
Chapter 13
Infinite Graphs

Considering infinite graphs, the picture is, even in the case of countable graphs, far
from being complete. We discuss some of the pieces which are known. Section 13.1
deals with vertex colorings of Rado’s graph R. We show that R ! .R/v

r for every
positive integer r . In Sect. 13.2 we consider K`-free subgraphs of Rado’s graph.
Section 13.3 is concerned with edge colorings. Most of the results of this section
are contained in the important paper (Erdős et al. 1975). We show that countable
graphs do not have the edge partition property.

Graphs and embeddings of graphs are defined as in Chap. 12. The cardinality of
a graph is the cardinality of its vertex set. The Ramsey arrow is used as introduced
in Chap. 12.

13.1 Rado’s Graph

Rado (1964) describes a construction of a universal countable graph, let us call it R,
which has a lot of interesting properties. Being universal means that every countable
graph can be embedded into R. The crucial property of R is that it is !-good.

Definition 13.1. A graph G D .V; E/ is !-good if for any two finite and disjoint
sets X and Y of vertices there exists a vertex z not belonging to X [ Y such that z
is joined by an edge to all x 2 X and not joined to any y 2 Y .

Proposition 13.2. Let G D .V; E/ be an !-good graph. Then G is universal for
countable graphs, i.e., every countable graph can be embedded into G.

Proof. Let F be a countable graph. Without loss of generality we assume that
F D .!; EF /, i.e., the vertices of F are the nonnegative integers. We construct
an embedding f W ! ! V inductively, one vertex at a time.

Let f .0/ be any vertex in V and suppose that f .0/; : : : ; f .n � 1/ have been
defined. Consider the vertex n and let A D fk < n j fk; ng 2 EF g be the set of
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146 13 Infinite Graphs

previous vertices which are joined to n, resp., let B D fk < n j fk; ng 62 EF g be its
complement. Let X D f .A/ and Y D f .B/ be the corresponding sets in G. As G

is !-good there exists a vertex z 2 V n.X [ Y/ which is joined to all x 2 X and not
joined to any y 2 Y. So, define f .n/ D z for any such z and continue as before. ut
Actually, the above proof establishes slightly more, namely: any embedding of a
finite subgraph of F into G can be extended to an embedding of F into G. This is
to say that the automorphism group of any !-good graph acts transitively on finite
subgraphs, this property is sometimes called ultrahomogeneity.

Using the argument in the proof of Proposition 13.2 back and forth yields:

Proposition 13.3. Any two countable !-good graphs F and G are isomorphic.

Proof. Proceed as in the proof of Proposition 13.2, however, ‘back and forth’.
At even-numbered steps try to embed F into G and at odd-numbered steps try to
embed G into F . Eventually, any f constructed in such a way is an isomorphism.

ut
Knowing that, up to isomorphisms, there is just one countable !-good graph

we call this graph Rado’s graph R. Still we are lacking some kind of explicit
description, resp. a proof of the existence of countable !-good graphs. Such an
explicit construction has been given in Rado (1964).

Definition 13.4. Let the set R � Œ!�2 be defined as follows. Given k < m put
fk; mg 2 R if and only if 2k occurs in the binary expansion of m. Let R D .!; R/

be the graph which has as vertices nonnegative integers and R as the set of edges.
One easily observes that this graph R is, in fact, !-good.

Remark 13.5. About at the same time when Rado gave his construction, Erdős
and Rényi (1963) showed that if one considers countably infinite random graphs
by inserting edges independently with probability 1=2 then almost surely any
such random graph is !-good. Thus, almost surely a countable random graph is
isomorphic to Rado’s graph R. For further interesting properties of Rado’s graph
compare, e.g., Cameron (1984).

Theorem 13.6. For every positive integer r we have

R
ind! .R/v

r :

Proof. Let � : ! ! r be a coloring of the vertices of R. Let Vi :D fn < ! j �.n/ D
ig denote the set of vertices that are colored with color i . If the graph induced by
Vi is !-good then Proposition 13.2 implies that it contains an induced R-subgraph
which is monochromatic in color i and we are done. Otherwise there exist finite
and disjoint sets Xi; Yi � Vi such that Vi contains no vertex that is connected to all
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vertices in Xi and to no vertex in Yi . Now assume that no set Vi induces an !-good
graph. Then consider X :D S

i<r Xi and Y WD S
i<r Yi . By construction, X and

Y are finite and disjoint. As the Rado graph is !-good, there exists a vertex z that
is connected to all vertices in X and to no vertex in Y . As z has to be colored with
some color this contradicts the definition of the sets Xi and Yi . ut

With slightly more effort we also obtain a canonical version:

Theorem 13.7. For every (unbounded) coloring � W ! ! ! of the vertices of
the Rado graph R D .!; R/, there exists X � ! spanning a subgraph which is
isomorphic to Rado’s graph such that �eX is constant or one-to-one.

