect to traditional networks. Besides offering a defini-
tion for this new paradigm, the work also delineates a possible framework for the
development of cognitive networks, logically divided into three layers, mirroring
the defining aspects of a generic cognitive entity (behavioral, computational, neuro-
physical). Specifically, the guiding end-to-end objectives are specified at the top
layer, where they are also redefined in terms of local objectives. Such local objec-
tives are successively handed to the middle (cognitive) layer, which reasons about
them and selects the appropriate actions to take. According to the actions selected,
the bottom layer sets the tunable elements it controls. It also senses the environment
and reports to the cognitive layer, in order to make it learn, thereby closing the cog-
nitive loop. A remarkable characteristic of this cognitive network model is that no
strict rules are defined as to how the three layers should be mapped with respect to
the actual network nodes. This means that, for instance, the cognitive process may be
performed by just one cognitive element, comprising all the devices of a network, or
by multiple elements, each one in charge of controlling just a part of the ensemble.
In other words, no design limits are implied.

Several architectures are built on the belief that a more holistic approach is needed.
Mahonen et al. [3], for instance, acknowledge that information has to be extracted
from all layers but assert that so far no attempts towards the joint analysis of the
behavior of a communication system and its crosslayer interactions have been made.
To the authors, the cognitive networking paradigm is particularly appealing as it
represents a valid alternative to basic crosslayer optimization. Emphasis is also given
on the collaborative aspect: according to the researchers, a local view of the network
is simply not sufficient to perform global optimization. Collaboration is, therefore,
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fundamental to perform distributed information gathering with the objective being
to build a comprehensive knowledge of the environment.

The thesis of holism is supported also by the work by Sutton et al. [4], underlining
that the limited scope of communication protocols prevents a node from performing
a global optimization. In this sense, the authors propose an architecture characterized
by a network-wide scope, similar to the KP, extending over both the protocol stack
and the network itself. An interesting characteristic of such an architecture is that the
cognitive process is explicitly split between two distinct entities: a reconfigurable
entity is in charge of manipulating sensors and actuators and a separate cognitive
entity takes care of reasoning and learning tasks. This separation can rise to concerns
regarding how commands and measurements flow between the cognitive entity and
the reconfigurable entity, and how much should one expect communication overhead
to be. However, no specific details are discussed. According to their vision, the
cognitive entity can comprise all the layers of a node or even just a subset of them,
whereas the reconfigurable entity involves reconfigurations not only inside a single
node but possibly also in each node of the network.

14.2.2 Research Challenges

14.2.2.1 Reasoning and Learning

Reasoning exploits the knowledge that an entity has been able to build by learning,
in order to draw new inferences and beliefs. A similar definition states that to reason
is to infer conclusions starting from beliefs that are already present in an agents
mind. Therefore, a necessary condition is for a cognitive entity is to possess the
capability of drawing relationships among such beliefs, and using them to derive
some conclusions.

Despite the wide consensus in the literature about the need for an holistic approach,
not many works in the literature provide concrete solutions able to support such
vision. Even more important, to the best of the authors knowledge, no research has
specifically taken into consideration cross-layer interactions in the reasoning process,
a key aspect to fully enable a truly holistic approach. Indeed, such interactions concur
in defining the overall performance of a network and therefore should be jointly
considered when performing the cognitive process. Therefore, to cope with these
challenges, an appropriate reasoning technique has to be chosen. However, in the
networking architectures proposed so far only a few five reasoning techniques are
employed and often their use is not completely justified over the available alternatives.

Thomas et al. [2] suggest thinking of cognition as a machine learning problem.
Formalisms like neural networks, genetic algorithms, expert systems, and control the-
ory (e.g., Kalman filters and learning automata) can therefore be employed. However,
rather than analyzing the theoretic aspects of cognition, they focus more on providing
practical guidelines for bringing intelligence into communication networks by argu-
ing that a cognitive process need not involve exactly one reasoning strategy. On the
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contrary, depending on the type of problem being solved and the objectives strived
to achieve, more than one technique can be used, possibly creating hybrids.

Along the same line, Mahonen et al. propose to equip cognitive network nodes with
an ensemble of tools to perform reasoning tasks [3]. Besides the already mentioned
neural and Bayesian networks, such a toolbox may also include pattern recognition
and classification techniques, and multidimensional optimization algorithms like
simulated annealing or genetic algorithms. The authors though give no indication
of which technique should be preferred in a given situation or upon which basis it
should be selected. What seems to really matter, however, is the convergence time.
Whatever the solution chosen, it is of utmost importance that its convergence time
be appropriately less than the typical period of environmental changes.

Another key research topic is learning, which can be seen as a planned and ordered
gathering of knowledge, and can happen in several ways. Being strictly connected
to reasoning, it has been given little attention as a topic on its own. Besides, learning
techniques are usually straightforward and reflect those techniques actually used
by living organisms. According to [1], knowledge can be built thanks to external
input, the same way children learn at school thanks to their teachers, or by trial
and error, as happens with people facing new problems when no one is available
to give indications. Other techniques to boost learning often-cited are analogy and
generalization.

14.2.2.2 Adaptation

Adaptation, which is the process of turning reasoned decisions into actions, is com-
plementary to reasoning. More specifically, after reasoning the node must adapt itself
so that the decisions taken by the cognitive entity. However, being a cognitive net-
work characterized by a global scope, it is possible that more nodes need to adapt
themselves in a coordinated manner, in order for the effect to take place. Adaptation
therefore implies that nodes have to coordinate themselves to carry out a common
goal, or in more general terms, to extend the cognitive process to the whole network.

Network-wide adaptation in cognitive networks, though, seems not to have
received much attention in the literature so far. Instead, proposals have focused more
on the need for inter-node communication (or lack thereof).

14.2.2.3 Information Representation

The topic of information representation is in part related to both learning and adap-
tation. Many researchers agree on the need for a proper representation of objectives
and knowledge. By pursuing the vision of a knowledge-centric network, knowledge
representation becomes fairly important. Information representation plays a key role
also in optimization processes: as optimization can be performed with respect to dif-
ferent, possibly contrasting objectives (e.g., performance, reliability), representation
is necessary to establish priorities and decide upon which dimension that optimization
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should aim to. Additionally, the goals of the system should be clearly expressed so
that no misinterpretation can take place. However, even when goals are not correctly
specified, the system should be able to act in a reasonable manner.

Information propagation, both within nodes and across the network is linked to
information representation. As a general guideline, a desirable feature of the chosen
information propagation scheme is that it should be independent from the underlying
communication technology.

As for the implementation of information representation, it is noted that it can
be analyzed from both the semantic and the syntactic points of view. The semantic
vision concerns which information we want network nodes to exchange. Updating
all the nodes in a network with all the network knowledge can not be the best option,
mainly for two reasons: first, the waste of resources may be too high, and second, an
information overload can be burdensome, not to say misleading, for the reasoning
process. To this end, it is imperative to understand which nodes need which kind of
information.

Syntax is about how messages should be exchanged and how they should be
defined. This translates into the definition of standardized protocols that have to be
efficient from the point of view of resource consumption, and explicitly or implicitly
negotiate and ask for resource reservation.

14.2.3 State of the Art

14.2.3.1 Reasoning and Learning

A popular technique used to infer general conclusions is represented by first-order
logic and it is typically used by agents who can rely on certain knowledge. As a
consequence, employing first-order logic schemes in cognitive nodes may not appear
to be the best choice. This seems to be acknowledged in the literature, since to the best
of the authors knowledge, there is no cognitive network architecture based on such
a paradigm. Some researchers have introduced expert systems, i.e., systems aiming
to store human experts knowledge in a specific field, useful to perform reasoning in
cognitive networks provided the problem to be solved is characterized by a limited
number of variables. However, the potentially narrow domain of application typical
of expert systems clashes with the concept of a cognitive network architecture, which
should aim to reason across a variety of diverse domains.

Structural equation modeling, although not a proper artificial intelligence tech-
nique, has been mentioned as a potential formalism for reasoning purposes in [5].
However, the same authors admit that such a formalism is more suitable for con-
firming already-defined causal structures (hypothesis testing), rather than discov-
ering them. This could place a limit on cognitive entities, which can be prevented
from adapting to new situations thus not evolving over time. Heuristic optimization
algorithms like simulated annealing, genetic algorithms or swarm intelligence, are
used to automatically find optimal solutions, and could be employed as alternative
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reasoning methods. Genetic algorithms have been used for taking measurement of
cognitive radio networks. However, some researchers assert that, although applicable
in a variety of contexts, such techniques should be preferred when the environment
is well-known and the problem is centralized [2]. For this reason, in distributed sce-
narios like wireless ad-hoc networks where the nodes may be highly scattered over
the environment, such techniques are generally less favorable with respect to others.

Neural networks are often considered as a standard artificial intelligence technique
and have been applied to a wide range of applications including cognitive networks.
Their main drawback lies in the fact that they are black boxes: once a neural network
reaches a solution, its inner structure does not necessarily reflect the motivation
behind that outcome. In another sense, the actual relationships that exist among the
variables of a system are not reflected by the configuration of the neural network that
led to the solution. Therefore, if the purpose is to gain some insights into a network
internals, neural networks can hardly represent the optimal solution.

Bayesian networks are another reasoning tool traditionally associated with arti-
ficial intelligence, with the capability of representing causal relationships among
variables of a given problem and of being applied where knowledge is not certain.
As they are based on directed acyclic graphs, their major limitation lies in their
impossibility to deal with causality loops. Bayesian networks was suggested by
Clark et al. in their pioneering work on cognitive networking [1]. Strictly related to
Bayesian networks are Markov random fields. Similarly to Bayesian networks, they
are generative models, i.e., they represent a probability model for all the variables of
a problem. However, unlike Bayesian networks, they need not represent causal rela-
tionships. Other formalisms derived from Markov random fields are Markov logic
networks, which combine Markov random fields, first-order logic, and conditional
random fields. They are a discriminative type of model, i.e., they model the depen-
dency of unobserved variables on observed variables. Markov random fields (and all
models based on them) suffer less from the limitation peculiar to Bayesian networks
about loop-free networks. It is also worth noting that the undirected nature of such
structures prevents them from handling induced dependencies.

Fuzzy Cognitive Maps (FCMs) are mathematical structures for modeling dynami-
cal systems. They emphasize the causal relationships among the variables of a system
and upon those they base reasoning [6]. FCMs are described in details in a separate
section of the chapter.

