
Chapter 14
Hypergraphs on Parameter Sets

So far in this chapter, we have studied graphs which are defined on sets. Now
we start studying (hyper)graphs which are defined on more complex structures. In
particular, in this section we study hypergraphs on parameter sets.

In Sect. 14.1 we prove an induced version of Hales-Jewett’s theorem and, as
corollaries, we obtain results for sets of integers carrying an arithmetic structure like,
e.g., arithmetic progressions or .m; p; c/-sets. In Sect. 14.2 we give an alternative
proof of the Ramsey theorem for finite ordered graphs (Theorem 12.13). Though it
doesn’t exactly fit the theme of the section, it will serve us as a motivating example
for a technique which we will then use in Sect. 14.3 to prove an induced version
of the Graham-Rothschild’s theorem on parameter sets. The induced Graham-
Rothschild’s theorem gives, in a sense, a complete analogue of the Ramsey theorem
for finite ordered graphs.

Before we state these results, we first fix some notation. Given an alphabet A and
integers k and n we build an (ordered) hypergraph Hk.n/ as follows. The vertices
are all words of length n over A, i.e. V.Hk.n// D An. The set of edges is given by
all i -parameter words in ŒA�

�
n
i

�
, for all 0 � i � k. More precisely, every f 2 ŒA�

�
n
i

�

corresponds to a hyperedge ef given by

ef D ff � g j g 2 Ai g;

and

E.Hk.n// D
[

0�i�k

f 2ŒA�.n
i /

ef :

Note that we do allow i D 0 in the above definition, i.e., all vertices of Hk.n/ are
also considered as edges. In this section we will mostly be concerned with finding
an appropriate subgraph F of Hk.n/ that has some nice Ramsey properties. It is
important to note that here we do consider weak subgraphs. That is, a subgraph F �
Hk.n/ can have the property that some vertices of V.F/ do not belong to E.F/.
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154 14 Hypergraphs on Parameter Sets

Similarly as in the graph case, for a hypergraph F � Hk.n/ and a subset A � An,
we denote by F ŒA� the subgraph of F induced by A, i.e., the vertex set V.F ŒA�/ is
given by V.F/ \ A and for all ef 2 E.F/ we have

ef 2 F ŒA� if and only if ef � A:

We will mostly be interested in subgraphs induced by an m-subspace of An, i.e., by
some f 2 ŒA�

�
n
m

�
. To shorten notation we use F Œf � to denote the subgraph induced

by such an m-space:

F Œf � :D F Œff � g j g 2 Amg�:

14.1 An Induced Hales-Jewett Theorem

For this section let A be a finite set containing at least two elements. As Hales-
Jewett’s theorem itself, induced versions of Hales-Jewett’s theorem consider color-
ings of An, i.e., of vertices. Without loss of generality, we restrict to colorings of
vertices which exist as hyperedges.

More precisely, for hypergraphs E � Hk.m/ and F � Hk.n/, let the Ramsey
arrow F ! .E/0

r abbreviate the following statement:
For every coloring � W An ! r there exists f 2 ŒA�

�
n

m

�
such that F Œf � is isomor-

phic to E and �.f � y/ D �.f � x/ for all x; y 2 Am with ex; ey 2 E.E/.
Note that we require monochromaticity only for those vertices that form an edge

in E . Clearly, if all vertices form edges then we get monochromaticity in the usual
sense. It is an easy observation that F Œf � is isomorphic to E if and only if for every
g 2 ŒA�

�
m

i

�
, i � k, we have ef �g 2 E.F/ iff eg 2 E.E/. Note that this condition

needs to hold for all edges, also those which form vertices.
With this notation at hand, we can state the induced version of Hales-Jewett’s

theorem:

Theorem 14.1 (Induced Hales-Jewett theorem). Let r; m and k be positive inte-
gers and let E � Hk.m/ be given. Then there exists a positive integer n and a
subgraph F � Hk.n/ such that F ! .E/0

r .

Recall that with respect to ordinary graphs the corresponding vertex partition
theorem can be established using a simple product construction (cf. Sect. 12.1).
Essentially the same idea applies here.

Convention. Recall that in Sect. 4.1 we introduced � to concatenate two parameter
words. In order to get a subspace whose dimension is the sum of the two subspaces
we there shifted the parameters in the second word. In this section we only
need the formal concatenation of two parameter words. With abuse of notation
we thus let � denote in this section the formal concatenation, i.e., for g D
.g0; : : : ; gm�1/ 2 ŒA�

�
m
k

�
and h D .h0; : : : ; h Qm�1/ 2 ŒA�

� Qm
i

�
with i � k we let
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g �+ h D .g0; : : : ; gm�1; h0; : : : ; h Qm�1/ 2 ŒA�
�

mC Qm
k

�
. In this section we will mostly

be concerned with a product space given by the concatenations of a set of parameter
words. More precisely, for B � S

i�kŒA�
�

m

i

�
let .B/M D ff0�: : :�fM�1 j fi 2 Bg

which, then, is a subset of
S

i�kŒA�
�

m�M
i

�
.

Proof of Theorem 14.1. Consider the set B D fx 2 Am j ex 2 E.E/g. According
to Hales-Jewett’s theorem (Theorem 4.2) let the positive integer N be such that
N � HJ.jBj; 1; r/. Let n D N � m.

