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Preface

Materials science has always played an important role in the evolution of
humankind. Over dozens of centuries, the knowledge about materials has paved
the way for our modern technologies. Nowadays, technology is crossing a new
age, in which materials at the atomic scale are being developed. Thus, nano-
technology is partly revolutionizing the way we live, learn, and organize our lives.

From the total of 118 chemical elements existing in the periodic table, one of
the most intriguing elements is definitely carbon. The several hybridization states
of carbon (sp, sp2, and sp3) can lead to numerous carbon allotropes, such as
diamond (sp3), graphite (sp2), fullerene (sp2), carbon nanotubes (sp2), and
graphene (sp2). The supreme properties and potential applications of synthetic
carbon-based materials, particularly nanotubes and graphene, demonstrate their
exceptional scientific and technological relevance and have attracted huge amount
of funding for scientific projects as well as driven extensive research efforts. Due to
their very interesting mechanical, optical, and electrical properties, carbon nano-
tubes (CNTs) and graphene could be established as cornerstones for tomorrow’s
technology. These carbon-based materials are associated with superlative
mechanical strength. In the nanometer scale, the vast knowledge gained so far has
established graphene and CNTs as two of the strongest materials ever tested. Ultra-
high elastic stiffness (about 1.0 TPa from computational predictions and experi-
mental measurements) and tensile strength (about 100 GPa from computational
predictions and about 130 GPa from experimental measurements) have been
reported for graphene and CNTs. Extensive research studies on the mechanical
properties of CNTs and graphene have been carried out via varieties of experi-
mental, theoretical, and computer simulation approaches. One of the striking
features of CNTs and graphene is the enormous potential to use them in nanoscale
devices and also as reinforcement of structural materials. Either in nanoscale
devices or carbon-based materials, excessive strains and localization phenomena
can occur due to thermal, kinematical, or lattice mismatch between different
materials. Therefore, the reliability of many devices and the effectiveness of
strengthening of several carbon-based materials depend critically on the under-
standing of the response of CNTs and graphene to mechanical loading. Conse-
quently, a proper understanding of the mechanics of CNTs and graphene is crucial
to engineer novel nanoscale devices and materials.
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Since the effects of single atoms can dominate the materials behavior at
nanoscale, the atomistic viewpoint becomes a very critical issue not only for
scientists but also for engineers. However, the experimental measurement of
mechanical properties at nanoscale is difficult because the straightforward
manipulation of the nanostructure is rather complex to achieve. Currently, there
are still few appropriate measuring techniques at the nanoscale and it is really
difficult to obtain some reliable data from indirect measurements. Thus, the
computational techniques play an important role in investigating the mechanical
properties of nanostructures. In this view, computer modeling will become more
and more important in the development of new technologies. There are two main
groups of methods: (i) dynamic and (ii) static. While the former consider the
interaction between atoms purely dynamic, the latter simplify this interaction to
static behavior. The dynamic methods are subdivided into three main types: (i) ab
initio methods, (ii) tight-binding methods, and (iii) classical molecular dynamics
(MD) simulations. Ab initio method treats separately the electronic and ionic
degrees of freedom, thus needing a wave function description for the electrons.
Since the ab initio method is too expensive and time-consuming, it is common
practice to incorporate some approximations such as the density functional theory
(DFT), which is based on the fact that the ground-state electronic energy is a
unique function of the electronic density, instead of many-body interacting wave
functions. In tight-binding methods, the electrons should be tightly bound to the
atom to which they belong and they should have limited interaction with states and
potentials on surrounding atoms of the solid. The advantage of the tight-binding
method is that it can handle a much larger system than the ab initio methods.
Molecular dynamics (MD) methods treat the atoms as classical entities (position
and momentum). They are based on Newton’s second law or the equation of
motion, depending on the force exerted on the atom, its mass, and its acceleration.
From this trajectory, the average values of properties can be determined. Once the
positions and velocities of each atom are known, the state of the system can be
predicted at any time. Interatomic potentials are the core of classical MD methods.
During the past decades, numerous potentials describing atomic interaction in
various materials with different levels of accuracy have been proposed. For
covalently-bonded materials like carbon, bond-order multi-body potentials have
been developed. These multi-body potentials capture not only pairwise interac-
tions, but also additional contributions from the local geometric configuration of
the neighboring atoms. MD simulations can be time-consuming and computa-
tionally expensive if a high number of atoms is involved, but they are much faster
than either ab inito or tight-binding methods. The static methods are subdivided
into two main types: (i) molecular mechanics (MM) methods and (ii) continuum
shell methods. MM methods consider massless carbon atoms and treat the several
carbon–carbon bonds as nonlinear elastic springs, with different terms accounting
for bond stretching, twisting, and bending, as well as non-bonded van der Waals
forces and cross interactions between these variables. In MM methods, the equi-
librium configuration of the model system is sought by minimizing the energy,
which consists of the sum of the interatomic potentials minus any work by external
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forces. Unlike MD simulations, MM methods imply a temperature of 0 K and
cannot account for the effects of temperature.

Continuum methods are divided into shell models and beam models. In con-
tinuum shell models, the atomic structures of the CNTs and graphene are treated as
continuous and homogeneous macrostructures, and their material microstructures,
such as the lattice spacing between individual carbon atoms, are ignored. The two-
dimensional hexagonal lattice of carbon atoms is replaced by a continuous thin
sheet, either plan (graphene) or cylindrical (CNT). On the other hand, in contin-
uum beam models, the exact atomic lattice of the nanomaterials is represented by
replacing the bonds with beams whose behavior is derived from interatomic
potentials. Continuum models have been widely used to assess the strength and
stability of structural systems at macroscale, try to mimic the solutions of discrete
methods (ab initio, tight-binding, MD, and MM). Continuum shell models have
several disadvantages compared to beam models, such as (i) the neglecting, or at
least approximating, the discrete nature of hexagonal lattice and (ii) the consid-
eration of a shell thickness that does not correspond to the nanoscale value.
However, continuum models are tremendous efficient from the computational
viewpoint. The drawback of dynamic methods (ab inito, tight-binding, or MD
methods) is that a large computing power is needed, especially when dealing with
a large number of atoms. This prompted researchers to develop reliable and effi-
cient continuum models for characterizing and predicting the mechanical behavior
of graphene and CNTs.

In resume, several computational methods exist to model and simulate the
behavior of nanostructures. All of them present advantages and drawbacks; none
of them is the perfect method. This book presents a survey on the computational
modeling of the mechanical behavior of CNTs, graphene, and their composites by
including different modeling approaches, such as MD simulations, continuum shell
methods, atomistic-based finite element models, nonlocal elastic models, and
stochastic models applied in a variety of geometries and load-cases.

Each chapter is an independent contribution by scientists with worldwide
expertise and international reputation in the technological area treated by this
book.

McCarthy, Byrne, O’Brien, and Murmu discuss in ‘‘Improved Mechanical
Performance of CNTs and CNT Fibres in Nanocomposites Through Inter-Wall and
Inter-Tube Coupling’’ the potential for addressing the problem of easy sliding
between CNT walls and between CNTs in bundles, which drastically reduces their
effective shear, bending, tensile, and compressive properties, through creation of
inter-wall and/or inter-tube covalent bonds via irradiation with electrons or ions.
The topic is addressed through an extensive series of MD simulations as well as an
analytical shear-lag model.

‘‘A Review on the Application of Nonlocal Elastic Models in Modeling of
Carbon Nanotubes and Graphenes’’ by Arash and Wang, presents a review on the
application of nonlocal continuum theory in the modeling of CNTs and graphene
sheets, discusses the advantages of nonlocal continuum theory compared to its
local counterpart and the necessity of calibration of the small-scale parameter as
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the key parameter, describes nonlocal beam, plate, and shell models, and
recommends potential areas for future research. Besides surveying the different
nonlocal continuum models, the chapter presents further applications of the non-
local continuum theory to model nanomaterials.

Georgantzinos, Giannopoulos, Spanos, and Anifantis present in ‘‘A Hetero-
geneous Discrete Approach of Interfacial Effects on Multi-Scale Modelling of
Carbon Nanotube and Graphene Based Composites’’ a multi-scale finite element
formulation, combining nanoscopic and macroscopic considerations for the
modeling of the elastic mechanical response of single-walled CNTs and graphene-
based composites. Emphasis is given on interfacial region modeling, where the
interactions between the two phases are implemented by utilizing appropriate
stiffness variations describing a heterogeneous interfacial region. Using the pro-
posed technique, predictions on mechanical properties and load transfer conditions
are performed.

‘‘Effect of Covalent Functionalization on Young’s Modulus of a Single-Wall
Carbon Nanotube’’ authored by Shah and Batra, presents a study on the effect of
hydrogen (–H), hydroxyl (–OH), carboxyl (–COOH), and amine (–NH2) func-
tionalization on Young’s modulus of a single-walled CNT using MM simulations
with the MM3 potential and the software TINKER. The chapter shows that
functionalization localizes deformations of the CNT at the functionalized sites,
which decreases the modulus of elasticity. The type of functional group is found to
have negligible effect on the value of Young’s modulus of the functionalized
SWCNT.

‘‘Multiscale Modeling of Multifunctional Fuzzy Fibers Based on Multi-
Walled Carbon Nanotubes’’ written by Seidel, Chatzigeorgiou, Ren and Lagoudas,
presents an introduction to a novel class of multifunctional scale-bridging mate-
rials known as fuzzy fibers, which consist of multi-walled CNTs grown directly on
the surface of structural carbon and glass fibers. The chapter identifies some of the
key challenges in the modeling of the mechanical, electrical, and thermal prop-
erties of fuzzy fibers and the composites in which they are embedded, and reviews
some of the recent efforts to model these materials available in the literature.

In ‘‘Geometry–Property Relation in Corrugated Nanocarbon Cylinders’’ Shima
provides an overview of the geometry–property relation in cylindrical nanocarbon
materials. The first half of the chapter is devoted to axially corrugated nanocarbon
cylinders in which axial corrugation induces drastic changes in electronic and
optical properties that are distinct from the case of straight, noncorrugated cyl-
inders. In the second half, the application of hydrostatic pressure to CNTs that
yields another class of corrugation, i.e., flowershaped cross-sectional deformation
is seen. Molecular dynamics simulations of such radial corrugation and its con-
sequences to physicochemical properties of multi-walled CNTs are also discussed.

In ‘‘Prediction of Mechanical Properties of CNT Based Composites Using
Multi-Scale Modeling and Stochastic Analysis’’ Rafiee and Shokrieh compute the
Young’s modulus and Poisson’s ratio of CNT-reinforced polymer by a full-range
multi-scale modeling technique covering all scales of nano, micro, meso, and
macro. This modeling strategy is analyzing the material at each scale and obtained
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results are fed to the upper scale as input information. Due to uncertainties arisen
from processing of CNT-reinforced polymers, a full stochastic implementation of
modeling is employed treating length, orientation, agglomeration, waviness, and
volume fraction of CNTs as random parameters.

Wang, Chowdhury, Koh, and Zhang present in ‘‘Molecular Dynamics
Simulation and Continuum Shell Model for Buckling Analysis of Carbon
Nanotubes’’ extensive sets of MD critical buckling loads/strains for single-
walled CNTs and double-walled CNTs with various aspect ratios less than 10. The
adaptive intermolecular reactive bond order (AIREBO) potential was adopted for
MD simulations. Based on the MD results, the Young’s modulus, Poisson’s ratio,
and thickness for an equivalent continuum cylindrical shell model of CNTs are
calibrated. The equivalent continuum shell model may be used to calculate the
buckling loads of CNTs, in-lieu of MD simulations.

‘‘Influence of Bond Kinematics on the Rupture of Non-Chiral CNTs
under Stretching–Twisting’’ written by Faria, Silvestre, and Canongia Lopes,
focuses on the role played by bond kinematics in the collapse behavior of armchair
and zigzag CNTs under combined stretching-twisting. The analyses are performed
through MD simulations using LAMMPS code with the in-built potential AIREBO
for C–C bonds. It is concluded that two kinematic mechanisms influence the
failure of CNTs: (i) the bond elongation for meaningless to moderate twisting-
to-stretching rate and (ii) the hexagonal cell distortion for moderate to high
twisting-to-stretching rate.

Finally, ‘‘Finite Element Modeling of the Tensile Behavior of Carbon
Nanotubes, Graphene and Their Composites’’ is authored by Tserpes and
Papanikos and reviews the continuum beam models that have been developed in
order to predict the elastic properties of isolated defect-free CNTs, to simulate the
tensile behavior of defected CNTs and graphene, and to evaluate parametrically
the effective elastic properties of nano-reinforced polymers. The methodologies
and results presented in this chapter verify that continuum modeling has been
proved efficient and effective in the modeling of nanomaterials and can be con-
sidered as a very strong alternative to atomistic simulation methods.

Patras, Greece Konstantinos I. Tserpes
Lisbon, Portugal Nuno Silvestre
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Improved Mechanical Performance
of CNTs and CNT Fibres
in Nanocomposites Through Inter-Wall
and Inter-Tube Coupling

Michael A. McCarthy, Emmett M. Byrne, Nathan P. O’Brien
and Tony Murmu

Abstract The exceptional mechanical properties of carbon nanotubes (CNTs)
make them highly attractive as potential reinforcing constituents in next generation
composites. CNTs can be used individually or in small bundles as toughening
agents in matrices, or large, aligned bundles can be twisted into fibres (Cheng
2007; Zhang et al. 2007). However, in both applications a major drawback is the
weak van der Waals forces between the walls of multi-walled CNTs (MWCNTs)
and between individual tubes in CNT bundles. This makes for easy sliding
between CNT walls and between CNTs in bundles, which drastically reduces their
effective shear, bending, tensile and compressive properties. In this chapter we
discuss the potential for addressing this deficiency through creation of inter-wall
and/or inter-tube covalent bonds via irradiation with electrons or ions. The topic is
addressed through an extensive series of Molecular Dynamics simulations as well
as an analytical shear-lag model. We show that both inter-wall and inter-tube
bonding can have highly beneficial effects on the mechanical properties of CNT-
based nanocomposites. The benefits can significantly outweigh the detrimental
effects of induced defects from the irradiation process.
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Keywords Multi-wall carbon nanotube � Nanotube fibre, nanocomposite �
Inter-wall and inter-tube bonding � Load transfer � Structural properties �
Molecular dynamics

1 Introduction

The outstanding mechanical properties of carbon nanotubes (CNTs) make them
highly attractive as potential reinforcing constituents in structural composites
(Barber et al. 2005a, b; Byrne et al. 2009; Locascio et al. 2009; Ogata and
Shibutani 2003; Pantano et al. 2008; Peng et al. 2008; Pregler and Sinnott 2006;
Sammalkorpi et al. 2004, 2005; Troya et al. 2003; Xia and Curtin 2004; Xia et al.
2007; Yu et al. 2000a, b; Zhang et al. 2005). However, achievement of high
performance materials using CNTs requires major advances in processing methods
and a fundamental understanding of the mechanics of nanoscale reinforcement.
CNTs can be used individually or in small bundles as toughening agents in
polymers, or large, aligned bundles can be twisted into fibres (Cheng and Hsu
2007; Zhang et al. 2007). In both applications one of the key drawbacks is the
weak van der Waals forces between the walls of multi-walled CNTs (MWCNTs)
and between individual tubes in CNT bundles. This makes for easy sliding
between CNT walls and between CNTs in bundles, which drastically reduces their
effective shear, bending, tensile and compressive properties. In this chapter we
discuss the potential for addressing this deficiency through creation of inter-wall
and/or inter-tube covalent bonds via irradiation with electrons or ions. The topic is
addressed through an extensive series of Molecular Dynamics simulations as well
as an analytical shear-lag model. The chapter is arranged as follows. Section 2
deals with MWCNTs and shows how with quite limited amounts of inter-wall
bonding they can be stronger and tougher than single-wall nanotubes (SWCNTs);
it also discusses the implications of this for nanocomposite design. Section 3 then
addresses how such inter-wall bonding could be achieved in an optimal way.
Section 4 discusses simulations of the irradiation process itself and the resulting
effects on CNT bundles in terms of inter-tube bonding, as well as the side effect of
increased defect levels. Section 5 then relates the inter-tube bonding and defects
created to the mechanical properties of the resulting CNT bundles.

2 Strengthening and Toughening Effects of Inter-Wall
Bonding on Multi-Walled Carbon Nanotubes
and the Implications for Nanocomposite Design

The use of carbon nanotubes to reinforce polymer, ceramic, and metal matrices to
achieve enhanced stiffness, strength, and toughness, in a wide array of applications
has been the topic of intense research in recent years. Single-wall carbon
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nanotubes (SWCNTs) appear ideal, with theoretical tensile strengths approaching
100 GPa (Ogata and Shibutani 2003; Sammalkorpi et al. 2004; Troya et al. 2003).
But, like most brittle materials, SWCNTs contain fabrication defects that lower
their strengths below the ideal level (Hashimoto et al. 2004; Suenaga et al. 2007).
In many applications, multi-wall CNTs (MWCNTs) have been used due to their
lower cost, availability, and ease of fabrication (Pantano et al. 2008; Xia et al.
2004; Shimizu et al. 2008; Pasupuleti et al. 2008; Yu et al. 2008; Zhou et al. 2008;
Kuan et al. 2008). MWCNT structures can vary widely depending on the fabri-
cation process, and so MWCNTs are considered to be defective and disordered
relative to SWCNTs, and to have lower strengths.

MWCNTs have the possibility of inter-wall coupling between the graphitic
CNT walls, via the growth process (e.g. CVD) or controlled irradiation or sput-
tering (Seldin and Nezbeda 1970; Tanabe 1996; Salonen et al. 2002; Krashen-
innikov and Nordlund 2004; Kis et al. 2004). Molecular dynamics (MD) models
show that inter-wall coupling improves inter-wall shear strength and load-transfer
to the inner shells (Pregler and Sinnott 2006; Xia et al. 2007; Kis et al. 2004;
Huhtala et al. 2004) and compression buckling resistance (Xia et al. 2007). Cal-
culations also predict the presence of strength-reducing intra-wall defects, with
vacancies as likely candidates (Sammalkorpi et al. 2004; Zhang et al. 2005; Hirai
et al. 2003; Xiao and Hou 2006; Ashrafi and Hubert 2006). However, MWCNTs
grown by Chemical CVD, which should contain a high level of defects, have
strengths greater than either SWCNTs or MWCNTs grown by arc-discharge, and
the strengthening is attributed to inter-wall coupling (Barber et al. 2005a, b).
Experiments by Peng et al. (2008) clearly showed that the outer wall of an
uncoupled MWCNT can have similar strength to that of a SWCNT with small
defects and that irradiating MWCNTs induces inter-wall coupling that leads to
much higher load-carrying capacity with little loss of strength. In spite of signif-
icant experimental efforts to measure strengths of MWCNTs (Barber et al. 2005;
Yu et al. 2000a, b) and various hypotheses on the influence of inter-wall coupling
on mechanical behaviour, little modelling work to date has investigated MWCNT
tensile strength, perhaps the most important property for most mechanical
applications.

In this section, we show via simulation that MWCNTs with sp3 inter-wall
bonding have strengths exceeding those of SWCNTs containing the same size
initial intra-wall defect. Increasing inter-wall bonding also causes planar fracture
rather than ‘‘sword-and-sheath’’ fracture. We further argue that MWCNTs with
sufficient inter-wall bonding should have a minimum strength of 35–45 GPa.
These results are consistent with the experimental data in (Peng et al. 2008). The
strengthening effects of inter-wall bonding can compensate for the creation of
defects during irradiation, so that MWCNTs with inter-wall bonding can be
preferable to even the smallest and strongest SWCNTs for use as mechanical
reinforcements in composites.
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2.1 Methodology

Molecular dynamics (MD) was used to simulate the failure of nanotubes, a widely
used approach (Pregler and Sinnott 2006; Sammalkorpi et al. 2004; Troya et al.
2003; Xia et al. 2007; Zhang et al. 2005; Kis et al. 2004; Huhtala et al. 2004). We
present results for (50,0) single-wall CNTs (diameter = 4 nm), (50,0)/(41,0) dou-
ble-wall CNTs (DWCNT), and (59,0)/(50,0)/(41,0) triple-wall CNTs (TWCNT), all
of length 11.8 nm, which is sufficient to preclude end effects influencing fracture.
DWCNTs and TWCNTs were populated with randomly-distributed inter-wall sp3

bonding of variable density, defined as the number of sp3 bonds between any two
walls divided by the average number of atoms in each of the two walls. Crack-like
defects were introduced at the middle cross-section of the (50,0) wall by removing
hexagonal units of carbon in a horizontal line, as in Zhang et al. (2005). Defect
length is defined as the distance between the intact C–C bonds on either end of the
defect. Hydrogen atoms saturate the dangling bonds, which is likely to occur for
MWCNTs grown by CVD. Figure 1 shows one DWCNT.

The widely-studied Tersoff-Brenner reactive empirical bond-order (REBO)
potential (Brenner et al. 2002) was used for all interactions in this section. To
better predict bond breaking forces, we proceed similarly to Shenderova et al.
(2000) by changing the range of the cut-off function from 1.7–2.0 to 1.995–2.0 Å.
This precludes formation of new bonds, but this is not a limitation for this study (it
is for studies in later sections of this chapter). Non-bonded inter-wall interactions

use a Lennard-Jones potential EðrÞ ¼ 4e r0=rð Þ12� r0=rð Þ6
h i

with r0 ¼ 3:468 Å and

e ¼ 2:86 meV (Xia and Curtin 2004) connected to the REBO potentials via cubic

Fig. 1 Schematic of computational models: a Entire DWCNT with inter-wall sp3 bonding,
showing distortions of the wall surface and the atomic energy variations due to sp3 bonds; b, c
Views of the DWCNT along the tube axis, showing the inter-wall bonding and local distortion in
the CNT structure; d Examples of small defects placed into the outerwall; e SWCNT (50,0) with
a 1.72 nm defect perpendicular to the loading axis
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splines with no discontinuities. Zhang et al. (2005) showed that this MD potential
underestimates nanotube strength compared to quantum mechanical calculations,
but here we perform a comparative study so that absolute strengths are not of great
importance. Furthermore, the size scales needed for our calculations completely
preclude the use of quantum methods. The nanotubes were relaxed via MD for
18.75 ps at temperature T = 0.5 K using a Berendsen thermostat (Berendsen et al.
1984) and a time step of 0.25 fs. Loading was then applied by fixing the z dis-
placements of the two rings of C atoms at the bottom of the nanotube and dis-
placing the two rings at the top vertically by 0.025 Å every 0.25 ps. The total force
at the end of each displacement step was divided by the CNT cross-sectional area

Acnt ¼ p r0 þ 0:5tð Þ2� ri � 0:5tð Þ2
h i

to obtain the stress, where ro and ri are the

outer and inner radii, respectively, and t = 0.335 nm is the inter-wall spacing. Use
of Acnt for SWCNTs allows for consistency in stress and elastic modulus com-
putations among SWCNTs and MWCNTs. For each crack size, 5–10 randomly-
arranged sp3 bond distributions were simulated.

2.2 Results

Figure 2 shows all our results for strength versus defect size and nanotube structure.
For SWCNTs, we obtain a defect-free strength of 82 GPa (similarly to (Zhang et al.
2005)) and decreasing strength with increasing defect size, scaling as r / c�b,
b � 0:4 (Fig. 2, inset). This is close to the value b � 0:5 predicted by fracture
mechanics for a sharp crack in a brittle material, differing slightly due to the blunt
crack shape and discrete lattice effects. DWCNTs with no inter-wall bonding have
strengths equal to those of SWCNTs, as expected. DWCNTs with 2.5 % sp3 inter-
wall bonding show an entirely different strength scaling (Fig. 2 and inset). With no
defects, these tubes are weaker than SWCNTs due to the disorder induced by sp3

bonds (Fig. 1). However, with defects larger than 1 nm, the strength is equal to or
larger than that for a SWCNT with a similar sized defect. The strength decreases
slowly with increasing defect size, scaling as r / c�b, b � 0:14. This weak scaling
shows that DWCNTs are toughened by sp3 bonding, which stems from the inner
wall constraining the opening of the crack in the outer wall through stretching of
inter-wall bonds. The constraint decreases the crack-tip stresses and is more
effective for larger defects, thus decreasing the scaling exponent. This phenomenon
is similar to the strengthening of a thin brittle film on a tough elastic substrate
(Hutchinson and Suo 1992); here the cracked CNT wall plays the role of the film
while the other wall(s) play the role of the substrate bonded to the film. Strengths of
TWCNTs with 2.5 % sp3 bonds are even larger than for DWCNTs because the outer
wall provides additional constraint. Figure 2 also shows the strengths for DWCNTs
with 0.5 and 1.5 % sp3 bond fractions; strengths are reduced relative to the 2.5 %
case because of the weaker mechanical constraint imposed by the bonding to the
inner wall. In all cases, however, the DWCNT strength is larger than the SWCNT
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strength. With this mechanistic insight, we conclude that the MWCNT strength
always remains higher than that for SWCNTs, and can be insensitive to defect size
for sizes beyond one or two vacancies.

Simple considerations of load transfer among walls lead to an estimated lower
bound for strengths of MWCNTs with inter-wall bonding. For sufficiently high inter-
wall bonding in a many-walled CNT, failure of the outer wall at �r increases the stress
on the inner neighbour to 1:5�r (Weibull 1951). This suggests a minimum MWCNT
strength of rmin � ro=1:5 where ro is the defect-free strength. With ro � 63 GPa
(Fig. 2), we find the value rmin � 42GPa that is within 5 % of our simulation data on
TWCNTs and 5–10 % of our data for 1.5 and 2.5 % DWCNTs. This estimate
ignores small statistical and ‘‘weak-link’’ size effects (Curtin 2000; Mahesh et al.
1999; Mahesh and Phoenix 2004) but shows that strengths for MWCNTs with many
walls should exceed those of SWCNTs with defects larger than 1.7 nm.

The fracture mode changes with sp3 density. For high sp3 bonding in a DWCNT
(2.5 %; Fig. 3a), the sp3 bonding induces a high stress concentration in the
neighbouring wall, resulting in near-planar fracture. Low sp3 bonding (0.5 %;
Fig. 3b) increases the length over which stress is transferred among walls, such that
the inner wall fails at a slightly weaker location away from the outer wall fracture
plane, leading to the ‘‘sword and sheath’’ failure mode. For intermediate sp3

bonding (1.5 %), the failure mode varies between planar and limited ‘‘sword and
sheath’’ mode depending on the sp3 bond distribution. A TWCNT can show features
of both modes as well (Fig. 3c). This transition in fracture mode is consistent with
experimental observations (Barber et al. 2005a, b; Peng et al. 2008).

Fig. 2 SWCNT and MWCNT strengths versus initial defect (crack) length, for varying densities
of inter-wall sp3 bonding. For defects longer than �1 nm, the MWCNTs with inter-wall sp3

bonding are stronger than SWCNTs or MWCNTs with no inter-wall bonding. Inset shows
approximate power-law scaling of strength versus length, r / c�b, with MWCNTs with inter-
wall bonding showing weak scaling (small b)
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We now compare our results to experimental data in (Peng et al. 2008). Peng
et al. (2008) use the observed ‘‘sword-and-sheath’’ fracture mode to deduce the
number of CNT walls bearing load in a given MWCNT. The first six columns in
Table 1 present the data published by Peng et al. on six specific MWCNTs of
varying diameters, exposed to varying degrees of irradiation, including the
deduced number of walls coupled by inter-wall bonding. The number of load-
bearing walls increases with increasing irradiation dose, consistent with the idea
that increased irradiation creates more inter-wall bonding and at increasing depths
into the MWCNT. The un-irradiated samples (1, 2, 3) have no inter-wall bonding
and thus fracture as if they were SWCNTs, and this data thus serves as ‘‘reference
data’’. The average strength of 102 GPa also corresponds reasonably to first-
principles calculations of SWCNTs with single vacancies. The strength of an

Fig. 3 Fracture mode transition a Flat fracture mode in a DWCNT with 2.5 % sp3 inter-wall
bonding; Carbon ‘‘chains’’ can often be seen linking the structure after failure; b Sword-and-
sheath fracture mode in a DWCNT with 0.5 % sp3 bonding; c Mixed fracture in a TWCNT with
2.5 % sp3 bonding

Table 1 Observed and predicted tensile strengths for six individual MWCNTs subjected to
irradiation

Sample Outer Diam.
(nm)a

# Walls Dose Measure Measured Predicted Predicted
Coupleda (C cm-2)a Strength

(GPa)a
Strength
Ratioa

Strength
(GPa)

Strength
Ratio

1,2,3 14.7–26.0 1 0 102 (ave) 1 &65b 1
4 39.48 3 3.1 82 0.8 45–55 0.69–0.85
5 25.87 18 31 58 0.57 43 0.66
6 49.01 52 558 35 0.34 43 0.66
a Ref. (Peng et al. 2008)
b Ref. (Zhang et al. 2005; Brenner et al. 2002)
Also shown is the strength ratio defined as the strength normalized to the strength of a SWCNT
with a single vacancy defect; this scales out the absolute difference arising from the use of the
REBO potential in the predictions. Samples 1–3 are essentially SWCNTs and thus serve as
reference cases
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SWCNT with such a defect, calculated using the semi-empirical REBO potential,
is 65 GPa (Zhang et al. 2005; Fonseca et al. 2011). Since the nanotube defor-
mation is essentially elastic, the most useful comparison between experiments and
MD simulations is obtained by considering strength ratios rather than absolute
values. These ratios are thus calculated in Table 1 by dividing the experimental
data by 102 GPa, and our MD data by 65 GPa (i.e. both sets of data are normalized
with respect to the corresponding single vacancy SWCNT value). For Sample 4 in
(Peng et al. 2008), three walls fail and the strength ratio is 0.8. Sample 4 is similar
to our TWCNT, for which we find, over a wide range of defect sizes, strengths in
the range 45–55 GPa and thus a strength ratio of 0.69–0.85. For Sample 5, 18
walls fail (Peng et al. 2008) and the strength ratio is 0.57. Our lower-bound
analysis gives a strength ratio of 0.66. For Sample 6, 52 walls fail (Peng et al.
2008) and the strength ratio is 0.34 while our analysis still gives a strength ratio of
0.66. This discrepancy suggests that the high irradiation dose for Sample 6 induced
large defects that were correlated between successive walls, which is consistent
with the experimental findings of a greatly-reduced elastic modulus and evidence
of amorphous carbon (Peng et al. 2008). Our results are thus largely consistent
with the quantitative data of Peng et al. (2008).

We now examine some basic design concepts for use of MWCNTs in com-
posites that are essential for making decisions on fundamental material design of
nanocomposites. In a composite with aligned CNTs of outer diameter D, consider

a volume fraction Vcnt of n-walled CNTs having nominal area p
4ðDþ tÞ2. The

composite ultimate tensile strength ruts is proportional to the actual load-bearing

area fraction V 0cnt ¼ 2t
D

1þnþðn2�1Þt=2D

ð1þt=DÞ2
� �h i

Vcnt. For CNTs having a Weibull strength

distribution with Weibull modulus m (Weibull 1951) and coupled to a matrix via
interfacial shear strength s, ruts can be accurately estimated using the ‘‘Global-
Load-Sharing’’ model (Curtin 1999) as

ruts ¼ V 0cnt/ðmÞ
2sL

rcntD

� � 1
mþ1

rcnt ð1Þ

where /ðmÞ ¼ 2
mþ2

� � 1
mþ1mþ1

mþ2 is a statistical ‘‘bundle’’ factor, 2sL
rcntD

h i 1
mþ1

is a statistical

length scaling factor, and rcnt is the reinforcement strength measured at gauge
length L (Curtin 1999). Equation 1 neglects the strength contribution of the matrix,
which is small for polymers, ceramics, and most metals. The Weibull modulus,
related to the coefficient of variation (c.o.v.) as m � 1:2=c:o:v:, arises from a
combination of the underlying Weibull distribution of defect sizes having Weibull
modulus m0 and the defect size-scaling exponent b, with m ¼ m0=b. Thus, the low
b for DWCNTs with inter-wall bonding increases the Weibull modulus by a factor
of 0:4=0:14 � 3 over SWCNTs with the same underlying defect distribution.

Within the above framework, the design trade-off is then between SWCNTs of
very small diameter and larger MWCNTs with inter-wall coupling between n
walls, but with the same Vcnt (i.e. the same total amount of carbon material or the
same load-bearing area of carbon), the same interface s, and the same underlying
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statistical defect distribution m0. To make comparisons as favourable as possible
for SWCNTs, we compare MWCNT materials to SWCNTs of the smallest feasible
diameters of DSW ¼ 1:1 and 1:8 nm and the highest feasible strength of
rSW ¼ 100 GPa. For specific results, we use the strengths from Peng et al. (2008)
at L ¼ 2000 nm, a value s ¼ 50 MPa typical of polymer, metal, and ceramic
matrices (Curtin 1999), and m ¼ 7 typical of good-quality carbon fibers.

Then,/ð3mÞ=/ðmÞ ¼ 1:16 and ð2sL=rMW DMWÞ
1

3mþ1=ð2sL=rSW DSWÞ
1

mþ1� 0:8� 0:9
for a wide range of rMW and DMW . Hence, the ratio of MWCNT and SWCNT
composite strengths,ruts;MW=ruts;SW , is controlled mainly by V 0cnt=Vcnt, favouring
MWCNTs, and rcnt;MW=rcnt;SW , favouring SWCNTs. Assuming that a given
radiation dosage effectively couples n walls (e.g. Table 1), we can maximise
ruts;MW=ruts;SW by using a fully dense MWCNT of diameter DMW � 2ðnþ 1Þt.
For a dosage coupling n = 3 walls with rMW ¼ 82 GPa (e.g. Sample 4),
DMW ¼ 2:4nm is optimal and yields ruts;MW=ruts;SW = 0.92–1.32, i.e. the
MWCNT composite has 92–132 % of the strength of an equal nominal area of
small, strong SWCNTs. For a dosage coupling n = 18 walls with rMW ¼
58 GPa (e.g. Sample 5), DMW ¼ 12:5 nm is optimal and yields ruts;MW=ruts;SW =
0.61–0.87. For a dosage coupling n = 52 walls with rMW ¼ 35 GPa (e.g.
Sample 6), DMW ¼ 35 nm is optimal and yields ruts;MW=ruts;SW = 0.37–0.53.
MWCNT-based composites are thus competitive with the best possible SWCNT
systems.

SWCNTs are brittle, defect-sensitive materials (Fig. 2) and so as-processed
SWCNT strengths could be lower than 100 GPa. Functionalisation of SWCNTs to
achieve coupling to a matrix material is also accompanied by strength decreases
(Coleman et al. 2006; Garg and Sinnott 1998). In contrast, our simulation results
demonstrate that MWCNTs with inter-wall coupling are damage-tolerant (strength
weakly dependent on defect size) with high retained strengths (&35–50 GPa)
unless exposed to harsh conditions. From the standpoints of reliability and robust
design (as well as cost and manufacturability, issues not discussed here), we
conclude that MWCNTs suitably designed using Eq. 1 are preferable to SWCNTs
for high-performance materials.

2.3 Concluding Remarks

In summary, we have shown that MWCNTs with inter-wall coupling are inher-
ently stronger than SWCNTs with the same size initial intra-wall defect, a result
understood through basic mechanics considerations. We find that the measured and
simulated strength ratios between irradiated MWCNTs and un-irradiated SWCNTs
are in reasonable agreement. We have then also shown that composites composed
of MWCNTs can be as strong as composites composed of the highest-strength,
smallest diameter SWCNTs, and conclude that composites with suitably-designed
MWCNTs (diameter, number of walls, and irradiation dosage) can perform better
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than most SWCNT-based composites. In totality, our results provide a framework
for guiding the creation of high-performance composites based on MWCNTs
through carefully-controlled inter-wall bonding.

3 Optimising Inter-Wall Coupling for Load Transfer
in Multiwall Nanotubes

3.1 Introduction

As described in Sect. 2, multi-wall CNTs (MWCNTs) are an appealing option for
reinforcement of nanocomposites, since if all the walls can be made to share the
load, more load can be carried per unit area than with single-wall CNTs
(SWCNTs). However, if only van der Waals forces exist between the walls of
MWCNTs, then the walls slide over each other relatively easily and load applied to
the outside wall (e.g. by a surrounding matrix) cannot be transferred to the inner
walls, rendering them structurally ineffective.

Experiments have shown that controlled sputtering and irradiation of graphite
and pristine MWCNTs can enhance inter-wall coupling and sliding resistance via
the formation of inter-wall sp3 bonds (Seldin and Nezbeda 1970; Tanabe 1996;
Pregler and Sinnott 2006). Inter-wall coupling can also occur with standard CNT
fabrication techniques (Barber et al. 2005a, b; Yu et al. 2000b). As noted in
Sect. 2, Peng et al. (2008) induced variable degrees of inter-wall coupling in
MWCNTs, via controlled electron irradiation dosages, and tested the resulting
specimens in tension up to failure. With increasing irradiation dosage, the fracture
load and number of walls sharing the load was increased due to inter-wall bonding.
Quantitatively, the failure load was up to *11.6 times the load expected if only
their outermost wall had been loaded. This is particularly impressive given the fact
that numerous defects were induced by the irradiation process. Irradiation thus
appears to be a promising route to producing MWCNTs with controlled levels of
inter-wall coupling, although considerable scope exists for optimizing the process.

Computational modelling via e.g. Molecular Dynamics simulation is too time-
consuming for optimisation studies. Analytical models of load transfer in
MWCNTs having only van der Waals coupling between walls have recently been
presented by Zalamea et al. (2007) and Tsai and Lu (2009). Zalamea et al. (2007)
present a shear transfer model involving a ‘‘shear transfer efficiency’’ factor which
varies between zero and one, as well as a shear lag model, with the shear strain at
the interface obtained by assuming a linear strain distribution between the walls.
They compare the two models and use them to predict the dependence of elastic
modulus of MWCNTs on tube length. Tsai and Lu (2009) presented a similar shear
lag model and examined a composite unit cell consisting of a MWCNT surrounded
by a matrix. They incorrectly claim reduced efficiency of load transfer in
MWCNTs compared to SWCNTs due to an error in boundary conditions. They
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assume that the far-field equilibrated stress in the walls of a MWCNT is the same
as that in a SWCNT of the same outer diameter, while in fact the load is shared by
multiple walls in the MWCNT. Correcting this boundary condition leads to results
that contradict many of their main conclusions.

In this section, we present an analytical model to capture the stress transfer
between walls of MWCNTs with explicit inter-wall bonding and study the same
problem using direct MD simulations. Our analytical model is a shear lag model,
but differs from (Zalamea et al. 2007; Tsai and Lu 2009) in that the walls are
assumed of zero thickness, while the interface is of thickness equal to the wall
spacing, with a 1=r variation in shear stress. Our simulations show that the detailed
variations in inter-wall bonding from wall to wall, and along the tube length, are
important for the precise load transfer from outer to inner walls. Good agreement
between the analytical model and the simulations is obtained when such variations
are minimized. Optimal load transfer is also achieved for a spatially homogeneous
distribution of inter-wall bonds. We further investigate inter-wall bond distribu-
tions that might be reasonably obtained through irradiation processes, involving
decreasing inter-wall bond density from outer to inner walls, for which the load
transfer is found to be close to optimal provided the density variations are not too
large. The validated model is a valuable tool for estimation of load transfer in
MWCNTs with varying degrees of inter-wall coupling of any type (inter-wall
bonding or interstitial defects (Locascio et al. 2009; Peng et al. 2008)), and can
help guide future experimental efforts to optimise load transfer efficiency in
MWCNT-based nanocomposites.

3.2 Analytical Model

We consider n cylindrical, concentric carbon nanotubes separated by the graphitic
spacing t, with limited amounts of sp3 bonds forming links between the walls,
forming a MWCNT. A load F is applied on the top surface of the outer wall, which
is then transferred into the internal walls through shear of the inter-wall bonds. To
obtain an analytical solution for the load transfer, the MWCNT system is treated
similarly to the ‘‘shear lag’’ model of a micro-scale fibre composite in (Hutchinson
and Jensen 1993; Aveston 1971; Sutcu and Hillig 1990), where the walls of the
MWCNT act as the ‘‘fibers’’ that carry only axial stress, while load transfer is
facilitated by a ‘‘matrix’’ (the inter-wall bonds) that carries only shear stress. As
shown in Fig. 4, the walls (i = 1,… n, with i = 1 the inner-most wall) have radii ri

and zero thickness (so that the distance between walls is riþ1 � ri ¼ t). However,
to convert axial wall forces to stresses, an effective thickness t equal to the gra-
phitic plane spacing is used to determine the effective wall cross-sectional area
Ai ¼ 2prit. All walls have identical axial stiffness corresponding to a Young’s
modulus E. The matrices (i = 1,… n-1) have thickness t and individual shear
moduli li that depend on the density of inter-wall sp3 bonds between walls i and
i ? 1. With z being the coordinate along the axis of the walls, a load F is applied to
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the outermost wall only, at z ¼ 0. At z ¼ þ1 the strains and stresses in all walls
are equal. The displacement, strain, and stress in wall i are functions of z, and
denoted wiðzÞ, eiðzÞ and riðzÞ respectively, while the displacement, strain
and stress in matrix i are functions of r and z, for r varying between ri and riþ1, and
denoted wðr; zÞ, ciðr; zÞ and siðr; zÞ respectively.

To derive an analytical shear lag model, we determine the equilibrium equa-
tions for the one-dimensional walls and matrices as a special case of the three-
dimensional model of Mikata and Taya (1985). We then assume elastic consti-
tutive behaviour for all walls and matrices, and use strain–displacement relations
to produce a set of coupled differential equations for the stresses in each wall.

