
Chapter 6
The Kelvin Problem

Lord Kelvin (William Thompson, 1824–1907) solved the problem that was later
named after him in 1848 [6].1 The problem consists in finding the equilibrium state
of a linearly elastic, isotropic material body occupying the whole space and being
subject to a point load (Fig. 6.1).

6.1 Solution by Juxtaposition

The plane version of Kelvin’s problem we study in the next section is a problem
formulated on a plane orthogonal to a uniform line load (Fig. 6.2). As far as the
applied loads are concerned, both the Kelvin Problem and its plane version can be
regarded as the juxtaposition of two anti-mirror symmetric problems: two Boussinesq
problems in the case of the 3-D Kelvin Problem, either two Boussinesq-Flamant or
two plane Cerruti problems in the case of the 2-D Kelvin problem (Fig. 6.3; the
Cerruti Problem is treated in Chap. 8).

6.1.1 Continuity Conditions at Sutures

Unfortunately, superposition of elastic states does not yield the desired Kelvin state,
because it does not guarantee a ‘seamless suture’ over the common boundary. For
this, two continuity conditions should be satisfied pointwise, the one for the traction
field, the other for the displacement field2:

[[Sn]] = 0, [[u]] = 02.

1 An exposition of Kelvin’s solution tailored after Love’s [2] is found in the Appendix, Sect. A.6.
2 Consistent with definition (1.19), here [[Ψ ]] := Ψ + − Ψ − denotes the jump of the field Ψ at a
suture plane, in terms of the limits Ψ ± of Ψ when the point of interest is attained from one or the
other part of that plane.
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Fig. 6.1 The Kelvin Problem
(this figure is taken from [1])

Fig. 6.2 The plane Kelvin
problem

Juxtaposition of anti-mirror symmetric elastic states complies with the first condition
trivially, because tractions are null all over the common boundary. On recalling
the form of Flamant and Boussinesq displacement fields at z = 0, specified by,
respectively, (4.35) and (5.72), we see that, while in both cases continuity of vertical
displacements is gratis, horizontal components do jump:

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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B-F

Fig. 6.3 Juxtaposition of loads and stress fields for two plane anti-mirror symmetric Boussinesq-
Flamant and Cerruti Problems (this figure has been adapted from [4])

[[
uF · e2

]]
z=0

= −(1 − 2ν)
f

E0(1 − ν)
sgn x2 ,

[[
uB · h

]]
z=0

= −(1 − 2ν)
f

2πG
r−1;

thus, solving the Kelvin Problem by juxtaposition is impossible.
Nevertheless, we notice that, in both cases, continuity of horizontal components

could be achieved for ν = 1/2. This limit situation is excluded by the third of the
inequalities (2.44), guaranteeing positivity of the elastic energy density stored by a
compressible linearly elastic isotropic material. We see from (2.42) that, given the
stress field and then tr S, the corresponding volume dilatation, measured by tr E,
approaches zero when ν → 1/2, i.e., in the so-called incompressibility limit.3 This
fact prompts the expectation that, for incompressible linearly elastic materials, the
Kelvin Problem be solvable by juxtaposition of two anti-mirror symmetric Boussi-
nesq Problems for materials in the same class. We leave for the reader a task that is
easy, after we solve the Boussinesq Problem for incompressible materials in the next
subsection.

6.1.2 Conditional Solvability: The Boussinesq Problem
for Incompressible Materials

An elasticity problem is solved when the relative elastic state—that is, the triplet
(u, E, S) of displacement, deformation and stress fields—is known. When an internal
constraint prevails—that is, an a priori limitation on admissible deformations is
posed—it would be desirable to deduce the elastic state from the elastic state of the

3 We also see from (2.47) that, under the same circumstances, for the stored energy to stay finite
the volume changes must become smaller and smaller as ν approaches 1/2.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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corresponding unconstrained problem. In the present case, incompressibility is the
internal constraint we deal with, and we would like to give a precise meaning to the
following formal writing:

(u, E, S)inc = lim
ν→1/2

(u, E, S).

