
Chapter 2
Elements of Linear Elasticity

In this chapter we give a short and yet fairly complete exposition of the elemental
features of classic elasticity having relevance to our subject matters. This archetypal
theory, probably the most successful and best well-known theory of continuum
mechanics, has been given many excellent and exhaustive expositions. Among the
textbooks including an ample coverage of the problems we deal with in this book we
cite those by Love [8], Sokolnikoff [17], Malvern [9], Gladwell [5]; we also take from
the Handbuch article by Gurtin [6], whose use of direct notation we find appropriate
to avoid encumbering conceptual developments with component-wise expressions,
and from [11]. Interestingly, no matter how early in the history of elasticity the con-
sequences of concentrated loads were studied, some of those, namely, the occurrence
of concentrated contact interactions between adjacent body parte, went overlooked
until recently [12–16].

2.1 Displacement, Strain, Compatibility

The problems in linear elasticity we are interested in are formulated over an
unbounded region R of an Euclidean space E N of dimension N = 2 or 3, R being
either a half-space or the whole of E N ; as a rule, in the following we take N = 3.
Points x of R have a position vector

x := x − o

with respect to a chosen point of E N , the origin o; the components of x in an ortho-
normal Cartesian basis ei (i = 1, 2, 3) are the Cartesian coordinates xi :

x = xi ei .
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18 2 Elements of Linear Elasticity

In this formula, we used Einstein’s convention, consisting in leaving tacit the
summation operation over the index range whenever in a monomial term an index is
repeated twice: here, for example, this convention allows us to avoid the use of the
more cumbersome notation

x =
3∑

i=1

xi ei .

Here and henceforth in this book we drop the qualifier ‘orthogonal’ for the only type
of Cartesian coordinates we use.

In a deformation, a typical point x ∈ R is displaced to a position

y = x + u(x);

here, u is the vector field that describes the displacement from x to y ∈ E N . The
displacement gradient is the tensor field whose value at x is by definition the outcome
of taking the following limit:

lim
ε→0

ε−1(u(x + εh) − u(x)) =: (∇u(x))h, ∀ h ∈ V, (2.1)

where V is the N -dimensional vector space associated with E N . If h is a unit vector
(that is, if |h| = 1), the left side of the last relation defines the directional derivative
of u in the direction h:

∂hu := (∇u)h.

On representing vector u in the chosen basis:

u = ui ei ,

an application of definition (2.1) yields the cartesian components of ∇u:

(∇u)i j = ui, j,

where ,‘ j ’ denotes differentiation with respect to coordinate x j :

ui, j = ∂ui

∂x j
.

Just as every other second-order tensor, ∇u can be uniquely decomposed into the
sum of its symmetric part E and its skew-symmetric part W:
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∇u = E(u) + W(u),

E(u) := 1
2

(∇u + ∇uT
)
,

W(u) := 1
2

(∇u − ∇uT
)
.

(2.2)

The strain tensor E is a linear measure of the strain field associated with a
given displacement field: its equal-index components (E11 = u1,1 etc.) mea-
sure dilatation of fibers aligned with the Cartesian axes; the other components
(E12 = 1/2(u1,2 + u2,1 ) etc.) measure changes in the angle between fibers aligned
along different axes; more generally, if a are b two mutually orthogonal unit vectors,
Ea ·a measures the dilatation of a fiber aligned with a, and Ea ·b(= Eb ·a) measures
the change in angle between fibers in the directions a and b.1

The rotation tensor W furnishes a linear measure of the vorticity field associated
with a given displacement field. The role of W is made clearer if the operation of
taking the curl of u is introduced: this operation defines a vector field, denoted by
curl u, such that

W(u)a =: 1

2
curl u × a, ∀ a ∈ V. (2.3)

It follows from this definition that the Cartesian components of curl u are:

(curl u)i = ei jkuk, j , (2.4)

where ei jk is Ricci’s symbol.2 We set:

1 For more information about the role of E and, more generally, about the local analysis, both exact
and approximate, of a deformation see [11], Chap. I
2 In terms of the vectors composing the orthonormal Cartesian basis we chose, Kronecker’s symbol
δi j is given by

δi j := ei · e j,

whence

δi j =
{

1 if i = j
0 if i �= j

;
moreover, relation

ei jk := ei × e j · ek

defines Ricci’s symbol, so that

ei jk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 if all indices i, j, k are different and, in addition,
their sequence is an even-class permutation of 1, 2, 3;

0 if at least two of the indices i, j, k are equal;
−1 if all indices i, j, k are different and, in addition,

their sequence is an odd-class permutation of 1, 2, 3.

Ricci’s and Kronecker’s symbols are linked by the following relation:

ei jkelmk = δilδ jm − δimδ jl . (2.5)

By repeated saturation of pairs of free indices, two easy and often useful consequences of (2.5) are
obtained:
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w(u) := 1

2
curl u;

this definition identifies w as the vector associated with W by the well-known one-
to-one correspondence between V and Skw, the collection of all skew-symmetric
second-order tensors, namely,

V � v ↔ V ∈ Skw ⇔ Va = v × a, ∀ a ∈ V. (2.6)

It is not difficult to show that

Vik = ei jkv j , vi = 1

2
ei jk Vk j .

