
Chapter 11
Partition Relations for Cardinal Numbers

Recall the infinite version of Ramsey’s theorem: ! ! .!/k
r , whenever k; r are

positive integers. The aim of this section is to discuss some extensions of this
relation to larger cardinals. Our treatment will be far from complete. For ! more
results on this topic we refer the reader to the book of Erdős et al. (1984).

We start with a negative result, proved by Erdős and Rado (1952) which shows
that the exponent k may not be replaced by an infinite cardinal without conflicting
with the axiom of choice.

Proposition 11.1. Let � � ! be a cardinal. Then

� 6! .!/!
2 ;

where 6! denotes the negation of !.

Proof. Let <well be a well-ordering of Œ��! ; the set of countable subsets of �: We
define a coloring � W Œ��! ! 2 witnessing to � 6! .!/!

2 as follows:

�.A/ D
�

0; if there exists B � A such that B <well A

1; otherwise:

Now let F 2 Œ��! and let A D fai j i < !g 2 ŒF �! be the first !-subset
with respect to <well in F: Take any proper !-subset B � A; then A <well B and
therefore �.A/ D 1: On the other hand, let A� D fa2iC1 j i < !g and for each
m < ! let Am D fa0; a2; : : : ; a2mg [ A�: Put Am0 D minfAm j m < !g; where the
minimum is taken with respect to the well-ordering <well : Then Am0 <well Am0C1

and Am0 � Am0C1: Hence, �.Am0C1/ D 0 which proves Proposition 11.1. ut
This result prevents us from considering colorings of infinite subsets in this

chapter. But observe that the proof given above uses essentially the Axiom of
Choice, i.e., Zermelo’s well-ordering theorem. If one drops the Axiom of Choice,
even the relation ! ! .!/!

2 may be consistent, cf., e.g., Mathias (1969) and
Kleinberg (1970).
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120 11 Partition Relations for Cardinal Numbers

Throughout this chapter we assume the Axiom of Choice. All set-theoretic
notions used are standard and can be found, e.g., in Jech (1978).

Following the convention introduced by John von Neumann we identify ordinals
with the set of their predecessors and cardinals with their initial ordinals. For
every cardinal � let �C denote the least cardinal greater than �, i.e., the (cardinal)
successor of �. A cardinal � is called regular, if for every � < � and any choice
of subsets A� � � for � < � with jA� j < � it follows that j S

�<� A� j < �, in
other words, � cannot be written as the union of less than � many sets of cardinality
less than �. It can easily be shown, using the Axiom of Choice, that every successor
cardinal is regular.

Addition and multiplication of infinite cardinals � and � is easy:

� C � D � � � D maxf�; �g:
Exponentiation, in general, is more difficult, but for our purposes it is enough to
know that � � � implies that �� D 2� and �n D � for every finite n.

As usual we denote the first infinite cardinal also by @0, i.e., @0 D !, and the
second one, the first uncountable cardinal, by @1.

Section 11.1 is devoted to the proof of the Erdős-Rado partition theorem
for cardinals, in Sect. 11.2 some negative partition relations are given essentially
showing that the Erdős-Rado theorem is best possible in the sense that the Ramsey
numbers are correctly estimated. In Sect. 11.3 Dushnik-Miller’s theorem (for regular
cardinals) is discussed. In Sect. 11.4 we consider the question for which cardinals �

other than ! the relation � ! .�/2
2 might be true. Finally, in Sect. 11.5 we glance

briefly at canonical partition relations for cardinals.

11.1 Erdős-Rado’s Partition Theorem for Cardinals

The following quite general partition relation for cardinals is due to Erdős and Rado
(1956). Let exp0.�/ D � and expkC1.�/ D 2expk.�/.