Proof. For finite and disjoint sets X and Y in !, let � .X; Y / be the set of vertices
that are joined by an edge to all vertices in X and to no vertex in Y ,

� .X; Y / D fz < ! j z 62 X [ Y; fx; zg 2 R for all x 2 X;

fy; zg 62 R for all y 2 Y g:

We first prove that for any finite and disjoint sets X and Y in !, � .X; Y /

spans a !-good graph. Assuming otherwise, there exists finite (and disjoint) subsets
C1; C2 � � .X; Y /, for some finite (and disjoint) X; Y � !, such that � .C1; C2/ \
� .X; Y / D ;. Since R is !-good there exists some z not in X [ C1 [ Y [ C2

such that z is joined to all vertices in X [ C1 and to no vertex in Y [ C2. But then
z 2 � .X [C1; Y [C2/ D � .C1; C2/\� .X; Y /, yielding the desired contradiction.

Using this observation, we inductively find a set of vertices fx0; : : : ; xn�1g such
that

.1/ �.xi / ¤ �.xj / for all i < j < n,

.2/ fx0; : : : ; xn�1g spans a graph which is isomorphic to the one spanned by
f0; : : : ; n�1g; in other words, fx0; : : : ; xn�1g yields a one-to-one colored initial
segment of R,

or deduce that there exists a monochromatic subgraph isomorphic to Rado’s graph.
Note that for n D 0 these assertions hold vacuously, yielding the beginning
of the induction. Having vertices fx0; : : : ; xn�1g which satisfy (1) and (2), let
An � fx0; : : : ; xn�1g resp., Bn D fx0; : : : ; xn�1g n An be such that for every
x 2 � .An; Bn/ the set fx0; : : : ; xn�1; xg is isomorphic to f0; : : : ; ng. If there exists
a vertex x 2 � .An; Bn/ such that �.x/ ¤ �.xi / for 0 � i < n, then setting
xn D x finishes the induction step. Otherwise, the subgraph � .An; Bn/ is colored
with at most n different colors. By the above observation it is also !-good. It thus
follows from Theorem 13.6 that in this case there exist a monochromatic subgraph
of � .An; Bn/ isomorphic to R, which finishes the proof. ut
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13.2 Countable-Universal K`-Free Graphs

In this section we consider subgraphs of Rado’s graph which do not contain
complete graphs on ` vertices.

Definition 13.8. Let ` � 3 be a positive integer. By U` we denote the subgraph
of Rado’s graph R which is spanned by the vertices V` D fn < ! j whenever
X 2 Œn�`�1 spans a K`�1 in R then there exists x 2 X with fx; ng 62 Rg.

Obviously, U` does not contain any complete graph on ` vertices, it is K`-free.
Moreover, U` is universal with respect to the class of all countable K`-free
graphs and its automorphism group acts transitively on finite subgraphs. This is
summarized in the next proposition.

Proposition 13.9. The graph U` satisfies the following properties:

.1/ U` is K`-free,

.2/ For any two finite and disjoint sets X and Y in U` such that X does not contain
a complete graph on .` � 1/ vertices there exists a vertex z 2 V` n .X [ Y /

which is joined to all x 2 X and not joined to any y 2 Y .
.3/ Every countable K`-free F can be embedded into U`, moreover, every finite

subgraph of U` which is isomorphic to a subgraph G of F can be extended to
an F -subgraph.

.4/ Any two countable graphs satisfying .1/ and .2/ are isomorphic.

