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Introduction

The original conception of Galeno (Pergamo) (129–216 D.C.), confining the supe-
rior functions of human brain within three cerebral cells (spheres), has spanned
several centuries up to the Renaissance period culminating with Leonardo da
Vinci (1452–1519). A first outstanding breakthrough was accomplished by Andreas
Vesalius who, in his famous work De humani corporis fabrica (1543), described the
surface cerebral convolutions even tough failed to provide a reliable identification
of peculiar morphological pattern. Relevant investigations were successively per-
formed byMarcelloMalpighi (1628–1694)who suggested the existence of a nervous
fluid filling within cerebral glands, by ThomasWillis (1621–1675)who evidenced an
arterial circuit by anastomosis of internal carotids and vertebral artery, and by Vicq
d’Azyr (1746–1796) who revealed convolutions in unidentified areas of the brain
external surface. Albrecht von Haller (1708–1777) underlined the secretive function
of human brain by means of a nervous fluid. Franz Joseph Gall (1758–1828) and
Johann Spurzheim (1776–1828) by examining the brain shape identified phrenologic
maps with specific functions. Paul Broca (1824–1880) localized cerebral functions
such as the langage arguing that “Nous parlons avec l‘hemisphère gauche”. Carl
Wernicke (1848–1905) identified an area of the temporal lobe, whose damage may
provoke the selective loss of the capacity of listening words. Back in the early
twentieth century appeared the outstanding contributions of two coeval scientists:
Camillo Golgi (1843–1926) [1] who postulated that ramified nerve fibers could
support the “reticular theory”, considering that the nervous system is a syncytial
system which consists of nervous fibers forming an intricate diffuse network along
which the nervous impulse may propagate. On the other side Santiago Ramón y
Cajal: (1852–1934) [2] for which the relationship between nerve cellsdeveloped
the “neuron theory” for which the relationship between nerve cells was not one
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Fig. 1 The human cerebellar cortex as stained and drawn by Golgi (from the Opera Omnia, 1903).
The staining procedure consisted on the reaction of silver nitrate with potassium dichromate that
formed a black deposit within the soma, axon and dendrites of nerve cells of cerebellum

Fig. 2 The cerebellum cortex (Golgi staining) as drawn by Santiago Ramon y Cajal. (1888) Rev.
Trim. Histol. Normal. Patol

of continuity, but rather of contiguity, accomplished through small membranous
spines protruding from a neuron’s dendrite that typically receives input from a single
synapse of an axon (output) Piccolino [3] (Figs. 1 and 2).

In the last decades relevant new imaging techniques, such as Positron Emission
Tomography (PET), Functional Magnetic Nuclear Resonance (fMNR), Computed
Axial Tomography (CAT), etc., have been implemented that, in concomitance with
the increase of the theoretical knowledge provided by the modern Mathematics and
the innovative Fractal Geometry (power law scaling, self-similarity), have enabled
to deepen into the morphological/ structural complexity leading to the analytical
representation of the biological elements and to the objective description of living
processes.



The Fractal Organization of the Nervous System 123

Main Properties of Fractal Elements

According to Mandelbrot [4] “A fractal set is a set in metric space for which
the Hausdorff-Besicovitch dimension D is greater than the topological dimension
DT.” In nature, a fractal object is defined by its structural properties, namely by
surface rugosity, irregularity and absence of smoothness, form invariance, geo-
metrical or statistical self-similarity, morpho-functional complexity, represented by
a fractional/non-integer dimension. The Richardson-Mandelbrot equation provides
the mathematical basis for understanding geometric and spatial fractal structures,
and for measuring and interpreting them, namely:

L."/ D N."/:."/ (1)

where L(") represents the contour length (e.g. the perimeter) of the biological
component under investigation, (") the unit length of measure, and N(") the number
of unit lengths (") needed to cover the contour L("). By substituting N(") with [lo D
"-D] into (1), the above equation can be transformed by logarithmic procedure and
rewritten as:

log ŒL ."/=lo� D .1 � D/ log Œ"=lo� (2)

