Chapter 9
Product Theorems

In this section we investigate product Ramsey theorems. Recall that the pigeonhole
principle implies that if we color r (m—1)+1 points with r many colors, then at least
one color class contains m points. Ramsey’s theorem generalizes this from points to
k-subsets. Another generalization of the pigeonhole principle is from points to pairs
of points:

Proposition 9.1. Let m and r be positive integers. Then there exits an integer n
such that for every r-coloring A : n X n — r there exist subsets A € [n]" and
B € [n]™ such that A1A x B is a constant coloring.

Proof. Letng =r(m—1)+1andn; =r- (’;;’) -(m—1)+1. Consider a coloring A :
no x n; — r. By the pigeonhole principle, for every i < n; there exists a set A; €
[n0]™ such that A A; x{i} is a constant coloring. Applying the pigeonhole principle
once again on the coloring A’ : ny — (’,’:) -r, givenby A'(i) = (A;, A(A; x {i})),
there exists an m-element set B € [n1]™ such that A’ is constant on B. This in

particular implies that for all 7, j € B we have A; = A; and all the restrictions
ATA; x {i} are constant in the same color. Choosing 7 = n; thus completes the
proof. O

Erdés and Rado (1956) invented the so-called polarized partition arrow to
abbreviate such product situations. The special case of Proposition 9.1, for example,

is abbreviated by
L1
n m
— .
n m

In Sect.9.1 we prove a finite product Ramsey theorem of the following form. Let

m, r, t and ko,...,k,—1 be positive integers. Then there exist positive integers
no, ..., H;—1 such that
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koki,...ki—1

=
- 3

ni— m ,
meaning that for every r-coloring A : [no]  x [n,]*" x ... x [n;-1]%—' — r there
exists sets 4; € [n;]", fori < t, such that A][Ao] x [A1]*" x ... x [4,—]F" is
monochromatic.

In Sect.9.2 we introduce the concept of diversification dealing with several
unrestricted colorings acting on the same set. This concept turned out to be quite
useful. As an application we deduce in Sect.9.3 a product version of the finite
Erd&s-Rado canonization theorem originally due to Rado (1954).

9.1 A Product Ramsey Theorem

In the terminology of graph theory a rectangle A x B € [ng]* x [1n,]¥' corresponds
to a K, k,-subgraph of the complete bipartite graph K, ,,. The product Ramsey
theory in this special case + = 2 thus corresponds to the question: suppose
we color Ky, k,-subgraphs of the complete bipartite graph K, ,,, can we find a
monochromatic K, ,,-subgraph. The following theorem shows that this is indeed
true, whenever n is large enough.

Theorem 9.2 (Product Ramsey theorem). Let t, (k;)i<;, m and r be positive
integers. Then there exists a positive integer n = n((k;);<;, m, r) such that for every
coloring A : [];_,[n]% — r there exist m-subsets (M, ..., M;—y) € [[,_,[n]" such
that

i<t[

A(Ao, ..., Ai_) = A(By....,Bi_1),

forall (A, ... ,Ai—1),(Bo, ..., Bi—1) € [1,_,[M:].

Proof. We proceed by induction on ¢, the case = 1 being Ramsey’s theorem.
Let n be according to the inductive hypothesis with respect to (k;);<;, m
andr, i.e.,

ko.ki,eki—1

r
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and choose N according to Ramsey’s theorem such that N — (m)ff’p , where p =
ni<r[n]ki .

Now let A : ]
by

i =[]k x [N]* — r be a coloring. We define A, : [N]** — r?

A (Ky) = (A(Ko, .., Ki—1, Ky) | (Ko, ..., Ki—1) € 1_[i<f[ﬂ]k")-

By choice of N there exists M; € [N]” such that A,][M]* is constant, which is
to say that AT([T,_,[n]% x [M,]¥) is independent of the ¢th coordinate. Hence, by
inductive hypothesis we get an (Mo, ..., M;) € [];,[n]" x [N]" monochromatic
with respect to A. O

Notice that Theorem 9.2 remains valid if (at most) in one coordinate the m (and
thus the n) is replaced by w. However, even for k = 1 it becomes false if (at least)
in two of the coordinates the m are replaced by w, as the following example shows.

