Chapter 7
The Melan and Mindlin Problems

This chapter is devoted to solve the equilibrium problem of a linearly elastic isotropic
half-space, subject to a load concentrated at an interior point. The two-dimensional
version is named after Ernst Melan (1890-1963), who solved it in 1932 [1]; the three-
dimensional version was studied and solved in 1936 [2] by Raymond D. Mindlin
(1906-1987), who returned to it some years later [3, 4].

We concentrate of the case of paramount interest in geomechanics, when the load
is directed orthogonally to the boundary plane and the Mindlin elastic state is used
to compute stresses and soil settlements due to one or more foundation piles. As we
shall see, the stress field depends on constitutive choices; no doubt, ordinary soil
is far from being elastic and isotropic, and yet Mindlin solution is widely used to
estimate footing settlements [5].

7.1 Solution by Superposition

The method we use to solve Melan’s and Mindlin’s problems is the same, and differs
from the methods used by those authors: essentially, as exemplified in the last section
of Chap. 1, we proceed by superposition/restriction/super-position.

Our first and main concern is to determine the stress field. This we do in four
steps. Preliminarily, we consider a space S (two-dimensional in Melan’s case, three-
dimensional in Mindlin’s) and we choose an origin o € S and a direction ey, so that
it makes sense to consider the half-spaces HST = {x € S|+ (x —0) - e; > 0}.
Then,

(i) we determine the Kelvin stress § induced in S by a concentrated load f applied
atx = o+ aey, a > 0;

(i1) we determine the Kelvin stress S in the same space, this time due to a load —f
concentrated at x = 0 — aey;
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(iii) we consider the restriction S to HS* of the point-wise superposition of the
stress fields S and S, and compute the traction vector § = —Sey on the plane
boundary of HS™;

(iv) we superpose to S a stress field S in HS™ such that the resulting boundary
traction —(S + S)e is null. The stress field solving the M problem at hand is
SM =S +8.

We shall go through this sequence of four steps twice, in Sect.7.2.1 for Melan’s
problem and in Sect.7.3.1 for Mindlin’s.

Since each of the stress fields we consider is compatible, such is the field sM
Having found S¥, finding the strain and displacement fields is the matter of routine
computations, completely similar to those we made in Chaps.5 and 6 for the same
purposes.

7.2 The Melan Problem

7.2.1 The Stress Field

Preliminarly, we use relations (6.16)—(6.17) to write the components of the stress field
for the plane Kelvin problem in a Cartesian frame with the same origin (Fig.7.1).
These components are:

St =—L— (B4 vx? + (1 — vo)xd),
4T (xf + x3)?
f X1 2 2
Sy =-——7——((1-— —(1+3 ,
27 ar (x? +x3)2 (=007 =+ 3r0)x3)
X
Sip = — 2 (B4 vo)a? + (1 — v)x3). (7.1)

4r (x? +x3)2

Fig. 7.1 The Melan Problem
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Fig.7.2 Superposition of mirror-symmetric concentrated loads applied at mirror-symmetric points
of half-planes HP* and HP~
7.2.1.1 Steps (i) and (ii)
We use formulas (7.1) twice, to determine the stress fields S and S induced in HS
by, respectively, a load f = fe; applied x = 0 + ae| and a load f = — fe; applied

x = o — ae; (Fig.7.2); all we have to do are two changes in origin. We find:

i X1 —a

__ I N2 _ 2
S, %) = —— CET e G+ — ) + (1 —)x3),
- _f X1 —a _ N2 2
Soatxr, ) = o0 o ar R (1 = vo)(x1 —a)® — (1 +3w9)x3),

f x2

Sia(x1, x2) = — (B+w)(x1 —a)? + (1 —v)x3), (7.2)

47 ((x1 — a)? + x2)?

and
= / x| +a 2 2
S , = — 3 1— ,
11(x1, x2) in (o + @ + 27 (B+vo)(x1 +a)” + (1 —1p)x3)
f x1+a

