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Abstract Recently, more and more Bayesian methods have been proposed for
modeling heterogeneous preference structures of consumers (see, e.g., Allenby
et al., J Mark Res 32:152–162, 1995, 35:384–389, 1998; Baier and Polasek, Stud
Classif Data Anal Knowl Organ 22:413–421, 2003; Otter et al., Int J Res Mark
21(3):285–297, 2004). Comparisons have shown that these new methods compete
well with the traditional ones where latent classes are used for this purpose
(see Ramaswamy and Cohen (2007) Latent class models for conjoint analysis.
In: Gustafsson A, Herrmann A, Huber (eds) Conjoint measurement – methods
and applications, 4th edn. Springer, Berlin, pp 295–320) for an overview on these
traditional methods). This applies especially when the prediction of choices among
products is the main objective (e.g. Moore et al., Mark Lett 9(2):195–207, 1998;
Andrews et al., J Mark Res 39:479–487, 2002a; 39:87–98, 2002b; Moore, Int J
Res Mark 21:299–312, 2004; Karniouchina et al., Eur J Oper Res 19(1):340–348,
2009, with comparative results). However, the question is still open whether this
superiority still holds when the latent class approach is combined with the Bayesian
one. This paper responds to this question. Bayesian methods with and without latent
classes are used for modeling heterogeneous preference structures of consumers
and for predicting choices among competing products. The results show a clear
superiority of the combined approach over the purely Bayesian one. It seems that
we still need latent classes for conjoint analysis-based predictions.
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1 Introduction

Since many years conjoint analysis has proven to be a useful modeling approach
when preference structures of consumers w.r.t. attributes and levels of competing
products have to be modeled (see, e.g. Green and Rao 1971; Green et al. 2001;
Baier and Brusch 2009). Preferential evaluations of sample products (attribute-
level-combinations) are collected from sample consumers and for each consumer
the relation between attribute-levels and preference values is modeled. Then, these
individual models can be used for predicting choices of these consumers in different
scenarios. Since in conjoint analysis typically the number of evaluations is low
compared to the number of model parameters and many consumers show a similar
preference structure, various approaches have been proposed that assume identical
model parameters so that the ratio between evaluations and model parameters and –
hopefully – the choice predictions using these model parameters can be improved.

Besides approaches that assume the same model parameters across all con-
sumers especially latent class approaches have been proposed for this purpose (see
Ramaswamy and Cohen 2007 for an overview on these traditional methods).
Here, a division of the market into segments or (latent) classes with homogeneous
preference structures is assumed and modeled by identical model parameters within
a class. During the modeling step, the class-specific model parameters as well as
the number and the size of the classes have to be estimated. Latent Class Metric
Conjoint Analysis (shortly: LCMCA, DeSarbo et al. (1992)) is one of the most
popular approaches of this kind. In the upper part of Fig. 1 a typical situation is
given: The diagrams show a market with three market segments that differ w.r.t.
to their preference for “high quality” and for “modern” products. Since the market
seems to be clearly segmented, the sharing of evaluations within these segments
could lead to an improvement of choice predictions.

Alternatively, recently, Hierarchical Bayesian procedures have been proposed
for the same purpose (see, e.g. Allenby et al. 1995, 1998; Lenk et al. 1996).
Here, no explicit market segmentation with identical model parameters within the
segments is assumed. Instead, a common distribution of the model parameters is
postulated for all consumers (first level model), which then is adjusted to individual
consumers using their individual evaluations (second level model). Hierarchical
Bayes Metric Conjoint Analysis (shortly: HB/MCA, Lenk et al. (1996)) is a popular
approach of this kind. In the lower part of Fig. 1 a typical situation is given,
where this approach is useful: The diagrams show a market obviously without
segments. Consumers differ individually w.r.t. to their preference for “high quality”
and for “modern” products, however, they cannot be grouped consistently into
homogeneous segments. Market researchers call this situation the “water melon
problem” (see, e.g. Sentis and Li 2002): Each dividing up into segments seems
to be arbitrarily, so the sharing of evaluations within segments should lead to no
improvement of choice predictions. Recently, many comparison studies have shown,
that these Hierarchical Bayes approaches seem to compete well with the traditional
latent class approaches w.r.t. criteria like model fit or predictive validity (see Table 1
for an overview on comparison studies and their results).
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Fig. 1 A market with three market segments (upper part) and one without obvious segments
(lower part); grey points indicate individual preferences, black points mean preferences when
grouping the individuals; the lines are used to indicate the allocation of individuals to groups;
in the lower – unsegmented – part their exists no obvious grouping