Let A : w x w — 2 be given by

0, ifx<y
A(x,y) = _
1, otherwise.

Then, obviously, no pair (Fy, F) € [w]” X [w]® is colored monochromatically.

9.2 Diversification

Letk < £and A : [n]* — w, A; : [n]* = o be colorings for some n sufficiently
large. Then according to the Erdés-Rado canonization theorem (applied twice) there
exists M € [n]™ such that Ag][M]* as well as A;][M]* are canonical colorings.
But in this way we do not get any information about dependencies between the
colors used by Ag][M]* and A;][M]*. To obtain such information we introduce the
concept of diversification:

Theorem 9.3. Let k < £ and m be positive integers. Then there exists a positive
integer n such that for each pair Ag : [n]¥ — w and A, : [n]* — o of colorings
there exists an M € [n]" and there exists a pair Jo C k and J, C £ of sets such that

(1) A¢l[M]F is canonical with respect to Jy,
A [M] is canonical with respect to Jy, and

(2) Either Ao(A) # A((B) forall A € [M]* and B € [M]*
or Ag(A) = A((B) ifand only if A : Jo = B : J, forall A € [M]* and
B e [M]-.

Diversification, i.e., separating different colorings, was developed in Voigt
(1985). In fact, more general results than Theorem 9.3 are true in this direction.
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The key in proving the theorem is the following lemma for one-to-one colorings.

Lemma 9.4. Let i < j and m be positive integers. Then there exists a positive
integer n such that for each pair Ag : [n]' — w and A, : [n)) — o of one-to-one
colorings there exists M € [n]" such that one of the following possibilities holds:

(1) A¢(A) # A((B) forall A € [M]', B € [M]/,
(2) i = j and Ag(A) = A1(A) forall A € [M]'.

Proof. Letm’ = m + j —i and choose m* such that m* — (m’)}. Finally, choose
n such thatn — (m*)J.

Now assume Ay, A; are given as stated in the lemma. Recall that i < j and that
Ay is defined on i-subsets of n. We extend A to j-subsets of n as follows. Let A(l) :
[n)) — o be defined by A}(X) = A¢({x0,...,xi—1}), where xq, ..., x;—; are the
first i elements of X with respect to the natural order of n. Now define a coloring
A*:[n)) — 2by

A*(X) = 1, if ANX) = A(X)
0, otherwise.

By choice of # there exists M* € [n]™" such that A*][M*}/ is a constant coloring.

In case A*][M*]/ = 1 it follows from the fact that A is one-to-one that necessarily

i = j and M * thus satisfies (2).

So assume that A*][M*]/ = 0. Then we impose a directed graph on [M *]/
letting (X,Y) be an edge if A}(X) = A;(Y). Clearly this graph has no loops
and, since A is one-to-one, the outdegree of every vertex is at most one. Therefore
each connected component of this graph contains at most one cycle and hence, the
underlying undirected graph is 3-colorable.

Given such a 3-coloring, by choice of m* there exists a monochromatic m’-set
M’ e [M*]™. Choosing M as the first m elements of M’ satisfies (1). O

Proof of Theorem 9.3. Let n’ be such that the above lemma can be applied for every
pair i < k and j < { and m. Further, let n be such that after applying the
Erdés-Rado canonization theorem to colorings A : [n]¥ — w and A, : [n]* — o,
we may assume that Ag][n’]¥ and A;][n’]® are canonical colorings with respect to
some Jy C k and J; C £, respectively.

Let A% : ']Vl — o, resp. AY : [n']V1] — o, be such that

AF(A: Jo) = Ap(A) and AT(B : J1) = A(B).

Observe that the assumption that Ag(A) = A¢(B) ifandonlyif A : Jo = B : Jy
implies that A} is well defined and one-to-one. (For sets A* € [n’ ]lJ"| that cannot
be written in the form A : Jy we define Aj(A*) arbitrarily, but so that the function
remains one-to-one.) Similarly, we deduce that AT is well-defined and one-to-one.
Applying Lemma 9.4 we find some M € [n']". If M satisfies property (1) of
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Lemma 9.4, then we have for any 4 € [M]* and B € [M]‘ that A(A) = A} (A :
Jo) # AT(B : Ji1) = A(B). Otherwise, from property (2) and the fact that A7 and
AT are one-to-one we have A(A) = Aj(A : Jy) = AT(B : J;) = A(B) if and
onlyif A: Jo = B : J;. Therefore M satisfies the theorem. ]

Lemma 9.4 was independently obtained by Meyer auf der Heide and Wigderson
(1987) in proving lower bounds for sorting networks. We have adopted some of their
ideas here.