Sn(x1,x2) = — (1 — ) (x1 +a)? — (1 + 3v0)x3),

47 (11 + )2 + x2)2

2 (B+v)(r1 + @) + (1 —vp)xd).  (1.3)

< f
S , = —
2O = G G+ D)



136 7 The Melan and Mindlin Problems
7.2.1.2 Steps (iii) and (iv)

Component-wise summation of (7.2) and (7.3), followed by restriction to x; > 0,
yields the stress field S over the closure of HP*. We quickly see that the traction
vector § = —S(0, x2)e; is not null, contrary to Melan’s prescription that the traction
vector be zero all over the boundary of HPT. Instead, we have:

§(x2) = —S511(0, x2)ey,
iZa((3 +vp)a® + (1 — 1p)x3)

S11(0, x2) = —
110, x2) yy @+ 52

(7.4)

Therefore, the issue is to find another stress field S over the closure of HP ™, such
that B _
(80, x2) + S(0, x2))e; = 0.

We construct § by using the Boussinesq-Flamant stress field as a stress Green func-
tion (a notion we introduced in the simpler context of Sect. 1.2).

The Cartesian components of the Boussinesq-Flamant plane stress field can be
easily deduced from (4.14); they are:

2f  x}
SBE(xy, x0) = =252 "1
1 (x1, x2) - (x12+x§)2

2f  xi1x3
S5 (1 x) = ==
22 T (F + x2)2

2f x12x2

Sty (x1,xp) = == ———.
12 T (2 +x2)2

The components of the Green tensor G BF are obtained from those of S8 by setting
f = l and replacing x» by (x3 — &), that is, relocating the origin on the plane x; = 0
(see Fig.7.3). These measures yield:

3

~ 2 X
GBl(x1, x0;6) = == L ,
! T (2 + (x2 — £)2)?

~ 2 xXqx2
G (x),x0;6) == 2 ,
2 T (62 4 (xa — £)2)?
2 x12x2

~BF . —_
Gy (x1,x2;6) = T2t 2 P2

We are now in position to determine the tensor S:


http://dx.doi.org/10.1007/978-3-319-01258-2_1
http://dx.doi.org/10.1007/978-3-319-01258-2_4

7.2 The Melan Problem 137

Fig.7.3 The origin relocation
that permits to deduce GBF
from SBF

Y

= too ~BF
S(X1,X2)=/ p(x1, G (x1, x2; §) d&,

—00

where the load function p is the negative of the surface traction (7.4) that we want
to eliminate:

A [ 2a
Pl &) = o an (B vo)a® + (1 = 10)&?).

Finding S is the matter of a nontrivial computation, whose development is the same
for all components; we here sketch it for the first component, details are found in
Appendix A.7.

To begin with, we have that

+o00 .
Sh1(x1, x2) =/ p(x1, G 11(x1, x2; &) dE

—00

3
- _“f);l (a2(3 +u)h + (1 — VO)IZ), (7.5)
71'

with

+00 1
I = )
! /_oo (@2 +€)2(x? + (x2 — £)?)2

+00 52
L = .
? /—oo (@2 + )2(x] + (x2 — £)?)2
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A lengthy computation based on the methods of residues yields:

2m (0 +a)(f + 3axs +a?) + (@ +x)xg

I = ,
dadx} (1 +a)? + x§)3
I T xlz(xl +a) + () + a)(xf + Sax; + az)xg + ax% (7.6)
5 = . .
2ax; (1 +a)? + x§)3

Substituting (7.6) into (7.5) we arrive at:

f
27r((x1 +a)?+ xg)
+ (@ +x))x3) + (1 — w) (xf (x1 + @)’

S, a) = - 5 (6+w) (0 +a) o + 303 +a)

+ (x1 + a)(xf + Sax; + az)x% + axé‘)).
With this, we are ready to write the first component of the Melan stress tensor:

SMe(xy, x1) = Si1 + Siy
f ((HVO)((xl —0)) | @@+ +2ax) Saxl(a+x1>x§)

2 ot 0 s

1 - — 3x1 + 4x1x?
n ) x12a+ xlza_ 142 ,
2 P1 7 P2
pri=yJ@r—a)? +x3, pri=,/(n+a)?+x3.

