
Chapter 10
A Quasi Ramsey Theorem

The basic problem of (combinatorial) discrepancy theory is how to color a set with
two colors as uniformly as possible with respect to a given family of subsets. The
aim is to achieve that each of the two colors meets each subset under consideration
in approximately the same number of elements. From the finite Ramsey theorem
(cf. Corollary 7.2) we know already that if the set of all 2-subsets of n is 2-colored,
and the family of all `-subsets for some ` < 1

2
log n is considered, the situation

is as bad as possible: for any 2-coloring we will find a monochromatic `-set. As `

gets larger one can color more uniformly though one still has the preponderance
phenomenon.

Let k and n be positive integers and let �k : Œn�k ! f�1; C1g be a 2-coloring of
the k-subsets of n. For T � n let

�k.T / D
X

X2ŒT �k

�k.X/:

Then �k.T / D 0 means that T is colored as uniformly as possible, i.e., the color
‘�1’ and the color ‘C1’ occur equally often. The discrepancy of �k is defined by

disc.�k/ D max
T �n

j�k.T /j:

and the discrepancy of n with respect to colorings of k-subsets is given by

disc.k; n/ D min disc.�k/;

where the minimum is taken over all 2-colorings �k W Œn�k ! f�1; C1g. Trivially,
disc.1; n/ D d n

2
e for every n. From Corollary 7.2 we also get that disc.2; n/ >

1
2

log n.
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112 10 A Quasi Ramsey Theorem

Extending earlier results of Erdős (1963) and Erdős and Spencer (1972) proved:

Theorem 10.1 (Erdős, Spencer). Let k be a positive integer. Then there exist
constants c0 D c0.k/ and c1 D c1.k/ such that for every n

c0n
kC1

2 � disc.k; n/ � c1n
kC1

2

In this section we will focus on the discrepancy problem for finite sets, i.e., on
Theorem 10.1. For an excellent surveys on discrepancy results in general see e.g.
Sós (1983) and Beck and Sós (1995) or the book by Chazelle (2000).

10.1 The Upper Bound

It is not surprising that the upper bound in Theorem 10.1 is given by probabilistic
means. The basic tool in proving this upper bound is the inequality of Chernoff
(1952). Here we use it in a version given by Spencer (1985, p. 362).

Lemma 10.2 (Chernoff). Let Xi , i < n, be mutually independent random vari-
ables with ProbŒXi D �1� D ProbŒXi D C1� D 1

2
for i < n and put Sn DP

i<n Xi . Let a > 0 be some constant. Then

ProbŒSn > a� < e� 1
2

a2

n :

ut
Now fix some k � 1 and let �k : Œn�k ! f�1; C1g be a random mapping, taking

the values �1 and C1 each with probability 1
2

and independently. For each T � n

the distribution of �k.T / is the same as that of S.jT j
k / and therefore, by Chernoff’s

lemma,

ProbŒj�k.T /j > cn
kC1

2 � < 2 exp

 
�c2nkC1

2
�jT j

k

�

!
< 2 exp

��c2nkC1

2nk

�
D 2e� c2

2 n:

Since there are 2n choices for T we get

ProbŒmax
T �n

j�k.T /j > cn
kC1

2 � � 2nC1e� c2

2 n < 1;

choosing, e.g., c D c1 <
p

2 ln 2 C 1. So there exists �k W Œn�k ! f�1; C1g such

that maxT �n j�k.T /j � c1n
kC1

2 and, hence, disc.k; n/ � c1n
kC1

2 . ut
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10.2 A Lemma of Erdős

In connection with his investigations on a lemma of Littlewood and Offord (1943)
and Erdős (1945) proved the following result.

Lemma 10.3. Let x0; : : : ; xn�1 be reals satisfying jxi j � 1 for every i < n. Then
for every r 2 R the number of sums

P
i<n �i xi , where �i 2 f0; C1g, which fall into

the (halfopen) interval Œr; r C 1Œ does not exceed
�

n
b n

2 c
�
.

Proof. We first show that it suffices to consider the case that the xi are all non-
negative. Indeed, assume that xi < 0 for some i < n. If we replace xi by �xi and
each �i by .�i C1/ mod 2, then all sums are shifted by exactly �xi . The lemma thus
follows by considering the case r � xi .