We define F � Hk.n/ as follows. The vertex set of F is V.F/ D An, i.e., it is
identical to that of Hk.n/. For g 2 ŒA�

�
m
i

�
such that eg 2 E.E/, add eQg to E.F/

for all Qg 2 .B [ fgg/N such that Qgj D g for some j < N . Note that in this case
Qg D .g0; : : : ; gN �1/ is an element of ŒA�

�
n
i

�
. It remains to verify that F ! .E/0

r .
Let � W An ! r be a coloring. As .B/N � An, by abuse of language this can

be viewed as a coloring � W BN ! r . By choice of N there exists a one-parameter
word Qf 2 ŒB�

�
N
1

�
such that the set f Qf � x j x 2 Bg is monochromatic with respect

to �. Consider an m-parameter word f 2 ŒA�
�

n
m

�
defined as f D Qf �

0 � : : : � Qf �
N �1

where

Qf �
i D

( Qfi ; if Qfi 2 B;

.�0; : : : ; �m�1/; if Qfi D �0:

It is clear from the construction of f that �.f � x/ D �.f � y/ for every x; y 2 Am

such that ex; ey 2 E.E/. Moreover, for every g 2 ŒA�
�

m

i

�
we have f �g 2 .B[fgg/N ,

thus ef �g 2 E.F/ iff eg 2 E.E/ and so F Œf � is isomorphic to E . ut

14.1.1 Applications

Apparently (Spencer 1975b) first considered induced partition theorems for other
structures than graphs defined on sets, by proving an induced version of van der
Waerden’s theorem on arithmetic progressions. We have seen in Sect. 4.2.1 that
van der Waerden’s theorem on arithmetic progressions can be easily deduced from
Hales-Jewett’s theorem. Basically following the lines of this proof we show how an
induced version of van der Waerden’s theorem can be deduced from Theorem 14.1.

Theorem 14.2 (Induced van der Waerden). Let r and m be positive integers and
let E D .m; E/ be a hypergraph on the vertex set m. Then there exists a positive
integer n and a hypergraph F D .n; F / on the vertex set n, such that for every
r-coloring � W n ! r there exists an arithmetic progression A D fa C j � b j 0 �
j < mg � n such that

.1/ The subgraph of F spanned by A is isomorphic to E , and

.2/ �efa C j � b j j < m and j 2 Eg is a constant coloring.
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Remark 14.3. Observe that Theorem 14.2 generalizes the particular case of vertex
colorings from the Ramsey theorem for ordered graphs in a somewhat unexpected
direction. Considering hypergraphs whose vertex sets are integers (i.e., carry
an arithmetic structure) the additional requirement is that the vertex set of the
monochromatic hypergraph forms an arithmetic progression.

Proof of Theorem 14.2. Let the positive integer r and the hypergraph E D .m; E/

be given. Let A D m and consider the hypergraph E0 � H0.1/ such that i 2 E.E0/

if and only if i 2 E.E/, for i < m. Now we apply Theorem 14.1 and find a positive
integer n0 and a hypergraph F0 � H0.n0/ such that F0 ! .E0/

0
r . Let n D mn0 and

recall that P.n/ denotes the power set of n. We define the required hypergraph F
with vertex set n D f0; : : : ; n � 1g and edges E.F/ � P.n/ as follows.

Let ' W An0 ! n be such that '.a0; : : : ; an0�1/ D P
i<n0

ai � mi . Note that
' is a bijection. For every .a0; : : : ; an0�1/ 2 An0 let '.a0; : : : ; an0/ 2 E.F/ iff
.a0; : : : ; an0�1/ 2 E.F0/. Furthermore, for every f 2 ŒA�

�
n0

1

�
and J 2 P.m/,

jJ j � 2, let

f'.f � j / j j 2 J g 2 E.F/ if and only if J 2 E.E/;

where f � j refers to composition of parameter words. Observe that F is well-
defined since any two distinct one-parameter sets intersect in at most one point and
the mapping ' is a bijection. It remains to verify that the hypergraph F has the
desired properties.

Let � W n ! r be an r-coloring. This defines a coloring �� W An0 ! r by
��.a0; : : : ; an0�1/ D �.

P
i<n0

ai � mi/. By choice of the parameter-graph F0 there
exists f 2 ŒA�

�
n0

1

�
such that E0 is isomorphic to F0Œf � and

��eff � j j j < m and j 2 E.E0/g D �ef'.f � j / j j < m and j 2 E.E/g

is a constant coloring. By construction, then, the arithmetic progression
A D f'.f � j / j j < mg has the desired properties. ut

Note that in the above proof the induced version of Hales-Jewett is only applied
to the subhypergraph of E that contains exactly all singleton edges. For the case
that all vertices of E do form an edge one easily checks that the use of the induced
Hales-Jewett theorem can be replaced by applying just the classical Hales-Jewett
theorem.

Recall that a subset M � Z is an .m; p; c/-set if there exist integers x0; : : : ; xm

such that M D Mp;c.x0; : : : ; xm/ D fcxi C Pm
j DiC1 �j xj j �p � �j � p; �j 2 Z

for j D 1; : : : ; mg. As seen in Chap. 2, .m; p; c/-sets are a basic tool in studying
partition regular systems of equations. Thereby, arithmetic progressions can be
viewed as special .m; p; c/-sets, in fact as .1; p; 1/-sets. Extending the method of
proof used for the induced van der Waerden theorem, Deuber et al. (1982) proved
an induced partition theorem for .m; p; c/-sets.
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Theorem 14.4. Let m; p; c and r be positive integers and let .M; E/ be a hyper-
graph on the set M D Mp;c.x0; : : : ; xm/. Then there exist positive integers n; q; d

and there exists a hypergraph .N; F / on the set N D Mq;d .x0; : : : ; xn/ such that
for every r-coloring � W N ! r there exists an .m; p; c/-subset M 0 � N such
that the subgraph of .N; F / spanned by M 0 is isomorphic to .M; E/ and such that
�efx 2 M 0 j x 2 F g is a constant coloring. ut

The proof basically combines ideas from the proof of the (non induced) partition
theorem for .m; p; c/-set (cf. Sect. 4.2.3) and the induced Hales-Jewett resp. van der
Waerden theorem. We omit this proof.