With respect to learning, the techniques used so far in the cognitive networking
field are usually straightforward, such as the use of a knowledge base to be updated
as new situations are experienced. Specific techniques are employed to update con-
nections in neural networks and FCMs. Popular algorithms commonly leveraged
in neural networks are back-propagation learning, in which error with respect to a
target outcome is repeatedly back-propagated through the network, and reinforce-
ment learning, in which a reinforcement signal is a measure of the performance level
achieved after the system has performed a set of actions. As for FCMs, updating
techniques are based on Hebbian learning, according to which connections between
concepts that activated together should be given more weight [7].
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14.2.3.2 Adaptation

Papers in the literature provide hints at techniques that could be used to accomplish
network-wide adaptation, but examples of implementations of this are limited. Clark
et al. have proposed a distributed and decentralized model so that different parts
of the network can work toward the achievement of divergent goals [1]. However,
they acknowledge that classic artificial-intelligence techniques are not suitable for
employment in distributed environments and suggest that robust, highly dynamic
algorithms should be employed. They also mention multi-agent systems, a tool to
model and design systems populated with intelligent agents, each capable of (and
responsible for) its own actions, as a framework that could potentially represent a
base for building such algorithms.

Friend et al. state their reference for a distributed implementation of the cognitive
process, claiming it is more convenient when compared to the centralized counter-
part [8]. Their preference stems not only from the typical advantages that such a
model offers, but also from the benefits it presents in the specific case of cognitive
networking. First, a centralized architecture would lead to a greater communication
overhead, and second, in environments populated by nodes that already have cogni-
tive capabilities (e.g., where there are some cognitive radios), the centralization of
cognition would inevitably lead to a greater waste of channel resources.

According to this point of view, Thomas proposes several formalisms to study
the behavior of a network [9], introducing the use of game theory with the aim
of analyzing the interactions occurring among a population of rational decision-
makers which have strategic behavior. One potential drawback of game theory is that,
usually, assumptions are made in order to make game analysis tractable: common
assumptions in this sense are of a homogeneous player set (which means nodes have
to share similar characteristic), or players having complete information (that is, nodes
exactly know what other node wants and what they can do). Were such assumptions
not acceptable, a game would likely become more complicated and, possibly, would
not present equilibrium points.

Thomas proposes another tool to investigate interacting elements which is the
set of so-called interaction models, in order to identify fixed points of operation of
complex systems. Some of the models listed are infinite particle systems and Petri
nets, to model general distributed discrete systems.

14.2.3.3 Information Representation

Most works offering practical insights on information representation, resort to the
use of markup languages, such as the Extensible Markup Language (XML). For
example, an interesting solution comes from Kephart and Chess [10], for whom
autonomic elements should register the services they offer in a public registry, such
as the Universal Description, Discovery and Integration (UDDI). Such a registry will
contain high-level descriptions of the objectives and policies offered by autonomic
elements, and how they should be invoked.
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Another suggestion is to use the Radio Knowledge Representation Language
(RKRL), first promoted by Mitola [11] with the objective of representing radio
knowledge through the use of structured natural language. The final scheme for
the representation of knowledge worth mentioning is the DARPA Agent Markup
Language (DAML), conceived by the Defense Advanced Research Projects Agency
(DARPA), which capitalizes on both XML and the Resource Description Framework
(RDF) to support ontologies for web objects.

As for information propagation, it is acknowledged that in order to foster cross-
network communication a signaling architecture must first be devised. However, to
the best of the authors knowledge, no mechanism has been proposed so far specifically
for cognitive networks but only general guidelines have been discussed. Regardless
of the signaling method, two broad categories of signaling can be distinguished: (i) an
in-band signaling scheme, where signaling messages are mixed with data messages,
and (ii) an out-of-band signaling scheme, in which messages constitute a separate
communication channel. A signaling scheme belonging to the first category may be
realized by embedding information in header fields that are normally not used by a
protocol. Among the advantages of such solution is that can be mentioned is that it
incurs in no overhead, moreover, it is possible to reuse already existing protocols.
However, nodes along a path may misclassify such enhanced packets as malicious or
malformed, and discard them. Other drawbacks are represented by the limited room
to allocate information, and the fact that information passing becomes dependent on
the communication technology used (i.e., the protocols). An out-of-band signaling
scheme needs a separate communication setup (and possibly the design of a new
protocol). The quantity of information that can be sent is greater than in the previous
scheme, but complexity and overhead are also greater.

Depending on the architecture chosen for the cognitive process, different message
passing schemes can be deployed. In a centralized network, a natural option would
be a master-slave communication scheme, but direct communications among slaves
may be desirable as well. In a distributed network, flooding could represent a simple
solution, even though it could increase communication overhead and may be too
general. For instance, two neighboring nodes may harbor the same beliefs about
the environment: as a consequence neither of the two will benefit from the others
information. More elaborate protocols can represent more viable alternatives: as
an example, a seemingly popular choice in distributed scenarios is represented by
epidemic protocols, i.e., protocols that imitate the diffusion typical of diseases to
spread information. They are generally scalable and resistant to failure.
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14.3 Quantitative Reasoning in Cognitive Networks

14.3.1 Introduction

The cognition loop is central to any cognitive architecture. According to this cycle,
during the sensing stage a cognitive entity acquires knowledge about the environment
and pre-processes it. Afterward, the reasoning, driven by end-to-end principles, takes
place during the planning stage while the actual decision is taken in the decision stage.
Finally, in the acting stage, actions are executed and their effect evaluated, by sensing
the environment again. The learning stage is another key element building knowledge
on causality that can feed reasoning.

Cognitive networking needs cross-layering to operate. In this framework, cross-
layering represents the means to provide optimization, while a cognitive engine
represents the learning, adaptation and decision processes which drive it to achieve
end-to-end goals. Several cognitive network architectures are available in the litera-
ture, dealing with different stages of the cognition loop.

As correctly summarized in [12], the techniques used in cognitive networks for
reasoning purposes are limited in number and often not justified over other available
alternatives. In addition, it appears that the cognitive networks proposed in the liter-
ature, when addressing the reasoning problem, do not explicitly consider cross-layer
relations. Given this, the aim of this section is to introduce the usage of the graph-
like structures commonly known as Fuzzy Cognitive Maps (FCMs), to explicitly
represent cross-layer and network-wide interactions, and to use such information as
a base for the reasoning process.

14.3.2 Fuzzy Cognitive Maps

FCMs are mathematical structures conceived in 1986 by Kosko [6] as a tool for
modeling dynamical systems through the causal relationships that characterize them.
A pictorial representation of a hypothetical FCM is shown in Fig. 14.1a. Figure 14.1b
shows the adjacency matrix of the graph, which is an alternative widely used repre-
sentation for FCMs.

Graphically, an FCM is rendered as a direct graph, in which a node represents a
generic concept (e.g., an event, a process, a variable or other generic entities) and
edges between any two concepts mean that there is a causal relation between them,
the cause being the node from which the arrow starts.

In the simplest case, the domains of nodes and the weights of edges are discrete.
In more complex FCMs, however, nodes can be mapped on larger sets depending
on the detail the designer wants to achieve. Indeed, nodes and edges can in principle
be fuzzy, in that they may take any value in the continuous sets [0, 1] or [−1, 1].
Though the use of larger sets generally results in a greater flexibility of a model, it
is often the case that FCMs concepts are mapped on the discrete set 0, 1 and edge
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Fig. 14.1 An example of
a fuzzy cognitive map.
a Graphical representation.
b Mathematical representa-
tion (adjacency matrix)

labels mapped on −1, 0, 1. Such maps are better known as 12 simple FCMs and are
particularly suited to obtain a preliminary model of a problem.

A zero-valued concept denotes that the concept is off, inactive, irrelevant, in a
low-state or it can even mean that it is not considered at all. Conversely, a concept
set to one means it is regarded as high, relevant or active. Edge labels measure the
degree of causality; values of either +1 or −1 denote a strong causal relationship,
positive in the former case and negative in the latter. A zero-valued label means that
the two concepts are not causally related to each other. No concept can cause itself,
hence edges leaving and entering the same node cannot exist. Equivalently, the trace
of the adjacency matrix of any FCM yields zero.

The state of a system having n distinct concepts is a vector of dimensions 1−by−n.
In the inference process, this vector is repeatedly multiplied by the FCM matrix and
the result thresholded each time, until it converges either to a fixed point or to a limit
cycle. This complete procedure is shown using a toy example in Fig. 14.2.

FCMs offer some advantages over other potential reasoning techniques (neural
networks, Bayesian and Markov networks). Unlike both Bayesian and Markov
networks, the inference procedure used in FCMs, since it involves exclusively
vector-by-matrix multiplications and thresholding operations, has a low computa-
tional footprint.
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Fig. 14.2 The inference process for a FCM

Moreover, FCMs are more powerful when there are causality loops in the problem;
for such problems, Bayesian networks cannot be applied. In Markov networks, loopy
belief propagation algorithms can be applied, but convergence is not guaranteed.
Additionally, the FCM inference process can be applied to both loop-free and non-
loop-free problems. Moreover, inference is guaranteed to converge to either a fixed
point or a limit cycle, provided that concepts take their values in any finite discrete
set.

Another considerable advantage is the possibility of exchanging and merging
together multiple FCMs, resembling the operations of people exchanging opinions.
This aspect has its roots in the primary purpose for which FCMs were created, i.e.,
to allow experts to represent their causal knowledge about some situation. Different
experts may have different opinions about the same matter, and may encode dif-
ferently their beliefs, hence drawing conflicting FCMs. Merging helps to smooth
(possibly divergent) beliefs and biases, thereby reducing the possibility of biased
reasoning.

However, there are some disadvantages. One major drawback concerns the auto-
matic synthesis of FCMs: FCMs were not conceived for being constructed starting
from observational data. They were initially devised in the social science field as a
tool to be used by experts in order for them to formally express their beliefs about
a given matter. For this reason, auto-synthesis of FCMs is difficult, mostly because,
for non-humans, causal relationships between variables are generally more complex
to detect than simple correlations.
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Another limitation of FCMs is their restricted ability to deal with the comple-
mentary process of inference, i.e., abductive reasoning. Abduction is the process of
stating which causes are responsible for a given effect: in case of FCMs, as well as
in Bayesian and Markov Networks, it requires the solution of an NP-hard problem.

Despite such problems, the benefits deriving from the use of FCMs in cognitive
networking appear to outweigh their drawbacks. The interested reader can find a
thorough survey of FCMs in [13].

14.3.3 Applying FCMs to Cognitive Networking

The proposed approach to implement FCMs in cognitive nodes can be described as
a three-step process:

1. To identify which variables of the different communication protocols could be of
interest for the intended application. In particular, concepts should be categorized
according to what they represent: everything that can be tuned should belong
to the action class, everything that cannot be controlled directly and conveys a
QoS-related meaning should belong to the QoS class, and everything else (i.e.
variables that cannot be controlled and are not QoS-related) should belong to the
environment class.

2. To define the domain of each variable, avoiding continuous sets and keeping dis-
crete sets as small as possible (or else being prepared to increased computational
complexity). In finding the right domain for boundless concepts, it could be of
help to think of a threshold, so that greater (or lower) values entail the same causal-
ity as the threshold value. An error probability could be mapped to the discrete
set 0, 1, indicating absence or presence of errors; however, a proper threshold has
to be chosen (for instance, according to the transmission modulation used), so
to distinguish values of the error rate that affect the system behavior from val-
ues that do not affect it. Finally, the same domain could be apt for modeling the
throughput: the lowest value can be used to represent non-satisfactory situations,
the highest to represent favorable situations.