Figure 5 shows an infinitesimal element of matrix i, at position z, with axial
thickness dz and radial thickness dr. Equilibrium of an infinitesimal element of
matrix i, at position z, of radial thickness dr and axial thickness dz is expressed as
si r þ dr; zð Þ 2pðr þ drÞð Þdz ¼ si r; zð Þ 2p rdzð Þ, which can be rearranged to give

osi r; zð Þ
or

¼ �si r; zð Þ
r

ð2Þ

with the general solution

si r; zð Þ ¼ a

r
f ðzÞ ð3Þ

Fig. 4 MWCNT load transfer model: a 2D elevation view showing the matrix regions, matrix
thickness, and fiber radii; b 3D view of the model boundary conditions
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where a is a constant and f ðzÞ is an unknown function of z. The matrix constitutive
behavior is simple linear elasticity, so the engineering shear strain is

ci r; zð Þ ¼ a

lir
f ðzÞ ð4Þ

Assuming small deformations, the strain–displacement relation for the matrix
isci ¼ owðr; zÞ=dr. Using (4) and integrating leads to wðr; zÞ ¼ �ða=liÞf ðzÞ ln r þ
gðzÞ þ c where c is another constant and gðzÞ another unknown function of z.
Applying the boundary conditions for matrix i, wðri; zÞ ¼ wiðzÞ and
wðriþ1; zÞ ¼ wiþ1ðzÞ, where wiðzÞ and wiþ1ðzÞ are the displacements of walls i and
i ? 1 respectively, leads to an expression for a which when inserted in (2) leads to

si r; zð Þ ¼ li
wiðzÞ � wiþ1ðzÞ

r ln riþ1
ri

ð5Þ

Next we consider wall (nanotube) equilibrium, for walls 1 \ i \ n. Equilibrium
of an infinitesimal section of wall i of length dz yields

riðzþ dzÞ � riðzÞ½ � 2pri; tð Þ þ si�1ðri; zÞ 2pridzð Þ � siðri; zÞ 2pridzð Þ ¼ 0 ð6Þ

recalling that the walls are considered to be of thickness t in converting between
wall force and stress. Rearranging leads to

driðzÞ
dz
¼ siðri; zÞ � si�1ðri; zÞ

t
ð7Þ

Using (5) in (7) yields

driðzÞ
dz
¼ 1

t
li

wiðzÞ � wiþ1ðzÞ
ri ln riþ1

ri

� li�1
wi�1ðzÞ � wiðzÞ

ri ln ri
ri�1

 !
ð8Þ

Assuming a linear elastic constitutive relation for the wall, riðzÞ ¼ EeiðzÞ, and
strain–displacement relationship eiðzÞ ¼ dwiðzÞ=dz leads to a differential equation
for the axial stress in wall i as a function of axial position z

d2riðzÞ
dz2

� 1
tEri

li

ln riþ1
ri

þ li�1

ln ri
ri�1

" #
riðzÞ �

li

ln riþ1
ri

riþ1ðzÞ �
li�1

ln ri
ri�1

ri�1ðzÞ
 !

¼ 0 ð9Þ

Fig. 5 Elemental matrix
element
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Consideration of equilibrium of walls 1 and n differ slightly because they are
connected to matrix on only one side, but the analysis follows a similar procedure,
producing two more differential equations given below.

We define a non-dimensional length ~z ¼ z=l, where l ¼ t
ffiffiffiffiffiffiffiffiffi
E=�l

p
and �l is the

average shear modulus for all the matrices in the MWCNT. Non-dimensional
shear moduli are also defined as ~li ¼ li=�l. Hence, the equations can be re-written
finally as:

for i ¼ 1ðinnerwallÞ; d2r1ð~zÞ
d~z2

� t~l1

r1 ln r2
r1

r1ð~zÞ � r2ð~zÞð Þ ¼ 0 ð10Þ

for2� i� n;
d2rið~zÞ

d~z2
� t

ri

~li

ln riþ1
ri

þ ~li�1

ln ri
ri�1

" #
rið~zÞ �

~li

ln riþ1
ri

riþ1ð~zÞ �
~li�1

ln ri
ri�1

ri�1ð~zÞ
 !

¼ 0

ð11Þ

for i ¼ n ðouterwallÞ; d2rnð~zÞ
d~z2

þ t~ln�1

rn ln rn
rn�1

rn�1ð~zÞ � rnð~zÞð Þ ¼ 0 ð12Þ

The boundary conditions are rið~z ¼ 0Þ ¼ 0 for 1� i� n� 1, rnð~z ¼ 0Þ ¼
F=2prnt, and drið~z ¼ þ1Þ=dz ¼ 0 for 1� i� n. The above equations can be
solved analytically but the analysis (and resulting solution) becomes extremely
cumbersome as n increases. Simplification of these equations is possible in the
limit ri [ [ t, but this conveys no advantage in obtaining analytical solutions.
Numerical solutions for any value of n can be obtained easily using numerical
analysis tools such as MATLAB, and this is the approach used here.

3.3 Molecular Dynamics Model

To investigate the validity of the analytical model and uncover any atomic-scale
features not contained in the continuum model, various MWCNT configurations
were studied using the analytical model and MD simulations. For the MD simu-
lations, the Tersoff-Brenner Reactive Bond Order (REBO) potential (Brenner et al.
2002) was used, with a Lennard-Jones model for non-bonded inter-wall interactions
(Byrne et al. 2009; Girifalco et al. 2000; Xia et al. 2007) connected to the bonding
potential via cubic splines. We studied two, three, four, five and six wall MWCNTs
made up of nested CNTs with the following chirality and radii: (12,12)
ðr1 ¼ 0:79 nm), (17,17) ðr2 ¼ 1:12 nm), (22,22) ðr3 ¼ 1:45 nm), (27,27)
ðr4 ¼ 1:78 nm), (32,32) ðr5 ¼ 2:11 nm) and (37,37) ðr6 ¼ 2:44 nm). These
MWCNTs were created with controlled overall densities kCNT of inter-wall sp3

bonding, defined as the total number of inter-wall bonds divided by the total number
of atoms in the MWCNT. Samples were generated starting from an ideal MWCNT
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of the desired length L and inner diameter d. The inter-wall sp3 bonds were added at
random locations with the caveat that they were prevented from forming where a
first or second neighbour atom was already sp3 bonded, as described in Xia et al.
(2007). The ‘‘random’’ process of introducing inter-wall bonds actually produced
approximately the same number of inter-wall bonds between each pair of walls in a
MWCNT. So, we define an inter-wall bond density ki between any pair of walls as
the total number of inter-wall bonds between walls i and i ? 1 divided by the total
number of atoms in walls i and i ? 1. The models described above thus have
decreasing values of ki, corresponding to decreasing shear moduli li, from the inner
walls to the outer walls (see Fig. 6). To allow all wall stresses to attain their

equilibrium far-field value, rið~z ¼ þ1Þ ¼ F

�
2pt
Pi¼n

i¼1
ri

� 	
, an MWCNT length of

40 nm was used. For every geometric and inter-wall bond density configuration
studied, three statistical realizations of the spatial inter-wall bond distribution were
simulated.

After adding the desired fraction of sp3 bonds, the entire nanotube was relaxed
to equilibrium under zero applied load for 150 ps at temperature T = 0.01 K using
a Berendsen thermostat (Berendsen et al. 1984) and a 1 fs time step. All MD
calculations were performed using the open source software LAMMPS (Plimpton
1995). Loading was then applied by fixing the z displacements of the bottom two

Fig. 6 Analytical and MD results for two, three, five and six wall MWCNTs with 2.5 % inter-
wall bond density. Stress is normalized with respect to the far field stress in the nth wall,. Range
of shown is less than full length of tube to highlight load transfer region. a Two wall: E = 886
GPa, = 44 GPa, = 1. b Three wall: E = 867 GPa, = 34.11 GPa, = 1.15, = 0.85. c Five
wall: E = 844.5 GPa, = 29.8 GPa, = 1.45, = 1.045, = 0.802, = 0.704. d Six wall:
E = 827 GPa, = 29.5 GPa, = 1.56, = 1.146, = 0.927, = 0.74, = 0.62
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rings of C atoms and displacing the top two rings of the outermost wall vertically
by 0.05 Å every 1 ps. All other atoms were free to move subject to the empirical
potential and the thermostat. To minimize end effects due to the imposed boundary
conditions and CNT splaying effects at the ends of the tubes, no inter-wall bonding
was introduced in the top 4 rings of C atoms. Hence, the ~z ¼ 0 position, where load
transfer begins, corresponds to ring 5 of the total MWCNT structure.

Displacement was stopped when the applied stress reached approximately
45–55 GPa on the outer wall at ~z ¼ 0, which was within the elastic range of
deformation for these nanotubes, with no C–C bond failures observed. The internal
degrees of freedom in the CNTs were then relaxed for an additional 100 ps. At
each axial ring position zj we computed the cross-sectional force by determining
the forces exerted on all C atoms with axial coordinate z� zj due to all atoms with
axial coordinate z\zj. This calculation required a special-purpose subroutine that
was developed and integrated into LAMMPS.

In the analytical model, the effective shear modulus li between walls i and
i ? 1 was determined from the actual inter-wall bond density ki between each pair
of walls in the MD simulations using li ¼ 1760 GPað Þki previously derived for
DWCNTs (Troya et al. 2003).1 The average shear modulus �l for all the matrices in
the MWCNT was then found and used to determine the non-dimensional ~li. The
values used in the analytical models for ~li and E were the averages from the MD
simulations on three MWCNT structures. It was found that the value of
E decreases as more inter-wall bonds are added: for the four-wall CNT we measure
E = 860.1 GPa for 1.0 % sp3 density, E = 857 GPa for 2.5 % sp3 density, and
E = 792 GPa for 4.0 % sp3 density. The decrease in axial stiffness is due to
increased out of plane deformation in the initial structures caused by the inter-wall
bonding, which reduces the graphitic wall stiffness.

3.4 Results and Discussion

3.4.1 Inter-wall Stress Transfer

Figures 6 and 7 show the normalized stresses in each wall for various nanotubes as
obtained from the numerical and analytical models. Figure 6 shows two-wall,
three-wall, five-wall and six-wall cases with an overall sp3 bond density of
kCNT = 2.5 %, while Fig. 7 shows four-wall cases with bond densities of 1.0, 2.5
and 4.0 %. The wall stresses are normalized with respect to the far-field stress.
Each MD result is an average value from simulations performed on three
MWCNTs, with identical number of walls and average inter-wall bond density but

1 In (Troya et al. 2003) this equation is given as li ¼ 880 GPað Þki because the number of sp3

bonds was taken as the number of atoms involved in an sp3 bond, which is in fact twice the
number of sp3 bonds.
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different randomly distributed inter-wall bond locations. In all cases studied, the
results show stress transfer from the outer wall to the inner walls, in accordance
with the prescribed boundary conditions, with full transfer taking place well within
the length of the tubes studied, at these inter-wall bond densities.

We observe that the analytical and MD results are in excellent agreement for
the two-wall and three-wall cases along the entire length of the tube. With no
adjustable parameters, the analytic model thus captures the fundamental
mechanics of load transfer between walls of a MWCNT. The agreement for the
four-wall case is not as good (Fig. 7), but the length required for full stress transfer
is quite similar for the numerical and analytical models. This demonstrates that the

characteristic length l ¼ t
ffiffiffiffiffiffiffiffiffi
E=�l

p
captures the dominant trend in the load transfer. It

also demonstrates that the relationship l ¼ k	 1760 GPað Þ originally derived for
double wall nanotubes, is valid over a wide range of MWCNT configurations.

Fig. 7 Analytical and MD
results for four wall
MWCNTs with varying inter-
wall bond density. Stress is
normalized with respect to
the far field stress in the nth
wall. a 1.0 % density:
E = 860.1 GPa, = 12.5 GPa,
= 1.33, = 0.925, = 0.75.
b 2.5 % density:
E = 857 GPa, = 31 GPa,
= 1.29, = 0.96, = 0.75.
c 4.0 % density: E =

792 GPa, = 49.9 GPa,
= 1.31, = 0.946, = 0.74
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Agreement between the analytical model and the simulation is not nearly as good
for the five and six-wall cases however, with the analytic model predicting much
faster load transfer into the inner walls than found in the MD simulations.

3.4.2 Effect of Inter-wall Bond Distribution

The agreement between the model and the simulations for two and three wall cases
is strong evidence for the applicability of the analytic model. The disparities
observed for the five and six-wall cases must thus lie in detailed differences
between the modelling assumptions and the actual simulations. The analytical
model assumes a uniform shear modulus between each pair of walls throughout the
length of the tube whereas the MD models have sp3 bonds added randomly, which
leads to stochastic variations in the local sp3 bond density along the length of the
tube as well as around the circumference. To examine how these effects can
influence the load transfer, we have (i) created simulation samples with very
controlled regular distributions of inter-wall bonds and (ii) examined the actual
distribution of sp3 bonds and the load transfer more closely. These studies are
described in more detail below.

A five-wall MWCNT was created with inter-wall bonds distributed as evenly as
possible along the axial direction and with bond densities in each matrix region
such that the values of ~li were approximately the same. This required an
increasing number of inter-wall bonds for increasingly exterior walls. The precise
distribution was achieved as follows. Let ~zkf g be the dimensionless discrete set of
coordinates for rings of C atoms in an undeformed MWCNT. Dividing the
MWCNT axially into groups of four rings of atoms, we denote the inter-wall bonds
within those rings as (ijkl). In the innermost matrix (matrix 1), one inter-wall bond
was placed at each ~zk, i.e. (1111). In matrix 2, an additional inter-wall bond was
placed at every fourth ~zk, i.e. (2111). For matrix 3, yet another inter-wall bond was
added to give (2211). Finally for the outermost matrix (matrix 4) two inter-wall
bonds were placed at each ~zk, i.e. (2222). The inter-wall bonds were distributed
evenly around the circumference of the MWCNT but with the constraint that
nearby inter-wall bonded atoms be separated by at least two other atoms, because
if a bond between walls i-1 and i is placed too close to one between walls i and
i ? 1, bonds can break and defects can result.

The results from the MD simulation and analytical model for the specially
designed 5-wall MWCNT are shown, alongside the random-bond five-wall CNT
results in Fig. 8. Agreement between the simulation and the analytical model is
much better for all walls. This supports the notion that spatial randomness in the
sp3 bonding leads to the discrepancies found in Figs. 6 and 7. The minor remaining
discrepancies in Fig. 8 are believed to be mainly due to the non-linear stiffness of
the REBO potential as a function of bond distance which cannot be accounted for
using constant values of E and l. Comparison of the analytical model results in
Fig. 8a, b also reveals that load transfer occurs slightly more rapidly in Fig. 8. This
difference arises because the inter-wall shear stiffnesses are more-evenly
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distributed in the carefully controlled case (Fig. 8b: ~l1 = 1.052, ~l2 = 0.979,
~l3 = 0.934, ~l4 = 1.034) as compared to the ‘‘random case’’ (Fig. 8a: ~l1 = 1.45,
~l2 = 1.045, ~l3 = 0.802, ~l4 = 0.704). This point will be discussed below.

Since random inter-wall bonding is expected in realistic materials, we now
examine one random distribution in more detail to understand why the load
transfer lengths are increased when bonding is not evenly distributed along the
tube length. Figure 9 shows the number of inter-wall bonds in each ‘‘matrix’’ at
each ~zk location together with the normalized stress in the wall just inside that
matrix, as obtained from simulation and as predicted for one random-bond five-
wall MWCNT and only over the initial load transfer region (0�~z� 3). The
average number of inter-wall bonds over the full length of the tube is shown as a
dashed line. The figure does not show effects due to randomness in the circum-
ferential distribution of inter-wall bonds, which are believed to be secondary.

Figure 9a shows that the rate of stress transfer into Wall 4 between locations ~zk

and ~zkþ1 is strongly correlated with the number of inter-wall bonds in matrix 4 at
location ~zk. When the number of inter-wall bonds is below the average (e.g. at ~z1

and ~z2), the stress transfer is below the analytical result, and hence the stress is also
below the analytical result. The low number of inter-wall bonds is compensated for
further along the CNT (e.g. ~z3, ~z4,~z7) by above-average numbers of inter-wall
bonds, which leads to increased rates of stress transfer that are larger than the
analytical prediction. This allows the simulated stress to approach the predicted
stress. This situation is generally expected. However, stress transfer to wall i, i\4,
is more complex as it depends on bonds in multiple walls (8j; j� i). In particular,
an above average number of bonds in an inside matrix (such as in matrix 2 for ~zk,
k = 1,2,3) is not effective in transferring stress if it coincides with a below average
number of bonds in a matrix further out at the same ~zk (matrix 4 in this case). Thus
no stress is transferred to wall 2 until distance ~z4, and the above average number of
bonds in matrix 2 at ~zk, k = 1,2,3 cannot compensate for below average values
further along the z-axis in matrix 2. In general, regions of above average inter-wall
bonding cannot always compensate for other locations of below average inter-wall
bonding in the same matrix (for matrices i\n� 2), and hence delays in the stress
transfer accumulate. With increasing number of walls in the CNT, there are more

Fig. 8 Load transfer in five-wall CNT with a randomly distributed inter-wall bonds (reproduced
from Fig. 6c) and b evenly distributed inter-wall bonds
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locations with below average bond density in at least one of the matrices outside
wall 1, which is the reason why the stress transfer into wall 1 is delayed more and
more, relative to the analytical result, as walls are added. The more homogenous
the axial distribution of inter-wall bonds, the less such fluctuations occur, and the
load transfer can thus occur faster, as we saw for the specially designed 5-wall tube
in Fig. 8b. The analytical shear-lag model above could be generalized to account
for axial variations in the inter-wall bonding. In essence, the shear moduli would
become functions of axial position, li ¼ liðzÞ, and the analysis would otherwise
be identical. However, liðzÞ would need to be a continuous function and would
need to be determined for each specific realization of inter-wall bonding of
interest. Thus, while possible, the feasibility and utility of such an approach is
greatly limited and it is not pursued further here.

The simulations above have, for computational feasibility, used relatively small
diameter MWCNTs. However, the fluctuations in bonding are exacerbated in small
systems and should be smaller in larger systems. Specifically, assuming circum-
ferential fluctuations in inter-wall bonding are not important, the axial fluctuations
become smaller, relative to the mean, for larger diameter MWCNTs. For N pos-
sible circumferential bonding locations at any location ~zk, the variance in the
number of bonds scales with N�1=2. Thus, larger MWCNTs should have more
uniform axial inter-wall bond distributions and exhibit load transfer that is closer
to the analytical model.

Fig. 9 Analytical and single MD simulation of the five-wall CNT with random inter-wall bond
distribution. Shown, for each matrix, are number of inter-wall bonds and normalized stress as a
function of ~z over first three characteristic lengths, together with average number of inter-wall
bonds in each matrix over the full length of the tube. a Matrix 4. b Matrix 3. c Matrix 2. d Matrix 1
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3.5 Design of MWCNTs for Optimal Load Transfer

Turning to practical considerations, although it may appear that enhanced inter-
wall bonding near the ends of a MWCNT can enhance load transfer, in fact
inter-wall bonding must be distributed along the entire length of the MWCNTs
to accommodate the fracturing of MWCNTs during loading. During tensile
failure of composites, fibers break many times along their length and stress is
transferred back into the remaining fragments through load transfer. In addition,
fiber pull out from the matrix absorbs considerable energy but also requires load
transfer. Thus composite strength and toughness depend on being able to transfer
stress not only to intact fibers, but also to broken fibers. The optimum strategy
for achieving maximum composite strength and toughness is thus to aim for a
constant number of inter-wall bonds along the entire length of the MWCNTs.

We now examine how to achieve the most rapid load transfer for a given overall
average density of inter-wall bonds. Data in Fig. 8 suggested that faster load
transfer occurs when ~li is approximately the same from matrix to matrix. To
investigate this more broadly, we examine MWCNTs with 3, 5, 10 and 25 walls
and varying degrees of wall-to-wall non-uniformity in the ~li. Specifically, we
assign ~li values to each matrix region randomly in the range 0\li\2�l around a
target mean �l ¼ 25 GPa and rescale the selected random values so that their actual
mean equals �l. For each MWCNT created, we calculate the coefficient of variation
CV~l of the actual inter-wall bond distribution and use the model to predict the
distance LLT required for ‘‘full’’ load transfer. Here LLT is defined as the distance at
which the load in the innermost (n = 1) nanotube has reached 99 % of its far-field
equilibrium value. For perfectly uniform MWCNTs (i.e. li ¼ �l; CV~l ¼ 0), we
label the load transfer length as Luniform

LT . Figure 10 shows the predicted load
transfer distance LLT normalized by Luniform

LT as a function of the coefficient of
variation CV~l within the MWCNT. We observe that LLT=Luniform

LT � 1 for all values
of CV~l, demonstrating that a uniform distribution of shear moduli across all walls
leads to the fastest load transfer. In terms of inter-wall bond density, since the
number of atoms in the walls of a commensurate MWCNT increases linearly from
wall 1 to wall n, optimal load transfer should occur when the number of inter-wall
bonds increase linearly from the inside to the outside walls. The data in Fig. 10

Fig. 10 Effect of variations
in shear modulus from matrix
to matrix on the length for
full load transfer (99 % of far
field stress) normalized by the
full load transfer length for a
perfectly uniform distribution
(CVl ¼ 0)
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further shows that moderate wall-to-wall variations, e.g. CV~l\0:5, do not
significantly increase the load transfer length. Even for high variations the devi-
ations remain only a few times larger than Luniform

LT .
In practice, the creation of inter-wall bonding by irradiation seems likely to

create more inter-wall bonds in the outer walls as compared to the inner walls
(Pregler and Sinnott 2006). This is consistent with the data of Peng et al. (2008)
who found increasing irradiation dose to correlate with increasing depth of inter-
wall coupling, as measured by examining fractured MWCNTs. Fortunately, if a
gradient in inter-wall bonding is to occur, load transfer favours decreasing inter-
wall bonding from the outside to the inside. Table 2 illustrates the load transfer in
five 26-wall cases: a uniform case (case 1: all ~li ¼ 1), two cases with small CV~l

(cases 2, 3) but with ~li decreasing from outside to inside (case 2) and ~li increasing
from outside to inside (case 3), and two cases with larger CV~l (cases 4, 5) and
again with ~li decreasing from outside to inside (case 4) and ~li increasing from
outside to inside (case 5). LLT in case 2 is slightly faster than in case 3, and only
2 % larger than Luniform

LT , while load transfer in case 4 is also faster than in case 5.
Thus, decreasing moduli from outside to inside is preferable.

Peng et al. (2008) also showed that high irradiation could lead to excessive
damage in the MWCNTs. Our results combined with those of Peng et al. (2008)
suggest irradiation strategies that can most-effectively cause load transfer. Spe-
cifically, subjecting MWCNTs to an initial dose of high energy radiation to pen-
etrate into the inner walls and create inter-wall bonds in the interior followed by
lower energy radiation to form more inter-wall bonds in the outer walls might lead
to relatively uniform inter-wall shear moduli, and hence good load transfer.

Finally, Fig. 11 shows that the load transfer length Luniform
LT , normalized by the

characteristic length ‘, depends linearly on the number of walls n in the MWCNT,

Luniform
LT =‘ � 1:5 n ð13Þ

This remarkably simple equation demonstrates that when inter-wall bonds are
distributed evenly throughout the structure, or with modest variations (viz. as in
Fig. 10), the characteristic length for load transfer for an n-wall MWCNT scales as

LLT � 1:5nt
ffiffiffiffiffiffiffiffiffi
E=�l

p
ð14Þ

Table 2 Normalized load transfer length LLT=Luniform
LT as a function of the gradient in shear

modulus for an n = 26 wall MWCNT

Case ~li LLT CV~l

1 ~li ¼ 1; 8i 39.27 (¼ Luniform
LT ) 0

2 ~li ¼ 0:52þ 0:04ði� 1Þ; 1� i� 25 40.06 0.294
3 ~li ¼ 1:48� 0:04ði� 1Þ; 1� i� 25 40.86 0.294
4 ~li ¼ 0:04þ 0:08ði� 1Þ; 1� i� 25 48.47 0.589
5 ~li ¼ 1:96� 0:08ði� 1Þ; 1� i� 25 51.37 0.589

Decreasing modulus from outside to inside (n = 25 to n = 1) provides faster load transfer than
increasing modulus from outside to inside
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where t is the CNT wall spacing, E the effective Young’s modulus, and �l the
overall average inter-wall shear modulus due to inter-wall coupling. This equation
can thus be used to predict a good lower bound for load transfer, given a rela-
tionship between �l and the inter-wall bond density k, which depends on the type of
inter-wall coupling. Here we have studied direct inter-wall sp3 bonding such that
l ¼ k	 1760 GPað Þ. The lower bound arises due to the neglect of the statistical
fluctuations that tend to increase the load transfer length, but that may be less
influential in larger-diameter MWCNTs. Equation 13 is a major broad outcome of
our study.

3.6 Concluding Remarks

We have presented an analytical shear-lag model that is a useful tool for predicting
load transfer in MWCNTs as a function of the degree of inter-wall bonding
between pairs of walls in the structure. Molecular dynamics simulations generally
validate the model, showing it to be most accurate when the inter-wall bond
density is uniform axially within each matrix region. Via numerical tests, we have
shown that deviations between the model and the simulations arise due to statis-
tical fluctuations in the bonding. Exercising the model over a range of parameters,
optimal load transfer has been shown to occur when the inter-wall shear modulus
is uniform from wall to wall in the MWCNT, and axially along the tube length. For
more realistic scenarios of inter-wall bond formation via irradiation, where the
inter-wall bond density likely decreases from the outer to inner walls, the devia-
tions in load transfer length from the ideal case are relatively small if the inter-wall
bond density variation is not too large. We conclude that the general scaling for

load transfer in an n-wall MWCNT can be estimated as � 1:5 nt
ffiffiffiffiffiffiffiffiffi
E=�l

p
, which

captures the dominant trends with respect to number of walls, Young’s modulus,
and average shear modulus due to inter-wall bonding. These guidelines should
assist in design of engineered MWCNTs, where inter-wall coupling is introduced
to enhance load transfer, energy dissipation, and thus composite strength and
toughness in ceramic- and polymer-matrix composite materials.

Fig. 11 Non-dimensional
length to 99 % stress transfer,
with equal shear moduli in
each inter-wall space, versus
number of walls in MWCNT
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4 Improved Inter-Tube Coupling in CNT Bundles
Through Carbon Beam Irradiation

4.1 Introduction

The ultra-high stiffness and strength of carbon nanotubes (CNTs), of the order of
1 TPa and 100 GPa respectively (Yu et al. 2000a; Yakobson and Avouris 2001),
has stimulated intense interest in CNT-based composites, including the develop-
ment of super strong fibres from CNT bundles. However, the mechanical prop-
erties of such fibres are generally far lower than that of individual CNTs, due to the
weak van der Waals shear interactions between neighbouring shells and tubes
(Peng et al. 2008; Xia and Curtin 2004; Salvetat et al. 1999; Filleter et al. 2011),
which severely limits load transfer. This deficiency affects not just shear and
bending properties, but also the tensile strength and toughness when such fibres are
used in composite materials, since load is generally introduced by the matrix to the
outer tubes in the fibre, and must be transferred through inter-tube shear if the
inner tubes are to share the load. Additionally CNTs generally do not run the full
length of the fibre so inter-tube shear load transfer is essential if the fibre is to
behave as a coherent entity. Without it, sword-in-sheath type fibre failure occurs in
which only a few of the CNTs are actually fractured, with the rest pulled out with
minimal resistance.

A number of researchers have investigated the use of irradiation, either via
electrons or ions, to promote covalent bonds or cross-links between neighbouring
walls in multi-wall CNTs (MWCNTs) (Byrne et al. 2009; Peng et al. 2008; Pregler
and Sinnott 2006; Byrne et al. 2010; Pavia and Curtin 2011; Fonseca et al. 2010;
Li et al. 2009) or tubes (Kis et al. 2004; Ni et al. 2001; Federizzi et al. 2006;
Cornwell and Welch 2011) in CNT bundles. It has been shown computationally
that only a small amount of cross-links can dramatically increase inter-wall or
inter-tube stiffness (Xia et al. 2007; Kis et al. 2004). Recently experimental evi-
dence has been presented of a three-fold increase in tensile strength in MWCNTs
(Peng et al. 2008) and an order of magnitude increase in tensile strength and
modulus in CNT bundles (Filleter et al. 2011), achieved through promotion of
cross-links via irradiation. These studies provide strong motivation for further
investigation of this topic, with the aim of understanding and optimising the
irradiation process.

The dilemma when using irradiation for this purpose is that the intended inter-
tube or inter-wall cross-links can only be achieved with the generally unwanted
side effect of other kinds of defects, such as vacancies, adatoms, and Stone–Wales
defects, which have a detrimental effect on mechanical properties (Pregler and
Sinnott 2006; Sammalkorpi et al. 2005; Kis et al. 2004). Thus a delicate balance
has to be struck. The formation of defects (including cross-links) is influenced by
many factors including CNT size, the number of walls, the number of tubes in the
bundle, incident particle mass, energy, dosage and whether or not the particle
forms chemical bonds with C atoms (Xu et al. 2009), so there are too many
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variables involved to optimise this process experimentally. It is thus crucial to
increase understanding of the deposition process and the formation of defects
through computational and theoretical study. To date, molecular dynamics studies
have been performed on CNT deposition with ions of noble gases (Pregler and
Sinnott 2006; Salonen et al. 2002; Pomoell et al. 2004; Pregler et al. 2008), CH3

(Ni et al. 2001; Ni and Sinnott 2000), CF3 (Pregler and Sinnott 2006), potassium
(Kotakoski et al. 2005), boron and nitrogen (Kotakoski et al. 2005). Electron
irradiation has also been mimicked via a primary knock-on atom method, whereby
high kinetic energies are assigned to random CNT atoms (Pregler and Sinnott
2006). To the best of our knowledge, deposition of carbon ions has only been
considered for irradiation of CNT bundles in (Federizzi et al. 2006) and irradiation
of single tubes in (Xu et al. 2009). It has also recently been considered for
graphene (Compagnini et al. 2009). Carbon ion deposition is an interesting option
since it introduces no impurities into the system, provides additional carbon
interstitial atoms to mediate cross-links, and enables efficient momentum transfer
due to the match between the mass of the deposition and target atoms.

In this section, we provide a detailed study of the carbon ion deposition process
on bundles of single-wall CNTs (SWCNTs) using molecular dynamics simula-
tions. Our study differs from that in (Federizzi et al. 2006) in that we consider
specific irradiation strategies aimed at improvement of mechanical properties, and
use a recently-developed reactive bond-order potential with environment-
dependent first nearest-neighbour definition (Pastewka et al. 2008) which accu-
rately simulates bond-forming and bond-breaking processes in carbon-based sys-
tems. The ideal result for our purposes would be a uniform level of inter-tube
covalent bonding between all adjacent tubes (with the ability to somehow control
that level) with a minimum level of defects in the CNT walls. This would allow
transfer of load between CNTs, enabling all of them to engage in loading, with the
least loss in strength due to intra-wall defects. The ability to control the level of
cross-linking would allow design of fibres to give the desired balance between
strength and toughness. We find that for 7-tube bundles, the level of cross-linking
can be reliably controlled through varying the irradiation parameters. Many dif-
ferent types of cross-links and defects are formed and characterised here. We also
examine 19-tube bundles and find bigger challenges in terms of controlling cross-
link density. For yet larger bundles, we propose some alternative approaches.

4.2 Simulation Method

4.2.1 Interatomic Interactions

For realistic Molecular Dynamics (MD) simulations of the deposition process,
accurate inter-atomic potentials, capable of representing bond breaking and
forming, are required. Molecular mechanics calculations using the well-
established REBO potential (Brenner et al. 2002) show inappropriate fracture
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mechanisms and grossly overestimate the stress for C–C bond breaking, as
compared with values predicted by quantum mechanics calculations (Hirai et al.
2003; Shenderova et al. 2000; Yakobson et al. 1997; Pastewka et al. 2010). The
inaccuracy stems from the functional form for a cut-off function used in the
original REBO potential that greatly increases the bond force for distances
between 0.17 and 0.20 nm (Belytschko et al. 2002). For studies only concerned
with bond breaking some authors have avoided the non-physical fracture mech-
anisms by removing the cut-off function (Byrne et al. 2009; Zhang et al. 2005;
Shenderova et al. 2000), which then leads to an underestimate of the stresses for
bond breaking relative to quantum mechanics calculations (Byrne et al. 2009;
Zhang et al. 2005; Hirai et al. 2003; Shenderova et al. 2000; Li et al. 2009;
Yakobson et al. 1997) and, moreover, precludes a consideration of bond formation.
To rectify these problems we used a modified REBO potential recently presented
in (Pastewka et al. 2008), where a local environment-dependent cut-off function
based on screening concepts (Baskes et al. 1994) allows a bond between two atoms
to persist over long distances provided that no third atom moves into the bonding
region. This leads to smooth changes in forces and a much better description of
bond breaking and reforming compared with first principles calculations.

Concerning the deposition process, our simulations mimic the pulsed laser
deposition process in (Schittenhelm et al. 2002; Sorescu et al. 2003) which pro-
duced both C+ ions and neutral carbon atoms (as well as slower C2 and C3 mol-
ecules). Since classical MD does not include charge effects or electron excitation,
we are constrained, like previous authors (Pregler and Sinnott 2006; Sammalkorpi
et al. 2005; Salonen et al. 2002; Federizzi et al. 2006; Pomoell et al. 2004; Pregler
et al. 2008), to only treating the incident particles as neutral carbon atoms. While
we recognise that particle charge will affect the chemical reactions that occur, we
expect that MD simulation can provide results on the degree of cross-linking and
damage that occurs which are qualitatively correct and useful for comparing dif-
ferent irradiation strategies. Our simulations consider nuclear stopping only,
ignoring electron stopping, which is justified based on the low energies involved in
our study (Federizzi et al. 2006; Krasheninnikov and Nordlund 2010). The public
domain parallelized program LAMMPS (Plimpton 1995) was used for all
simulations.

4.2.2 Geometry

Our simulation models comprised bundles of seven or 19 hexagonally arranged
(26,0) SWCNTs (see Fig. 12). Each tube had radius 10.18 Å, length 59.6 Å,
contained 1456 carbon atoms and was initially defect-free. Periodic boundary
conditions (PBCs) were applied in the z direction to simulate an ‘infinitely’ long
bundle. A number of ‘‘rings’’ (in most cases five) of 50 carbon atoms each in the
7-tube case (85 each for the 19-tube case to maintain the same fluence, see below),
were initially placed around the CNT bundle, as shown in Fig. 12a. A gap of 4 Å
between each ring, and each atom within each ring, was ensured to avoid initial
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interactions. Within these constraints, the atoms in each ring were distributed
randomly circumferentially and also along the length of the bundle.

4.2.3 Deposition Simulation

Random incident trajectories within the angle 
28�, illustrated in Fig. 12b for the
7-tube case, were assigned to each deposition atom. The strategy behind such a
wide angle is to produce inter-tube links which connect the CNTs not just radially,
but also circumferentially, which is desirable from the viewpoint of bundle
mechanical properties. The deposition strategy simulated is somewhat idealised,
but should be achievable through modification of the pulsed laser deposition
procedure used in (Sorescu et al. 2003). In the 7-tube simulations the kinetic
energy was the same for all incident atoms, and cases of 50, 100, 150, 200 and
300 eV/ion were examined. For the 19-tube simulations, variable energy strategies
were considered in an attempt to achieve as uniform level of cross-linking within
the bundle as possible.

Throughout the simulations free boundary conditions were applied in the x and
y directions. An initial relaxation phase of 3.125 ps was applied to equilibrate the
bundle, while the rings of C atoms were held fixed. An NVE ensemble was used
with velocity rescaling at 0.5 K, while the velocity verlet algorithm was used to
integrate the equations of motion with a time step of 0.25 fs. The innermost ring
was then deposited without a thermostat so the energy of the impinging atoms was
added to the CNT bundle. A time step of 0.0625 fs was used during the deposition
which allowed the atomic interactions to be determined with sufficient accuracy

Fig. 12 a Hexagonally arranged 7-tube (26 0) SWCNT bundle model with five ‘‘rings’’ of
deposition atoms; the atoms in each ring are distributed randomly in the axial and circumferential
directions. b Random deposition atom trajectory parameters and reference area AINT used to
determine the number of bonds per area at each interface; the curve segment S is defined to
include all atoms in the outer CNT which are within the interaction distance of centre CNT, for
the potential function used
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for all deposition energies. This was followed by a relaxation phase and a cooling
phase. During the relaxation phase, the CNT bundle reached a new equilibrium
state as evidenced by the levelling out of the potential energy. In the cooling phase,
the bundle was cooled back down to 0.5 K, to facilitate analysis of defects (as done
in (Xu et al. 2009; Pomoell et al. 2004)). This process was then repeated for the
remaining rings.

The irradiation area for the CNT bundle was taken to be the circumference of the
circle circumscribing the bundle multiplied by the bundle height, which is
125 9 10-14 cm2 for the 7-tube bundle and 211 9 10-14 cm2 for the 19-tube
bundle. For the majority of our simulations, five rings of atoms were deposited, so
the fluence (particles per unit area) ranged from 4.0 9 1013 cm-2 for one ring, up to
2.0 9 1014 cm-2 for five rings; in a few cases extra rings (higher fluence) were
considered to extrapolate observed trends, as will be outlined later. According to
(Pomoell et al. 2004), for Ar ions at 1 keV energy, the number of coordination
defect numbers (signifying all kinds of defects, including inter-tube links) increases
with fluence up to around 2 9 1014 cm-2 and then levels off. Our fluence values are
at or below this level and would be classed as ‘‘low dosage’’ in (Krasheninnikov and
Nordlund 2010). We define ‘‘dosage’’ differently here though as the total incident
energy—which is the energy/ion multiplied by the number of incident ions—
divided by the mass of the CNT bundle. This differs from fluence in that the energy
of the incident ions, not just their number, is accounted for. Apart from the few extra
cases mentioned above, our dosages ranged from 2 MGy (or J/kg) for one ring of
50 eV ions to 60 MGy for five rings of 300 eV ions. Any deposition atoms that
rebounded off the CNT bundle and strayed outside a set radius (65 Å) of the CNT
bundle were frozen in space to stop them from exiting and re-entering the periodic
simulation box. This caused a small but negligible drop in the total system energy.
For the 7-tube bundle, for all incident energies, five runs with varying initial ran-
dom trajectories of the incident C atoms were performed in order to assess statis-
tical variation. For the 19-tube bundle, due to the computational time required, only
a small number of simulations were performed to evaluate strategies suggested by
the 7-tube study.

4.3 Results and Discussion

4.3.1 Single-Atom Deposition

To validate the use of the modified REBO potential (Pastewka et al. 2008) in our
problem, we first consider a direct impact of a single C atom on a CNT lattice atom
(see Fig. 13a) Our simulations indicate that the deposition atom needs a threshold
kinetic energy of Eth ¼ 21:9 eV to fully displace an atom from the CNT lattice. At
this energy, the displaced atom travels to the far wall of the impacted CNT and
deposits there as an adatom, while the deposition atom takes its place in the lattice.
Unlike most solids, the open structure of nanotubes allows this type of large
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interstitial-vacancy Frenkel pair separation, so instant recombination does not
necessarily occur (Krasheninnikov and Nordlund 2010). To knock out an atom
from the lattice, a displacement threshold energy Td must be transferred to the
atom (Krasheninnikov and Nordlund 2010). For most types of deposition ions, the
energy of the impinging ion needs to be substantially larger than this, e.g. classical
binary collision theory gives (Krasheninnikov and Nordlund 2010):

Eth ¼
mc þ mIð Þ2

4mcmI
Td ð15Þ

where mI is the mass of the ion and mc is the mass of the carbon atom. However
from (15), when the impinging ion is carbon, Eth ¼ Td, i.e. complete energy
transfer occurs, and the velocity of the ion after the impact is zero (regardless of
the initial energy of the ion). In comparison, for Ar ions, Eth ¼ 1:4Td and for
electrons Eth ¼ 5469 Td. Our simulations confirm that for direct impact with
energies from 21.9 to 300 eV, no damage occurs at the impact site, and the
impinging ion simply replaces the impacted ion in the lattice. Studies using
molecular dynamics with the non-orthogonal density functional based tight
binding (DFTB) force model (Krasheninnikov et al. 2005; Banhart et al. 2005)
give Td ffi 20 eVfor ‘‘dynamic’’ simulations (initial kinetic energy that needs to be
given to a lattice atom for it to escape the system) and Td ffi 13 eV for ‘‘static’’
simulations (energy to create a vacancy and an adatom—i.e. a widely separated
vacancy-interstitial Frenkel-pair—from a perfect CNT lattice) for zigzag CNTs
with diameter 2 nm. According to (Krasheninnikov and Nordlund 2010) the true
value lies between these values, probably closest to the dynamic value. Thus our
value of Eth ¼ 21:9 eV, being just above the dynamic DFTB value for Td in
(Krasheninnikov et al. 2005; Banhart et al. 2005), is a very reasonable one, con-
sidering that binary collision theory is only an approximation so that Eth is likely to
be somewhat above Td.

We next consider a ‘‘penetrating’’ impact, i.e. a deposition atom aimed directly
at the centre of a CNT hexagon, Fig. 13b. Our simulations indicate that the kinetic
energy of the deposition atom decreases when it gets within the interaction dis-
tance of the CNT atoms, attains a minimum as it passes through the hexagon and
then increases slightly thereafter until it leaves the interaction region and continues
on. The net energy loss after passing through varied from *22 eV for 50 eV
initial energy to * 16 eV for 300 eV initial energy. To explain the occurrence of
a minimum we note that while the deposition atom interacts with the lattice atoms,
their coordination number increases giving an equilibrium bond distance greater
than 1.42 Å. To squeeze through the hexagon, the deposition atom must pass
within 1.42 Å of all the hexagon atoms, resulting in a repulsive force which gives
the atom a kick once it passes through; hence the small recovery of kinetic energy.
The energy lost by the deposition atom is transferred to the lattice (setting up
vibrations and potentially forming defects) and has been termed ‘‘chemical ero-
sion’’ in (Xu et al. 2009); this process obviously does not occur for non-bonding
ions like He, Ar, and Ne. This observation for non-direct impacts, combined with
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consideration of Eq. (1) for direct impacts, explains results in the literature
wherein considerably higher deposition energies (around 50 eV) were required to
effect modification of the CNT lattice using noble gas ions such as Ar (Pregler and
Sinnott 2006; Salonen et al. 2002; Xu et al. 2009; Krasheninnikov and Nordlund
2010; Tolvanen et al. 2007) than for the C ions studied here.

The final single atom impact we consider is an oblique impact, 20� from the
normal direction, (Fig. 13c). In this case, significant damage occurs, in keeping
with (Krasheninnikov and Nordlund 2010) which stated that multi-vacancies
normally appear for tangential hits. The unique ability of CNTs to ‘‘self-heal’’
themselves (Krasheninnikov and Nordlund 2010) by saturating dangling bonds is
clearly visible in this figure, and is certainly an advantageous feature for our
current purpose. Inter-tube links occur when atoms are knocked from the inside
wall of the impacted CNT, either by a displaced lattice atom in the case of a direct
impact, or by the deposition atom in the case of a penetrating impact—see
Fig. 13a, b. No inter-tube links were formed for 20� oblique impacts.