Proof. (1) is obvious from the construction, (3) follows from (2) using the same
method as in the proof of Proposition 13.2, (4) follows, then, from a back and forth
argument. So it remains to show (2). Consider ny D 2max Y and nx D P

x2X 2x C
2ny . By definition of the Rado graph we have

fw < nx j fw; nxg 2 Rg D X [ fnyg:

As ny is only joined by an edge to max Y … X , X [ fnyg induces no K`�1 thus we
know that nx 2 V`. ut

Henson (1971) showed that for every r-coloring of the vertices of U`, where
` � 3 and r is a positive integer, one of the color-classes contains a copy of
every finite K`-free graph. Alternatively, this can also be deduced from Folkman’s
result (Theorem 12.3). Henson, then, raised the question whether U` ! .U`/

v
r . This

question was answered positively by El-Zahar and Sauer (1989). Here we only give
a proof of the special case when ` D 3 and r D 2, which is due to Komjáth and
Rödl (1986).

Theorem 13.10.

U3
ind! .U3/

v
2:
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Proof. For finite and disjoint subsets X; Y � V3, let �3.X; Y / D � .X; Y / \ V3

denote the set of those vertices in V3 n .X [ Y / that are completely connected to X

and are not connected to any vertex in Y . From property (2) of Proposition 13.9 we
deduce that for every finite subset Y � V3 the graph induced by �3.;; Y / is !-good.
As in the proof of Theorem 13.7 it thus follows that the graph induced by �3.;; Y /

is isomorphic to U3.
For a given red-blue coloring of V3 D fv0; v1; : : :g, we may assume that both

colors appear infinitely many times, as otherwise the previous observation implies
that there exists a monochromatic subgraph isomorphic to U3. Furthermore, assume
that there is no red subgraph isomorphic to U3. We show that this implies the
existence of a blue subgraph isomorphic to U3.

In order to see this we inductively define a sequence of vertices z0; z1; : : : 2 V3

and sequences Y0; Y1; : : : � V3, S0; S1; : : : � V3 and A0; A1; : : : � V3 such that the
following properties hold for all n < !:

.1/ Sn D S
j <n.Yj [ fzj g/, Yn \ Sn D ;, and all vertices in Yi are colored red,

.2/ The subgraph spanned by Yn is isomorphic to the subgraph spanned by
fv0; : : : ; vkng for some 0 < kn < !,

.3/ An � Yn such that An D fj � kn j fvj ; vknC1g 2 E.U3/g,

.4/ Yn is a maximal subset of V3 (maximal by set inclusion) with respect to
properties (1)–(3),

.5/ zn 62 Sn [ Yn, and zn is colored blue,

.6/ Let Bn :D fzj < n j fvj ; vng 2 E.U3/g; if Bn D ; then zn is not joined to any
vertex in Sn [ Yn, otherwise zn is joined to all vertices in Bn [ An0 and to no
vertex in .Sn [ Yn/ n .Bn [ An0/, where n0 D minfj j zj 2 Bng.

Clearly, properties (5) and (6) imply that for all n < ! the subgraph spanned by
fz0; : : : ; zng is monochromatic (in blue) and isomorphic to the subgraph induced by
fv0; : : : ; vng. Therefore, if we can show that such an infinite sequence exists this
will finish the proof.

Assume that we have found a family of subsets Y0; : : : ; Yn�1 and a set of vertices
z0; : : : ; zn�1 which satisfy (1)–(6). In order to construct Yn start with Yn D fvg,
where v is any red vertex such that v 62 Sn (which exists as we have infinitely many
vertices that are colored red). Then greedily add vertices to Yn so that (2) and (3)
remain satisfied. As we assumed that there exits no red monochromatic subgraph
isomorphic to U3, this process will stop with a finite set Yn satisfying (2)–(4).

If vn is not joined by an edge to any v0; : : : ; vn�1, then the fact that �3.;; Yn[Sn/

is isomorphic to U3 implies that it cannot contain only red vertices colored; thus
taking zn to be any blue vertex in �3.;; Yn [ Sn/ suffices.