3. To design and implement the algorithm for building and updating the FCM,
embedding into the matrix any available a-priori knowledge. The choice and
configuration of the algorithm is critical for achieving satisfactory results. For
instance, it is important to introduce zeros in the FCM matrix representation
corresponding to absence of relationship between two concepts.

It should be noted that the first two points resemble a pre-processing stage, rather
than the reasoning stage itself. However, the two stages cannot be separated from
one another and have to be accomplished in a jointly fashion.
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14.4 Application of Cognition to Green Networking

14.4.1 Introduction

Global emissions of greenhouse gases (GHGs) represent a footprint on the world of
the development of humanity, especially after industrialization. The ICT sector itself
roughly accounts for 2 % of todays global carbon footprint, but figures are expected
to significantly increase in forthcoming years, with forecasts predicting levels in
2020 around three times what they were in 2002. However, it is also forecast that it
will contribute, both directly and indirectly, to reducing global emissions of about
five times its own footprint, potentially leading to approximately 600 billion savings
for energy costs.

The most significant direct effect is that the telecom infrastructure is expected to
grow significantly, ultimately being responsible for 13 % of the total sector footprint.
Considering also that power generation in ICT is acknowledged to be one of the
main causes behind the increase of man-made greenhouse gases, it is evident the
importance of energy optimization in the telecom infrastructure.

14.4.2 Motivation

In current cellular networks, base stations are usually kept powered on and operating
all day long, pursuing the vision of an always-on network. As power consumption
in such networks is mainly due to base stations, which account for almost 80 % of
the total, it is no wonder that several research efforts have tried to intervene directly
on the functioning of transceivers, at different levels of details. Most of the works
in the literature address the problem of energy consumption from a static point of
view, by applying static optimization algorithms. While this approach works fine in
quasi-static or highly predictable scenarios, the same may not hold in cases where the
environment is subject to dynamic changes or in cases of emerging and differentiated
usage of the communication infrastructure. For example, even if it is known that the
average number of users in a cell follows a predictable pattern, the actual number may
be markedly different from the mean, thereby reducing the effectiveness of energy
saving mechanisms implementing a static approach. In line with such considerations,
this chapter aims to explore the possibility of developing dynamic energy-reduction
schemes.

In this scenario, the cognitive networking paradigm represents a potential approach
to pursuing the objective of energy efficiency. Cognitive networking is a relatively
recent research field, stemming from cognitive radio technology. It aims to extend the
principles underlying cognitive radios and apply them to the whole communication
protocol stack according to a network-wide perspective.

Works in this area are traditionally targeted at reducing management complexity
or optimizing Quality-of-Service-related metrics. In this chapter, we propose to adapt
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cognitive networking principles to address the problem of energy saving in cellular
networks. More precisely, we employ the Fuzzy Cognitive Maps (FCMs) reasoning
tool introduced earlier to analyze causal relationships between energy consumption
in base stations and other variables characterizing the cell, in order to identify the most
appropriate run-time decisions to reduce energy consumption while maintaining a
suitable performance level. It should be noted that a dynamic approach, in principle,
substitute static schemes, but can also be used in conjunction to them.

14.4.3 Related Works

The literature on green wireless networks is huge, and it is not possible to provide a
comprehensive survey in this section. For reasons of ease of presentation we focus
our attention on network deployment strategies, and provide a quick review of the
most promising technologies to build energy-efficient wireless cellular networks.

14.4.3.1 Cell Deployment Strategies

Energy saving through cell deployment strategies can be achieved by implementing
denser networks, consisting of smaller cells and higher number of base stations. With
this approach it is possible to counteract the high energy consumption caused by high
path losses during transmission. On the other hand, a higher number of base stations
in the system implies on greater power consumption, especially during low traffic
mode where most active stations are in the idle state, thus consuming power during
the listening process. As a consequence, the energy consumption for the overall
network operation is a trade-off and the question is to identify the optimal inter-site-
distance (ISD) among cells [14]. For each deployment strategy there is an optimal
inter site distance among cells that can be deployed in order to achieve minimum
power consumption. For example, optimal inter site distance for urban and dense
urban environments (when considering homogenous macro-stations deployment) is
typically between 500 and 1500 m. Another important issue is to design scalable
networks, with over-provisioning, since it is not possible to change deployment after
rollout. Over-provisioning provides possibilities for densification of network with
additional macro base stations and/or micro cells [15], so that the inter-site distance
in case of increasing traffic demand can be reduced. It is worth nothing that over-
provisioning influences the total power consumption, while denser networks reduces
power consumption during transmission states [16]. Furthermore, additional power
saving could be achieved by adapting deployment to switch off the cells or to modify
some configuration parameters [17, 18].

It is also necessary to analyze the trade-off between deployment costs and the gain
of energy efficiency. Cell deployment has to take into account given requirements of
coverage and capacity. More precisely, a proper deployment has to fulfill specified
conditions in terms of coverage area and available capacity. If some energy-efficient
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deployments do not provide the required coverage level by operator, they should
not be considered. Likewise, the deployment should also be discarded in case the
network is not able to satisfy the capacity demand in a covered area.

Besides macro cells which are designed to cover larger areas, micro cells are
designed for relatively short distances, utilizing the good channel conditions for
transmission and using much less transmit power, reducing, power consumption. The
energy consumption of deployed networks is mostly connected to the high density
of base stations. Higher densification is employed to increase the capability of data
transmission and the level of coverage. Thus, the optimization of a cell size is a
very important factor, which highly influences energy saving. The optimal cell size
when considering energy efficiency in wireless architectures is investigated in [19].
The cell size can be optimized dynamically, according to temporal traffic conditions.
For very high local traffic demand an additional capacity can be provided by small
underlay cells or by the densification of macro cells that can be switched off during
low traffic times. However, there is no guarantee that cells in sleeping mode will not
consume energy at all, but the amount of power is very small.

14.4.3.2 Energy Efficiency Through Relay Stations

The introduction of relay nodes (RNs) in the infrastructure network architecture is a
novel approach that aims both to extend coverage and increase capacity [20], hence
allowing more flexible and cost effective tradeoffs. RN covers a much smaller area
than the macro cells described in the previous section. Therefore, they consume less
transmission power. Considering this fact, it is expected that relay nodes built for
small transmission ranges will consume less power.

Different types of relay nodes are introduced in 3GPP. In-band relays share the
same frequency band for the base station relay node (BS-RN) and relay node user
equipment (RN-UE) links. Two cases are distinguished in 3GPP:

• Type 1 relays in 3GPP notation are RN operating on Layer 3, i.e. the protocol
layers up to Layer 3 for user data packets is available at the RN. Such a L3 relay
has all functions that an BS has, and can receive and forward IP packets (PDCP
SDUs);

• Type 2 relays may be either Layer 3 or Layer 2 relay nodes, depending on the
particular solution/implementation.

Coherently with 3GPP terminology, Type 1 relays are considered visible to the
mobile devices, while Type 2 relays are transparent relay nodes. The performance
evaluation of these two schemes showed that the deployment of Multicast Coopera-
tive schemes improve more the capacity, while the deployment of two-hop schemes
provides higher energy efficiency.
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14.4.3.3 Co-Deployment of Different Radio Access Technologies

The co-deployment of different radio access technologies (RAT) aims to provide the
so-called Multi-RAT systems, which can achieve higher performance, especially in
terms of energy efficiency. Next-generation wireless networks (e.g. 4G) will integrate
heterogeneous technologies with the purpose of achieving enhanced performance.
This implies necessary support for co-deployment with other wireless networks based
on different RATs. To provide co-existence of such mixed networks, and to improve
spectrum and bandwidth utilization efficiency, many different co-deployment mech-
anisms were proposed. In the last few years a significant number of studies have
addressed various approaches for improving bandwidth efficiency. A well-known
technique in this group is the MIMO technology, mainly used to increase system
capacity, which leads to enhancements of bandwidth utilization. Spectrum utiliza-
tion efficiency can increase through a distributed spatial division multiple access
(SDMA) technique, so that mutual interference among coexisting peer systems in
areas of overlap can be prevented.

The 3GPP long term evolution (LTE) technology [20] provides increased capacity
and transmission rate. Interesting scenarios of network co-deployment are proposed,
where conventional RATs are combined to cooperate together with LTE to provide
mobile services. When high capacity is important, standalone LTE have shown better
results. Deployment in lower frequency bands could also represent a suitable option
while when coverage capacity is important LTE has to be deployed in higher fre-
quency bands, combined LTE and legacy RAT solutions have shown up to 50 % of
gain, with respect to standalone LTE [21].

14.4.3.4 Integration of Different Radio Access Technologies

The combined operation of LTE and Wi-Fi represents a promising solution, aiming
to support rapidly increasing demand for wireless services and bandwidth. Wireless
operators are realizing that additional 4G bandwidth will not cope with the increas-
ing requirements of the emerging media-rich devices and social media applications.
Hence, Wi-Fi represents a potential offload technology to convey traffic from the
overloaded 3G and 4G networks. The synthesis of Wi-Fi and LTE will represent an
essential combination to deliver the necessary bandwidth required by the industry for
emerging video-heavy, media-savvy applications. However, co-deployment of LTE
and various RATs should be very carefully performed, and trade-offs should be care-
fully estimated and optimized, in order to preserve power consumption on reasonable
level, while providing highquality services in terms of capacity and coverage [22].
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14.5 Test Case: Green Self-Configuration of 3G Base Stations

14.5.1 Embedding FCMs into Radio Network Controllers

To the purpose of presenting a test case on the usage of cognitive network paradigm
in green networking, we propose to equip 3G base stations with such cognitive
capabilities, in order to learn how to save energy while adapting to the changing
environment.

According to the procedure described in Sect. 14.3.3, we will define in the follow-
ing sections a proper FCM for the problem of energy saving in cellular networks.

14.5.1.1 Identification of the Concepts Characterizing the Problem

The first step towards the definition of a FCM involves the identification of the
concepts that will compose the system state. We can define a set C of all the concepts
that characterize the system under study. We can think of such concepts as belonging
to different sets:

• Set A comprises all concepts on which the reasoning entity has direct control;
• Set Q collects all concepts that the reasoning entity cannot control directly but that

are interesting because they give feedback on the achieved performance;
• Set E collects all concepts on which the reasoning entity has no direct control nor

carry relevant information regarding the performance.