Now, the solution of a linear elasticity problem depends with continuity on data,
that is, on the information we have about: (i) the geometry of the region on which
the problem is formulated; (ii) the nature of the material filling that region; (iii) the
applied loads; (iv) the boundary conditions. The value of the Poisson modulus is a
datum, on which the solution depends in general with continuity, as it is possible to
see, for instance, in (4.37) and (5.70). Therefore, it makes sense to expect that the
displacement field for the incompressible Boussinesq Problem be obtained by taking
the limit for ν → 1/2 of the same field in the compressible case, which is:

uB
inc = f

4πG
ρ−1((cos2 ϑ + 1)e1 + | sin ϑ| cos ϑ h). (6.1)

Moreover, given that the operations of taking a spatial gradient and the incompress-
ibility limit commute, we have from (5.71) that

(E B
inc)zz = f

4πG
ρ−2 cos ϑ(−3 cos2 ϑ + 1),

(E B
inc)rr = f

4πG
ρ−2 cos ϑ(−3 sin2 ϑ + 1),

(E B
inc)ϕϕ = f

4πG
ρ−2 cos ϑ,

(E B
inc)zr = − 3 f

4πG
ρ−2 cos2 ϑ| sin ϑ|.

It is easily checked that
tr EB

inc = 0;

thus, the strain field EB
inc is deviatoric:4

EB
inc = dev EB

inc.

On recalling that cos ϑ = ρ−1z, it is equally easy to see that, for z = 0,

4 Needless to say, the same developments follow by an application of definition (2.2)2 to the field
(6.1). Recall that each symmetric tensor A can be additively split into uniquely defined deviatoric
and spheric parts:

A = dev A + sph A, sph A := 1

3
tr A, dev A := A − sph A.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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EB
inc(0, r) ≡ 0, (6.2)

Finding Sinc requires something more than taking a limit: an ad hoc modeling
assumption is needed.

The constitutive Eq. (2.46)2 for a compressible isotropic material can be written
as follows:

S = 2G
(

dev E + 1 + ν

1 − 2ν
sph E

)
. (6.3)

In the incompressibility limit, the value of G is kept fixed, while both (1 − 2ν) and
sph E tend to null; it is then necessary to give the limit of (1−2ν)−1sph E a meaning.
We assume that a finite limit exists:

lim
ν→1/2

1 + ν

1 − 2ν
sph E = πI,

with the scalar-valued field π constitutively indetermined. Accordingly, we replace
(6.3) by the constitutive equation:

S = 2G dev E + πI,

describing the mechanical response of a incompressible isotropic material, and we
write, provisionally,

SB
inc = 2G dev EB

inc + πI.

The equilibrium pressure field is determined by requiring that the stress field SB
inc be

divergenceless in the interior of HS+, a condition that reads:

∇π̂(z, r) = −2G div Ê
B
inc(z, r) for z, r > 0,

and by satisfying the boundary condition (5.15), which, in view of (6.2), reduces to:

π(0, r) = 0, r > 0.

Remark 6.1 A material is constrained whenever some deformations are deemed
constitutively impossible by requesting that the strain measure E satisfy an algebraic
limitation of the following type:

V · E = 0, (6.4)

for a given constraint tensor V ∈ Sym. For a constrained material, it is customary
to decompose the stress tensor additively:

S = S(A) + S(R),

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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with the active stress S(A) determined by a tensor-valued constitutive function,
defined on A := {E | V · E = 0} , the subspace of Sym composed by all admis-
sible deformations, and with the reactive stress S(R) (i.e., the stress necessary to
maintain the stipulated kinematic constraint), characterized by the condition that the
work spent on whatever admissible deformation be null:

S(R) · E = 0, ∀ E ∈ A.

This last condition is equivalent to the following representation of the reactive stress:

S(R) = σ(R)V,

where σ(R) a constitutively indeterminate scalar multiplier (e.g., for V = I, σ(R) =
π).5

Remark 6.2 The response symmetry of a constrained material is affected by the
nature of the internal constraints, if any. The internal constraints compatible with
isotropy are three: two are nontrivial, incompressibility and shape preservation, for
which it is required that dev E = 0; one is trivial, rigidity, in which case the choice
of a constraint tensor in (6.4) is arbitrary, and hence E = 0; for a rigid material, the
active stress is null, all stress is of reactive nature.

6.2 The 2-D Kelvin Problem

Suppose that a constant line load f = f e1 (with dim( f ) = FL−1) is applied along
the x3-axis (Fig. 6.2). To find the relative equilibrium state, our plan is:
(i) to individuate a large class of two-dimensional balanced stress fields, that is to
say, stress fields of the form (4.8) that solve the distributional equilibrium equation

div S(x) + f δ(o)e1 = 0 for x ∈ H; (6.5)

(ii) to add to each of such stress fields an auxiliary stress field:

S(aux) = S33e3 ⊗ e3, S33 = ν(S11 + S22), (6.6)

so as to obtain a family of three-dimensional stress fields, among which to choose,
by means of condition (2.69), those compatible with the existence of a state of plane
strain and deformation in the whole space;
(iii) to construct such strain and deformation states.