Table 1 Segmentation gains for conjoint analysis-based choice predictions: an overview

Segm.
Reference bases Criteria Result

Lenk et al. (1996) 2 real Pred. validity (FCH, RMSE) No segm. gains
Allenby et al. (1998) 3 real Pred. validity (FCH, RMSE) No segm. gains
Moore et al. (1998) 2 real Pred. validity (FCH, RMSE) No segm. gains
Andrews et al. (2002a) Simulated Model fit (Pearson,

Kendall),Pred. validity
(FCH, RMSE)

No sign. diff.

Andrews et al. (2002b) Simulated Model fit (Pearson,
Kendall),Pred. validity
(FCH, RMSE)

No sign. diff.

Gensler (2003) Simulated Model fit (Pearson,
Kendall),Pred. validity
(FCH, RMSE)

No sign. diff.

Moore (2004) 1 real Pred. validity (FCH, RMSE) No segm. gains
Karniouchina et al. (2009) 1 real Pred. validity (FCH, RMSE) No segm. gains

Across all studies, the assumption of market segments leads to no or only few
segmentation gains (i.e. no significant differences w.r.t. model fit or predictive
validity) and one could draw the conclusion that we don’t need latent classes for
conjoint analysis-based choice predictions. However, up to now, it is not clear



106 D. Baier

whether this is also true for a combination of Hierarchical Bayes and Latent
Class approaches. For this reason, we compare in this paper a version of such
combined approaches, Hierarchical Bayes Latent Class Metric Conjoint Analysis
(HB/LCMCA), with HB/MCA, a purely Bayesian one. Since HB/MCA is a special
case of HB/LCMCA (with only one latent class) the introduction of HB/LCMCA
in chapter “The Randomized Greedy Modularity Clustering Algorithm and the
Core Groups Graph Clustering Scheme” suffices. In chapter “Comparison of Two
Distribution Valued Dissimilarities and Its Application for Symbolic Clustering”
a Monte Carlo design is developed which is used to compare HB/MCA and
HB/LCMCA. The paper closes with conclusions and outlook in chapter “Pairwise
Data Clustering Accompanied by Validation and Visualisation”.

2 Hierarchical Bayes Latent Class Metric Conjoint Analysis

In the following a combination of Hierarchical Bayes and Latent Class approaches
for conjoint analysis-based choice prediction is introduced for answering the
research question. The HB/LCMCA approach follows the HB/MCA approach in
Lenk et al. (1996), but uses similar modeling assumptions as in DeSarbo et al.
(1992) for the latent class part of the model and as in Baier and Polasek (2003) for
the distributional assumptions. HB/LCMCA contains HB/MCA as a special case
(with only one latent class). As in Lenk et al. (1996) the preferential evaluations
are modeled as the addition of corresponding partworths (preferential evaluations
of attribute-levels).

2.1 The Data, the Model, and the Model Parameters

Let y1; : : : ; yn 2 R
m describe observed preferential evaluations from n consumers

(i D 1; : : : ; n) w.r.t. to m products (j D 1; : : : ; m). yij denotes the observed
preference value of consumer i w.r.t. product j . As an example, these preference
values could come from a response scale with values �5 (“I totally dislike
this product.”) to C5 (“I totally like this product.”). X 2 R

m�p denotes the
characterization of the m products using p variables. As an example, cars could be
characterized by attributes like price, performance, weight, and so on. For estimating
the effects of the different attributes on the consumer’s preference evaluations, one
uses a set of products that reflects possible attribute-levels (e.g. a “low” and a “high”
price) in an adequate way, using, e.g., factorial designs w.r.t. to nominal scaled
attributes. In this case for X dummy coded variables are used instead of the original
(possibly nominal) attributes.