which is the equation of a straight line with slope 1-D, and from which the
dimensional exponent D can be calculated to yield the numerical value of the
fractal dimension FD. FD is a statistical non-integer quantity that gives a measure
of geometric complexity of form. lo is a reference scale without influence on the
determination of D. In contrast to mathematically generated fractals, biological
structures and objects observed in Nature are self-similar within a limited range
of scales. Only within this scale interval or scaling window can the scale-invariant
(fractal) properties of an irregular object of finite size be observed [5]. A real
“fractality” exists only when the experimental scaling range covers at least two
orders of magnitude, although fractality over many orders of magnitude has been
observed in various natural fields. The fractal window characterizing biological and
natural fractals also called “biasymptotic fractals” is graphically represented by the
region II in the middle of three typical regions, limited by a lower ("min) and an upper
bound ("max) of the bi-asymptotic curve, where a straight line can be drawn and the
fractal dimension [FD] calculated from its slope (Fig. 3). Losa and Nonnenmacher
[6]. Defining a “scaling range” appears an inescapable requisite for assessing the
fractality of every biological element. While the practical evaluation of the fractal
dimension could be obtained by various quantitative approaches, the most reliable
method is by far the box counting easily based on counting of the nonempty boxes N
at a variable grid length ("). Döllinger et al. [7]. It is obvious that the fractal theory
is in opposition to the ancient, conventional vision based on Euclidean geometry
and to its widely adopted concepts, such as homeostasis, linearity, smoothness,
and thermodynamic reversibility, which stem from a more intuitive but artificially
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Fig. 3 The three typical regions of a biasymptotic fractal: the fractality is confined to the region II
(From Döllinger et al 1998)

ideal view of reality. In the chapter of his work entitled<Epilog: The Path to
Fractals >, Benoit Mandelbrot wrote “The reader knows well that the probability
distribution of fractals is hyperbolic, and that the study of fractals is rife with
other power law relationships.” Although Mandelbrot’s famous seminal paper on
statistical self-similarity and fractal dimension dates back to [8] and the first
coherent essay on fractal geometry was published earlier, Mandelbrot [9], it is worth
here recalling that the “heuristic introduction” of this innovative discipline or, more
vividly expressed “the irruption of fractal geometry” into the life sciences such
as biology and medicine, Belaubre [10], actually took place in the early 80 years
of the last century. Paumgartner et al. [11]. A critical review of fractal concepts
was recently addressed encompassing the definition of dimensional imbalance,
the modified capacity dimension and the analytical calculation of its value, the
relationship with the scaling exponent, and showing that such a definition satisfies
basic demands of physics, before all the dimensional balance in mathematical
equations used in applied sciences. Since some concepts in fractal geometry
are determined descriptively and/or qualitatively, the paper provides their exact
mathematical definitions and explanations, including the Richardson’s coastline
method Ristanovic and Losa [12].