So assume that xi � 1 for every i . Now for every sum
P

i<n �i xi , the �i can be
viewed as the characteristic function of a subset of n. If

P
i<n �xi and

P
i<n �i xi

are both in [r; r C 1Œ, for some r 2 R, then neither of the corresponding subsets
contains the other. Hence, by Sperner’s lemma (Sperner 1928), the number of sums
which fall in the interval Œr; r C 1Œ does not exceed

�
n

b n
2 c
�
. ut

What we actually need in order to prove Theorem 10.1 is the following corollary of
Lemma 10.3:

Corollary 10.4. There exists a positive integer n0 such that for every n � n0, for
every 0 < c � 1 and for every sequence x0; : : : ; xn�1 of reals satisfying jxi j � 1

for at least cn many i < n we have that

j
X

j 2J

xj j � c

p
n

2
; (10.1)

for at least 1
5
2n choices of J � n.

Proof. Let I � n be such that jxi j � 1 for every i 2 I and such that jI j � cn. Let
J � n: If (10.1) does not hold then

�
X

j 2J nI

xj � c

p
n

2
<

X

j 2I\J

xj < �
X

j 2J nI

xj C c

p
n

2
:

Now we think this open interval to be covered with dc
p

ne halfopen intervals of
length 1. Then assuming J nI to be fixed for the moment, by Erdős’ lemma the
assertion (10.1) is not fulfilled for at most

dc
p

ne
 

cn

b cn
2

c

!
<

4

5
2cn
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choices of I \ J . (The inequality follows from
�

x
x=2

� D .1 C o.1//
p

2=.�x/2x.)

Summing over all possible J nI (at most 2.1�c/n many) yields the corollary. ut
Note that Erdős (1945) proved already that for any sequence of reals x0; : : : ; xn�1

with jxi j � 1 the number of sums
P

i<n �i xi which fall into the interior of any
interval of length 2 m, for some positive integer m, is not greater than the sum of the
m greatest binomial coefficients. This, of course, allows to strengthen Corollary 10.4
considerably, but this is not of use for our purposes.

10.3 The Lower Bound: The Graph Case

Because of its particular interest and since its proof becomes considerably easier,
we separate the graph case, i.e., the case k D 2.

Proposition 10.5. There exist constants c0 and c1 so that for every n

c0n3=2 � disc.2; n/ � c1n3=2:

Proof. The upper bound was proven in Sect. 10.1, so we concentrate on the lower
bound. Interpreting the lower bound in terms of graphs, Proposition 10.5 says
that for every graph G D .n; E/ there exists an (induced) subgraph which has
considerably more edges, viz. c0n

3=2, than non-edges, or vice versa. Assume that
every edge has weight C1 and every non-edge has weight �1, which defines some
� : Œn�2 ! f�1; C1g. Let A0; A1 � n be disjoint subsets of n. Then, by abuse of
language, we put

�.A0; A1/ D
X

�.e/;

where the summation is taken over all edges having one endpoint in A0 and the other
endpoint in A1. Now we prove the lower bound proceeding in two steps. First we
show:
There exists � > 0 such that for every n � 2n0 (without loss of generality n is even),
for every � : Œn�2 ! f�1; C1g and every pair A0; A1 � n of disjoint sets satisfying
jA0j D jA1j D n

2
, there exist B0 � A0, and B1 � A1 so that

j�.B0; B1/j � �n3=2:

In order to prove this fix some a 2 A1. By Corollary 10.4 for c D 1, we have
that

ˇ̌
ˇ̌fB � A0 j j�.B; a/j �

p
n

2
p

2
g
ˇ̌
ˇ̌ � 1

5
2n=2:
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Thus putting ı D 1
20

we obtain the existence of B0 � A0 satisfying

jfa 2 A1 j j�.B0; a/j �
p

n

2
p

2
gj � 2ın:

By symmetry we can assume that

ˇ̌
ˇ̌fa 2 A1 j �.B0; a/ �

p
n

2
p

2
g
ˇ̌
ˇ̌ � ın:

Now let B1 D fa 2 A1 j j�.B0; a/ �
p

n

2
p

2
g. Then

�.B0; B1/ D
X

a2B1

�.B0; a/ � ın

p
n

2
p

2
D �n3=2;

choosing � D ı

2
p

2
, thus our claim.