Theorem 11.2 (Erdős, Rado). Let � � ! be a cardinal and k be a positive integer.
Then

expk�1.�/C ! .�C/k
� :

Proof. We proceed by induction on k; the case k D 1; i.e., �C ! �
�C�1

�
;

reduces to the pigeonhole principle. So assume that the theorem is valid for some

k � 1; put � D expk�1.�/ and let � W �
.2�/C

kC1

� ! � be a coloring. We want
to find a monochromatic set F � .2�/C of size �C: For each x < .2�/C let

�x W �
.2�/Cnfxg

k

� ! � be defined by �x.A/ :D �.A [ fxg/: We claim:
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1. There exists a set S � .2�/C of cardinality jS j D 2� such that for every M � S

with jM j � � and every x 2 .2�/C n S there exists y D y.M; x/ 2 S n M so
that �xeŒM �k D �yeŒM �k:

Before proving (1) we show how this implies the theorem. Fix some x 2 .2�/CnS:

By transfinite induction we define a set Y D fy� j � < �Cg � S as follows. Let
y0 2 S be arbitrary and assume that fy� j � < �g D M has been defined for
some � < �C: Then let y� D y.M; x/ be according to (1). Observe that for every
A 2 �

Y
kC1

�
; where A D fyi0 ; : : : ; yik�1

; y�g with i0 < : : : < ik�1 < �; we have that

�.fyi0; : : : ; yik�1
; y�g/D�y� .fyi0 ; : : : ; yik�1

g/D�x.fyi0 ; : : : ; yik�1
g/: (11.1)

Now consider �x W ŒY �k ! �: Since jY j D �C and according to the inductive
hypothesis there exists an F � Y with jF j D �C so that �x.A/ D �x.B/ for all
A; B 2 ŒF �k: Thus, the theorem follows from (11.1).

It remains to prove (1). We define an ascending sequence S0 � S1 � : : : � S� �
: : : ; � < �; of subsets of .2�/C; each of size 2�; as follows.

Choose S0 � .2�/C with jS0j D 2� arbitrarily and for each limit ordinal � let
S� D S

�<� S�: Now assume that S� with jS�j D 2� has been defined. We now
define S�C1.

Observe that there exist at most .2�/� D 2� subsets of S� of size � and therefore
there exist at most � � 2� D 2� subsets M of S� of size at most �: Fix such an
M � S�: Then there exist at most 2� mappings f W ŒM �k ! � (recall that � � �/:

This shows that

jf�xeŒM �k j x 2 .2�/CnM gj � 2�:

Assume a well-ordering on .2�/C to be given and for every x 2 .2�/CnS� let
y.M; x/ be the smallest y 2 .2�/CnM such that �xeŒM �k D �yeŒM �k: Denote
the set of those y by Y.M /: Then jY.M /j � 2�: Now put

S�C1 D S� [
[

Y.M /;

where the union is taken over all M � S� with jM j � �: Then jS�C1j � 2� C 2� �
2� D 2�: Finally let S D S

�<� S�: Then jS j � �C � 2� D 2� and, by construction,
S has the desired properties. ut

It seems to be worth while to state the following special case explicitly:

Corollary 11.3. For every � � ! it follows that .2�/C ! .�C/2
� , and, even more

special, .2@0/C ! .@1/
2
@0

. ut



122 11 Partition Relations for Cardinal Numbers

11.2 Negative Partition Relations

Next we are going to show that Theorem 11.2 is, in a sense, best possible. Before
we will do this in general, we prove that Corollary 11.3 is the best we can expect.

Let � be a cardinal. Then we denote by 2� the set of all sequences of length
� over the alphabet 2 D f0; 1g. Hence, every x 2 2� can be written as x D
.x.0/; : : : ; x.�/; : : :/ where x.�/ < 2 for every � < �. The natural order on 2,
i.e., 0 < 1, gives a lexicographic order on 2� which will be denoted by �. So x � y

if and only if x.�/ < y.�/ where � is the least � such that x.�/ ¤ y.�/. In fact, we
know that then x.�/ D 0 and y.�/ D 1.

Lemma 11.4. For every � � ! it follows that 2� 6! .3/2
� , and hence 2@0 6! .3/2@0

.

Proof. Let � W Œ2��2 ! � be defined by �.fx; yg/ being the least position � < �

such that x.�/ ¤ y.�/. Obviously it is impossible to have pairwise distinct x; y; z 2
2� , such that �.fx; yg/ D �.fx; zg/ D �.fy; zg/. ut

The following result of Sierpiński (1933) shows in particular that the straightfor-
ward generalization of Ramsey’s theorem, viz. @1 ! .@1/

2
2, is false.

Theorem 11.5 (Sierpiński). For every � � ! it follows that 2� 6! .�C/2
2, and

hence 2@0 6! .@1/
2
2.

