
Chapter 9
Product Theorems

In this section we investigate product Ramsey theorems. Recall that the pigeonhole
principle implies that if we color r.m�1/C1 points with r many colors, then at least
one color class contains m points. Ramsey’s theorem generalizes this from points to
k-subsets. Another generalization of the pigeonhole principle is from points to pairs
of points:

Proposition 9.1. Let m and r be positive integers. Then there exits an integer n

such that for every r-coloring � W n � n ! r there exist subsets A 2 Œn�m and
B 2 Œn�m such that �eA � B is a constant coloring.

Proof. Let n0 D r.m�1/C1 and n1 D r ��n0

m

� �.m�1/C1. Consider a coloring � W
n0 � n1 ! r . By the pigeonhole principle, for every i < n1 there exists a set Ai 2
Œn0�m such that �eAi �fig is a constant coloring. Applying the pigeonhole principle
once again on the coloring �0 W n1 ! �

n0

m

� � r , given by �0.i/ D hAi; �.Ai � fig/i,
there exists an m-element set B 2 Œn1�m such that �0 is constant on B . This in
particular implies that for all i; j 2 B we have Ai D Aj and all the restrictions
�eAi � fig are constant in the same color. Choosing n D n1 thus completes the
proof. ut

Erdős and Rado (1956) invented the so-called polarized partition arrow to
abbreviate such product situations. The special case of Proposition 9.1, for example,
is abbreviated by
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:

In Sect. 9.1 we prove a finite product Ramsey theorem of the following form. Let
m, r , t and k0; : : : ; kt�1 be positive integers. Then there exist positive integers
n0; : : : ; nt�1 such that
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meaning that for every r-coloring � W Œn0�k0 � Œn1�k1 � : : : � Œnt�1�kt�1 ! r there
exists sets Ai 2 Œni �

m, for i < t , such that �eŒA0�
k0 � ŒA1�k1 � : : : � ŒAt�1�kt�1 is

monochromatic.
In Sect. 9.2 we introduce the concept of diversification dealing with several

unrestricted colorings acting on the same set. This concept turned out to be quite
useful. As an application we deduce in Sect. 9.3 a product version of the finite
Erdős-Rado canonization theorem originally due to Rado (1954).

9.1 A Product Ramsey Theorem

In the terminology of graph theory a rectangle A � B 2 Œn0�k0 � Œn1�k1 corresponds
to a Kk0;k1 -subgraph of the complete bipartite graph Kn0;n1 . The product Ramsey
theory in this special case t D 2 thus corresponds to the question: suppose
we color Kk0;k1-subgraphs of the complete bipartite graph Kn0;n1 , can we find a
monochromatic Km;m-subgraph. The following theorem shows that this is indeed
true, whenever n is large enough.

Theorem 9.2 (Product Ramsey theorem). Let t , .ki /i<t , m and r be positive
integers. Then there exists a positive integer n D n..ki /i<t ; m; r/ such that for every
coloring � W Qi<t Œn�ki ! r there exist m-subsets .M0; : : :, Mt�1/ 2 Qi<t Œn�m such
that

�.A0; : : : ; At�1/ D �.B0; : : : ; Bt�1/;

for all .A0; : : : ; At�1/; .B0; : : : ; Bt�1/ 2 Qi<t ŒMi �
ki .

Proof. We proceed by induction on t , the case t D 1 being Ramsey’s theorem.
Let n be according to the inductive hypothesis with respect to .ki /i<t ; m

and r , i.e.,
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and choose N according to Ramsey’s theorem such that N ! .m/
kt
rp , where p DQ

i<t Œn�ki .
Now let � W Qi<t Œn�ki � ŒN �kt ! r be a coloring. We define �t W ŒN �kt ! rp

by

�t .Kt/ D h�.K0; : : : ; Kt�1; Kt/ j .K0; : : : ; Kt�1/ 2 Qi<t Œn�ki i:

By choice of N there exists Mt 2 ŒN �m such that �teŒM �kt is constant, which is
to say that �e.

Q
i<t Œn�ki � ŒMt �

kt / is independent of the t th coordinate. Hence, by
inductive hypothesis we get an .M0; : : : ; Mt/ 2 Q

i<t Œn�m � ŒN �m monochromatic
with respect to �. ut

Notice that Theorem 9.2 remains valid if (at most) in one coordinate the m (and
thus the n) is replaced by !. However, even for k D 1 it becomes false if (at least)
in two of the coordinates the m are replaced by !, as the following example shows.

Let � W ! � ! ! 2 be given by

�.x; y/ D
(

0; if x � y

1; otherwise:

Then, obviously, no pair .F0; F1/ 2 Œ!�! � Œ!�! is colored monochromatically.