In view of definition (2.1), we write:

u(x) = u(x0) + E(x0)(x − x0) + W(x0)(x − x0) + O2(|x − x0|)
= u(x0) + w(x0) × (x − x0) + E(x0)(x − x0) + O2(|x − x0|),

where E(x0) = E(u(x0)) etc. The last equality makes clear what is meant by local
linear approximation of a given displacement field u, that is, by the approximation
of u to within terms of order O2(|x −x0|) in a neighbourhood of an arbitrarily chosen
interior point x0 of R): it consists of the sum of a rigid displacement

urig(x) := u(x0) + w(x0) × (x − x0),

made up of a translation u(x0) and of a rotation about x0 of vector w(x0), and of a
nonrigid displacement

ude f (x) = E(x0)(x − x0),

the only part of u inducing what in everyday language is called a ‘small deformation’.
In fact, E is often called the infinitesimal strain tensor, the modifier ‘strain’ being an
alternative to ‘deformation’ and the modifier ‘infinitesimal’ being used to distinguish
E = sym(∇u) from other local measures of deformation that, being exact, depend
nonlinearly on ∇u.

We introduce here some more notions to be used in what follows.
Lin is the space of all second-order tensors, regarded as linear transformations of V
into itself; Sym and Skw are two complementary subspaces of Lin, respectively, the

(i) formal multiplication of both sides by δ jm yields:

ei jkel jk = 2 δil ;
(ii) one more saturation gives:

ei jkei jk = 6 .
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subspace of symmetric (A = AT ) and skew-symmetric (A = −AT ) tensors. When
dim(V) = 3, dim(Lin) = 9, dim(Sym) = 6 and dim(Skw) = 3; when dim(V) = 2,
dim(Lin(2)) = 4, dim(Sym(2)) = 3 and dim(Skw(2)) = 1.

Remark 2.1 With the use of (2.6), it can be shown that the vector associated with
the skew-symmetric tensor (a⊗b−b⊗a) is b×a .3 Every skew-symmetric tensor
can be represented as the linear combination of the following tensors:

W1 = −e2 ⊗ e3 + e3 ⊗ e2,

W2 = −e3 ⊗ e1 + e1 ⊗ e3,

W3 = −e1 ⊗ e2 + e2 ⊗ e1,

(2.7)

where
W i ↔ ei .

Remark 2.2 The divergence of a vector field u is the scalar field

div u := tr (∇u);

it follows from this definition that

div u = tr E(u) = Eii = ui ,i .

Note that
div curl u = 0,

and that, for ϕ a scalar field,

curl ∇ϕ = 0 and div ∇ϕ = Δϕ. (2.8)

These two identities help to interpret a classical result in vector calculus, Helmholtz’s
Decomposition Theorem:

given any sufficiently smooth field u over a bounded regular region R, there are a
scalar field ϕ and a divergenceless vector field w over R such that

u = ∇ϕ + curl w;

if u ∈ C(R̄) ∩ C M (R), M ≥ 1, then both ϕ and w are of class C M (R).
Note that a straightforward application of (2.8) yields:

curl u = curl curl w and div u = Δϕ.

3 Recall that the symbol ⊗ signifies dyadic product, a notion introduced in the first footnote of
Sect. 1.3; the second-order tensor a ⊗ b is defined by specifying its linear action on vectors.

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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2.1.1 Compatibility

With each displacement field u of class C1(R) we can always associate a continuous
deformation field E such that

2 E = ∇u + ∇uT ; (2.9)

in components,
2Ei j = ui , j + u j ,i . (2.10)

This relation can also be regarded as the tensorial equation ruling the problem of
finding a displacement field u associated with a given strain field E. This problem
is overdetermined, because the three unknown fields ui are restricted by the six
scalar equations (2.10). Not that problems of this type have necessarily no solution.
However, for them the well-posedness issue (a. Are there solutions? b. If answer
to a is yes, how many are they? c. Do solutions depend continuously on data?)
can be discussed only after having checked that the assigned data satisfy certain a
priori solvability conditions called compatibility conditions. We now deduce such
conditions for the case of our current interest.

To begin with, we have to put together a curl notion for tensor-valued fields. We
do so by exploiting the definition given in (2.3) for vector-valued fields:

(curl A)a := curl (AT a), ∀ a ∈ V;

in components,
(curl A)i j = eipq A jq ,p.

If we now apply formally the operator curl on both sides of (2.9), we find4:

2 curl E = curl (∇u) + curl (∇uT ) = curl (∇uT ) = 2∇w. (2.11)

Taking the curl of (2.11), we arrive at the sought-for compatibility condition:

curl curl E = 0; (2.12)

in components,

4 That curl (∇u) = 0 follows from the definitions of (the two involved operators and) Ricci symbol:

(curl (∇u))i j = eipq (∇u) jq,p = eipq (u j,q ),p = eipq u j,qp = 0.

Furthermore, in view of (2.4),

(curl (∇uT ))i j = eipq (uq, j ),p = eipq uq, j p = (eipq uq,p), j = 2 wi, j .
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ei jkelmn E jm,kn = 0. (2.13)

If region R is simply connected, for each given symmetric-valued field E of class
C K (R), K ≥ 2 there is a class C K+1(R) displacement field u, which satisfies (2.9).5

The field u can be constructed by means of Cesàro’s formula:

ui (x) =
∫ x

x0

Ui j (y, x)dy j , Ui j (y, x) := Ei j (y)+(xk − yk)(Ei j ,k (y)− Ekj ,i (y)),

(2.14)
where the integral does not depend on the path that has been chosen in R to connect
a given point x0 with the typical point x . Needless to say, this formula determines u
to within an arbitrary rigid displacement.

Remark 2.3 The representation (1.8) for the displacement field in an elastic beam
subject solely to axial loads can be regarded as a minimal version of this general
formula: for e a unit vector parallel to the axis, the strain field is

E(z) = w′(z)e ⊗ e,

whence, by (2.14), U(z, ζ) ≡ E(ζ) and

u(z) =
∫ z

z0

(U(ζ)e) dζ =
(∫ z

z0

w′(ζ)dζ

)
e.

