
Chapter 8
Rapidly Growing Ramsey Functions

Gödel’s paper on formally undecidable propositions in first order Peano arithmetic
(Gödel 1931) showed that any recursive axiomatic system containing Peano arith-
metic still admits propositions which are not decidable. Gödel’s original example of
such a proposition was not that illuminating. It was merely a kind of formalization
of the well known antinomy of the liar. This raised the problem to look for
intuitively meaningful propositions which are independent of Peano arithmetic.
Paris and Harrington (1977) showed that a straightforward variant of the finite
Ramsey theorem is independent of Peano arithmetic, thus witnessing Gödel’s first
incompleteness theorem.

The original short and elegant proof of Paris and Harrington uses model theoretic
tools. A different, purely combinatorial explanation of the unprovability by means of
fast growing functions was given by Ketonen and Solovay (1981). In this section we
present a simplification of the Ketonen-Solovay argument due to Loebl and Nešetřil
(1991). We start with some background on fast growing hierarchies.

8.1 The Hardy Hierarchy

Let �1 D ! and �nC1 D �!
n for every n < !, i.e.,

�n D !!�

�

�

!
o

n-times
:

Moreover set

�0 D !!�

�

�

D lim
n!1 �n:

Then �0 is the least ordinal solution to the equation !� D �. Throughout this section
we are only concerned with ordinals below �0:
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98 8 Rapidly Growing Ramsey Functions

First note that every ordinal below �0 admits a unique representation known as
the Cantor normal form of ˛:
Let ˛ < �0 be a positive ordinal and k be a positive integer. Then ˛ can be
represented uniquely as

˛ D !˛1 � n1 C !˛2 � n2 C : : : C !˛k � nk;

where ˛ > ˛1 > ˛2 > : : : > ˛k � 0 are ordinals and n1; : : : ; nk are positive
integers.
Such a coding of ordinals ˛ < �0 by positive integers can be defined straightfor-
wardly, compare for example Schütte (1977).

Next we define fundamental sequences which we will subsequently use in order
to define the Hardy hierarchy. We need these fundamental sequences in order to
handle limit ordinals properly. To every limit ordinal ˛ < �0 we associate a strictly
monotone sequence ˛Œn�, n < !, which approaches ˛ from below. If ˛ < �0 is
given in Cantor normal form ˛ D ˛0 C !˛k � nk; where ˛k is the minimal exponent,
let

˛Œn� D
�

˛0 C !˛k � .nk � 1/ C !˛k Œn�; if ˛k is a limit ordinal,
˛0 C !˛k � .nk � 1/ C !˛k �1 � .n C 1/; if ˛k is a successor ordinal.

For example, !Œn� D n C 1, !!Œn� D !nC1, !kC1Œn� D !k � .n C 1/, and !k � .k C
1/Œn� D !k � k C !k�1 � .n C 1/.

With the help of these fundamental sequences we define functions H˛.�/ for all
˛ < �0:

H0.n/ D n;

H˛C1.n/ D H˛.n C 1/;

H˛.n/ D H˛Œn�.n/ for limit ordinals.

Finally, define H�0 by
H�0 .n/ D H�n.n/:

This is the Hardy hierarchy, introduced by Wainer (1972). This hierarchy is based
on a sequence of functions first defined by Hardy (1904) to construct sets of real
numbers of cardinality @1. It is not difficult to see that each H˛ is strictly increasing
and H˛.n/ < H˛C1.n/ for every nonnegative integer n.

The significance of the Hardy hierarchy in connection with unprovability results
stems from the following theorem, cf. Wainer (1970, 1972) and Buchholz and
Wainer (1987).

Theorem 8.1. Let f W ! ! ! be a provably total and recursive function (provably
total with respect to Peano arithmetic). Then f is eventually dominated by some H˛

for an ˛ < �0: Moreover, H�0 eventually dominates every provably total recursive
function but it itself is not provably total.
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8.2 Paris-Harrington’s Unprovability Result

A set L � ! is called large, if L ¤ ; and min L � jLj. So {4, 5, 6, 7} is a large
set but not {4, 10, 15}. Let k; n and r be positive integers. With this terminology
at hand we can state the following variation of the classical Ramsey theorem that
follows from the infinite Ramsey theorem using a compactness argument.