4.3.2 Multi-Atom Deposition: Inter-Tube Links and Defects Formed

Figure 14 illustrates the level of inter-tube cross-link formation from multi-atom
depositions on 7-tube bundles for a variety of energies and fluences. We see that
very few bonds with the centre CNT are created at 50 eV/ion, Fig. 14a, and none
involve deposition atoms (coloured red), even at a fluence of 2 9 1014 cm-2

(5 rings of 50 atoms). The number of such bonds increases for 100 eV/ion,
Fig. 14b, and 150 eV/ion, Fig. 14c, and some deposition atoms make it to the
centre of the bundle. At 200 eV/ion, significant bonding with the centre CNT can
be achieved with a lower fluence of 1.21 9 014 cm-2, Fig. 14d, although because

Fig. 13 Single C atom impacts. a Direct impact sequence, and cross-links formed for 200 eV
case. b Penetrating impact sequence, and cross-links formed for 200 eV case. c Oblique impact
sequence for 200 eV case
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of the random positioning and trajectories of the deposition atoms, the bonding is
unevenly distributed; for a higher fluence of 2 9 1014 cm-2 at this energy,
Fig. 14e, a high level of inter-tube bonding is achieved. Similar observations can
be made for 300 eV, Fig. 14f, where significant inter-tube bonding occurs for a
fluence of just 4 9 1013 cm-2 (just 50 atoms). At a fluence of 1.2 9 14 cm-2,
Fig. 14g, the damage to the CNTs is becoming excessive, and at 300 eV,
2 9 1014 cm-2, the centre CNT is virtually amorphised, which is obviously
undesirable for structural applications.

Figure 15 shows the large variety of inter-tube link types formed. The bonds
involved in the cross-link are labelled according to the hybridisation of the par-
ticipating carbon atoms, e.g. a bond between two four-coordinated C atoms is
labelled an sp3-sp3 bond and so on. The bond lengths and angles are given in
Table 3. Link types (c)-(f) were relatively common, so an average and a range
over five different instances of each type is given in Table 3. Link types (a), (b)
and (g-j) were very rare (less than five instances) so a range is not given. Even
more complex links involving more than three interstitials were also found; the
more complex links were mostly found at high dosages, perhaps through amal-
gamation of adjacent simpler links. We see that the bond lengths and angles differ
somewhat from the equilibrium distances for pure sp, sp2, and sp3 bonds, indi-
cating the bonds are stretched and distorted. Overall, bond type (d), in which a
single interstitial atom is bonded to one atom in one CNT and two atoms in another
CNT, was the most common type of cross-link. Bond types (a), (b), (d) and (f)
were reported for C atom deposition on CNT bundles in (Federizzi et al. 2006), but
the other types have not been reported before. Bond lengths, angles and frequency
of occurrence are quite different from (Federizzi et al. 2006), e.g. direct bonding

Fig. 14 Irradiated SWCNT bundles for: a 50 eV/ion, fluence = 2 9 1014 cm-2, b 100 eV,
fluence = 2 9 1014 cm-2, c 150 eV, fluence = 2 9 1014 cm-2, d 200 eV, fluence = 1.2 9 1014

cm-2, e 200 eV, fluence = 2 9 1014 cm-2, f 300 eV, fluence = 4 9 1013 cm-2, g 300 eV,
fluence = 1.2 9 1014 cm-2, h 300 eV, fluence = 2 9 1014 cm-2, (Original deposition
atoms = Red; Original CNT rope atoms = Blue)

Improved Mechanical Performance of CNTs and CNT Fibres 31



without an interstitial (bond type (a)) was found to be rare here, but more common
in (Federizzi et al. 2006). The potential function used in (Federizzi et al. 2006) was
a relatively old Tersoff potential (Tersoff 1988), which helps to explain these
differences. Chainlike crosslinks of sp-hybridized atoms, like bond type (f), have
been reported before between MWCNT walls in (Pregler and Sinnott 2006) fol-
lowing CHþ3 ion irradiation. The cross-links formed will provide inter-tube
mechanical coupling as desired. The stiffness and strength of each of these types of
cross-link are likely to vary, although should be governed by the the weakest bond
in the link. For example, bond type (f) contains a high-strength triple C–C bond,
but the other bonds in the chain will determine the strength of the cross-link. The
effects of these inter-tube bonds on mechanical properties of the bundle will be
quantified in Sect. 5.

The side effect of irradiation is the formation of defects which weaken the
structure. Figure 16 shows the variety of defects formed during our simulations
which include single atom vacancies, two-atom vacancies, larger vacancies,
Stone–Wales defects and a pentagon-hexagon (5665) defect that we have not seen
before in the literature. Stone–Wales defects are thought to be responsible for the
release of excessive strain under axial mechanical load of nanotubes (Krashen-
innikov and Nordlund 2010), with ties in with an observation that after deposition,
the CNT bundle was in a state of tension due to the geometric changes caused by
defects and cross-links.

4.3.3 Effects of Deposition Parameters on Inter-Tube Cross-Link
and Defect Characteristics

Figure 17 shows the number of ‘‘centre links’’, i.e. links formed between the centre
CNT and the surrounding CNTs, and the number of ‘‘circumferential links’’, i.e.
the links between the outer CNTs only, as a function of dosage, for 50–300 eV/ion
energy levels. The results are presented per interface area, where the interface area
for one CNT–CNT interface, AINT, is defined in Fig. 12b. There are six interfaces
involved in both the centre links and the circumferential links so the number of
bonds is divided by 6AINT in each case. To enable comparison of different energy
levels at similar dosages, additional rings of deposition atoms (beyond five) were
examined for the 50 and 100 eV cases (total 15 rings for 50 eV, 10 for 100 eV).
The error bars demonstrate the variation obtained from the five different random
trajectories applied for each data point. For 300 eV deposition, it was only possible
to count the cross-links after one ring of atoms were deposited—after that the
bundle became nearly amophous. We see that for energies in the range
100–200 eV, both the number of centre links and the number of circumferential
links increase almost linearly with dosage, with only a slight dependency on
energy. Thus within this energy range, a given percentage increase in either
energy/ion or fluence has the same effect on cross-link density, giving us two ways
to control the level of cross-linking. Below this energy range, i.e. for 50 eV/ion,
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the efficiency of bond formation with the centre CNT is significantly less. We
found, for all our simulations, that the number of deposition atoms staying in the
system (‘‘trapped atoms’’) was approximately constant at 80 %, with the remainder
being deflected out on first impact during oblique impacts. Thus we see that within
the 100–200 eV energy range, as the incident energy increases, a higher per-
centage of the trapped atoms result in inter-tube links, whereas at lower energy,
many trapped atoms merely ‘‘stick’’ (as adatoms) to the bundle, but do not cause
inter-tube links.

We also observe that the number of circumferential links is approximately
double the number of centre links. It is anticipated the distribution could be made
more uniform by decreasing ain Fig. 12b. The single data points for 300 eV show
a dramatic variation from the trends shown at lower energy levels. At
300 eV *2 nm-2 links can be achieved radially and circumferentially with a
fluence of just 4 9 1013 cm-2 or 50 deposition atoms. However, the fluence would
have to be very carefully controlled at this energy level to avoid excessive damage

Fig. 15 Inter-tube cross-link types a direct sp3-sp3 bond, b two sp3-sp bonds with one interstitial
atom, c three sp3-sp2 bonds with one interstitial atom, d one sp3-sp2 and two sp2-sp2 bonds with one
interstitial atom, e four sp3-sp3 bonds with one interstitial atom, f one sp–sp and two sp3-sp bonds
with two interstitial atoms, g one sp2-sp2 and four sp3-sp2 bonds with two interstitial atoms, h seven
sp3-sp3 bonds, and two interstitial atoms, i three sp3-sp2 and three sp2-sp2 bonds, and three
interstitial atoms, j six sp3-sp2 and three sp3-sp3 bonds, and three interstitial atoms. Atoms:
Red = interstitial, Green: CNT atom involved in cross-link, Blue: CNT atom not involved in cross-
link. Bonds: Blue = sp3-sp3, Pink = sp3-sp, Green = sp3-sp2, Black = sp2-sp2, Red = sp–sp

Improved Mechanical Performance of CNTs and CNT Fibres 33



to the bundle (Fig. 14). As noted in (Pomoell et al. 2004), this continuing increase
in defect numbers (considering cross-links to be a type of defect) with irradiation
energy is a result of the deposition atoms being primarily trapped in the system.
Above 300 eV we expect the level of defects produced to level off as deposition
atoms would start to pass right through the bundle, limiting the number of recoils.
Our results are also in accord with (Xu et al. 2009), where for C ion deposition on
a single SWCNT, the number of coordination defects increased linearly with ion
energy up to 200 eV/ion and then started to level off as the ions started to pass
through the CNT.

We also analysed the defects produced and found that as energy/ion increases
from 50 to 200 eV, the number of single atom vacancies decreases sharply (by a
factor of *4), the number two atom vacancies stays relatively constant, the
number of larger (more than two-atom) vacancies increases sharply (by a factor
of *4), and the number of Stone–Wales and pentagon-hexagon defects (small at
all energies) stays constant. The overall conclusion is that at higher energy, larger
holes are formed either from the first impact or through hole enlargement via
subsequent impacts which overwhelm the self-healing ability of the CNTs. These
findings are in line with the findings in (Krasheninnikov et al. 2005) that the
transformation of single atom vacancies to double vacancies has quite a low
energy cost relative to formation of single atom vacancies from pristine tubes,
because only two bonds need to be broken instead of three, and the double vacancy
reconstruction, Fig. 16b, is more stable than the one vacancy reconstruction,
Fig. 16a, due to the absence of dangling bonds.

A feature that is likely to strongly influence bundle tensile strength is the largest
hole in the bundle. Figure 18 shows the largest hole size (measured as the largest

Table 3 Inter-tube cross-link bond lengths and angles

Cross
link type*

NI
� Bond types (no. of) D1

(Å)
D2
(Å)

D3
(Å)

a (o) b (o) h (o) d (o)

(a) 0 sp3-sp3 (1) 1.63
(b) 1 sp3-sp (2) 1.56 147
(c) 1 sp3-sp2 (3) 1.51 ± 0.05 1.67 ± 0.07 128 58 163
(d) 1 sp3-sp2 (1)

sp2-sp2 (2)
1.55 ± 0.07 1.42 ± 0.02 126 109

(e) 1 sp3-sp3 (4) 1.67 ± 0.08 58 117
(f) 2 sp–sp (1)

sp3-sp (2)
1.57 ± 0.07 1.22 ± 0.01 150 168

(g) 2 sp2-sp2 (1)
sp3-sp2 (4)

1.68 1.65 1.25 58.4 135

(h) 2 sp3-sp3 (7) 1.54 1.69 110 57 86
(i) 3 sp3-sp2 (3)

sp2-sp2 (3)
1.57 1.49 1.61 112 60 147 152

(j) 3 sp3-sp2 (6)
sp3-sp3 (3)

1.49 1.65 128 112 60

* Refer to Fig. 15, � NI = number of interstitial atoms
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distance across the hole) as a function of dosage for various energies. We see that
largest hole size increases with dosage, but there is also a dependency on energy
with lower energies producing smaller holes for the same dosage and thus being
preferable.

4.3.4 Irradiation Strategies to Improve Mechanical Performance
in 7-Tube Bundles

As stated at the start, the ideal result for our purposes would be a controllable,
uniform level of inter-tube cross-links between all adjacent tubes with a minimum
level of defects in the CNT walls. This would allow transfer of load between
CNTs, enabling all of them to engage in loading, with the least loss in strength due
to intra-wall defects. From the previous section, we conclude that for seven-tube
bundles, the achievement of a uniform and controllable level of inter-tube cross-
links via C ion irradiation is possible within the energy range of 100–200 eV/ion.
To keep the largest hole size to a minimum, which is likely to be the key parameter
for tensile strength, lower energy is best, so the optimum strategy is to use energy/
ion of *100 eV, and to control the cross-link density through the fluence. The
desirable level of cross-link density will be discussed in the next section, but in
general terms higher density will give higher interface shear stiffness and strength,
and based on results in (Pavia and Curtin 2011) for CNT-diamond matrix com-
posites, is likely to produce higher sliding stress during pull-out of a CNT from the
bundle, which increases toughness. Too high a level however could lead to CNT

Fig. 16 Vacancies/defects formed for irradiated CNT rope models a one atom vacancy
(symmetric reconstruction), b two atom vacancy (symmetric reconstruction), c two atom vacancy
(asymmetric reconstruction), d greater than two atom vacancy, e Stone–Wales (5775) defect,
f pentagon-hexagon (5665) defect
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breakage during pull-out giving a brittle response. Our results show that for 7-tube
bundles it is possible to engineer the interface to achieve the desired response.

4.3.5 Extension to Larger Bundles

To examine if a satisfactory irradiation strategy can also be found for larger
bundles, we now consider the next largest hexagonally-packed bundle arrangement
which consists of 19 tubes. Six different irradiation strategies, all involving the
same overall dosage (24.6 MGy) are considered. The final state of the bundle and
the number of inter-tube links per interface area at each interface are shown in
Fig. 19. Note that there does seem to be some bias towards more cross-links on the
left, suggesting the positions of the irradiating atoms were not truly random, but
the effect of this on the results is of minor importance. The first strategy involved
irradiation at a constant energy level of 100 eV/ion and we see from the results in

Fig. 18 Largest hole size as
a function of dosage, with
incident beam energies of
50–200 eV; error bars show
standard error or r=

ffiffiffiffi
N
p

where N is the number of
repeats with different random
trajectories

Fig. 17 Number of inter-tube links per area (AINT in Fig. 12b), between centre CNT and outer
CNTs (‘‘Centre Links’’), and between outer CNTs only (‘‘Circumferential Links’’) as a function
of dosage, with incident beam energies of 50–300 eV; error bars show standard error or r=

ffiffiffiffi
N
p

where N is the number of repeats with different random trajectories
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Fig. 19a that the two outer layers of the bundle are very well-connected both
circumferentially and radially, but the centre CNT remains almost completely
unconnected. In the second strategy the energy level is doubled to 200 eV/ion
(while the fluence is halved), and Fig. 19b shows that the resulting level of cross-
linking is very similar to the first strategy. This is quite an interesting result as it
shows that within the range 100–200 eV/ion, the cross-link density between the
outer CNTs and the next innermost layer of CNTs is a function of dosage and thus
can be controlled either through fluence or energy/ion; this is the same result as we
found for 7-tube bundles.

In the third strategy, we attempt a variable energy approach, applying a
8 9 1013 cm-2 fluence at 300 eV/ion, then 8 9 1013 cm-2 fluence at 150 eV/ion,
then 4 9 1013 cm-2 fluence at 100 eV/ion. Given the results for 7-tube bundles, in
which 300 eV/ion was deemed to be too high an energy level due to the excessive
damage caused, we expected this strategy to be successful in forming cross-links
with the centre CNT. However over the six interfaces with the centre CNT we see
from Fig. 19c that the average number of cross-links per interface area is only
0.42 nm-2, which is very low in comparison to the results for 7-tube bundles (see
Fig. 17). In the fourth strategy we increase the initial energy to 400 eV/ion
(4 9 1013 cm-2 fluence) followed by 8 9 1013 cm-2 fluence at 200 eV/ion, then
8 9 1013 cm-2 fluence at 100 eV/ion, but this gives just 0.31 nm-2 links to the
centre CNT (Fig. 19d).

The best results are found with the fifth strategy of 500 eV/ion (4 9 1013 cm-2

fluence), followed by 150 eV/ion (8 9 1013 cm-2 fluence) and then 100 eV/ion
(8 9 1013 cm-2 fluence), which gives 0.70 nm-2 links to the centre CNT
(Fig. 19e). However damage to some of the outer tubes is becoming excessive, and
a few interfaces are so amorphous that counting links is impossible (signified by
‘‘M’’ for ‘‘multiple links’’). In the last strategy the initial energy is increased to
600 eV/ion (4 9 1013 cm-2 fluence), followed by 1.6 9 1014 cm-2 fluence at
100 eV/ion. This again gives 0.70 nm-2 links with the centre CNT (Fig. 19f), but
in a less desirable way in that 16 of them are with just two of the surrounding
CNTs, with no links at all to two adjacent CNTs. In this last case, the centre CNT
has moved off-centre to the left, making links with CNTs from further irradiation
impossible, and the level of damage is also clearly excessive. Further improve-
ments could be obtained through variations on the fifth strategy, but the overall
trends are clear, and given the long computation time for the 19-tube simulations,
it was decided not to optimise further.

Our results are in line with those in (Federizzi et al. 2006) and (Salonen et al.
2002). In (Federizzi et al. 2006) C ion irradiation on CNT bundles, with energies
up to 200 eV/ion, produced only a few cross-links with the third CNT layer. In
(Salonen et al. 2002), Ar ion irradiation on CNT bundles with energies up to
250 eV/ion caused no cross-links beyond the first interface layer, and iradiation at
500 eV/ion produced very few links beyond the third CNT layer. Neither
(Federizzi et al. 2006) nor (Salonen et al. 2002) presented explicit information on
the damage produced by irradiation though, as has been done here.
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Fig. 19 Final state and number of inter-tube cross-links per area (AINT in Fig. 12b) at each
CNT–CNT interface for various irradiation strategies with same overall dosage a 4 9 1014 cm-2

fluence, 100 eV/ion, b 2 9 1014 cm-2 fluence, 200 eV/ion, c 8 9 1013 cm-2 fluence at 300 eV/
ion, then 8 9 1013 cm-2 fluence at 150 eV/ion, then 4 9 1013 cm-2 fluence at 100 eV/ion, d
4 9 1013 cm-2 fluence at 400 eV/ion, then 8 9 1013 cm-2 fluence at 200 eV/ion, then 8 9 1013

cm-2 fluence at 100 eV/ion, e 4 9 1013 cm-2 fluence at 500 eV/ion, then 8 9 1013 cm-2 fluence
at 150 eV/ion, then 8 9 1013 cm-2 fluence at 100 eV/ion, f 4 9 1013 cm-2 fluence at 600 eV/
ion, then 1.6 9 1014 cm-2 fluence at 100 eV/ion. ‘‘M’’ stands for multiple in cases where the
interface is too amorphous to allow counting of links
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It is clear from the results that controlling the cross-link density in bundles
containing more than seven tubes, while simultaneously limiting the damage to
acceptable levels is a much more difficult task as the bundle size increases. One
can imagine that for the next size bundle up (37 tubes) it will be extremely difficult
to reach the centre CNT without destroying the outer layer of CNTs completely.
Electron irradiation will be more successful in penetrating to the centre of large
bundles, and the most successful experimental demonstrations of inter-wall and
inter-tube cross-linking to date have involved electron irradiation (Peng et al.
2008; Filleter et al. 2011). However, in electron irradiation all the interstitial C
atoms in the cross-links must come from the CNT lattice, so the level of damage is
likely to be high, e.g. in the CNT bundles in (Filleter et al. 2011) the highest tensile
strength achieved was 17 GPa, which while impressive is well below achievable
CNT strengths (Peng et al. 2008).

One possible future scenario to achieve highly cross-linked CNT fibres through
C ion irradiation is through a modification of the method in (Zhang et al. 2004;
Sears et al. 2010; Ghemes et al. 2012) in which CNT yarns are created by drawing
multiple small bundles of CNTs simultaneously from a CNT forest and then
twisting them into a rope. Significantly the small bundles are described in (Zhang
et al. 2004) as containing just ‘‘a few’’ CNTs and prior to twisting are laid out
parallel to each other (Fig. 1 in (Zhang et al. 2004)). Irradiation at that point in the
process with C ions at 100–200 eV/ion could produce excellent results due to the
small size of the bundles being pulled off. The extra C adatoms deposited might
also lead to cross-links between the bundles as they are brought into intimate
contact through the twisting process. However, it needs to be pointed out that the
CNTs in (Zhang et al. 2004; Sears et al. 2010; Ghemes et al. 2012) are MWCNTs
unlike the SWCNTs studied here. The optimal irradiation parameters for MWCNT
bundles would be quite different from those found here for two reasons. Firstly the
objective would be different for MWCNT bundles in that not only inter-tube but
also inter-wall cross-links would be desired for optimal mechanical performance,

Fig. 20 Areal inter-tube link
density (ITLD or q), as a
function of dosage, with
incident beam energies of
50–300 eV (only links to
centre CNT included)
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making the overall problem significantly more complex. Secondly, MWCNTs
perform differently to SWCNTs under irradiation, being generally more stable
because the atoms sputtered from inner shells remain in the MWCNT and Frenkel
pairs created inside the MWCNT can easily recombine (Krasheninnikov and
Nordlund 2010). Thus further study is needed to establish suitable irradiation
parameters for MWCNT bundles, and to determine if the suggested method of
irradiating CNTs prior to twisting into a yarn would produce useful results.

4.4 Concluding Remarks

Carbon ion irradiation of single wall carbon nanotube bundles, for the purpose of
achieving inter-tube cross-links to enhance mechanical performance, has been
investigated using classical molecular dynamics. For 7-tube bundles, within the
range 100–200 eV/ion, the level of cross-linking is directly proportional to dosage
and therefore controllable. Lower energy irradiation produces smaller-sized
defects so *100 eV/ion is the preferred energy level. More than 10 different types
of cross-link are formed, and a variety of defects are created including single atom
and multi-atom vacancies, adatoms, Stone–Wales defects, and 5665 defects. The
defect level becomes excessive if either the energy or the fluence is set too high,
with amorphisation occurring at the highest level of energy and fluence consid-
ered. Extension to larger bundles however is significantly more challenging. In
19-tube bundles, irradiation within the same 100–200 eV/ion range used for 7-tube
bundles produces satisfactory cross-linking in the first two layers of CNTs, but
almost none with the centre CNT. An energy level of *500 eV/ion is required to
form significant numbers of cross-links with the centre CNT, and at this energy
level careful control of fluence is required to avoid excessive damage to the outer
layer of CNTs. Larger bundles are likely to prove even more problematic. Thus ion
irradiation is likely to be of practical value for improving mechanical properties
only for small bundles. However, a scenario whereby small bundles are irradiated
prior to twisting into ropes is suggested as a possible future method for producing
macro-scale cross-linked CNT fibres.

5 Quantification of the Potential Improvement
in the Mechanical Properties of Carbon Nanotube
Bundles by Carbon Ion Irradiation

In Sect. 4 we presented a molecular dynamics study of the carbon-ion irradiation
of SWCNT bundles, with carbon ions. We demonstrated that carbon-ion irradia-
tion induces CNT cross-links but also causes defects. The ability to control the
level of cross-linking through adjusting the energy/ion or the fluence was dem-
onstrated in principle for small bundles. The cross-links formed were found to be
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of several different types, from simple direct bonds between CNTs, to complex
links involving one or more interstitial atoms. In the present section, we study the
relationship between the cross-links and defects induced by carbon ion irradiation
of SWCNT bundles, and the resulting mechanical properties. We quantify the
improved inter-tube shear and toughness properties through pull-out tests of
individual CNTs from the bundle. This also gives us the opportunity to examine
the applicability of standard ‘‘friction laws’’ to nano-scale sliding interfaces,
building on the work in (Pavia and Curtin 2011) on sliding between CNTs and
diamond matrices. We also measure the reduction in tensile properties due to
induced defects. Our study uses a recently-developed reactive bond-order potential
with environment-dependent first nearest-neighbour definition (Pastewka et al.
2008) which accurately simulates bond-forming and bond-breaking processes in
carbon-based systems. Our simulations reveal that with careful control of irradi-
ation parameters, shear and toughness parameters are greatly increased, with only
modest reductions in tensile properties. Interstitial C atoms are found to play a key
role in sliding behaviour. Within a certain range of cross-link density, the interface
shear modulus, shear stress at onset of debonding, and frictional sliding stress after
debonding are all linearly related to cross-link density making controlled design of
fibre shear properties feasible.

5.1 Simulation Method

5.1.1 Interatomic Interactions

To study the pull-out of CNTs from a bundle and tensile strength of bundles, an
accurate interatomic potential capable of representing bond breaking and bond
forming is essential. Thus, as in Sect. 4, we use the modified REBO potential
recently presented in (Pastewka et al. 2008).

5.1.2 Geometry and Irradiation Simulations

Full details of the irradiation simulations are given in Sect. 4. In this section we
focus on the 7-tube bundle in Fig. 12.

5.1.3 Mechanical Test Simulations

The mechanical properties of the pristine and irradiated SWCNT bundles were
evaluated through MD simulations of tensile tests and ‘‘pull-out’’ tests involving
drawing out of the centre CNT. The bundles tested were those for which one,
three, and five rings of atoms had been deposited, giving 15 tensile tests and 15
pull-out tests at each deposition energy. As in the deposition simulations, periodic
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boundary conditions were applied for both tests in order to simulate an ‘infinitely’
long bundle and to avoid end effects. The MD time step was set to 0.25 fs and a
velocity re-scaling thermostat was used to maintain the temperature of the CNT
rope models at 0.5 K throughout each test. During the initial relaxation phase
which lasted 12.5 ps for the tensile test and 18.75 ps for the pull-out test, both ends
of the CNT bundle were fixed in z and free to move in x and y for both tests. After
relaxation, the tensile and pull-out tests were performed. An NVE microcanonical
ensemble was used for the pull-out tests, whereas an NPT ensemble was used for
the tension tests to allow the volume of the simulation box to vary as it is deformed
in the z direction.

For the tensile test, the top face of the periodic box was displaced 0.025 Å in
the z direction every 0.25 ps, while the bottom face was kept fixed in z, until the
bundle failed. The applied stress was measured on the top face. For the pull-out
test, the bottom two rings of atoms for the outer CNTs were fixed in the z
direction, and the centre CNT was drawn out by displacing its upper two rings of
atoms 0.025 Å every 0.25 ps, across the periodic box boundaries. The pull-out
force was obtained as the force on these two rings of atoms. Relaxation was
performed between displacements. For both test series, the displacement rate was
10 m/s and all CNTs were free to move in the x and y directions throughout.

5.2 Results and Discussion

5.2.1 Irradiation Effects on Inter-Tube Shearing

The irradiation simulations resulted in inter-tube cross-links (Fig. 14). More than
ten different types of cross-link were observed, including direct sp3 bonded links
with no interstitial C atom, and links mediated by one or more interstitial C atoms.
For full details see Sect. 4. The cross-links relevant to the pull-out tests are those
between the outer tubes and the centre tube, hereafter referred to as ‘‘centre links’’.
We define a reference area for shear resistance as ASH , see Fig. 12. This area
includes all atoms in the outer CNTs which are within the interaction distance of
the centre CNT atoms for the potential (Pastewka et al. 2008) used here (prior to
irradiation) and includes all centre links post-irradiation. We divide the number of
centre links by ASH to get an areal inter-tube link density (ITLD or q). Figure 20
shows q as a function of dosage for energy/ion of 50–300 eV. We see that in the
range 100–200 eV/ion, q is proportional to dosage, and thus can be controlled by
varying either the fluence or the energy/ion. Lower energy irradiation (50 eV/ion)
was relatively ineffective in forming centre links. Higher energy irradiation
(300 eV/ion) was highly effective in forming centre links, but production of
defects was excessive (see Sect. 4).

The average interfacial shear stress is calculated as the pull-out force divided by
ASH . Figure 21 shows the pull-out stress versus pull-out distance for the irradiated
SWCNT bundles; only the result which is most representative of the five random
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trajectory instances is shown for clarity. For comparison, the result for the pristine
case is shown in Fig. 21a. We see that the nano-scale interface response resembles
that of traditional micro-scale composites: pull-out is characterized by an elastic
stretching region at small displacements (x \ 1–2 Å), followed by the onset of
debonding, in which inter-tube bonds are broken, up to a displacement of 2–3.5 Å
and then a drop to a lower oscillating sliding stress (‘‘pull-out sliding’’ regime).
The only exception to this behaviour is the highest dosage case (39.3 MGy) where
the shear stress reaches a peak of 10.1 GPa and then drops to zero. In this case,
the centre CNT did not pull out and instead failed in tension. Both the elastic
and sliding response vary with dosage, which as mentioned above is directly
related to q. Notably, the effective frictional stresses at the interface after deb-
onding are quite high (several GPa) for higher cross-link densities.

The nano-scale pull-out behaviour shown in Fig. 21, resembles micro-scale
composite response, and can be understood by analysing the atomic deformation
mechanisms at the interface. As noted above, more than ten different types of
inter-tube cross-link were found post-irradiation. Figure 22 shows snapshots in
time of the pull-out behaviour of three of them: a direct link, a link involving one
interstitial carbon atom, and a link involving two interstitial carbon atoms. The key
finding from this figure is that when cross-links involving an interstitial atom
(Fig. 22b, c) break (at the end of the elastic region of pull-out), new links are
formed and broken several times subsequently. On the other hand, direct links in
which no interstitial is present (Fig. 22a), once broken, do not reform, and so do

Fig. 21 Pull-out stress versus pull-out distance for irradiated CNT bundles with incident
energies of a 50 eV, b 100 eV, c 150 eV, and d 200 eV
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not contribute to the pull-out force in the sliding regime. The bond breaking and
reforming processes for interstitial-mediated cross-links are responsible for the
overall ‘stick and slip’ behaviour observed. The directly bonded cross-links con-
tribute to the initial elastic behaviour but not to the sliding stress. We can conclude
that to produce tough CNT-fibres, in which significant energy is absorbed during
CNT pull-out from the fibre, it is desirable to have C interstitials at CNT inter-
faces, since inter-tube links will spontaneously form and break during sliding. This
makes C ion deposition an attractive option over irradiation by electrons or other
types of ions, since extra C atoms are added to the system, so not all interstitials
have to come from knocking out atoms from the CNT lattice (thereby reducing
tensile strength).

The pull-out force was divided by the number of centre links to give the pull-
out force per centre link, which is plotted against pull-out distance in Fig. 23, for
energies ranging from 50–200 eV; only representative instances among the five
random trajectories for each case are shown for clarity. The ITLD (q) is also
shown in the legend. In (Pavia and Curtin 2011) the pull-out force per cross-link
involving a single interstitial carbon atom between a CNT and a diamond matrix
was found to collapse all the data for different interstitial densities onto nearly a
single universal curve for interstitial C atom densities of 0.73–2.18 nm-2. The
system studied here differs from that in (Pavia and Curtin 2011) in that the cross-

Fig. 22 Bond breaking and re-forming during pull out of centre CNT. Snapshots in time, time
increasing from left to right, numbers are to guide eye in following individual atoms over time
a direct sp3-sp3 bond, b cross-link with one interstitial and two sp3-sp bonds, c cross-link with
two interstitials and seven sp3-sp3 bonds
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links are between two CNTs rather than between a CNT and diamond matrix, and
there are several different types of cross-link, some of which are direct links and
some of which involve one or multiple interstitials. We see from Fig. 23 that for
low cross-link densities, q\0:7 nm�2, the force per cross-link is high and oscil-
lates erratically. This is due to the small number of inter-tube links at this density,
given the short length of the tubes studied. With just a few links distributed
randomly axially and circumferentially very unsymmetrical loads on the centre
CNT occur, with large relative force oscillations as individual cross-links break
and re-form. However, as q increases into the range considered in (Pavia and
Curtin 2011), i.e. q [ 0:7 nm�2 (which corresponds to [ 18 centre links in total in
the system) the curves collapse quite well onto a single curve, as in (Pavia and
Curtin 2011). We can thus say that the varying strength of the different cross-link
types averages out if enough of them are present, and we can directly relate the
shear mechanical properties to the number of cross-links present orq. Unlike
(Pavia and Curtin 2011) however, we find an upper limit to this, since above
q ¼ 1:7 nm�2, we see from Fig. 23d that failure of the centre CNT during pull-out
can occur since the interfacial shear stress is too large. It needs to be borne in mind
that, unlike in (Pavia and Curtin 2011), the centre CNT, like all the CNTs in the
bundle, contains defects such as vacancies and Stone–Wales defects due to the
irradiation process, so the value of q needed to cause pull-out CNT failure would
vary somewhat depending on the damage level in the pull-out CNT.

Fig. 23 Pull-out force per inter-tube cross-link with the centre CNT versus pull-out distance for
irradiated CNT bundles with incident energies of a 50 eV, b 100 eV, c 150 eV, and d 200 eV
(ITLD = inter-tube link density or q in) 1/nm2
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In Fig. 24, we plot some key parameters against q, for q[ 0:7 nm�2.
Figure 24a shows the ‘‘interface shear modulus’’ l prior to debonding. Here we
have defined the interface shear strain cxyas the applied displacement divided by
the inter-tube gap. From the graph we see that l scales linearly with q, in the range
q ¼ 0:7� 1:7 nm�2,

l ffi 10q GPa nm2 ð16Þ

This is more than double the value l ffi 4:6q GPa nm2, found in (Pavia and
Curtin 2011) for CNT sliding in a diamond matrix with interstitial carbon atoms.
On the other hand, in (Xia et al. 2007) an effective shear modulus for the interface
between walls of a DWNT directly bonded with sp3-bonds was found that scales
with the bond fraction f. Converting their bond fraction f to an areal density of
bonds q, their result is

l ffi 12q GPa nm2 ð17Þ

Since in our system, both direct bonds and bonds mediated by interstitial C
atoms are present, it is reasonable that our result should be between the values
found in (Pavia and Curtin 2011) and (Xia et al. 2007). Furthermore, the bonds in
(Pavia and Curtin 2011) involved one interstitial C atom initially bonded to just
one CNT atom and one diamond matrix atom. As described in (O’Brien et al.

Fig. 24 Elastic and sliding parameters for pull-out versus ITLD (or q) for irradiated CNT
bundles a interface shear modulus, b interface shear strength, and c interface sliding stress. Lines
show linear relationships in the range q ¼ 0:7� 1:7nm�2
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2013) many of the interstitial atoms in our system were initially bonded to more
than one atom in each CNT—an example can be seen in Fig. 22c—which is a
stiffer arrangement, so the interstitial-mediated bonds here are on average stiffer
than in (Pavia and Curtin 2011). We see that with an areal density of cross-links,
q ¼ 1:7 nm�2, we get an interface shear modulus 17 GPa. This is more than three
times the value of 5 GPa found from our simulations of CNT bundles without
cross-linking.

In Fig. 24b, c we see that in the range q ¼ 0:7� 1:7 nm�2, the interface shear
stress at the onset of debonding or yield stress, sy (note this is not the maximum
shear stress during pull-out, it is the stress at the end of the linear region of the
load–displacement curve), and the frictional sliding stress after debonding, s
(calculated for pull-out distance x [ 8 Å) are both linearly dependent on q, scaling
as

sy ffi 3:7q GPa nm2 ð18Þ

s ffi 2:6q GPa nm2 ð19Þ

Concerning the interface shear strength sy, we see that with q ¼ 1:7 nm�2, we
get an interface shear strength of 6.3 GPa. This is seven times larger than the value
of 0.9 GPa we found for CNT bundles without cross-linking. The equation for s is
slightly below the value found in (Pavia and Curtin 2011) (s ffi 3q GPa nm2),
which contrasts with the finding on modulus above. The reason for this becomes
clear from examining Fig. 22c and other similar cases, from which we see that
while original cross-links may be quite complex and initially stiffer than those in
(Pavia and Curtin 2011), re-bonds after failure tend to be chain-like, resembling
the cross-links involving a single interstitial in (Pavia and Curtin 2011). In addi-
tion, unlike (Pavia and Curtin 2011) there are some direct bonds between CNTs in
our system, which as noted above do not reform once broken and thus do not
contribute to the sliding stress. Our results provide further evidence to that in
(Pavia and Curtin 2011) that a friction-like sliding stress emerges at the atomistic
scale, thus conforming to the standard constant sliding stress used in the majority
of models to predict composite performance.

An important issue in composite behaviour is toughness, which is dominated by
the energy dissipated by frictional sliding during fibre pull-out. The energy dis-
sipated due to ‘‘friction’’ generated by breaking and re-forming of interstitial-
mediated inter-tube bonds can be computed as the work done during pull-out,
corresponding to the area under the applied force versus displacement curve.
Typically the pull-out work is converted into a fracture toughness by division by
the composite cross-sectional area; here we take the ‘‘composite’’ cross-sectional
area to be the area of the circle enclosing the 7-tube bundle. For a density of
q ¼ 1:46 nm�2, we obtain a toughness of *2.8 J m-2 for just 1 nm of pull out.
Such a value far exceeds the work done by weak van der Waals bonding between
perfect nanotubes (0.2 J m-2 for 1 nm of pull out in our simulations).
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5.2.2 Tensile Test Simulations

The trade-off for the above greatly enhanced shear properties is reduced tensile
strength due to irradiation-produced defects. For our tensile tests, the tensile stress
was defined as the tensile force divided by the cross-sectional area of the CNT
bundle (*15 nm2), which was computed as seven times the area of a single CNT,
as given in Eq. (20),

A ¼ 7p r þ t

2

� �2
� r � t

2

� �2
� �

ð20Þ

where r is the CNT radius and t = 0.335 nm is the graphitic layer thickness. The
strain was calculated by dividing the change in length by the original length of the
CNT bundle. Figure 25a shows the tensile stress versus strain for the bundles
irradiated with energies of 100 eV/ion (for all random trajectories)—the curves
from other irradiation energies are similar in form. For comparison, our result for
the pristine (unirradiated) bundle is also shown. For the pristine case, the Young’s
modulus, tensile strength and maximum strain are 860 GPa, 91 GPa and 17.2 %
respectively, which is at the low end of theoretical values in the literature for
individual CNTs (Ogata and Shibutani 2003; Peng et al. 2008; Mielke et al. 2004).
MD simulations tend to underestimate tensile strength compared to more accurate
quantum mechanics calculations (Hirai et al. 2003; Shenderova et al. 2000;
Yakobson et al. 1997; Pastewka et al. 2010). However our interest is in changes
due to irradiation, not exact theoretical values, so the fact that these values are in
the correct range is sufficient for our purposes.

We see from Fig. 25a that carbon atom irradiation causes a significant decrease
in stiffness, strength and maximum strain relative to the pristine case. However,
while pristine CNTs are the ultimate baseline, their existence in practical macro-
scale composites can be considered rare. Thus we performed a tensile test simu-
lation on a bundle with just one single-atom vacancy in one CNT and from
Fig. 25a we find a tensile strength of 81 GPa and a tensile strain of 11.9 %,
representing drops of 11 and 31 % respectively from the pristine case. This level
of reduction is in line with previous studies on single CNTs with single vacancies
(Belytschko et al. 2002). We see that the reduction in tensile properties due to
irradiation is much milder when considered against this less stringent baseline.

Clean planar fracture was exhibited for the pristine bundle, with the stress
dropping to zero after failure. The irradiated bundles exhibited a less clean frac-
ture, with crack propagation between CNTs at sites where inter-tube bonds had
formed, and the stress does not reduce to zero as bonds still remain between CNTs
after failure occurs. Another feature evident in Fig. 25a is that the irradiated
bundles were already under slight tensile load before they were tensile tested,
particularly at higher energies. This is because damage and inter-tube linking
caused the equilibrium length of the CNT bundle to reduce during irradiation.

Figure 25b, c provide a statistical analysis of the results from all tensile test
simulations for strength and maximum strain respectively. We see that for the
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maximum dosage considered here (40 MGy), the tensile strength reduces
to *50 GPa and the maximum strain reduces to *8 %, representing 38 and 33 %
drops respectively from the single 1-atom vacancy case. It is also noticeable that at
similar dosages, lower energy irradiation produces less of a reduction. In the
previous section, we found that within the inter-tube link density range
q ¼ 0:7� 1:7 nm�2, the shear properties are predictable and improve by an order
of magnitude over non-irradiated bundles. Thus we see a very large benefit, for a
relatively small cost. In fact the reduction in tensile strength considered here is
greater than would occur in practical CNT-fibre reinforced composites. In macro-
scale CNT fibres, individual CNTs would be unlikely to run along the full length
of the fibre, and when embedded in a matrix, load would generally be transferred
from the matrix to the outer CNTs and then inwards through shear load transfer
between CNTs. Highly imperfect bonding to the matrix would exist at the fibre
ends, in contrast with the end conditions here. Inter-tube cross-links would
facilitate the transfer of load to all CNTs in the fibre, and so would have major
beneficial effects on the tensile strength of macro-scale fibres in composites, which
would offset the reductions described above.

As noted above we found many different types of defects (O’Brien et al. 2013)
post-irradiation, at random locations within the bundle. Under tensile load, the
load transfer within the cross-linked, defective CNT bundles is highly complex.
However, Fig. 25d shows that there is still a strong correlation between the

Fig. 25 Tensile test result on 7-tube bundles a stress versus strain for incident energy of 100 eV,
b tensile strength, c maximum strain, d strength versus maximum hole size
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reduction in tensile strength and the largest hole size in the bundle after irradiation
(measured as the largest distance across the hole, as illustrated in the figure), as
one would expect for a single CNT. We find that rUlt / c�m, with m ffi 0:35,
where c is the largest hole size. This is close to the value m ffi 0:4 that we found in
(Byrne et al. 2009) for pristine MWCNTs. There is scatter in Fig. 25d because
tensile strength is also affected by other defects found such as Stone–Wales defects
and adatoms. For example, we performed a tensile test simulation with just one
adatom on one CNT and found the bundle strength decreases to 85.9 GPa and the
maximum strain diminishes to 13.5 %, which are reductions from the pristine case
of 5.6 and 22 % respectively. This is because the bonding at the attachment point
changes from sp2 to sp3, with consequent increase of bond length from 1.42 to
1.54 Å, which weakens the CNT structure.

