
Chapter 4
Hales-Jewett’s Theorem

The streets of eighteenth-century England resounded with the
voices of children chanting this simple rhyme:
Tit, tat, toe, my first go,
Three jolly butcher boys all in a row.
Stick one up, stick one down,
Stick one in the old man’s crown.

This rhyme was recited by the winner of Noughts and
Crosses, or Tic-Tac-Toe.

(from D. Olivatro (1984))

Tic-Tac-Toe is a game played by two people writing the symbols O and X in turn
on a pattern of nine squares with the purpose of getting three such marks in a row.
Of course, the traditional 3 � 3 Tic-Tac-Toe need not to have a winner, the second
player can achieve a tie. But this does not remain true in general if we consider
certain generalizations of the 3 � 3 Tic-Tac-Toe game. The tn-game is played on a
t � : : : � t (n times) array of points in n space, say on tn. The rules are that each
player in turn claims as his own a previously unclaimed element of tn. He draws
either a nought or a cross at this particular place. The game proceeds either until
one of the players has claimed a complete line in tn, in which case he wins, or until
every element in tn has been claimed, but no one has yet won, in which case the
game is a tie.

Thereby a line forming a possible winning set is a subset L � tn; L D fai j
i < tg, where ai D .ai;0; : : : ; ai;n�1/, and for each i < t either ai;j D bi 2 t for
all j < n or ai;j D j for all j < n or ai;j D t � 1 � j for all j < n. Thus the
winning sets are exactly the one-parameter words of length n over Œt; fe; �g�, where
� : t ! t is given by �.j / D t � 1 � j .

Analyzing this game of Tic-Tac-Toe, A.W. Hales and R.I. Jewett (1963) proved a
partition theorem for zero-parameter words, basically asserting that the first player
always has a winning strategy, provided that n is sufficiently large with respect to t .
This result will be proved in this chapter along with a brief discussion of bounds on
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42 4 Hales-Jewett’s Theorem

n and t , which enable us to draw some conclusion about the existence of winning
and tying strategies.

But the influence of Hales-Jewett’s theorem goes much beyond the analysis
of Tic-Tac-Toe. In this chapter we will only give a glimpse on its consequences
deriving some quite direct applications from this pigeon hole principle for parameter
words, for example reproving van der Waerden’s theorem on arithmetic progres-
sions. But throughout the next chapters we shall meet several generalizations and
ramifications of the Hales-Jewett theorem, and applications thereof, in various
branches of Ramsey theory.

4.1 Hales-Jewett’s Theorem

Throughout this section A denotes a fixed finite alphabet (set).

Convention. Let f 2 ŒA�
�

m
k

�
and g 2 ŒA�

�
n
`

�
. Then f � g 2 ŒA�

�
mCn
kC`

�
denotes the

‘concatenation’ of f and g, i.e.,

.f � g/.i/ D

8
ˆ̂
<

ˆ̂
:

f .i/ if i < m,

g.i �m/ if m � i < nCm and g.i �m/ 2 A, and

�kCj if m � i < nCm and g.i �m/ D �j .

The theorem of Hales and Jewett (1963) is concerned with partitions of zero-
parameter words, i.e., with partitions of An. We separate the special case of the
two element alphabet, first considering partitions of 2n only. On the one hand this
will be done because this case is of particular interest via its interpretation as
Boolean lattices, cf. Sect. 3.1.3, on the other hand because its proof is easier and
will hopefully make some ideas more accessible.

Proposition 4.1. Let m and r be positive integers. Then there exists a least positive
integer n D HJ.2; m; r/ such that for every coloring � W Œ2�

�
n
0

� ! r there exists a
monochromatic m-parameter word f 2 Œ2�

�
n
m

�
, which is to say that

�.f � g/ D �.f � h/ for all g; h 2 Œ2�
�

m

0

�
.