2.1.2 Plane Displacement Fields

A displacement field u is called plane whenever there is a Cartesian reference with
respect to which u admits the representation:

uα = uα(x1, x2), α = 1, 2, u3 ≡ 0, (2.15)

at any point x ∈ R.6 The corresponding strain state is:

Eαβ = 1

2
(uα,β + uβ,α ), E3i ≡ 0

(compare with (2.10)).

5 For a proof of this result, which is due to the great Italian elasticist Eugenio Beltrami (1835–1900),
who established it in 1889, see [6], Sect. 14, where various other results included in this section are
also proved.
6 When Greek indices are used, it is understood that they take the values 1 and 2; the range of Latin
indices is the set {1, 2, 3}.

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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Remark 2.4 For an example of plane displacement field, consider the rigid displace-
ment:

v = t + αW3 x = t + α e3 × x, t = tαeα, x = xαeα, (2.16)

consisting of a rotation of α radians about an axis of unit vector e3 and of a translation
t in the plane perpendicular to e3. It is easy to see that each field v of type (2.16)
solves the following differential system:

v1,1 = 0, v2,2 = 0, v1,2 + v2,1 = 0; (2.17)

as a matter of fact, in components relations (2.16) read:

v1 = t1 − α x2, v2 = t2 + α x1. (2.18)

If a rigid plane field whatsoever is added to any plane deformation field, the relative
strain state stays the same.

2.1.3 Plane Strain Fields

A strain field E is called plane whenever its component representation in a suitable
Cartesian reference is:

Eαβ = Eαβ(x1, x2), E3i ≡ 0. (2.19)

For such a field, the tensorial compatibility condition (2.12) shrinks to one scalar
relation:

2 E12,12 = E11,22 + E22,11; (2.20)

interestingly, of the six conditions (2.13) this is the one obtained when both free
indices are taken equal to 3.

Remark 2.5 For plane strain fields, Cesàro’s formula gives:

uα(x) =
∫ x

x0

Uαβ(y, x)dyβ,

Uαβ(y, x) = Eαβ(y) + (xγ − yγ)(Eαβ,γ (y) − Eγβ,α (y)).

The strain field associated with a plane displacement field is plane. We proceed
to give a direct proof of the converse statement. To begin with, a displacement field
u satisfying the last three relations (2.19) must be such that

u3,α + uα,3 = 0 (2.21)
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and that
u3,3 = 0,

that is, such that u3 be independent of x3:

u3 = u3(x1, x2). (2.22)

Relations (2.21) and (2.22) imply that

uα,33 = 0,

or rather, equivalently, that

uα = ûα(x1, x2) + x3 v̂α(x1, x2). (2.23)

On combining this preliminary representation for uα with what the first three relations
(2.19) require (namely, that each of the components Eαβ of E be indipendent of x3),
we infer that the vector field v must obey the differential relations (2.17), and hence
that it must have the form (2.18); we then set:

v1 = a1 − b x2, v2 = a2 + b x1. (2.24)

At this point, we insert representations (2.22), (2.23) and (2.24) into relations (2.21),
so as to obtain:

u3,1 + a1 − b x2 = 0, u3,2 + a2 + b x1 = 0, (2.25)

whence by differentiation we deduce that

u3,12 − b = 0, u3,21 + b = 0,

that is,
b = 0, u3,12 = 0.

With the use of the first result, we achieve a preliminary representation, more precise
than (2.23), for functions uα:

uα = ûα(x1, x2) + aαx3;

The definitive form we choose for such representation is:

u1 = u
̂

1(x1, x2) + t1 − a3 x2 + a1x3,

u2 = u
̂

2(x1, x2) + t2 + a3 x1 + a2x3, (2.26)
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where u
̂

, the part of û responsible for shape and/or volume changes, is distinguished
from the rigid part, the latter being of type (2.18). It is easy to check that the plane
field E(u

̂
) satisfies (2.20).

Now, given that b = 0, relations (2.25) have the following consequences:

(u3,1 +a1 = 0 ⇒) −a1x1 + c1(x2) = u3 = −a2x2 + c2(x1) (⇐ u3,2 +a2 = 0).

This double expression for u3 holds true for arbitrary values of the independent
variables x1, x2 provided

a1x1 + c2(x1) = a2x2 + c1(x2) = t3,

with t3 an arbitrary constant; hence,

u3(x1, x2) = t3 − (a1x1 + a2x2).

This expression is found compatible with (2.21) and (2.26) if a1 = a2 = 0.
In conclusion, given a plane strain field as in (2.19), the corresponding displace-

ment field consists of a plane field u
̂

such that

u
̂

α,β + u
̂

β,α = 2Eαβ

and of a rigid displacement field featuring an arbitrary translation and an arbitrary
small rotation about the third axis:

r = t + Ax, A = −AT , x = xαeα, (2.27)

where, on recalling (2.7)3, A = −a3(e1 ⊗ e2 − e2 ⊗ e1) = a3W .

2.2 Forces, Stress, Equilibrium

In continuum mechanics, a body is generally thought of as subject to distance and
contact actions on the part of its environment. No matter in what placement in
physical space a body is observed, both types of actions are customarily modeled as
diffuse: those at a distance as forces per unit volume, just as is done in the familiar
case of gravity; contact actions as forces per unit surface, on the basis of examples
like the pressure exerted by a fluid on a body immersed into it (the wind on a sail)
or containing it (the water on a glass).