Once concepts are found and classified, it is possible to create the system state
vector, s = (a, q, e), where: v = (vi, ..., vnV)vi ∈ V∀(v, V) ∈ (a, A), (q, Q), (e, E).
The FCM needs to converge to a solution state s∗ = (a∗, q, e) by finding a vector a*
such that the constraints expressed by q are satisfied before environmental conditions
e change. It should be noted that elements in set E are important, although they cannot
be directly controlled by the system nor do they provide any information directly
related to the performance of the system. In fact, they might have relationships
with concepts in the other sets, which must be taken into account to be, eventually,
exploited. For the considered test case, the following concepts are selected:

• Concepts in S ∩ A: the use of higher frequencies (hi), the use of trisectorized
operational mode (tri);

• Concepts in S ∩Q: the energy consumption (en), the blocking rate (br), the Signal
to Interference-plus-Noise Ratio (snr);

• Concepts in S ∩ E: the amount of voice users (v), the amount of users browsing
the web (h), the amount of users that transfer data (f ).
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14.5.1.2 Definition of Concept Domains

The second step in defining the FCM involves the identification of concept domains
and the pre-processing operations needed to perform the mapping operation. The
number of steps needed to make the reasoning process converge depends on the
domains on which the concepts are mapped and the number of concepts themselves.
More precisely, the inference process reaches a solution within lc steps, l being
the number of levels of concept domains and c being the number of concepts. For
this reason, we considered appropriate to adopt binary sets as the domains for all
concepts. In particular, we have opted for the {−1, 1} domain as the domain for
all concepts except the blocking rate, for which we used the binary set {0, 1}. This
choice has been made to highlight the fact that a low blocking rate (0) should not be
able to influence or, better, cause any other concept. Avoiding the use of zero in all
other cases means that any variation can, at least in principle, entail some change in
the other concepts. It should be noted that only concepts in S ∩ A can be naturally
mapped on such interval.

Pre-processing operations are needed in order to map all other concepts. The
identification of optimal values for the pre-processing stage depends on the problem
under analysis and is a step that must be taken into account for the correct outcome
of the operations. More information on the subject is provided by [23].

14.5.1.3 Definition and Update of the Fuzzy Cognitive Map

The third and last step is about embedding of any a priori knowledge of the problem
to the FCM. Let us denote by fij the edge of the FCM that departs from i and arrives
to j, i, and j being generic concepts in S.

1. We assume that concepts in the same set are causally independent from one
another. Considering the set S ∪ Q as an example, this means that, for instance,
the variation of the number of users that browse the web has no causal implication
to (and from) the variation of the number of the users that place voice calls. This
means that no edges arrive or depart from concepts that belong to the same class:
fi,j = fj,i = 0∀i, j ∈ S ∩ V , V ∈ A, Q, E

2. Concepts in the action set are not directly caused by any other concept. Instead,
they are triggered by the reasoning process. This translates into the fact that no
edges point to any action concept, that is: fi,a = 0∀a ∈ S ∩ A,∀i ∈ S ∩ V , V ∈
Q, E

3. Similarly, concepts related to quality metrics do not cause any variation in the
concepts related to the environment. As an example, users will decide to call,
browse the web and download files ignoring channel conditions (Signal to Inter-
ference and Noise Ratio (SINR), blocking rate and energy consumed by the base
station). Mathematically: fqe = 0∀q ∈ {S ∩ Q},∀e ∈ {S ∩ E} (7)
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4. We also know that both actions increase the number of frequency slots available,
and, as a direct consequence, reduce the blocking rate. Therefore we may want
to embed such information, by properly setting fhi,br and ftri,br .

The resulting FCM is as follows:

F =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 fv,en fv,br fv,snr

0 0 0 0 0 fh,en fh,br fh,snr
0 0 0 0 0 ff ,en ff ,br ff ,snr
0 0 0 0 0 fhi,en fhi,br fhi,snr

fhi,v fhi,h fhi,f 0 0 ftri,en ftri,br ftri,snr

ftri,v ftri,h ftri,f 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

In order to maintain the FCM updated, a popular learning rule known as Differen-
tial Hebbian Learning (DHL) is used. It updates the edges in an FCM proportionally
to the value of variations of the concepts. Mathematically, if we denote by f t

i,j a

generic edge at time t and by Ċ the variation of concept i at time t, the DHL rule
states that:

f t
i,j = f t−1

i,j + η(−f t−1
i,j + Ċt

i Ċ
t
j )

The parameter η ∈ (0; 1] is known as learning rate and its purpose is to lower the
responsiveness of the algorithm, which otherwise could produce too abrupt updates.

In order to consider all variations of the same importance, we modified the DHL
rule to devise a Linear Learning (LL) rule. According to such rule, edges are updated
based only on the polarity of the variation, that is:

f t
i,j = f t−1

i,j + ηsgn(Ċt
i Ċ

t
j )

where sgn denotes the sign operator. Clipping is done to prevent edge values fall off
of the [−1; 1] interval.

14.5.2 Simulation Scenario

The simulation scenario is populated by seven base stations arranged according to
the traditional honeycomb structure, and we focus our attention on the central base
station, which is served by a base station that is equipped with cognitive capabilities.
Such cognitive capabilities are based on the FCM described in the previous Section,
and allow the base station to reason about the environment in order to reduce energy
consumption while monitoring the blocking rate. Other base stations in the network
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Fig. 14.3 Hourly variation of traffic load as a percentage of busy hour load over a typical day for
a mobile network operator in London, UK

do not employ any cognitive scheme and maintain all radio modules enabled at all
times.

The simulating platform focuses on the periods of active communications between
the base stations and the user terminals associated to it, so that it is possible to
monitor energy consumption. Terminals are static during their communications and
are distributed over the coverage area of a base station following a uniform random
distribution. Associations and de-associations to/from a base station follow a Poisson
process, with parameters and, respectively. Both λ and μ depend on the type of
communication occurring: voice call, web browsing, data transfer, indicared as λv,
μv, λh, μh,λf , μf , respectively.

Each base station has a peak busy load of 50 users, weighted by real data traces in
order to reflect real-world situations. Weights reflect the actual hourly load measured
in a Vodafone 3G cell in London and were obtained via internal communication
within the UKs Mobile VCE Core 5 Green Radio research program (see Fig. 14.3).

Voice traffic is modeled after the well-known Brady six-state model. We assumed
an average duration of calls of one minute, resulting in a µv of 1/60. Web traffic
has been modeled as a continuous repetition of two states: a downloading period
to retrieve a page from the web, and a waiting period, to parse and read the page.
The download time depends on the size of the web page and eventual embedded
objects. Object sizes follow a truncated lognormal distribution, while the number of
the embedded objects in a web page follows a truncated Pareto distribution. Reading
and parsing times can be found by sampling an exponential distribution. Assuming
that a web session for a mobile user lasts, on average, five minutes, we fixed μh to a
value of 1/300.
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Table 14.1 Simulation parameters. d is the distance in km

Classes Action mechanism

System configuration Broadly reflecting HSDPA Rel. 5
Spectral efficiency 0.8 b/s Hz
Bandwidth per HSDPA band 5 Mhz
Channel path loss models 2 GHz: 128.1 + 37.6 ∗ log(d)

5 GHz: 141.52 + 28 ∗ log(d)

HSDPA pilot power 20 % of cell power budget

The model for FTP sessions is similar to that for web sessions, except for the fact
that there is no parsing time. The download time exclusively depends on the size
of the object to be transferred, which follows a Pareto distribution. Reading time is
again modeled by an exponential random variable. Considering that a mobile user is
not likely to make extensive use of FTP, we hypothesize an average session duration
of two minutes, corresponding to αf equal to 1/120. The composition of traffic is
fixed as follows: 50 % voice traffic (αv), 40 % web browsing (αh) and 10 % FTP
traffic (αf ). Traffic categories are independent from one another.

The environment represents a typical HSDPA network. The main parameters that
characterize the system are reported in Table 14.1. Base stations all operate on two
bands, centered at 2 and 5 GHz, and are characterized by a coverage radius of 600 m.
According to internal documentation within the Mobile VCE Green Radio research
program, it has been shown that an HSDPA base stations consumes 857 W at 100 %
transmission power and 561 W at 20 % transmission power.

Regarding user capacity, a base station can accommodate at most 22 users per
band when operating in omnidirectional mode and up to 15 users per band per sector
when operating in tri-sectorized mode.

14.5.3 Results and Discussion

Simulation time covers three days, starting from midnight. Hourly variation is con-
sidered the same from day to day. The dashed line in Fig. 14.4 represents the energy
consumption by a traditional base station, i.e. when all six modules are always on. As
can be expected, the curve is a linear function of the time, showing no change in the
behavior of the base station. The behavior of the cognitive base station is represented
by the solid line, which resembles a piecewise linear function. The curve reveals that
at times when the user load is low, it is possible to save energy by switching off part
of the radio modules. In such quiet periods, it is possible to employ power saving
modes, with a saving around 50 % of the total energy consumption of the traditional
system (6.25 MJ/h or 1.7 kW). Conversely, when there is a high user load all radio
modules must be kept active and no energy saving is possible.
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Fig. 14.4 Energy consumption as a function of time for the legacy and cognitive approaches
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Fig. 14.5 Evolution of the blocking rate for the cognitive approach

Clearly, there is a trade-off between energy saving and blocking rate. As the thin
line in Fig. 14.5 indicates, the blocking rate tends to increase when a subset of the
transceivers is turned off. The thick curve represents the all-time average, in which
the blocking rate remains below 5 % throughout the simulation. As it can be noticed,
the cognitive base station learns over time and improves blocking day by day.

The causal relationships between the action concepts and the qualityrelated con-
cepts are reported in Fig. 14.6. It can be noticed that the cause-effect relationship
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Fig. 14.6 Example of evolution of the causal relationships: (a) between hi (use of higher frequen-
cies) and the quality-related concepts, and (b) between tri (use of tri-sectorized mode) and the
quality-related concepts

between any action concept and the blocking rate is negative and approaches the
lower bound (1). This means that using the higher band in conjunction with the
lower band and using the tri-sectorized mode causes the blocking rate to decrease.
A similar effect happens with energy: turning on the radio modules causes the con-
sumption of energy to rise (positive cause-effect relation).
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14.6 Conclusions and Final Remarks

This chapter has illustrated the application of cognitive networking paradigms to
reducing energy consumption in networks, focusing on the usage of FCMs for rea-
soning. The rationale on the usage of cognition in such a field is related to the complex
relationships among the parameters that control power consumption in todays net-
works, a complexity that is evident even in the relatively simple scenario presented
as a proof-of-concept. Yet, such experimental results (based on real traffic data)
demonstrate the capability of a 3G base station to implement cognition and to achieve
energy saving without any a-priori information but only fucusing on understanding
the cause-effect relationships among the parameters and environment variables.

In summary, cognitive networking has been shown in this chapter to enable us
to face the problem of designing and managing green networks. Nevertheless, sev-
eral related research issues are yet to be fully developed, including network-wide
cooperation, signaling schemes, as well as the learning and reasoning paradigms for
such networks. In addition, proper balance between learning from own actions and
a-priori information is needed to improve the efficiency in reasoning and the overall
performance of the system.
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Chapter 15
Testbeds and Implementation Issues

K. Katzis, A. Perotti and L. De Nardis

15.1 Introduction

A Cognitive Radio (CR) system can be visualised in Fig. 15.1 as a complicated
wireless communication system that involves a virtual engine (soul) and a platform
(body). The engine is implemented based on a number of logical arguments in order
to reason and negotiate with other wireless systems, aiming towards the optimum
utilisation of the spectrum while ensuring minimum disruption to existing wireless
systems.