Proof. The proof proceeds by induction on m. Let m D 1, r be an arbitrary positive
integer and R be the following set of r C 1 many words each of length r :

R D f . 0; 0; : : : ; 0; 0 /

. 0; 0; : : : ; 0; 1 /

: : :

. 0; 1; : : : ; 1; 1 /

. 1; 1; : : : ; 1; 1 / g:
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For every r-coloring � of R there exist two words having the same color. Say

.0; : : : ; 0; 0; : : : ; 0; 1; : : : ; 1/

and

.0; : : : ; 0; 1; : : : ; 1; 1; :::; 1/:

Then the one-parameter word

.0; : : : ; 0; �0; : : : ; �0; 1; : : : ; 1/

is monochromatic with respect to �.
Now assume that the assertion is true for some m > 0 and every r and choose

M D HJ.2; 1; r/ and N D HJ.2; m; r2M

/

and consider words of length N CM .

Let � W Œ2�
�

MCN
0

� ! r be a coloring. This induces a coloring �N W Œ2�
�

N
0

� !
r2M

on the tails of length N by coloring each tail with the sequence of colors it gets
by varying over all possible initial pieces, i.e.,

�N .h/ D h�.g � h/ j g 2 Œ2�
�

M
0

�i:

By choice of N there exists an m-parameter word fN 2 Œ2�
�

N

m

�
which is monochro-

matic with respect to �N . This means, fixing one initial piece, all insertions in fN

get the same color with respect to �.
Next consider �M W Œ2�

�
M

0

� ! r given by �M .g/ D �.g � .fN � h// for some
(and hence for all) h 2 Œ2�

�
m
0

�
. By the inductive assumption we know that there exists

fM 2 Œ2�
�

M
1

�
which is monochromatic with respect to �M . Now the construction

yields immediately that fM�fN 2 Œ2�
�

MCN
1Cm

�
is the desired monochromatic .mC1/-

parameter word. ut
In the language of Boolean lattices, Proposition 4.1 says that for every r-coloring

of the points of B.n/ there exists a B.m/-sublattice of B.n/ which is monochro-
matic, provided that n was chosen sufficiently large. This can be visualized as in
Fig. 4.1.

Now we prove Hales-Jewett’s theorem for general (finite) alphabets.
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Fig. 4.1 Point partition
property of Boolean lattices

Theorem 4.2 (Hales, Jewett). Let A be a finite alphabet and let m and r be
positive integers. Then there exists a least positive integer n D HJ.jAj; m; r/

such that for every coloring � W ŒA�
�

n
0

� ! r there exists an m-parameter word
f 2 ŒA�

�
n
m

�
, which is monochromatic.

Proof. Let t D jAj. We show the following two inequalities:

.1/ HJ.t; mC 1; r/ � HJ.t; 1; r/C HJ.t; m; rtHJ.t;1;r/
/

.2/ HJ.t C 1; 1; r C 1/ � HJ.t; 1C HJ.t C 1; 1; r/; r C 1/.

Together with the trivial observation that for every m and r we have that
HJ.1; m; r/ D m (or using Proposition 4.1 instead) these two inequalities yield
immediately the proof of Hales-Jewett’s theorem by induction on t; m and r .

Proof of (1): We closely follow the approach from Proposition 4.1. Let M D
HJ.t; 1; r/ and N D HJ.t; m; rtHJ.t;1;r/

/ and consider � W ŒA�
�

MCN

0

� ! r . This

induces a coloring �N W ŒA�
�

N
0

�! rtM
by

�N .h/ D h�.g � h/ j g 2 ŒA�
�

M
0

�i:

By choice of N there exists an m-parameter word fN 2 ŒA�
�

N
m

�
which is

monochromatic with respect to �N . Next consider �M W ŒA�
�

M
0

�! r , given by

�M .g/ D �.g � .fN � h// for some (and hence all) h 2 ŒA�
�

m
0

�
.

By choice of M there exists fM 2 ŒA�
�

M
1

�
which is monochromatic with respect

to �M . Now fM � fN 2 ŒA�
�

MCN
mC1

�
proves that inequality (1) is valid.