The observed evaluations are assumed to come from the following model

yi D Xˇi C �i ; for i D 1; : : : ; n with �i � N.0; �2I/ (1)
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with I as the identity matrix, �2 as an error variance parameter, and individual part-
worths ˇ1; : : : ; ˇn coming from T latent classes (t D 1; : : : ; T ) with class-specific
partworths �t 2 R

p and class-specific (positive definite) variance/covariance
matrices Ht 2 R

p�p:

ˇi �

8

<̂

:̂

N.�1; H1/ if Ci D 1;
:::

N.�T ; HT / if Ci D T;

i D 1; : : : ; n: (2)

C D .C1; : : : ; Cn/ indicates the (latent) classes to which the consumers belong
with Ci 2 f1; : : : ; T g, � D .�1; : : : ; �T / reflects the (related) size of the classes
(�t D Pn

iD1 1fCi Dtg=T ).

2.2 The Bayesian Estimation Procedure

For estimating the model parameters .�; C; �1; : : : ; �T ; H1; : : : ; HT ; �2/, Bayesian
procedures provide a mathematically tractable way that combines prior information
about the model parameters with the likelihood function of the observed data.
The result of this combination, the posterior distribution of the model parameters,
depends on the modeling assumptions and the assumed prior distributions of
the model parameters. It can be derived using iterative Gibbs sampling steps as
explained in the following. We use variables with one asterisk (“�”, e.g., a�) to
denote describing variables of an a priori distribution (prior information) and two
asterisks (“��”, e.g., a��) to denote describing variables of a posterior distribution of
the model parameters. Note that the describing variables of the a priori distributions
and initial values for the model parameters have to be set before estimation whereas
the describing variables of the posterior distributions have derived values allowing
iteratively to draw values from the posterior distributions resulting in empirical
distributions of all model parameters. We use repeatedly the following five steps:

1. Sample the class indicators C using the likelihood l of the normal distribution

p.Ci D t j�; �1; : : : ; �T ; H1; : : : ; HT ; �2; yi / / l.yi jX�t ; XHt X0 C �2I/�t

(The consumer is allocated to the class that reflects her/his evaluations best.).
2. Sample the class sizes � from

p.�jC/ / Di.e1��; : : : ; eT ��/ with e1�� D e1� C n1; : : : ; eT � C nT ; nt D
nX

iD1

1fCi Dtg

(Di(e1,. . . ,eT ) represents the Dirichlet distribution with concentration variables
e1,. . . ,eT . The variables of the a priori distribution are set to 1: et�D1 8 t .).
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3. Sample the class-specific partworths �1; : : : ; �T from

p..�0
1; : : : ; �0

T /0jC; H1; : : : ; HT ; �2; y1; : : : ; yn/ / N.a��; A��/

with Zi D .X1fCiD1g; : : : ; X1fCi DT g/; Vi D X.H�1
Ci

/X0 C �2I;

A�� D .

nX

iD1

Z0
i V

�1
i Zi C A�1� /�1; a�� D A��.

nX

iD1

Z0
i V

�1
i yi C A�1� a�/

(Due to known problems with slow convergence, the class-specific partworths are
sampled simultaneously. The class-specific partworths are stacked, a�� and A��
are the mean and the blocked variance/covariance matrix of the corresponding
posterior distribution. The variables of the a priori distribution, a� and A�, are set
to be non-informative, alternatively, they could be used as in Baier and Polasek
(2003) to constrain the partworths. The Zi and Vi matrices are used to allocate
the individual evaluations to the corresponding class.).

4. Sample the individual partworths ˇ1; : : : ; ˇn from

p.ˇ1; : : : ; ˇnjC; �1; : : : ; �T ; H1; : : : ; HT ; �2; y1; : : : ; yn/ using ˇi � N.bi��; Bi��/

with Bi�� D .X0X=�2 C H�1
Ci

/�1 and bi�� D �Ci
C Bi��X0yi =�2 C H�1

Ci
�Ci

:

(The posterior distribution of the partworths for individual i with describing
variables bi�� and Bi�� combines the information from the corresponding class-
specific partworths with the observed preferential evaluations of individual i .)