The other two components are found in a completely analogous manner. Their expres-
sions are:

where

(x1 — a)xz2 n (x1 + a)(x22 + 2a2) — 2ax§

QrfHSH (1 x) = — ((1 + Vo)( ;

ol 1

8axi(a + x1)x3 1 — Xi—a xi1+3a 4xx?
n 1 : 1)X5 n of 12 n 1 L 142 ’
P2 2 P1 P P2

—~ —a)?  x?—2ax; —d?
QrfHSH (x1.x2) = —x2 ((1 + l/o)((xl 4a) + = 4I
P1 P

8axi(a + x1)? 1=y f 1 1 4x1(a + x1)
+ 8 T\ 23 ))
P P P2 1)
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7.2.2 The Strain and Displacement Fields

As we have done systematically so far, we obtain the Melan strain field by inserting
the stress field we just obtained in the inverse constitutive law (2.57). After some
manipulations, we have:

QrEof ") EMe(x1, x2)

(x1 —a)® — vo(x1 — a)x3
=—(+ Vo)( 7 2
P
N (x1 + a)((xl +a)?+ 2ax1) — Vo(()C1 + a)(x% +2a%) — 2ax%)
03
B (1 + vp)8axi(a +x1)x§) n 1 -1 ((1 + vp)(x1 — a)
o 2 Pt
3xi +a—vo(x1 +3a) (1 —vp)dxix?
n ! _ B, (7.7)
1) P2
Q@mEof~") ESY (x1, x2)
(x1 — )3 — vo(x1 — a)’
=—a+m( =
P1
N (x1 + a)(x% +24%) — 2ax% —vo(x1 + a)((x1 +a)?+ 2ax1)
P
8axi(a + x1)x? 1 —uy X1 —a
1+ 0) 1( ! 1)X) n O~ + 1) 12
%) 2 Pl
x1+3a—1v9(Bx; +a 4xx3
+ 2 B HD (22 ), (7.8)
2 4
1) P2

(x1 —a)2 xl2 — 2axy —a?

@rEof ") BN (x1,x2) = —(1 + vo)xa ((1 + Vo)( 7 7}
P1 P2

8axy(a +x1)2 1—1f 1 1 4x1(a + x1)
+ 6 T\ 2 ))
%] Pr P2 P

In order to determine the displacement field, we have to solve the following system
of PDEs:

ui = EY, upp=EY, wia+usy=2E, (7.9)
subject to the symmetry conditions:

a1(x1, x2) = d1(x1, —x2),  da(x1, x2) = —i2(x1, —x2). (7.10)
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With the use of (7.7) and (7.8), integration of 7.91 and 7.9, yields:

X1 .
aVle(xy, xp) = / EVe(s, x2) ds + §1(x2)
X

1

f (2(1 +ro)xd  2(1+vp)(2axi(1 + 1) — (3 — 1p)x3)

- 8mEg p% p%
8a (1 + 1)%x x>
+ —42 + 3 — )1 + o) log pi
P2
+ (5 = (2 — vo)wo) log P2) + g1(x2), (7.11)

X

LIPN ~
e (xy xp) = / EMe(xy. 5)ds + da(xy)

X2

1+ 3 -y
= 4fE((l+Vo)(x1 —a)xz( 5 0 + 5 0)
TEO P 1%

da(l + v9)2x1x0 (x| +a X R
+ ( 0) 41 2011 + ) —4(1 - vy) arctan( 2 ) + g2(x1).
P x| +a

(7.12)
Note that the symmetry condition (7.10), implies that
ga(x1) = 0. (7.13)

To determine function g, we insert in (7.9)3 relations (7.11) and (7.12) (with (7.13)
taken into account), and find out that:

X1 X2 R .
(/ Eﬁe(s,xz)ds),z +(/ E%E(xl,s)ds),l 2 EMe(xy,x2) = 0 = § (x2).
X

1 X2

Hence, function g; must be constant-valued; we dispose of the residual irrelevant
indeterminacy by taking the relative constant null.