Proof of (2): Let N D HJ.t; 1 C HJ.t C 1; 1; r/; r C 1/, b 62 A and consider
� W ŒA[ fbg��N

0

�! r C 1. Let �A D �eŒA�
�

N
0

�
. By choice of N there exists fA 2

ŒA�
�

N
1CM

�
, where M D HJ.tC1; 1; r/, which is monochromatic with respect to �A.

Say, �AefA � ŒA�
�

1CM
0

� � r . If �.fA �.b�g// D r for some g 2 ŒA [ fbg��M
0

�
, then
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replace all b’s in fA � .b � g/ by �0 and call the resulting one-parameter word f .
Clearly, f 2 ŒA [ fbg��N

1

�
and �ef � ŒA [ fbg��1

0

�
is constant. If no such g 2

ŒA[fbg��M

0

�
exists, consider �M : ŒA[ fbg��M

0

�! r defined by �M .g/ D �.fA �
.b � g//. By choice of M there exists fM 2 ŒA [ fbg��M

1

�
monochromatic with

respect to �M . In this case fA � .b � fM / proves that inequality (2) is valid. ut
The inequalities (1) and (2) immediately show that the bound on the function

n D HJ.jAj; m; r/ which we get from this proof of Hales-Jewett’s theorem is
not primitive recursive. Whether this reflects the truth or whether this is just a
consequence of the double induction used in the proof was an open problem for
quite some time, until Shelah (1988) in a celebrated paper came up with a different
proof of Hales-Jewett’s theorem which implied that the function n D HJ.jAj; m; r/

is primitive recursive.

4.2 Some Applications

4.2.1 Arithmetic Progressions

In some sense, Hales-Jewett’s theorem reveals the combinatorial heart of van der
Waerden’s theorem on arithmetic progressions, stripping the arithmetic structure
of the problem. Consider the alphabet A D t D f0; : : : ; t � 1g. The mapping
� : An ! n.t � 1/ with �.a0; : : : ; an�1/ D P

ai has the property that it maps
every one-parameter word onto a t-term arithmetic progression (cf. Sect. 3.1.4).
Hence, Hales-Jewett’s theorem implies immediately van der Waerden’s theorem on
arithmetic progressions:

Theorem 4.3 (van der Waerden). Let r and t be positive integers. Then there
exists a least positive integer n D W.t; r/ such that for every coloring � W
Œ1; n�! r there exists a monochromatic t-term arithmetic progression. ut

4.2.2 Gallai-Witt’s Theorem

A multidimensional version of van der Waerden’s theorem was proved indepen-
dently by Gallai (=Grünwald), cf. Rado (1943), and Witt (1952).

Let X D fx0; : : : ; xt�1g � R
m be a finite set of points in the Euclidean m-space.

A homothetic mapping (homothety) is a mapping h W Rm ! R
m of the form h.x/ D

aCdx, where a 2 R
m is the translation vector and d 2 Rnf0g describes a dilatation.

The image h.X/ � R
m is a homothetic copy of X .
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Theorem 4.4 (Gallai, Witt). Let r; m be positive integers and X � R
m be a finite

set. Then there exists a finite set Y � R
m such that for every coloring � W Y ! r

there exists a homothetic copy of X in Y which is monochromatic.

Proof. Here the same idea applies as in proving van der Waerden’s theorem.
Put A D X and let n D HJ.jAj; 1; r/. Consider � W An ! R

m given by
�.a0; : : : ; an�1/ DP

i<n ai and let Y D �.An/.
Now let � W Y ! r be a coloring. This induces a coloring �� : An ! r via

��.a0; : : : ; an�1/ D �.
P

i<n ai /. By choice of n there exists f 2 ŒA�
�

n
1

�
being

monochromatic with respect to ��. Put a D Pff .i/ j f .i/ ¤ �0g and d D jfi j
f .i/ D �0gj. Then, obviously �efaC dx j x 2 Xg is constant. ut

4.2.3 Deuber’s .m; p; c/-Sets

The next application of Hales-Jewett’s theorem extends the Gallai-Witt theorem and
completes the proof of Rado’s Theorem 2.8.