Theorem 8.2. Let k and r be positive integers. Then there exists a least positive
integer n D PH.k; r/ such that for every r-coloring � W Œn�k ! r there exists a
large subset L � n with jLj > k such that �eŒL�k is a constant coloring. ut

While for the classical Ramsey theorem it is difficult to obtain tight bounds it
will turn out that for this seemingly small variation of the classical Ramsey theorem
it is already difficult to obtain any kind of bound.

Theorem 8.3 (Paris and Harrington). The statement

(PH) for every pair k; r of positive integers there exists a least positive integer
n D PH.k; r/ such that for every r-coloring � W Œn�k ! r there exists a
large subset L � n with jLj > k such that �eŒL�k is a constant coloring

is not provable in Peano arithmetic.

For the reader who is not used to work in Peano arithmetic we mention
that for statements about natural numbers Peano arithmetic is equivalent to the
result of replacing the axiom of infinity by its negation in the usual axioms of
Zermelo-Fraenkel set theory (see, e.g., Jech (1978) for these axioms). Obviously,
the principle (PH) can be formulated in this theory. In this way Theorem 8.3 should
be understood as: the formula of Peano arithmetic corresponding to the principle
(PH) is not provable in Peano arithmetic.

Intuitively, a reason for the unprovability of (PH) in Peano arithmetic is that the
function PH.k; r/ grows too rapidly. Recall that a recursive function f W ! ! ! is
provably recursive if one can show in Peano arithmetic that f is total, i.e., defined
for all natural numbers. Now it turns out that the function PH.k; k/ grows faster
than any provably recursive function f , i.e., f .k/ < PH.k; k/ for all but finitely
many k. However, by Theorem 8.2 the function PH.k; k/ is total, hence, (PH) is
not provable in Peano arithmetic.

The aim of this section is to prove the Paris-Harrington result by purely
combinatorial means following an approach of Ketonen and Solovay (1981). Here
we follow a simplified approach by Loebl and Nešetřil (1991).

Let ˛ < �0 be an ordinal and let ˛ D !˛1 � n1 C !˛2 � n2 C : : : C !˛k � nk be the
Cantor normal form of ˛. Let Si.˛/ D !˛i � ni be the i th summand in the Cantor
normal form of ˛, let Ci .˛/ D ni be the coefficient of the i th summand and let
Ei.˛/ D ˛i be the corresponding exponent. If �h�1 � ˛ < �h then ˛ is said to
be of height h which is abbreviated by h.˛/ D h. The weight w.˛/ of ˛ is defined
recursively as follows:
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w.˛/ D
�

˛; if ˛ is an integer,
maxfn1; : : : ; nk; w.˛1/; : : : ; w.˛k/; kg; otherwise.

Let n be an integer. Then .˛; n/ is called a good pair if n > w.˛/ C h.˛/. Let
.˛; n/ be a good pair. We define a predecessor function R.˛I n/ as follows.

R.˛I n/ D
�

.˛ � 1I n C 1/; if ˛ is a successor ordinal,

.˛Œn � h.˛/�I n C 1/; if ˛ is a limit ordinal.

Since w.˛Œn � h.˛/�/ � maxfw.˛/ C 1; n � h.˛/g, it follows that R.˛I n/ again
is a good pair. As an example, consider �h, the stack of h many !’s. Observe that
h.�h/ D h C 1. Hence, .�hI h C 3/ is a good pair and so is R.�hI h C 3/ D
.�hŒ2�I h C 4/.

Let R0.˛I n/ D .˛I n/ and RkC1.˛I n/ D R.Rk.˛I n//: By R.˛I n/ we denote
the family of all pairs which can be generated by successively applying this
predecessor operation, i.e., R.˛I n/ D fRi.˛I n/ j i < !g: Finally, let r.˛; n/ D
jR.˛I n/j. This function can be related to the Hardy hierarchy.

Lemma 8.4. Let ˛ < �0 be an ordinal and let n be a non-negative integer. Then

r.˛; n C h.˛// � H˛.n/ � n:

Proof. We apply transfinite induction on ˛. Obviously, for every natural number k,
r.k; n/ is the length of the sequence .k; n/; .k � 1; n C 1/; : : : ; .0; n C k/. Thus
r.k; n C 1/ D k C 1 > Hk.n/ � n D k.