9.2 Diversification

Let k � ` and �0 W Œn�k ! !, �1 W Œn�` ! ! be colorings for some n sufficiently
large. Then according to the Erdős-Rado canonization theorem (applied twice) there
exists M 2 Œn�m such that �0eŒM �k as well as �1eŒM �` are canonical colorings.
But in this way we do not get any information about dependencies between the
colors used by �0eŒM �k and �1eŒM �`. To obtain such information we introduce the
concept of diversification:

Theorem 9.3. Let k � ` and m be positive integers. Then there exists a positive
integer n such that for each pair �0 : Œn�k ! ! and �1 : Œn�` ! ! of colorings
there exists an M 2 Œn�m and there exists a pair J0 � k and J1 � ` of sets such that

.1/ �0eŒM �k is canonical with respect to J0,
�1eŒM �` is canonical with respect to J1, and

.2/ Either �0.A/ ¤ �1.B/ for all A 2 ŒM �k and B 2 ŒM �`

or �0.A/ D �1.B/ if and only if A W J0 D B W J1 for all A 2 ŒM �k and
B 2 ŒM �`.

Diversification, i.e., separating different colorings, was developed in Voigt
(1985). In fact, more general results than Theorem 9.3 are true in this direction.
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The key in proving the theorem is the following lemma for one-to-one colorings.

Lemma 9.4. Let i � j and m be positive integers. Then there exists a positive
integer n such that for each pair �0 W Œn�i ! ! and �1 W Œn�j ! ! of one-to-one
colorings there exists M 2 Œn�m such that one of the following possibilities holds:

.1/ �0.A/ ¤ �1.B/ for all A 2 ŒM �i , B 2 ŒM �j ,

.2/ i D j and �0.A/ D �1.A/ for all A 2 ŒM �i .

Proof. Let m0 D m C j � i and choose m� such that m� ! .m0/j
3 . Finally, choose

n such that n ! .m�/
j
2 .

Now assume �0; �1 are given as stated in the lemma. Recall that i � j and that
�0 is defined on i -subsets of n. We extend �0 to j -subsets of n as follows. Let �1

0 :
Œn�j ! ! be defined by �1

0.X/ D �0.fx0; : : : ; xi�1g/, where x0; : : : ; xi�1 are the
first i elements of X with respect to the natural order of n. Now define a coloring
�� : Œn�j ! 2 by

��.X/ D
(

1; if �1
0.X/ D �1.X/

0; otherwise.

By choice of n there exists M � 2 Œn�m
�

such that ��eŒM ��j is a constant coloring.
In case ��eŒM ��j � 1 it follows from the fact that �1 is one-to-one that necessarily
i D j and M � thus satisfies (2).

So assume that ��eŒM ��j � 0. Then we impose a directed graph on ŒM ��j

letting .X; Y / be an edge if �1
0.X/ D �1.Y/. Clearly this graph has no loops

and, since �1 is one-to-one, the outdegree of every vertex is at most one. Therefore
each connected component of this graph contains at most one cycle and hence, the
underlying undirected graph is 3-colorable.

Given such a 3-coloring, by choice of m� there exists a monochromatic m0-set
M 0 2 ŒM ��m0. Choosing M as the first m elements of M 0 satisfies (1). ut
Proof of Theorem 9.3. Let n0 be such that the above lemma can be applied for every
pair i � k and j � ` and m. Further, let n be such that after applying the
Erdős-Rado canonization theorem to colorings �0 : Œn�k ! ! and �1 : Œn�` ! !,
we may assume that �0eŒn0�k and �1eŒn0�` are canonical colorings with respect to
some J0 � k and J1 � `, respectively.

Let ��
0 W Œn0�jJ0j ! !, resp. ��

1 W Œn0�jJ1 j ! !, be such that

��
0 .A W J0/ D �0.A/ and ��

1 .B W J1/ D �1.B/:

Observe that the assumption that �0.A/ D �0.B/ if and only if A W J0 D B W J0

implies that ��
0 is well defined and one-to-one. (For sets A� 2 Œn0�jJ0 j that cannot

be written in the form A W J0 we define ��
0 .A�/ arbitrarily, but so that the function

remains one-to-one.) Similarly, we deduce that ��
1 is well-defined and one-to-one.