In considering an optimal strategy for irradiation then, one should consider the
effect on maximum hole size. In (O’Brien et al. 2013) we found that for the same
dosage, irradiation with 100 eV irradiation led to smaller holes than 200 eV
irradiation, and this ties in with the tensile strength values seen in Fig. 25b, d. An
advantage of C ion deposition is that it provides extra C atoms to the system,
which on subsequent annealing have the potential to migrate to vacancy locations,
causing healing of the CNT lattice. A further observation related to this issue is
that irradiation at very low energy (*1 eV/ion) can actually result in filling in or
healing of pre-existing holes as deposition atoms latch onto dangling bonds on the
hole perimeter. This process is illustrated in Fig. 26a, b. This results in an increase
in tensile strength of the bundle with negligible change in pull-out stress—see
Fig. 27 for the beneficial effect of 1250 additional ‘‘healing’’ C atoms deposited at
1 eV/ion energy. Thus a potential strategy would be to apply low energy depo-
sition, after irradiation at the energies needed to produce cross-links. The limita-
tion on this is that as well as filling in holes, the low energy atoms also adsorb as
adatoms. As noted above, adatoms reduce tensile strength, though the effect is
masked by vacancy defects which have a greater impact on tensile strength.
However, if enough adatoms are deposited during low energy irradiation they will
eventually line up somewhere in the bundle, perpendicular to the CNT axial

Fig. 26 Largest hole size for 150 eV, 17.88 MGy a pre-healing, b after depositing 3 additional
rings of 250 atoms at 1 eV (red dashed ring highlights area where hole healing has taken place),
c line up of adatoms providing weak point in structure; yellow bonds are *1.54 Å in length, blue
bonds are *1.42 Å in length
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direction, forming a crack-like weakening of the structure. The highlighted area in
Fig. 26c shows one such example after 2000 ‘‘healing’’ atoms were applied, and
the CNT bundle failed at this location when tensile loading was applied resulting
in a reduction in tensile strength (see Fig. 27a).

5.3 Concluding Remarks

In summary, we have investigated the improvement of the mechanical properties
of single wall carbon nanotube bundles through carbon ion irradiation using
classical molecular dynamics simulations. These studies were made possible
through the use of a recently developed modified REBO potential that introduces
an environmental screening coefficient to accurately capture bond breaking and
reforming processes. With careful control of irradiation parameters, we find that
shear and toughness properties are increased by an order of magnitude, while
tensile properties are reduced by only *30–40 % relative to a bundle with a single
defect. In fact in real CNT fibres containing discontinuous CNT filaments the
increased load transfer between CNTs would result in an increase in tensile
strength that would significantly offset or even negate such a reduction. We find
that the nano-scale interface response resembles that of traditional micro-scale
composites: pull-out is characterized by an elastic stretching region at small dis-
placements followed by the onset of debonding, in which inter-tube bonds are
broken, and then a drop to a lower sliding stress, in which inter-tube links
involving interstitial C atoms are continuously re-formed and broken. In contrast
direct bonds between CNTs, once broken do not reform and thus do not contribute
to the sliding stress. For energy absorption during pull-out it is thus desirable to
have C interstitials at CNT interfaces, which makes C ion deposition an attractive
option over irradiation by electrons or other types of ions, since extra C atoms are
added to the system. Another advantage of adding C atoms to the system is that
they may migrate on annealing to partially heal vacancies caused by irradiation.
Within a certain range of cross-link density, the interface shear modulus, shear

Fig. 27 Effect of ‘‘healing’’ 1 eV C ion irradiation on a tensile strength and b pull-out stress
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stress at onset of debonding, and frictional sliding stress after debonding are all
linearly related to cross-link density making controlled design of fibre shear
properties feasible. Despite the variety of defects formed the tensile strength of
irradiated bundles depends strongly on one parameter, viz: largest hole size in the
bundle. A possible post-irradiation treatment with very low energy irradiation is
proposed for healing such holes and therefore partially restoring tensile strength.
The relationships found here between cross-link/defect density and mechanical
properties should hold for larger bundles than considered here, although as noted
in Sect. 4 the irradiation strategies for achieving such cross-link densities will be
more complex.
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A Review on the Application of Nonlocal
Elastic Models in Modeling of Carbon
Nanotubes and Graphenes

Behrouz Arash and Quan Wang

Abstract Recent research studies on the application of the nonlocal continuum
theory in modeling of carbon nanotubes and graphene sheets are reviewed, and
substantial nonlocal continuum models proposed for static and dynamic analyses
of the nano-materials are introduced. The superiority of the nonlocal continuum
theory to its local counterpart, and the necessity of calibration of the small-scale
parameter as the key parameter revealing small-scale effects are discussed. The
nonlocal beam, plate, and shell models are briefly presented and potential areas for
future research are recommended. It is intended to provide an introduction to the
development of the nonlocal continuum theory in modeling the nano-materials,
survey the different nonlocal continuum models, and motivate further applications
of the nonlocal continuum theory to nano-material modeling.

Keywords Carbon nanotubes � Graphene sheets � Nonlocal continuum theory �
Modeling and simulations � Small scale effect

1 Introduction

Nanoscience and nanotechnology have opened a new area of research in many
fields of science and technology such as materials science, engineering, medi-
cine, biomaterials and energy production. Among different nano-materials, carbon
nanotubes (CNTs) (Iijima 1991) and graphene sheets (GSs) (Novoselov et al. 2004)
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are of great potential applications due to their unparallel mechanical, electronic
and thermal properties. The superior properties make the two nano-materials
instrumental for developing and innovating new nanodevices in a wide range
of applications including gas detection, graphene transistors, solar cells, ultra-
capacitors, diagnosis devices and ultra-strength composite materials (Wagner et al.
1998; Thostenson et al. 2001; Qian et al. 2002; Sirtori 2002; Antonelli et al. 2002;
Brauns et al. 2002; Lau K-t and Hui 2006; Stankovich et al. 2006; Bunch et al.
2007; Schedin et al. 2007; Chiu et al. 2008).

In addition to formidable experimental methods (Chaste et al. 2012; Falvo et al.
1997), there are three main approaches for theoretically modeling of the nano-
materials: (a) atomistic modeling, (b) hybrid atomistic-continuum mechanics and
(c) continuum mechanics. Atomic modeling includes techniques such as classical
molecular dynamics (MD), tight-binding molecular dynamics (TBMD) and the
density functional theory (DFT) (Hernández et al. 1998; Iijima et al. 1996;
Sánchez-Portal et al. 1999; Yakobson et al. 1997; Li and Chou 2006; Liew et al.
2004). Hybrid atomistic-continuum mechanics allows one to directly incorporate
interatomic potential into the continuum analysis by equating the molecular
potential energy of a nano-structured material with the mechanical strain energy of
a continuum model (Bodily CTS 2003; Li and Chou 2003a, b). Continuum
mechanics includes classical (or local) beam, plate and shell theories that are
practical for analyzing nanostructures at large scale sizes (Yakobson et al. 1996;
Krishnan et al. 1998; Parnes and Chiskis 2002). Continuum mechanics approach is
less computationally expensive than the former two approaches and their formu-
lations are relatively simple. These advantages make continuum modeling as an
alternative way to simulate some phenomena in nanostructures such as buckling
(Duan et al. 2010; Wang et al. 2005), wave propagation (Liew and Wang 2007;
Wang and Varadan 2006a, b) and free vibration (Kitipornchai et al. 2005; Sun and
Liu 2007; Behfar and Naghdabadi 2005; He et al. 2005; Liew et al. 2006). Since
the continuum mechanics theory is based on the continuous assumption in mod-
eling, verification of results obtained from the theory with those of molecular
dynamics simulations or experiments are indispensable.

Based on classical or local continuum theory, CNTs and GSs are modeled as
continuous and homogenous macrostructures, while the lattice spacing between
individual carbon atoms in the nano-materials is ignored. In local continuum
models, the stress at a given point is defined as the function of the strain at that point.
Despite the research efforts have been conducted on the basis of classical or local
continuum theory, their applicability at very small scales is questionable. The
limited applicability is due to the fact that at nanoscale sizes the lattice spacing
between individual atoms becomes increasingly important and the discrete structure
of the nano-materials can no longer be homogenized into a continuum (Peddieson
et al. 2003; Sudak 2003; Zhang et al. 2004; Wang 2005; Ansari and Arash 2013;
Gibson et al. 2007). Therefore, the application of continuum mechanics by con-
sidering the size dependence in nano-materials became another topic of major
concern that led to the application of nonlocal continuum mechanics, allowing for
taking into account of the small-scale effects in analysis of nano-materials.
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On the basis of the nonlocal continuum theory developed by Eringen (1976,
1983) the stress state at a given reference point is a function of the strain field at
every point in the body. The assumption enables the theory to account for infor-
mation about the long range forces between atoms and the scale effect. Peddieson
et al. (2003) showed that nonlocal continuum mechanics could be employed in
nanotechnology applications. Wang (2005) indicated that nonlocal elasticity the-
ory should be used for an accurate prediction of wave propagation in CNTs, and
estimated a range of the small-scale parameter. Applications of nonlocal contin-
uum mechanics have been also investigated by many researchers in topics of static
(Sudak 2003; Wang and Liew 2007; Yang et al. 2008; Wang et al. 2006a, b,c;
Murmu and Pradhan 2009a, b, c, d; Zhang et al. 2004, 2006, 2009a, b, 2010; Xie
et al. 2006; Shen 2010a, b; Li and Kardomateas 2007; Yan et al. 2010; Amara et al.
2010; Hao et al. 2010; Mohammadimehr et al. 2010; Khademolhosseini et al.
2010; Shen and Zhang 2010; Pradhan 2009; Pradhan and Murmu 2009, 2010,
2011) and dynamic analysis (Zhang et al. 2005; Wang and Varadan 2006a, b;
Wang et al. 2007; Aydogdu 2009; Filiz and Aydogdu 2010; Murmu and Adhikari
2010; Yang et al. 2010; Duan et al. 2007; Arash and Ansari 2010; Li and
Kardomateas 2007; Murmu and Pradhan 2009a, b, c, d; Lee and Chang 2009;
Wang 2009; Pradhan and Murmu 2010; Kiani and Mehri 2010; Kiani 2010; Zhen
and Fang 2010; Soltani et al. 2010; S�ims�ek 2010; Lee et al. 2010; Aydogdu and
Filiz 2011; Wang and Hu 2005; Wang and Varadan 2007; Hu et al. 2008; Narendar
and Gopalakrishnan 2009; Heireche et al. 2008; Song et al. 2010; Pradhan and
Phadikar 2009; Murmu and Pradhan 2009a, b, c, d; Pradhan and Kumar 2010,
2011a, b; Shen et al. 2010; Ansari et al. 2010a, b, 2011; Arash and Wang 2011;
Arash et al. 2012).

According to the aforementioned studies on the basis of Eringen’s nonlocal
elasticity theory, a consensus has been reached that the refined nonlocal models are
superior to their local counterparts. However, since the theory also belongs to the
category of continuum mechanics, verification of nonlocal continuum models is
essential to identify the magnitude of the small-scale parameter, e0a; which is the
key in revealing scale effect in models.

After the nonlocal elastic theory was introduced, many studies started applying
the theory in modeling of CNTs and GSs. The static analysis (Sudak 2003; Zhang
et al. 2004, 2006, 2009a, b, 2010; Wang and Liew 2007; Yang et al. 2008; Wang
et al. 2006a, b, c; Murmu and Pradhan2009a, b, c, d; Xie et al. 2006; Shen 2010a,
b; Li and Kardomateas 2007; Yan et al. 2010; Amara et al. 2010; Wang et al.
2010a, b, c; Hao et al. 2010; Mohammadimehr et al. 2010; Khademolhosseini et al.
2010; Shen and Zhang 2010; Murmu and Pradhan 2009a, b, c, d; Pradhan 2009;
Pradhan and Murmu 2009; 2010, Pradhan and Kumar 2011a, b), free vibration
(Zhang et al. 2005, 2009a, b; Wang and Varadan 2006; Wang et al. 2007; Aydogdu
2009; Filiz and Aydogdu 2010; Murmu and Adhikari 2010; Yang et al. 2010; Duan
et al. 2007; Arash and Ansari 2010; Li and Kardomateas 2007; Murmu and
Pradhan 2009a, b, c, d; Lee and Chang 2009; Wang 2009; Pradhan and Murmu
2010; Kiani and Mehri 2010; Kiani 2010; Zhen and Fang 2010; Soltani et al. 2010;
S�ims�ek 2010; Lee et al. 2010; Aydogdu and Filiz 2011; Pradhan and Phadikar
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2009; Pradhan and Kumar 2010, 2011a, b; Ansari et al. 2010a, b, 2011; Shen et al.
2010; Arash and Wang 2011) of and wave propagation (Wang 2005; Wang and Hu
2005; Wang et al. 2006a, b, c, 2010a, b, c; Wang and Varadan 2007; Hu et al.
2008; Narendar and Gopalakrishnan 2009; Heireche et al. 2008; Song et al. 2010;
Arash et al. 2012) in the nano-materials were widely studied and the continuum
models were reformulated based on the nonlocal continuum theory. This paper
aims to provide a brief review on enormous studies invested on the application of
nonlocal elastic models in modeling of CNTs and GSs to (1) present a summary of
the state-of-the-art findings (2) introduce major challenges in the modeling based
on the nonlocal continuum theory, and (3) clarify the key issues of future research
studies. To this end, Sect. 2 focuses on applications of nonlocal continuum models
in static analysis of CNTs and GSs. Section 3 surveys applications of nonlocal
continuum models in dynamic analysis of CNTs and GSs. Section 4 presents a
summarization of elastic models. Section 5 gives a summary and recommenda-
tions for future research studies.

2 Application in Static Analysis of CNTs and GSs

Since static loadings in transverse direction may lead to bending of nano-materials,
the development and application of nonlocal continuum mechanics in studying
scale effects on static responses of nano-materials are of great significance (Wang
and Liew 2007). In addition, CNTs are susceptible to buckling or structural
instability due to their long and hollow tubular structures (Chaste et al. 2012;
Hernández et al. 1998). This can significantly influence their performance as
structural or functional elements in CNT-based nano-composites and nano-elec-
tromechanical systems (Wagner et al. 1998; Thostenson et al. 2001; Qian et al.
2002; Lau K-t and Hui 2006; Stankovich et al. 2006). Therefore, tremendous
efforts have also been devoted to buckling of CNTs under diverse loading con-
ditions such as axial loading (Sudak 2003; Zhang et al. 2004; Wang et al. 2006a, b,
c; Murmu and Pradhan 2009a, b, c, d; Zhang et al. 2009a, b), radial and bending
loading (Zhang et al. 2006, 2010; Xie et al. 2006; Shen 2010a, b), thermal loading
(Li and Kardomateas 2007; Yan et al. 2010; Amara et al. 2010; Wang et al. 2010a,
b, c) and torsion (Hao et al. 2010; Mohammadimehr et al. 2010; Khademolhosseini
et al. 2010; Shen and Zhang 2010).

2.1 Bending of CNTs Under Static Transverse Loadings

Wang and Liew (Wang and Liew 2007) investigated the scale effect on static
deformation of micro- and nano-rods or tubes subjected to transverse loadings by
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using the nonlocal Euler-Bernoulli and Timoshenko beam theories. The major
finding on cantilever nano-rods is reviewed below.

The transverse deformation of cantilever nano-rod with length L subjected to a
concentrated force P at x ¼ l via the nonlocal Euler-Bernoulli and Timoshenko
beam theories are provided to be (Wang and Liew 2007).
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where subscripts E and T denote Euler-Bernoulli and Timoshenko beam theories,

respectively. H x� lð Þ is the Heaviside function, X ¼ EI
GAjL2 ¼ 1þt

8j
d
L

� �2
is the shear

parameter, t is Poisson’s ratio, and d is the diameter of the rod or tube under
investigation. The coefficient, d=L, represents the slenderness of the structure.

Equations (1) and (2) reveal that the small-scale term, P e0að Þ2ðx� lÞHðx� lÞ,
affects the response of the cantilevered rod only for the space domain x� l.
Moreover, Eq. (2) shows that the nonlocal Timoshenko beam theory does not
induce additional scale effect compared to the nonlocal Euler-Bernoulli beam
theory for the cantilevered rod.

They further investigated an additional example on the deformation profiles
along the length of a cantilevered rod or tube subjected to a concentrated force at
the middle as shown in Fig. 1. In Fig. 1, the scale effect and the diameter-to-length
ratio have been given as e0a=L ¼ 0:2 and d=L ¼ 0:2, respectively. A noticeable
observation is that there is no scale effect on the deformation at all locations on the
left side of the point force, and such effect initiates immediately after the location
of the point force. Their results also showed that the small-scale effect is noticeable
for nano-structures in their static responses. On the other hand, the scale effect is
obscure when the length of the structure is over 20 nm. Therefore, they concluded
that scale effects would not manifest for typical micro-systems such as micro-
electromechanical systems (MEMS) which have lengths of the order rmlm. In
addition, the shear effect is evident for nano-structures indicating the importance
of applying the Timoshenko beam theory in static analysis of shorter nano-
structures. Nano-beams as potential nano-switches subjected to a transverse
electrostatic force within the framework of nonlocal elasticity theory to account
for the small-scale effect were studied by Yang et al. (2008). The transverse
electrostatic force from an applied voltage and intermolecular force was approx-
imated as a linear distributed load model and closed-form solutions were obtained
for cantilever and fixed–fixed nano-beams.
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2.2 Buckling of CNTs and GSs

Sudak (2003) investigated the buckling of CNTs subjected to axial loading using
the nonlocal continuum theory. In the study, the nonlocal Euler- Bernoulli beam
model for the buckling of multi-walled carbon nanotubes (MWCNTs) was pre-
sented which clearly demonstrated that small-scale effects significantly contribute
to buckling solution of MWCNTs. Explicit expressions for the critical buckling
load and strain were derived for axially loaded rods/tubes based on the nonlocal
Timoshenko beam theory (Zhang et al. 2004; Wang et al. 2006a, b, c ). Wang et al.
(2006a, b, c) developed nonlocal elastic beam and shell models to investigate the
small-scale effect on buckling analysis of CNTs under compression. They derived
a general buckling solution for CNTs with a length of L and various boundary
conditions via the nonlocal beam model as

P

Pl
¼ 1

1þ e0að Þ2 bp
L

� �2 ð3Þ

where Pl ¼ EI bp=Lð Þ2 is the buckling solution for a beam structure via the local
elastic beam theory and EI is the bending rigidity. b has different values given for
different boundary conditions. For example, the buckling solutions for the first
three modes are: b ¼ 1; 2; 3 for a pinned-pinned CNT, b ¼ 1=2; 3=2; 5=2 for a
cantilevered CNT, and b ¼ 2; 4; 6 for a fixed-fixed CNT. From Eq. (3), it is
obvious that the scale effect is indispensable in providing more accurate results for
mechanical behaviors of CNTs with lengths of the order nm via continuum
mechanics. On the other hand, the small-scale effect is negligible for CNTs with
lengths of the order l m. The explicit solutions for CNTs buckling analysis via
nonlocal continuum mechanics provided benchmark for scale effect studies of

Fig. 1 Static deformation of a cantilever structure subjected to a force at the middle by using
local and nonlocal models: local Euler-Bernoulli beam model (LE), nonlocal Euler-Bernoulli
beam model (NE), local Timoshenko beam model (LT) and nonlocal Timoshenko beam model
(NT) (Wang and Liew 2007)
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CNTs mechanical analyses. The nonlocal Timoshenko beam model was
implemented (Murmu and Pradhan 2009a, b, c, d) to investigate an axial buckling
of single-walled CNTs (SWCNTs) embedded in an elastic medium, and the
influence of the small-scale effect and stiffness of the surrounding medium was
investigated. Zhang et al. (2009a, b) presented an assessment of nonlocal beam and
shell models in the prediction of critical buckling strains of axially loaded
SWCNTs by use of MD simulation results for SWCNTs.

A nonlocal multiple-shell model was developed for the elastic buckling of
MWCNTs under uniform external radial pressure (Zhang et al. 2006; Xie et al.
2006). To investigate the bending, buckling and vibration responses of CNTs,
Zhang et al. (2010) employed the hybrid nonlocal beam model. The radial and
bending buckling behaviors of microtubules were also studied based on the non-
local elasticity theory (Shen 2010a, b). Since there are insufficient results by MD
simulations or experiments for radial and bending buckling, the use of the small-
scale parameter calibrated for vibration and axial buckling to radial and bending
buckling analysis was recommended. Such a recommendation was not justified. It
is pointed out here that the parameter calibrated in vibration or axial buckling
analysis may not be applicable to another type of motion of CNTs. It is hence
recommended that a nonlocal model is confirmed to be applicable to a nano-
material for a type of motion only after the scale parameter is carefully calibrated
for the material with the type of motion.

In order to study the thermal buckling behavior of MWCNTs, a nonlocal elastic
shell model was developed (Li and Kardomateas 2007). Buckling governing
equations of CNTs were formulated on the basis of the nonlocal elastic theory and
the small-scale effect on CNTs buckling results under the temperature field was
investigated (Yan et al. 2010; Amara et al. 2010). Wang et al. (2010a, b, c) studied
the thermal buckling properties of CNTs based on the nonlocal continuum theory
and the Timoshenko beam model. They concluded that small-scale effects should
be considered for thermal buckling behaviors, especially for higher mode numbers
and short CNTs.

Nonlocal elasticity shell models were presented to study torsional buckling of
CNTs in Refs. (Hao et al. 2010; Mohammadimehr et al. 2010; Khademolhosseini
et al. 2010; Shen and Zhang 2010). The scale coefficient was estimated by
matching the buckling torque of CNTs observed from MD simulation results with
the numerical results obtained from the nonlocal shear deformable shell model
(Khademolhosseini et al. 2010). Khademolhosseini et al. (Shen and Zhang 2010)
performed torsional buckling of SWCNTs using MD simulations and nonlocal
shell models. To match the results obtained from nonlocal continuum models to
those of MD simulations, different values of effective thickness of CNTs were
manually enforced in local and nonlocal continuum models. Enforcing different
values of the effective thickness in continuum models to match the atomistic
results may not be a feasible way as the physical properties of materials should not
be manually set to justify any proposed models.
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The buckling analysis of single-layered GSs (SLGSs) under biaxial and uniaxial
compression was studied using the nonlocal continuum mechanics (Murmu and
Pradhan 2009a, b, c, d; Pradhan 2009; Pradhan and Murmu 2009, 2010; Pradhan
and Kumar 2011a, b). GSs have been acknowledged to be a membrane structure
among researches in nano-community. In structural mechanics, a membrane is a
structure with negligible bending rigidity (Gao and Hao 2009; Lu and Huang
2009). Because of this, a membrane structure is unable to be subjected to any
notable compression loading and bending, or the capacity of buckling load of such
a structure is almost zero. However, it is pointed out here that GSs can be sub-
jected to in-plane shear leading to another type of local buckling state, wrinkles
(Duan et al. 2011). Wrinkles are observed in GSs due to their relatively small
bending rigidity. A continuum model was developed for the characteristics of the
wrinkles which show that the wrinkle wavelength decreases with an increase in
shear loading, while the amplitude of the wrinkles is found to initially increase and
then become stable (Duan et al. 2011). So far, there have been few studies on
ripples (Fasolino et al. 2007) GSs and failure of GSs and graphene nanoribbons
(GNRs) under tensile loadings using the nonlocal continuum theory. Therefore,
future studies are required to evaluate nonlocal models in simulation of ripples in
GSs and failure of GSs and GNRs under tensile loadings.

3 Application in Dynamic Analysis of CNTs and GSs

Now we turn our attention to applications of nonlocal models in vibration and wave
propagation of CNTs and GSs. The vibration of nanotubes and graphenes is an
important subject in nanotechnology since it is related to the electronic and optical
properties of nanostructures (Sirtori 2002; Antonelli et al. 2002; Brauns et al. 2002).
Furthermore, growing interests in design of terahertz devices at nanoscale sizes
(Bunch et al. 2007; Schedin et al. 2007; Chiu et al. 2008) have drawn more attention
to CNTs and GSs phonon dispersion relation, especially in the terahertz frequency
range. Therefore, the study of vibration of and wave propagation in CNTs and GSs
has technological significance in gaining a more in-depth understanding of dynamic
behaviors of CNTs and GSs. The factors that influence dynamic behaviors of CNTs
and GSs such as geometry of CNTs (radius, length, and number of tubes), geometry
of GSs (width, length, and number of layers), surrounding medium, temperature
and boundary conditions are investigated.

3.1 Free Vibration of CNT

A nonlocal double-elastic beam model for free transverse vibrations of double-
walled CNTs (DWCNTs) was developed by Zhang et al. (2005). They studied the
small-scale effect on vibrational properties of CNTs. Wang and Varadan (2006)
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investigated vibration of SWCNTs and DWCNTs based on nonlocal beam theories
and explicitly derived small-scale effects on vibration characteristics of CNTs.
They showed that the results based on nonlocal continuum mechanics are in
agreement with a published experimental report. They derived resonant frequency
for mode n, xn, of an SWNT with a length of L and simply supported boundary
condition as follows

xn

x0n
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2p2

L2 e0að Þ2
q ð4Þ

where x0n ¼ n2p2

L2

ffiffiffiffi
EI
qA

q
is the resonant frequency of the CNT obtained on the basis of

the classical or local Euler-Bernoulli beam theory; EIis the bending rigidity; q is
the mass density; and A is the cross sectional area of the CNT. From Eq. (4), the
small-scale effects decrease by an increase in the length of a CNT. The governing
equations were solved analytically for the vibration frequencies of beams with
various end conditions (Wang et al. 2007). The axial vibration frequencies were
shown to be highly over estimated by the local rod model, which ignores the effect
of small length scale (Aydogdu 2009; Filiz and Aydogdu 2010; Murmu and Ad-
hikari 2010). A nonlocal Timoshenko beam model was reformulated to study
nonlinear free vibration of SWCNTs based on von Karman geometric nonlinearity
and Eringen’s nonlocal elasticity theory (Yang et al. 2010). Duan et al. (2007)
calibrated the scale coefficient of the nonlocal Timoshenko beam theory for a free
vibration of SWCNTs by using vibration frequencies generated from MD simu-
lations at room temperature. They showed that the calibrated e0 ranges between 0
and 4 for a (5, 5) SWCNT with clamped-clamped boundary condition versus
length-to-diameter ratio from 1 to 14. It is worth mentioning that adopting various
e0 at every distinct length-to-diameter ratio may be inconvenient in applying the
nonlocal model. In view of this problem, Arash and Ansari (2010) assessed a
nonlocal shell model to analyze vibration characteristics of SWCNTs with
different boundary conditions subjected to initial strain. They calibrated the small-
scale parameter for a wide range of length-to-diameter ratios from 5 to 35 by use
of MD simulations as a benchmark of good accuracy and showed that the small-
scale parameter, e0a, only depends on boundary condition. The small-scale
parameter, e0a, was respectively justified to range from 1.7 to 2 nm for clamped-
clamped and clamped-free SWCNTs. The use of a unique small-scale parameter,
e0a, for a wide range of length-to-diameter ratio is more practical. Li and
Kardomateas (2007) formulated a nonlocal shell model for free vibrations of
MWCNTs. They found that resonant frequencies decrease due to the van der
Waals (vdW) interaction between two adjacent nanotubes. The effectiveness of
local and nonlocal Timoshenko beam models in the vibration analysis of SWCNTs
with different boundary conditions was assessed by Zhang et al. (2009a, b). The
scale coefficient,e0, was derived to be 1.25 for a range of length-to-diameter ratio
from around 5 to around 35. Murmu and Pradhan (2009a, b, c, d) analyzed a
thermal vibration analysis of SWCNTs based on the nonlocal elasticity theory.
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Lee and Chang (2009) developed a nonlocal Euler-Bernoulli elastic beam model
for the vibration of nanotubes conveying fluid using the theory of nonlocal elas-
ticity. They observed that the nonlocal effect on the fundamental frequency
becomes significant as the flow velocity of viscous fluid decreases. In addition, the
viscosity effect on the frequency of SWCNTs becomes significant as the flow
velocity of viscous fluid increases. Wang (2009) obtained the resonant frequencies
and critical flow velocities of tubular nano- and micro-beams conveying fluid
using nonlocal elastic theory. Results showed that the small-scale effect on the
critical flow velocities is visible for fluid-conveying nanotubes with nano-scale
length; however, and this effect may be neglected for micro-scale length. Pradhan
and Murmu (2010) developed a single nonlocal beam model to investigate the
flapwise bending-vibration characteristics of a rotating nanocantilever. Dynamic
analysis of nanotube structures under excitation of a moving nanoparticle was
carried out using nonlocal continuum theory (Kiani and Mehri 2010; Kiani 2010).
Based on the nonlocal elasticity theory, elastic beam models were developed for
analysis of dynamical behavior of fluid conveying SWCNTs embedded in an
elastic medium (Zhen and Fang 2010; Soltani et al. 2010). Vibration analysis of a
simply-supported SWCNT subjected to a moving harmonic load was investigated
by using the nonlocal Euler-Bernoulli beam theory (S�ims�ek 2010). The potential of
SWCNTs as mass sensors via a vibration analysis was investigated using nonlocal
elasticity theory (Lee et al. 2010; Aydogdu and Filiz 2011). Frequency shifts of the
nanotubes caused by attached mass were examined to measure the sensitivity
of the sensors. It is suggested again that the verification of results obtained by
nonlocal continuum models and calibration of the small-scale parameter are
indispensable for applicability and justification of the models.

3.2 Wave Propagation in CNT

Wang (2005) first investigated wave propagation in CNTs with nonlocal elastic
Euler-Bernoulli and Timoshenko beam models. The work revealed the significance
of the small-scale effect and the limitation of the applicability of local continuum
models in analysis of wave propagation in CNTs. It was also found that the
experimental results are qualitatively in agreement with the simulations derived
from nonlocal continuum models. Further, a conservative evaluation on the small-
scale parameter of e0a\2:1 nm was suggested for wave propagation in SWCNTs.
Wang and Hu (2005) studied on the flexural wave propagation in armchair (5, 5)
and (10, 10) SWCNTs for a wide range of wave numbers by use of the nonlocal
beam models and the MD simulations. Their simulation results showed that the
nonlocal Timoshenko beam model provides a better prediction for the dispersion
of flexural waves in the two SWCNTs than the nonlocal Euler beam. They pro-
posed the scale coefficient e0 ¼ 0:288 for a wide range of wave length from *0.2
to *70 nm for the flexural wave propagation in an SWCNT through the com-
parison results of nonlocal Timoshenko beam model and MD simulations. Such a
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speculation of a unique coefficient may not be practical as pointed out by later
studies from other scholars. The nonlocal Euler-Bernoulli and Timoshenko beam
models were proposed by Wang et al. (2006a, b, c) to study the small-scale effect
on wave dispersion results for DWNTs with respect to the variation of DWNT’s
wavenumbers and diameters. Wang and Varadan (2007) showed that the nonlocal
shell theory is indispensable in predicting CNT phonon dispersion relations at
larger longitudinal and circumferential wavenumbers and smaller wavelength in
the circumferential direction. Hu et al. (2008) modeled SWCNTs and DWCNTs as
nonlocal single and double elastic cylindrical shells. It was indicated that the wave
dispersion predicted by the nonlocal elastic cylindrical shell theory is in good
agreement with that of the MD simulations in a wide frequency range up to the
terahertz region. They also reported that nonlocal shell models are required when
the wavelengths are approximately less than 2.36 nm and 0.95 nm for transverse
wave in an armchair (15, 15) SWCNT and torsional wave in an armchair (10, 10)
SWCNT, respectively. The MD-based estimation of the scale coefficient e0 for the
nonlocal elastic cylindrical shell model was suggested to be 0.6 and 0.2 for
transverse wave and torsional wave in CNTs, respectively. The small-scale
parameter introduces certain band gap region in both flexural and shear wave mode
where no wave propagation occurs when the wavenumber tends to infinite
(Narendar and Gopalakrishnan 2009). The frequency at which this phenomenon
occurs is called the ‘‘Escape frequency’’ and it is proportional to the nonlocal
scaling parameter.

3.3 Free Vibration of GSs

On the basis of the nonlocal constitutive relations of Eringen, Pradhan and Phadikar
(2009) reformulated the classical plate theory (CLPT) and the first-order shear
deformation theory (FSDT) to study free vibrations of GSs. The difference in the
frequencies predicted by CLPT and FSDT is significantly smaller for double lay-
ered plate than that for single layered plate (Wang et al. 2010a, b, c). Murmu and
Pradhan (2009a, b, c, d) studied small-scale effect on the free in-plane vibration of
nano plates by a nonlocal continuum model. A vibration analysis of orthotropic GSs
was also conducted (Pradhan and Kumar 2010, 2011a, b). A nonlocal plate model
based on FSDT was developed to study free vibrations of embedded multi-layered
GSs (MLGSs) (Ansari et al. 2010a, b, 2011). A nonlocal plate model for the
nonlinear vibration of SLGSs with simply supported boundary conditions in ther-
mal environments was presented and the small-scale parameter was estimated by
matching the natural frequencies of SLGSs observed from the MD simulation
results with those of the nonlocal plate model (Shen et al. 2010). There has been no
evidence on necessity of using third order shear deformation theory to model GSs.
Ansari et al. (2010a, b) evaluated a nonlocal plate model to predict the resonant
frequency of SLGSs. They calibrated the small-scale parameter (e0a) for the free
vibration of squared shaped SLGSs with simply-supported and clamped boundary
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conditions for a wide range of sizes from 10 nm to 50 nm by use of MD simulation
results as a benchmark. Their simulation results showed that the values of e0a are
1.41 and 0.87 nm for simply-supported and clamped SLGSs. Arash and Wang
(2011) investigated free vibrations of single-layered graphene sheets (SLGSs) and
double-layered GSs (DLGSs) with different boundary conditions by employing the
nonlocal continuum theory and MD simulations. The vibrations of DLGS with
different combinations of boundary conditions between two layers were studied.
The dependence of boundary conditions and vibrational modes on calibration of the
scale coefficient for a range of sizes of GSs was also investigated. They showed that
the classical elastic model overestimated the resonant frequencies of the sheets by a
percentage as high as 62 % at sizes of 2.47 nm. The nonlocal plate model is found
to be indispensable in vibration analysis of GSs with a length less than 8 nm on
their sides (Arash and Wang 2011). Their results showed that the difference
between local plate model and nonlocal counterpart remains significant for all
ranges of GS aspect ratios, and the overestimation is found to be around 50 % at GS
aspect ratio of a=b ¼ 4.

3.4 Wave Propagation in GSs

Wave propagation in GS was studied in Refs. (Wang et al. 2010a, b, c; Arash et al.
2012). It was shown that the scale coefficient introduces certain band gap region in
in-plane and flexural wave modes where no wave propagation occurs (Wang et al.
2010a, b, c). This is manifested as the region where the wavenumber tends to infinite
or wave speed tends to zero. Arash et al. (2012) developed a finite element (FE)
model from the weak-form of the nonlocal elastic plate model and fulfilled a
comprehensive study on wave propagation in GSs. They showed that the nonlocal
FE plate model is indispensable in predicting graphene phonon dispersion relations,
especially at wavelengths less than 1 nm, when the small-scale effect becomes
dominant. Moreover, the small-scale parameter, e0a, was calibrated through the
verification process with results of MD simulations and a calibrated nonlocal
parameter e0a ¼ 0:18 nm was recommended for a GS with a size of for wavenumber
ranging from 2:55� 109 to 9:17� 109 1/m. From Fig. 2, it is found that as wave-
number increases from 2:55� 109 to 9:17� 109 1/m, the phase velocity tends to
increase from 1:32� 103to 3:44� 103 m/s and the small length scale effects
become dominant indicating a high scale effect in wave propagation in the GS.

4 A Re-Visit on Nonlocal Elastic Models

Nonlocal continuum mechanics models have been found to successfully describe
mechanical behaviors of nano-materials. The results obtained by the nonlocal
continuum models have been compared with those from MD simulations (Duan
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et al. 2007; Arash and Ansari 2010; Hu et al. 2008; Ansari et al. 2010a, b; Arash
and Wang 2011). Inspired by the pioneering works, many continuum models,
including beam models, cylindrical shell models, and plate models based on the
nonlocal continuum theory, have been developed and applied in studying static
and dynamic analysis of CNTs and GSs. In the following section, we provide a
general introduction of the elastic beam, shell, and plate models for analysis of
CNTs and GSs.

4.1 General Theory

According to the nonlocal theory by Eringen (1976, 1983), the stress at a reference
point x in an elastic continuum not only depends on the strain at the point but also
on strains at every point of the body. The basic equations for linear homogenous
and isotropic elastic solids neglecting the body forces are

rij;j ¼0

rijðxÞ ¼
Z

k x� x0j j; að ÞCijkleklðx0ÞdVðx0Þ; 8x 2 V

eij ¼
1
2

ui;j þ uj;i

� �
ð5Þ

where rij and eij are the stress and strain tensors, respectively; Cijkl is the elastic
modulus tensor in classical isotropic elasticity; and uiis the displacement vector.

Fig. 2 Dispersion relations of a GS with a size of 3:62 � 15:03 nm obtained from MD
simulations, the local FEM plate model, and the nonlocal FEM model (Arash et al. 2012)
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Eq. (1) shows that stress (r) at a reference point depends on local strain at
the source x0induced by deformation within a finite volume, V , surrounding the
material point, by means of a nonlocal kernel k x� x0j j; að Þ that weights the
classical strains around point x : k is the nonlocal modulus or attenuation function
which is a function of the distance in Euclidean form, x� x0j j, and a material
constant a. Material constant a defined as e0a=l depends on the internal charac-
teristics lengths, a (lattice parameter, granular size, distance between C–C bonds),
external characteristics lengths l (crack length, wave length) and e0 is a constant
appropriate to each material. The parameter e0a is the small-scale parameter
revealing the small-scale effect on the responses of structures of nano-size. Gen-
erally, a conservative estimate of the small-scale parameter is e0a\2 nm for an
SWCNT (Wang 2005) for wave propagation. Note that this value is both chirality
and size dependent, as the material properties of CNTs are widely acknowledged
to be chirality dependent. So far, there is no rigorous study made on estimating the
scale coefficient. It is suggested that the coefficient be determined by conducting a
comparison of dispersion curves from nonlocal continuum mechanics and lattice
dynamics of nano-material crystal structure (Eringen 1976, 1983).

The kernel function kðjx� x
0 j; aÞ is given by Eringen as

k xj j; að Þ ¼ 2pl2a2
� ��1

K0

ffiffiffiffiffiffiffiffi
x � x
p

la

� �
ð6Þ

where K0 is the modified Bessel function. By combining Eqs. (5) and (6), the
constitutive relation may be obtained as

1� e0að Þ2r2
� �

r ¼ C : e ð7Þ

where r2 is the Laplacian operator.

4.2 Elastic Beam Model

It is well known that CNTs are slender tube like hollow structures with high aspect
ratios. A slender CNT behaves like an elastic beam during motions, in which the
central axis of the beam deforms sideways and the deformation pattern can thus be
described as a single deflection. The simplest beam theory is the Euler-Bernoulli
beam theory (EBT) (Sudak 2003; Wang and Liew 2007; Wang and Varadan 2006;
Wang et al. 2006a, b, c; Reddy 2007; Adali 2008; Aydogdu 2009), in which
Hook’s law for one-dimensional stress state can be determined by

rðxÞ � e0að Þ2o
2rðxÞ
ox2

¼ EeðxÞ ð8Þ

where E is the Young’s modulus of the material. The resultant bending moment
and the kinematics relation in a beam structure are given as
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M ¼
Z

A
yrdA; e ¼ �y

o2w

ox2
ð9Þ

where y is the coordinate measured from the mid-plane in the height direction of
the beam and wðx; tÞ is the flexural deflection of the beam. The equilibrium
equations of a vibrating beam structure subjected to an axial loading, P, and
transverse loading, q, can be easily provided below:

oV

ox
� qA

o2w

ot2
þ qðxÞ ¼ 0 ð10aÞ

V � oM

ox
þ P

ow

ox
¼ 0 ð10bÞ

where V x; tð Þ and M x; tð Þ are the resultant shear force and bending moment on the
beam; q is the mass density of the material, and A is the cross sectional area of the
beam. Substituting Eq. (10b) into (10a) leads to the nonlocal Euler-Bernoulli beam
model,

EI
o4w

ox4
þ P

o2

ox2
w� e0að Þ2o

2w

ox2

� �
þ qA

o2

ot2
w� e0að Þ2o

2w

ox2

� �

� qðxÞ � e0að Þ2o
2qðxÞ
ox2

� �
¼ 0

ð11Þ

from which it is easily seen that the local or classical Euler-Bernoulli beam model
is recovered when the parameter e0 is identically zero.

Modeling of applications of CNTs can be extended from the above fundamental
modeling. For example, the analysis of the vibration and stability of an SWCNT
conveying fluid can be theoretically studied with a model provided below:

EI
o4w

ox4
þ P

o2

ox2
w� e0að Þ2o

2w

ox2

� �
þ qA

o2

ot2
w� e0að Þ2o

2w

ox2

� �

� qðxÞ � e0að Þ2o
2qðxÞ
ox2

� �
þ mf 1� e0að Þ2 o2

ox2

� �

� 2mf
o2w

oxot
þ m2

f

o2w

ox2
þ o2w

ot2

� �
¼ 0

ð12Þ

where mf the mass of fluid per unit length in the carbon nanotube.
The Euler beam model is adequate for the static and dynamic analysis of CNTs with

high aspect ratios. However, it is well known that the model neglects the transverse
shear deformation. Thus, the nonlocal Timoshenko beam model was developed in
analysis of static and analysis of CNTs by considering the effects of transverse shear
deformation and rotary inertia (Wang and Liew 2007; Murmu and Pradhan 2009a, b,
c, d; Wang et al. 2006a, b, c, 2007; Wang and Wang 2007; Reddy 2007).
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Two nonlocal Timoshenko beam models have been presented in literature. In
both models, small scale effect was well modeled in constitutive relation of normal
stress and strain as shown in Eq. (8). The only difference is on the necessity of
including the scale effect in shear force and strain relation. When the small-scale
effect is considered in shear force term (Reddy 2007), the equilibrium equation in
terms of displacement, w, and rotation, u, is given as

KsAG
o

ox
uþ ow

ox

� �
þ e0að Þ2 P

o4w

ox4
þ qA

o4w

ox2ot2
þ o2qðxÞ

ox2

� �

� P
o2w

ox2
� qA

o2w

ot2
� qðxÞ ¼ 0

ð13aÞ

EI
o2u
ox2
� KsAG uþ ow

ox

� �
� qI

o2u
ot2
þ e0að Þ2qI

o4u
ox2ot2

¼ 0 ð13bÞ

Different from the model, Wang and Wang (2007) suggested a nonlocal
Timoshenko model in which the small-scale effect is not exerted on the shear force
term. The reasoning is provided hereinafter. In the Timoshenko theory,
c0 ¼ ow

ox � u is defined as the shear strain at the centroidal axis, and the relation of

the shear force and the shear strain is directly defined as V ¼ KsAG ow
ox � u
� �

where
Ks is the shear correction factor, G is the shear modulus and A is the cross-
sectional area. Therefore, the relation of the shear force and shear strain suggested
in the Timoshenko beam theory is applied to the entire straight cross section, and
not to a single point on the section. The assumed relation makes the local Tim-
oshenko beam somewhat different from the local Euler-Bernoulli beam theory in
which the shear stress at a certain point is related to the strain at the point. Hence,
the shear stress at a cross section in the Timoshenko theory has already been
considered to be a function of the strain of the cross section as a whole, the nature
of a nonlocal variable. In view of this, in the nonlocal Timoshenko model, the
consideration of the scale effect on the shear force may not be necessary.