Current research and development on CR has been pushing towards the develop-
ment of different versions of engines running on different types of platforms. This is
to address one of the main concerns of CR, which is to ensure that it does not disturb
any primary users from existing wireless systems as well as to prove its potential
in terms of performance. This cannot be resolved through theoretical models and
simulations but it requires to be addressed through a working system which demon-
strates that the amount of interference is sufficiently low to justify its operation. The
practical demonstration of a CR is essential for bringing such systems in real life by
convincing local regulatory bodies of their non-disruptive operation.

Based on the above argument, a number of CR testbeds have been implemented for
evaluation purposes on the currently available CR platforms such as USRP2, BEE2,
VESNA or any other hardware and software platforms. The testbeds must be designed
based on well-defined metrics and test cases in order to generate useful results. Within
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Fig. 15.1 CR engine running
on a CR platform

this context, this chapter aims to present testbeds and their implementation issues in
four subsections. The first section introduces the concept of CR engine, emphasizing
its advantages and disadvantages when compared to legacy communication systems.
The second section presents the basics of CR platforms regarding their software and
hardware parts, giving an overview of the various available technologies. It then
presents in detail all major testbeds that are currently available, commenting on
their operation characteristics and their current applications along with some of their
breaking field trials. Last, the fourth section discusses known implementation issues
of the CR engines, looking as well at related standardisation activities. An example
on how to implement a CR testbed is also presented. Finally, a paragraph with the
main conclusions regarding the available test beds closes the chapter.

15.2 Cognitive Radio Engines

Cognitive radio (CR) engines in literature are presented as the encephalon, the
decision-making part of a cognitive radio system. They are often described as a
multiple system of parameters that require delicate tuning to achieve optimum per-
formance. Performance in CR networks is defined in terms of multiple elements,
such as bit error rate (BER), bandwidth, throughput, and transmit power. There are
numerous CR engines in the research arena that vary in many aspects depending pri-
marily on the system that are to be employed while looking at network architecture,
applications utilized, level of security required, hardware employed, radio environ-
ment, etc. Nevertheless, all different instances of CR engines share the common goal
of optimizing the performance of the system while ensuring coexistence with the
existing wireless systems.

Looking back in literature, a significant number of CR engines have been inspired
by Genetic Algorithms (GA) [19, 34, 38, 47]. These algorithms are requiring mod-
elling of the physical (PHY) layer traits of the radio within the context of a genetic
chromosome. Biologically inspired CR engines are capable of intelligently adapting
a radio’s physical and MAC behaviour on constantly varying network conditions.
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An example where a GA driven CR decision engine is developed is presented in
[31]. The GA based engine determines the optimal radio transmitter parameters for
single and multicarrier systems. The GA is based on a fitness function that directs
evolution of the GA parameters to their optimal values. Further to the GA based CR
engines, a biologically inspired cognitive engine with dynamic spectrum access has
been presented in [27]. Initial results indicate that the performance of the proposed
engine achieved a 20 dB signal to interference plus noise ratio (SINR) increase when
compared with the traditional IEEE 802.11 physical layer standard. The wireless
GA proposed in [27] is a multi-objective GA designed for the control of a radio
by modelling the physical radio system as a biological organism and optimizing its
performance through genetic and evolutionary processes. In [26], a prototype smart
receiver has been presented including a General Purpose Processor (GPP) based
software defined radio platform, signal classification capability and PHY-MAC re-
configurability with hardware-independent radio interface. Another approach based
on GA driven CR decision engines is outlined in [1]. This work explores the use
of Taguchi method and orthogonal arrays (OA) as a tool for identifying favourable
GA parameter settings. The strategies developed here limit the number of required
tests needed to identify acceptable parameter values as opposed to the well-known
methods such as design of experiment (DOE) and response surface methodology
(RSM). As the number of configuration variables grows, DOE and RSM formalisa-
tions diminish due to the significant number of test cases that require full factorial
designs. Results presented in [1] indicate that the Taguchi method analysis yields
a predicted best combination of GA parameters from nine test cases. It utilises an
efficient selection of testing configurations based on the concept of OA.

In [35] the theory and the prototypical implementation of the CE is presented. Fur-
thermore a list of cognitive components is presented along with various issues related
to developing algorithms for CR behaviour. These components are perception, con-
ception and execution. Figure 15.2 presents a generic architecture of a cognitive radio
[35] while showing how a cognitive engine interacts with the rest of the components
of a CR architecture. Here there are three input domains that concern the cognitive
radio. The user domain informs the cognitive engine about performance require-
ments of services and applications to guarantee the minimum acceptable quality of
service (QoS). Based on the different quality of service levels, the user domain effec-
tively sets the performance goals of the radio. Furthermore, information regarding the
changes in performance of waveforms based on different propagation environments
is collected, to determine the effect of the external environment and RF channel. The
last part of this generalized CR architecture is the policy domain that, as mentioned
before, guides the system to perform within the boundaries and limitations set by the
local regulatory bodies as interpreted by the CE.

A generalized Cognitive Engine design is also presented in [35]. The engine
presented includes a central component called the cognitive controller that acts as
the system kernel and scheduler to handle the input / output and timing of the other
attached components. The major components listed in [35] and illustrated in Fig. 15.3
as part of a CE are: cognitive controller, sensors, optimisers, decision makers, policy
engine, radio framework and user interface.



346 K. Katzis et al.

Fig. 15.2 CR architecture [35]

Fig. 15.3 Cognitive engine [35]
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Each component is launched as a separate process that interfaces and exchanges
data between processes. Components can be designed, implemented and tested in
isolation for low coupling between processes, thus enabling distributed processing
where different components can reside on different processors or hosts. The proposed
architecture also enables testing of different types of algorithms and processes to
create new components.

An important part of the design and development of CR engines are the tools
employed to achieve the best possible result. In [14], a Policy Reasoner (PR) is
proposed based on a language used for expressing policies that allow opportunistic
spectrum access. Using a Policy Reasoner in CR engines, it is possible to guarantee
policy-specified behaviours while allowing spectrum sharing. The proposed engine
performs its processing at a software level rather than hardwired in the system like
in legacy radios, thus achieving a device independent policy reasoning. The flex-
ible mechanism coordinates, considers and processes a large number of operating
dimensions while adhering to all regulation policies and maintain optimum spec-
trum sharing. The implementation of the Policy Reasoner in [14] was carried out
using Cognitive (Policy) Radio Language (CORAL). CORAL has been first intro-
duced in the neXt Generation (XG) programme funded by DARPA [12, 13]. CORAL
is a language for policy specification that was devised to encode the policies in a
straightforward, “natural” way in something close to first-order logic. The advantage
of combining CORAL language with a device independent platform proposed in [14]
was the capability to easily update the operating software based on various types of
regulatory policies that exist. This would have an immediate effect on the operation
of the engine in respect to:

1. Sensing frequencies (unrestricted bands, identification of primary users).
2. Characterisation of opportunities.
3. Distributed or centralized coordination of resources based on communication

with other devices for the identification of resource availability.
4. Enforcing behaviour consistent with policies.

In [9] a cognitive radio architecture is presented while the authors discuss reason-
ing and learning engines as parts of a CE. Reasoning and planning here are subjected
to various radio parameters. With these parameters a knowledge-base is formed just
like an expert system in Artificial Intelligence (AI) systems. The proposed engine is
implemented based on a generic cognitive engine [40] which combines OSSIE [33],
an open source software communications architecture SCA, along with Soar Cogni-
tive Engine. Efficient design of CR engines requires the capability of experimentally
verifying the proposed solutions and the identification of engine components and of
corresponding implementation choices is a fundamental step towards this direction.
For this reason, tools, platforms have been combined together to form an evaluation
testbed for CR engines.
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Fig. 15.4 Generic block diagram for SDR

15.3 Cognitive Radio Testbeds

Several testbeds have been designed and deployed in the last few years to evaluate
and improve solutions for cognitive radio networks, including algorithms and strate-
gies specific for Cognitive Engine functions. Cognitive radio research requires that
these testbed facilities are equipped with appropriate capabilities because of complex
interaction between physical and network layers that must be addressed jointly. A
set of requirements that a cognitive radio testbed should employ are [5]:

1. Real-time baseband processing for spectrum sensing.
2. Agile transmission with high computational throughput and low latency.
3. Integration of physical and network layers on embedded processors.
4. Sufficiently wide bandwidth radio front end with spatial processing capabilities.
5. Central processing of information exchange between multiple radios for con-

trolled physical and network layer development and analysis.
6. Ability to perform controlled experiments in different propagation environments

such as indoors or outdoors.

This section describes the most relevant testbeds deployed in the Cognitive Radio
community, moving from the introduction of major Cognitive Radio Platforms, that
constitute the building blocks of testbeds. CR platforms provide in fact the means
for designing testbeds in order to carry out experiments and thus support design,
implementation, testing and performance evaluation of CR algorithms and protocols,
including those related to CR engines.

CR platforms are typically the result of the combination of hardware and software
components, often developed independently and later combined to build a complete
CR system to be deployed within a testbed. The general idea behind a complete CR
device, resulting from the combination of hardware and software CR platforms is
depicted below in Fig. 15.4.

The front end found in a CR platform is designed to implement the front end
of a radio transceiver. The less the CR system relies on its hardware part the better
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Fig. 15.5 IRIS layers of components

thus allowing more flexibility, re-configurability and upgradeability of the system
through its software part.

In the following subsections hardware and software CR platforms are introduced,
and later most relevant testbeds built on various combinations of such components
are described, identifying their capabilities (in particular related to Cognitive Engine
aspects) and known experimental campaigns completed or ongoing using them
(Fig. 15.5).

15.3.1 Software CR Platforms

Software CR platforms were in most cases defined as the evolution of Software
Defined Radios (SDRs). SDRs have been around for more than 20 years starting in
the analogue modem industry where manufacturers implemented the modulating and
de-modulating algorithms in software. This allowed them to upgrade / change the
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communication standards without having to change any of the hardware components.
Based on this concept, SDRs have been further evolved to better utilise the radio
spectrum by allowing real-time reconfigurability and improve compatibility and
coexistence with different wireless standards. This has been achieved by employ-
ing software to perform the modulation and demodulation of the radio signals.