Applying Lemma 9.4 we find some M 2 Œn0�m. If M satisfies property .1/ of
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Lemma 9.4, then we have for any A 2 ŒM �k and B 2 ŒM �` that �.A/ D ��
0 .A W

J0/ ¤ ��
1 .B W J1/ D �.B/. Otherwise, from property .2/ and the fact that ��

0 and
��

1 are one-to-one we have �.A/ D ��
0 .A W J0/ D ��

1 .B W J1/ D �.B/ if and
only if A W J0 D B W J1. Therefore M satisfies the theorem. ut

Lemma 9.4 was independently obtained by Meyer auf der Heide and Wigderson
(1987) in proving lower bounds for sorting networks. We have adopted some of their
ideas here.

9.3 A Product Erdős-Rado Theorem

A t-dimensional version of the Erdős-Rado canonization theorem was established in
Rado (1954). Loosely speaking it asserts that in each coordinate we have a canonical
coloring.

Theorem 9.5. Let t , .ki /i<t and m be positive integers. Then there exists a positive
integer n D n..ki /i<t ; m/ such that for every coloring � W Qi<t Œn�ki ! ! there
exist m-subsets .M0; : : : ; Mt�1/ 2 Q

i<t Œn�m and there exist (possibly empty) sets
Ji � ki for i < t such that

�.A0; : : : ; At�1/ D �.B0; : : : ; Bt�1/

if and only if Ai W Ji D Bi W Ji for every i < t ;

for all .A0; : : : ; At�1/ and .B0; : : : ; Bt�1/ 2 Qi<t ŒMi �
ki .

Proof. We proceed by induction on t , the case t D 1 being the Erdős-Rado
canonization theorem. Let m� be according to the inductive hypothesis with respect
to .ki /i<t and m. Furthermore, choose n according to the product Ramsey theorem
such that
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Finally, choose N large enough so that Theorem 9.3 can be applied successively
�Q

i<t .
n
ki

/
2

�
-times for colorings acting on kt -sets, and yielding a set of size m after the

last application of Theorem 9.3.
Let � W Qi<t Œn�ki � ŒN �kt ! ! be a coloring. For every K D .K0; : : : ; Kt�1/,

where Ki 2 Œn�ki for i < t , let �K : ŒN �k ! ! be given by �K.Kt / D
�.K0; : : : ; Kt�1; Kt/. By choice of N there exists Mt 2 ŒN �m such that for every
pair �K; �K0 the assertion of Theorem 9.3 is valid.
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Observe that property (1) of Theorem 9.3 implies that for every K there exits a
set JK � kt such that �KeŒMt �

kt is canonical with respect to JK. Define a coloring
�� W Qi<t Œn�ki ! 2kt such that ��.K/ D JK for every K D .K0; : : : ; Kt�1/. By
choice of n we can apply the product Ramsey theorem to find .M �

0 ; : : : ; M �
t�1/ 2Q

i<t Œn�m
�

such that there exists just one Jt � kt so that for every K 2 Qi<t ŒM
�
i �ki ,

it follows that �K.A/ D �K.B/ if and only if A W Jt D B W Jt ; whenever A; B 2
ŒMt �

kt .
Finally, define a coloring ��� W Qi<t ŒM

�
i �ki ! ! such that

���.A0; : : : ; At�1/ D ���.B0; : : : ; Bt�1/ if and only if

�.A0; : : : ; At�1; Kt / D �.B0; : : : ; Bt�1; Kt / for some Kt 2 ŒMt �
kt :

Observe that by property (2) of Theorem 9.3, ��� is well-defined. Then by induction
hypothesis there exists .M0; : : : ; Mt�1/ 2 Q

i<t Œn�m and there exist Ji � ki ; i < t ,
such that ��.A0; : : : ; At�1/ D ��.B0; : : : ; Bt�1/ if and only if Ai : Ji D Bi : Ji

for every i < t , for all .A0; : : : ; At�1/ and .B0; : : : ; Bt�1/ from
Q

i<t ŒMi �
ki .

An easy calculation shows that .M0; : : : ; Mt�1; Mt / and J0; : : : ; Jt�1; Jt satisfy
Theorem 9.5. ut

For more general product theorems compare, e.g., Graham and Spencer (1979)
and Voigt (1985). Here we just write down the special case of Theorem 9.5 when all
ki D 1: This is the t-dimensional canonical pigeonhole principle.

Corollary 9.6. Let t and m be positive integers. Then there exists a least positive
integer n D n.m; t/ such that for every coloring � W Œn�t ! ! there exist subsets
Mi 2 Œn�m, i < t , and there exists a (possibly empty) set J � t such that

�.a0; : : : ; at�1/ D �.b0; : : : ; bt�1/ if and only if aj D bj for all j 2 J

for all .a0; : : : ; at�1/; .b0; : : : ; bt�1/ 2 Qi<t Mi . ut
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