In Fig. 3, we compare the fundamental resonant frequency of SWCNTs
obtained from the two nonlocal Timoshenko beam models to show that modeling
of scale effect in shear force is not a key consideration in the beam models. The
scale effect is only indispensible in normal stress and strain relation, as shown in
Eq. (8). The variation of resonant frequency of an SWCNT with length (L) ranging
from 5 to 50 nm, diameter (d) 1 and 2 nm and simply-supported boundary con-
dition modeled by the two nonlocal Timoshenko beam models is presented in
Fig. 3. The mechanical parameters are set as follows: the Young’s modulus
E ¼ 1 TPa, the Poisson’s ratio v ¼ 0:19, the mass density q ¼ 2:3 g=cm3, the
effective thickness t ¼ 0:34 nm the small-scale parameter e0a ¼ 2 nm and the
shear correction factor Ks ¼ 10=9. The difference percentage of fundamental
resonant frequency obtained by the two nonlocal Timoshenko models for an
SWCNT with a diameter of 2 nm decreases from 8 % at the length of 5 nm
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(L=d ¼ 2:5) to only 2.5 % at the length of 10 nm (L=d ¼ 5). As it is shown, the
modeling of the small-scale effect in shear relation on resonant frequency is not
necessary.

4.3 Elastic Shell Model

In addition to nonlocal beam models, CNTs with lower length-to-diameter ratios
have been models with elastic shell models for their shell-like motions in which
these CNTs move sideways while maintaining their straight axes. Hence, nonlocal
shell models become indispensable especially when the length-to-radius ratio of
CNTs decreases.

Two shell theories, i.e. the classical shell theory (Li and Kardomateas 2007;
Wang and Varadan 2007; Hu et al. 2008) and FSDT (Arash and Ansari 2010),
have been widely considered in literature for static and dynamic analysis of
nanotubes.

In the classical shell theory, the three-dimensional displacement components
ux; uy and uz in the x; h and z directions respectively are assumed to be

ux x; h; z; tð Þ ¼ u x; h; tð Þ � z
ow x; h; tð Þ

ox

uy x; h; z; tð Þ ¼ v x; h; tð Þ � z
ow x; h; tð Þ

ox
uz x; h; z; tð Þ ¼w x; h; tð Þ

ð14Þ

Fig. 3 Influence of the small-scale effect in shear constitutive relation oresonant frequency of an
SWCNT with length ranging 5 and 50 nm, diameter 1 and 2 nm, simply-supported boundary
condition and e0a ¼ 2 nm modeled by two nonlocal Timoshenko beam models
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where u; v and w are the reference surface displacements. For a CNT with a radius R,
length L and thickness h, the governing equations of a nanotube subjected to axial
load, �Nxx,orsional force, �Nxh, and external pressure, �Nhh, on the basis of Flugge’s
shell theory are given as (Wang and Varadan 2007; Hu et al. 2008)
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where Nxx; Nhh; Nxh; Mxx; Mhh; Mxh are the components of internal force and the
internal moments into which the small-scale effect has been incorporated (Wang
and Varadan 2007). x and h denote the longitudinal and circumferential coordi-
nates, respectively. Equation (15) in terms of the three field variables (u; v and w)
are given in Ref. (Arash and Wang 2012).

In the FSDT, the three-dimensional displacement components ux; uyand uz in
the x; h and z directions respectively are assumed to be

ux x; h; z; tð Þ ¼ u x; h; tð Þ � zwx

uy x; h; z; tð Þ ¼ v x; h; tð Þ � zwh

uz x; h; z; tð Þ ¼w x; h; tð Þ
ð16Þ

where u; v and ware the reference surface displacements and wx; wh re the rota-
tions of transverse normal about the x-axis and y-axis, respectively. The governing
equations of a shell subjected to a axial force, Nxx, torsional force, Nxh, and
external pressure, Nhh, on the basis of the Donnell shell theory are given as (Arash
and Ansari 2010).
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oMxx

ox
þ 1

R

oMxh

oh
� Qxx ¼ I1€uþ I2

€wx
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ox
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oh
� Qhh ¼ I1€vþ I2

€wh ð17Þ

where Nxx; Nhh; Nxh; Qxx;Qhh; Mxx; Mhh; Mxh are the components of internal force
and the internal moments into which the small-scale effect has been incorporated

(Arash and Ansari 2010). Ii ¼
Rh=2
�h=2 qzidz ði ¼ 0; 1; 2Þ is the mass moment of

inertia where q is the mass density. The nonlocal first order shell model in terms of
displacements and rotations is provided in Ref. (Arash and Wang 2012).

4.4 Elastic Plate Model

GSs have been modeled by nonlocal continuum theories as two-dimensional nano-
plates (Pradhan and Phadikar 2009; Murmu and Pradhan 2009a, b, c, d; Pradhan and
Kumar 2010, 2011a, b; Ansari et al. 2010a, b; 2011; Shen et al. 2010; Arash and
Wang 2011). In continuum plate models, the classical plate theory (CLPT) (Pradhan
and Phadikar 2009; Murmu and Pradhan 2009a, b, c, d; Arash and Wang 2011) and
FSDT (or Mindlin plate theory) (Pradhan and Phadikar 2009; Pradhan and Kumar
2010; Ansari et al. 2010a, b) have been incorporated in modeling the nanoplates.

In CLPT, transverse shear strains are neglected. Based on the CLPT, the three-
dimensional displacement components ux; uy and uz in the x; y and z directions
respectively are assumed to be

ux x; y; z; tð Þ ¼ u x; y; tð Þ � z
ow x; y; tð Þ

ox

uy x; y; z; tð Þ ¼ v x; y; tð Þ � z
ow x; y; tð Þ

ox
uz x; y; z; tð Þ ¼w x; y; tð Þ

ð18Þ

where u; v and w are the reference surface displacements. The dynamic equilib-
rium equations of the stress and moment resultants are given as (Pradhan and
Phadikar 2009; Pradhan and Kumar 2010; Ansari et al. 2010a, b)
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The nonlocal plate model of a single-layered graphene sheet in terms of the
displacements is given below when the rotary inertia is considered:
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ð20Þ
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In FSDT, the three-dimensional displacement components ux; uy and uz in the
x; yand z directions respectively are assumed to be

ux x; y; z; tð Þ ¼ u x; y; tð Þ � zwx

uy x; y; z; tð Þ ¼ v x; y; tð Þ � zwy

uz x; y; z; tð Þ ¼w x; y; tð Þ
ð21Þ

where u; v and w are the reference surface displacements. The governing Mindlin-
type equations are given as
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where Nxx; Nyy; Nxy; Qxx;Qyy; Mxx; Myy; Mxy; I0; I1; I2 are the components of
internal force, the internal moments into which the small-scale effect has been
incorporated and mass moments of inertia (Pradhan and Phadikar 2009; Pradhan
and Kumar 2010; Ansari et al. 2010a, b). The nonlocal Mindlin plate theory in
terms of displacements and rotations is given in Ref. (Arash and Wang 2012).

It has been shown that resonant frequency of GSs obtained from the nonlocal
plate model based on CLPT and FSDT are in good agreement with those of MD
simulations (Ansari et al. 2010a, b; Arash and Wang 2011). Higher order models
for analyzing GSs have not been found to be necessary for analysis of nano-plates
so far.

5 Conclusions

CNTs and GSs are increasingly holding many potential applications in the ever-
growing nanotechnology industry due to their superior mechanical and physical
properties. A detailed understanding of mechanical behaviors of the two materials
is crucial. Among different approaches for modeling nanostructures, the nonlocal
continuum mechanics theory allows the consideration of the small-scale effects in
analysis of nano-materials, which makes the theory as an effective way in simu-
lating the nano-materials. The nonlocal beam and shell models have been widely
employed in analysis of the static and dynamic problems of CNTs and GSs.
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The determination of the magnitude of the small-scale parameter is the key
issue in a successful application of the nonlocal continuum models. However, their
validity has been rarely confirmed by atomistic simulation or experimental results.
The value of the small-scale parameter depends on boundary condition, chirality,
mode shapes, number of walls, and the nature of motions. More studies are needed
to fully evaluate the nonlocal continuum models in analysis of the behavior of the
nano-materials, especially MWCNTs embedded in an elastic medium with various
boundary conditions, dimension and chirality.

High order continuum models providing complicated equations are not practical.
Furthermore, there is not any evidence on necessity of using high order continuum
models for analysis of CNTs and GSs. In sum, nonlocal Euler-Bernoulli and
Timoshenko beam models for long CNTs and elastic shell models based on clas-
sical shell theory and FSDT are sufficient to model static and dynamic behavior of
short CNTs. Also, plate models based on CLPT and FSDT are adequate to analyze
GSs.

Further studies on the nonlocal elastic theory will focus on their applications in
modeling of new applications of CNTs and GSs. On example would be the study
on vibration characteristic of CNTs and GSs for modeling them as potential mass
sensors using the nonlocal continuum theory. SWCNTs have been identified to be
able to transport encapsulated atoms and nano-particles via the driving force
induced by the vdW interaction between the CNT wall and the filled atoms and
nano-particles. Transportation of nano-particles using nonlocal continuum models
can be another interesting research area.
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Abstract A multi-scale finite element formulation, combining nanoscopic and
macroscopic considerations is presented, for the modelling of the elastic
mechanical response of single walled carbon nanotube (single-walled CNT) and
graphene based composites. Based on micromechanical theory and adopting
appropriate representative volume elements, the carbon nanostructures are mod-
elled according to the molecular mechanics theory via the use of spring elements,
while the matrix is modelled as a continuum medium. Here, emphasis is given on
interfacial region modelling, where the interactions between the two phases are
implemented by utilizing appropriate stiffness variations describing a heteroge-
neous interfacial region. Using the proposed technique, predictions on mechanical
properties and load transfer conditions are performed. The formulation is validated
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1 Introduction

Carbon nanotubes (CNTs) and graphene have been proposed as some of the most
promising materials for nanoelectromechanical systems due to their extremely
high Young’s modulus, strength and other properties.

The development and exploitation of novel materials can lead to the growth of
new fields of research as well as new solutions to technological problems that
could not be resolved up to now. Graphene is one of the latest breakthrough in
sciences and technology promising novel applications in different aspects of life.
Actually, it is an allotrope of carbon and its structure is one-atom-thick planar
sheets of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal
lattice. Graphene is the basic structural element of other carbon allotropes
including graphite, charcoal, carbon nanotubes and fullerenes. It is most easily
visualized as an atomic-scale chicken wire made of carbon atoms and their bonds.

Moreover, CNTs are molecular-scale hollow cylinders composed of carbon
atoms arranged in a hexagonal network. For the better understanding of their
structure, someone can imagine the well-known geometric structure of the
graphene that has to be ideally cut and rolled up to make a seamless cylinder. They
may consist of only one layer (single-walled CNTs) or more layers (multi-walled
CNTs) of rolled graphene sheets.

The combination of the exceptional mechanical properties, i.e., the outstanding
Young’s modulus and tensile strength, the small size and the low density of CNTs,
make them ideal material components for use as strong reinforcements. Therefore,
the study of the mechanical performance of CNT-based composites and the dis-
covery of possible innovative applications has attracted the interest of many
researchers. Recently, the use of CNTs as structural reinforcement has resulted in a
significant enhancement of the mechanical properties of a variety of materials
(Lordi and Yao 2000).

The numerical prediction of the mechanical behavior of nanocomposites is an
essential task to enable their efficient production and design because analytical
models are difficult to establish and experiments are very expensive due to the
nanoscale dimensions involved. MD simulations have accurately predicted the
mechanical behavior of individual CNTs, while fewer MD based studies have been
performed on CNT-reinforced composites (Frankland et al. 2003; Zou et al. 2006;
Han and Elliott 2007), possibly because the MD approach is restricted to small
length and time scale problems due to its computational cost. Another possible
approach for simulating these systems is by using continuum mechanics based
approaches, which seem to be computationally feasible. Continuum mechanics
approaches based on either finite element method (FEM) (Chen and Liu 2004;
Seidel and Lagoudas 2006; Ashrafi and Hubert 2006) or boundary element method
(BEM) (Liu and Chen 2003) have been used to evaluate the elastic properties of
CNT-based composites via micromechanical methods. However, in all previous
studies, both CNT and matrix materials were modelled as continuum, which
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created a noticeable limitation in the accuracy of those simulations since the
microstructure of CNTs was not taken into consideration.

The performance of CNT-based composites is greatly influenced by the inter-
face which has different properties from those of the matrix and the CNT. Gen-
erally, the three main mechanisms of interfacial load transfer are micromechanical
interlocking, chemical bonding, and the van der Waals interactions between the
matrix and the reinforcements. Al-Ostaz et al. (2008) investigated single-walled
CNT-polymer interface interactions in nanoscale via MD. To represent the CNT-
polymer load transfer characteristics and consequently the interface between the
CNTs and the polymer, (Frankland et al. 2002) employed just van der Waals
forces. Saber-Samadari and Khatibi (2006) considered a continuum interfacial
zone with variable elastic modulus to investigate a CNT composite via a unit cell
method. However, in the specific study the mechanical response of all phases
including CNT were assumed as continuum.

A finite element formulation, based on micromechanical analysis, is proposed
for the evaluation of the elastic mechanical behavior of a matrix, filled with short
or long CNTs or graphene. Concerning the nanostructured reinforcement model-
ling, i.e. CNT and graphene modelling, the method is able to utilize the three
dimensional atomistic microstructure of the reinforcement, defining nodes at the
corresponding atomic positions of carbon atoms. Appropriate spring elements,
which interconnect the atoms, incorporate directly the potential energies provided
by molecular theory and therefore simulate accurately the interatomic interactions
(Rappe et al. 1992). In contrast, the matrix can be considered as a continuum
medium. In addition, the load transfer between the reinforcement and the matrix is
modelled by special joint elements of variable stiffness. In this way, a heteroge-
nous interface is simulated. The advantage of the proposed hybrid method is that it
utilizes macroscopic properties in order to describe the matrix and interface
behavior as well as may efficiently couple the nano scaled reinforcement with the
macroscale matrix. Detailed representation of the molecular nanostructure is
avoided, making the proposed formulation attractive and simultaneously, signifi-
cant reduction in computational cost and complexity is achieved. Predicted results
regarding the nanocomposite mechanical properties are presented and compared to
solutions obtained from the literature. The reinforcing ability of nanostructured
reinforcements is evaluated.

2 Nano-Reinforcement Modelling

The nanomaterials, which are used to enhance the mechanical behavior of the
matrix, are modelled according to their exact atomistic structure, while appropriate
potential energy equations are adopted in order to approximate the interatomic
interactions observed on them. Small displacement theory is adopted to simulate
their elastic response.
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2.1 Nanoparticles Geometry

2.1.1 Geometry of Graphene

The honeycomb lattice of graphene, which is assumed to have thick-
ness tg ¼ 0:34 nm (Arroyo and Belytschko 2004) in the present analysis, has a unit
cell represented in Fig. 1 by the vectors r1 and r2 such that:

r1j j ¼ r2j j ¼
ffiffiffi
3
p

r0 ð1Þ

where r0 is the carbon—carbon distance taken equal to 0.1421 nm in present work.
In this basis any lattice vector r is represented as:

r ¼ na1 þ ma2 ð2Þ

where n, m are integers. In Cartesian coordinates:

r1 ¼ r0 3=2
ffiffiffi
3
p

=2 0
� �T ð3Þ

r2 ¼ r0 3=2 �
ffiffiffi
3
p

=2 0
� �T ð4Þ

The vectors connecting any atom to its nearest neighbors are:

d1 ¼ r1 � 2r2ð Þ=3 ð5Þ

Fig. 1 Generation of a
single-walled CNT from a
graphene sheet
(Giannopoulos et al. 2008)

86 S. K. Georgantzinos et al.



d2 ¼ r2 � 2r1ð Þ=3 ð6Þ

d3 ¼ r1 þ r2ð Þ=3 ð7Þ

Equations (1)–(7) describe completely the discrete in plane geometry of
graphene, essentially defined by the positions of carbon atoms. It becomes evident
that the dimensions of width and length of a finite sized graphene, i.e. a GNR may
not be integers since they are determined by the positions of edge carbon atoms.

2.1.2 Geometry of CNT

A single-walled CNT can be generated by rolling a graphene sheet, which is
ideally cut, to make a cylinder. The graphene sheet must be rolled up in the
direction of the chiral vector Ch defined as (see Fig. 1):

Ch ¼ na1 þ ma2 ð8Þ

where a1 and a2 are the basis vectors of the honeycomb lattice and integers (n,m)
are the number of steps along the zigzag carbon bonds and generally are used to
name a nanotube. A nanotube (n,n) is usually named as armchair while the nano-
tube (n,0) is usually named zigzag. The chiral angle w (0�w� 30o) is defined as:

tan w ¼
ffiffiffi
3
p

m

2nþ mð Þ ð9Þ

It is obvious that for an armchair nanotube w ¼ 30o while for a zigzag w ¼ 0o.
The nanotube’s diameter D is given by the following equation:

D ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 n2 þ nmþ m2ð Þ

p
p

ð10Þ

Chiral vector Ch and the following translational vector T define the ideal
rectangular cutting area of graphene sheet:

T ¼ 2mþ n

W

� �
a1 þ � 2nþ m

W

� �
a2 ð11Þ

where W defines the higher common divisor of 2mþ n and 2nþ m.
In the present work, for simplicity, the original coordinate system of the

graphene sheet x0; y0ð Þ is transformed into a new system x; y; zð Þ of the nanotube
such that T is along y0-axis. Then, the graphene atomic coordinates are converted
to those of the nanotube according to the equation (Kołoczek et al. 2001):

x; y; zð Þ ¼ R cos
x0

R

� �
; r sin

x0

R

� �
; y0

� �
ð12Þ

where R is the nanotube’s radius.
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The thickness of CNTs investigated here is taken equal to tn ¼ 0:34 nm (Li and
Chou 2005).

2.2 Governing Equations

The total potential energy, omitting non-bonded interactions, i.e. the electrostatic
energy and the energy due to van der Waals interaction, is a sum of energies
caused by the bonded interatomic interactions, which are depicted in Fig. 2a, and
may be expressed by the following equation (Rappe et al. 1992):

U ¼
X

Ur þ
X

Uh þ
X

Uh þ
X

Ux ð13Þ

kb1
kb2

kb3

kT

kr

 bond streching Out of plane 
torsion

 bond angle 
bendingDihedral angle 

torsion

(a)

(b)

Fig. 2 Force field in
neighboring atoms
a interatomic interactions and
b spring model
(Georgantzinos et al. 2010)
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where Ur represents the energy due to bond stretching, Uh the energy due to bond
angle bending, U/ the energy due to dihedral angle torsion and Ux the energy due
to out of plane torsion.

Under the assumption of small deformations, the harmonic approximation is
adequate for describing potential energy (Gelin 1994) and therefore the force field.
By adopting the simplest harmonic forms and combining the dihedral angle, tor-
sion with the out of plane torsion into a single equivalent term then the following
terms can describe the total potential energy (Meo and Rossi 2006):

Ur ¼
1
2

kr Drð Þ2; d2Ur

dDr2
¼ kr ð14Þ

Uh ¼
1
2

kh Dhð Þ2; d2Uh

dDh2 ¼ kh ð15Þ

Us ¼ U/ þ Ux ¼
1
2

ks Dhð Þ2; d2Us

dDs2
¼ ks ð16Þ

where kr, kh and ks are the bond stretching, bond angle bending, and torsional
resistance force constants, respectively, while Dr, Dh and D/ represent the bond
length, bond angle and twisting bond angle variations, respectively.

The second derivatives of the potential energy terms appearing in Eqs. (14)–(16)
with respect to bond stretch, bond angle and twisting bond angle variations,
respectively, produce spring stiffness coefficients kr, kh and ks. Thus, here, axial and
torsional springs that straightforwardly introduce the physical constants are utilized
(Fig. 2b) in order to describe the force field. The springs interconnect the nodes that
have been extracted from the Eq. (12). The bond angle bending interaction is
simulated by axial springs, which have stiffness

kbi ¼
1

ac�c cos 90o � cð Þ

� �2

kh ð17Þ

as has been described in (Giannopoulos et al. 2008), where c ¼ 30o in the hexagonal
lattice of the graphene. This angle may vary for each C–C–C microstructure in a
CNT according to its type and radius due to its cylindrical shape. In the case of
chiral nanotubes, three bending springs of different stiffness i.e. kb1 6¼ kb2 6¼ kb3

appear in the unit cell (Fig. 2b). In the cases of armchair and zigzag nanotubes, two
of the three bending spring stiffnesses are equal due to the same angle c. In the other
hand, because of the planar shape of the graphene sheets, all bond angle bending
springs have equal stiffness, i.e. kb1 ¼ kb2 ¼ kb3.

On every notional line defined by C–C bonds, a spring-based finite element
(a-element) is developed consisting of one axial and one torsion spring. In respect
to the local coordinate system of the a-element, the elemental equation for the
axial spring has the following form,

krI20u ¼ F ð18Þ
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where

I20 ¼
1 �1
�1 1

� �
ð19Þ

where vector F contains the forces applied on nodes 1 and 2 of the element, and u

is the vector of nodal displacements (u ¼ u1 u2½ �T, F ¼ F1 F2½ �T). Similarly,
for the torsional spring of the a-element, it can be written that

ksI20h ¼ T ð20Þ

where h is the vector of nodal rotations and T is the vector of the applied torsional

moments (h ¼ h1 h2½ �T,T ¼ T1 T2½ �T). Therefore, the elemental equation for
the a-element is

krI20 0
0 ksI20

� �
u
h

� �
¼ F

T

� �
or kaU ¼ P ð21Þ

where U is the vector of nodal translations and rotations, P is the column vector of
loads, and finally and ka is the elemental stiffness matrix.

Correspondingly, elements simulating the bond angle bending are also devel-
oped (3.bi-element). The equations for these elements are

kbiI20 0
0 0

� �
u
h

� �
¼ F

T

� �
or kbiU ¼ P ð22Þ

where kbi is the stiffness coefficient, as previously described.
Hence, the elemental matrices expressed in the global coordinate system are

Ka ¼ TTkaT ð23Þ

Kbi ¼ TTkbiT ð24Þ

where T is the appropriate transformation matrix, as defined in (Gelin 1994). The
displacements and rotations as well as the loads are related by the equation

U ¼ TD R ¼ TTP ð25Þ

where D is the vector of displacements and rotations and R is the vector of loads
with respect to the global coordinates. The superscript T in the above equations
denotes matrix transposition. Finally, the elemental equations in the global system
become

KaD ¼ R ð26Þ

KbiD ¼ R ð27Þ

According to the atomistic microstructure of each nanotube or graphene sheet,
we assemble the global stiffness matrix K from the above elemental matrices.
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After applying the CNT boundary conditions, the mechanical response of nanotube
or graphene sheet is evaluated using common finite element procedures. The
previous formulation has been algorithmically programmed and can automatically
generate discrete spring-based models that are able to simulate the mechanical
behavior of any type of single-walled CNTs.

3 Matrix Modelling

The matrix can be modelled discretely, by taking into consideration its molecular
structure. However, this would increase significantly the computational cost, as
well as the complexity of the whole model. Therefore, the matrix is regarded as a
continuum isotropic elastic medium of elastic modulus Em and Poisson’s ratio mm.
Linear three-dimensional hexahedral isoparametric elements are used for the
discretization of the matrix (annotated hereafter as s elements). These elements
have eight nodes with three degrees of freedom per node (three translations) and a
linear strain variation displacement mode (Fig. 3).

4 Interface Modelling

In some multi-scale modelling efforts (Montazeri and Naghdabadi 2010; Shokrieh
and Rafiee 2010; Li and Chou 2006), the use of linear spring elements with
stiffness obtained by van der Waals interactions is proposed, in order to approach
the interfacial mechanical behavior. Specifically, these spring elements connect
carbon atoms of the nanostructure with nodes surrounding the inner surface of the
continuum matrix. We note that by using such a technique, the stiffness of the
interface is strongly dependent on the finite element mesh, since a different mesh
gives different number of interfacial springs. In order to avoid this, in this work it
is proposed a new technique for the modeling of the interfacial region.

Between the matrix and the nanomaterial, complicated phenomena occur such
as chemical bonding and van der Waals interactions which depend on the nature of
the interacting atoms and relative distances. Since it is difficult to implement
implicitly such phenomena in a numerical model, a computationally efficient
formulation capable of representing approximately an overall interfacial
mechanical response should be adopted.

Since most modelling difficulties arise when CNT reinforcement is considered,
the interfacial formulation will be explained in the following only for this case.

As it was previously mentioned, the nanostructure of a carbon nanotube is
developed around a mean diameter, while its thickness is considered indirectly.
Therefore, from a physical point of view, it is assumed that the interfacial inter-
actions take place along a radial distance equal to tn=2. Due to the atomistic
modelling of nanomaterials, a discrete modelling of the interfacial region is
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adopted. Two-noded interfacial joint elements (3. annotated hereafter as j ele-
ments), are employed. As Fig. 4 illustrates, these elements interconnect radially
the atoms-nodes of the nanomaterial with corresponding nodes, belonging to the
inner surface of the matrix.

Fig. 3 Example of matrix
discretization using linear
three-dimensional hexahedral
isoparametric elements

Fig. 4 Finite element model
of interfacial interactions
(Giannopoulos et al. 2010)
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A series of J elements of equal lengths tn= 2Jð Þ, is used to span the distance tn=2.
The translation stiffnesses, along the three directions of these elements are defined
according to a local cylindrical coordinate system R; H; Zð Þ, positioned at the
center of the CNT perimeter. It is assumed that their values are functions of the
radial coordinate R:

ki ¼ Ui Rð Þ ð28Þ

where i ¼ R; H; Z. The following step is to define the lower and upper bounds for
functions Ui Rð Þ, by taking into consideration their minimum and maximum
allowed values. The radial reaction fR, produced by the joint above the CNT, for a
DR deformation, is according to Eq. (28):

fR ¼ UR R1ð ÞDR ð29Þ

where R1 denotes the radial position of the joint element and is equal to:

R1 ¼ rn þ tn= 2Jð Þ ð30Þ

Equation (29) may take the form:

fR

An
¼ UR R1ð Þ tn=2Jð Þ

An

DR

tn=2Jð Þ ð31Þ

where An indicates the mean surface area of the nanotube affected by the joint,
given by the equation:

An ¼
2prnln

nc

ð32Þ

where nc is the total number of carbon atoms of the tube. Equation (31) may be
equivalently written as:

rR ¼
UR R1ð Þtnnc

4pJrnln
eR ð33Þ

where rR and eR denote radial stress and strain, respectively. It is coherent to
assume that the radial elastic modulus of the interface, exactly above the rein-
forcement, is equal to the corresponding radial elastic modulus of the nanotube
ER n. Therefore, from Eq. (33) the following constrained equation is obtained:

UR R1ð Þ ¼
4pJrnln

tnnc

ER n ð34Þ

A similar constrain equation can be obtained for function UH. The circumfer-
ential reaction fH, produced by the joint above the single-walled for a DH
deformation, is:

fR ¼ UR R1ð ÞDR ð35Þ
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or

fH
An
¼ UR R1ð Þtnnc

4pJrnln

DH
tn=2Jð Þ ð36Þ

For small strains the above equation becomes:

sH ¼
UR R1ð Þtnnc

4pJrnln
cR ð37Þ

where sH and cH denote circumferential shear stress and strain, respectively. The
above equation leads to the following constrain equation:

UH R1ð Þ ¼
4pJrnln

tnnc

GHn ð38Þ

where GHn is the circumferential shear modulus of the single-walled CNT.
Accordingly, function UZ becomes:

UZ R1ð Þ ¼
4pJrnln

tnnc

GZ n ð39Þ

where GZ n is the longitudinal shear modulus of the single-walled CNT. In a
similar manner and by making the same considerations for the joint element
located exactly below the matrix material, the following equations are obtained:

UR R2ð Þ ¼
4pJ rn þ tn=2ð Þln

tnnc

ER m ð40Þ

UH R2ð Þ ¼
4pJ rn þ tn=2ð Þln

tnnc

GHm ð41Þ

UZ R2ð Þ ¼
4pJ rn þ tn=2ð Þln

tnnc

GZ m ð42Þ

where ER m, GHm and GZ m are the radial elastic modulus, the circumferential shear
modulus and longitudinal shear modulus of the matrix material, respectively.
Finally R2 denotes the radial position of the specific joint element and is given by
the following equation:

R2 ¼ rn þ tn=2� tn= 2Jð Þ ð43Þ

It has to be noted that the above stiffness variations are not appropriate for the
capped edges of the tube. Therefore, in order to describe the interface surrounding
the capped edges, the above functions are expressed with respect to an appropriate
local spherical coordinate system positioned at the centre of the cap.

Summarizing, a heterogeneous interface is modelled in a discrete manner by
introducing joint elements of variable stiffness properties. Their mechanical
response is prescribed by user-defined functions, along the three dimensions of a
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local coordinate system. These functions, from physical point of view, are set to be
bounded exclusively by macroscopic parameters of the two phases surrounding the
interface.

5 Micromechanical Analysis

In order to treat and investigate the nanocomposite without using a computa-
tionally complicated modelling, micromechanical theory is adopted according
which a unit cell element is adequate for the analysis of the whole composite
volume. Periodic distribution of nanoparticles within matrix is assumed.

5.1 Geometry of the Composite Model

5.1.1 Representative Volume Element for CNT Reinforcement

A composite with homogenously distributed single-walled CNTs is assumed. In
such a case, it is considered that all CNTs have the same dimensions and orien-
tation and that their edges are capped. The microstructure of the nanotube is
developed around a mean diameter dn ¼ 2rn. The reinforcement length is ‘n. Its
thickness is indirectly considered and typically taken equal to tn ¼ 0:34 nm. It is
assumed that the longitudinal distances, between neighboring reinforcement ends,
are equal to the corresponding transverse distances and equal to d. The last con-
dition in conjunction with the known volume fraction Vfr, diameter dn and length ln

of CNT are sufficient to lead to the complete geometric definition of the problem.
Due to the symmetry of the periodic distribution, only the representative repeated
unit cell of Fig. 5 is modelled. In this figure, one quarter of the matrix is removed
for clarity. An orthogonal Cartesian coordinate system is used as reference with x,
y and z axes, aligned with the main dimensions of the unit cell. The longitudinal
axis of the reinforcement is aligned with the uniaxial loading direction (Fig. 5).

The volume fraction of the CNT in the composite is:

Vfr ¼
Vn

Vm þ Vn
ð44Þ

Small volume fractions are considered, so that a negligible interaction
between adjacent nanotubes can be assumed. In order to determine the longi-
tudinal and transverse elastic properties of the composite, by using the unit
cell model, appropriate boundary conditions must be implemented. For the
calculation of the longitudinal elastic modulus EL ¼ Ez a uniform displacement
uz ¼ Dz is applied on the boundary z ¼ ln þ d. The symmetry constraint uz ¼ 0
is applied on the boundary z ¼ 0, whereas the boundaries x ¼ � d þ rn þ tn=2ð Þ
and y ¼ � d þ rn þ tn=2ð Þ are kept parallel to their original shape by nodal
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coupling (3. this is required, as shear stresses on these boundaries must be zero
due to symmetry). The longitudinal elastic modulus EL of the composite is
computed from average stress rz, obtained from the sum of reactions and
average strain ez on z ¼ ln þ d:

EL ¼
rz

ez
¼

Pn

i¼1

�i fzð Þ

2dþdnþtnð Þ2

Dz
lnþd

ð45Þ

where ifz is the reaction in the direction z at node i, which belongs on the boundary
z ¼ ln þ d and n is the total number of nodes that belong in the specific boundary.

Similarly, in order to compute the transverse elastic modulus ET ¼ Ex ¼ Ey a
uniform displacement ux ¼ Dx is applied on the boundary x ¼ d þ rn þ tn=2,
while the constraint ux ¼ 0 is imposed on the boundary x ¼ � d þ rn þ tn=2ð Þ. In
addition, the boundaries y ¼ � d þ rn þ tn=2ð Þ and z ¼ ln þ d are constrained to
remain parallel to their original configuration. Finally, once more the symmetry
constraint uz ¼ 0 is applied on the boundary z ¼ 0. The transverse elastic modulus
ET of the composite is calculated from average normal reaction on the face
x ¼ d þ rn þ tn=2:

Fig. 5 Representative unit cell of the CNT reinforced nanocomposite (Giannopoulos et al. 2010)
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ET ¼
rx

ex
¼

Pn

i¼1

�i fxð Þ

2dþdnþtnð Þ lnþdð Þ
Dx

2dþdnþtnð Þ
ð46Þ

where ifx denotes the reaction along the direction x at node i, belonging on the face
x ¼ d þ rn þ tn=2, while n is the sum of the nodes belonging on the corresponding
face.

After computing the elastic modulus EL and ET , predictions concerning the
randomly oriented single-walled CNTs are performed, by using the following
Halpin–Tsai relationships for randomly oriented short fiber composites (Mallick
1988):

Erand ¼
3
8

EL þ
5
8

ET ð47Þ

Grand ¼
1
8

EL þ
1
4

ET ð48Þ

where Erand and Grandare the elastic and shear modulus of a composite with
randomly distributed short reinforcements, respectively.

5.1.2 Representative Volume Element for Graphene Reinforcement

Similarly, concerning the graphene based composite, we assume a uniformly
reinforced matrix with a continuos in length graphene sheet. Here, all the com-
putations are performed in an appropriate rectangular representative volume ele-
ment (RVE), which is basically consisted by two phases, i.e. Graphene and the
matrix material (Fig. 6). The volume fraction, in this case, can be expressed by the
following equation:

Vg ¼
Wg � Lg � tg

Wg � Lg � tg
	 


þ Wm � Lm � tmð Þ
ð49Þ

where Wg, Lg and tg is the width, length and thickness of the graphene while Wm,
Lm and tmis the width, length and thickness of the matrix within the volume
element.

Such a model is simple and appropriate for the evaluation of the load transfer in
graphene renforced nanocomposites.

5.2 Implementation of the Multi-Scale Technique

Before the implementation of the multiscale teqnique proposed here, for a desired
study, the definition of values of specific parameters is required with respect the
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nanoparticle and matrix material. These parameters are significant for the exact
description of the heterogeneous interface proposed. Hence, in the next subsection
simple formulae utilized to obtain the aforementioned parameters are presented.

5.2.1 Elastic Properties of the Nanostructures Reinforcement

Here, only the parameters regarding the CNT reinforcement are presented. A
similar technique could be performed in order to obtain the description of a het-
erogeneous interface of a graphene based nanocomposite.

In order to represent the mechanical interfacial behavior, as Eqs. (34), (38) and
(39) imply, some macroscopic material data i.e. ER n, GHn and GZ n of the con-
sidered single-walled CNT are required. In order to compute the radial elastic
modulus of the single-walled CNT ER n, a radial force fR is imposed at each one of
its nodes. The ER n can then be calculated via equation:

ERn ¼
rR

eR
¼

ncfR
2prnln
DR
rn

ð50Þ

In order to compute the circumferential shear modulus of the single-walled
CNT GRn, the H degree of freedom of the nodes at Z ¼ 0 is restrained, while a
circumferential force fH is applied uniformly on each node that belongs to the
Z ¼ ln plane. The shear module GRn of the nanotube is computed from the reaction
torgue MZ acting, in the restrained end:

Fig. 6 Representative unit
cell of the graphene
reinforced nanocomposite
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GRn ¼
MZ ln
SDH

¼ n0c fH rnln

p
2 rn þ tn

2

	 
4� rn � tn
2

	 
4
� �

DH
ð51Þ

where S is the polar moment of inertia of the cross sectional area of the tube and n0c
is the number of edge nodes of the tube.

In order to compute the longitudinal shear modulus of the single-walled CNT
GZn, only half of the tube, from H ¼ 0 to H ¼ p, is modelled. R and H degrees of
freedom of all nodes an z degree of freedom of nodes belonging to plane H ¼ p,
are constrained. A longitudinal displacement variation RiDZ is applied to nodes,
belonging to planes Z ¼ 0 and Z ¼ ln, where Ri is the radial coordinate of node i.
The shear module GZn of the nanotube is computed using the following
relationship:

GZn ¼
sZ

cZ
¼

Pn00c
i¼1

�i fZð Þ

lntn
DZ
rn

ð52Þ

where ifZ is the longitudinal reaction of node i, belonging to plane H ¼ p and n00c is
the total number of nodes belonging to the same plane.

For an example, the armchair (6,6) single-walled CNTs is considered as rein-
forcement with a radius equal to rn ¼ 0:40709 nm. For this reason, initially
the uncapped (6,6) single-walled CNT is individually modelled. A length equal to
ln ¼ 10 nm is selected. The single-walled CNT is analyzed with reference to the local
cylindrical coordinate system R; H; Zð Þ, mentioned earlier. The bond stretching and
bond angle bending resistance force constants are taken equal to kr ¼ 6:52� 10�7

N nm�1, and kh ¼ 8:76� 10�10 N nmrad�1, respectively (Cornell et al. 1995).
The obtained values using the above techniques are ERn ¼ 1515 GPa,

GHn ¼ 336:5 GPa and GZn ¼ 547:3 GPa.

5.2.2 Elastic Properties of the Matrix

Considering an homogenous and isotropic matrix, the shear moduli required for
the description of the heterogeneous interface are given by the following equation

Gm ¼ GHm ¼ GZm ¼
Em

2 1þ mmð Þ ¼ 1:357 GPa ð53Þ

If someone use the thermoplastic polyamide LaRC-SI (Odegard et al. 2003)
as matrix material, the elastic modulus and Poisson’s ratio of this material are
Em ¼ ERm ¼ 3:8 GPa and mm ¼ 0:4, respectively. The shear moduli of the polymer
are Gm ¼ GHm ¼ GZm ¼ 1:357 GPa.
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5.2.3 Heterogeneous Interface Evaluation

In order to define the interface properties, a set of linear functions are selected
having the form:

Ui Rð Þ ¼ aiRþ bi ð54Þ

where i ¼ R; H; Z and ai, b are constants that must be determined. Since the
macroscopic properties ERn, GHn, GZn,ERm, GHm, and GZm are known, the inter-
facial stiffness variations, with reference to the local coordinate system R; H; Zð Þ,
can be fully defined (evaluations of ai, bi constants) by substituting Eqs. (34),
(38)–(42) and (54). At the capped edge region these variations are transformed
with respect to the spherical local coordinate system mentioned previously. A set
of J ¼ 10 joint elements is used along the radial direction. The selection of this
number has been made after convergence tests. During these tests it was proved
that for J [ 10, elastic properties of same magnitude were produced.

5.2.4 Representative Numerical Models

A representative finite element model of the unit cell containing a capped (6,6)
single-walled CNT is illustrated in Fig. 7.

Fig. 7 Finite element model of the unit cell (Giannopoulos et al. 2010)
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Before extracting the numerical data, numerous convergence tests have been
conducted in order to select the proper mesh density concerning the matrix
material.

A representative finite element model for the graphene based nanocomposite
analysis is depicted in Fig. 8.

5.3 Static Analysis

In order to examine the elastic mechanical behavior of the nanocomposite, a linear
static analysis should be take place. Thus, the system of linear equations is con-
structed by applying the defined elemental equations of the multiscale model and
transformed to the global cartesian (x; y; z) or cylindrical coordinate system
(r; h; z), depending the case. Then all linear equations are assembled according to
the requirements of nodal equilibrium and the following system of equations is
obtained:

KU ¼ F ð55Þ

Fig. 8 The nanocomposite: Matrix, interface and Graphene
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where K, U and F are the assembled stiffness matrix, displacement vector and
force vector, respectively, of the nanocomposite. Matrix Eq. (55) can be solved via
standard numerical techniques such as Gauss elimination or LU decomposition by
taking into consideration the imposed boundary conditions.

6 Results

In this section, some representative results are presented utilizing the proposed
multi scale modelling technique including the heterogeneous intefacial effects.

6.1 Elastic Behavior of CNT Reinforced Nanocomposites

The variation of longitudinal and transverse elastic moduli versus (6,6) single-
walled CNT length, for 1 % volume fraction is given in Fig. 9. The variation of
longitudinal and transverse elastic moduli versus volume fraction, for a single-
walled CNT length equal to 10 nm, is given in Fig. 10.

The isotropic elastic and shear modulus of a composite, with randomly aligned
(6,6) single-walled CNTs, is semi-analytically obtained, by substituting the
numerically predicted values of longitudinal and transverse elastic moduli, into
Eq. (4) and (5), respectively.

Figure 11 presents the elastic and shear modulus of the composite with ran-
domly aligned tubes, for 1 % volume fraction versus reinforcement length.
Figure 12 depicts the elastic and shear modulus of the composite with randomly
aligned tubes of 10 nm length versus volume fraction.
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Generally, for the aligned single-walled CNT/LaRC-SI composites, the longitu-
dinal elastic modulus increases significantly, as the reinforcement length and volume
fraction increases, while the transverse elastic modulus remains almost constant. For
the aligned single-walled CNT/LaRC-SI, the increase of the reinforcement length
and volume fraction leads to a less prominent increase of both isotropic elastic and
shear moduli. In general, a satifactory agreement is observed between predictions
obtained using the proposed method and results presented by Odegard et al. (2003).
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6.2 Load Transfer in Graphene Based Nanocomposites

The reinforcement used in the analysis is an armchair square graphene sheet which
length is equal to 4.06 nm. Its thickness tgis typically taken equal to 0.34 nm and
its width is equal to 9 nm. In the current study the graphene sheet is covered by a
matrix material only on its one side. It would be very useful to compare the current
RVE with one that the matrix material will cover both sides of the graphene sheet.
The axial and shear stress results are shown in Fig. 13.