In most cases, distance actions between disjoint parts of the same body are
neglected, as are the distance actions of a part on itself (e.g., self-gravitation). Dis-
tance actions at a typical interior body point x are specified by the value taken at

that point by an assigned vector field d̂; they are customarily split into inertial and
noninertial parts:
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d̂(x) = d̂
in

(x) + d̂
ni

(x), d̂
in

(x) := −ρ(x)ẍ,

where ρ(x) is the current mass density, and ẍ the acceleration, at x . In this book,
we shall never consider bodies in motion, and hence there will be no need to worry
about inertial forces.

In all cases, in addition to contact interactions of a body with its environment, adja-
cent body parts are presumed to have diffuse contact interactions, which are thought
of as accounting for the short-range forces between neighboring particles envisaged
by discrete mechanics. Mathematically, such contact interactions are described by
a vector field ĉ(·, ·) defined over the Cartesian product of the body’s closure times
the sphere of unit vectors: when evaluated at a point x of a common boundary surface
oriented by the unit normal n̂(x), such so-called stress-vector field is interpreted as
delivering the force ĉ(x, n̂(x)) per unit area exerted either by the environment over
the body or by the part lying on the positive side of the boundary surface over the
adjacent part.7

Concentrated external actions, under form of forces applied at interior or boundary
points, have also been considered; their mechanical effects are of central interest in
this book. As we shall see, when applied at a boundary point—as is the case with the
Flamant Problem we study in Chap. 4—they were regarded as limits of distributions
of contact actions localized in a surface neighborhood of that point, which was
made to shrink to null; similarly, when applied to an interior point, as in the case of
Kelvin Problem to be studied in Chap. 5, they were regarded as limits of distributions
of distance actions localized in a volume neighborhood of that point. Surprisingly
enough, the occurrence of concentrated contact interactions between adjacent body
parts went noticed until recently, when Flamant’s and other problems of the same
type were re-examined [12] (see also [13]).8

2.2.1 Cauchy’s Notion of Stress

A body acted upon by a force system (d, c) is said to occupy an equilibrium placement
B when it so happens that

7 It appears that the concept of diffused contact interactions between internal adjacent body parts
begun to condensate in Cauchy’s mind on the basis of a similarity with standard examples of diffused
contact loads exerted on a body by an environment of a different nature, such as the hydrostatic
pressure of a fluid on an immersed solid [3]. Cauchy’s model of internal contact interactions has
been applied without changes to contact interactions of a body with its exterior, with the stress-
vector mapping accounting for both. An implicit drawback of this practice is that no difference is
made between geometrical surfaces obtained by ideal cuttings and fabricated surfaces obtained by
actual cuttings [4]; moreover, the issue of boundary compatibility of a (body,environment) pair is
completely overlooked [1, 2].
8 The construction of an interaction theory general enough to allow for concentrated contact interac-
tions between adjacent body parts has been undertaken by Schuricht [15, 16]; among the intriguing
features of such a theory is the rethinking it involves of the body-part notion. In [14], examples are
given of interactions in cuspidate bodies that concentrate at the cusp point, regarded as a body part.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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∫

P
d · r +

∫

∂P
c · r = 0, (2.28)

for all parts P of B and for all rigid fields r as in (2.27) (here, as anticipated, d stands
for the noninertial distance force). By virtue of Cauchy’s Stress Theorem (see, e.g.,
[7], Sect. 14), it follows from (2.28), when written for an arbitrary translation t, that
the stress-vector mapping can be represented as follows:

ĉ(x, n) = Ŝ(x)n. (2.29)

in terms of a stress-tensor field Ŝ defined over the closure of B: the affine action of
Ŝ(x) over the sphere of unit vectors yields the stress vector on the triple infinity of
oriented planes through x . Conversely, given the stress-vector mapping ĉ(x, ·) at a
typical body point x and three mutually orthogonal unit vectors ni , the construct

Ŝ(x) =
3∑

i=1

ĉ(x, ni ) ⊗ ni (2.30)

defines the value at x of the stress-tensor field. Thus—and this is the main thrust
of Cauchy’s result—the information carried by the stress-vector and stress-tensor
mappings ĉ and Ŝ textitare essentially equivalent.

It follows from (2.28) and (2.29) that

∫

P
d +

∫

∂P
Sn = 0, ∀P ⊂ B,

whence, granted regularity,

div S + d = 0 in B. (2.31)

Moreover, it follows from (2.31) and (2.28), when written for an arbitrary rotation
A, that the stress field is symmetric-valued:

S = ST .

2.2.2 Free-Body Diagrams, Diffuse and Concentrated Forces

A feature of the equilibrium statement (2.28)—namely, that whatever part of an
equilibrated body must be in equilibrium as well—would be hardly contended by
anybody. The widespread and fruitful use of free-body diagrams in mechanics is
based on this assumption, and on the accompanying presumption that a body part,
when ideally isolated from the rest by a so-called Euler cut, would be in equilibrium if
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it were acted upon by external forces reproducing faithfully the forces, both external
and internal, it directly experiences in reality. Usually, the subbodies whose equi-
librium is characterized in this manner are imagined to have an everywhere smooth
boundary. Not always so in this book, where consideration of sharp-cornered parts
is at times necessary to exhibit the concentrations of contact forces that at times may
occur (see e.g. Fig. 4.8).

Concentrated forces, regarded as convenient idealizations of diffused loads
applied to a small part of a body’s boundary, are of common use in engineering
mechanics. To quote from a popular textbook, “the free-body diagram is the most
important single step in the solution of problems in mechanics” ([10], p. 104); “mod-
eling the action of forces” “exerted on the body to be isolated, by the body to be
removed” (ibid., p. 105; italics as in the original text) is a mandatory, preliminary
step; and those forces, especially but not exclusively in statics, are for most practical
purposes modeled as concentrated.