Let m; p; c be positive integers. Recall from Sect. 2.5 that a set M � N is an
.m; p; c/-set if there exist positive integers x0; : : : ; xm such that

M D Mp;c.x0; : : : ; xm/

D fcxi C
mX

j DiC1

�j xj j �j 2 Œ�p; p� \ Z for every j 2 Œi C 1; m� and i � m}:

Helpful for our purposes is to visualize an .m; p; c/-set in the following way:

cx0 C �1x1 C �2x2 C : : :C �mxm

cx1 C �2x2 C : : :C �mxm

cx2 C : : :C �mxm

:::

cxm

where �j 2 Œ�p; p� \ Z for j 2 Œ1; m�.
We will sometimes refer to this figure speaking, e.g., of the kth row of an

.m; p; c/-set, which is the row that starts with cxk , i.e., we start with a 0th row.
Observe that besides the leading coefficient c each row is a multiple arithmetic
progression.

We now use Hales-Jewett’s theorem to prove the partition theorem for .m; p; c/-
sets.
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Theorem 4.5 (Deuber). Let m, p, c and r be positive integers. Then there exist
positive integers n, q and d such that for every coloring � W N! r of the positive
integers every .n; q; d/-set N � N contains a monochromatic .m; p; c/-set.

Proof. First we show:

.1/ Let m, p, c, r and k � m be positive integers. Then there exist positive integers
n, q, and d with the following property:
Let N be an .n; q; d/-set. Then for every coloring � W N ! r there exists an
.m; p; c/-set M � N such that on each of the first k rows of M the coloring �

is constant, i.e., �.x/ D �.y/ whenever x; y are elements of the i th row of M

for some i � k.

We prove (1) by induction on k. First consider the case k D 0. Let q D cp, d D c2,
A D Œ�p; p� and let n D HJ.jAj; m; r/ be according to Hales-Jewett’s theorem.
Let N D Nq;d .y0; : : : ; yn/ be an .n; q; d/-set and � W N ! r an r-coloring of N .
We define a coloring �0 : ŒA�

�
n
0

�! r by

�0.�1; : : : ; �n/ D �.dy0 C c

nX

iD1

�i yi /:

Observe that the definition of an .n; q; d/-set, together with choice of q D cp,
implies that the sums on the right hand side are indeed contained in N . By choice
of n there exists an f 2 ŒA�

�
n
m

�
which is monochromatic with respect to �0. Now

consider the .m; p; c/-set M defined by M D Mp;c.z0; z1; : : : ; zm/, where

z0 D cy0 C
X

i Wf .i/2A

f .i/ y1Ci ;

and

z1Cj D c
X

i Wf .i/D�j

y1Ci for j < m:

Then the fact that f 2 ŒA�
�

n

m

�
is monochromatic with respect to �0 implies that �

is constant on each of the 0th rows of M .
Now assume that (1) is valid for some k � 0. We proceed similarly as in the case

k D 0. Let q D cp2, d D c2, A D Œ�p; p� and let n D HJ.jAj; m � k; r/ C k

be according to Hales-Jewett’s theorem. We apply the induction assumption for k

and with respect to m  n, p  q, and c  d in order to see that by starting
with appropriate parameters n0; q0; d 0 we may assume that every .n0; q0; d 0/-set N 0
and coloring � W N 0 ! r contains an .n; q; d/-set N such that � is constant on
each of the first k rows of N . To handle the .k C 1/st row define a coloring �0 :
ŒA�

�
n�k

0

�! r by
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�0.�kC1; : : : ; �n/ D �.dyk C c

nX

iDkC1

�i yi /:

By choice of n there exists an f 2 ŒA�
�

n�k
m�k

�
which is monochromatic with respect

to �0. We define an .m; p; c/-set by M DMp;c.cy0; : : : ; cyk�1; zk; : : : ; zm/, where

zk D cyk C
X

f .i/2A

f .i/ ykC1Ci ; and

zkC1Cj D c
X

f .i/D�j

ykC1Ci for j < m � k:

Observe that for i � k the i th row of M is a subset of the i th row of N . (To see this
use that q D cp2.) Hence, � is monochromatic on these rows. For row kC1, on the
other hand, the fact that f 2 ŒA�

�
n
m

�
is monochromatic with respect to �0 implies

that � is constant on the .k C 1/st row of M , completing the proof of (1).
To complete the proof of the theorem, put Qm D rm and use (1) in order to

observe that there exist n, q, and d such that every .n; q; d/-set N contains for
every r-coloring � W N ! r an . Qm; p; c/-set QM D QMp;c.x0; : : : ; x Qm/ so that � is
constant on each row of QM . By the pigeon hole principle, then, there exist m C 1

rows, say i0 < : : : < im on which � has the same color. Hence, the .m; p; c/-set
M D Mp;c.xi0 ; : : : ; xim/ � N is monochromatic with respect to �. ut

4.2.4 Idempotents in Finite Algebras

Let a be a nonnegative integer and let ˛ D .˛0; : : : ; ˛a/ be a sequence of positive
integers. An algebra of type ˛ is a pair .B; B/, where B is a nonempty set and B :
B˛i ! B , for i � a, is an ˛i -ary operation (by abuse of language we use the same
B for all i ). An algebra .A; A/ of type ˛ is a subalgebra of .B; B/ if A � B and A

is closed under the operations B.

Theorem 4.6. Let K be a class of finite algebras of type ˛ which is closed under
finite products and such that every member .A; A/ of K contains idempotents only,
i.e., A.x; : : : ; x/ D x for every x 2 A: Let r be a positive integer and .A; A/ 2 K.
Then there exists a .B; B/ 2 K such that for every coloring � W B ! r there exists
a monochromatic subalgebra of .B; B/ which is isomorphic to .A; A/.

Proof. Let n D HJ.jAj; 1; r/ and choose .B; B/ D .A; A/n. Recall that K is closed
under finite products. Hence, .B; B/ 2 K. Moreover, by Hales-Jewett’s theorem we
know that .B; B/ has the desired property. ut
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We will abbreviate this result by saying that the class K has the partition property
with respect to points. Theorem 4.6 occurs in Ježek and Nešetřil (1983) and Prömel
and Voigt (1981b).

4.2.5 Lattices and Posets

Theorem 4.6 applies in particular to a variety of finite lattices. Some of them we
will mention explicitly. For basic facts about lattices we refer the reader to Birkhoff
(1967) or Grätzer (1998).

Distributive lattices. Although the partition property of points in distributive
lattices follows from Theorem 4.6, it can already be derived from Proposition 4.1
using that distributive lattices are exactly the sublattices of Boolean lattices.
Distributive lattices will be discussed in more detail in Sect. 5.2.3.

Partially ordered sets (posets). It can easily be seen that every poset can be
embedded (as an order) in some Boolean lattice. So we get from Proposition 4.1
that the class of all finite posets has the partition property with respect to points. In
full length:

Let r be a positive integer and Q be a finite poset. Then there exists a finite
poset P such that for every coloring � W P ! r of the points of P there exists a
Q-subposet of P which is monochromatic.

A slight generalization of Theorem 4.6 covering also relational systems of a
certain type and in particular covering posets, is given in Pouzet and Rosenberg
(1985).

Partition lattices. By a celebrated theorem of Pudlák and Tu̇ma (1980) every
finite lattice can be embedded into some partition lattice ˘.n/. Using that the
class of all finite lattices has the partition property with respect to points we can
derive immediately from this that the class of all finite partition lattices has also
the partition property with respect to points, i.e., for every pair m and r of positive
integers there exists a positive integer n D n.m; r/ such that for every coloring
� W ˘.n/ ! r of the points of ˘.n/ with r colors there exists a ˘.m/-sublattice
of ˘.n/ which is monochromatic. This situation is depicted in Fig. 4.2.

4.3 A �-Version

In this section not only colorings of zero-parameter words of one fixed length are
considered, as in Hales-Jewett’s theorem, but words of variable length (where a 	
indicates the end of a word). Such 	-parameter words were originally introduced by
Voigt (1980) to prove a partition theorem for finite Abelian groups. They will also
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Fig. 4.2 Point partition
property of partition lattices

be a quite useful tool in proving a higher dimensional analogue to Hales-Jewett’s
theorem (cf. Chap. 5).