5. Sample the variance/covariance model parameters H1; : : : ; HT ; �2 from

p.H1; : : : ; HT ; �2jˇ1; : : : ; ˇn; C; �1; : : : ; �T ; y1; : : : ; yn/ using

Ht � I W.wt��; Wt��/ with

wt�� D wt� C 0:5

nX

iD1

1fCi Dtg; Wt�� D Wt� C 0:5

nX

iD1

.ˇi � �t /.ˇi � �t /
01fCi Dtg and

�2 � IG.g��; G��/ with g�� D g� C nm

2
; G�� D G� C 1

2

nX

iD1

.Xˇi � yi /
0.Xˇi � yi /:

(IW stands for the Inverse Wishart distribution, IG for the Inverse Gamma
distribution. Both distributions are used to model the a priori and the posterior
distributions of the variance/covariance model parameters. We use similar
settings for the a priori distributions as in Baier and Polasek (2003).)

As usual in Bayesian research, the posterior distribution of the model parameters
are empirical distributions which collect the draws of the iterative Gibbs steps. Each
empirical distribution consists typically of 1,000–2,000 draws, the “first” draws
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(e.g. the first 200 draws) are typically discarded due to the need of a so-called “burn-
in phase” during estimation.

When latent classes have to be modeled in Bayesian research, often the so-called
“relabeling problem” occurs: From a statistical point of view the “labels” of the
classes (their number 1,. . . ,T ) provide no information. For one draw of all model
parameters, changing the numbers of two or more classes makes no difference
(“unidentifiability problem”). However, during the iterative process over 1,000 or
more draws, such changes (due to algorithmic indeterminacy) lead to bad results
w.r.t. the empirical distributions. Therefore, usually, in step 2 a relabeling is enforced
that – after drawing the segment sizes – ensures that the class 1 has the smallest size,
2 the second smallest and so on. Alternatively, the relabeling could take place in step
3 w.r.t. class-specific partworths by ensuring that the importance of, e.g., attribute 1
is highest for class 1, second highest for class 2, and so on.

2.3 Model Fit and Predictive Validity

Once the posterior distribution of the parameters is available one can control model
fit or predictive validity in various ways. So, w.r.t. model fit, the preferential
evaluations w.r.t. to the estimation sample of evaluations could be compared
with the corresponding predictions using Pearson’s correlation coefficient. W.r.t.
predictive validity one uses the possibility that the model can also be used to predict
preferential evaluations w.r.t. modified sets of products (scenarios) by changing m

and X accordingly. One collects additional preferential evaluations w.r.t. to so-called
hold-out products and compares this evaluations with predictions of the model using
criteria like the Root Mean Squared Error (RMSE) which stands for the deviation
between the observed and predicted preferential evaluations or the first choice which
stands for the percentage of predictions where the “best” holdout product w.r.t to the
observed and predicted evaluations is the same.

3 Monte Carlo Comparison of HB/MCA and HB/LCMCA

In order to decide whether one still needs latent classes for conjoint analysis-
based choice predictions a comprehensive Monte Carlo analysis was performed
to compare the purely Bayesian approach (HB/MCA) with the combination of
the Bayesian approach and latent class modeling. One should keep in mind that
HB/MCA is the HB/LCMCA version with only one latent class (T D 1), so, w.r.t.
model fit there should be a superiority of the combined over the purely Bayesian
approach. However, the question is, whether this also holds w.r.t. predictive
validity.



110 D. Baier

3.1 Design of the Monte Carlo Study

In total, 1,350 datasets were generated, using 50 replications w.r.t. 3 dataset
generation factors with 3 possible levels each (forming 3 � 3 � 3 � 50 D 1,350
datasets). Each generated dataset describes a conjoint experiment for estimating
the preferences of 300 consumers w.r.t to products characterized by 8 two-level
attributes. The simulated conjoint task for each consumer was to evaluate a set of
16 products whose dummy coded descriptions w.r.t. the 8 two-level attributes were
generated using a Plackett and Burman (1946) factorial design (with 16 rows and
8 columns). Also, a set of 8 additional products was used to generate additional
preferential evaluations from each consumer for checking the predictive validity.
The first 16 products form the estimation set, the last 8 products the holdout set of
products.