14.2 Colorings of Subgraphs: An Alternative Proof

We now reprove Theorem 12.13, the Ramsey theorem for ordered graphs. Instead
of using a powerful tool like the Graham-Rothschild theorem for parameter sets
(as we did in Sect. 12.3), we now give an elementary proof that uses only Ramsey’s
theorem and a clever construction. This proof is due to Prömel and Voigt (1989).
Recall that the Ramsey theorem for ordered graphs states that for any two ordered
two finite graphs .H; �/ and .F; �/ and any positive integer r there exists a finite
ordered graph .G; �/ such that

.G; �/
ind! .F; �/.H;�/

r :

Throughout the remainder of this section we assume that all graphs are supplied
with an underlying vertex ordering, and that all embeddings and subgraphs respect
this ordering, but for ease of notation we will not state these orderings explicitly.
In this section the term ‘subgraph’ also always refers to an induced subgraph. In
particular, we only color H -subgraphs that are induced H -copies.

Let us first give a high-level overview of our proof strategy. Instead of look-
ing directly for an F -subgraph in G which is monochromatic with respect to
H -subgraphs, we define another graph F0. We want that, roughly speaking, F0 has
the following property: if there exists an F0-subgraph such that the coloring of its
H -subgraphs satisfy a certain condition which is, this is the crucial point, much
weaker than being monochromatic, then we are guaranteed to find a monochromatic
F -subgraph in F0. Additionally, F0 will have a strong structural property, namely
it is partite, which, as we will see, conveniently allows us to find a desired
F0-subgraph iteratively.

14.2.1 Partite Graphs

As usual in graph theory, we say that a graph is m-partite if its vertex set can be
split into m mutually disjoint and nonempty sets, each inducing an independent set.
We impose another strong structural property, namely that it is left-rectified .
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Definition 14.5. A left-rectified m-partite graph is a pair ..V�/�<m; E/, where
V D S

i<m Vi is the set of vertices (we assume that the sets Vi are nonempty and
mutually disjoint) and

.1/ Each Vi induces an independent set, i.e., no edge has both endpoints in the same
set Vi ,

.2/ If a 2 Vi 0 and b 2 Vi for i 0 < i , then a � b,

.3/ If fa; bg 2 E for some a � b and a 2 Vi , then fa0; bg 2 E for every a0 2 V.

Henceforth, we will also call the sets Vi the parts of the partition V D S
i<m Vi .

Naturally, we want that embeddings of partite graphs preserve the ordering of
vertices as well as respect partitions.

Definition 14.6. Let G D ..V�/�<m; E/ and F D .. QV�/�< Qm/ be partite graphs. We
call a subgraph F of G a partite F -subgraph of G if it satisfies the following three
conditions: (i) GŒV.F /� is isomorphic to F , i.e., F is an induced F -subgraph of
G, (ii) every part of F is a subset of some part of G and (iii) no two parts of F are
subsets of the same part of G. By

�
G

F

�
part

we denote the set of all partite F -subgraphs
of G.

We say that an m-partite graph is crossing if jV� j D 1 for every � < m. Note that
every graph on m vertices can be viewed as a crossing m-partite graph. Note also
that a crossing m-partite graph can easily made left-rectified by ordering the parts
in such a way that (2) is satisfied.

Lemma 14.7 (Partite lemma). Let F and H be left-rectified m-partite graphs with
H being crossing, and let r be a positive integer. Then there exists a left-rectified

m-partite graph G such that G
part! .F /H

r , meaning that for every coloring � W�
G
H

�
part

! r there exists a F 2 �
G
F

�
part

such that �e�
F
H

�
part

is a constant coloring.

Proof. We proceed by induction on m. For m D 1 the statement reduces to the
pigeonhole principle. We prove it for m C 1.

Let F D ..V�/�<mC1; EF / and H D .mC1; EH / be .mC1/-partite left-rectified
graphs where H is crossing, and let r be a positive integer. As H is crossing we may
assume that it has m C 1 as the set of vertices with parts fig for i < m C 1.

Since F is left-rectified, any two vertices x; x0 2 Vm which belong to an
H -subgraph have the same “profile”, i.e., for any a 2 S

i<m Vi we have fa; xg 2 EF

if and only fa; x0g 2 EF . Let VH � Vm be the set of all vertices in Vm which belong
to an H -subgraph, and set z D jVH j. Furthermore, let H 0 and F 0 be subgraphs of
H , resp. F , spanned by the first m parts.

By the induction hypothesis, there exists an m-partite graph G0 such that

G0 part! .F 0/H 0

r z� , where z� D r � .z � 1/ C 1. Now we extend G0 by a set Xm to an
.m C 1/-partite graph G as follows. First we add vertices y0; : : : ; yz��1 to Xm, such
that they respect the property of being left-rectified and they all form an H -subgraph
with the vertices from G0. Secondly, for each vertex Ox 2 Vm n VH add a vertex to
Xm and connect it to the parts in G0 in exactly the same way as Ox is connected to
the parts Vi , i < m in F . Note that this guarantees that every z-element subset of
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Fig. 14.1 The
�J -amalgamation

y0; : : : ; yz��1 can be extended to a copy of F in G. We claim that the so constructed
graph G has the desired properties.

Let � W �
G
H

�
part

! r be an r-coloring. This induces an r z�

coloring �� W
�

G0

H 0

�
part

! r z�

by ��. QH 0/ D h�. QH 0 [ fyi g/ j i < z�i. Let QG0 2 �
F 0

G0

�
part

be monochromatic with respect to ��. This induces an r-coloring of the vertices
fy0; : : : ; yz��1g and by choice of z� and the pigeonhole principle there exist z of
them in the same color. Extending QG0 with such z vertices and the corresponding Ox
vertices yields a partite F -subgraph monochromatic with respect to �. ut

14.2.2 Amalgamation of Partite Graphs

Having the partite lemma available, we explain our second tool, the �J -
amalgamation.