5 More about internal constraint in linear elasticity is found in [3], Chapter III, Sections 17 and 18.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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6.2.1 Balanced Stress Fields

We recall that a locally integrable stress field S being divergenceless over H \ o is
said to solve equation (6.5) in the sense of distributions over H if

∫

H
S · ∇v = f v(o) · e1 for all test vector fields v ∈ C∞

c (H,V(2)); (6.7)

here, as the notation suggests, a test vector field is a C∞ field with compact support,
defined over H and taking its values in the 2-D vector space V(2), the translation
space of H. The direct mechanical interpretation of a condition of this type is that,
for a stress field to balance the applied loads, the stress working must equal the load
working, for whatever test velocity field.6 We shall now derive a version of this
condition that allows for a different and more specific mechanical interpretation.

For each fixed test field v, let Dρ be a disk of radius ρ centered at o and containing
the support of v, and let Dε be a smaller disk, also centered at o. Then,

∫

H
S · ∇v =

∫

Dρ

S · ∇v =
∫

Dε

S · ∇v +
∫

Dρ\Dε

S · ∇v.

Given that S is integrable and ∇v is smooth,

lim
ε→0

∫

Dε

S · ∇v = 0.

Moreover, in view of the identity

S · ∇v = div (ST v) − v · div S,

the divergence theorem, the fact that supp(v) ⊂ Dρ, and the fact that div S is null
over H \ o, we have that

∫

Dρ\Dε

S · ∇v =
∫

∂(Dρ\Dε)

Sn · v −
∫

Dρ\Dε

v · div S = −
∫

∂Dε

Sn · v.

Therefore, for each admissible test field, condition (6.7) can be given the provisional
form

lim
ε→0

( ∫

∂Dε

Sn · v
)

+ f v(o) · e1 = 0.

Note that

6 Alternative terminological choices are ‘power’ (or ‘power expenditure’) for ‘working’ and ‘virtual’
for ‘test’; an alternative version of the italicized sentence above would read: the stress power equals
the load power for whatever virtual velocity field.
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∫

∂Dε

Sn · v =
∫ +π

−π
εS(o + ε̂e(ϑ))̂e(ϑ) · v(o + ε̂e(ϑ)) dϑ.

Thus, if the following condition holds:
(A) the vector field ϑ 
→ ε̂S(o + ε̂e(ϑ))̂e(ϑ) is independent of ε,
then

lim
ε→0

( ∫

∂Dε

Sn · v
)

=
( ∫ +π

−π
ε̂S(ε,ϑ)̂e(ϑ) dϑ

)
· v(o),

and (6.7) can be given the final form

∫

∂Dε

Sn + f e1 = 0.

The mechanical interpretation of this condition on the stress field—that the diffused
contact force over the periphery of any disk balances the concentrated force applied
at its center—can be seen as a counterpart of the mathematical interpretation of
condition (6.5)—that the corresponding balanced stress field has divergence measure
supported at the point where the concentrated force is applied.

It is not difficult to see that each stress field of the one-parameter family

S = Ŝ(ρ,ϑ; e1) = ρ−1(α0 cos ϑ ê(ϑ) ⊗ ê (ϑ) + γ0 cos ϑ ê ′(ϑ) ⊗ ê ′(ϑ)

+ γ0 sin ϑ( ê(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê (ϑ))), α0 − γ0 = − f

π
, (6.8)

fulfills condition (A) and balances the applied load. In particular, the second of (6.8)
follows from the balance of a body part in the form of a disk centered at the origin,
of arbitrary radius ρ: since

ρSe = α0 cos ϑe + γ0 sin ϑe ′, (6.9)

an easy calculation shows that

∫

∂Dρ

Se = − f e1 (6.10)

(cf. e.g., [5], Section 78).