A “true” preference structure of the consumers was assumed that could
come – according to the first dataset generation factor (“Heterogeneity between
segments”) – from a market with one, two, or three segments. The market with only
one segment is used as a proxy for an unsegmented market, the markets with two
or three segments as proxies for segmented markets. As in other simulation studies,
the means of the “true” segment-specific partworths were randomly drawn from the
Œ�1; 1� uniform distribution. All in all the following three dataset generation factors
were used:

• Heterogeneity between segments (unsegmented or not segmented market):
For a third of the datasets (level “low” for factor “heterogeneity between
segments”), it was assumed that there is no segment-specific preference structure,
i.e. all “true” individual partworths are drawn from one (normal) distribution
(one market segment). For the other datasets (levels “medium” and “high”), it
was assumed that there is a segment-specific preference structure, i.e. all “true”
individual partworths are drawn from two (“medium”) or three (“high”) different
(normal) distributions (two or three market segments). The size of these market
segments was predefined as 100 % (in the case of one market segment, 300
consumers), 50 and 50 % in the case of two market segments (each segment
contains 150 consumers) resp. 50, 30 and 20 % in the case of three market
segments (containing 150, 90 and 60 consumers).

• Heterogeneity within segments (segment-specific distributions of individual
partworths): For all datasets it was assumed that the individual partworths
are drawn from normal distributions around the mean of their corresponding
segment-specific partworths (drawn from a uniform distribution as described
above). The variance/covariance matrix of these normal distributions was
assumed to be diagonal with identical values �2 in the diagonal. For a third
of the datasets these diagonal values (and consequently the heterogeneity within
segments) were assumed to be “low (� D 0.1)”, for another third “medium
(� D 0.25)”, and for another third “high (� D 0.5)”.

• Disturbance (additive preference value error in data collection): Addition-
ally, as in other studies, a measurement error was introduced for the simulated
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Table 2 Model fit across the datasets in the Monte Carlo analysis

HB/MCA HB/LCMCA

Factor Level Corr(yi ) Corr(ˇ i ) Corr(yi ) Corr(ˇ i )

Heterogeneity Low (450 datasets) 0.744 0.954 0.742 0.951
Between Medium (450 datasets) 0.535 0.698 0.685*** 0.817***
Components High (450 datasets) 0.456 0.576 0.655*** 0.767***
Heterogeneity Low (450 datasets) 0.594 0.763 0.724*** 0.872***
Within Medium (450 datasets) 0.612 0.784 0.731*** 0.884***
Components High (450 datasets) 0.529 0.682 0.627*** 0.779***
Disturbance Low (450 datasets) 0.746 0.752 0.930*** 0.936***
(Data error) Medium (450 datasets) 0.686 0.759 0.847*** 0.925***

High (450 datasets) 0.303 0.718* 0.305 0.674
Total (1,350 datasets) 0.578 0.743 0.694*** 0.845***
* Significant differences at ˛ D 0.1; **at ˛ D 0.01; ***at ˛ D 0.001

data collection step. The calculated preference values for each product using
the generated “true” individual partworths were superimposed by a normally
distributed additive error (see model formulation in Sect. 2.1) with a “low
(� D 0.4)”, “medium (� D 1)” or “high (� D 2)” standard deviation.

For each possible factor-level-combination – a total of 3 � 3 � 3 D 27 combina-
tions was possible – the dataset generation was repeated 50 times (full factorial
design with 50 repetitions). As a result each dataset comprised conjoint evaluations
from 300 consumers with respect to 16 products for estimation (using – as above
mentioned – a Plackett and Burman (1946) factorial design) and 8 randomly
generated holdout products for checking the predictive validity. It should be
mentioned that – besides transforming the generated preferential evaluations into
a Likert scale – the dataset generation process reflects the model formulation quite
good (as usual, see the simulation studies in Table 1).