From this figure it is obvious that for both cases the results are approximately
the same either the graphene sheet is both sides covered or not. The proposed RVE
(Fig. 13) is deemed appropriate for the current study.

Using the previously presented modeling technique, a parametric study is
performed for the graphene-based composite and the results are depicted in
Fig. 14. The models are tested in axial and shear stress and results are taken for
several positions of the matrix material near the graphene sheet.

Figure 14 depicts the variation of the normalized axial stress (Fig. 14a) and the
normalized shear stress (Fig. 14b) in matrix material along the longitudinal
direction of the RVE near to the interface region. The normalization was per-
formed via the stress r0 ¼ e0Em, where e0 is the applied strain on the nanotube. In
both cases, the greater stress distribution along the longitudinal direction is
observed in the region closer to the interface.

In order to realize the deformations included when a pull out test is performed
to the RVE, the displacement ux and the shear strain erz of a matrix cross section
in the center of the RVE are presented in Fig. 15a, b, respectively. The right side
corresponds to the region that reaches the interfacial zone. These figures show that
the greatest deformations in matrix material exist in the applied load region as
expected.
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A parametric study with different values of the volume fraction of the RVE is
performed in order to study its influence on the stress transfer. Fig. 16a illustrates
the behavior of normalized axial stress along the longitudinal direction very close
to the interfacial zone.

Here, the axial stress seems to be distributed in a similar way for all values of
volume fraction, while a slightly different behavior is observed when a different
shape of graphene is used (4 9 2 rectangular). On the other hand, the normalized
shear stress distribution (Fig. 16b) presents different behavior when a rectangular
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Fig. 15 Contours of a axial displacements and b shear strains

0,0 0,5 1,0
0,0

0,4

0,8

1,2

(
x / 

o) 
*1

03

x / L
g

4x4 Vg= 0.10
4x4 Vg= 0.15
4x4 Vg= 0.2
4x2 Vg= 0.2

0,0 0,5 1,0

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

(
rz
 / 

o) 
*1

05

x / L
g

4x4 Vg=0.10
4x4 Vg=0.15
4x4 Vg=0.2
4x2 Vg=0.2

σ
σ σ

σ

(a) (b)

Fig. 16 a normalized axial stress and b normalized shear stress variations in RVE longitudinal
direction for different volume fractions

106 S. K. Georgantzinos et al.



graphene sheet is used and seems to be reduced when the volume fraction of the
RVE is decreased.

In order to examine the behavior of armchair graphene sheet composites
compared with the zigzag ones, an axial and shear stress test has taken part.
A similar (i.e. same dimensions and volume fraction) zigzag model was used and
the results are depicted in Fig. 17.

Here, the axial and shear stress seem to be distributed in a similar way for both
RVEs, while it is obvious, especially in the shear stress test, that the armchair
values are significantly smaller than these of the zigzag case. It becomes clear that
armchair mechanical response seems to be superior than the one observed for
zigzags.

7 Conclusions

A numerical scheme has been proposed for the prediction of elastic behavior of
both CNT as well as graphene based nanocomposites. The presented method has
the efficiency of combining macroscale and nanoscale media via the use of discrete
hybrid interface, which is accompliced by the use of special spring like joint
elements of variable stiffness along their thickness. Their material properties are
functions bounded by the corresponding properties of both matrix and reinforce-
ment. The method has been validated through comparisons with corresponding
results arisen by using molecular dynamics modelling of high complexity in terms
of molecular representation. This implies the advantage of the proposed approach
which utilizes non atomistic modelling for the representation of the matrix, fact
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that reduces significantly the computational effort for solving problems involving
nanoscaled atomistic structures. The provided numerical tool is expected to reduce
the modelling of interactions which occur between two different atomistic medi-
ums. In such interfacial zones, complicated phenomena take place. The atoms may
interact via chemical bonding as well as van der Waals interaction forces. Thus, a
detailed representation of the interface is required. This fact is overridden by
adopting the proposed method.

The effectiveness of the method has been tested using both CNTs and graphene
as reinforcing components of the composite. Important composite properties such
as elastic moduli seem to increase considerably when the nanoreinforcement
volume fraction is also increased.
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Effect of Covalent Functionalization
on Young’s Modulus of a Single-Wall
Carbon Nanotube

Priyal H. Shah and Romesh C. Batra

Abstract Effective utilization of carbon nanotubes (CNTs) as reinforcements in
composites necessitates good interfacial bonding with the surround matrix mate-
rial. The covalent functionalization of CNTs is an effective method to enhance this
bonding. However, covalent bonds introduced by a functional group may alter the
pristine structure of the CNT and lower its mechanical properties. Here we study
the effect of hydrogen (–H), hydroxyl (–OH), carboxyl (–COOH), and amine
(–NH2) functionalization on Young’s modulus of a single-wall CNT (SWCNT)
using molecular mechanics (MM) simulations with the MM3 potential and the
software TINKER. Both pristine and functionalized SWCNTs have been deformed
in simple tension. From the strain energy of deformation vs. the axial strain curves,
the value of Young’s modulus has been derived as a function of the functionali-
zation group and the amount of functionalization. It is found that Young’s modulus
decreases by about 30 % with 20 % of functionalization, the reduction is essen-
tially proportional to the increase in the percentage of the functionalization
material and is nearly the same for each of the four functional groups studied.
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1 Introduction

Researchers have employed experimental, analytical, density functional theory
(DFT), molecular dynamics (MD) and molecular mechanics (MM) simulations to
predict mechanical properties of carbon nanotubes (CNTs). Assuming that the wall
thickness of a single-wall CNT (SWCNT) can be approximated as 0.34 nm, Treacy
et al. (1996), Wong et al. (1997), and Krishnan et al. (1998) experimentally
determined that Young’s modulus of a CNT is in terapascal (TPa) range. Xing et al.
(2004) employed MD simulations to predict Young’s modulus of a SWCNT. Li and
Chou (2003) computed elastic properties of CNTs using a combined structural
mechanics and MM approach. Chang and Gao (2003) investigated size dependent
elastic properties of SWCNTs through MM simulations. Sears and Batra (2004)
determined the wall thickness, Young’s modulus, and Poisson’s ratio of CNTs
using MM simulation with the MM3 potential and the software TINKER. They
assumed that the response of a SWCNT in simple tension is energetically equiv-
alent to that of a thin cylinder made of an isotropic and homogeneous material.
Furthermore, the wall thickness of the cylinder equals that of the SWCNT. They
found the wall thickness and Young’s modulus of a SWCNT to be 0.046 nm and
7.26 TPa, respectively. Shen and Li (2004) used MM potential and energy equiv-
alent principle to determine values of five elastic constants of a CNT assuming the
CNT as a transversely isotropic material with the centroidal axis of the tube as the
axis of transverse isotropy. Batra and Sears (2007) proposed that the axis of
transverse isotropy of a CNT is a radial line rather than the centroidal axis. By
studying with the MM simulations radial expansion of a SWCNT, they showed that
Young’s modulus in the radial direction is about 1/4th of that in the axial direction.
Gupta and Batra (2008), Batra and Gupta (2008) predicted the wall thickness and
the material moduli of a SWCNT by matching frequencies of bending, axial and
torsional vibrations as well as that of radial breathing modes of a free–free SWCNT
with those of the continuous cylinder of the same length and mean radius as the
SWCNT. Wu et al. (2008) developed an atomistic based finite deformation shell
theory for a SWCNT and found its stiffness in tension, bending, and torsion.

The SWCNTs due to their cylindrical shape, large length to diameter ratio, and
high specific properties are potential candidates as reinforcements in composites.
However, the effectiveness of SWCNTs as reinforcements depends on their uni-
form dispersion in and strong adhesion with the surrounding matrix. It has been
very challenging to simultaneously meet these two requirements. The function-
alization of SWCNTs appears to be an effective means of achieving good bonding
between SWCNTs and the surrounding matrix. The surface properties of CNTs
can be modified by either physical or chemical functionalization. The physical
functionalization is achieved by attaching noncovalent groups, such as polymer,
peptides or surfactants to the nanotubes. It is advantageous since it does not alter
the pristine structure of nanotubes hence the mechanical properties of CNTs are
not affected. However, these functional groups are attached to nanotubes with
weak van der Waals interactions resulting in low load transfer efficiency between
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the nanotube and the matrix. In comparison, the chemical functionalization
involving the covalent attachment of functional groups to atoms of CNTs provides
relatively strong interfacial bonding between CNTs and the surrounding matrix
thereby enhancing the load transfer efficiency. Haddon et al. used the nanotube-
bound carboxylic acid groups for attaching long alkyl chains to SWCNTs via
amide linkages (Chen et al. 1998; Hamon et al. 1999; Niyogi et al. 2001) and via
carboxylate-ammonium salt ionic interactions (Chen et al. 2001). Khare et al.
(2002) developed hydrogenated CNTs using electric discharge. Sun et al. showed
that the esterification of the carboxylic acid groups could also be used to func-
tionalize and solubilize nanotubes of any length (Riggs et al. 2000; Sun et al. 2001;
Fu et al. 2001). Wilson et al. illustrated the use of anilines to functionalize
nanotubes (Sun et al. 2001). Grujicic et al. (2006) investigated the effect of
covalent functionalization of triple-walled CNTs on the efficiency of matrix-
nanotube load transfer. Their results reveal that the covalent functionalization
improves the load transfer efficiency especially when loads are applied in a
direction orthogonal to the axis of the CNT. Experimental works (Cooper et al.
2002; Barber et al. 2003; Shofner et al. 2006; Buffa et al. 2007; Sun et al. 2008)
have demonstrated the effectiveness of covalent functionalization in increasing the
interfacial bonding strength between CNTs and polymer chains.

Although chemical functionalization is effective in enhancing the binding of
CNTs with the surrounding matrix, it may damage the pristine structure of a CNT
due to the introduction of covalent bonds, and reduce the mechanical stiffness of
the CNT. Much of the research work dealing with the determination of Young’s
modulus and other elastic properties of CNTs has considered pristine CNTs. Since
the covalently functionalized CNTs would be better candidates for reinforcements
in a composite than the pristine CNTs, it is important to determine the effect of
covalent functionalization on Young’s modulus of a CNT. Zhang et al. (2008) used
atomistic simulations to analyze mechanical properties of hydrogenated SWCNTs
and found a decrease in Young’s modulus, strength, and ductility of the CNTs with
an increase in the percentage of C–H bonds. Kuang and He (2009) computed
Young’s moduli of vinyl functionalized SWCNTs using MM simulations with the
condense-phase optimized molecular potential for atomistic simulation studies
(COMPASS) force field and found that Young’s modulus depends on the density
of the sp3 hybridized carbon atoms and chirality of the CNTs. Up to 33 %
reduction in Young’s modulus was observed in their study with 38 % content of
the functionalizing material. Ling et al. (2012) predicted Young’s modulus of
functionalized CNTs using MM and MD simulations with the COMPASS force
field and observed that Young’s modulus depends on the type of functionalizing
material and the amount of functionalization. Recently, Milowska and Majewski
(2013) studied effect of different functional groups on elastic properties of func-
tionalized CNTs using DFT calculations. Their results showed that an increase in
amount of covalently bound material to the wall of a CNT decreases Young’s,
shear and bulk moduli. Here we have considered four functional groups namely,
hydrogen (–H), hydroxyl (–OH), carboxyl (–COOH), and amine (–NH2) and
compared their effects on the modulus of elasticity of a SWCNT with varying
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percentage of functionalization. The study has been carried out using MM simu-
lations with the freely available software TINKER (Ponder 2000).

2 Molecular Mechanics Simulations

2.1 Force-Field

The MM3 potential (Allinger et al. 1989) with higher order expansions and cross-
terms has been used to model interatomic interactions. This potential is suitable for
studying deformations of CNTs because of similarities between sp2 bonds in the
hexagonal structure of CNTs and the hexagonal structure of aromatic proteins for
which the potential was originally developed. This potential describes the energy
of the system as summation of the energies due to bonded and non-bonded
interactions. The contributions for bonded interactions come from bond stretching
ðUsÞ; in-plane angle bending ðUhÞ; out of plane bending ðUcÞ; torsion ðU/Þ; and
cross-interactions including stretch-bend ðUsbÞ; angle–angle ðUhh0 Þ and stretch-
torsion ðUs/Þ. The non-bonded interactions are van der Waals ðUvdWÞ and dipole–
dipole electrostatic ðUll0 Þ. Equation (1) gives expressions for these energies.

Us ¼ 71:94Ksðr � r0Þ2½1� 2:55ðr � r0Þ þ
7

12
2:552ðr � r0Þ2�

Uh ¼ 0:0219Khðh� h0Þ2 � ½1� 0:014ðh� h0Þ þ 5:6ð10�5Þðh� h0Þ2

� 7:0ð10�7Þðh� h0Þ3 þ 2:2ð10�8Þðh� h0Þ4�
Uc ¼ 0:0219Kcc

2 � ½1� 0:014cþ 5:6ð10�5Þc2 � 7:0ð10�7Þc3 þ 2:2ð10�8Þc4�
U/ ¼ V1=2ð Þ 1 þ cos /ð Þ þ V2=2ð Þ 1 þ cos 2/ð Þ V3=2ð Þ 1 þ cos 3/ð Þ
Ush ¼ 2:511Ksh½ðr � r0Þ þ ðr0 � r00Þ�ðh� h0Þ

Uhh0 ¼ �0:021914Khh0 h � h0ð Þ h0 � h00
� �

Us/ ¼ �5:9975Ks/ðr � r0Þð1þ cos 3/Þ

UvdW ¼ e �2:25 rv=rð Þ6þ 1:84 105
� �

exp �12:00 rv=rð Þf g
h i

Ull0 ¼
14:3928½ll0ðcos v� 3 cos a cos a0Þ�

R3D
ð1Þ

Parameters r, h and / in Eq. (1) are shown in Fig. 1. Variable c is the angle
between the plane and one of the bonds. A subscript, 0, on a variable represents its
value in the configuration of minimum potential energy. Variables l and l0are
bond centered dipole moments, v is the angle between two dipoles, a and a0 are
angles made by two dipoles with the line connecting their centers, and R is the
distance between their centers. The values of constants Ks, Kh, Kc; K 0hh;V1;V2;

V3;Ksh;Ks/; e; rvand D given by Ponder (2000) are used in this work.
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2.2 Modeling of Functionalized SWCNTs

Functionalization of a zigzag (10, 0) finite length SWCNT of aspect ratio 12 has
been considered as a model problem. The molecular structure of a functionalized
SWCNT can be obtained from topologies of the pristine SWCNT and the func-
tional group. In order to obtain the relaxed configuration of the SWCNT we
minimize its potential energy by using the steepest decent algorithm with the root
mean square (rms) gradient of 0.001. The diameter and the length of the relaxed
tube are found to be 7.44 Å and 87.75 Å, respectively. The functional group is then
positioned adjacent to a carbon atom of the relaxed CNT and the potential energy
of the structure is minimized to obtain the relaxed configuration of the function-
alized CNT. Note that the introduction of covalent bonds at the functional sites
alters the hybridization of the affected carbon atoms from sp2 to sp3. The per-
centage of functionalization is defined as the ratio of the number of carbon atoms
to which atoms of a functional group are attached to the total number of carbon
atoms in the CNT. Four different functionalized CNTs have been studied with
hydrogen, hydroxyl, carboxyl, and amine as the functionalizing groups. The car-
bon atoms to which a functional group is attached are randomly selected but the
same set of atoms is used in each of the functionalized CNT for maintaining
consistency in the numerical experiments. Figure 2 depicts schematics of the
functional groups attached to a carbon atom of the CNT. The atoms in white, red,
and blue color represent hydrogen, oxygen, and nitrogen atoms, respectively. It
should be clear from sketches displayed in the figure that the covalent bond
between the carbon atom and a functional group pulls out the carbon atom radially
resulting in the distortion of the CNT at the functional site. The SWCNTs func-
tionalized with these groups are schematically shown in Fig. 3.

2.3 Virtual Simple Tension Experiments

While conducting virtual tension tests on the pristine and the functionalized
SWCNT, its ends are left open and not saturated with hydrogen atoms which may
change the bonding structure at the ends and lead to end effects. Furthermore,
carbon atoms one diameter away from each end are fixed during simulations. The

Fig. 1 Definitions of three
molecular mechanics
variables (Sears and Batra
2004)
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nanotubes are gradually deformed in tension and compression by a total of 3 %
axial strain. After each displacement increment applied to atoms near the end faces,
the tubes are allowed to equilibrate by minimizing their potential energies. The
energy required to deform the tube equals its strain energy. The strain energy
density is computed by dividing the strain energy by the volume of the CNT which
is taken equal to that of a continuum cylinder of length and diameter equal to those

Fig. 2 Schematics of a
carbon atom of the CNT
attached with a hydrogen
(–H) b hydroxyl (–OH),
c carboxyl (–COOH), and
d amine (–NH2) groups
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of the relaxed pristine SWCNT and thickness equal to 0.34 nm. A polynomial
through the data points is fitted by the least squares method. The first and the second
derivatives of the strain energy density with respect to the axial strain yield the
corresponding axial stress and Young’s modulus, respectively. This procedure is the
same as that used by Sears and Batra (2004) to find Young’s modulus of a SWCNT.

3 Numerical Results

3.1 Validation of the Functionalization

In the relaxed configuration of the functionalized CNTs, the equilibrium bond
length between the carbon atoms of the CNT and the adjoining atoms of the
functional group, if present, has been computed from the equilibrated configura-
tions. The C–H bond length in the hydrogen functionalized CNT is found to be
1.11, which agrees well with that (1.11) in the modified orthogonal tight binding
model (Volpe and Cleri 2003) as well as the 1.12 given by the DFT calculations
(Letardi et al. 2002). Methanol (CH3OH), acetic acid (CH3COOH), and amino

Fig. 3 Schematics of a (10, 0) SWCNT functionalized with 20 % a hydrogen (–H), b hydroxyl
(–OH), c carboxyl (–COOH), and d amine (–NH2) groups
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methane (CH3NH2) are simple structures representing covalent bonds between a
sp3 hybridized carbon and hydroxyl, carboxyl, and amine functional group,
respectively. These structures can be generated using simplified molecular-input
line-entry system (SMILES) specification (Weininger 1988; Weininger et al. 1989)
as shown in Fig. 4. In order to validate the functionalization of the CNTs with
hydroxyl, carboxyl, and amine groups, the bond angles and bond lengths of the
functional groups in the relaxed configuration of the functionalized CNTs have
been measured and compared with those in methanol, acetic acid and amino
methane. In Tables 1, 2 and 3, we have listed values of these parameters for
hydroxyl, carboxyl, and amine groups, respectively. It is evident that there is good
agreement between the two sets of values.

3.2 Analysis of Relaxed Configurations

The number of iterations required in the steepest descent method to minimize
potential energies of –H, –OH, –COOH and –NH2 functionalized CNTs is plotted

Table 2 Values of geometric
parameters in the carboxyl
group

Acetic acid CNT–COOH

C–O–H angle (degrees) 107.39 107.6
R–C–O angle (degrees) 112.04 111.89
R–C = O angle (degrees) 126.04 126.27
C–O length (Å) 1.35 1.35
C = O length (Å) 1.2 1.21
O–H length (Å) 0.97 0.97
R–C length (Å) 1.5 1.53

Note R denotes sp3 hybridized carbon atom

Fig. 4 Structures of
a methanol, b acetic acid, and
c amino methane generated
using SMILES

Table 1 Values of
geometric parameters in the
hydroxyl group

Methanol CNT–OH

R–O–H angle (degrees) 108.13 109.18
R–O length (Å) 1.43 1.43
O–H length (Å) 0.95 0.95

Note R denotes sp3 hybridized carbon atom
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in Figs. 5a, b and 6a, b respectively. Note that 0 % functionalization represents the
pristine CNT. It can be observed from results depicted in Fig. 5a that when the
CNT is functionalized with hydrogen, the potential energy of the relaxed func-
tionalized structure is less than that of the relaxed pristine CNT, and this difference
increases with an increase in the percentage of functionalization. It is because the
functionalization breaks the pi-bond of the sp3 hybridized carbon atoms and
changes the atom type from alkene to the more stable alkane. Similar character-
istics are observed with the hydroxyl and the amine functionalization while the
potential energy curves for the carboxyl functionalized CNTs do not exhibit the
same behavior due to the presence of double bonds in the –COOH group.

In Fig. 7a we have presented the contribution from each energy term of the
MM3 potential to the total potential energies of the pristine CNT for the hydrogen
functionalized CNTs in their relaxed configurations. These have been normalized
with respect to corresponding energies of the relaxed pristine CNT.

It can be observed from results included in the figure that the sum of the
energies associated with the torsional and Van der Waals interactions are about
90 % of the total potential energy of the pristine CNT. The functionalization
reduces these components of energies, thereby reducing the total potential energy
and the reduction increases with an increase in the percentage of functionalization.
Similar results for hydroxyl, carboxyl and amine functionalized CNTs are pre-
sented in Figs. 7a, b and 8a, b. Here, small effect of the electrostatic interactions
has been observed on the total potential energies of the CNTs because of the
presence of dipole moments in these functional groups. For the carboxyl func-
tionalized SWCNT, the potential energy is not a monotonically increasing function
of the amount of functionalization.

3.3 Results from Virtual Experiments

In the calculation of Young’s modulus, as stated above, the thickness of a SWCNT
is assumed to be 0.34 nm. The variation of the computed strain energy density
with the axial strain for the pristine CNT is shown in Fig. 9. The third order
polynomial fit to the strain energy density of the pristine CNT vs. the axial strain
data with the regression coefficient of 1.0 is

Table 3 Values of geometric
parameters in the amine
group

Amino methane CNT–NH2

H–N–H bond angle (degrees) 106.35 106.09
R–N–H bond angle (degrees) 112.35 113.29
Dihedral angle between

two R–N–H planes
119.78 121.38

N–H bond length (Å) 1.01 1.01
R–N bond length (Å) 1.46 1.46

Note R denotes sp3 hybridized carbon atom

Effect of Covalent Functionalization on Young’s Modulus 119



Wv ¼ �7:46 1011
� �

e3 þ 5:03 1011
� �

e2 þ 5:62 105
� �

e ð2Þ

where Wv is the strain energy density in J/m3 and e is the nominal axial strain.
Thus, expressions for the axial stress and the modulus of elasticity E in Pa are

r ¼ �2:24 1012
� �

e2 þ 1:101 1012
� �

e þ 5:62 105
� �

ð3Þ

E ¼ �4:48 1012
� �

e þ 1:01 1012
� �

ð4Þ

Fig. 5 For four different percentages of functionalization, minimization of the potential energies
of a SWCNT functionalized with a –H, b –OH
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The modulus of elasticity at zero axial strain equals 1.01 TPa. It compares well
with that reported in the literature (Treacy et al. 1996; Wong et al. 1997; Krishnan
et al. 1998). For the hydrogen functionalized CNT, the strain energy vs. the axial
strain variation and the axial stress-axial strain curves for different percentages of
functionalization are shown in Fig. 10a, b, respectively.

Fig. 6 For four different percentages of functionalization, minimization of the potential energies
of a SWCNT the functionalized with a –COOH, and b –NH2 groups
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In computing the strain energy density, the volume of the functionalized CNT is
taken equal to that of the pristine CNT. These plots reveal that the functionali-
zation reduces the strain energy of deformation, and the slope (hence the modulus
of elasticity) of the stress–strain curve for the functionalized tube is less than that

Fig. 7 Break down of total potential energy, U, in the individual energy components for the
relaxed configurations of a hydrogen, b hydroxyl, functionalized CNTs with percentage of
functionalization varying from 0 to 20 %
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of the pristine tube. Moreover, the modulus of elasticity decreases with an increase
in the percentage of functionalization. This reduction in the modulus of elasticity
could be due to the non-uniformities in the nanotube structure introduced by the

Fig. 8 Break down of total potential energy, U, in the individual energy components for the
relaxed configurations of a carboxyl, and b amine functionalized CNTs with percentage of
functionalization varying from 0 to 20 %
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functionalization that lead to localized deformation at the functional sites. Similar
results for hydroxyl, carboxyl, and amine groups are exhibited in Figs. 11, 12 and
13, respectively.

Values of Young’s modulus of the functionalized CNTs for different percent-
ages of functionalization listed in Table 4 suggest that they do not depend much
upon the functionalization agent.

In Table 5, we have summarized similar results reported in the literature
obtained using various computational methods and force fields along with the
major results of the present study. It should be clear from the summary provided in
Table 5 that the present results agree with those of other researchers. To better
understand the effect of functionalization on Young’s modulus, the strain energies
of the deformation in the tension tests of the pristine and the functionalized CNTs
have been obtained in terms of their bonded and non-bonded energy components.
In Figs. 14a, b and 15a, b we have depicted the contribution of individual energy
terms to the total reduction in the strain energy of deformation due to hydrogen,
hydroxyl, carboxyl, and amine functionalization, respectively. These values have
been normalized with respect to those of the pristine CNT. These results indicate
that the functionalization reduces the strain energies associated with bond-
stretching and angle bending and increases the strain energies due to torsional,
stretch-bend, and van der Waals interactions. The resulting effect is net reduction
in strain energy and the reduction is proportional to the amount of functionalizing
material attached to the wall of the CNT. Various components of the strain energy
for 20 % of functionalization are plotted in Fig. 16. It can be concluded from these
results that the type of functional group is found to have significant effect on strain

Fig. 9 Strain energy density of the pristine SWCNT vs. the axial strain computed using the
MM3 potential
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Fig. 10 a Variation of the strain energy per atom with axial strain, and b axial stress-axial strain
curves of –H functionalized SWCNT with the percentage of functionalization varied from 5 to
20 %
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Fig. 11 a Variation of the strain energy per atom with axial strain, and b axial stress-axial strain
curves of –OH functionalized SWCNT with the percentage of functionalization varied from 5 to
20 %
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Fig. 12 a Variation of the strain energy per atom with axial strain, and b axial stress-axial strain
curves of –COOH functionalized SWCNT with the percentage of functionalization varied from 5
to 20 %
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Fig. 13 a Variation of the strain energy per atom with axial strain, and b axial stress-axial
strain curves of –NH2 functionalized SWCNT with the percentage of functionalization varied
from 5 to 20 %

Table 4 Young’s modulus of the SWCNT functionalized with different groups

Modulus of elasticity (TPa)

% of functionalization With hydrogen With hydroxyl With carboxyl With amine

0 1.01 1.01 1.01 1.01
5 0.91 0.91 0.91 0.91

10 0.82 0.81 0.80 0.82
15 0.76 0.75 0.72 0.74
20 0.70 0.69 0.67 0.66

Note 0 % functionalization represents the pristine CNT
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Fig. 14 Break down of the total strain energy of deformation into the individual energy
components for a hydrogen, b hydroxyl, functionalized CNTs with percentage of functional-
ization varying from 0 to 20 %

130 P. H. Shah and R. C. Batra



Fig. 15 Break down of the total strain energy of deformation into the individual energy
components for a carboxyl, and b amine functionalized CNTs with percentage of functional-
ization varying from 0 to 20 %
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energies associated with bond stretching and bond angle bending compared to
other energy components but the same net effect is obtained for all functional
groups considered here.

4 Conclusions

We have studied the effect of covalent functionalization on Young’s modulus of a
SWCNT. The functionalization localizes deformations of the CNT at the func-
tionalized sites, which decreases the modulus of elasticity and this reduction
increases with an increase in the percentage of functionalization. The type of
functional group is found to have negligible effect on the value of Young’s
modulus of the functionalized SWCNT. Approximately 30 % reduction in the
value of Young’s modulus of the pristine CNT occurs for 20 % of
functionalization.
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Fig. 16 Break down of the total strain energy of deformation into the individual energy
components for the CNTs functionalized (20 %) with different functional groups
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Multiscale Modeling of Multifunctional
Fuzzy Fibers Based on Multi-Walled
Carbon Nanotubes

Gary Don Seidel, George Chatzigeorgiou, Xiang Ren
and Dimitris C. Lagoudas

Abstract This chapter will present an introduction to a novel class of
multifunctional scale-bridging materials known as fuzzy fibers, which consist of
multi-walled carbon nanotubes grown directly on the surface of structural carbon
and glass fibers. The chapter will then identify some of the key challenges in the
modeling of the mechanical, electrical, and thermal properties of fuzzy fibers and
the composites in which they are embedded, and review some of the recent efforts
to model these materials available in the literature. Finally, the description and a
demonstration of the application of analytic composite cylinders model and
computational homogenization approaches to modeling fuzzy fibers will be pro-
vided. A discussion of the potential applications for fuzzy fibers will close the
chapter.
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1 Introduction

Since the discovery of carbon nanotubes (CNTs) (Iijima 1991), there has been a
significant research effort directed towards understanding the source of their
exceptional properties and how to take advantage of those properties in the design of
macroscale nanocomposites. A single-walled carbon nanotube can be viewed as a
single sheet of graphite (i.e., graphene), which has been rolled into the shape of a tube
(Saito et al. 1998). Single and multi walled CNTs have radii on the order of nano-
meters and lengths on the order of micrometers resulting in large aspect ratios
beneficial to their use in composites (Saito et al. 1998; Roche 2000). Carbon nano-
tubes are reported to have an axial Young’s modulus in the range of 300–1000 GPa,
up to five times the stiffness and with half the density of SiC fibers, in addition to
having a theoretically predicted elongation to break of 30–40 % (Yakobson and
Smalley 1997; Yu et al. 2000; Wang et al. 2001; Salvetat-Delmotte and Rubio 2002;
Fisher et al. 2002; Popov 2004).

A wide variety of composites containing CNTs have been manufactured (Milo
et al. 1999; Peigney et al. 2000; Potschke et al. 2004). Polymer-wrapped and
functionalized CNTs, producing distinct interphase regions between matrix and
CNTs, are also well documented in the literature (Wagner et al. 1998; Lourie and
Wagner 1998; Star et al. 2001; McCarthy et al. 2002; Zhu et al. 2003a). Recent
efforts focus on using CNTs in order to enhance the properties of microscale fiber
composites. In order to strengthen the interface between the fiber and the matrix,
the fibers can be coated with CNTs before being embedded in the matrix. When
this coating corresponds to CNTs (in particular, multi-walled carbon nanotubes
(MWCNTs)) being grown directly on the fiber surface, the resulting fiber-CNT
system is termed a ‘fuzzy fiber’. The fuzzy fiber material has a structural fiber
core, with dense carbon nanotube ‘forest’ emanating radially from the fiber surface
along the length of the fiber, as observed in Fig. 1. Growth techniques have been
developed for carbon fibers (Thostenson et al. 2002; Zhu et al. 2003b; Zhao et al.
2005; Mathur et al. 2008; Sager et al. 2009), ceramic fibers (Ci et al. 2005; Garcia
et al. 2008; Yamamoto et al. 2012) and glass fibers (Bower et al. 2000; Wood et al.
2012). The interest in the fuzzy fiber reinforced polymer nanocomposites stems
from its multifunctional nanocomposite interphase region (as identified in Fig. 2b),
which can provide enhanced load transfer, damage resistance, higher thermal and
electrical conductivities, and electromechanical coupling in the form of piezore-
sistivity. The multi-functionality of the interphase region makes fuzzy fiber rein-
forced nanocomposites good candidates for multifunctional applications such as
structural health monitoring, electromagnetic shielding, fire resisting and deicing.

To date, there has been a significant amount of research focused on developing
models for predicting macroscale effective properties of polymer nanocomposites
(Lau et al. 2004; Gates et al. 2005; Valaval and Odegard 2005; Fermeglia and Pricl
2007; Zeng et al. 2008; Esteva and Spanos 2009; Haque and Ramasetty 2005).
Such models are inherently multiscale in nature, and typically make use of either
atomistic simulations (Frankland et al. 2003; Adnan et al. 2007; Zhu et al. 2007;
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Awasthi et al. 2009), continuum micromechanics or homogenization techniques
(Fisher and Brinson 2001; Fisher et al. 2002, 2003; Bradshaw et al. 2003;
Buryachenko and Roy 2005; Liu et al. 2005; Liu and Brinson 2006; Seidel and
Lagoudas 2006; Hammerand et al. 2007; Guzman de Villoria and Miravete 2007;
Chen et al. 2005; Shenogina et al. 2005; Yan et al. 2007; Seidel and Lagoudas
2008; Seidel and Lagoudas 2009; Seidel and Stephens 2010; Seidel and Puydupin-
Jamin 2011; Bonakdar et al. 2012; Oliva-Aviles et al. 2013; Ren and Seidel 2013),
or some combination thereof (Li and Chou 2003; Odegard et al. 2003; Odegard
et al. 2004; Seidel et al. 2005, 2006; Gao and Li 2005; Seidel and Lagoudas 2008;
Li and Seidel 2012). Molecular dynamics simulations have been used to obtain the
stress–strain behavior of CNTs embedded in a polymer matrix (Frankland et al.
2003). The mechanical response in tension of a single CNT embedded in polymer
was studied via finite element analysis (Liu and Chen 2003). CNT composites
have been modeled using the equivalent continuum method in conjunction with
the Mori–Tanaka micromechanics method to obtain the effective elastic constants
for both aligned and misaligned CNTs (Odegard et al. 2003). Nanocomposite
properties have also been obtained via Monte Carlo finite element method (Spanos
and Kontsos 2008). The effects of nanotube waviness on the effective composite
properties have been studied using finite element analysis in conjunction with the
Mori–Tanaka method (Fisher et al. 2002, 2003). Buckling of CNTs within an
epoxy matrix has also been considered (Hadjiev et al. 2006). Other efforts have
focused on the inclusion of less than ideal CNT adhesion to the matrix in CNT
composite modeling (Wagner 2002; Frankland et al. 2003; Griebel and Hamaekers
2004). The clustering of CNTs in the polymer matrix was studied through a
micromechanics approach (Seidel and Lagoudas 2006).

In addition to developing models for determining the effective mechanical
properties of nanocomposites, there have also been efforts focused on obtaining
effective thermal (Chen et al. 2005; Shenogina et al. 2005; Seidel and Lagoudas
2008) and electrical (Yan et al. 2007; Seidel and Lagoudas 2009; Seidel and
Puydupin-Jamin 2011) conductivities, coefficients of thermal expansion (Seidel and

Fig. 1 Fuzzy fiber material:
a single fuzzy fiber with
densely-packed CNTs on the
surface (http://
muri18.tamu.edu/)
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Stephens 2010), and piezoresistivity (Oliva-Aviles et al. 2013; Ren and Seidel
2013) of CNT-polymer nanocomposites. For example, Seidel and Lagoudas (Seidel
and Lagoudas 2008) developed a hierarchical multiscale model for obtaining
nanocomposite effective thermal conductivity which linked MD simulations results
to a two scale continuum micromechanics model. In the model, information
obtained from MD simulations concerning interfacial thermal resistance was passed
to a composite cylinder formulation for obtaining effective nanofiber thermal
conductivity. The effective nanofiber conductivity was then used in a Mori–Tanaka
averaging approach in order to account for orientation effects in determining the
effective thermal conductivity of the CNT-polymer nanocomposite. A similar
approach was taken by Seidel and Lagoudas (Seidel and Lagoudas 2009) in
determining the effective electrical conductivity of CNT-polymer nanocomposites.
In this model, the focus was on accounting for the nanoscale effect of electron

Fig. 2 Schematic of a a cross-ply laminate with mixture of non-fuzzy and fuzzy glass fibers,
b individual fuzzy fiber corresponding to the composite cylinder model (representative of an
aligned all fuzzy fiber laminate plies), with the first (innermost) layer being the structural glass
fiber, the second layer being the nanocomposite interphase where there are densely packed and
radially oriented CNTs, and the third layer being the pure polymer matrix, c Dh, Dr, Dz segment
of the nanocomposite interphase region, d well-dispersed, densely packed CNTs within the
interphase corresponding to a hexagonal packing originating at the glass fiber-nanocomposite
interface (the hat denotes local MWCNT scale), e nanocomposite composite cylinder model
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hopping using the composite cylinder approach, and on accounting for the for-
mation of conductive paths and of orientation effects using the Mori–Tanaka
method, while in finite element studies (Seidel and Puydupin-Jamin 2011), the
combined effects of clustering and electron hopping were considered. However, in
all these mechanical, thermal and electrical modeling efforts the composite consists
of carbon nanotubes and matrix, and therefore do not address the architecture and
associated material symmetry associated with fuzzy fibers.

Herein we examine fuzzy fiber composites where glass fibers, coated with
radially aligned carbon nanotubes, are embedded in a matrix. These enhanced
glass fibers have the potential to improve not only interface strength, but to provide
additional functionality as sensors by taking advantage of the multifunctional
properties of CNTs. In the literature the mechanical response of fuzzy fiber
composites was investigated using the method of cells (Kundalwal and Ray 2011,
2012). Moreover, a shear lag model was developed for obtaining the behavior of
composites reinforced with carbon nanotubes-coated piezoelectric fibers (Ray
2010). Here the investigation of the effective mechanical and electrostatic prop-
erties of fuzzy fiber composites is achieved with two different approaches: (a) the
generalized self consistent composite cylinders method (Hashin and Rosen 1964;
Christensen 1979; Hashin 1990; Seidel and Lagoudas 2006, 2009), modified
properly in order to account for the additional interface layer between the fiber and
the matrix (Chatzigeorgiou et al. 2012a; Ren and Seidel 2011), and (b) a modified
version of the asymptotic expansion homogenization method which accounts for
the cylindrical periodicity that the interface layer (carbon nanotubes embedded in
matrix) presents as a separate composite (Chatzigeorgiou et al. 2011). These
techniques, along with the Mori–Tanaka method (Mori and Tanaka 1973) will be
applied in a hierarchical multiscale modeling approach to demonstrate the effec-
tive mechanical and electrostatic properties of fuzzy fiber composites consisting of
aligned or randomly oriented fuzzy fibers and mixtures of aligned glass and fuzzy
fibers having varying concentrations and lengths of MWCNTs in the nanocom-
posite interphase.

2 Fuzzy Fiber Composites: Micromechanics Approach

A fuzzy fiber composite material system is a fiber composite (Fig. 2a), in which
some or all of the structural fibers (glass fibers) are coated with radially aligned
microfibers (multi-walled carbon nanotubes (MWCNTs)) (Fig. 2b). For modeling
purposes we assume (Chatzigeorgiou et al. 2012a) that the representative volume
element (RVE) of the fuzzy fiber contains three layers: the first layer is the
cylindrical glass fiber. The second is a reinforced nanocomposite interphase
(intermediate cylindrical layer) which consists of cylindrical MWCNTs and matrix.
The third layer is the area of the pure matrix (Fig. 2b). The coated glass fibers are
arranged to correspond to a unidirectional lamina layer (Fig. 2a), in which the
fibers are aligned in the z direction and are well dispersed (randomly distributed) in
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the x–y plane. The fibers and the matrix are either isotropic, or transversely iso-
tropic linearly elastic materials with the axis of symmetry parallel to the axis of the
fibers. The MWCNTs in the reinforced nanocomposite interphase are assumed to
be transversely isotropic with the axis of symmetry parallel with the MWCNT axis
(r-direction in Fig. 2b). The idealized RVE of the reinforced interphase is shown in
Fig. 2c.

Based on the observations that (a) the diameter of the glass fiber is very large
compared to the diameter of the MWCNTs and (b) the MWCNTs are normally
densely packed along the glass fiber surface (small Dh in Fig. 2c), we can assume
that the reinforced interphase behaves as a classical unidirectional composite
(Fig. 2d), and effectively it is a transversely isotropic medium with the axis of
symmetry parallel to the axis of MWCNTs (i.e. in the radial direction of the glass
fiber). Hence, we can use micromechanics methods for composites with aligned
microfibers in determining the transversely isotropic interphase properties (Seidel
and Lagoudas 2006). Kundalwal and Ray (Kundalwal and Ray 2011) present the
properties of the reinforced interphase in a Cartesian coordinate system and they
assume that the effective behavior is given by averaging over all orientations. This
approach alters the anisotropic nature of the reinforced interphase, such that the
interphase is identified as transversely isotropic material with axis of symmetry
parallel to the axis of the structural fiber (glass fiber) as opposed to the microfiber
(MWCNT). In the cylindrical coordinate system shown in Fig. 2b, where z is the
glass fiber longitudinal axis, the stress–strain relations of a linearly elastic ortho-
tropic material are written

rrr
rhh
rzz
rzh
rrz
rrh

0
BBBBBB@

1
CCCCCCA
¼

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

0
BBBBBB@

1
CCCCCCA

err
ehh
ezz

2ezh
2erz
2erh

0
BBBBBB@

1
CCCCCCA
; ð1Þ

where the indices 1, 2, 3 in the stiffness tensors denote the axes r, h, z respectively.
For the matrix and the glass fiber we have

C22 ¼ C11; C13 ¼ C23; C55 ¼ C44; C66 ¼
C11 � C12

2
; ð2Þ

while for the intermediate layer (reinforced interphase) holds

C33 ¼ C22; C13 ¼ C12; C55 ¼ C66; C44 ¼
C22 � C23

2
: ð3Þ

In the case of the unidirectional fuzzy fiber composite, absence of the rein-
forced interphase (i.e. just fiber in matrix lamina) leads to transversely isotropic
effective medium. Moreover we can easily show that, upon arbitrary rotation about
the z axis, the stiffness matrix of the reinforced interphase remains the same, which
indicates that the quasi-cylindrically orthotropic structure (transversely isotropic
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with axis of symmetry parallel to the direction r of Fig. 2b) of the reinforced
interphase does not disrupt the overall symmetry of the effective medium. This
means that the final composite material will be effectively transversely isotropic,
with the axis of symmetry parallel to the axis of the fibers (the z axis). As such, the
stress–strain relation of the effective unidirectional lamina in the cylindrical
coordinate system is given by (1) and (2) with the superscript ‘‘eff’’ to denote the

effective property, e.g. Ceff
IJ relating reff

I and eeff
J .

The computation of the effective properties requires knowledge of the
mechanical response of the fuzzy fiber material system, which ideally consists of
concentric cylinders. The elastic response of homogeneous and non-homogeneous
thick- or thin-walled tubes under different boundary conditions was studied by
many authors (Chatterjee 1970; Horgan and Chan 1999; Chen et al. 2000; Tarn
and Wang 2001; Ruhi et al. 2005; Hosseini Kordkheili and Naghdabadi 2007;
Chatzigeorgiou et al. 2008; Tsukrov and Drach 2010; Nie and Batra 2010). Our
aim is to determine elasticity solutions for a series of boundary value problems
(BVPs). These BVPs are used in conjunction with the composite cylinders method
in order to identify the effective properties of the composite, as has been suc-
cessfully implemented in the past in the case of CNT composites (Seidel and
Lagoudas 2006).