In a second step we have to transfer the imbalance of the bipartite graph into an
imbalance of some subgraph. For this purpose let Oc0 D �

3
and observe that

�.B0; B1/ D �.B0 [ B1/ � �.B0/ � �.B1/:

Thus, by the pigeonhole principle, either B0, or B1, or B0 [ B1, has a discrepancy
of size at least Oc0n3=2. Choosing c0 � Oc0 to take care of the n’s smaller than n0

completes the proof of Proposition 10.5. ut

10.4 The Lower Bound: The General Case

The general approach for the case k � 2 is similar as in the graph case. First we
aim at finding k pairwise disjoint subsets A0; : : : ; Ak such that the collection of
all k-subsets that meat each of the Ai exactly once have a high discrepancy. In a
second step we then argue that this implies the existence of a set A0 that has a high
discrepancy. The main idea is similar to the graph case. Differences arise mainly
from the fact that given pairwise disjoint sets A0; : : : ; Ak�1 there are many more
ways to form a k-subset in A1 [ : : : [ Ak than just transversals and subsets of
some Ai . This motivates the following definition.

Let k � 2 and let �k W Œn�k ! f�1; C1g be a coloring and .Ai /i<j , for some
j � k, be a family of pairwise disjoint subsets of n. Then we define

�k.A0; : : : ; Aj �1/ D
X

�k.A/;
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where the summation is taken over all sets A 2 Œn�k satisfying A � S
i<j Ai and

A \ Ai ¤ ; for every i < j . In particular, for j D k, the summation goes over all
transversals of A0; : : : ; Ak�1.

In the following assume that k � 2 and a coloring �k W Œn�k ! f�1; C1g is fixed
and let n0 be the constant from Corollary 10.4. First we show:

Lemma 10.6. There exists � > 0 such that for every �k W Œn�k ! f�1; C1g and
for every family .Ai /i<k of pairwise disjoint subsets of n satisfying jA0j D : : : D
jAk�1j D t for some t � n0 there exist B0 � A0, . . . , Bk�1 � Ak�1 so that

j�k.B0; : : : ; Bk�1/j � �t
kC1

2 :

To prove Lemma 10.6 we show

Lemma 10.7. There exist positive constants c1; : : : ; ck�1 and d1; : : : ; dk�1 so that
for every positive integer j < k and every family .Ai /i<j of pairwise disjoint
subsets of n satisfying jA0j D : : : D jAj �1j D t , for some t � n0; and for every
�j W Œn�j ! f�1; C1g we have

jf.C0; : : : ; Cj �1/ j 8i < j : Ci � Ai and j�i .C0; : : : ; Cj �1/j � c �t j=2gj � dj �2t �j :

We mimic the argument used to prove the first assertion in the graph-case to show
how Lemma 10.7 implies Lemma 10.6.

Proof of Lemma 10.6. Fix some a 2 Ak�1. Then by Lemma 10.7 (for j D k � 1

and defining �k�1 by �k�1.C0; : : : ; Ck�2/ D �k.C0; : : : ; Ck�2; fag// we have that

jf.C0; : : : ; Ck�2/ j j�k.C0; : : : ; Ck�2; fag/j � ck�1t
k�1

2 gj � dk�12
t.k�1/:

Put ı D dk�1

2
. Then we get the existence of a family .Bi /i<k�1, where Bi � Ai , so

that

jfa 2 Ak�1 j j�k.B0; : : : ; Bk�2; fag/j � ck�1t
k�1

2 gj � 2ıt:

Again by symmetry we can assume that

jfa 2 Ak�1 j �k.B0; : : : ; Bk�2; fag/ � ck�1t
k�1

2 gj � ıt:

Let Bk�1 D fa 2 Ak�1 j �k.B0; : : : ; Bk�2; fag/ � ck�1t
k�1

2 g. Then

�k.B0; : : : ; Bk�1/ D
X

a2Bk�1

�k.B0; : : : ; Bk�2; fag/ � ıt � ck�1t
k�1

2 D �t
kC1

2 ;

choosing � D ı � ck�1, thus proving Lemma 10.6. ut
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Proof of Lemma 10.7. We proceed by induction on j . Observe in the case j D 1

we are given a function �1 that assigns values to points and we are interested in
certain subsets of A0. This is exactly the situation of Corollary 10.4. The base case
of the induction thus follows from Corollary 10.4 (applied for c D 1) by choosing
c1 D 1=2 and d1 D 1

5
.