Let F D ..X�/�<m; EF / be a left-rectified m-partite graph and let J 	 m be a
nonempty subset. By FJ we denote the subgraph of F spanned by the parts Xj ; j 2
J . Additionally, let G D ..Y�/�2J ; EG/ be a left-rectified jJ j-partite graph that
contains many partite FJ -subgraphs. The idea of the �J -amalgamation is to extend
every partite FJ -subgraph of G to an F -graph in a vertex disjoint way, cf. Fig. 14.1.
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Finally, we add edges (as few as possible) to ensure that the newly constructed graph
is again left-rectified.

Formally, we define the amalgamation F�J .G/ of F with G along FJ as follows:

Definition 14.8. The subgraph of the amalgamation which is spanned by the parts
j 2 J is precisely G, i.e., .F�J .G//J D G. Moreover, every QFJ 2 �

G
FJ

�
extends to

an m-partite graph isomorphic to F such that every two such graphs are mutually
disjoint up to the intersection in .F�J .G//J . The graph F�J .G/ is m-partite and
left-rectified.

A moment of thought reveals that such a graph can indeed be constructed. For our
need the following property, which can easily be seen to follow from the definitions,
is of importance.

Property 14.9. Let F be an m-partite left-rectified graph and J 	 m. Let H and
G be jJ j-partite left-rectified graphs, where in addition H is crossing, and assume

G
part! .FJ /H

r . Then for every r-coloring � W �
F�J .G/

H

�
part

! r there exists an QF 2
�F�J .G/

F

�
part

such that �e� QFJ

H

�
part

is a constant coloring.

With these tools at hand, we can now reprove the Ramsey theorem for ordered
graphs.

Proof of Theorem 12.13. Let F and H be given graphs. As observed earlier, we
can treat them as m-partite, resp. k-partite graphs, where m and k are the number of
vertices of F , resp. H . According to Ramsey’s theorem let n be such that n ! .m/k

r .
Instead of looking directly for a monochromatic F -subgraph, we define a left-

rectified n-partite graph F0 such that for every J 2 Œn�m there exists a (partite)
F -subgraph in the partite subgraph .F0/J of F0 spanned by the parts j 2 J . Such
an F0 can be obtained straightforwardly by placing the required F -subgraphs vertex
disjointly and, eventually, adding edges to make it left-rectified. We aim at finding
an F0-subgraph QF0 which satisfies the following coloring property,

.?/ For all J 2 Œn�k : all H -subgraphs in . QF0/J are colored monochromatically, i.e.

for all QH; QH 0 2 �
. QF0/J

H

�
part

we have �. QH/ D �. QH 0/.

Note that the existence of such an F0-subgraph implies, by choice of n, that

there exists an F -subgraph QF such that �e� QF
H

�
part

is a constant coloring. As F is

crossing it follows that
� QF

H

�
part

coincides with
� QF

H

�
, thus we have found the desired

monochromatic F -subgraph.
Next we construct an n-partite left-rectified graph G such that for every coloring

� W �
G

H

�
part

! r there exists an F0-subgraph which satisfies property .?/.

Let .Ji /i<q be an enumeration of Œn�k . By Lemma 14.7 (partite lemma) there
exists a left-rectified n-partite graph F �

0 such that

F �
0

part! ..F0/J0/
H
r ;
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where .F0/J0 denotes the subgraph of F0 spanned by parts j 2 J0. Let F1 D
.F0/�J0

.F �
0 /, and observe that by Property 14.9, F1 contains an F0-subgraph QF0

which satisfies property .?/ when restricted to J0 instead of all J 2 Œn�k .
We continue the construction in the same way. Assume that we have constructed

a graph Fi such that for any coloring of
�

Fi

H

�
part

there exists an F0-subgraph QF0

which satisfies property .?/ when restricted to sets J0; : : : ; Ji�1. Then let F �
i be

such that F �
i

part! ..Fi /Ji /
H
r and set FiC1 D .Fi /�Ji

.F �
i /. Now we have that for any

coloring of partite H -subgraphs of FiC1 there exists an Fi -subgraph QFi such that

�e�
. QFi /Ji

H

�
part

is a constant coloring. However, such QFi now contains an F0 subgraph
QF0 which satisfies property .?/ when restricted to restricted to J0; : : : ; Ji .

Repeating the same argument inductively, we have that for any coloring � W�
Fq

H

�
part

! r there exists an F0-subgraph which satisfies property .?/. By the earlier
observation, this implies the existence of a monochromatic F -subgraph, thus setting
G D Fq proves the theorem. ut
Remark 14.10. The approach presented in this section can be extended to also
obtain a restricted version of the Ramsey theorem for ordered graphs, cf. Prömel and
Voigt (1989). In Chap. 16 we consider restricted Ramsey theorems from a different
view point.

14.3 An Induced Graham-Rothschild Theorem

In this section we prove an induced version of the Graham-Rothschild theorem.
This generalizes the Graham-Rothschild partition theorem for parameter sets in the
same way as the Ramsey’s theorem for ordered graphs defined on sets generalizes
Ramsey’s theorem.

The induced Graham-Rothschild theorem has been proved originally in Prömel
(1985). Somewhat simpler proofs, then, have been given in Frankl et al. (1987) and
Prömel and Voigt (1988).

Definition 14.11. For hypergraphs F � Hk.m/ and G � Hk.n/, by
�G
F

�
we denote

the set of all m-parameter words f 2 ŒA�
�

n
m

�
such that GŒf � is isomorphic to F .