Convention. Let 0	0 be a symbol not contained in A [ f�0; : : : ; �m�1g and let
ŒA��

�
n

m

�
denote the set of all m-parameter words f of length n over A [ f	g

satisfying the condition

f .i/ D 	 for some i < n implies that f .j / D 	 for all i � j < n.

Hence, ŒA��
�

n
m

�
can be viewed as the set of m-parameter words of length at most n

over A. Note that in this sense ŒA�
�

n
m

� � ŒA��
�

n
m

�
.

For f 2 ŒA��
�

n
m

�
and g 2 ŒA��

�
m
k

�
the composition f � g 2 ŒA��

�
n
k

�
is defined by

.f � g/.i/ D

8
ˆ̂<

ˆ̂
:

	 if there exists j < i such that .f � g/.j / D 	,

f .i/ if f .i/ 2 A[ f	g and .f � g/.j / ¤ 	 for all j < i ,

g.j / if f .i/ D �j and .f � g/.j / ¤ 	 for all j < i

Intuitively, the composition f �g interpreted as the insertion of g into the parameters
of f is performed as long as possible, eventually 	’s are filled in.

Theorem 4.7. Let A be a finite alphabet and let m, r be positive integers. Then
there exists a positive integer n D HJ�.jAj; m; r/ such that for every coloring � W
ŒA��

�
n
0

�! r there exists a monochromatic f 2 ŒA��
�

n
m

�
, i.e., �.f � g/ D �.f � h/

for all g; h 2 ŒA��
�

m

0

�
.

Proof. Let nmr D mr and nmr�j D HJ.jAj; nmr�j C1�mrCj; r/Cmr� j . Choose
n D n0 and let � W ŒA��

�
n
0

�! r be a coloring.

For g 2 ŒA��
�

k
0

�
let 	.g/ denote the number of 	’s at the end of g, i.e., 	.g/ D

k � 1 �maxfi < k j g.i/ 2 Ag with max; D �1. For every i � k put

ŒA�i
�

k
0

� D fg 2 ŒA��
�

k
0

�j 	 .g/ D ig:
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In particular,

[

i�k

ŒA�i
�

k
0

� D ŒA��
�

k
0

�
:

First we prove inductively that for every j � mr there exists fj 2 ŒA�
�

n
nj C1

�
such

that for every g; h 2 S
i�j ŒA�i

�
nj C1

0

�
satisfying 	.g/ D 	.h/ we have �.fj � g/ D

�.fj � h/.
For j D 0, i.e., considering only words without 	’s at the end, this is

Hales-Jewett’s theorem. So assume that the assertion is true for some j < mr and
let �j C1 : ŒA�j C1

�
nj C1

0

� ! r be given by �j C1.g/ D �.fj � g/. By choice of
nj C1 D HJ.jAj; nj C2 � j � 1; r/C j C 1 and Hales-Jewett’s theorem there exists

f 0 2 ŒA�
�nj C1�j �1

nj C2�j �1

�

which is monochromatic with respect to �j C1. Then, obviously, fj C1 D fj � .f 0 �
.�nj C2�j �1; : : : ; �nj C2�1// fulfills the requirement of the induction.

Choosing j D mr we get fmr 2 ŒA�
�

n
mr

�
such that all g; h 2 ŒA��

�mr
0

�
satisfying

	.g/ D 	.h/ have the same color with respect to �. This defines an r-coloring
�0 of the integers 0; : : : ; mr by �0.i/ D �.fmr � g/ for any g with 	.g/ D i . By
the pigeonhole principle we get 0 � i0 < : : : < im � mr in one color. Now let
f 00 2 ŒA�

�mr
m

�
be given by f .i/ D a for some a 2 A if i < i0; f .i/ D �j if

ij � i < ij C1 and f .i/ D 	 for im � i . Clearly, f D fmr � f 00 has the desired
properties. ut
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