Proof. We will derive Theorem 11.5 from the following fact:

1. There does not exist any increasing or decreasing �C-sequence in 2� with respect
to �.

We show that 2� has no increasing �C-sequence. The decreasing case can be handled
analogously. To derive a contradiction assume that X D fx� : � < �Cg � 2� is an
increasing �C-sequence, i.e., x� � x� whenever � < �. For each � < �C and each
� < � let x�e� D .x�.0/; : : : ; x�.�0/; : : :/, �0 < � be the initial segment of length
� of x� . Now let � � � be the least ordinal such that jfx�e� j � < �Cgj D �C.
Without loss of generality we can assume that x�e� ¤ x�e� for all x� and x�

in X . Otherwise one could choose an appropriate subset of X which is still of size
�C. Define a sequence d�; � < �C, where d� gives the least position at which x�

and x�C1 differ. By our assumption on X we know that d� < � � � for every
� < �C. Thus there exists 	 < � such that d� D 	 for �C many �. Observe
that jfx�e	 j � < �Cgj � �. So let �0 < � be such that d�0 D d� D 	 and
x�0e	 D x�e	 . Then x� � x�0C1. But on the other hand, since �0 < �0 C 1 � �,
we have x�0C1 � x�, a contradiction which proves (1).

We now prove Theorem 11.5 by defining a 2-coloring of Œ2��2 which does not
admit a monochromatic �C-set. So let x�; � < 2� , be any enumeration of 2� and let
� W Œ2��2 ! 2 be given by

�.x�; x�/ D
(

0; if � < � and x� � x�

1; if � < � and x� � x�.
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Then a monochromatic set of size �C would contradict (1). ut
The following more general results are contained in Erdős et al. (1965).

Theorem 11.6. Let � � ! be a cardinal and k � 2 be a positive integer. Then

expk�1.�/ 6! .�C/k
2 :

Theorem 11.7. Let � � ! be a cardinal and k � 3 be a positive integer. Then

expk�1.�/ 6! .k C 1/k
� :

11.3 Dushnik-Miller’s Theorem

By Theorem 11.6 we have that @1 6! .@1/
2
2. On the other hand, Ramsey’s theorem

trivially implies @1 ! .!/2
2. In this section we prove a partition relation which is,

in a sense, halfway between these two relations.
For cardinals �, �0 and �1 let � ! .�0; �1/

2
2 denote the assertion that for every

2-coloring of Œ��2 there exists either a set of size �0 which is monochromatic in
color 0 or a set of size �1 which is monochromatic in color 1. Hence, in particular,
@1 ! .!; !/2

2. The following result is due to Dushnik and Miller (1941):

Theorem 11.8. Let � � ! be a regular cardinal. Then � ! .�; !/2
2 and, in

particular, @1 ! .@1; !/2
2:

We should mention that Theorem 11.8 is also true for singular (i.e., non-regular)
cardinals, cf. Dushnik and Miller (1941).

Proof of Theorem 11.8. Let � W Œ��2 ! 2 be a coloring. First, we show:

1. If for every S � � of size � there exists an x 2 S such that jfy 2 S j
�.fx; yg/ D 1gj D � then there exists a countable set D � � such that D is
monochromatic with color 1.

Let 
 .x/ D fy < � j �.fx; yg/ D 1g: Choose d0 < � arbitrarily such
that j
 .d0/j D �: Now assume that Dn D fd0; : : : ; dng is defined such that
�eŒDn�2 	 1 and such that jSnj D �; where Sn D Tf
 .di/ j di 2 Dng: Then
choose dnC1 2 Sn such that jfy 2 Sn j �.fdnC1; yg/ D 1gj D �: Clearly,
D D S

n<! Dn satisfies (1).
So we assume that there is no countable set D � � with �eŒD�2 	 1:

Then let S � � be of size � so that for every element x 2 S if follows that
jfy 2 S j �.fx; yg/ D 1gj < �: We construct recursively a sequence x�; such
that �.fx�; x�g/ D 0 whenever � < � < �: Assume that .x� 2 S j � < �0/ have
been constructed for some �0 < �: Then jS \ .