Strictly speaking, the equivalence in information content of (2.30) and (2.29)
holds true for diffused contact force and regular stress fields. In the next chapters, we
display and discuss situations when concentrated contact forces and singular stress
fields are in order. Precisely, first by inspection of a problem of pure statics, which is
the two-dimensional counterpart of the Flamant problem, then by inspection of the
three-dimensional problem Flamant solved, as well as those solved by Boussinesq,
Cerruti and Kelvin, we demonstrate per exempla that partwise equilibrium of a simple
continuous body may require that adjacent body parts exchange concentrated contact
forces.

We have seen that diffused contact loads are germane to contact interactions
between adjacent body parts, so much so that they are customarily described by one
and the same vector-valued mapping. Concentrated loads, applied at interior and
boundary points, have been often considered in continuum mechanics, and carefully
modeled mathematically (for the class of linearly elastic bodies, see [6], Sect. 52). We
see no reason why the germane notion of concentrated contact interactions should not
be introduced. They are not ubiquitous; in fact, they are a rather rare necessity. Let
us revert for a moment to engineering mechanics for guidance. A judicious practice
there is to make sure that the free-body diagram features all possible forces applied
to the isolated body; at times, we find out that balance and/or symmetry conditions
require that some of those forces be null. Likewise, in continuum mechanics, we
should contemplate concentrated contact interactions by default, because there are
cases, no matter how few, when they turn out to be crucial to guarantee partwise
equilibrium.

If concentrated contact interactions are considered, an interesting problem to
tackle is the conjectural equivalence in information of contact forces, regular and
singular, and the accompanying, somewhere singular, stress field. Luckily, concen-
trated forces occur ‘naturally’ in weak formulations of force-balance laws, be they
idealizations of applied loads or of contact interactions. In fact, in such formula-
tions, concentrated loads are as ‘natural’ as edges and vertices in the domain where
a boundary value problem is formulated. There is no need today to justify consid-
eration of concentrated forces, as was done over a century ago, by thinking of them

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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as limits of smooth distributions of volume or surface forces, just as there is no
need to round off a domain’s corners. In addition, weak formulations relieve us from
dealing with a delicate issue arising when sequences of approximating problems are
employed, namely, to investigate under what hypotheses an associated sequence of
smooth solutions has a unique limit.

2.3 The Stress Response to Strain

In classical elasticity, the stress response to strain is described by a linear mapping
of the collection of all symmetric tensors into itself:

Sym � E �→ S ∈ Sym, S = CE (Si j = Ci jhk Ehk), (2.32)

where the elasticity tensor C has the following index-pair symmetries:

Ci jhk = C j ihk = Ci jkh, Ci jhk = Chki j .

Collectively, these symmetries guarantee that

(i) all of the 34 = 81 Cartesian components of C are expressible in terms of only
21 of them, in general mutually independent;

(ii) there is a quadratic scalar-valued function defined over Sym:

Sym � E �→ σ ∈ R, σ = σ(E) = 1

2
E · CE = 1

2
Ci jhk Ei j Ehk, (2.33)

referred to as the strain energy per unit referential volume, such that

∂Eσ(E) = CE.

It follows from (2.32) and, respectively, (2.33) that, S = 0 and σ = 0 for E = 0.
It is when both the stress and the strain energy are null at a point—that is, when
the material is in a natural state at that point—that classical elasticity studies the
local response of a linearly elastic material to the various causes of deformation. For
reasons of physical plausibility, the strain energy is assumed to be positive definite,
i.e., such that

σ(E) ≥ 0, σ(E) = 0 ⇔ E = 0. (2.34)

This assumption is more than sufficient to guarantee that the constitutive mapping
(2.32) be invertible:

E = C
−1S. (2.35)
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2.3.1 Isotropic Materials

When a material’s response is “the same in whatever direction”, that material is said
isotropic. The elasticity tensor of an isotropic linearly elastic material is completely
determined by two parameters only, the so-called Lamé’s moduli λ and μ; the stress-
strain law has the following form:

S = 2μE + λ(tr E)I, Si j = 2μEi j + λ(Ehh)δi j (2.36)

(here I denotes the identity tensor), while the strain energy reads:

σ(E) = μ |E|2 + 1

2
λ(tr E)2 = μ Ei j Ei j + 1

2
λ(Ehh)2;

for (2.34) to hold, it is necessary and sufficient that

μ > 0, 3λ + 2μ > 0. (2.37)

It is not difficult to determine the form taken by the inverse constitutive equation
(2.35). Firstly, on taking the trace of (2.36), one obtains that

tr S = (3λ + 2μ)tr E; (2.38)

next, in view also of (2.37), one arrives at:

E = 1

2μ

(
S − λ

3λ + 2μ
(tr S)I

)
. (2.39)

Remark 2.6 For isotropic materials, the equilibrium equation (2.31) can be written
in terms of displacement as Louis Navier (1785–1836) did first:

μΔu + (λ + μ)∇(div u) + d = 0. (2.40)

In this equation, three differential operators appear: laplacian and divergence of a
vector field, and gradient of a scalar field. On recalling how these operators look like
in Cartesian components9:

(Δv)i = vi, j j , div v = vi,i , and (∇ϕ)i = ϕ,i,

9 The laplacian of a vector field v is the vector field that obtains by taking the divergence of the
gradient of v:

Δv = div (∇v);
its Cartesian components have the form just shown because (∇v)i j = vi, j and because, for V a
second-order tensor field, (div V)i = Vi j, j .
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the component version of Navier equation is easy to write:

μui , j j + (λ + μ)u j , j i + di = 0.