7.3 The Mindlin Problem

To solve this problem (Fig. 7.4), we take once more the four steps listed sequentially
in Sect. 7.1, this time with considerable analytical complications.
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Fig. 7.4 The Mindlin
Problem

7.3.1 The Stress Field

7.3.1.1 Steps (i) and (ii)

To determine the fields § and S over the whole space S, we make use of the solution
of the 3-D Kelvin Problem. From (6.25), with two appropriate changes in origin, we

deduce that
-« (z—a)? z—a
Sez(z,r) =— f 3 5 —(1-2v) 3 ,
8m(l —v) 1 P1

_ f (z—ay? z—a
Krr(z’r)__&r(l—y)(?) p? +(1_2V) p:]; )7

_f(l 2u)z—a
Spp(z,r) = 8r(l—v) )

_ f (z—a)’r z—a
EZV(Z7V)__87T(1_V)(3 p? _(1_2V) p:ls )7

and

3
§zz(z,r)= f (3(z+5a) -2 )z—l—a)

8m(l —v) o %
—~ . f (z+a)r? B Z4a
Srr(z,r) = R — (3 pg + (1 —-2v ) p2 )
§w¢(zv’) _ _f(l —2v)z+4a

87‘(‘(1 —Z/) pg
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2
S =—" (3(”?) " —2v>”3“),

8 (1 —v) P P

where

pl = m, p2 = \/m (7-14)

Component-wise summation plus restriction to the half-space HS * yield the field
S; at the boundary of HS™, the associated traction vector is:

§=—511(0,x2, x3)eq,
- a(2a?Q2 —v) + (x2 + x3)(1 —2v)
511(0,x2,x3)=—£ ( (2 ++3) ) (7.15)

(1-— V)(az—l—x% —I—x%)g

(cf. (7.4)).

7.3.1.2 Steps (iii) and (iv)

To elimiﬂpate the effect of the undesired surface traction (7.15), we have to superim-
pose to S a stress field

_ 400 oo B
S(x1, x2, x3) =/ / p(m, QG (x1, x1, x3; 1, ) dndC,
—oo J—o00

where G is the stress Green function associated with the Boussinesq stress SZ, and

where
ia(Zaz(Z —v)+ (0 + )1 -2vw)

4 (1 —V)(a2+772+C2)%

p(n, Q) = . (7.16)

(cf. (7.15)). Hereafter, we exemplify the construction of S, acumbersome task indeed,
by undertaking it for the component Sy;.
The integral in question is:

_ +o0 +o0 .
S11(x1, x2, x3) =/ / p(, Q) G (x1, x1,x3; 1, Q) dndc. (7.17)
—00 —00

where, in view of (5.62)1,
3 xj

2T (2 4 (=) + (3 — O2)F

6]B](x17-x17-x3; 777 C) = -
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We have been unable to come up with an explicit evaluation for long, until we found
the following circuitous route. !

We recall from Sect.5.8 that the Boussinesq stress field can be given the
Boussinesq-Papkovitch-Neuber representation (A.16) in terms of two harmonic func-
tions 18 and ¢?. In particular, component Sﬁ admits the representation (5.77), that
we here recall for the reader’s convenience:

1
St =1 A=y — ¢l —xvh)),

— UV
where

1 1—2v
wB:?p’ f = ——loglri +p), pPi=xf 43 43

Accordingly, the associated stress Green function Gﬁ turns out to be:

B 1
Gh = m(z(l — V)Y11 = Y201 — X1YL11),
where

Y1 =1 (xn, X2, 351, ) 1= P (x1, x0 — 1, x3 = 0,

Y2 = (x1, x2, X351, €) = PP (x1, x2 — 1, x3 — O).