The HB/MCA and HB/LCMCA procedures were used with non-informative
priors in order not to distort the estimation results by information outside the
available collected data w.r.t. the 16 products. The number of segments (T ) was
predefined according to the HB/MCA (T D 1) or HB/LCMCA (T D 2, 3) procedure.
For all estimations, 1,000 Gibbs iterations with 200 burn-ins proved to be sufficient
for convergence. For HB/LCMCA relabeling w.r.t. to the class size (label order
equals size order) was used.

3.2 Results w.r.t. Model Fit

For checking the model fit, mean Pearson correlation coefficients between true
and estimated individual preference values for products (Corr(yi)) as well as mean
Pearson correlation coefficients between true and estimated individual partworths
(Corr(ˇi )) were calculated. Table 2 shows aggregated results (mean values w.r.t. to
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Table 3 Predictive validity across the datasets in the Monte Carlo analysis

HB/MCA HB/LCMCA

Factor Level First choice RMSE First choice RMSE

Heterogeneity Low (450 datasets) 0.775 0.060 0.770 0.062
Between Medium (450 datasets) 0.567 0.121 0.702*** 0.066***
Components High (450 datasets) 0.491 0.132 0.673*** 0.063***
Heterogeneity Low (450 datasets) 0.640 0.099 0.757*** 0.056***
Within Medium (450 datasets) 0.631 0.099 0.761*** 0.052***
Components High (450 datasets) 0.563 0.116 0.628*** 0.083***
Disturbance Low (450 datasets) 0.687 0.087 0.870*** 0.029***
(Data error) Medium (450 datasets) 0.677 0.088 0.798*** 0.041***

High (450 datasets) 0.469 0.139 0.478 0.120
Total (1,350 datasets) 0.611 0.105 0.715*** 0.063***
* Significant differences at ˛ D 0.1; **at ˛ D 0.01; ***at ˛ D 0.001

the Pearson correlation coefficients) across all datasets with one factor-level fixed
(3 � 3 � 50 D 450 datasets) and across all datasets (3 � 3 � 3 � 50 D 1,350 datasets).

For each factor-level combination of the Monte Carlo analysis these values
were calculated and compared between HB/MCA and HB/LCMCA. The results
are convincing: If a segment-specific structure is in the data, the segment-free
HB/MCA is outperformed by the segment-specific HB/LCMCA procedure. Overall
the superiority can clearly be seen.

3.3 Results w.r.t. Predictive Validity

In a similar way, the predictive validity was checked. For the eight holdout products
and each consumer, preference values were calculated from the estimated individual
partworths and compared to the preference values that were derived from the “true”
partworths. As criteria for the comparison the so-called first choice hit rate (first
choice) and mean root mean squared error (RMSE) were calculated. First choice
hit indicates for a consumer whether her/his preference values from the estimated
and from the “true” partworths are maximum for the same holdout product, the
first choice hit rate is the share of consumers where a first choice hit occurs.
RMSE compares also the preference values from the estimated and from the “true”
partworths but more according to their absolute values.

Table 3 shows (again) aggregated results (mean values w.r.t. to the first choice
hit rate and RMSE) across all datasets with one factor-level fixed (3 � 3 � 50 D 450
datasets) and across all datasets (3 � 3 � 3 � 50 D 1,350 datasets). Again, the results
are convincing: If a segment-specific structure is in the data, the segment-free
HB/MCA is outperformed by the segment-specific HB/LCMCA procedure. Overall
the superiority of the combined approach can clearly be seen.
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4 Conclusions and Outlook

The comparison in this paper clearly shows that we still need latent classes
for conjoint analysis-based predictions even if we use Bayesian procedures for
parameter estimation. HB/LCMCA was clearly superior to HB/MCA w.r.t. model fit
and predictive validity, especially in cases when markets are segmented. However,
these results are only based on a rather small number of datasets (1,350 datasets)
generated synthetically and therefore no real data. More research in this field needs
to be done, especially with a larger set of conjoint data from real markets.
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