In the induction step we have either ˛ C 1 being a successor ordinal. i.e.,

r.˛ C 1; n C h.˛// D 1 C r.˛; n C h.˛/ C 1/

� 1 C H˛.n C 1/ � n � 1

D H˛C1.n/ � n;

or ˛ being a limit ordinal and therefore

r.˛; n C h.˛// D r.˛Œn�; n C h.˛/ C 1/ � H˛Œn�.n/ � n D H˛.n/ � n;

as claimed. ut
A family of good pairs is called a good family. If there is a member of

such a family of height h and, moreover, the height of each member is at most
h then this family is said to be a good family of height h. A good family
.ˇ0I n0/; : : : ; .ˇt�1I nt�1/ is monotone if ˇi > ˇj and ni < nj for every pair
0 � i < j < t: For instance, R.�hI h C 3/ is a monotone family of height h C 1 for
every h < !.
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The following coloring lemma plays the key rôle in the proof of the
Paris-Harrington result.

Lemma 8.5. Let h � 2 be an integer and let S D f.ˇ0I n0/; : : : ; .ˇt�1I nt�1/g
be a good family of height h such that ni > h C 1 for every i < t . Then there
exists a coloring of the .h C 1/-subsets of S with less than 3h colors such that no
monotone subfamily S 0 D f.˛0I m0/; : : : ; .˛s�1I ms�1/g of S of size jS 0j > m0 is
monochromatic.

Proof. Let �0 > ˛0 > ˛1 > ˛2 be ordinals in Cantor normal form. Then let
�.˛0; ˛1/ D minfi j Si.˛0/ 6D Si.˛1/g be the index of the largest summand
where ˛0 and ˛1 differ. Recall that Ci .˛1/; Ci .˛2/ denotes the coefficient of the
i th summand of ˛1; ˛2; respectively. We define ı.˛0; ˛1; ˛2/ < 3 as follows.

ı.˛0; ˛1; ˛2/ D
8
<
:

0; if �.˛0; ˛1/ > �.˛1; ˛2/,
1; if x D �.˛0; ˛1/ � �.˛1; ˛2/ D y and Cy.˛1/ < Cx.˛0/,
2; otherwise.

Iterating this scheme we associate to every strictly monotone decreasing sequence
˛ D .˛0; : : : ; ˛t�1/ of ordinals a vector ı.˛/ D .ı0; : : : ; ıt�3/ 2 3t�2 where ıi D
ı.˛i ; ˛iC1; ˛iC2/:

Let S D f.ˇ0I n0/; : : : ; .ˇt�1I nt�1/g be a good family of height h such that
ˇ0 > : : : > ˇt�1. We define a coloring of the .h C 1/-subsets of S by induction
on h.

First assume that S is of height 2. Then color every monotone 3-element
subset f.˛0I m0/; .˛1I m1/; .˛2I m2/g of S with color ı.˛0; ˛1; ˛2/. This is clearly
a 3-coloring. Assume that S 0 D f.˛0I m0/; : : : ; .˛s�1I ms�1/g is a monotone
subfamily of S which is monochromatic. Recalling the definition of w.˛0/ and
the fact that m0 > w.˛0/ C h.˛0/ we show in the following that jS 0j � m0: The
assumption that S 0 is monochromatic with color 0 implies that jS 0j is bounded by
the number of summands in the Cantor normal form of ˛0 plus one. The assumption
that S 0 is monochromatic with color 1 implies that jS 0j is at most one more than
the size of the coefficient of the largest summand in the Cantor normal form of ˛0.
Finally, the assumption that S 0 is monochromatic with color 2 implies that jS 0j is
bounded by the size of the exponent of the first summand in the Cantor normal form
of ˛0 plus one. This is because h.˛0/ D 2, i.e., the exponent is an integer.

Next assume the validity of the lemma for all good families of height h for some
h � 2 and assume that S is of height hC1 and therefore ni > hC2 for every i < t .