Remark 6.3 With the use of (6.8)2, it is not difficult to transform (6.9)2 into

Ŝ(ρ,ϑ; e1)e(ϑ) = ρ−1
(
α0̂e(2ϑ) + f

π
sin ϑ ê ′(ϑ)

)
,

which allows for an easier visualization of the stress vector at any point of ∂Dρ; note
that the first addendum does not contribute to the integral in (6.10).
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Remark 6.4 The stress fields (6.8) have the form (4.8). Condition (4.9) has been
dropped, because it makes no sense for the full-plane domain where Kelvin problem
is formulated. The choices of â and ĉ reflect the expected parities of these two
functions. Choosing â(ϑ) = sin ϑ = ĉ(ϑ) leads to the Kelvin stress fields for the
load f = f e2, namely,

Ŝ(ρ,ϑ; e2) = ρ−1(α0 sin ϑ ê(ϑ) ⊗ ê(ϑ) − γ0 sin ϑ ê ′(ϑ) ⊗ ê ′(ϑ)

+ γ0 cos ϑ(̂e(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê(ϑ))), α0 + γ0 = − f

π
.

6.2.2 Compatible Stress Fields

As anticipated, we now seek what stress fields of the type (6.8) satisfy the compati-
bility condition (2.69). This is quickly done. Firstly, from (6.8) we deduce that

tr S = (α0 + γ0)ρ
−1 cos ϑ.

Then, with the use of the last of (3.19), we find that

Δ(ρ−1 cos ϑ) = 0.

We then conclude, by taking (6.6) into account, that each of the stress fields of the
one-parameter family

S̃ = S + ν(tr S)e3 ⊗ e3,

is compatible with a state of plane strain and plane displacement, to be determined
in the next subsection.

6.2.3 Strain and Displacements Fields

The strain field solving the plane Kelvin problem is obtained by inserting the stress
field (6.8) into the inverse constitutive equation (2.57). One finds:

E = 1

E0
ρ−1((α0 − ν0γ0) cos ϑ e ⊗ e + (γ0 − ν0α0) cos ϑ e′ ⊗ e′

+ (1 + ν0)γ0 sin ϑ(e ⊗ e′ + e′ ⊗ e)).

To determine the displacement field, one has to solve the following system of
PDEs:

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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uρ,ρ = ρ−1 α0 − ν0γ0

E0
cos ϑ,

uϑ,ϑ + uρ = γ0 − ν0α0

E0
cos ϑ, (6.11)

uϑ,ρ + ρ−1(uρ,ϑ − uϑ) = ρ−1 2(1 + ν0)

E0
γ0 sin ϑ,

where the unknown fields

uρ := u · e = ûρ(ρ,ϑ), uϑ := u · e′ = ûϑ(ρ,ϑ),

must satisfy the intrinsic symmetry conditions of the plane Kelvin problem and
therefore be such that

ûρ(ρ,ϑ) = ûρ(ρ,−ϑ), ûϑ(ρ,ϑ) = −ûϑ(ρ,−ϑ). (6.12)

The integration of (6.11)1 yields:

ûρ(ρ,ϑ) = α0 − ν0γ0

E0
log ρ cos ϑ + v̂(ϑ), (6.13)

with v̂ an arbitrary even function, so as to satisfy condition (6.12)1. With this provi-
sional representation for ûρ, integration of (6.11)2 yields:

ûϑ(ρ,ϑ) = −α0 − ν0γ0

E0
log ρ sin ϑ − V̂ (ϑ) + γ0 − ν0α0

E0
sin ϑ, (6.14)

where V̂ is a primitive of v̂, and hence is odd. The addition of an arbitrary function
of ρ to this expression of ûϑ is forbidden by condition (6.12)2. Moreover, the third
of (6.11) determines v̂: on inserting (6.13) and (6.14) into it, we find that

−α0 − ν0γ0

E0
sin ϑ + v̂′(ϑ) + V̂ (ϑ) − γ0 − ν0α0

E0
sin ϑ = 2(1 + ν0)

E0
γ0 sin ϑ,

or rather, after differentiation and term rearrangement,

v̂′′(ϑ) + v̂(ϑ) = (3 + ν0)γ0 + (1 − ν0)α0

E0
cos ϑ.

The even solutions of this equation are:

v̂(ϑ) = v0 cos ϑ + 1

2E0
((3 + ν0)γ0 + (1 − ν0)α0)ϑ sin ϑ;

their primitives are:
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V̂ (ϑ) = v0 sin ϑ − 1

2E0
((3 + ν0)γ0 + (1 − ν0)α0)(ϑ cos ϑ − sin ϑ). (6.15)

In addition to the parity requirements specified by (6.12), the displacement field
must obey the ‘glueing condition’:

u(ρ,−π) = u(ρ,+π),

which, upon fiddling a bit with relations (6.13)–(6.15), is found equivalent to the
scalar condition V̂ (π) = 0 , or rather:

(3 + ν0)γ0 + (1 − ν0)α0 = 0;

together with (6.8)2, this condition allows to determine the two constants α0 and γ0:

α0 = − f

4π
(3 + ν0), γ0 = f

4π
(1 − ν0).