2.1 Composite Cylinders Method for Mechanical Properties

For the composite cylinders method we use the RVE of Fig. 3a. This 3 layer
composite cylinder RVE (fiber, reinforced interphase, matrix) is equivalent to an
RVE for a randomly distributed, aligned, fuzzy fiber composite and can be

Fig. 3 a Identification of layers in composite cylinder method RVE b identification of boundary
conditions associated with the plane strain (in-plane) bulk modulus BVP in the composite
cylinder method. (Chatzigeorgiou et al. 2012a)
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extended for N � 3 layers. In the following, we will consider the cylindrical system
of the fuzzy fiber RVE as the global coordinate system. In cylindrical coordinates
the equilibrium equations are given by

orðiÞrr

or
þ 1

r

orðiÞrh

oh
þ rðiÞrr � rðiÞhh

r
þ orðiÞrz

oz
¼ 0;

orðiÞrh

or
þ 1

r

orðiÞhh

oh
þ 2

rðiÞrh

r
þ

orðiÞzh

oz
¼ 0;

orðiÞrz

or
þ 1

r

orðiÞzh

oh
þ rðiÞrz

r
þ orðiÞzz

oz
¼ 0;

ð4Þ

where (i) is the material layer (i = 1, 2,…,N). Assuming small deformation gra-
dients, the infinitesimal strains are expressed with respect to the displacements
according to the relations

eðiÞrr ¼
ouðiÞr

or
; eðiÞhh ¼

1
r

ouðiÞh

oh
þ uðiÞr

 !
; eðiÞzz ¼

ouðiÞz

oz
;

2eðiÞzh ¼
ouðiÞh

oz
þ 1

r

ouðiÞz

oh
; 2eðiÞrz ¼

ouðiÞz

or
þ ouðiÞr

oz
;

2eðiÞrh ¼
1
r

ouðiÞr

oh
þ ouðiÞh

or
� 1

r
uðiÞh :

ð5Þ

In order to use the composite cylinders method, we need to determine admis-
sible displacement fields which will satisfy five specific boundary value problems.
In order to do this, we have to substitute (5) into the appropriate constitutive
relations (1)–(3), and then substitute the resulting equations into (4) to get the
equilibrium equations in terms of the displacements. Next we can apply the semi-
inverse method to determine the necessary admissible displacement fields. Then,
solving the same boundary value problems for the homogenized cylinder we can
obtain the effective properties using the direct strain energy equivalency method.
The homogenized cylinder is described by the same equations, with the difference
that the (i) must be replaced by eff denoting the effective material. Tsukrov and his
coworkers (Tsukrov et al. 2009; Tsukrov and Drach 2010) present a similar
approach as described above for the case of carbon/carbon composites, where
pyrolytic carbon cylindrically orthotropic layers surround a fiber. In their study
they present the admissible displacement fields for various loading cases and
obtain the effective axial Young’s modulus, the transverse bulk modulus and the
axial Poisson’s ratio. Here we present specific boundary value problems that allow
us to obtain all five effective properties (in-plane bulk modulus, axial shear
modulus, axial Young’s modulus, axial stiffness coefficient, in-plane shear mod-
ulus) and the stress concentration tensors for the fuzzy fiber. It is noted that for the
in-plane shear modulus we need to use the generalized self consistent composite
cylinders method proposed by Christensen (Christensen 1979).
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In the following, we denote ri to be the external radius of each layer, with the
inner radius of the solid fiber layer denoted r0 = 0. The length of the composite
cylinder is taken as 2L. We also introduce the volume average

uh i ¼ 1
V

Z

V
uðx; y; zÞdxdydz ¼ 1

V

Z

V
ruðr; h; zÞdrdhdz; ð6Þ

where V is the volume of the RVE. With regard to the stress concentration tensors,
it is useful to express the average stresses in Cartesian coordinates, and thus,
standard transformation relationships between Cartesian (x, y, z) and cylindrical
(r, h, z) coordinate systems can be applied to obtain the desired integrand in (6).

2.1.1 In-plane Bulk Modulus

The effective in-plane or plane strain bulk modulus, Keff
12 , is determined from the

boundary value problem shown in Fig. 3b, for which the appropriate displacement
field is

uðiÞr ¼
X2

j¼1

D ið Þ
j rnðiÞj ; uðiÞh ¼ uðiÞz ¼ 0; i ¼ 1; 2; . . .:;N; ð7Þ

with nðiÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðiÞ22=CðiÞ11

q
¼ �nðiÞ2 : For isotropic and transversely isotropic materials

with axis of symmetry parallel to the axis of the fiber nðiÞ1 ¼ �nðiÞ2 ¼ 1 and the
displacement field reduces to the expression described in Seidel and Lagoudas

(Seidel and Lagoudas 2006). The constants DðiÞ1 and DðiÞ2 are computed from the

boundary condition uðNÞr ðrNÞ ¼ e0rN , the condition Dð1Þ2 ¼ 0 (insuring that the
displacement is bounded at the origin), and the continuity conditions (considering

perfect bonding between layers) uðiÞr ðriÞ ¼ uðiþ1Þ
r ðriÞ and rðiÞrr ðriÞ ¼ rðiþ1Þ

rr ðriÞ for
i = 1, 2,…,N-1.

The volume averaged strain energy for the composite cylinder assemblage is
given by

WRVE ¼ 1
2

rðiÞrr eðiÞrr þ rðiÞhhe
ðiÞ
hh

D E
¼ 1

r2
N

XN

i¼1

X2

j¼1

CðiÞ22

nðiÞj

þ CðiÞ12

 !
DðiÞj

� �2
r

2nðiÞj

i � r
2nðiÞj

i�1

� �
:

ð8Þ

The homogenized cylinder is described by the same equations, with the difference

that the (i) must be replaced by eff and neff
1 ¼ 1. For the effective medium we get

Deff
1 ¼ e0. Consequently the strain energy of the effective homogeneous material is

written as Weff ¼ 1
2 reff

rr eeff
rr þ reff

hh eeff
hh

D E
¼ 2Keff

12 e2
0. Since WRVE ¼ Weff , we get
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Keff
12 ¼

1

2e2
0r2

N

XN

i¼1

X2

j¼1

CðiÞ22

nðiÞj

þ CðiÞ12

 !
DðiÞj

� �2
r

2nðiÞj

i � r
2nðiÞj

i�1

� �
: ð9Þ

Here we need to mention that the effective in-plane bulk modulus does not depend

on the applied strain at the boundary as it can be shown that DðiÞj contains e0.

The volume averaged stresses of the entire RVE rTotal
K

� �
and the fuzzy fiber

rJ
K

� �
, expressed in Cartesian coordinates, are given by

rTotal
K

� �
¼ 1

2pLrN

XN

i¼1

Z L

�L

Z 2p

0

Z ri

ri�1

rKrdrdhdz;

rJ
K

� �
¼ 1

2pLrN�1

XN�1

i¼1

Z L

�L

Z 2p

0

Z ri

ri�1

rKrdrdhdz:

ð10Þ

Using the displacement field (7), the Eqs. (5), the constitutive law (1) and con-
verting to Cartesian coordinates we obtain the average stresses

rTotal
1

� �
¼ rTotal

2

� �
¼ 1

r2
N

XN

i¼1

X2

j¼1

DðiÞj XðiÞj KðiÞj ; rTotal
3

� �
¼ 1

r2
N

XN

i¼1

X2

j¼1

DðiÞj WðiÞj KðiÞj ;

rJ
1

� �
¼ rJ

2

� �
¼ 1

r2
N�1

XN�1

i¼1

X2

j¼1

DðiÞj XðiÞj KðiÞj ; rJ
3

� �
¼ 1

r2
N�1

XN�1

i¼1

X2

j¼1

DðiÞj WðiÞj KðiÞj ;

ð11Þ

where

KðiÞj ¼
r

1þn
ðiÞ
j

i �r
1þn
ðiÞ
j

i�1

1þnðiÞj

; nðiÞj 6¼ �1;

lnðriÞ � lnðri � 1Þ; nðiÞj ¼ �1;

8>><
>>:

WðiÞj ¼ 2nðiÞj CðiÞ13 þ 2CðiÞ23 ; XðiÞj ¼ nðiÞj CðiÞ11 þ CðiÞ12

� �
þ CðiÞ12 þ CðiÞ22 :

ð12Þ

2.1.2 Axial Shear Modulus

The axial shear modulus, leff
23 ¼ Ceff

44 , is determined from the layer displacement
field of

uðiÞz ¼
X2

j¼1

DðiÞj rnðiÞj cos h; uðiÞh ¼ uðiÞr ¼ 0; i ¼ 1; 2; :::;N; ð13Þ
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with nðiÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðiÞ44=CðiÞ55

q
¼ �nðiÞ2 : For isotropic and transversely isotropic materials

with axis of symmetry parallel to the axis of the fiber nðiÞ1 ¼ �nðiÞ2 ¼ 1 and the
displacement field reduces to the expression described in Seidel and Lagoudas

(Seidel and Lagoudas 2006). The constants DðiÞ1 and DðiÞ2 are computed from the

displacement boundary condition uðNÞz ðrN ; hÞ ¼ 2e0rN cos h, the condition Dð1Þ2 ¼ 0
(insuring that the displacement is bounded at the origin), and the continuity
conditions (considering perfect bonding between layers) uðiÞz ðriÞ ¼ uðiþ1Þ

z ðriÞand

rðiÞrz ðriÞ ¼ rðiþ1Þ
rz ðriÞ for i = 1, 2,…,N-1.

The volume averaged strain energy for the composite cylinder assemblage is
given by

WRVE ¼ 1
2

rðiÞrz eðiÞrz þ rðiÞzh eðiÞzh

D E
¼ 1

2r2
N

XN

i¼1

X2

j¼1

CðiÞ44

nðiÞj

DðiÞj

� �2
r

2nðiÞj

i � r
2nðiÞj

i�1

� �
: ð14Þ

The homogenized cylinder is described by the same equations, with the difference

that the (i) must be replaced by eff and neff
1 ¼ 1. For the effective medium we get

Deff
1 ¼ 2e0. Consequently the strain energy of the effective homogeneous material

is written as Weff ¼ 2leff
23 e2

0. Since WRVE ¼ Weff , we get

leff
23 ¼

1

4e2
0r2

N

XN

i¼1

X2

j¼1

CðiÞ44

nðiÞj

DðiÞj

� �2
r

2nðiÞj

i � r
2nðiÞj

i�1

� �
: ð15Þ

2.1.3 Axial Young’s Modulus and Axial Stiffness Component

The axial Young’s modulus, Eeff
3 , and the axial stiffness coefficient, Ceff

33 , are
determined from the same layer displacement field of

uðiÞr ¼ KðiÞr þ
X2

j¼1

DðiÞj rnðiÞj ; KðiÞ ¼
CðiÞ13�CðiÞ23

CðiÞ22�CðiÞ11

e0; CðiÞ11 6¼ CðiÞ22 ;

0; CðiÞ11 ¼ CðiÞ22 ;

8<
:

uðiÞh ¼ 0; uðiÞz ¼ e0; i ¼ 1; 2; :::;N;

ð16Þ

with nðiÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðiÞ22=CðiÞ11

q
¼ �nðiÞ2 : For isotropic and transversely isotropic materials

with axis of symmetry parallel to the axis of the fiber nðiÞ1 ¼ �nðiÞ2 ¼ 1. Relative to
an isotropic or transversely isotropic interphase with aligned symmetry axis with
the overall symmetry axis (Seidel and Lagoudas 2006), the reinforced interphase

behavior introduces a new term, KðiÞr, which is needed to satisfy the equilibrium

Eqs. (4). KðiÞ takes a non-zero value only in the case where the material has
different radial and circumferential behavior. It also carries the e0 from the
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boundary condition which permeates into the solution of the form for uðiÞr . The

constants DðiÞ1 and DðiÞ2 are computed from the condition Dð1Þ2 ¼ 0 (insuring that the
displacement is bounded at the origin), the continuity conditions (considering

perfect bonding between layers) uðiÞr ðriÞ ¼ uðiþ1Þ
r ðriÞ and rðiÞrr ðriÞ ¼ rðiþ1Þ

rr ðriÞ for
i = 1,2,…,N-1 and the boundary conditions. The displacement uðiÞz is also trivi-
ally enforced. For the axial Young’s modulus, the lateral surface is traction free in

the tension test (rðNÞrr ðrNÞ ¼ 0), while for the axial stiffness component the lateral

surface is constrained in the stiffness test (uðNÞr ðrNÞ ¼ 0).
The volume averaged strain energy for the composite cylinder assemblage is

given by

WRVE ¼ 1
2

rðiÞrr eðiÞrr þ rðiÞhhe
ðiÞ
hh þ rðiÞzz eðiÞzz

D E

¼ 1

r2
N

XN

i¼1

KðiÞ1 e0 þ 2KðiÞ2 KðiÞ
� � r2

i � r2
i�1

2
þ 2e0

r2
N

XN

i¼1

X2

j¼1

DðiÞj CðiÞ23 þ nðiÞj CðiÞ13

� �
KðiÞj

þ 1

r2
N

XN

i¼1

X2

j¼1

CðiÞ22

nðiÞj

þ CðiÞ12

 !
DðiÞj DðiÞj r

2nðiÞj

i � r
2nðiÞj

i�1

� �
þ 2KðiÞ r

1þnðiÞj

i � r
1þnðiÞj

i�1

� �� �
;

ð17Þ

where KðiÞ1 ¼ CðiÞ13KðiÞ þ CðiÞ23KðiÞ þ CðiÞ33 e0, KðiÞ2 ¼ CðiÞ11KðiÞ þ CðiÞ12KðiÞ þ CðiÞ13 e0 and

KðiÞj is given by (12). The homogenized cylinder is described by the same equa-

tions, with the difference that the (i) must be replaced by eff and neff
1 ¼ 1.

The boundary conditions for the effective axial Young’s modulus lead to

Deff
1 ¼ �Ceff

13 e0=ðCeff
11 þ Ceff

12 Þ and the strain energy of the effective medium is

Weff ¼ 1
2 Eeff

3 e2
0. Since WRVE ¼ Weff , we get

Eeff
3 ¼

2

r2
N

XN

i¼1

KðiÞ1 e0 þ 2KðiÞ2 KðiÞ
� � r2

i � r2
i�1

2e2
0

þ 4

r2
N

XN

i¼1

X2

j¼1

DðiÞj CðiÞ23 þ nðiÞj CðiÞ13

� �KðiÞj

e0

þ 2

e2
0r2

N

XN

i¼1

X2

j¼1

CðiÞ22

nðiÞj

þ CðiÞ12

 !
DðiÞj DðiÞj r

2nðiÞj

i � r
2nðiÞj

i�1

� �
þ 2KðiÞ r

1þnðiÞj

i � r
1þnðiÞj

i�1

� �� �
:

ð18Þ

The boundary conditions for the effective axial stiffness coefficient lead to

Deff
1 ¼ 0, while the strain energy of the effective medium is given by

Weff ¼ 1
2 Ceff

33 e2
0. Since WRVE ¼ Weff , we get
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Ceff
33 ¼

2

r2
N

XN

i¼1

KðiÞ1 e0 þ 2KðiÞ2 KðiÞ
� � r2

i � r2
i�1

2e2
0

þ 4

r2
N

XN

i¼1

X2

j¼1

DðiÞj CðiÞ23 þ nðiÞj CðiÞ13

� �KðiÞj

e0

þ 2

e2
0r2

N

XN

i¼1

X2

j¼1

CðiÞ22

nðiÞj

þ CðiÞ12

 !
DðiÞj DðiÞj r

2nðiÞj

i � r
2nðiÞj

i�1

� �
þ 2KðiÞ r

1þnðiÞj

i � r
1þnðiÞj

i�1

� �� �
:

ð19Þ

We note that the effective properties are independent of the boundary constant e0.

2.1.4 In-Plane Shear Modulus

The composite cylinders method (Hashin and Rosen 1964) can provide only

bounds for the in-plane shear modulus leff
12 ¼ Ceff

66 . For this reason we will use the
generalized self consistent composite cylinders method (Christensen 1979;
Christensen and Lo 1979). In this case, an additional layer (layer N ? 1) is added,
representing the effective medium with external radius rNþ1 !1 (Fig. 4a). The
admissible displacement field for this case is described by the equations

uðiÞr ¼
X4

j¼1

aðiÞj DðiÞj rnðiÞj sinð2hÞ; uðiÞh ¼
X4

j¼1

DðiÞj rnðiÞj cosð2hÞ;

uðiÞz ¼ 0; i ¼ 1; 2; :::;N;

uðNþ1Þ
r ¼ rN

4leff
12

2r

rN
þ DðNþ1Þ

3
r3

N

r3
þ 2 1þ leff

12

Keff
12

 !
rN

r

 !
sinð2hÞ;

uðNþ1Þ
h ¼ rN

4leff
12

2r

rN
� DðNþ1Þ

3
r3

N

r3
þ leff

12

Keff
12

rN

r

 !
cosð2hÞ;

ð20Þ

Fig. 4 a In-plane shear modulus, b transverse extension test (Chatzigeorgiou et al. 2012a)

Multiscale Modeling of Multifunctional Fuzzy 147



with

aðiÞj ¼ 2
CðiÞ22 þ CðiÞ66 � nðiÞj CðiÞ12 þ CðiÞ66

� �

CðiÞ22 þ 4CðiÞ66 � nðiÞj

� �2
CðiÞ11

; i ¼ 1; 2; . . .;N; j ¼ 1; 2; 3; 4; ð21Þ

and nðiÞj are the solutions of the polynomial

CðiÞ11 CðiÞ66 n4 � CðiÞ11 þ CðiÞ22 � 8CðiÞ12

� �
CðiÞ66 þ 4 CðiÞ11 CðiÞ22 � CðiÞ12

� �2
� �� �

n2

þ 9CðiÞ22 CðiÞ66 ¼ 0:

ð22Þ

In the above expression, nðiÞ1 and nðiÞ2 are the positive and nðiÞ3 and nðiÞ4 are the
negative solutions. If z is the axis of symmetry for the layer (i.e. the axis of the
fiber), these equations reduce to the equations given in Seidel and Lagoudas
(Seidel and Lagoudas 2006), therefore the extra complication is directly attributed
to the difference in material symmetry orientation of the interphase layer, which is
transversely isotropic with axis of symmetry parallel to the radial direction (i.e. the
direction of the microfibers).

The external boundary conditions are already included in the displacement field
of the N ? 1 layer. We also need the conditions ensuring boundness at the origin

(Dð1Þ3 ¼ Dð1Þ4 ¼ 0) as well as the continuity conditions uðiÞr ðriÞ ¼ uðiþ1Þ
r ðriÞ,

uðiÞh ðriÞ ¼ uðiþ1Þ
h ðriÞ, rðiÞrr ðriÞ ¼ rðiþ1Þ

rr ðriÞ and rðiÞrh ðriÞ ¼ rðiþ1Þ
rh ðriÞ for i = 1, 2…,N.

The strain energy equivalency is written

Z 2p

0
rðNþ1Þ

rr ueff
r þ rðNþ1Þ

rh ueff
h � reff

rr uðNþ1Þ
r � reff

rh uðNþ1Þ
h

h i
r¼rN

dh ¼ 0: ð23Þ

Equation (23) is the interaction (surface) energy form converted from the volume
averaged form. The surface energy form arises from the strain energy equality
between the composite and the homogenized medium (Christensen 1979,
pp. 55–56) and it provides easier computations than directly using the stored strain
energy equivalency. The displacement field of the effective medium is

ueff
r ¼

r sinð2hÞ
2leff

12

; uðiÞh ¼
r cosð2hÞ

2leff
12

; uðiÞz ¼ 0: ð24Þ

The strain energy equivalency leads to the final condition that DðNþ1Þ
4 ¼ 0, from

which we solve for leff
12 .

The generalized self consistent composite cylinders method can also be used to
obtain the other effective properties (in plane bulk modulus, axial shear modulus,
axial Young’s modulus and axial stiffness component). In these cases, iterative
schemes need to be employed, since the generalized self consistent composite
cylinders method leads to nonlinear equations. The values of these properties,
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obtained by the later method, are in very good agreement with the values obtained
by the composite cylinders method (Seidel 2007), indicating that not using the
effective layer in obtaining these properties is an acceptable simplification.

The five boundary value problems that presented so far are sufficient to identify
the composite effective behavior for well-dispersed, aligned fiber composites of
single type (i.e. all glass or all fuzzy fiber unidirectional laminate plies), and
therefore can be used to obtain additional effective properties such as transverse

Young’s modulus, Eeff
1 , and axial and transverse Poisson’s ratios, meff

32 and meff
12 ,

respectively (Chatzigeorgiou et al. 2012a). For mixed fiber types or multiple fiber
orientations within a ply, the composite cylinder method can also be used to obtain
the components of the stress concentration tensor, BJ

ijkl, by connecting the volume

average of the stress rTotal
ij

D E
over the three material layers (i.e., the fiber, the

reinforced interphase and the matrix) with the volume average of the stress rJ
ij

D E

(e.g. see (11)) over only the fiber and the reinforced interphase through the relation

rJ
ij

D E
¼ BJ

ijkl rTotal
kl

� �
: ð25Þ

However, the sets of equations produced by the in-plane bulk modulus test and the
axial stiffness component are not linearly independent, and therefore an additional
boundary value problem to those described above is needed, i.e. the transverse
extension test, to solve the system of equations in (25).

2.1.5 Transverse Extension Test

The transverse extension test boundary value problem is shown in Fig. 4b. The
admissible displacement field for this case is described by the equations

uðiÞr ¼
X4

j¼1

DðiÞj rnðiÞj cosð2hÞþ
X6

j¼5

DðiÞj rnðiÞj ; uðiÞh ¼
X4

j¼1

aðiÞj DðiÞj rnðiÞj sinð2hÞ;

uðiÞz ¼ 0; i ¼ 1; 2; :::;N;

ð26Þ

with

aðiÞj ¼ �
1
2

CðiÞ22 þ 4CðiÞ66 � nðiÞj

� �2
CðiÞ11

CðiÞ22 þ CðiÞ66 � nðiÞj CðiÞ12 þ CðiÞ66

� � ; i ¼ 1; 2; . . .;N; j ¼ 1; 2; 3; 4; ð27Þ

nðiÞj , j = 1, 2, 3, 4, are the solutions of the polynomial
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CðiÞ11 CðiÞ66 n4 � CðiÞ11 þ CðiÞ22 � 8CðiÞ12

� �
CðiÞ66 þ 4 CðiÞ11 CðiÞ22 � CðiÞ12

� �2
� �� �

n2

þ 9CðiÞ22 CðiÞ66 ¼ 0;

ð28Þ

and nðiÞ5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðiÞ22=CðiÞ11

q
¼ �nðiÞ6 : In Eq. (28), nðiÞ1 and nðiÞ2 are the positive and nðiÞ3 and

nðiÞ4 are the negative solutions.
The external boundary conditions are shown in Fig. 4b. We also need the

conditions ensuring boundedness at the origin (Dð1Þ3 ¼ Dð1Þ4 ¼ Dð1Þ6 ¼ 0) as well as

the continuity conditions uðiÞr ðriÞ ¼ uðiþ1Þ
r ðriÞ, uðiÞh ðriÞ ¼ uðiþ1Þ

h ðriÞ, rðiÞrr ðriÞ ¼
rðiþ1Þ

rr ðriÞ and rðiÞrh ðriÞ ¼ rðiþ1Þ
rh ðriÞ for i = 1,2…,N. Having solved the system of

equations, we can then obtain the average of the volume averaged stresses rTotal
ij

D E

and rJ
ij

D E
, thereby providing an additional set of independent equations to be used

in (25).
The obtained effective properties of this subsection are related with unidirec-

tional fuzzy fiber composites. In previous work (Seidel and Lagoudas 2006) it was
observed that the generalized self consistent composite cylinders and composite
cylinders methods yield the same effective properties and concentration tensors for
aligned fiber composites. So, for aligned composites, composite cylinders method
is a very good approximation of the generalized self consistent composite cylin-
ders concentration tensor components. The method can be extended to consider
thermoelastic behavior of aligned fuzzy fiber composites (see Tsukrov et al. 2012
for the case of carbon/carbon composites with pyrolytic carbon cylindrically
orthotropic layers).

2.2 Composite Cylinders Method for Electrostatic Properties

The effective electrostatic properties of the aligned fuzzy fiber reinforced polymer
nanocomposites can be obtained by likewise using CCM model in which the
second layer is the interphase region as was the case for the mechanical properties.
In order to simplify the problem, let us likewise assume the CNTs in the interphase
region are of the same length, homogeneously distributed, straight and radially
oriented, with perfect bounding to the glass fiber and matrix, as illustrated in
Fig. 2. For the time-being, we will disregard the effects of electron hopping. The
electrostatic properties of the structural fibers and the polymer matrix can be
considered as homogeneous and isotropic, but what makes a difference is the
interphase region, whose electrostatic properties are of anisotropic symmetry if
denoted in rectangle Cartesian coordinate system, such that the analytic solutions
are hard to find. However, by observing the CNTs are radially oriented, it is
convenient to denote the effective electrical conductivities of the interphase region
as cylindrically orthotropic in Cylindrical coordinate system, whose three
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components are jð2Þrr , jð2Þhh , and jð2Þzz
1, in which (2) denotes the conductivities in the

second layer. Further, if we introduce a nanoscale RVE to represent a small area of
the interphase region (Fig. 2c), we can consider the densely packed CNTs on the
glass fiber to have periodic hexagonal pattern in every local nanoscale area
(Fig. 2d), which implies that the interphase region in the nanoscale can be
regarded as transversely isotropic, with the axial direction in the radial direction
relative to the glass fiber. Therefore we can use the nanoscale CCM model to get
the effective electrical conductivities of the nanoscale first (Fig. 2e), and then
relate the nanoscale effective properties with those of the microscale, such that

j 2ð Þ
rr ¼ j 2ð Þeff

zz and j 2ð Þ
hh ¼ j 2ð Þ

zz ¼ j 2ð Þeff
rr ¼ j 2ð Þeff

hh ð29Þ

in which ‘^’ denotes material properties in the nanoscale.
Once the electrostatic properties of the second layer are obtained, the electro-

static properties for the three layers as identified in Fig. 2b are all known.
Therefore the electrostatic properties of the microscale can be obtained by using
the microscale CCM model, which can be used to represent the electrostatic
properties of the fuzzy fiber reinforced composites. Section 2.2.1 introduces the
governing equations for a general electrostatic CCM model, which can be applied
either in the nanoscale or microscale.

2.2.1 The Governing Equations for the Electrostatic CCM Model

For each layer of the multi-layer cylinder, the steady state conservation of charge
equation can be denoted in Cylindrical coordinate system as:

oJðkÞr

or
þ 1

r

oJðkÞh

oh
þ oJðkÞz

oz
þ 1

r
JðkÞr ¼ 0 ð30Þ

where JðkÞi ði ¼ r; h; zÞ is the current density component with (k) denoting the index
of the layer (e.g. k = 1 denotes the innermost layer, and so on). Similarly, for the
homogenized effective material, the (k) in (30) can be replaced with the superscript

‘eff’, where Jeff
i ði ¼ r; h; zÞ is the current density component of the effective

material. For each layer of the multi-layer cylinder, the electric field component

EðkÞi can therefore be denoted with

EðkÞr ¼ �
oUðkÞ

or
; EðkÞh ¼ �

1
r

oUðkÞ

oh
; EðkÞz ¼ �

oUðkÞ

oz
ð31Þ

1 In the fuzzy fiber interphase region, due to the curvature of the glass fiber surface, the volume
fraction of the CNT is actually radially dependent, with the volume fraction higher close to the
glass fiber and lower farther away from it. However, considering the CNTs are densely-packed,
the dependency is very weak, which is therefore omitted and the volume fraction of the CNT is
kept as the one in the middle of the interphase.
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where UðkÞ is the electric potential for each layer of the multi-layer cylinder, and
where the (k) can again be suitably replaced for the effective material equations.
The current density is related to electric field by Ohm’s law which for the multi-
layer cylinder can be written as

JðkÞr

JðkÞh
JðkÞz

8<
:

9=
; ¼

jðkÞrr 0 0
0 jðkÞhh 0
0 0 jðkÞzz

2
4

3
5 EðkÞr

EðkÞh
EðkÞz

8<
:

9=
; ð32Þ

where jðkÞij denote components of the second order electrical conductivity tensors
for each layer of the multi-layer cylinder, where the layers are generally consid-

ered as cylindrically orthotropic such that jðkÞrr , jðkÞhh , and jðkÞzz are not necessarily
equal. Similarly, for the effective material, Ohm’s law can be written as

Jeff
i ¼ jeff

ij Eeff
j where jeff

ij denotes the effective conductivities for the effective
material, which are obtained by solving electrostatic boundary value problems
(BVPs) and constructing electrostatic energy equivalence between the multi-layer
cylinder and the effective material. It is noted that, given the cylindrical geometry
and cylindrically orthotropic layer conductivities, the effective conductivity should
at most maintain the cylindrically orthotropic material symmetry. However, by
assuming the fibers are infinitely long and by observing the well-dispersed and
aligned fibers have hexagonal symmetry in the transverse plane, the effective
electrostatic material properties can be considered as transversely isotropic (Ha-

shin and Rosen, 1964). Therefore, jeff
rr ¼ jeff

hh , and as such, only two BVPs are then
needed (one axial and one transverse) to obtain the two unknown effective elec-
trostatic properties, which are introduced as below.

The in-plane electrostatic BVP

The electric potential for each layer of the multi-layer cylinder is:

UðkÞ ¼ ðAðkÞr

ffiffiffiffiffi
j
ðkÞ
hh

j
ðkÞ
rr

r

þ BðkÞr
�

ffiffiffiffiffi
j
ðkÞ
hh

j
ðkÞ
rr

r

Þ cosðhÞ ð33Þ

where jðkÞrr and jðkÞhh are known conductivities of each layer, and AðkÞ are BðkÞ

unknown constants to be solved by using boundary conditions and matching
conditions. It is worth noticing that for a layer with in plane isotropic electrostatic

properties, i.e. jðkÞrr ¼ jðkÞhh , the power terms in (33) are reduced to one. This is the
case not only for the isotropic glass fiber and matrix materials of the composite
cylinder assemblage, but also for the effective homogeneous cylinder which is
transversely isotropic with r-h isotropy plane. However, for the interphase region

of the fuzzy fiber which is cylindrically orthotropic such that jð2Þrr 6¼ jð2Þhh , the power
terms are not equal to one. As the adjacent layers of the multi-layer cylinder are
assumed to be perfectly bounded, the matching conditions between adjacent layers
are:
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UðkÞðr ¼ rkÞ ¼ Uðkþ1Þðr ¼ rkÞ; k ¼ 1 to N � 1 ð34aÞ

JðkÞr ðr ¼ rkÞ ¼ Jðkþ1Þ
r ðr ¼ rkÞ; k ¼ 1 to N � 1 ð34bÞ

in which N denotes the total number of layers. The boundary conditions for the
multi-layer cylinder are:

UðNÞ ¼ E0r cosðhÞjr¼rN ; 0� z� L ð35aÞ

Uð1Þ ¼ 0jr¼r0¼0; 0� z�L or Jð1Þ ¼ 0jr¼r0 6¼0; 0� z�L ð35bÞ

in which E0 is a constant electric field component associated with a uniform
homogeneous electric field at the macroscale (i.e. here the laminate layer scale),
L is the length of the CCM model in z-direction, and r0 and rN are the innermost
and outermost radius, respectively, of the multi-layer cylinder. Specifically, if
r0 ¼ 0, the innermost layer is solid and the first condition of (35b) is applied such
that Bð1Þ ¼ 0 so that the potential solution remains bounded. In contrast, if r0 6¼ 0,
there is a hollow region in the innermost layer, and the second condition in (35b) is
applied. Similarly, the boundary conditions for the effective homogeneous solid
cylinder material are giving (35a) and the first of (35b) with superscripts (N) and
(1) replaced by ‘eff’.

The axial electrostatic BVP

The electric potential for each layer of the multi-layer cylinder is:

UðkÞ ¼ AðkÞzþ BðkÞ ð36Þ

where AðkÞ and BðkÞ are unknown constants to be solved by using boundary con-
ditions. The boundary conditions of the multi-layer cylinder are provided as

UðkÞjz¼0 ¼ U0 k ¼ 1 to Nð Þ ð37aÞ

UðkÞjz¼L ¼ U1 k ¼ 1 to Nð Þ ð37bÞ

in which U0 and U1 are constant potentials as applied at z = 0 and
z = L respectively. It is noted that, as there is no r- or h-dependence in the electric
potential, then there is no need to enforce matching conditions between the layers.
The effective homogeneous solid cylinder is subject to the same form of the
potential and boundary conditions as in (36) and (37).

Electrostatic energy equivalence

For each BVP, volume averaged electrostatic energy equivalence is constructed
between the multi-layer cylinder and the effective material, such that
WRVE ¼ Weff where
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WRVE ¼ 1
V

XN

k¼1

Z L

0

Z 2p

0

Z rk

rk�1

1
2

EðkÞi JðkÞi rdrdhdz ð38aÞ

Weff ¼ 1
V

Z L

0

Z 2p

0

Z rN

0

1
2

Eeff
i Jeff

i rdrdhdz ð38bÞ

in which V is the whole volume of the model and V ¼ pr2
NL. For the in-plane BVP,

Weff ¼ 1
2 E2

0j
eff
rr ¼ 1

2 E2
0j

eff
hh and for the axial BVP, Weff ¼ 1

2 E2
0j

eff
zz . However, it is

noted that the effective properties resulting for the equating (38a) and (38b) are
independent of the magnitude of the applied electric field as solution of the BVPs
reveal that AðkÞ and BðkÞdepend linearly on E0.

2.3 Effective Properties of Composites with Multiple Types
of Fuzzy Fibers

In the previous subsections we dealt with unidirectional fuzzy fiber composites,
when only one type of fuzzy fiber is considered. However, in order to consider
more complicated structures (for instance, fuzzy fibers with different orientations
or different materials for the fibers, fuzzy fibers with various CNT concentrations),
the knowledge of the effective properties of the fuzzy fiber itself must be combined
with the knowledge of the strain or stress (or by analogy, the electric field or
current density) concentration tensors.

2.3.1 General Relations for Composites with Multiple Fuzzy
Fiber Types

In the case of multiple fuzzy fiber types, each type defines a different phase in the
composite. Assuming J ¼ 1; 2; . . .;= distinct fiber types, with volume fractions cJ

and stiffness tensors CJ
ijkl, the effective behavior of the final composite is identified

by the relation

Ceff
ijkl ¼ Cm

ijkl þ
X=
J¼1

cJ CJ
ijop � Cm

ijop

� �
AJ

opkl; ð39Þ

where AJ
ijkl is the strain concentration tensor of each phase and the superscript m

denotes the matrix phase. It is noted that the volume fraction relation for all phases

is given by cm þ
P=
J¼1

cJ ¼ 1.

The composite cylinders method introduced in the previous subsection can be
used to compute the stress concentration tensors associated with different types of
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fuzzy fibers, e.g. different MWCNT concentrations in the nanocomposite
interphase or different interphase thicknesses. One can likewise identify the
effective properties of various fuzzy fiber types using the described composite
cylinders method, by considering almost zero matrix layer (layer with N = 3).
This information is necessary if we need the fuzzy fiber properties for use in other
methods such as the Mori–Tanaka for addressing composites with multiple
inhomogeneity (fuzzy fiber) types or fiber orientations.

It is noted that in four out of five properties, we use the composite cylinders
method as opposed to the generalized self consistent composite cylinders method,
and as such, the method we propose is termed quasi-dilute in that the interactions
between the various types or orientations of fibers are not directly accounted for.
When transitioning to a Mori–Tanaka method, we can instead take the computed
composite cylinders concentration tensor components to be the dilute concentra-
tion tensor components (the difference between the quasi-dilute and the dilute is
only on the in-plane shear term). The dilute stress concentration tensor HJ

ijkl of a
fuzzy fiber composite can be identified using the composite cylinders method and
considering very large matrix volume fraction (third layer). The obtained tensor
relates the stress in the inhomogeneity to the uniform stress in the far field applied
traction. The dilute strain concentration tensor GJ

ijkl is computed from the dilute

stress concentration tensor HJ
ijkl, the fuzzy fiber stiffness tensor CJ

ijkl and the matrix
stiffness tensor Cm

ijkl through the relation

GJ
ijkl ¼ CJ

ijop

� ��1
HJ

opqrC
m
qrkl: ð40Þ

The properties CJ
ijkl of the fuzzy fiber are computed from the composite cylinders

method, imposing essentially the two phase model of glass fiber and reinforced
nanocomposite interphase to make an effective layer. The computed dilute strain
concentration tensor can be used in a Mori–Tanaka method (in order to allow for
indirect interactions between the J phases) to identify the effective properties of a
composite with mixed fuzzy fiber types. Especially for composites with ‘‘fuzzy
fibers’’ of different orientation, Mori–Tanaka is a very efficient and easily
implemented micromechanics method, provided one accounts properly for the
interactions of the fibers with different orientation (for further details see Entchev
and Lagoudas 2002; Seidel 2007).

According to the Mori–Tanaka method, the strain concentration tensor AJ
ijkl for

each phase in aligned fiber composites is computed by the relation (Qu and
Cherkaoui 2006)

AJ
ijkl ¼ GJ

ijmn cmImnkl þ
X=
J¼1

cJGJ
mnkl

" #�1

: ð41Þ

Combining (39) and (41), we obtain the effective stiffness tensor for aligned fuzzy
fiber composites,
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Ceff
ijkl ¼ Cm

ijkl þ
X=
J¼1

cJ CJ
ijop � Cm

ijop

� �
GJ

opmn cmImnkl þ
X=
J¼1

cJGJ
mnkl

" #�1

: ð42Þ

When the fuzzy fibers have different orientation, the strain concentration tensor
AJ

ijklfor each phase is computed by the relation (Entchev and Lagoudas 2002;
Seidel 2007)

AJ
ijkl ¼ QJ

iaQJ
jbQJ

mcQJ
ndGJ

abcd cmImnkl þ
X=
J¼1

cJQJ
meQJ

nf Q
J
kgQJ

lhGJ
efgh

" #�1

; ð43Þ

where QJ
ij is the direction cosine matrix relating the Jth fiber axis orientation to the

global coordinate system (typically through a set of Euler angles). Treating each
orientation as a separate phase, (43) can be substituted into (39) to obtain the
effective stiffness tensor with mixed orientations.

It is noted that (39) through (43) and the special cases which follow can be
appropriately reduced in order from 2nd and 4th order tensors in the mechanical
case to vectors and 2nd order tensors in the electrostatic case to obtain the mul-
tiphase/multi-orientation Mori–Tanaka expressions for the effective electrical
conductivity with the current density, electric field, resistivity, and conductivity
analogously replacing the stress, strain, compliance, and stiffness, respectively.

2.3.2 Special Cases of Composites

Based on the relations described previously, we can provide expressions of the
effective properties for special cases of composites with fuzzy fibers.

Aligned fiber composites with one fuzzy fiber type

In the case of aligned fiber composites with only one type of fuzzy fibers the
effective behavior is directly computed by the proposed composite cylinders
method. Alternatively, using the Mori–Tanaka method, the effective stiffness
tensor is identified by the relation

Ceff
ijkl ¼ Cm

ijkl þ cf Cf
ijop � Cm

ijop

� �
Gf

opmn 1� cf
	 


Imnkl þ cf Gf
mnkl

h i�1
; ð44Þ

where the superscripts f and m denote the fuzzy fiber and the matrix respectively.

Composites with randomly oriented fuzzy fibers

In the case of composites with random orientation of the fibers, the knowledge of
the concentration tensors for composites with aligned fibers is sufficient in order to
use the Mori–Tanaka method (details are given in Entchev and Lagoudas 2002;
Seidel 2007). The actual concentration tensor of the phases is provided through a
careful averaging of the dilute concentration tensors for aligned fiber composites
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over all possible orientations. The effective stiffness tensor of a composite with
randomly oriented fibers is given by (Entchev and Lagoudas 2002)

Ceff
ijkl ¼ Cm

ijkl þ Cf
ijop � Cm

ijop

� �
Gf

opmn

n on o
ð1� cf ÞImnkl þ Gf

mnkl

n on oh i�1
; ð45Þ

where uf gf g denotes averaging of function u over all possible orientations and cf

is the fibers volume fraction.

3 Fuzzy Fiber Composites: Periodic Homogenization
Approach

The fuzzy fiber composite presented in Fig. 2 deviates significantly from what is
called periodic medium. The fibers are generally distributed randomly inside the
matrix material, and additionally the CNTs on the reinforced interphase are den-
sely packed in random way. For modeling purposes though we can make several
assumptions that allow us to treat it as a composite with periodic or nearly periodic
microstructure. We assume that the composite under investigation consists of
unidirectional fuzzy fibers, distributed in a hexagonal form inside the matrix
(Fig. 5a and b). The hexagonal distribution efficiently represents a random dis-
tribution of the fibers in the matrix (Hashin and Rosen 1964). A similar argument
holds for the reinforced interface, whose microstructure can be considered to
present the cylindrical periodicity of Fig. 5c.

In order to obtain the effective properties of the composite, we are using the
asymptotic expansion homogenization (AEH) method, which is a two scale
homogenization method. The AEH is a well established method (Sanchez-Palencia
1978; Bensoussan et al. 1978; Kalamkarov and Kolpakov 1997; Chung et al.
2001), in which 2 scales are taken into account, the macroscale and the microscale.
In a Cartesian coordinate system framework, the macroscale is described by the

(a) (b) (c)

Fig. 5 a Fuzzy fiber composite, b unit cell of the composite, c unit cell of the reinforced
interphase (Chatzigeorgiou et al. 2011)
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coordinates (x1; x2; x3), while the microscale by the coordinates x1
e ;

x2
e ;

x3
e

	 

, where e

is the characteristic length of the periodic cell. The idea of the method is that the
displacements are written in an asymptotic series form with respect to e and the
expanded forms of the equilibrium equations lead to e�1 terms (microequations)
and e0 terms (macroequations). From the microequations we obtain the necessary
quantities, whose averages give us the homogenized properties used in the
macroequations.