Remark 2.7 Let the distance forces be null. Then, on taking the divergence of Navier
equation, one finds:

(λ + 2μ)Δ(div u) = 0,

whence, given that
div u = tr E(u)

and that it follows from (2.37) that

λ + 2μ > 0,

one obtains
Δ(tr E(u)) = 0.

But, if tr E(u) has to be a harmonic function (that is, a function whose laplacian is
null), then tr S(u) must be harmonic as well, because of (2.38).10 We shall deduce this
condition again, in a different manner, in Sect. 2.4, where we study the compatibility
issue in terms of stresses.

2.3.2 Mechanical Interpretation of the Elastic Moduli

The role of the elastic moduli is clarified when one imagines to perform some typical
experiments, in each of which the one or the other modulus enters in a perspicuous
manner. In the first two experiments we are going to consider, we record what stress
accompanies a given strain according to the constitutive relation (2.36); in the third
one, the stress is assigned, and the corresponding strain is computed with the use of
(2.39).

(a) Simple shearing
For a, b two orthogonal vectors,

E = τ (a ⊗ b + b ⊗ a) ⇒ S = τ 2μ(a ⊗ b + b ⊗ a);

therefore,

2μ := b · Sa
b · Ea

,

10 Here, S(u) := 2μE(u) + λ(tr E(u))I .
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the shear modulus, measures the shear stress necessary to sustain a unit shearing
strain.

(b) Uniform dilatation

E = τI ⇒ S = τ (3λ + 2μ)I;

hence, the dilatation modulus:

3λ + 2μ := S · I
E · I

(2.41)

is proportional to the pressure 1/3(S · I) accompanying the volume change E · I.
(c) Uniaxial stress

Again, let a e b be two orthogonal vectors. Then,

S = τa ⊗ a ⇒ E = τ
1

2μ

(
a ⊗ a − λ

3λ + 2μ
I
)

.

The Young’s modulus

E := a · Sa
a · Ea

= μ(3λ + 2μ)

λ + μ

measures the axial stress necessary to cause a unit axial strain. The Poisson’s
modulus (also known as the lateral-contraction modulus)

ν := −b · Eb
a · Ea

= λ

2(λ + μ)

measures the transverse-to-axial strain ratio in an experiment where an axial
stress state is induced. The moduli E , ν and

G := μ

are those currently used in the (geo)technical applications of linear and isotropic
elasticity. We also note for later reference another expression for the dependence
of volume changes on pressure:

tr E = 1 − 2ν

E
tr S (2.42)

(cf. (2.41)).

Remark 2.8 As Lamé’s constitutive equation shows, two moduli characterize com-
pletely the response of an isotropic material. In fact, it is not difficult to see that the
three technical moduli are linked by the consistency condition
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E = 2(1 + ν)G. (2.43)

Remark 2.9 The positivity inequalities (2.37) imply that

E, G > 0, −1 < ν < 1/2 . (2.44)

Therefore, linearly elastic and isotropic materials that contract transversely when
axially extended (that is, materials for which 0 < ν < 1/2 ) have an E/G ratio
strictly included between 2 and 3; and, for those whose ν ∈ (−1,−1/2), to have
a Young’s modulus smaller (even much smaller) that their shear modulus does not
forbid the strain energy to be positive definite.

Remark 2.10 It is easy to express the Lamé moduli in terms of the technical moduli:

λ = 2ν

1 − 2ν
G = ν

(1 − 2ν)(1 + ν)
E, μ = G = 1

2(1 + ν)
E .

In particular, it follows from these relations that

3λ + 2μ = 1

1 − 2ν
E .

With the use of the technical moduli, the inverse constitutive equation (2.39) reads:

E = 1

E

(
(1 + ν)S − ν(tr S)I

)
= 1

2G

(
S − ν

1 + ν
(tr S)I

)
. (2.45)

Consequently, the equal-index components of E are exemplified by

E11 = 1

E

(
S11 − ν(S22 + S33)

)
,

and the components with different indices by

E12 = 1

2G
S12,

all the other components being obtained via a cyclic permutation of indices.
Continuing to use the technical moduli, the direct constitutive equation (2.36) and
the strain energy read, respectively,

S = E

1 + ν

(
E + ν

1 − 2ν
(tr E)I

)
= 2G

(
E + ν

1 − 2ν
(tr E)I

)
(2.46)

and

σ̃(E) = E

2(1 + ν)

(
|E|2 + ν

1 − 2ν
(tr E)2

)
. (2.47)
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Remark 2.11 When the extensional rigidity is constant, the differential Eq. (1.6) for
the axial deformations of a beam is:

w′′ + q

E A
= 0.

It is instructive to demonstrate the mutual consistency of the 3- and 1-D theories of
elasticity by ‘deducing’ (1.6) from Navier equation. This can be done as follows. As
in Remark 2.3, restrict attention to displacement fields of the form:

u(x) = w(x3)e3. (2.48)

Then,
Δu = w′′e3, div u = w′ ⇒ ∇(div u) = w′′e3,

and hence Eq. (2.40) reduces to

(λ + 2μ) w′′e3 + d = 0.

At this point, to conclude the announced deduction, it is enough to choose

d = q

A
e3

and to set
λ + 2μ = E . (2.49)

It remains for us to convince ourselves that the last position makes sense. Now, it is
easy to see that, whenever the strain state

E = τe3 ⊗ e3

corresponding to a displacement field (2.48) is induced in a linearly elastic isotropic
material, the stress state is

S = τ
(
(λ + 2μ)e3 ⊗ e3 + λ(e1 ⊗ e1 + e2 ⊗ e2)

)
.

Thus, the relative Young’a modulus:

E = e3 · Se3

e3 · Ee3

has just the expression (2.49).