S
�<�0 
 .x�//j < �: Notice that here

the regularity of � is needed. Now choose x�0 2 S n S
�<�0 
 .x�/; completing the

proof of Theorem 11.8. ut



124 11 Partition Relations for Cardinal Numbers

11.4 Weakly Compact Cardinals

As shown in Theorem 11.2, for every pair �; � of cardinals, where � < �, and every
positive integer k there exists a cardinal � such that � ! .�/k

� . Moreover, in case
� is a successor cardinal we have determined the smallest � satisfying this relation.
But it seems to be a natural question to ask whether � can be �, in particular whether
the relation � ! .�/2

2 can hold for cardinals other than � D !. The answer to this
question leads immediately to large cardinals.

Let � be an uncountable cardinal, i.e., � > !. Then � is called inaccessible if
� is regular and 2� < � for every � < �. Inaccessible cardinals were introduced
by Sierpiński and Tarski (1930). In particular they have the property that jX j < �

implies jP.X/j < �. This and some other properties inaccessible cardinals share
with !. So, in a sense, one can say that an inaccessible cardinal is related to
smaller cardinals as ! is related to finite cardinals. But it is not at all clear whether
inaccessible cardinals do exist. To be more precise: One can show that the existence
of such cardinals cannot be proved in ZF C Axiom of Choice. Erdős et al. (1965)
showed that the requirement � ! .�/2

2 leads at least to inaccessible cardinals.

Theorem 11.9. If � > ! and � ! .�/2
2, then � is inaccessible.

Proof. We have to show that � is regular and that 2� < � for every � < �. The
second assertion follows immediately from Sierpiński’s Theorem 11.5. Assume that
� � 2� for some � < �. Then 2� 6! .�C/2

2 implies � 6! .�C/2
2 and hence � 6! .�/2

2.
So it remains to show that � is regular. Suppose not. Then there exists a family

X� , � < �, for some � < � of pairwise disjoint sets such that jX�j < � for each
� < � and � D j SfX� j � < �gj. Define � W Œ��2 ! 2 by �.fx; yg/ D 0 if
fx; yg � X� for some � < �, �.fx; yg/ D 1, otherwise. Obviously, there does
not exist M 2 Œ��� which is monochromatic with respect to �, thus contradicting
� ! .�/2

2. ut
Cardinals � > ! satisfying � ! .�/2

2 are called weakly compact. From what
is said before it follows that their existence cannot be proved in ZF C Axiom of
Choice. In a sense, the situation is even worse. One can show that � ! .�/2

2 fails for
many inaccessible cardinals including the first one provided such numbers exist at
all. Moreover, even if the existence of an inaccessible cardinal is assumed it cannot
be proved in ZF C Axiom of Choice that there is a weakly compact cardinal. For a
detailed discussion and an extensive bibliography on this topic, compare Erdős et al.
(1984).

We close this paragraph with stating a result which shows that if there exists a
weakly compact cardinal it has indeed quite strong partition properties.

Theorem 11.10. If � ! .�/2
2, then � ! .�/k

� , for every k < ! and every � < �.

This result can be shown using similar arguments as in the proof of Ramsey’s
theorem. We omit the proof.
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11.5 Canonical Partition Relations for Cardinals

Finally, we briefly review some canonical partition results for infinite cardinals. The
canonical Ramsey arrow extends naturally to arbitrary cardinals, �

can! .�/k meaning
that for every coloring � of the k-subsets of � with arbitrary many colors there exists
a �-subset F 2 Œ��� of � so that �eŒF �k is canonical. For � D � D !, k < !, this
relation was shown in the Erdős-Rado canonization theorem (Theorem 1.4). The
argument given there to prove !

can! .!/k actually shows that if �, � and k are
cardinals with � > 2k such � ! .�/2k

k then �
can! .�/k . Combining this observation

with Theorem 11.10 we obtain immediately:

Theorem 11.11. If � ! .�/2
2, then �

can! .�/k for every k < !. ut
Moreover, applying the relation expk�1.�/C ! .�C/k

k (instead of Ramsey’s
theorem) in the proof of Theorem 1.4 yields that

exp2k�1.�/C can! .�C/�:

However, this is far from best possible. Baumgartner (1975) showed that the same
cardinal which satisfies the Erdős-Rado partition relation is already large enough
for the canonical partition relation:

Theorem 11.12. Let � � ! be a cardinal and k be a positive integer. Then

expk�1.�/C can! .�C/k:

We omit the proof of this result which combines ideas behind a theorem of Fodor
(1956) on regressive mappings and the Erdős-Rado canonization theorem.
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