Building on such experience several advanced SDRs, that can be adopted as
software CR platforms in the deployment of a CR testbed, were proposed in the last
years:

• GNU Radio is a widely popular open source implementation of SDR. GNU Radio
is a software library written in a combination of C++ and Python that enable the
implementation of various signal and data processing blocks to perform complex
signal processing operations, by providing simple signal processing primitives
written in C++. The code implemented in C++ is then integrated in scripts using
SWIG, an interface compiler. Python scripts can be then used to implement specific
applications that rely on underlying signal processing blocks written in C++. The
advantage of GNU radio is that all these blocks run in their native speed without
having to be interpreted by a compiler thus achieving optimum processing speed.
Systems that have been implemented in GNU radio include HDTV video signal
decoders, AM/FM transmitters and receivers, as well as a simple packet radio
system using GMSK modulation and demodulation to transmit packets. It is worth
mentioning that GNU Radio is a platform mainly focusing on physical layer and
signal processing aspects, with very few examples of projects developed on top of
it that focus on network and higher layers.
Implementation of algorithms in GNU Radio typically requires programming skills
in C++ and Python, although software tools such as the GNU Radio Companion
can provide a more intuitive interface to GNU Radio components. GNU Radio is
released under the GNU Public License (GPL) v3, and can be freely downloaded
from the GNU radio website [20].

• IRIS, standing for Implementing Radios In Software, is a software radio engine
designed to operate on a general-purpose processor, and to interact with a hard-
ware frontend [18]. It is used to create software radios that are reconfigurable in
real-time. The IRIS radio architecture allows to create a radio from the existing
suite of components or by creating new ones. IRIS relies on an architecture based
on plug-ins, that are dynamically loaded by the main program when required by
the desired SDR architecture. Each plug-in implements in fact a radio component
that implements a specific radio functionality allowing full flexibility and recon-
figurability in the design of the overall system.
The Radio Component is one of the building blocks in the IRIS architecture, that
foresees six major entities: Radio Component, XML parser, component manager,
radio engine, control logic manager and API [18]. As already explained, the Radio
Component implements an individual stage in the signal processing chain of an
IRIS reconfigurable radio. The XML parser is used to interpret the radio design that
is stored in an external XML configuration file, listing the components required
to build the desired radio architecture, and how these components will interact.



15 Testbeds and Implementation Issues 351

Information in this file is converted into a form that can be later processed by
the component manager and radio engine. The Component Manager has in fact
the role of loading the radio components specified in the XML configuration file.
These components define the radio implementation and are located either on the
host PC or in a network-accessible remote location. The radio engine is the key
element in the implementation of a reconfigurable radio IRIS SDR architecture and
is supported by the Component Manager and Control Logic Manager. The control
logic manager’s main purpose is to reconfigure the existing radio into a new one.
It has the ability to access the structure and parameters of all the components in
real time and modify them in order to implement the new radio layout. Finally,
the IRIS API is the component that allows integration of the reconfigurable radio
application with other applications running on the host PC.
IRIS is proposed as a solution for the implementation of both physical layer appli-
cations, thanks to the definition of all key signal processing blocks required for
modulation/demodulation and coding of signals, and of higher layer applications,
involving Medium Access Control, network and above layers. For this reason,
IRIS might be a better starting point compared to GNU Radio when targeting the
design and implementation of higher layer protocols for cognitive radio. Other
significant differences between IRIS and GNU Radio include the fact that IRIS
employs a controller that allows to dynamically reconfiguring the CR mechanism
when compared to GNU radio. It is also easier to integrate the stack engine with
the physical layer. In addition, GNU radio can process threads either in a single
block (one thread that runs in the processor) or if the multithread mechanism is
employed, each block is considered as a different thread which effectively over-
loads the processor. In IRIS, each component can be defined with a different
number of threads.
IRIS can be downloaded by a dedicated github repository, as explained in [25].

• ASGARD, standing for Application-Oriented Software on General Purpose Proces-
sors for Advanced Radio Development, is another platform that recently gained
attention [2]. ASGARD is a software tool utilised for the implementation of Cog-
nitive Radio communication systems over Software Defined Radio equipment.
Its development started at Aalborg University within the framework of the EU
FP7 SAMURAI project [7], the main idea being to design a Software CR Plat-
form that provides the necessary degree of flexibility for the implementation of
reconfigurable, multi-layered communication systems. The platform architecture
is component based and supports a customized thread of execution architecture
thus allowing modularity, flexibility and domain driven development. The soft-
ware architecture of ASGARD is based on application programming interfaces
(API) written in C++, while the platform relies on XML for configuration files.
In ASGARD the following objects can be defined as APIs: (1) the Application,
encompassing all other objects, (2) Modules, (3) Components typically grouped
in Modules, and (4) Communication Objects enabling communications between
components belonging to the same or different modules. In order to ensure testbed
evolution and expansion, compatibility with Off-The-Shelf hardware, modern PCs
and integration within the networking stack of recent Linux OS releases has been
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taken into account when developing this platform. The software is in fact designed
to run in the Linux (Ubuntu) OS free user space.
Differently from the GNU Radio platform introduced earlier in this section
ASGARD focuses on the support of implementation and experimentation of pro-
tocols and algorithms for higher layers.
Aasgard is released under the Aalborg University software license, and can be
downloaded for free from the ASGARD website [2].

15.3.2 Hardware CR Platforms

The software CR platforms introduced in the previous subsections must be combined
with a suitable hardware platform, providing analog RF frontend to be driven by the
code running in the software.
There are numerous examples of hardware platforms available for developing com-
plete CR systems.

• The USRP, standing for Universal Software Radio Peripheral. USRP is a widely
popular platform; it was developed by Ettus Research as a low cost hardware plat-
form for software defined radios, and is currently owned by National Instruments.
Three families of USRP are currently available:

– the Networked (N) family, offered in the N200 and N210 models, provides
maximum performance, but relies on network connection with an external host
PC. Both models sport 14-bits Analog-to-Digital Converters (ADC) and 16-
bits Digital-to-Analog Converters (DAC), and mainly differ in the size and
performance of the onboard FPGA; furthermore, both models support MIMO
operation by means of a dedicated synchronization cable between devices.

– the Embedded (E) family, also including two models (E100 and E110) that
provide performance similar to the N models. The E family adds however a
onboard ARM Cortex-A8 processor combined with a DSP, enabling operation
without the need of a connection to a host PC, and thus allowing for stand-alone
deployments.

– the Bus (B) family includes the B100 model and the original USRP1, and is
the entry level product family for the USRP platform. Smaller FPGAs, lower
data rates (8 MS/s versus 64 MS/s for the E and N families) and in the case
of the USRP1 no MIMO support make this family only suitable for simple
demonstrations and teaching activities.

As already mentioned, all platform versions are equipped with a FPGA controlling
several ADCs and DACs. It is designed for RF applications from DC to 6 GHz, by
means of dedicated daughterboards that, combined with suitable antennas, enable
operation over different frequency bands.
One of the main advantages of the USRP platform is the availability of a well
maintained and well documented USRP Hardware Driver (UHD), available for all
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major Operative systems. The availability of UHD led to a wide support for USRP
hardware by many different software tools and development toolkits. Software
development platforms supporting the USRP include:

– GNU radio, IRIS and ASGARD software CR and SDR platforms, described in
the previous subsection;

– MatLab and Simulink, developed by MathWorks, Inc;
– LabView, developed by National Instruments.

Some of the proposed applications for USRP are: white spaces, mobile phones,
public safety, spectrum monitoring, radio networking, cognitive radio, satellite
navigation, and amateur radio [16].

• The BEE2, standing for Berkeley Emulation Engine 2. The BEE2 system is a
FPGA-based computing platform designed to be modular and scalable. Its software
design methodology targets a wide range of high performance applications one of
which is Cognitive Radio Systems [3]. The FPGAs employed are Xilinx FPGAs
(Virtex II Pro 70). The platform has been used to practically carry out a number
of scenarios at the physical and link layer levels in [29]. The motivation was to
validate various sensing algorithms to prove non-interference to licensed users
while evaluating their performance. For trials, the 2.4 GHz spectrum was chosen
since a wide range off-the-shelf radio equipment is available. More recently, the
development led to the creation of a dedicated spin-off designing, implementing
and distributing the latest version of the platform, the BEEcube [4].

• The VESNA [36] platform is a modular and fully flexible platform employed for
the development of wireless sensor networks. It is based on a high-performance
microcontroller with ARM Cortex-M3 core and radio interface spanning over mul-
tiple ISM frequency bands. VESNA is a core module and a set of special feature
modules (sensor node radio—SNR, sensor node expansion—SNE, sensor node
power—SNP) that are used as/if needed. The platform features various peripher-
als including UART, I2C, SPI, USB, ADC and DAC. All these allow hosting of
different sets of sensors and/or actuators including sensors for temperature, humid-
ity, luminance, color, reflectance, pressure, presence, location, sound, acceleration,
gasses, motion, range, and actuators such as motor, relay, servo, alarm.

• WARP, standing for Wireless Open-Access Research Platform. WARP is a hard-
ware platform originally designed at Rice University and built by Mango Com-
munications [43]. The latest version of the platform, WARP v3, is based on a
Xilinx Virtex-6 FPGA, provides two programmable RF interfaces each capable of
operating at both 2.4 and 5 GHz, and supports up to 32 GBs of onboard RAM.
The platform also provides ethernet connectivity and several I/O possibilities (ser-
ial, LEDs and DIP switches). The WARP website also provides information on
software tools required to program the platform.
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15.3.3 CR Testbeds

Several CR testbeds have been devised by the research community to carry out
both small and large scale experiments focusing on Cognitive Radios, and the most
relevant ones are discussed in this section. Most of the following testbeds have been
implemented based on various combinations of software and hardware platforms
introduced in the previous subsections.

• DARPA XG Program. The XG program aimed to provide dramatic improvements
in military communications in support of a full range of worldwide deployments.
This has been achieved with the development of enabling technology and system
concepts to dynamically redistribute allocated spectrum. Through this programme,
the CORAL Cognitive (Policy) Radio Language (CORAL) has evolved. This lan-
guage expresses various policy engines as well as reasoning techniques developed
for the XG program, that might be of inspiration in the design and implementation
of a Cognitive Engine. Dedicated radios were built within the XG Program Testbes
based on a WiMax physical layer and frequency scaler used to move operation
frequency to the 225–600 MHz range [28], and used for the creation of a testbed
and execution of field tests focusing however mainly on sensing aspects.

• CREW Another testbed developed for CR is the result of the CREW project [18],
funded by the European Commission in the framework of the Future Internet
Research and Experimentation (FIRE) initiative. The CREW testbed is based on
the federation of five existing testbeds available at different physical locations such
as heterogenous ISM test environment, licensed CR testbed (including TV bands),
wireless sensor network testbed, LTE cellular test environment and outdoor hetero-
geneous ISM/TVWS. The CREW project combined a number of functionalities
from the aforementioned platforms such as a common portal, the ability to mix and
match different aspects of different testbeds, a benchmarking framework, realistic
data sets and performance evaluation of external hardware under controlled test
conditions. The testbeds currently federated in CREW are:

– the w-iLab.t testbed, hosted by IBBT in Belgium over two locations, combining
devices over respectively 200 and 60 spots, with technologies including Wi-Fi,
Bluetooth, sensor nodes and USRP platforms.