Otherwise, let Bn be as defined in (6) and let n0 :D minfj j zj 2 Bng. If
�3.Bn [ An0; .Sn [ Yn/ n .Bn [ An0// is not empty, then by maximality of Yn0 and
the definition of An0 it contains only vertices colored with blue, and it can easily be
seen any such vertex can be taken as zn, satisfying properties (5) and (6). Therefore
it only remains to argue that �3.Bn [ An0; .Sn [ Yn/ n .Bn [ An0// cannot be the
empty set.
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Observe that, by property (2) of Proposition 13.9, it suffices to show that there
is no edge in the subgraph induced by Bn [ An0 . By the definition of An0 and the
fact that U3 is K3-free we know that there exists no edge in the subgraph induced by
An0 . By the definition go Bn we know that any edge between two vertices x; y 2 Bn

spans a triangle with Vn, which can’t be. Finally, assume there is an edge between
some vertex x 2 An0 and a vertex zi 2 Bn, for some n0 < i < n. Observe that (6)
implies that the only case that this can happen is when i0 D n0. But then we have
an edge joining vi0 and vi , again closing a triangle with vn. Therefore there is no
edge in the subgraph induced by Bn [ An0 and we can thus find a vertex zn which
satisfies all properties. ut

13.3 Colorings of Edges

Considering colorings of edges it turns out that Rado’s graph no longer has the
property to arrow itself. In fact an even stronger negative result is known (Erdős
et al. 1975).

Proposition 13.11. Let K!;! be the complete bipartite graph with both parts being
countably infinite. Then there exists a 2-coloring of the edges of Rado’s graph R

such that no induced K!;!-subgraph is monochromatic. In other words,

R
ind¹ .K!;!/e

2

Proof. We first have to define a 2-coloring of the edges of R D .!; R/. The idea
is to play with two different orders on R. The first one, denoted by �, is the usual
order of nonnegative integers. To define the second one we need some preparation.
Recall that nonnegative integers k < m are joined by an edge if and only if 2k

occurs in the binary expansion of m. That is, if consider then binary expansion of
m, i.e.

m D
X

i�0

mi2
i with mi 2 f0; 1g;

then all but finitely many of the mi ’s are zero and we have fk; mg 2 R if and only
if k < m and mk D 1.

The second order, denoted by �, is the lexicographic order of the binary
expansions, from left to right with 0 < 1. So for m D P

i�0 2imi and n D
P

i�0 2i ni we have m � n if and only if there exists j such that mi D ni for
all i < j and mj < nj . Observe that this implies, for example, that all even
nonnegative integers precede the odd ones. In general, � measures which of the
two numbers is more ‘odd’ than the other, and this is, then, the larger one.

Now color an edge fk; mg 2 R with color 0 if � and � coincide on this edge,
i.e., k � m and k � m, and color it with color 1 otherwise.
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Fig. 13.1 There is no
monochromatic K!;!

Assume that R contains an induced K!;!-subgraph which is monochromatic.
Say, A and B are the two stable parts with a D min A < b D min B (Fig. 13.1).

Let A0 be an infinite subset of A such that mi D ni for all m; n 2 A0 and all
i � a. Then ma D na D 0 as a and m, resp., a and n are not joined by an edge.
As A0 and B are both infinite there exist x; z 2 A0 and y 2 B such that x < y < z.
Note that ya D 1 > 0 D xa D za as a and y are joined by an edge and a < y.

If the subgraph is monochromatic in color 0, then the two orders coincide and
we have x � y � z. As y � z there exists an i such that yj D zj for all j < i and
yi < zi . As ya > za this implies i < a and thus, by the definition of A0, y � x, a
contradiction. If the subgraph is monochromatic in color 1, then z � y � x. In this
case we obtain the desired contradiction similarly as above, with the rôles of x and
z interchanged. ut
Corollary 13.12.

R
ind¹ .R/e

2

ut
Let us call a graph G locally finite if each vertex of G is joined by an edge only

to finitely many vertices of G or, alternatively, it is joined to almost all vertices of
G (both kinds of vertices are allowed to occur). Clearly, K!;! is not locally finite.
In contrast to Proposition 13.11, Erdős et al. (1975) prove the following positive
partition theorem:

Theorem 13.13. Let r be a positive integer and let G be a countable locally
finite graph. Then for every r-coloring of the edges of Rado’s graph there exists
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a monochromatic induced G-subgraph, in other words, R
ind! .G/e

r for all positive
integers r and countable locally finite graphs G. ut

There is still a gap between Proposition 13.11 and Theorem 13.13. A charac-
terization of all those countable graphs G satisfying R ! .G/e

r for every positive
integer r is not known. Clearly, such a G must not contain an infinite stable set
which is completely joined to another infinite set.

We do not prove Theorem 13.13 here, but refer the reader to Erdős et al. (1975).


	Chapter
13 Infinite Graphs
	13.1 Rado's Graph
	13.2 Countable-Universal K-Free Graphs
	13.3 Colorings of Edges