We associate a family H.S/ of height h to S as follows. To any 2-subset of S ,
say f.˛0I m0/; .˛1I m1/g, we associate a pair .�0I p0/ choosing p0 D m0 � 1 and
�0 D Ex.˛0/ where x D �.˛0; ˛1/. Observe that each such pair is a good pair
of height at most h. Let H.S/ be the set of all pairs which can be obtained this
way. Then H.S/ is a good family and p > h C 1 for every pair .�; p/ 2 H.S/ is
valid. Without loss of generality we can assume that H.S/ is of height h. Hence by
inductive assumption there exists a coloring of the .hC1/-subsets of H.S/ with less
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than 3h colors such that no monotone subfamily H
0 D f.�0I p0/; : : : ; .�r�1I pr�1/g

of H.S/ of size jH 0 j > p0 is monochromatic.
Now color the monotone .h C 2/-subfamilies of S as follows. Let T D

f.˛0I m0/; : : : ; .˛hC1I mhC1/g be such a family. Color T with ı.˛0; : : : ; ˛hC1/ 2 3h

if ı.˛0; : : : ; ˛hC1/ 6D .2; : : : ; 2/. Otherwise consider the .hC1/-subfamily H.T / D
f.�0I p0/; : : : ; .�hI ph/g of H.S/ and color T with the color assigned to H.T / by
the inductive assumption.

Obviously, this defines a coloring of all .h C 2/-subfamilies of S with less
than 2 � 3h < 3hC1 many colors. Assume that S 0 D f.˛0I m0/; : : : ; .˛s�1I ms�1/g
is a monotone subfamily of S which is monochromatic. Assume that S 0 is
monochromatic in some color ı 2 3h which is not a constant vector. Then
jS 0j � h C 2, but m0 > h C 2. If S 0 is monochromatic with color .0; : : : ; 0/ 2 3h

or with color .1; : : : ; 1/ 2 3h similar arguments as in the case h D 2 show
that jS 0j � w.˛0/ C 1 but m0 > w.˛0/ C h.˛0/. It remains to consider the
case that S 0 is monochromatic with color .2; : : : ; 2/ 2 3h. But then the family
H.S 0/ D f.�0I p0/; : : : ; .�s�2I ps�2/g; where pi D mi � 1 and �i D Ex.˛i / with
x D �.˛0; ˛1/ for every i � s � 2, is a monotone subfamily of H.S/ and, by
definition of the coloring of S , monochromatic. Hence, by inductive assumption,
jH.S 0/j � p0 D m0 � 1 and so jS 0j � m0. ut
Lemma 8.6. Let h � 2. Then

PH.h C 2; 3hC1 C 2h/ > H�h
.h/ C h:

Proof. Consider the monotone family R.�hI 2h C 1/ D f.˛0I m0/; : : : ; .˛t�1I
mt�1/g: Obviously, ˛0 D �h, m0 D 2h C 1 and miC1 D mi C 1 for every
i < t � 1. By Lemma 8.4 we have that t � H�h

.h/ � h: Since R.�hI 2h C 1/

is a monotone family of height h C 1 and mi > h C 2 for every i < t , by
Lemma 8.5 there exists a coloring of the .h C 2/-subsets of R.�hI 2h C 1/ with less
than 3hC1 colors such that no monotone subfamily S 0 � S of size jS 0j > 2h C 1

is monochromatic. This induces obviously a coloring of the .h C 2/-subsets of
M D f0; : : : ; 2h; 2hC1; : : : ; mt�1g with 3hC1C2h many colors having the property
that there is no large subset of L which is monochromatic. Hence

PH.h C 2; 3hC1 C 2h/ � mt�1 C 1 � 2h C t C 1

� H�h
.h/ C h C 1:

ut
Proof of Theorem 8.3.

PH.h C 2; 3hC1 C 2h/ > H�h
.h/ C h C 1 � H�0 .h/;

and so, by Theorem 8.1, PH.h; h/ is not a provably total and recursive function.
ut
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It should be mentioned that other variants of Ramsey-type theorems give rise
to functions which grow even much faster than the Paris-Harrington function. For
example, in Prömel et al. (1991) fast growing functions based on Ramsey’s theorem
are investigated which grow faster than any recursive function which can proved to
be total in the formal system ATR0:
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