– the IRIS testbed, hosted by CTVR in Dublin, Ireland that provides access to
8 host PCs connected to USRP N210 devices, and the IRIS software platform
described in the previous subsections. More details on the IRIS testbed is pro-
vided later in this section.

– the TKN Wireless Indoor Sensor network Testbed (TWIST) testbed, hosted by
TKN in Berlin, Germany, focusing on sensor networking, thanks to more than
two hundred TMoteSky [42] and eyesIFXv2 [17] sensor nodes.

– a LTE/LTE-A testbed, hosted by TUD in Dresden, Germany composed of 5 LTE
eNBs and 8 UEs.
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– a Versatile Sensor Network testbed, hosted by JSI in Ljubljana, Slovenia, and
composed of tens of sensor nodes based on the VESNA platform previously
described.

Moving for the 5 component testbeds defined above, CREW aims at supporting
a wide range of experiments that take advantage of multiple testbeds, either by
simple comparison, or by combination of hardware coming from different facilities
to support complex experiments.

• VT-CORNET. Another well known CR testbed is the Virginia Tech Cognitive Radio
Network Testbed (CORNET), intended as a tool for performing large scale exper-
iments focusing on Software Defined Radio and Cognitive Radio [45]. CORNET
is a large testbed composed by three key elements:

1. software defined radio nodes with RF hardware based on the USRP2 plat-
form and the Virginia-Tech Cognitive Radio Open Source System (VT-CROSS)
framework;

2. a large set of servers characterized by high processing capabilities;
3. a web interface available for reserving time on the testbed and monitoring the

status of the RF platforms.

The objective is to develop a distributed and modular system that provides porta-
bility and interoperability between modules developed in different programming
languages. The VT-CROSS framework [11] is composed of up to five components:

1. Cognitive Radio Shell
2. Cognitive Engine
3. Software-Defined Radio Host Platform
4. Policy Engine
5. Service Management Layer

The different modules interact and communicate by means of standard TCP/IP
sockets, allowing for independent development of each component (possibly in
different programming languages). The Cognitive Radio Shell (CRS) has the role
of parsing a XML file provided as an input to the framework in order to:

1. determine the radio parameters available for configuration on the host platform
and their potential values;

2. define the QoS metrics to be taken into account in the operation of the frame-
work;

3. define the observation variables (e.g.: SNR) and their relationships with the
utility functions

The Cognitive Engine (CE) is in charge of deciding how to adapt the behaviour
of the cognitive radio, and in particular the settings of the transmission parame-
ters. The CE receives as a first input the available radio parameters and the utility
functions parsed by the CRS. During cognitive radio operations, the CE receives
observations gathered by the Cognitive Radio Shell as well as any previous expe-
rience cached in the CRS, and returns a solution consisting in the best possible
settings for the available parameters given the utility function(s).
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The Software-Defined Radio Host Platform is the actual hardware that gathers
observations and emits signals with parameters determined by the CE. In the
present implementation of VT-CROSS the platform is based on the USRP2 hard-
ware, complemented by a custom RF daughterboard capable of operations between
100 MHz and 4 GHz with 20 MHz instantaneous bandwidth.
The Policy Engine has the role of storing and managing policies for spectrum
access, and validate the selection of the transmission parameters performed by the
CE versus the currently active policy.
The Service Management Layer provides a higher layer interface allowing for
the definition of “Missions”, usually involving the optimization of different utility
metrics by different instances of the Cognitive Engine. As an example, a Mis-
sion could be “Jam all neighboring devices”, which would involve the sensing of
existing devices and the optimization of radio parameters to jam detected devices,
possibly adhering to different standards.

Processing servers

The network of servers is composed of 48 servers connected to the Cognitive Radio
nodes, in charge of performing heavy signal processing tasks that may be required
for nodes operation, plus 5 management servers. Servers currently deployed are
based on Intel Xeon Quadcore processors and equipped with several GB of RAM.

Web interface

The web interface provides free access to the testbed (via a registration procedure
to create an account). Users can submit reservation requests that are examined and
approved by Virginia Tech system administrators. Reservations can be submitted
for the whole testbed or for portions of it (e.g. nodes on one of the 4 floors) allowing
for concurrent operations of different users. When a reservation is accepted and the
reserved time slot approaches, all nodes are prepared by uploading the OS selected
by the user (presently one of several possible Ubuntu Linux versions) along with
the selected SDR and CR framework. Presently the following frameworks are
available:

– GNUradio (SDR);
– OSSIE (SDR);
– VT-CROSS (CR) or Virginia Tech Cognitive Radio Open Source System

(CROSS) [11].

The web interface also allows to monitor the status of each node and enquire if it
is available for experiments.

• VESNA-Testbed. Another testbed that is worth mentioning is VESNA testbed [36].
VESNA, as mentioned before, is also a platform that has been developed at JSI
(SI). Nevertheless it is being employed by various research communities such as
is the JSI in Slovenia. An example of a VESNA based testbed is LOG-a-TEC that
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was developed in the city of Logatec, Slovenia as part of the European funded
project CREW [39]. People at JSI, upon agreement with the local authorities, they
secured the use of the street lighting infrastructure for mounting and power supply
their equipment to approximately 1000 locations, consisting mostly of lamp posts
but also occasionally other parts of public infrastructure like switching stations.
In this particular scenario, LOG-a-TEC testbed was designed to cover cognitive
radio experiments in the 2.4 GHz international ISM band, 868 MHz European short
range device band and the white-spaces in the UHF broadcast band. To achieve
this, VESNA sensor nodes were equipped with a custom designed expansion that
contained spectrum sensing equipment and software-reconfigurable digital trans-
ceivers operating on these frequencies. These radios operated independently from
the management network and form the experimental part of the testbed.

• IRIS Test-Bed (CTVR). The main lab at CTVR implemented a large number of
cognitive radio models based on USRP technology and the IRIS CR test-bed
evolved from the CREW project. The IRIS test-bed at CTVR is divided into two
parts. The first part consists of workstations connected to URSPs (dedicated to
CREW project [18]) that can be accessed remotely to perform any sort of tasks. One
of them is only equipped with a mouse and a keyboard for general monitoring. This
part can be accessed through a gateway. The whole system is operational through
IRIS. As introduced in a previous subsection, IRIS is an open source software CR
platform, that has been developed and expanded in CTVR. It’s a modular platform
allowing the development of different components that can be connected to form
a complete radio platform. The developed experimental platform has been based
on two main engines. The first one handles the physical layer which is composed
of a number of components connected in a line such as modulator, demodulator,
signal scaler etc. to create an interface with the RF front end of a USRP device.
The second part of the test-bed is the stack engine which handles the operation for
the upper layers. So in IRIS you can create a full stack of layers (from physical
to application layer). One of the advantages of IRIS is that it can be reconfigured
on the fly and this is achieved through a controller. The controller is an entity that
controls in real time the various components of the transceiver node. An event can
trigger the controller to update a number of parameters of the transceiver.
Several field tests have been carried out using the IRIS test-bed; some details are
provided in the following.

– MAC Layer on URSP100—Several URSP devices with an embedded proces-
sor have been used to implement the MAC layer running on IRIS. These URSP
units have limited processing capabilities when compared with the aforemen-
tioned workstations. However they have been used as self-contained devices
with adequate processing power. Due to the processing power limitations, time
critical processes such as carrier sensing mechanisms have been assigned on
an FPGA, thus splitting some of the MAC functionality on software and some
on an FPGA. CR engines employing USRP, USRP2 platforms can make use of
these FPGA mechanisms since this is an open source tool.
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– Train to perform handoff employing USRP2 Cognitive Radio Engine—Two
USRPs have been used to act as base stations (BSs) and another two were con-
nected on two model trains acting as mobile stations (MSs). The MSs had to
detect the two signals broadcasted from the two BSs that use different cyclosta-
tionary signatures to tell the mobile to which band they should switch to. So the
MS should switch to a different BS as well as different band without any pre-
vious knowledge which band they should switch to. The trials were conducted
using the TV bands since the institution (CTVR) had license to use them.

• FP7 SAMURAI project testbed. The testbed, realised as the official demo of the
SAMURAI FP7 project, relies on the ASGARD software platform defined above
and combined with several USRP N100 and N200 platforms. Various scenarios
that are under consideration as part of the experiments running on the testbed are:
distributed interference coordination in femtocells while using an Autonomous
Component Carrier Selection (ACCS) algorithm for interference reduction, espe-
cially for outage protection. The test bed implemented was comprised of 12 nodes,
6 of which were acting as Access Points (AP) and the other half were acting as
User Equipment. Affiliation was one UE per cell in a Closed Subscriber Group
scenario [7].

15.4 Implementation Issues

The numerous test-beds developed to perform experiments in the cognitive radio
field have brought to evidence several potential issues concerning the design and
implementation of the cognitive engine, of the cognitive radio systems and networks
as a whole.

The ultimate goal for a cognitive engine of finding an optimal configuration is
pursued through the maximization of a multiple objective fitness function [31, 32]
that, for the case at hand, quantifies the advantages of choosing a given system (and
network) configuration with respect to others. Such fitness function summarizes with
a single figure of merit, how close a given system configuration is to achieving its
optimum.

In particular, given a parameter space X ∗ x = (x1, . . . , xN ), where xi represents
the single parameter values (the knobs of our reconfigurable radio), we define a set
of objective functions as

ym = fm(x) (15.1)

where the objective vector y = (y1, . . . , yM ) lies in a given objective space Y . The
fitness function then computes the single figure of merit as a function of the objective
vector. In [31], a simple weighted sum has been used:

M(x) = w · y (15.2)
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where w = (w1, . . . , wM ) is a suitable weight vector with ||w||1 = 1. Here, || · ||1
denotes the σ1 norm of a vector, i.e., the sum of its elements. Now, the optimization of
(15.2) over the parameter space X and the choice of the weight vector w may result
very complex due to the high number of parameters and to the multiple possible
choices for w. To this purpose, evolutionary algorithms, like the GA mentioned in
Sect. 15.2, are often chosen. For a discussion on the choice of the single objective
functions, we refer the interested reader to [32].

As an entity capable of acquiring awareness of the surrounding electromagnetic
environment and later exploiting this information, the CR engine typically requires
the availability of a significantly high amount of memory. One of the most successful
methods adopted for the implementation of CR engines is case-based reasoning [31]
(CBR). This method consists in storing a history of cases in which the radio has had to
operate. Afterwards, the current operating conditions are compared with the recorded
history in order to find a best match and to retrieve the transceiver configuration that
was used in that case. Each single case may consist of a relatively large amount
of data that are needed to accurately characterize the operational context and the
parameters. Moreover, finding a best match between the current situation and the
previously recorded cases in order to choose a suitable configuration becomes more
and more complex as the amount of available records grows. This ultimately results
in a further increase of required processing load.

Although it has been extensively proven that these algorithms are capable of
finding suitable solutions to the posed problems, fundamental questions concerning
how fast these algorithms converge to a solution and whether the provided solutions
are optimal or not remain only partially answered so far.