Theorem 14.12 (Induced Graham-Rothschild theorem). Let A be an alphabet
of size jAj � 2, k and r be positive integers, and let F � Hk.m/ and E � Hk.t/

be given hypergraphs. Then there exists a positive integer n and a hypergraph G �
Hk.n/ such that G ! .F/E

r , i.e., for every � W �G
E
� ! r there exists an f 2 �G

F
�

such that �e�GŒf �
E

�
is a constant coloring.

The assumption jAj � 2 is just for convenience. For jAj D 1 the proof requires
some additional twists, cf. Prömel and Voigt (1988).
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Recall that with respect to hypergraph E D H0.0/, i.e., the case of vertex
colorings, the theorem reduces to the induced Hales-Jewett theorem which has been
proved in Sect. 14.1.

As the proof of Theorem 14.12 is quite involved, let us first give a very high-
level overview of our proof strategy. In fact, the general approach is very similar
to the one that we just saw for the graph case in the previous section. In order to
transfer these ideas to the hypergraph case we first need to generalize the notations
of ‘partiteness’ and ‘amalgamation’ from the graph setting to hypergraphs define on
parameters sets. In a second step we will use these notions to define an appropriate
hypergraph F0 (that takes over the rOole of F0 in the graph case). The structural
properties of F0 will then allows us, again similar as in the graph case, to construct
the desired hypergraph G iteratively.

14.3.1 Partite Hypergraphs

As a first step in the proof of the induce Graham-Rothschild theorem, we define
an appropriate notion of ‘partiteness’. While we will eventually have the property
that the ‘parts’ are stable (contain no edges), we here use a different approach of
defining the ‘parts’. Consider Hk.m C n/. Its vertices are words of length m C n

over the alphabet A. The idea is to use the first m letters to describe the ‘part’ and
the remaining n letters to describe the vertices within a part. Note that in this way
an m-partite graph will actually consist of jAjm parts. We also want that edges in an
m-partite graph are ‘crossing’, meaning that they contain at most one vertex from
each part. We now give a formal definition.

Let f 2 ŒA�
�

mCn
j

�
be a parameter word. We write dim f D j indicating that

f is a j -parameter word. By f em we denote the restriction of f to the first m

entries (coordinates). Recall that, formally, f is a mapping f W m C n ! A [
f�0; : : : ; �j �1g. So the restriction f em again is a parameter word, this time of length
m. Observe that dim f em � j .

Definition 14.13. A hypergraph E � Hk.m C n/ is m-partite if eg … E whenever
dim gem < dim g. A partite embedding of an m-partite hypergraph E � Hk.mCn/

into QE � Hk.m C Qn/ is given by an f 2 ŒA�
�

mCQn
mCn

�
such that QE Œf � is isomorphic to

E and dim f em D m. By
� QE
E
�

part
we denote the set of partite E-subgraphs of QE , i.e.,

the set of all partite embeddings of E into QE .

With respect to sets A having at least two elements, an m-partite hypergraph
E � Hk.m C n/ can be visualized as follows. The set of vertices ŒA�

�
mCn

0

�
is

split into sets x � ŒA�
�

n
0

�
; x 2 ŒA�

�
m
0

�
, which we call the parts of E . Then the

edges have to be crossing, i.e., intersect each partition at most once. In other words,
ignoring the hyperedges containing only a single vertex, each partition then forms
an independent set. Being crossing is reflected by the requirement that eg 2 E only
if dim gem D dim g. In particular every hypergraph E � Hk.m/ can be viewed as
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a (crossing) m-partite hypergraph. Finally, the requirement on partite embeddings
ensures that each part of E is inscribed into some (unique) part of QE .

Lemma 14.14 (Partite lemma). Let F � Hk.m C n/ and E � Hk.m/ be m-
partite hypergraphs and let r be a positive integer. Then there exists a positive

integer Qn and an m-partite hypergraph G � Hk.m C Qn/ satisfying G
part! .F/E

r ,
meaning that for every � W �G

E
�

part
! r there exists a partite embedding f 2 �G

F
�

part

such that �e�GŒf �
E

�
part

is a constant coloring.

Proof. The proof of Lemma 14.14 just uses Hales-Jewett’s theorem and is some-
what similar to the proof of the induced Hales-Jewett theorem (Theorem 14.1).

Recall that
�F

E
�

part
� ff 2 ŒA�

�
mCn

m

� j f em D .�0; : : : ; �m�1/g. In particular

we have that f em D Qf em for any two f; Qf 2 �F
E

�
. We cut off the first m entries of

each such f and let

T D fg 2 .A [ f�0; : : : ; �m�1g/n j .�0; : : : ; �m�1/ � g 2 �F
E

�
part

g

be the set of tails. Let the positive integer s be such that s � HJ.jT j; 1; r/, and
consider the set

T � D fg0 � : : : � gs�1 j gi 2 T or gi D .�m; : : : ; �mCn�1/ for all i < s and

gj D .�m; : : : ; �mCn�1/ for at least one j < sg:

Observe that T � corresponds to the set of one-parameter words ŒT �
�

s
1

�
, where, for

convenience, the parameter is replaced by .�m; : : : ; �mCn�1/. Also observe that
.�0; : : : ; �m�1/ � T � � ŒA�

�
mCn�s
mCn

�
.

We now define a hypergraph G � Hk.m C n � s/. For a h 2 T � let �h D
.�0; : : : ; �m�1/ � h. Then for every h 2 T � and for every g 2 ŒA�

�
mCn

i

�
set

e�h�g 2 G if and only if eg 2 F .

The following claim shows, and this is where the property of being partite comes
into play, that G is well-defined.