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2


36 2 Elements of Linear Elasticity

2.3.3 Plane Stress Fields

A stress field S is said plane if there is a Cartesian frame where its representation
fulfills a set of conditions formally identical to the conditions (2.19) defining a plane
strain field, namely,

Sαβ = Sαβ(x1, x2), S3i = 0; (2.50)

therefore, it has the form:

S = S11(x1, x2)e1 ⊗ e1 + S12(x1, x2)(e1 ⊗ e2 + e2 ⊗ e1) + S22(x1, x2)e2 ⊗ e2.

A plane stress field is balanced for null distance forces if its divergence is null:

div S = 0, (div S)α = Sαβ,β = 0. (2.51)

In Sect. 4.2, we shall construct a general representation for those fields S that solve
(2.51).

In a linearly elastic isotropic body, a plane stress field induces a strain field that
is not plane in general, as an application of the response law (2.45) shows:

E11 = 1

E

(
S11 − νS22

)
, E22 = 1

E

(
S22 − νS11

)
, E12 = 1

2G
S12,

E3α = 0, E33 = − ν

E

(
S11 + S22

)
.

Quite similarly, a plane strain field does not induce a plane stress field in general,
because relations (2.36) and (2.33) imply not only that

S3α = 0, (2.52)

but also that

S33 = λ(E11 + E22) = νE

(1 + ν)(1 − 2ν)
(E11 + E22) �= 0, in general.

Note for later use that the last relation, when written in terms of stress components
and technical moduli, reads:

S33 = ν(S11 + S22). (2.53)

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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2.3.4 Plane Strain Fields Associated with Plane Stress Fields

Given a plane strain field, it is at times convenient to write the inverse constitutive
relation delivering its nonnull components in a fashion formally identical to (2.3.3):

E11 = 1

E0

(
S11 − ν0S22

)
, E22 = 1

E0

(
S22 − ν0S11

)
, E12 = 1

2G
S12, (2.54)

where

E0 := E

1 − ν2 , ν0 := ν

1 − ν
(2.55)

and hence11

E0 = 2(1 + ν0)G. (2.56)

A comparison with (2.54) permits to regard the plane strain state (2.3.3) as a part of
the strain state induced by a plane stress state in a body made of an isotropic material
whose technical moduli are E0, ν0, and G.

Given the plane stress {S11, S22, S12} and the component S33 associated with it
by the use of recipe (2.53), the corresponding plane strain is delivered by formulas
(2.54)–(2.55). Such a construction is going to be of the essence to solve the 2-D
version of Flamant problem with the method we propose.

Remark 2.12 Relation (2.54) can be given a version free from the specialty inherent
to the use of Cartesian components and formally identical to (2.45)1:

E = 1

E0

(
(1 + ν0)S − ν0(tr S)I(2)

)
, (2.57)

where S is, as anticipated, a plane stress field and I(2) denotes the two-dimensional
identity tensor.

11 For example, let us show how the first of (2.54) is arrived at: from (2.33)1,2 we have that

S11 = E

1 + ν

(
E11 + ν

1 − 2ν
(E11 + E22)

)
, S11 + S22 = E

(1 + ν)(1 − 2ν)
(E11 + E22);

consequently,

E11 = 1 + ν

E
S11 − ν

1 − 2ν

(1 + ν)(1 − 2ν)

E
(S11 + S22) = 1 + ν

E

(
S11 − ν(S11 + S22)

)
etc.
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2.4 Compatibility in Stress Terms

2.4.1 The Three-Dimensional Case

When the response mapping of a linearly elastic material is invertible, the compat-
ibility condition (2.12) is written in stress terms in a straightforward manner, with
the use of (2.35):

curl curl (C−1S) = 0. (2.58)

When an equilibrium problem is formulated in stress terms, the symmetric-valued
fields S to be inserted in (2.58) must satisfy the equilibrium equation (2.31). In the
applications we are interested in, three conditions hold, which make special and easy
to handle the compatibility condition (2.58):

(i) the material is supposed to be isotropic, and hence, in view of (2.45)2,

C
−1S = 1

2G

(
S − ν

1 + ν
(tr S)I

)
; (2.59)

(ii) the bodies under examination are supposed homogeneous, hence the elastic
moduli are spatially constant;

(iii) distance actions are supposed to be null, and hence

div S = 0. (2.60)

We now proceed to determine the form of condition (2.58) under these circumstances.
Firstly, it follows from (2.58), (2.59), and assumption (ii), that

curl curl S − ν

1 + ν
curl curl

(
(tr S)I

) = 0. (2.61)

To move further, we observe that each smooth symmetric-valued tensor field A
satisfies identically the differential condition:

curl curl A = −ΔA − ∇(∇(tr A)) + ∇(div A)

+ (∇(div A))T + (Δ(tr A) − div (div A))I (2.62)

(cf. [6], Sect. 14); in components,

ei jkelmn A jm,kn = −Ail , j j −A j j ,il +Ai j , jl +Al j , j i +(A j j ,kk −A jk, jk )δil .