And, the stress component S1; we are looking for can be given the following form:

_ 1 — "
S = :(2(1 — Y =P — ¥ ),

where the harmonic functions ¢ and % have the following expressions in terms of
the harmonic functions v; and ~;:

1/J=/ p(n, OA1(x1, x1, X351, ¢) dndc,

aH+

¢=/ p(n, O)72(x1, x1, X351, ¢) dndc. (7.18)
aH+

Thus, in place of the awkward integral (7.17), our task is to compute the inte-
grals (7.18). This is doable, with the use of certain well-known properties of harmonic
functions.

I 'We are indebted to Professor G. Tarantello for many useful conversations on the matters; our
techniques are akin to those used in [4] and [6].
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To begin with, recall (from [7], say) Green’s second identity:

ov Ou
Av —vAu = — -V — 7.1
/Qu v —vAu / uan van, (7.19)

where 1 and v are scalar fields defined over region €2, whose boundary OS2 has an a.e.
well-defined outward normal n. We apply this identity for @ = HS™, u a harmonic
function, and v the solution I" of the boundary-value problem:

(7.20)

AT (x1,x2,x3) = 6(x1 +a, x2,x3) in HSY,
I(xp,x1,x3) =0 on JHST,

where 0(x; + a, x2, x3) is the Dirac delta function (see Sect. A.1) centered at point
X = o0 + aep, namely,

1 1
\/(xl—a)z—i—xz—i—xg \/(x1+a)2+x2+x3

I'=T(x1,x,x3) =

we find:

mﬂ+&MJ9=/ an() uhno (7.21)
OHST

Moreover, function p in (7.16) can be written as follows in terms of the normal
derivative of I":

)

. )|
daox, X1, X2, X3

f

21— ) xS

p(n, Q) = 0nd)

With this, integrals (7.18) take the convenient form:

— f _or 9 / _or
= —— [2(1 — - g—
¢(X]’ 2 X3) 2(1 - I/) ( ( V) OH+ n 8x1 aaa OH+ n 5)61

(7.22)
and
> _ / B / _ar
Plot ) = =gy (209 Ma—xl e e P57):
(7.23)

To evaluate the integrals in the right sides of (7.22) and (7.23), we make use of (7.21)
and find:


http://dx.doi.org/10.1007/978-3-319-01258-2_1

7.3 The Mindlin Problem 145

_or -~
/ A =81 +a, x2, x3),
oH+  Oxy

_or
e N2m— =" (x1 +a,x2,x3),

Ox
whence
— ffaxi4+a) 1—-v
/l/) = — 3 + ’
2w 2p;5 P2
a(x; +a
E:—i (1—3)+(1—2y)10g(x1+a+p2 .
2w 2p;5

All in all, the first component of the stress tensor field solving the Mindlin Problem
is:

i I [ 0=wx-a (-2 -0 3n-a)
1 8r(l —v) p? pg p?
33 —4v)x(x1 +a)? —3a(x; +a)(5x1 —a)  30ax;(x; + a)3)
2] P2

(7.24)

(p1 and py are defined in (7.14)).
At the expenses of completely similar long computations, the remaining stress
components are found to be:

i _ f (1-2)@z—a) (1-2v)(z+7a) +4(1—y)(1—zy)
T 8(l —v) 0 n p2(p2+z+a)
3ri(z—a)  6a(l —2v)(z+a)? — 6a%(z +a) — 33 — 4)r2(z — a)
—_ 5 + 3
P1 P2
30ar?z(z +a))
e ]
%)

SMi_f(l_ZV) (Z—a)+(3—4u)(z+a)—6a_ 4(1 —v)
o srl =\ A n p2(p2 + 2+ a)

N 6a(z +a)>  6a’(z +a)
P (1=20p3 )
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mi_JT -2 1-2 3G-a 30az(+a)
= 81— v) P P I3 P
33 -4 ~3a(3
33 -4 +csz) a(3z +a)). (7.25)
1)

Note that, the Boussinesq stress (5.62) is recovered for a = 0.