Claim. Let g; g0 2 ŒA�
�

mCn

i

�
and let h; h0 2 T �. Assume that g ¤ g0 and �h � g D

�h0 � g0. Then eg 2 F iff eg0 2 F .

Proof of Claim. First observe that �h � g D �h0 � g0 implies that gem D g0em, so g

and g0 differ only in their tail sequence. If dim gem < i , then by the definition we
have eg … G and eg0 … G, thus we are done.

Otherwise, let h D h0 � : : : � hs�1 and h0 D h0
0 � : : : � h0

s�1. Since h 2 T �
there exists an j < s such that hj D .�m; : : : ; �mCn�1/. Then h0

j 2 T , as otherwise
we would have ..�0; : : : ; �m�1/ � hj / � g ¤ ..�0; : : : ; �m�1/ � h0

j / � g0 and so

�h � g ¤ �h0 � g0. Thus ..�0; : : : ; �m�1/ � h0
j / � .g0em/ D g. Moreover, as h0

j 2 T
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we know that .�0; : : : ; �m�1/ � h0
j 2 �F

E
�

part
, hence eg0em 2 E iff eg 2 F . Using the

same argument we deduce egem 2 E iff eg0 2 F , which together with the observation
gem D g0em proves the claim.

It remains to verify that indeed G
part! .F/H

r . Let � W �G
E
�

part
! r be an r-

coloring. This induces an r-coloring of ŒT �
�

s
0

�
and thus, by choice of s, there exists

a monochromatic line which can be identified with some h 2 T �. Now by the
construction of G we have that GŒ�h� is isomorphic to F , yielding the desired
monochromatic F -subgraph. ut

14.3.2 Amalgamation of Partite Graphs

In this section we describe the concept of amalgamation. Again, we first fix some
notation.

Let F � Hk.m C n/ be an m-partite hypergraph. Then for h 2 ŒA�
�

m
t

�
, by Fh

we denote the t-partite hypergraph isomorphic to F Œh � .�t ; : : : ; �tCn�1/�, or, more
precisely,

Fh D F Œfh � x j x 2 �
t
0

�g � ŒA�
�

n
0

�
�:

Intuitively, Fh is a subgraph spanned by a subset of the partition of F specified by
the parameter word h.

Additionally, let G � Hk.t C Qn/ be a t-partite hypergraph. The idea of an �h-
amalgamation is exactly as in the similar notion of a �J -amalgamation in the graph
case: we want an m-partite graph F�h.G/ that extends every Fh-subgraph in

� G
Fh

�
part

to an F -graph in a ‘vertex-disjoint way’. For a formal definition let g0; : : : ; gz�1 be
an enumeration of the partite Fh-subgraphs in G.

Definition 14.15. A hypergraph F�h.G/ � Hk.m C n0/ is an �h-amalgamation
of F with G along h if the following holds: F�h.G/ is m-partite and there exist
f �

0 ; : : : ; f �
z�1 2 �F�h.G/

F
�

part
such that the intersection of F�hŒf �

i � and F�hŒf �
j � is

isomorphic to the intersection of GŒgi � and GŒgj �. In particular, we require that
.F�h.G//h is isomorphic to G.

The next lemma shows that such a hypergraph F�h.G/ indeed exists.

Lemma 14.16. Let G � Hk.t C Qn/ and F � Hk.m C n/ be given t-partite, resp.
m-partite hypergraphs and let h 2 ŒA�

�
m
t

�
. Then there exists an �h-amalgamation

F�h.G/ � Hk.m C Qn C .z C 1/ � m/ of F with G along h, where z denotes the
cardinality of

� G
Fh

�
part

.

As in the graph case the importance of this amalgamation technique stems from
its strong coloring properties. The following proposition (that follows immediately
from the definition of the amalgamation) captures this feature. This proposition is all
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we need in the subsequent section for the proof of the induced Graham-Rothschild
theorem.

Proposition 14.17 (Coloring property of �h-amalgamation). Let E � Hk.t/ be

a t-partite hypergraph and assume that G
part! .Fh/E

r . Then for every coloring � W
�F�h.G/

E
�

part

part! r there exists an f 2 �F�h.G/
F

�
part

such that for QF D F�h.G/Œf � we

have that �e� QFh

E
�

part
is a constant coloring. ut

The remainder of this section is devoted to the (somewhat technical) proof of
Lemma 14.16. The first lemma shows that for every h 2 ŒA�

�
m
t

�
and every positive

integer z there exist z distinct m-parameter sets in ŒA�
�

.zC1/m
m

�
which mutually

intersect in their h-subspace.

Lemma 14.18. Let h 2 ŒA�
�

m
t

�
and let z be a positive integer. Then there exist

parameter words fi 2 ŒA�
�

.1Cz/�m
m

�
for i < z with the following properties.

.1/ fi � x D fj � x for all i < j < z and all x 2 h � ŒA�
�

t
0

�
,

.2/ fi � x ¤ fj � x0 for all i < j < z and all x 2 ŒA�
�

m
0

� n h � ŒA�
�

t
0

�

and all x0 2 ŒA�
�

m
0

�
.

To understand the proof of the lemma properly some familiarity with the formal
calculus of parameter words may be helpful. As we slightly extend the composition
of parameter words also to non-parameter words let us recall the basic definition.