(2.63)
Consequently,

tr
(
curl curl A

) = Δ(tr A) − div (div A); (2.64)

moreover, for A = αI, (2.62) yields:
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curl curl
(
αI

) = (Δα)I − ∇(∇α), (2.65)

hence, in particular,
tr

(
curl curl

(
αI

)) = 2Δα. (2.66)

Thus, if a field S satisfying (2.60) is compatible, then necessarily it must be such
that

Δ(tr S) = 0, (2.67)

a relation that is arrived at by taking the trace of (2.61), with the use of (2.64) and
(2.66) and of the constitutive inequalities restricting the admissible values of ν (recall
Remark 2.7). Due to this partial result, we deduce from (2.62) that

curl curl S = −ΔS − ∇∇(tr S),

and from (2.65) that
curl curl

(
(tr S)I

) = −∇∇(tr S);

On taking the two last relations into account, (2.61) becomes the sought-for compat-
ibility condition in stress terms:

ΔS + 1

1 + ν
∇∇(tr S) = 0. (2.68)

Remark 2.13 Once a general representation has been found for all solutions of the
equilibrium equation (2.60), we are going to use condition (2.68) to select those
associable with strain and stress fields consistent with the constitutive behavior of the
material under consideration. Remarkably, this behavior affects (2.68) only through
the Poisson’s modulus. A universal stress field—that is, a stress field being balanced
and compatible for whatever isotropic material—must satisfy, in addition to (2.60),
a system even more stringent than (2.68), namely,

ΔS = 0, ∇∇(tr S) = 0.

2.4.2 The Two-Dimensional Case

An assigned plane strain field whose Cartesian components are E11, E22, E12 is
compatible if condition (2.20) holds; we repeat it here for the reader’s convenience:

2 E12,12 = E11,22 + E22,11.

This condition can be written in terms of stresses with the use of the constitutive
relations (2.54)–(2.56). One begins by finding:
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1

G
S12,12 = 1

E0

(
S11,22 + S22,11 − ν0

(
S11,11 + S22,22

))
,

a relation that can be given the intermediate form

S12,12 = 1

2(1 + ν0)

(
(S11 + S22),11 + (S11 + S22),22 −(1+νo)(S11,11 + S22,22 )

)
,

and then the final form
Sαα,ββ = (1 + ν0)Sαβ,αβ .

When the field S is plane, the last condition can be witten more compactly:

Δ(tr S) = (1 + ν0) div (div S).

A consequence of this result, of paramount importance in certain developments to
come, is the condition that a plane stress field, balanced for null distance forces, must
satisfy to be compatible. In view of (2.50) and (2.51), that condition is:

Δ(tr S) = 0. (2.69)

It is not difficult to check that the same condition guarantees the compatibility of the
three-dimensional stress field

S̃ = S + S33e3 ⊗ e3, S33 = νSαα. (2.70)

Such a stress field, by way of the constitutive relations (2.54), is associable with a
compatible plane strain field, which in turn is associated with a plane displacement
field.

References

1. Capriz G, Podio-Guidugli P (2004) Whence the boundary conditions in modern continuum
physics? In: Capriz G, Podio-Guidugli P (eds) Atti dei Convegni Lincei N. 210. Accademia
dei Lincei, Roma, pp 19–42.

2. Carillo S, Podio-Guidugli P, Vergara Caffarelli G (2002) Second-order surface potentials in
finite elasticity. In: Brocato M, Podio-Guidugli P (eds) Rational Continua. Classical and New,
Springer Italia, Milano, pp 19–38

3. Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou
fluides, élastiques ou non élastiques. Bull Soc Philom Paris 9–13:300–304

4. DiCarlo A (2004) Actual surfaces versus virtual cuts. In: Capriz G, Podio-Guidugli P (eds)
Atti dei Convegni Lincei N. 210. Accademia dei Lincei, Roma, pp 97–113.

5. Gladwell GML (1980) Contact problems in the classsical theory of elasticity. Sijthoff and
Noordhoff, Alphen aan den Rijn

6. Gurtin ME (1972) The Linear theory of elasticity. In: Flügge S (ed) Handbuch der Physik, vol.
2. Springer, Berlin



References 41

7. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, Boston
8. Love AEH (1927) A treatise on the mathematical theory of elasticity. Cambridge University

Press, Cambridge
9. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall,

Englewood Cliffs
10. Meriam JL, Kraige LG (2003) Engineering mechanics, vol 1. Wiley, New York
11. Podio-Guidugli P (2000) A primer in elasticity. Kluwer, Dordrecht
12. Podio-Guidugli P (2004) Examples of concentrated contact interactions in simple bodies. J

Elasticity 75:167–186
13. Podio-Guidugli P (2005) On concentrated interactions. In: Dal Maso G, De Simone A, Tomarelli

F (eds) Variational Problems in Materials Science. Birkhäuser, Basel
14. Podio-Guidugli P, Schuricht F (2012) Concentrated actions on plane cuspidate bodies. J Elas-

ticity 106:107–114
15. Schuricht F (2007) A new mathematical foundation for contact interactions in continuum

physics. Arch Rat Mech Anal 184:495–551
16. Schuricht F (2007) Interactions in continuum physics. In: Silhavý M (ed) Mathematical

modeling of bodies with complicated bulk and boundary behavior. Quaderni di Matematica
20:169–196

17. Sokolnikoff IS (1956) Mathematical theory of elasticity. McGraw-Hill, New York


	2 Elements of Linear Elasticity
	2.1 Displacement, Strain, Compatibility
	2.1.1 Compatibility
	2.1.2 Plane Displacement Fields
	2.1.3 Plane Strain Fields

	2.2 Forces, Stress, Equilibrium
	2.2.1 Cauchy's Notion of Stress
	2.2.2 Free-Body Diagrams, Diffuse and Concentrated Forces

	2.3 The Stress Response to Strain
	2.3.1 Isotropic Materials
	2.3.2 Mechanical Interpretation of the Elastic Moduli
	2.3.3 Plane Stress Fields
	2.3.4 Plane Strain Fields Associated with Plane Stress Fields

	2.4 Compatibility in Stress Terms
	2.4.1 The Three-Dimensional Case
	2.4.2 The Two-Dimensional Case

	References