The memory footprint and processing load of these solutions are more typical of
a high-level application running on a workstation rather than of an entity that should
be executed into a small and power-efficient wireless transceiver or in a distributed
fashion over a network.

Despite these concerns, the processing capabilities and memory availability of
newest devices is ever growing and recent works [46] demonstrate that cognitive
engines can be implemented and executed even on platforms with limited compu-
tational capabilities, like some embedded systems. However, it is likely that some
significant effort will be put on the development of more efficient and effective opti-
mization algorithms tailored at the specific case of CR engines in order to obtain
more compact, less memory- and processor-hungry solutions.

15.4.1 Standardization Challenges and Efforts

The cognitive radio concept is rather widespread and evolving today. CR test beds and
CR engine prototypes have been under development for several years and a number of
test beds have been used to evaluate their performance. CR technology is now mature
enough to be effectively employed in the products we use in our everyday life. New
wireless standards in the process of being defined include specific cognitive features,
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Table 15.1 Summary of cognitive standards and main characteristics

Standard Application Range/scenario PHY layer Incumbent protection

ECMA 392 Personal/portable Indoor Coded OFDM Spectrum sensing
IEEE 802.16h WRAN (Data) Outdoor Coded OFDM Spectrum sensing
IEEE 802.22 WRAN (Data) Outdoor Coded OFDM Spectrum sensing, WSDB
IEEE 802.11af WLAN (Data) Indoor, short

-range outdoor
Coded OFDM WSDB

WeightlessTM M2M Mid-range
outdoor

Spread-spectrum WSDB

like opportunistic transmission with interference protection of primary users. Many
of these standards target broadband wireless communications. Other standards and
proprietary solutions have been developed for machine-to-machine (M2M) and sen-
sor communications.

Current standards do not define any intrinsic characteristic of the cognitive engine.
They rather specify the absolute constraints that the system must comply with in order
to protect primary users and to coexist with other similar systems minimizing their
mutual interference. Procedures like spectrum sensing, minimum detection levels
of primary user signals, channel evacuation procedures and time constraints are
specified.

A summary of currently active or drafted wireless standards with cognitive fea-
tures is shown in Table 15.1. In the following, relevant cognitive characteristics and
constraints concerning such standards are summarized.

The first standard for broadband wireless communication in the TV white spaces
has been defined by the European Computer Manufacturers Association (ECMA) in
2009. Based on the contributions from the Cognitive Networks Alliance (CogNeA)
[8, 10], a European consortium of companies operating in the consumer electronics
market, ECMA delivered the first cognitive radio standard for TV white spaces,
the ECMA-392, in 2009 [15]. This standard has been developed with the aim of
providing Internet access and high definition multimedia services to residential users.

ECMA-392 networks are organized as master-slave or peer-to-peer. In the first
case, a designated master node coordinates network formation. In the second case,
network formation is carried out through distributed beaconing and channel reserva-
tion mechanisms.

The standard defines mechanisms for the protection of incumbents and for self-
coexistence. As for incumbent protection, sensing is performed both in the operating
channel and in adjacent channels during properly scheduled quiet periods. Sensing
in adjacent channels is required as a protection measure to establish a limit on the
maximum power level allowed in the operating channel.

Scheduling of quiet intervals occurs periodically and on-demand based on the
occurrence of specific conditions at the PHY/MAC layer, such as increased SINR or
packet loss.
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When a primary signal is detected, a channel evacuation procedure is started.
Channel evacuation consists in suspending all data communication and moving all
nodes to another channel, if available. This procedure is coordinated by the master
node if the ECMA-392 network is of master-slave type and by the reservation owner
if the network is peer-to-peer.

Within the IEEE, several standardization efforts have been carried out and are cur-
rently ongoing. In 2010, the IEEE released the IEEE 802.16h standard for unlicensed
WiMAX operation in licensed bands [24]. This standard defines improved coexis-
tence mechanisms for the protection of primary users (uncoordinated coexistence
with other licensed WiMAX users) and coordinated coexistence among 802.16h
systems. Improved coexistence is achieved through a set of techniques including
detection of channel activity by other users, channel reselection, scheduling of chan-
nel measurement, requesting and reporting measurements from different nodes.

A significant effort has been devoted for the release, in 2012, of the first IEEE
cognitive wireless communication standard: the IEEE 802.22 standard for fixed
wireless regional area networks (WRAN) operating in the TV white spaces. The
standard is currently being implemented and compliant devices are being developed.

Just like 802.16, the structure of 802.22 networks includes infrastructure devices
(base stations) and client devices. At the physical layer, IEEE 802.22 uses coded
OFDM transmission. It shares with the IEEE 802.16 (WiMAX) a subset of chan-
nel coding and modulation schemes. Moreover, its OFDMA-based multiple access
schemes exhibit similarities with 802.16.

Being a long-range communication standard, protection of primary users in 802.22
systems is very challenging. In fact, both spectrum sensing and access to geo-
referenced spectral occupation data bases, or white spaces data bases (WSDB), are
mandatory methods. Strict requirements on the accuracy of location information of
both BS and terminal equipment are defined as well as the detection characteristics
of the sensing units.

In order to allow for incumbent detection to be carried out, so-called quiet periods
of different durations are adaptively scheduled during transmission. During such
periods the whole network is muted and spectrum sensing is carried out.

Furthermore, network coexistence among 802.22 systems is supported through
beaconing: the Coexistence Beacon Protocol (CBP) is used to inform other systems of
the presence of an 802.22 system operating in a given area and thus avoid coexistence
issues.

While the 802.22 is devoted to medium- and long-range operation, the recent
IEEE 802.11af has been developed with the purpose of providing indoor and short-
range outdoor wireless access. This new standard (a.k.a. WhiteFI, or Super Wi-Fi)
is a recent effort carried out by IEEE to extend the 802.11 PHY and MAC layers
with cognitive features in order to allow broadband communication in the sub-GHz
channels available as TV white spaces. The standardization process is ongoing and
the first release is at the time of writing, expected by early 2014.

Sub-GHz frequencies are highly preferred as long as they enjoy favorable prop-
agation conditions with respect to the 2.4 GHz Industrial, Scientific and Medical
(ISM) bands, are typically used by conventional Wi-Fi systems, thus enabling oper-
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ation at lower power and achieving longer ranges at the same time. For this reason,
the range of 802.11af operating bands includes frequencies below 1 GHz.

Following the typical 802.11 network structure, a 802.11af system consist of
access points (AP) and stations (STA). The latter can be dynamically enabled or
disabled by other nodes in the network according to a procedure aimed at protecting
primary users from secondary user interference. Primary user protection in 802.11af
relies on geo-referenced spectral occupation data bases or White Space Data Bases
(WSDB). APs query such DBs before sending activation messages. The use of WSDB
requires the availability of location information at the enabling STA and/or AP,
while spectrum sensing is not required. Each AP may query the DB for channel
availability information of its current location and of multiple neighboring locations,
thus acquiring knowledge about the available channels in the whole area in which it
operates.

The PHY layer of 802.11af [41] is designed to meet strict requirements in terms of
adjacent channel leakage ratio (ACLR), support for TV channel widths, support for
contiguous and non-contiguous transmission over multiple TV channels. According
to [22], the chosen approach was to reuse the 802.11ac PHY in its 40 MHz configu-
ration, reducing the signal bandwidth through sampling frequency scaling. This way,
the so-obtained longer OFDM symbols and corresponding guard intervals are able
to tolerate the longer channel time dispersion experienced in outdoor contexts. In
fact, in addition to the typical indoor (WLAN) deployment scenario, 802.11af is also
able to operate in a short-range outdoor configuration.

Coexistence among heterogeneous systems like the 802.22 and 802.11af is a
challenging issue being faced in standardization processes like the 802.19.1 and
research works [21]. To avoid mutual interference, different competing networks
should be forced to use different channels and hence suitable schemes should be
adopted. Starting from the observation that both the 802.22 BS and CPE are required
to have a secondary sensing antenna which happens to be underutilized, [23] proposes
to use such antenna for the transmission of a busy tone that would prevent other
systems like 802.11af to start using that channel.

Recently, a new standardization effort carried out by a consortium of companies
called Weightless (TM) [44] has led to the release of a new cognitive wireless
standard for machine-to-machine (M2M) networking. The network structure consists
of master nodes (base stations) connected to a high number of slave devices. The use
of white spaces results in extended coverage, while the wireless protocol has been
designed to be easily implemented in low-power and low-cost devices.

Standards will hopefully develop into devices and then into market products. At
the time of writing, we are at a stage where products are still not available on the
mass market, although several companies have shown interest and likely will soon
be involved in the development of new products.

The prototype radios and software platforms of the Shared Spectrum Company
[37] are a first example of cognitive radio products developed for and made available
to US government agencies, research organizations and private sector companies.

Few market products are currently available: Neul [30], is delivering a broadband
wireless system (infrastructure and terminal devices) that operate in the TV white
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spaces. Some Neul products incorporate the WeightlessTM air interface. Carlson
Wireless [6] proposes RuralConnectTM, a white-space system capable of delivering
16 Mbits/s of data rate over ranges of several tens of miles.

Many companies are devoting significant efforts in supporting standardization
activities related to cognitive wireless standards, therefore we expect that new prod-
ucts will be available on the market in a short time.

15.5 Conclusions

Cognitive Radio Testbeds provide the means for evaluating CR systems. Designing
and implementing a CR testbed can be challenging. It requires well defined require-
ment analysis of the application is intended for, a robust design based on the best
suited platform, a quick yet flexible and upgradeable implementation and finally
an exhausive testing phase. Testbeds are consisted of software and hardware CR
platforms that, when combined together, can become a powerful development tool.
Testbets play possibly the most significant role towards the establishment of cogni-
tive radios since they provide significant findings with respect to the performance of
the system and its impact on legacy systems but, most of all, they are contributing
towards raising the confidence of regulators to proceed with the legal framework and
allow potential use of the spectrum by CR enabled systems. The current research
community developments of customised, highly efficient CR engines running on
off-the-shelf CR hardware platforms, is effectively driving the hardware industry
towards the development of newer, better and cheaper hardware platforms. Although
there is still a long way to go to, it is a fact that CR technology has matured enough
to be effectively employed in some of the wireless products used in our everyday
life. New wireless standards appear to include specific cognitive features, like oppor-
tunistic transmission based on interference avoidance to primary users. Nevertheless,
standards do not define any intrinsic characteristic of the cognitive engine, but rather
specify the absolute constraints that the system must comply within order to protect
primary users and to neatly coexist with other similar systems. Further research and
development of new CR algorithms and CR platforms along with the development
of new CR standards will hopefully materialize into devices and then into market
products. Although there are no products available on the mass market, with the
technological advances in CR hardware and the continuous development of new CR
algorithms, it is most likely that soon the new testbeds will be able to satisfy the
regulator’s requirements thus fully CR enabled devices will materialize in our daily
lives.
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