So assume the validity of Lemma 10.7 for some j 2 Œ1; k�2� and fix some �j C1 W
Œn�j C1 ! f�1; C1g. Note that for every fixed a 2 Aj the function �j C1 naturally
gives rise to a function �j W Œn�j ! f�1; C1g via �j .X/ :D �j C1.X [ fag/. To
these function we can then apply the induction hypothesis. Let

M D f.C0; : : : ; Cj �1; fag/ j
Ci � Ai , i < j , a 2 Aj s.t. j�j C1.C0; : : : ; Cj �1; fag/j � cj tj=2g:

Then the induction hypothesis implies that we have for every a at least dj 2tj subsets
.C0; : : : ; Cj �1/ so that .C0; : : : ; Cj �1; fag/ 2 M. Thus, we know

jMj � t � dj 2tj :

On the other hand we have:

jMj D
X

.C0;:::;Cj �1/

Ci �Ai

jfa 2 Aj j .C0; : : : ; Cj �1; fag/ 2 Mgj:

Here we have 2tj summands, each of which has size (at most) t , that together sum up
to at least dj t2tj . An easy calculation thus gives: there are at least dj

2
2tj summands

which are larger than dj

2
t .

Fix such a .C0; : : : ; Cj �1/. Then there are dj

2
t many a 2 Aj such that

.C0; : : : ; Cj �1; fag/ 2 M meaning that j�j C1.C0; : : : ; Cj �1; fag/j � cj tj=2. If we
thus let

xa D 1

cj

t�j=2�j C1.C0; : : : ; Cj �1; fag/:

for every a 2 Aj , then jxaj � 1 for at least dj

2
t many a 2 Aj .

Apply Corollary 10.4 with respect to c D dj

2
. Then we have for at least 1

5
2t

choices Cj � Aj that

j�j C1.C0; : : : ; Cj /j D
ˇ̌
ˇ̌
ˇ̌
X

a2Cj

�j C1.C0; : : : ; Cj �1; fag/
ˇ̌
ˇ̌
ˇ̌ D cj tj=2

ˇ̌
ˇ̌
ˇ̌
X

a2Cj

xa

ˇ̌
ˇ̌
ˇ̌

� cj tj=2 � dj

4
t1=2 D cj dj

4
t.j C1/=2:
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As this is true for at least dj

2
2tj choices of .C0; : : : ; Cj �1/, choosing cj C1 D cj dj

4

and dj C1 D dj

10
completes the proof of Lemma 10.7. ut

In the next step we transform the imbalance of a product into an imbalance for a
set:

Lemma 10.8. Let � > 0 and j � k be a positive integer. Then there exists an
� D �.�; j / > 0 such that for every �k W Œn�k ! f�1; C1g and every family .Bi /i<j

of pairwise disjoint subsets of n, we have that j�k.B0; : : : ; Bj �1/j � �n
kC1

2 implies
the existence of some I � j satisfying

j�k.
[

i2I

Bi /j � �n
kC1

2 :

Proof. For j D 1 and every � > 0 the lemma is trivial choosing � D �. So assume
the validity of Lemma 10.8 for some j < k and all � > 0, and let .Bi /i�j be a

family of pairwise disjoint subsets of n such that j�k.B0; : : : ; Bj /j � �n
kC1

2 , for
some � > 0.

Observe that

�k.B0; : : : ; Bj / D �k.
[

i�j

Bi / �
X

�k.Bi1 ; : : : ; Bi` /;

where the summation is taken over all proper (and nonempty) subfamilies of
B0; : : : ; Bj . Hence, at least one of the summands of the right hand side has absolute

value at least �

2j C1 n
kC1

2 . If �k.
S

i�j Bi / has this size, we are done. Otherwise,
applying the inductive hypothesis to the appropriate summand replacing � by �

2j C1

proves Lemma 10.8. ut
Now the proof of Theorem 10.1 is easily finished. Without loss of generality we

can assume that n D k � t . Let �k W Œn�k ! f�1; C1g be a coloring and A0 [ : : : [
Ak�1 D n be a partition of n into k disjoint sets each of size t � n0. Then, by
Lemma 10.6, there exist B0 � A0, . . . , Bk�1 � Ak�1 so that

j�k.B0; : : : ; Bk�1/j � �t
kC1

2 D �k� kC1
2 n

kC1
2 :

Applying Lemma 10.8 for � D �k� kC1
2 and j D k yields a constant � D �.�; k/

and a subset I � k satisfying

j�k.
[

i2I

Bi /j � �n
kC1

2 :

Choosing c0 � � in such a way that c0 takes care of all small n completes the proof
of Theorem 10.1. ut
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