In conclusion, the plane Kelvin problem is solved by the displacement field:

u = ûρ(ρ,ϑ)e(ϑ) + ûϑ(ρ,ϑ)e′(ϑ),

with

ûρ(ρ,ϑ) = f

4π E0
(3 + ν2

0 ) log ρ cos ϑ,

ûϑ(ρ,ϑ) = f

4π E0

( − (3 + ν2
0 ) log ρ + 1 + ν0 + 3ν2

0

)
sin ϑ

(we have disposed of the rigid displacement:

urig = v0
(

cos ϑe(ϑ) − sin ϑe′(ϑ)
) = v0 e1

by setting to null the constant v0); the corresponding stress field is:

S = Sρρ(ρ,ϑ) ê(ϑ) ⊗ ê(ϑ) + Sϑϑ(ρ,ϑ) ê ′(ϑ) ⊗ ê ′(ϑ)

+ Sρϑ(ρ,ϑ)
(̂
e(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê(ϑ)

)
, (6.16)

with

Sρρ = − f

4π
(3 + ν0)ρ

−1 cos ϑ,

Sϑϑ = f

4π
(1 − ν0)ρ

−1 cos ϑ, (6.17)

Sρϑ = f

4π
(1 − ν0)ρ

−1 sin ϑ.
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Remark 6.5 In the expression (4.37) for the displacement field of the Flamant
Problem, there is a term proportional to ϑ cos ϑ, that is, of the same kind of the
term we just eliminated by imposing the ‘glueing condition’. Actually, in that prob-
lem, this condition does not apply, because all (displacement, strain, stress) fields
are defined for ϑ variable in the interval [−π/2,+π/2]. This remark prompts us
to underline a relevant difference in the posing of the Boussinesq-Flamant Problem
and the plane Kelvin Problem. Although the equilibrium equations are the same, the
domains on which the two problems are formulated are different. On the one hand,
the need to satisfy the boundary conditions prevailing on the plane z = 0 reduces
the class of balanced and compatible stress fields for the Flamant Problem to a sub-
class of that for the Kelvin Problem; on the other hand, in the latter problem, the
larger freedom in the choice of stress fields is compensated by an additional kine-
matic constraint, the glueing condition, allowing for the determination of the unique
solution.

6.3 The Kelvin Elastic State

6.3.1 The Stress Field

The Kelvin Problem is similar to Boussinesq’s in that it enjoys the same cylindrical
symmetry. Once again system (5.31) must be solved for a compatible stress field of
the form (5.12):

S = σ1e1 ⊗ e1 + σ2h ⊗ h + σ3h′ ⊗ h′ + σ4(e1 ⊗ h + h ⊗ e1),

with the sequential procedure introduced on Sect. 5.3.3; in particular, the first three
steps of that procedure allow to determine the expressions for the stress trace and the
stress components σ1, and σ4, that we here recall for the reader’s convenience:

α̃(ρ,ϑ) = α0 ρ−2 cos ϑ,

σ̃1(ρ,ϑ) = ρ−2 (̃τ1(ϑ) + β0 cos ϑ) , τ̃1(ϑ) = 3

2
α0 cos3 ϑ (6.18)

σ̃4(ρ,ϑ) = ρ−2 (̃τ4(ϑ) + β0| sin ϑ|) , τ̃4(ϑ) = 3

2
α0 cos2 ϑ | sin ϑ|.

What makes the difference are the values to assign to constants α0,β0. We begin to
gain information on this point by imposing that a ball centered at the origin be in
equilibrium:

f = −2π

∫ π

0
(cos ϑ τ̃1(ϑ) + | sin ϑ| τ̃4(ϑ))| sin ϑ| dϑ,

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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whence

α0 + 2β0 = − f

2π
. (6.19)

We also record an alternative way of writing (6.18):

α̂(z, r) = α0
z

ρ3 ,

σ̂1(z, r) = 3

2
α0

z3

ρ5
+ β0

z

ρ3 , (6.20)

σ̂4(z, r) = 3

2
α0

z2r

ρ5
+ β0

r

ρ3 .