7.3.2 The Strain and Displacement Fields

The Mindlin displacement strain field is found by insertion of the stress represen-
tations (7.24) and (7.25) into the inverse constitutive equation (2.45). After some
algebraic manipulations, one finds:

(—167G(1 — v)(1 +v) f~HEM

B 3(z—a) (a2 —2az —vrt + zz)

I3
30az(a+z) (a*+2az—vr? 472 3
+ (at2) ( : )——5(a3(41/2—1)+a2(121/2z+z)
%) 1)

ta (1/(4V — 324 (8u2 tdy— 1) z2) ¥ (dv—3)z (z2 - wz))

(@@ +10v—1)+ H2-2w+1)2) ) (@*-1)z—0a)
P - P

+@Qv -1

’

(167(1 —v)Gf~HEM!
_ —6a*(a +2) — 3(4v —3)r’(a — 2) + 6a(l — 2v)(a + 2)?

P
N 3r’a—z) 30ar’za+z) 4w -DQv-1)  Qv-1)(a—2)
P X p2(a+p2+2) I
N Qv—D(Ta+z) v(3a=2(a®=2az+r’+2%)
n W+ Dpy
v (30az(a + z) (a® + 2az +r* + 22))
v+ I)PZ
v (3 (a*@r+1)+a* v — 5)z+a ((4v — 3)r? = 3z2) — (4v — 3)z (r2 + 22)))

v+ Dp3
_v(@Qu-D@@r+ 1)+ @ —3)7)  Qv—Da—2)
v+ Dp3 W+ Dp3

’
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(16w (1 — )G HEY!

2 _
— (-2 (_ 6a (as—i- 2) 4(v—1)
1253 P2 (a + P2+ 2)

— — 2 —_
L B-4@+a) ~6a , 6a@+2)’  z a)

P ” Pi

3v(a —2) (a2 —2az+r+ zz)
B v+ I)P?

30vaz(a + z) (a2 +2az+r% + zz)
i W+ ]

3v(@@v+ 1) +a’@Bv—5z+a(@v—3)r?—322) — (4v—3)z (r? + %))
+ v+ 1)p§

3vQRr—D@@rv+11)+ @v—-3)z2) vQRr—1)(a—2)
B v+ 3 W+l

and

(167G (1 —v)(1 +v) f~HEM!
(a—2) (a21/ +a(vr +r —2vz) + vr? — v+ Drz+ sz)

=-3

5
Pl
3 (a3u(41/+l)+a2((u + )r +v@v — 5)z)+av ((41/ — 3)r2 +4(w + Drz — 3z2))
+ 5
%)
3 (—(41/ ~3)z (Vr2 —w+rz+ 1/22))
+ 5
1)
30az(a + z) (azy —a(vr +r —2vz) + vr? — v+ Drz+ sz)
+
7
B Qr—-Dw@@v+11)+ @v —-3)z2) + v+ Dr)
”
n Qv — 1) (—av+vr+r+vz)

n

Note that, if @« = 0, the deformation field reduces to Boussinesq’s, as given by (5.65).

To find the displacement field, we could follow a by now familiar course, and
exploit the compatibility equation (2.9) as we did in SubSect.7.2.2. However, we
prefer to perform this task by employing the same procedure we adopted for the
stress field, namely,

(i) we superimpose the Kelvin displacements & and # corresponding to the stress
fields § and S defined in Sect.7.3.1;
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(ii) we consider the restriction # to HS™ of the above point-wise superposition,
and we further superimpose to it the displacement field @, that we determine by
means of (7.18) and (5.76).

The outcome is the Mindlin displacement field, in cylindrical coordinates:

JMi fr z—a (B-4)z-a) 4d-v)d-2v)
foaerG -\ p I p2(p2 +z+a)
6az(z +
+ aZ(ZS a) )
1)
i _ f 3—4u+8(1—1/)2—(3—4u)+(z—3a)2
16m G(1 —v) P1 P2 141

3—4)(z+a) —2a 6az(z + a)?
+( )(Z3 ) 2, z(z5 )
153 123
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