9.3 A Product Erdés-Rado Theorem

A t-dimensional version of the Erd&s-Rado canonization theorem was established in
Rado (1954). Loosely speaking it asserts that in each coordinate we have a canonical
coloring.

Theorem 9.5. Let ¢, (k;);<; and m be positive integers. Then there exists a positive
integer n = n((k;);i<;, m) such that for every coloring A : ]_[i<t[n]ki — w there
exist m-subsets (Mo, ..., M;_1) € [];.,[n]" and there exist (possibly empty) sets
Ji Ck; fori <t such that

A(Ao, ..., Ai=1) = A(By, ..., Bi—1)
ifandonlyif A; :J; = B; : J; foreveryi <t,

forall (A(), ey At—l) and (B(), ey B[—l) S nl‘<[[Mi]ki~

Proof. We proceed by induction on ¢, the case + = 1 being the Erd6s-Rado
canonization theorem. Let m™ be according to the inductive hypothesis with respect
to (k;); <, and m. Furthermore, choose n according to the product Ramsey theorem
such that

e Kokiski—1
n m
n m*
—
*
n m* /J

Finally, choose N large enough so that Theorem 9.3 can be applied successively

(n"“z(’?i))-times for colorings acting on k;-sets, and yielding a set of size m after the
last application of Theorem 9.3.

Let A : [[,_,[n]% x [N]* — o be a coloring. For every K = (K, ..., K;—1),
where K; € [n]fi for i < t, let Ax : [N]F — o be given by Ax(K;) =
A(Kop, ... ,Ki—1, K;). By choice of N there exists M; € [N]" such that for every
pair A, Ay the assertion of Theorem 9.3 is valid.
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Observe that property (1) of Theorem 9.3 implies that for every K there exits a
set Jx € k, such that Ax][M,]* is canonical with respect to Jx. Define a coloring
A* : [T, [n]% — 2% such that A*(K) = Jx for every K = (Ko, ..., K;—1). By
choice of n we can apply the product Ramsey theorem to find (M[,..., M%) €
I [n]"" such that there exists just one J,  k; so that for every K € 1., [M*]k,
it follows that Ax(4) = Ax(B) ifandonlyif A : J; = B : J;, whenever A, B €
[M, ]

Finally, define a coloring A** : [, _,[M*]% — w such that

A* (Ao, ..., A=) = A (By, ... , B;—) if and only if
A(Ao, ..., A—1,K;) = A(Bo,...,Bi_1, K;) forsome K; € [M,]*.

Observe that by property (2) of Theorem 9.3, A** is well-defined. Then by induction
hypothesis there exists (Mo, ..., M;—1) € [[;_,[n]" and there exist J; C k;,i <1,
such that A*(Ao, ... ,A;—1) = A*(By,... ,B;—) ifandonlyif 4; : J; = B; : J;
foreveryi < t, forall (Ay,... ,A,—1) and (By, ..., B,—) from ]_[i<t[M,<]k".

An easy calculation shows that (M, ..., M;_;, M,) and Jy, ..., J;—1, J; satisfy
Theorem 9.5. O

For more general product theorems compare, e.g., Graham and Spencer (1979)
and Voigt (1985). Here we just write down the special case of Theorem 9.5 when all
ki = 1. This is the ¢-dimensional canonical pigeonhole principle.

Corollary 9.6. Let t and m be positive integers. Then there exists a least positive

integer n = n(m,t) such that for every coloring A : [n]' — w there exist subsets

M; € [n]",i < t, and there exists a (possibly empty) set J C t such that
A(ao,...,a;—1) = A(bo, ..., b—1) ifandonlyif a; =b; forall j €J

forall (ao,...,a,_l),(bo,...,b,_l) € l_[i<t M;. O
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