Let g D .g0; : : : ; gn�1/ 2 .A [ f�0; : : : ; �m�1g/n and let h D .h0; : : : ; hm�1/ 2
.A[f�0; : : : ; �t�1g/m. Note that neither g nor h are required to be parameter words
in the sense of Sect. 3.1. Still we define the composition g�h 2 .A[f�0; : : : ; �t�1g/n

straightforwardly, viz., g � h D .f0; : : : ; fn�1/ where

fi D
(

gi ; if gi 2 A;

hj ; if gi D �j :

Proof of Lemma 14.18. Let h D .h0; : : : ; hm�1/ 2 ŒA�
�

m

t

�
. For every j < t we

define j 0 as the minimal index at which �j appears: j 0 D minfi < m j hi D �j g.
Consider y D .y0; : : : ; ym�1/ 2 .A [ f�j 0 j j < tg/m which is defined by

yi D
(

hi ; if hi 2 A;

�j 0; if hi D �j :

We now show that y � x D x if and only if x 2 h � ŒA�
�

t
0

�
. Since by construction we

have y � h D h, it easily follows that x 2 h � ŒA�
�

t

0

�
implies y � x D x. On the other

hand, y and h have the same pattern: if hi D hj D �k then yi D yj D �k0 . Thus,
y � x D x implies .y � x/i D hi D xi if hi 2 A and .y � x/i D xk0 D xi if hi D �k .
Hence, x 2 h � ŒA�

�
t

0

�
.
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Now we define fi 2 ŒA�
�

.1Cz/�m
m

�
by

fi D .�0; : : : ; �m�1/ � y � : : : � y
„ ƒ‚ …

i times

�.�0; : : : ; �m�1/ � y � : : : � y
„ ƒ‚ …

z�1�i times

:

As each fi starts with .�0; : : : ; �m�1/ assertion (2) is obviously satisfied for x ¤ x0.
The remaining cases follow from the fact that y � x D x if and only if x 2 h � ŒA�

�
t
0

�
.

ut
Also the next lemma sounds somewhat technical. Its significance will be clear in

the construction of the amalgamation.
The problem is the following: consider the embedding gi 2 �Fh

G
�
, so gi 2

ŒA�
�

tCQn
tCn

�
. We want to find a g�

i 2 ŒA�
�

mCQn
mCn

�
such that g�

i � .h � .�k; : : : ; �kCn�1//

behaves like gi . Recall that h � .�k; : : : ; �kCn�1/ 2 � F
Fh

�
.

Lemma 14.19. Let g 2 ŒA�
�

tCQn
tCn

�
be such that dim get D t , thus g can be written

as g D .�0; : : : ; �t�1/ � gtail. Let h 2 ŒA�
�

m
t

�
. Then there exists g� 2 ŒA�

�
mCQn
mCn

�

which can be written as g� D .�0; : : : ; �m�1/ � g�
tail such that for all f 2 ŒA�

�
tCn

i

�

it follows that

g� � ..h � .�t ; : : : ; �tCn�1// � f / D .h � f et/ � .gtail � f /:

Proof. As before, let j 0 D minfi < m j hi D �j g, for all j < t . Let gtail D
.˛0; : : : ; ˛Qn�1/. Then setting g� D .�0; : : : ; �m�1/ � .˛�

0 ; : : : ; ˛�
Qn�1

/, where

˛�
i D

8
ˆ̂
<

ˆ̂:

˛i ; if ˛i 2 A

�mCj ; if ˛i D �tCj ;

�j 0 ; if ˛i D �j for j < t

proves the lemma. ut
Now we are in the position to prove Lemma 14.16.

Proof of Lemma 14.16. Let h 2 ŒA�
�

m
t

�
and .gi /i<z be an enumeration of

�Fh

G
�

part
.

Let the parameter words fi 2 ŒA�
�

.zC1/�m
m

�
for i < z be as in Lemma 14.18. Also

let g�
i 2 ŒA�

�
mCQn
mCn

�
be as in Lemma 14.19 with respect to h and gi . Now we define

F�h.G/ as follows:

e.g�

j �fj /�g 2 F�h.G/ iff eg 2 F

for all i � k and g 2 ŒA�
�

mCn
i

�
and all j < z. The following claim shows that this

is a proper definition.

Claim. Let i � k and g; g0 2 ŒA�
�

mCn
i

�
and let j < j 0 < z be such that .g�

j � fj / �
g D .g�

j 0 � fj 0/ � g0. Then eg 2 F if and only if eg0 2 F .
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Proof of the Claim. As g�
j em D g�

j 0em D .�0; : : : ; �m�1/ we see that gem D
g0em. Without loss of generality we can assume that g and g0 are crossing, i.e.,
gem 2 ŒA�

�
m
i

�
. From Lemma 14.18 we conclude that gem 2 h � ŒA�

�
t
i

�
. In other

words, there exist f; f 0 2 ŒA�
�

tCn
i

�
such that g D .h � .�t ; : : : ; �mCn�1// � f , resp.,

g0 D .h � .�t ; : : : ; �mCn�1// � f 0. From Lemma 14.19 it follows that

g�
j � g D .h � f et/ � .gj;tail � f /; resp., g�

j 0 � g0 D .h � f et/ � .gj 0;tail � f 0/;

where gj D .�0; : : : ; �t�1/ � gj;tail and gj 0 D .�0; : : : ; �t�1/ � gj 0;tail.
It follows from g�

j � g D g�
j that gj � f D gj 0 � f D gj 0 � f 0, hence egj �f 2 G iff

egj 0 �f 0 2 G. On the other hand, as h � .�t ; : : : ; �tCn�1/ 2 � F
Fh

�
and gj ; gj 0 2 �Fh

G
�
,

we see that

eg 2 F , e.h�.�t ;:::;�tCn�1//�f 2 F

, ef 2 Fh , egj �g 2 G , egj 0 �f 0 2 G , ef 0 2 Fh

, e.h�.�t ;:::;�tCn�1//�f 0 2 F , eg0 2 F ;

as desired. ut

14.3.3 Proof of the Induced Graham-Rothschild Theorem

With these tools at hand, namely induced Graham-Rothschild theorem for partite
graphs (Lemma 14.14) and the notion of an �h-amalgamation, we can now prove
the induced Graham-Rothschild theorem. Actually, the proof is very similar to
the one for the ordered Ramsey theorem from the previous section. First we
define an appropriate hypergraph F0 that will allow us to always find the desired
monochromatic F -subgraph. In order to construct F0 we use now the Graham-
Rothschild theorem (Theorem 5.1) instead of the classical Ramsey theorem. In the
second part of the proof we then proceed almost word by word as before: we just
use the new partite Lemma 14.14 and the new amalgamation technique instead of
the ones from the graph case.