The Complexity of human Brain

The evolutionary concourse of two major events, “the tremendous expansion and
the differentiation of the neocortex,” as reported by De Felipe [13] has contributed
to the development of the human brain. Today, modern neurosciences recognize the
presence of fractal properties in brain at various levels, i.e., anatomical, functional,
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pathological, molecular, and epigenetic, but not so long ago there was no analytical
method able to objectively describe the complexity of biological systems such as
the brain. The intricacy of mammalian brain folds led Mandelbrot to argue that “A
quantitative study of such folding is beyond standard geometry, but fits beautifully
in fractal geometry.” At that time however, there was no certainty about the brain’s
geometry or about neuron branching. Anatomical-histological evidence that the
complexity of the plane-filling maze formed from dendrites of neural Purkinje cells
of cerebellum was more reduced in non-mammalian species than in mammals led
Mandelbrot to comment: “It would be very nice if this corresponded to a decrease in
D (fractal dimension), but the notion that neurons are fractals remains conjectural”
affirmed Mandelbrot. Since then, a wealth of investigations have documented the
fractal organization of the brain and nervous tissue system, and the implication
of fractals for neurosciences has been unambiguously affirmed. Among the first
applications of fractal analysis to nervous and brain tissue were the pioneering
studies of Smith et al. [14, 15]. These authors showed that the fractal dimension is an
unbiased measure of the complexity of neuronal borders and branching pattern and
of the time course of morphological development and differentiation of spinal cord
neurons in culture, increasing from 1.1 for the less differentiated neuron up to 1.5 for
the most differentiated cell . Moreover, power-law scaling and other manifestations
of fractal and self-similar patterns in space and/or time can be identified at all
levels of neural organization. Werner [16]. Further studies have confirmed that the
fractal dimension correlates with the increase in morphological complexity and
neuronal maturity, Bernard et al. [17]); Milosevic et al [18]. The brain consists of
distinct anatomical areas formed by nervous tissue mainly composed of neurons
and glial cells of distinct types. Neurons contain the axon (a long cytoplasmic
process associated with the cell body, which communicates with target organs),
and the dendrites (shorter cytoplasmic processes off the cell body which allow
communication between neurons), while glial cells of various types have a structural
physio-immunologic role as a net via their branched and unbranched protoplasmic
processes. These anatomical, morphological, and physiological properties combine
to create the brain’s complexity, which can only be modeled by a supercomputer, as
proposed recently, Markram [19]; De Felipe [13] (Fig. 4). While three-dimensional
digital reconstructions of axonal and dendritic branching are indispensable for
exploring neural function, the computational approaches enabled to quantify the
intricate relationship between neuronal morphology (structure) and physiology
(activity) [20]. The importance of neuronal morphology has been recognized from
the early days of neuroscience. Nowadays, increasing efforts are directed to elucidate
the functional roles of axonal and dendritic arbors in synaptic integration, signal
transmission, network connectivity, and circuit dynamics which in turn require
quantitative analyses of digital three-dimensional reconstructions. Reconstructing
complex neuronal branching in digital 3D format may help map brain circuitry with
its billions of connections Halavi et al. [21].
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Fig. 4 Reconstructing
the neocortical column.
The images show the
neocortical column (NCC)
microcircuit in various
stages of reconstruction. Red
indicates the dendritic and
blue the axonal arborizations.
The columnar structure
(green) illustrates the layer
definition of the NCC. Upper
row: The microcircuits (from
left to right) for layers 2, 3, 4
and 5. Lower row, left image:
A single thick tufted layer
5 pyramidal neuron located
within the column. Lower
row, middle image: One
pyramidal neuron in layer 2,
a small pyramidal neuron in
layer 5 and the large thick
tufted pyramidal neuron in
layer 5. Lower row, right :
an image of the NCC, with
neurons located in layers 2–5.
From H. Markram, 2006

Healthy and Diseased Brain Tissues

Fractal analysis was applied to anatomical/ histological images and high-resolution
magnetic resonance images in order to quantify the developmental complexity of the
human cerebral cortex, the alterations in diseased brain with epilepsy, schizophrenia,
stroke, multiple sclerosis, cerebellar degeneration, and the morphological differ-
entiation of the peripheral nervous system. The cortical ribbon showed a highly
significant reduction of the fractal dimension in Alzheimer’s Disease patients with
respect to control subjects King et al. [22]. The fractal analysis has enabled to quan-
titatively describe the complex morphological forms in which astrocytes occur in
brain of ischemic/hemorrhagic stroke and Alzheimer’s disease (AD) patients Pirici
et al. [23]. Fractal dimension (mean FD: 2.68) values were found higher in the Gray
Matter (GM) of Multiple Sclerosis patients (MS) compared to controls (mean FD:
2.67), indicated that GM tissue in MS has higher morphological complexity, perhaps
due to the presence of the inflammatory component (i.e. microglia activation) and
cellular changes (synapse pruning, demyelination, brain-blood barrier changes, etc.)
in the GM. Esteban [24]. In the normal human retina, blood vessels or vascular
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trees exhibited an FD of 1.7, the same fractal dimension found for a diffusion-
limited growth process, a finding which may have implications for the understanding
of the embryological development of the retinal vascular system Masters [25].
Rat retinal ganglion cells have been classified by means of the fractal dimension
Milosevic et al. [26]. Lastly, it has been shown that the quantitative evaluation
of the surface fractal dimension may allow not only to measure the complex
geometrical architecture [27], but also to model the development and growth of
tumor neovascular systems and explore the morphological variability of vasculatures
in nature, in particular the microvasculature of normal and adenomatous pituitary
tissue. Di Ieva et al. [28]. The fractal analysis was recently applied on patients
with cerebral arteriovenous malformations (AVM). Increased FD values related to
structural vascular complexity were due to the increased number of feeding arteries
in patients suffering from AVM Reishofer et al [29].
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