The stress components σ2 and σ3 can be determined in the same way as for the
Boussinesq Problem. To take step 4 (Sect. 5.4.3), we replace (5.56) by

σ2 = −σ3 − σ1 + (1 + ν)α = −σ3 − 3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3 , (6.21)

with which the differential Eq. (5.57) is replaced by:

σ3 + (rσ3),r = −3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3 + 3α0 ν
r2z

ρ5
,

whose solution is:

σ̂3(z, r) = −(
α0(1 − 2ν) − β0

) z

ρ3 − (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 + g(z)

r2 ;

combining this with (6.21)2, we also have that

σ̂2(z, r) = −3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3

+ (
α0(1 − 2ν) − β0

) z

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 − g(z)

r2

(cf. the last two equations in Sect. 3.4 of [1]). It remains for us to complete the
determination of constants α0, β0, and to find the form of function g. We do it in a
manner completely similar to what we did for the same purpose in Sect. 5.6.

Firstly, by using the inverse constitutive law (2.45)2 and (6.20), we find that:

Eϕϕ = − 1

2G

((
α0(1 − ν) − β0

) z

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 − g(z)

r2

)
.

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Secondly, with this and (5.66)3, we obtain the following provisional expression for
the radial displacement of points on any chosen horizontal plane:

ur = r Eϕϕ = − 1

2G

((
α0(1 − ν) − β0

) zr

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2rρ3 − g(z)

r

)
.

(6.22)

Thirdly, we impose again the kinematic symmetry condition (5.60):

lim
r→0+ ur (z, r) = 0,

and deduce from it that:

α0(1 − 2ν) − 2β0 = 0, g(z) = 0; (6.23)

relations (6.19) and (6.23)1 imply that:

α0 = − f

4π(1 − ν)
, β0 = − f (1 − 2ν)

8π(1 − ν)
. (6.24)

In conclusion, the Kelvin stress components turn out to have the following expres-
sions:

σ̂K
1 (z, r) = − f

8π(1 − ν)

(
3

z3

ρ5
− (1 − 2ν)

z

ρ3

)
,

σ̂K
2 (z, r) = − f

8π(1 − ν)

(
3

zr2

ρ5
+ (1 − 2ν)

z

ρ3

)
,

σ̂K
3 (z, r) = f (1 − 2ν)

8π(1 − ν)

z

ρ3 , (6.25)

σ̂K
4 (z, r) = − f

8π(1 − ν)

(
3

z2r

ρ5
− (1 − 2ν)

z

ρ3

)

(cf. Equations (40) in [1]).

6.3.2 The Strain and Displacement Fields

To deduce the strain field in Kelvin’s problem, we combine the inverse constitutive
Eq. (2.45) with (6.25), and find:

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Ê K
zz(z, r) = − f

16πG(1 − ν)ρ5

(
4(1 + ν)z3 + (1 − 4ν)zr2),

Ê K
rr (z, r) = f

16πG(1 − ν)ρ5

(
z3 − 2zr2),

Ê K
ϕϕ(z, r) = f

16πG(1 − ν)

z

ρ3 , (6.26)

Ê K
zr (z, r) = − f

16πG(1 − ν)ρ5

(
2(2 − ν)z2r + (1 − 2ν)r3)

(cf. equations (41) in [1]). As to the displacement field, it is the matter of a straight-
forward calculation to substitute (6.24) into (6.22), to obtain, in view also of (6.23)2,
that

ûK
r (z, r) = f

16πG(1 − ν)

zr

ρ3 . (6.27)

Moreover, (5.66)1 and (6.26)1 imply that

uz = f

16πG(1 − ν)

(
2(1 − 2ν)

ρ
+ 1

ρ
+ z2

ρ

)
+ h(r).

To determine function h, we turn to (5.66)4, rewrite it in the form:

ur ,z = 2Ezr − uz,r ,

and observe that, for this relation to be consistent with both (6.26)4 and (6.27),
function h must have constant value. We take it null. In fact, vector h0 = h0e1
would represent an arbitrary translation of the whole space in the vertical direction,
the only rigid displacement compatible with the symmetries of the problem and an
inevitable indeterminacy, in the absence of Dirichlet boundary conditions, that we
lightheartedly dispose of. In conclusion,

ûK
z (z, r) = f

16πG(1 − ν)

(
2(1 − 2ν)

ρ
+ 1

ρ
+ z2

ρ

)
. (6.28)
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