Proof of Theorem 14.12. Let E � Hk.t/ and F � Hk.m/. Choose a positive
integer n such that n � GR.jAj; k; m; r/, where GR.�/ is as defined by the Graham-
Rothschild partition theorem for parameter sets (Theorem 5.1).

We first construct a suitable hypergraph F0 satisfying certain coloring properties.
Let .fi /i<z be an enumeration of ŒA�

�
n
m

�
. Furthermore, let a and b be any two distinct

elements of A and let for i < z the z-tuple yi 2 ŒA�
�z

0

�
be defined by

yi D .a ; : : : ; a„ ƒ‚ …
i times

; b ; a ; : : : ; a„ ƒ‚ …
.z�1�i / times

/:
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Consider the m-parameter word f �
i D fi � yi 2 ŒA�

�
nCz
m

�
. Each f �

i describes an
m-subspace of ŒA�

�
nCz

0

�
. Moreover, f �

i � ŒA�
�

m

0

� \ f �
j � ŒA�

�
m

0

� D ; for i < j < z,
i.e., all these subspaces are mutually disjoint. Hence we can define a hypergraph
F0 � Hk.n C z/ such that each f �

i is an embedding of F , viz., let

ef �

j �g 2 F0 iff eg 2 F ;

for all j < z; i � k and g 2 ŒA�
�

m
i

�
. Observe that each f �

j induces a crossing
subgraph of F0 isomorphic to F , with one vertex in each partition, and F0 itself is
n-partite. Of course, if we can find a monochromatic F0-subgraph, then it clearly
implies the existence of a monochromatic F -subgraph. However, the trick lies in
the following much weaker coloring requirement:

.?/ For any h; h0 2 ŒA�
�F0

E
�

part
such that hen D h0en, we have �.F0Œh�/ D

�.F0Œh
0�/.

In other words, instead of requiring that F0 is monochromatic, we require that any
two partite E-subgraphs of F0 spanned by the same parts have the same color.

To see that this suffices, consider a coloring � W �G
E
� ! r and assume that an

F0-subgraph QF0 of G satisfying property .?/ is given. Then this induces a coloring
�0 W ŒA�

�
n
t

� ! r given by

�0.h0/ D
(

�. QF0Œh�/ if there exists h 2 � QF0

E
�

such that hen D h0

0 otherwise:

Note that property .?/ implies that �0 is well-defined. Then by the Graham-
Rothschild theorem and choice of n, there exists f 2 ŒA�

�
n
m

�
such that �0eff � x j

x 2 ŒA�
�

m
t

�g is a constant coloring. As we enumerated ŒA�
�

n
m

�
we know that f D fi

for some i < z. But then �e� QF0Œf �

i �

E
�

part
is also a monochromatic coloring, and by

the construction QF0Œf
�

i � is isomorphic to F . As each vertex of QF0Œf
�

i � belongs to a

distinct partition, we have that
� QF0Œf �

i �

E
�

part
coincides with

� QF0Œf �

i �

E
�

and thus we have
found a monochromatic F -subgraph.

Next, we construct an n-partite hypergraph G � Hk.n C n0/ such that for every
coloring � W �G

E
�

part
! r there exists an F0-subgraph with property .?/.

Let .hi /i<q be an enumeration of ŒA�
�

n

t

�
. According to the partite lemma

(Lemma 14.14), let F�
0 be a t-partite hypergraph satisfying

F�
0

part! ..F0/h0 /
E
r ;

where E is viewed as a t-partite graph. Now let F1 D .F0/�h0 .F�
0 /.
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Observe that F1 has the following property. For any coloring � W �F1

E
�

part
! r

there exists f 2 �F1

F0

�
part

which satisfies that for any h; h0 2 �F1Œf �
E

�
part

such that

hen D h0en D h0, we have �.F1Œf �h�/ D �.F1Œf �h0�/. Therefore, we have an F0-
subgraph which satisfies property .?/ when restricted to the E-subgraphs spanned
by the partition given by h0.

Let us assume that we have constructed a hypergraph Fi � Hk.n C ni / with
the similar property as for F1: for any coloring � W �Fi

E
�

part
! r there exists f 2

�Fi

F0

�
part

which satisfies that for any h; h0 2 �Fi Œf �
E

�
part

such that hen D h0en D hj

for some j < i , we have �.Fi Œf � h�/ D �.Fi Œf � h0�/. Then, again by the partite
lemma (Lemma 14.14), let F�

i be a t-partite hypergraph satisfying

F�
i

part! ..Fi /hi /
E
r ;

and let FiC1 D .Fi /�hi .F�
i /. A moment of thought now reveals that FiC1 always

contains an Fi -subgraph which is monochromatic with respect to E-copies spanned
by partitions given by hi . But now this Fi copy further contains an F0-subgraph
for which property .?/ holds for all E-copies spanned by partitions given by
h0; : : : ; hi�1 and, by previous observation, also hi .

Inductively repeating the same argument, we get that Fq always contains an F0-
subgraph which satisfies property .?/. By the previous observations, this implies the
existence of a monochromatic F -subgraph, which finishes the proof. ut
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