In our composite system, the unit cell of Fig. 5b consists of 3 different material
systems, the fiber, the reinforced interphase and the matrix. The interphase itself is
also a composite (Fig. 5c), whose periodic cell is represented in a cylindrical
coordinate system. Its structure includes MWCNTs in a hexagonal array (Fig. 5c),
and thus corresponds to the random distribution of the carbon nanotubes inside the
interphase. In this case, in addition to the characteristic length e, we need to
introduce the characteristic length of the interphase d. This leads to three series of
coordinates, the macroscale (x1; x2; x3), the mesoscale x1

e ;
x2
e ;

x3
e

	 

and the microscale

x1
d ;

x2
d ;

x3
d

	 

. The characteristic lengths d and e can be related with one as the square

power of the other. Here though we prefer to use two independent characteristic
lengths, in order to allow the independency of the two scales. Since the AEH
method is based on the idea of e or d tending to zero, the microscale characteristic
length d and the mesoscale characteristic length e can be seen as independently
tending to zero. If one of the two characteristic lengths is not close to zero (for
instance, if we have very few CNTs in the reinforced interphase then d is not close
to zero) then the homogenization in this scale is not necessarily accurate.

In order to solve efficiently this 3 scale problem, we split it into two 2 scale
problems in a hierarchical fashion. The first problem describes the relation
between the microscale and the mesoscale, and focuses on the computation of the
effective properties of the reinforced interphase. The interphase effective proper-
ties are then used in the second problem which deals with the connection between
the mesoscale and the macroscale. We note that, in general, the homogenization of
a fuzzy fiber composite can be put into a general framework of homogenization
with multiple metrics (for further details, see Chatzigeorgiou et al. 2011).

3.1 Micro-to-Mesoscale Transition on a Fuzzy
Fiber Composite

In this subsection we are going to investigate the effective properties of the
reinforced interphase. This intermediate layer of the fuzzy fibers composites
consists of radially aligned hollow MWCNTs and matrix. The unit cell of the
interphase is shown in Fig. 5c. The effective mechanical properties of the inter-
phase will be obtained using the asymptotic expansion homogenization method. In
this approach two scales are considered, the mesoscale with characteristic length e
and the microscale. In the sequel, for simplicity we omit the mesoscale
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characteristic length e. In cylindrical coordinates we have the meso coordinates
(r, h, z) and the micro coordinates r

d ;
h
d ;

z
d

	 

! �r; �h;�z
	 


. The choice of the cylin-
drical coordinate system has three main advantages: (a) due to the interphase
structure, there is no fast variation in the radial direction, reducing the microscale
equations to 2-D, (b) allows us to represent in a rigorous way the homogenization
procedure and (c) the periodicity of the microstructure is represented easier with
respect to �h and �z. For clarity and simplification, we denote the axes (r, h, z) as
(1, 2, 3) and we use the Einstein summation rule for double indices. Additionally,
we introduce the operators Li for the mesoscale and �Li for the microscale, where

L1 ¼
o

or
; L2 ¼

1
r

o

oh
; L3 ¼

o

oz
;

�L1 ¼
o

o�r
; �L2 ¼

1
r

o

o�h
; �L3 ¼

o

o�z
:

ð46Þ

The aim of the asymptotic expansion homogenization (AEH) method is to
identify the behavior of the composite material, when the size of the micro-
structure becomes infinitesimally small, i.e., d! 0. In all the quantities (dis-
placements, strains, stresses, stiffness components) we will use the superscript d,
denoting that we refer to a material point, which can be in the matrix, in the CNT
or in the void of the hollow region of the CNT. In the sequel, the hat above a
symbol will denote that the specific quantity refers to cylindrical coordinate sys-
tem. The strain–displacement relation of the material system in cylindrical coor-
dinates reads

êd
11 ¼ L1ûd

1; êd
22 ¼ L2ûd

2 þ
ûd

1

r
; êd

33 ¼ L3ûd
3;

êd
23 ¼

1
2

L2ûd
3 þ L3ûd

2

	 

; êd

13 ¼
1
2

L1ûd
3 þ L3ûd

1

	 

;

êd
12 ¼

1
2

L1ûd
2 þ L2ûd

1 �
ûd

2

r

� �
:

ð47Þ

Ignoring inertia and body forces, the equilibrium equations are written as

Ljr̂
d
1j þ

r̂d
11 � r̂d

22

r
¼ 0; Ljr̂

d
2j þ 2

r̂d
12

r
¼ 0; Ljr̂

d
3j þ

r̂d
13

r
¼ 0: ð48Þ

Finally, the Hooke’s law is written

r̂d
ij ¼ Ĉd

ijklê
d
kl: ð49Þ

The stiffness components Ĉd
ijkl are generally spatially dependent. At the microscale

level it depends on the micro coordinates �h and �z. The material parameters vary
very slowly in the radial direction and depend on the meso coordinate r. Due to the
geometry of the CNT (only its center is independent on r), the stiffness compo-
nents present local discontinuity with respect to r. The discontinuity appears only
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when we move from the void to the CNT and from the CNT to the matrix. So we
can write

Ĉd
ijkl ¼ Ĉijklðr; �h;�zÞ; slow variation with respect to r: ð50Þ

In the AEH method, the displacements are represented in a series expansion
form

ûd
i ¼ ûð0Þi ðr; h; zÞ þ dûð1Þi ðr; h; z; �h;�zÞ þ d2ûð2Þi ðr; h; z; �h;�zÞ þ . . .; ð51Þ

where ûð0Þi denotes the mesodisplacement and ûð1Þi , ûð2Þi e.t.c. are periodic functions
and represent the oscillating terms. The derivatives can be written in the form

Li ¼ Li þ
1
d

�Li: ð52Þ

Using (51) and (52), the strains in (47) can be written in the form

êd
ij ¼ êð0Þij þ dêð1Þij þ . . .; ð53Þ

where

êðqÞij ¼ êðq�Þij þ 1
2

�Liû
ðqþ1Þ
j þ �Ljû

ðqþ1Þ
i

� �
; q ¼ 0; 1; 2; . . . ð54Þ

and êðq�Þij are given by Eq. (47) by substituting ûd
i with ûðqÞi . From the Hooke’s law

(49) and Eq. (53) we can write the expanded form of the stresses

r̂d
ij ¼ r̂ð0Þij þ dr̂ð1Þij þ . . .; ð55Þ

where

r̂ðmÞij ¼ Ĉijklê
ðm�Þ
kl þ Ĉijkl�Lkûðmþ1Þ

l : ð56Þ

Using the expanded form of the stresses (55) and Eq. (52) the equilibrium equa-
tions take the form

1
d

�Ljr̂
ð0Þ
1j

� �
þ Ljr̂

ð0Þ
1j þ

r̂ð0Þ11 � r̂ð0Þ22

r
þ �Ljr̂

ð1Þ
1j þ d. . . ¼ 0;

1
d

�Ljr̂
ð0Þ
2j

� �
þ Ljr̂

ð0Þ
2j þ 2

r̂ð0Þ12

r
þ �Ljr̂

ð1Þ
2j þ d. . . ¼ 0;

1
d

�Ljr̂
ð0Þ
3j

� �
þ Ljr̂

ð0Þ
3j þ

r̂ð0Þ13

r
þ �Ljr̂

ð1Þ
3j þ d. . . ¼ 0:

ð57Þ

According to the classical procedure of the AEH method, the micro-equations
are defined from the d�1 terms

�Ljr̂
ð0Þ
ij ¼ 0; i ¼ 1; 2; 3; ð58Þ
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which, using Eq. (56) for m = 0, can be written as

�Lj Ĉijkl

� �
êð0�Þkl þ �Lj Ĉijkl

�Lkûð1Þl

� �
¼ 0: ð59Þ

In Eq. (59) êð0�Þkl depends only on the meso-displacements ûð0Þi . By assuming that

ûð1Þi ¼ N̂mn
i êð0�Þmn ; ð60Þ

the micro-equations (59) are written

�Lj Ĉijmn þ Ĉijkl
�LkN̂mn

l

� �
¼ 0: ð61Þ

The final form of the micro-equations are solved for the unknown functions
N̂mn

i , which are periodic in the ð�h;�zÞ space. Also, we need to impose the necessary
continuity conditions

N̂mn
i

� �� �
¼ 0; Ĉijmn þ Ĉijkl

�LkN̂mn
l

� �
nj

h ih i
¼ 0; ð62Þ

where ni is the unit normal vector to the surface of discontinuity and u½ �½ � ¼ uþ � u�

denotes the jump of a quantity u across this surface.
The meso-equations can be obtained from the d0 terms of the equilibrium

equations. When d approaches zero, periodic functions attain their weak limit,
which is equal to the area integral of the functions in the periodic unit cell. We
introduce the area integral symbol on the area A of the 2-D unit cell in ð�h;�zÞ,

uh ih i ¼ r

A

Z �z0=2

��z0=2

Z �h0=2

��h0=2
uðr; �h;�zÞd�hd�z: ð63Þ

By setting xi as the outer unit normal vector to the boundary and oA the boundary

surface of the unit cell, we can use the Gauss theorem and the periodicity of r̂ð1Þ1j to
show that

�Ljr̂
ð1Þ
ij

D ED E
¼ r

A

Z

oA
r̂ð1Þij xjdS ¼ 0: ð64Þ

The meso-equations then are obtained from the weak limit of the d0 terms of the
equilibrium equations

Lj r̂ð0Þ1j

D ED E
þ

r̂ð0Þ11

D ED E
� r̂ð0Þ22

D ED E

r
¼ 0;

Lj r̂ð0Þ2j

D ED E
þ 2

r̂ð0Þ12

D ED E

r
¼ 0; Lj r̂ð0Þ3j

D ED E
þ

r̂ð0Þ13

D ED E

r
¼ 0;

ð65Þ
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where

r̂ð0Þij

D ED E
¼ Ĉijmn þ Ĉijkl

�LkN̂mn
l

D ED E
êð0�Þmn : ð66Þ

From the last equation it becomes obvious that the effective, or homogenized,
properties Cint

ijmn of the reinforced interphase are given by

Cint
ijmn ¼ Ĉijmn þ Ĉijkl

�LkN̂mn
l

D ED E
; ð67Þ

where the functions N̂mn
i are determined by solving the Eqs. (61). In the microlevel

and at a specific radius r, Eqs. (61) represent 2 anti-plane strain problems and 4
plane strain problems. Due to the large difference in �h and �z scales, it is more
preferable to solve the micro-equations in the r�h� �z space.

A useful characteristic of the AEH method is that it can provides information
about the micro-stresses and micro-strains. Using the obtained effective properties

of the interphase, the mesoscale problem can be solved and the meso-strains êð0�Þmn

can be computed. Then the micro-stresses and micro-strains are obtained from the
solution of the unit cell problem (61), using the equations

r̂ð0Þij ¼ Ĉijmn þ Ĉijkl
�LkN̂mn

l

� �
êð0�Þmn ; êð0Þij ¼ êð0�Þij þ 1

2
�LiN̂

mn
j þ �LjN̂

mn
i

� �
êð0�Þmn : ð68Þ

The proposed methodology can also be extended in the case of thermoelasticity
(Chatzigeorgiou et al. 2012b).

3.2 Meso-to-Macroscale Transition on a Fuzzy
Fiber Composite

Having defined the effective properties of the reinforced interphase, the macro-
scopic behavior of the actual composite can be determined using again the AEH
method. The actual composite can be described easier in Cartesian coordinates,
which necessitates the transfer of the effective properties of the interphase from
cylindrical to Cartesian coordinates. The obtained interphase effective properties
can be transformed from a cylindrical coordinates form Cintðr; h; zÞ to a Cartesian

coordinates form ~C
intðx1; x2; x3Þ according to the rotation formula for fourth order

tensors, ~Cint
ijkl ¼ RimRjnRkoRlpCint

mnop; with

R ¼
cos h � sin h 0
sin h cos h 0

0 0 1

0
@

1
A: ð69Þ

According to the analysis of the previous subsection, the effective coefficients of
the reinforced interphase are functions of the radius r, where r2 ¼ x2

1 þ x2
2.
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The other two material components of the composite, the matrix and the fiber, are
generally assumed as homogeneous isotropic or transversely isotropic materials,
with the axis of symmetry parallel to the axis of the fiber. Under these conditions,
the application of the AEH method for the second periodic problem with char-
acteristic length (Fig. 5b) follows the standard approach (Sanchez-Palencia 1978).

The periodic homogenization approach is a rigorous solution on the three scale
problem of a fuzzy fiber composite when a) the CNTs are distributed radially and
with periodic fashion in the reinforced interface and b) the fuzzy fibers are dis-
tributed periodically inside the matrix material. Under these conditions the method
provides information about the effective response of the reinforced interface and
the composite, as well as the distribution of stresses and strains in all scales, which
is important in case we want to detect possible positions that damage can occur.

4 Examples

In the following examples we consider E glass fibers with radius 5 lm coated with
radially aligned hollow carbon nanotubes. The CNTs we study here are considered
to be structured with 5 walls of 0.34 nm thickness each. The CNTs have internal
radius 0.518 nm and external radius 2.218 nm. The fuzzy fibers are embedded in
EPIKOTE 862 resin. The properties of the CNT walls are assumed the same as the
properties of the graphene. The mechanical electrostatic properties of the glass
fibers, the resin and the graphene are shown in Table 1. It is noted that when the
thicknesses of the nanocomposite interphase are 1 lm and 2 lm respectively, the
percolation concentrations of fuzzy fiber are 0.69 and 0.51, which are used as
upper limits for the volume fraction of glass fiber in the microscale CCM model.

4.1 Fuzzy Fiber Composite Effective Mechanical Properties

In the periodic homogenization approach, the computations are carried out with
the finite element program COMSOL Multiphysics. Since the periodic structure of
the reinforced interphase depends on the radius, we needed to solve numerically
several unit cells. Each unit cell represents a different profile of the interphase with
respect to radius and the volume fraction of the CNTs decreases as the radius
increases (see Fig. 6) The arrangement of CNTs is exactly hexagonal only at the
layer between the carbon fiber and the reinforced interphase. As we move closer to
the matrix, the length of the unit cell at the r�h direction elongates, disturbing the
hexagonal symmetry. Since the homogenization problem reduces to 2D problem,
we use 2D FE meshing for the reinforced interphase (Chatzigeorgiou et al. 2011).
The periodicity boundary condition is imposed by applying the same N̂mn

i on
opposite sides of the unit cells. For the purposes of the numerical analysis, we use
quadratic Lagrange finite elements.
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The effective properties of the interphase are obtained in this analysis for
59.09 % CNT volume fraction and some of the results are shown in Fig. 7. This
volume fraction has been chosen such as at the connection between the CNTs and
the glass fiber the CNT area fraction is 65 %. As it can be seen from these figures,
the reinforced interphase becomes more cylindrically orthotropic with the increase
of radius. From the results it is clear that the effective properties of the interphase
are strongly affected by the radius. This radial dependency can be simulated by
assuming that all the mechanical properties can be described with fifth order
polynomials with respect to radius. In the same Figures we also present the
average value of the properties (under the hypothesis of constant CNT volume
fraction over the interphase thickness) that is used in the CCM method and
comparison with the results obtained for E-glass fiber composites.

Table 1 Mechanical and electrostatic properties of fuzzy fiber components

E glass fiber
Axial Young’s modulus 78 GPa
Axial Poisson’s ratio 0.22
Electrical conductivity 2.49E-13 S/m
EPIKOTE 862 resin
Young’s modulus 3 GPa
Poisson’s ratio 0.3
Electrical conductivity 6.7E-7 S/m
Graphene
Young’s modulus 1100 GPa
Poisson’s ratio 0.14
Electrical conductivity 1.0E5 S/m

AGY 2006; Resolution Performance Products 2001; Ebbesen et al. 1996; Seidel and Lagoudas
2006, 2009

(a) (b)

Fig. 6 Effective properties for reinforced interphase with thickness 1 lm: a transverse Young’s
moduli for CNT volume fraction 59.09 %, b axial shear moduli for CNT volume fraction 59.09 %.
The dashed line indicates the average property that is used in the CCM method. In the same figures
we show several unit cells of the reinforced interphase as we move from the fiber to the resin
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In the second step of the homogenization, the interphase is substituted by the
effective medium, which is introduced in the mesoscale unit cell. The program we
used for the numerical results is again the COMSOL Multiphysics software. The
periodicity in the unit cell is imposed in a similar way as in the case of the
microscale. For the purposes of the numerical analysis, we use quadratic Lagrange
finite elements. The spatially variable homogenized moduli of the reinforced
interphase are introduced in COMSOL as fifth order polynomials in the radial
direction.

As it can be seen in Fig. 7, transferring the effective properties from the
cylindrical to Cartesian coordinates produces a fully anisotropic behavior for the
reinforced interphase. Terms like C16 are no longer zero, only the average C16 over
the whole interphase becomes zero.

In Fig. 8 we present the effective properties of a fuzzy fiber composite with
1 lm reinforced interphase thickness and for 59.09 % CNT volume fraction in the
interphase. These plots have been considered for fuzzy fiber volume fractions that
vary until the percolation threshold of 69 % (or, equivalently, E-glass volume
fraction 47.92 %), i.e. the volume fraction where the nanocomposite interphase
regions would be being to touch and interact. We observe that the two approaches,
i.e. the composite cylinders method (CCM) and the asymptotic expansion
homogenization (AEH) are in a good agreement except in the case of the trans-
verse Young’s and transverse shear modulus for very high volume fractions. In the
same graphs we present the effective properties of E-glass fiber composites. The
results indicate that at E-glass volume fractions above 40 %, the fuzzy fiber
provides an increase between 35 and 50 % in the effective properties compared to
pure E-glass fibers. It is also interesting to note that, by increasing the interphase
thickness from 1 to 2 lm, we obtain 17 and 15 % increase in the transverse
Young’s and transverse shear modulus respectively.

As it was discussed in the composite cylinders approach, CCM allows, in
conjunction with the Mori–Tanaka method, the computation of effective properties
for more complicated composites with fuzzy fibers. To demonstrate this ability we
perform two case studies.

Fig. 7 Distribution of the stiffness coefficients C11 and C16 in the mesoscale unit cell (the units
are GPa) for a composite with 15 % fuzzy fiber volume fraction
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In the first case we consider mixed type composites where E-glass fibers and
fuzzy fibers are present. Table 2 illustrates the transverse composite properties for
mixed fiber types with several fractions of E-glass and fuzzy fibers. As we observe,
when in each four E-glass fibers two of them are substituted by fuzzy fibers, we
have an increase of 13.5 and 11.6 % in the transverse Young’s and transverse
shear modulus respectively. When in each six E-glass fibers 1 of them is substi-
tuted by fuzzy fiber, the same properties increase by 8.6 and 7.4 % respectively.

In the second case we consider E-glass fiber composite and fuzzy fiber com-
posite where the fibers have random orientation. Fig. 9 illustrates the composites
effective properties as a function of the E-glass volume fraction. In the fuzzy fiber
composite case, the total fiber volume fraction differs from the E-glass volume
fraction due to the interphase presence. Thus, for example, 49.72 % E-glass vol-
ume fraction leads to 69 % fuzzy fiber volume fraction. The fiber random orien-
tation has the result that the composites behave isotropically. As we observe, for
large fiber volume fractions the presence of the CNTs causes significant increase in

(a) (b)

Fig. 8 Effective properties of fuzzy fiber composite with interphase thickness 1 lm: a transverse
Young’s modulus for CNT volume fraction in the interphase 59.09 %, b shear moduli for CNT
volume fraction in the interphase 59.09 %

Table 2 Effective mechanical properties of mixed E-glass and fuzzy fiber components

Mixed fiber composites

Fraction of fibers Volume fraction of fibers In-plane Young’s
modulus (GPa)

In-plane shear
modulus (GPa)

4 E-glass/0 fuzzy fiber 40 % E-glass/0 % fuzzy fiber 6.22 2.24
2 E-glass/2 fuzzy fiber 20 % E-glass/28.8 % fuzzy fiber 7.06 2.50
0 E-glass/4 fuzzy fiber 0 % E-glass/57.6 % fuzzy fiber 8.10 2.81
6 E-glass/0 fuzzy fiber 60 % E-glass/0 % fuzzy fiber 9.63 3.50
5 E-glass/1 fuzzy fiber 50 % E-glass/14.4 % fuzzy fiber 10.46 3.76
3 E-glass/3 fuzzy fiber 30 % E-glass/43.2 % fuzzy fiber 12.57 4.40
0 E-glass/6 fuzzy fiber 0 % E-glass/86.4 % fuzzy fiber 17.60 5.80

The fuzzy fibers have 1 lm interphase thickness and 59.09 % CNTs in the interphase
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the composite mechanical properties. For approximately 50 % E-glass volume
fraction, the reinforced interphase provides approximately 30 % increase in both
Young’s and shear modulus.

4.2 Fuzzy Fiber Composite Effective Electrostatic Properties

The nanoscale CCM model is first used to obtain the effective electrostatic prop-
erties of the well-dispersed and aligned CNTs in the polymer matrix, as shown in
Table 3. It is observed that with the increase of volume fraction of CNTs in the

interphase region, the conductivities jð2Þrr , jð2Þhh , and jð2Þzz are all enhanced. It is also

noticeable that the radial conductivity jð2Þrr is 10 orders higher than the values of the
other two directions due to the radial alignment of the CNTs in the interphase region.

By applying the microscale CCM model, the effective conductivities of the
aligned fuzzy fiber reinforced nanocomposites can be obtained. When the inter-
phase thickness is 1 lm, the change of effective axial conductivity jeff

zz of the
nanocomposites with the change of volume fraction of glass fiber is shown in
Fig. 10a. It can be observed that with the increase of volume fraction of glass fiber,

(a) (b)

Fig. 9 Effective properties of composites with randomly oriented fuzzy fibers and E-glass fibers:
a Young’s modulus, b shear modulus. In the fuzzy fibers the interphase thickness is 1 lm and the
CNT volume fraction in the interphase is 59.09 %

Table 3 The effective conductivities of the fuzzy fiber interphase region as obtained from the
nanoscale CCM model

Cases 1 lm &
45.45 %

1 lm &
59.09 %

1 lm &
72.73 %

2 lm &
41.67 %

2 lm &
54.17 %

2 lm &
66.67 %

jð2Þrr
4.297E4 5.587E4 6.876E4 3.940E4 5.122E4 6.303E4

jð2Þhh ¼ jð2Þzz
1.778E-6 2.593E-6 4.223E-6 1.619E-6 2.243E-6 3.334E-6

i.e. jð2Þrr ¼ ĵð2Þeff
zz and jð2Þhh ¼ jð2Þzz ¼ ĵð2Þeff

rr ¼ ĵð2Þeff
hh (Unit S/m)

Multiscale Modeling of Multifunctional Fuzzy 167



the effective axial conductivity of the pure glass fiber reinforced nanocomposites
become lower due to the glass fiber’s low conductivity relative to the matrix.
However, with the interphase region added to the surface of glass fiber, the trend is
reversed as the axial interphase conductivity begins to exceed that of the matrix
with increase in MWCNT concentration. For example, with the volume fraction of
glass fiber of 0.51, when the average volume fraction of MWCNTs in the inter-
phase region is increased from 45.45 to 72.73 %, the effective axial conductivities
of the fuzzy fiber composites are increased by 76.3, 132, and 244 %, respectively,
compared to the pure glass fiber case. Similar increases can be found in the 2 lm
thickness interphase cases where, at the volume fraction of glass fiber of 0.51, the
effective axial conductivities of the fuzzy fiber composites are increased by 143,
237, and 400 % for interphase average MWCNT volume fractions of increasing
from 41.67 to 66.67 %, respectively. These observations are consistent with the
three phase rule of mixtures which results from the axial CCM electrostatic BVP.
With the thickness of the nanocomposite interphase fixed, as the glass fiber volume
fraction increases, so too does the nanocomposite interphase volume fraction,
thereby rapidly decreasing the matrix volume fraction. With the axial conductivity
of the interphase being an order of magnitude larger than the matrix, the dis-
placement of additional matrix material in moving to the larger interphase
thickness leads to substantially larger increases in the effective axial conductivity
of the composite.

The change of effective transverse conductivity jeff
rr of the aligned fuzzy fiber

composites with the change of volume fraction of glass fiber is shown in Fig. 10b
and demonstrates similar trends to those observed in the effective axial conduc-
tivity, i.e. increasing conductivity with increasing MWCNT concentration in the
nanocomposite interphase. However, despite the transverse conductivity of the

nanocomposite interphase, jð2Þrr , being eight orders of magnitude larger than the
axial interphase conductivity, jð2Þzz (which is equal to theta transverse conductivity,

jð2Þhh ), the increases in fuzzy fiber composite effective transverse conductivity are
much smaller than those observed for the composite axial conductivity.

Fig. 10 a The axial effective conductivity jeff
zz and b comparison of the transverse effective

conductivity jeff
rr as obtained from CCM and FEM for aligned fuzzy fiber composites with the

change of volume fraction of glass fiber when the interphase thickness is 1 lm
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In confirming these observations, a comparison of the hierarchical electrostatic
CCM model with a finite element model (FEM) based on the 2D microscale
hexagonal representative volume elements (RVE) (Hammerand et al. 2007) is
constructed. For the fuzzy fiber’s interphase region, the nanoscale electrostatic
properties are taken from the nanoscale CCM model and transformed from the
Cylindrical coordinate system in the nanoscale to the Cartesian coordinate system
in the microscale resulting in h-dependent interphase conductivities as shown in
Fig. 11a. Three electrostatic periodic boundary conditions (PBCs) are indepen-
dently applied to the microscale RVE, with the energy equivalence method used to

obtain the effective electrostatic properties jeff
11 , jeff

22 , and jeff
12 (Ren and Seidel

2013). It is found that jeff
11 and jeff

22 are equal to each other, and jeff
12 is zero, which

confirms the accuracy of the transversely isotropic assumption as in the CCM
model. As an illustration, the potential, electric field, and current density contours

for obtaining jeff
22 are shown in Fig. 11b. The transverse effective electrostatic

properties as obtained from the FEM model compare well with the CCM model as
seen in Fig. 10b, which again confirms the accuracy of the material symmetry
assumptions in the hierarchical CCM model.

In contrast to the three-phase rule of mixtures behavior of the axial conduc-
tivity, the transverse properties obtained from the CCM and FEM are instead
matrix dominated. Yet it is worth noting that relative to the observed changes in
the mechanical properties, the increases in both the axial and transverse effective
fuzzy fiber electrical conductivity are of sufficient significance to be of practical
application in making electrically conductive polymers.

Fig. 11 a Distribution of electrical conductivities and b distribution of electric potential U,
electric field E2, and current density J2 in the 2D microscale hexagonal RVE when a periodic

potential difference of DU ¼ E
_

0 �W2 is applied in Y direction (vertical), in which E0 is a constant
macroscale electric field and W2 is the width of the 2D microscale RVE in the Y direction. The 2D
microscale RVE represents the nanocomposites in which there are 30 % glass fibers with a 2 lm
thickness interphase, and the average volume fraction of CNTs within the interphase is 54.17 %
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For composites with randomly dispersed glass or fuzzy fibers, the Mori–Tanaka
method is used to obtain the effective electrostatic properties. As seen in Fig. 12,
for the nanocomposites with randomly dispersed fuzzy fibers, the effective con-
ductivity jeff of the composites is isotropic, and lies between the axial conductivity
jeff

zz and the transverse conductivity jeff
rr of the composites with aligned fibers. For

the nanocomposites with random dispersion of fiber orientations, the effective
properties are obtained by averaging the fiber response over all the orientations
such that the net isotropic symmetry lies between the contributing bounding values
of the local orientation axial and transverse conductivities. Also of note in Fig. 12
is that, due dominance of the polymer matrix in the transverse direction, the
effective conductivities of the composites with randomly dispersed glass or fuzzy
fibers are closer to the effective transverse conductivities as opposed to the
effective axial conductivities, thereby indicating the potential importance of con-
trolled placement and alignment of fuzzy fibers in applications.

For the composites with a mixture of aligned glass and fuzzy fibers, as seen in
Fig. 13a, even with a small fraction of the glass fibers being fuzzy fibers, the axial
effective conductivity jeff

zz of the composite can be significantly increased. How-
ever, as seen in Fig. 13b, the transverse effective conductivity jeff

rr of the com-
posites is only marginally influenced by the replacement of pure glass fibers with
fuzzy fibers. This indicates not only the importance of controlling alignment of
fibers within a composite, but also the level of control over ply properties offered
by specifying glass/fuzzy fiber mixture ratios.

Fig. 12 The change of effective conductivities of the nanocomposites with the change of volume
fraction of glass fiber/glass fiber core by using the Mori–Tanaka method
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5 Conclusion

By taking advantage of the cylindrical orthotropic symmetry, analytic hierarchical
mechanical and electrostatic CCM models are developed to obtain the effective
mechanical and electrostatic properties of the nanocomposites with well dispersed
and aligned fuzzy fibers. As a comparison, an asymptotic expansion homogeni-
zation approach for the mechanical and a FEM model for the electrostatic case are
developed, which explicitly account for the anisotropic material properties of the
fuzzy fiber interphase region to obtain the material response. It is found that the
effective mechanical and electrostatic properties as obtained from the CCM
models and the numerical methods are in good agreement, which verifies the
accuracy of the hierarchical CCM models. In addition, the Mori–Tanaka model is
used to obtain the effective mechanical and electrostatic properties of the nano-
composites with randomly dispersed fuzzy fibers or with mixtures of aligned fuzzy
fibers and structural fibers. From these cases the importance of controlling
alignment is observed in the sensitivity of the aligned direction properties to the
presence and properties of the nanocomposite interphase, particularly in terms of
effective electrical conductivity. It is further noted that controlling glass/fuzzy
fiber mixture ratio can offer a means to achieving desired unidirectional ply
properties for stiffening and sensing applications. The analytic hierarchical CCM
models therefore show promise as relatively inexpensive preliminary design tools
for fuzzy fiber enriched composite laminates.
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Fig. 13 a The change of effective axial conductivity jeff
zz and b the change of effective transverse

conductivity jeff
rr of composites with volume fraction of glass fiber/glass fiber core. Note In the

mixture of glass and fuzzy fiber cases, the volume fraction reported for fuzzy fiber is the one of
the glass fiber core which is kept constant at 10, 20 and 30 %, respectively, while the volume
fraction of the pure glass fibers increases from 0–0.6
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Geometry–Property Relation
in Corrugated Nanocarbon Cylinders

Hiroyuki Shima

Abstract This chapter provides an overview of the geometry–property relation in
cylindrical nanocarbon materials. Progressive research in the past years has
unveiled an intriguing correlation between geometric modulation and physical
properties that were experimentally observed or theoretically predicted for nano-
carbon cylinders. The first half of this chapter is devoted to axially corrugated
nanocarbon cylinders, so-called peanut-shaped C60 polymers, in which axial cor-
rugation induces drastic changes in electronic and optical properties that are dis-
tinct from the case of straight, noncorrugated cylinders. In the second half, we will
see that the application of hydrostatic pressure to carbon nanotubes yields another
class of corrugation, i.e., flower-shaped cross-sectional deformation. Molecular
dynamics simulations of such radial corrugation and its consequences to physi-
cochemical properties of multiwall nanotubes are also discussed.

1 Introduction

In the past decade, advanced synthesis techniques have enabled the fabrication of
various nanometric materials with complex geometry, especially those made of
carbon (Terrones and Terrones (2003); Krasheninnikov and Nordlund (2010); Mao
et al. (2011); Gupta and Saxena (2012)). These materials have exhibited unprec-
edented properties not seen in macroscopic structures, thus triggering the devel-
opment of next-generation nanodevices. More interestingly, low-dimensional
nanocarbon materials provide an experimental platform for exploring the surface
curvature effects on the quantum transport of the systems. A better understanding
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and more accurate modelling of their basic properties are therefore of significant
importance for manufacturing and applying nanodevices.

From quantum aspects, nonzero surface curvature in curved nanocarbons leads
to the occurrence of a curvature-induced effective potential field that affects the
quantum states of mobile electrons. It was theoretically suggested that an electron
moving in a thin curved layer experiences potential energy whose sign and
magnitude depend on the local geometric curvature. Such a curvature-induced
potential yields dramatic changes in the ballistic electron transport and the col-
lective excitations realized on curved nanocarbon materials. Profound conse-
quences can be seen in a particular class of nanocarbon materials, called peanut-
shaped C60 polymers, that are endowed with periodically modulated surface cur-
vature. Intensive studies in the past few years have revealed that the C60 polymers
exhibit a remarkable interplay between the curved geometry and the quantum
transport anomaly, as presented in the first half of this chapter. It is also note-
worthy that curvature-induced anomalies arise also in classical spin systems
(Shima and Sakaniwa (2006); Baek et al. (2009)), which imply untouched prop-
erties of quantum counterparts.

The second half deals with the nontrivial mechanics of multiwall carbon
nanotubes (MWNTs) under high pressure (Shima and Sato (2013)). An important
mechanical feature of carbon nanotubes is their high flexibility in the radial
direction. The radial stiffness of an isolated carbon nanotube is much less than its
axial stiffness, which results in an elastic deformation of the cross section under
hydrostatic pressure (Shima (2012)). Such a pressure-induced radial deformation
yields significant changes in electronic and optical properties, indicating the rel-
evance of the deformation in carbon nanotube applications. Intuitively, the mul-
tiple-shell structure of MWNTs is thought to enhance the radial stiffness of
MWNTs. However, when the number of concentric walls is much greater than
unity, the outside walls have to have large diameters, so external pressure may lead
to a mechanical instability in the outer walls. This local instability implies a novel
cross-sectional shape transition of MWNTs (Shima and Sato (2008); Shima et al.
(2010)), as will be demonstrated in the subsequent discussion.

2 Quantum Mechanics on Curved Surfaces

To begin, we briefly survey the theoretical description of quantum mechanics on
curved surfaces. Generally, when the motion of a quantum particle is constrained
to a curved surface, the surface curvature produces an effective potential field that
affects the spatial distribution of the wave function amplitude. Such a geometric
curvature effect on quantum states has been debated since the early-stage devel-
opment of quantum mechanics theory (De Witt (1952, 1957)). In recent years, the
effect has received renewed attention in the field of nanoscience (Zhang et al.
(2007); Cuoghi et al. (2009); Shima et al. (2009); Szameit et al. (2010); Ortix et al.

178 H. Shima



(2011)), mainly owing to technological progress that has enabled the fabrication of
low-dimensional nanostructures with complex geometry.

The motion of quantum particles constrained to a two-dimensional curved
surface is described by one of the two formalisms given below. One is the intrinsic
quantization approach (De Witt (1952)), in which the motion is constrained to the
surface a priori; namely, a classical Hamiltonian is firstly constructed from
coordinates and momentum intrinsic to the surface, then the system is quantized
canonically. The other approach is the confining-potential approach (Jensen and
Koppe (1971); da Costa (1982)), in which the particle is assumed to be confined by
a strong force that acts normal to the curved surface. In the latter approach, the
quantization of the motion perpendicular to the curved surface results in an
effective potential that depends on the local surface curvature. Of the two for-
malisms, the latter is preferred for considering solid-state physics, since it offers a
physically more realistic model of quantum confinement to curved surfaces. In
fact, in any real physical system, constrained motion is the result of a strong
confining force, not of an ideally zero-thickness (ı.e., exactly ‘‘two’’-dimensional)
host material.

Let us consider noninteracting spinless electrons confined to a general two-
dimensional curved surface S embedded in a three-dimensional Euclidean space. A
point p on S is represented by

p ¼ ðxðu1; u2Þ; yðu1; u2Þ; zðu1; u2ÞÞ;

where ðu1; u2Þ is a curvilinear coordinate spanning the surface and ðx; y; zÞ are the
Cartesian coordinates in the embedding space. We now use the notation
pi � op=oui ði ¼ 1; 2Þ to introduce the following quantities:

gij ¼ pi � pj; hij ¼ pij � n; n ¼
pi � pj

jpi � pjj
:

Here, gij are (covariant) components of the metric tensor describing the surface,
and n is the unit vector normal to the surface. Using the confining-potential
approach (Jensen and Koppe (1971); da Costa (1982)), we obtain the Schrödinger
equation for noninteracting electron systems on curved surfaces as follows:

� �h2

2m�
1ffiffiffi
g
p
X2

i;j¼1

o

oui

ffiffiffi
g
p

gij o

ouj
þ ðH2 � KÞ

" #
W ¼ EW; ð1Þ

where g ¼ detðgijÞ, gij ¼ g�1
ij (Shima and Nakayama (2009)) and m� is the effective

mass of electrons. The quantities

K ¼ h11h22 � h2
12

g
and H ¼ g11h22 þ g22h11 � 2g12h12

2g
ð2Þ

are the so-called Gaussian curvature and mean curvature, respectively, both of
which are functions of ðu1; u2Þ.
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Attention should be paid to the term proportional to H2 � K in Eq. (1). This
term is the effective scalar potential induced by surface curvature. Due to the
presence of the effective potential, electrons cannot move around freely on the
surface even in the absence of impurities or other interacting entities. This implies
that the quantum transport of low-dimensional nanostructures can be controlled by
altering the local geometric curvature. In fact, a subtle geometric deformation
could induce a drastic change in the ballistic electron transport along nanoscale
cylindrical surfaces (Marchi et al. (2005); Taira and Shima (2007)). Furthermore,
periodic modulation in surface curvature strongly affects the collective motion of
quantum excitations in nanocylindrical systems, as explained in the subsequent
three sections.

3 Tomonaga-Luttinger Liquid State of a Peanut-shaped
C60 Polymer

An important consequence of geometric curvature shows up in the case where the
curved nanomaterial forms a quasi-one-dimensional cylindrical shape. It is well
known that in a one-dimensional electron system, the conventional Fermi-liquid
theory breaks down so that the system is in a Tomonaga-Luttinger liquid (TLL)
state (Voit (1994)). In a TLL state, many physical quantities exhibit a power-law
dependence stemming from the absence of single-particle excitations near the
Fermi energy. This situation naturally raises the question as to how geometric
distortion affects the TLL behaviour of quasi-one-dimensional curved systems.

Peanut-shaped C60 polymers (Onoe et al. (2003, 2007)) are exemplary materials
to be considered for studying TLL behaviour (see Fig. 1). They are synthesized by
electron-beam irradiation of pristine two-dimensional C60 films, having coalesced
structures via the general Stone–Wales rearrangement (Stone and Wales (1986))
between adjacent C60 molecules (see Fig. 2). The C60 polymer belongs to a class
of p-electron conjugated systems, thus exhibiting metallic properties. In addition,
they are thin, long, and hollow tubules whose radius is periodically modulated
along the tube axis; this implies that the polymer has both positive and negative
Gaussian curvatures (see Fig. 3), which thus means it belongs to a novel class of
nanocarbon materials distinct from other well-known p-electron systems such as
carbon nanotubes (Shima and Sato (2013)) and graphene ribbons (Charlier et al.
(2008)). Hence, the periodic surface curvature intrinsic to the systems will produce
sizable effects on their TLL properties.

The curvature effect on the TLL nature of the C60 polymers can be derived
theoretically by using the continuum approximation,1 wherein the polymer is to be

1 Mapping the discrete atomic structure of one-dimensional C60 polymers to a continuum
curved surface is based on the result of first-principles calculations (Beu et al. (2005)), which
indicated that p electrons on the polymers are almost free from their atomic configurations.
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regarded as a hollow tube with a periodically varying radius represented by
p ¼ ðrðzÞ cos h; rðzÞ sin h; zÞ (see Fig. 4). The tube radius rðzÞ is periodically
modulated in the axial z direction as

rðzÞ ¼ r0 �
dr

2
þ dr

2
cos

2p
k

z

� �
; ð3Þ

where the parameters r0 and dr are introduced to express the maximum and
minimum of rðzÞ as r0 and r0 � dr, respectively. Because of rotational symmetry,

Fig. 1 Structures of three types of peanut-shaped fullerene tubes. After Ref. Nakayama et al.
(2007)

Fig. 2 Diagram of the
Stone–Wales transformation
that yields a pair of 5–7
defects
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the eigenfunctions of the system have the form Wðz; hÞ ¼ einhwnðzÞ. Thus, the
problem reduces to the one-dimensional Schrödinger equation

� �h2

2m�
D � n2

r2
þðH2 � KÞ

� �
wnðzÞ ¼ EwnðzÞ; ð4Þ

where

D ¼ 1
rf

d

dz

r

f

d

dz
; f ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
; K ¼ � r00

rf 2
; H ¼ f 2 � rr00

2rf 3

with r0 � dr=dz.
Equation (4) can be simplified by using a new variable n ¼ nðzÞ ¼

R z
0 f ðgÞdg,

which corresponds to the line length along the curve on the surface with a fixed h.
Straightforward calculation yields (Shima et al. (2009))

�a2 d2

dn2 þ UnðnÞ
� �

wnðnÞ ¼ ewnðnÞ; e ¼ 2m�a2E

�h2
ð5Þ

with

Fig. 3 Hypothesized atomic configuration of a peanut-shaped C60 polymer with an uneven
peanut-shaped structure. The area coloured in light blue represents a quasi-two-dimensional
hollow curved space within which the motion of p electrons is constrained. Alternation in the sign
of Gaussian curvature (designated by k in the plot) along the tubular axis is highlighted by a
coloured map. After Ref. Onoe et al. (2012)

λ

rδ 0rFig. 4 Schematic illustration
of a quantum hollow cylinder
with periodic radius
modulation. After Ref. Shima
et al. (2009)
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UnðnÞ ¼
ðn2 � 1

4Þa2

r2
� r002a2

4f 6
;

where r, r00, and f are regarded as functions of n using the inverse relation
z ¼ z�1ðnÞ. To derive Eq. (5), we introduced the length scale, a, and then multi-
plied both sides of Eq. (4) by 2m�a2=�h2 to make the units of Un and e
dimensionless.

Notice that, by the definition of nðzÞ, Un is periodic with a period K ¼ nðkÞ
depending on r0 and dr (as well as k). Figure 5 shows the spatial profile of Un

within one period; throughout the present work, we fixed r0 ¼ 4:0 and k ¼ 8:0 in
units of a by simulating the geometry of actual peanut-shaped C60 polymers whose
geometry is reproduced by imposing a ¼ 1 Å. We found that Un takes extrema at
n ¼ 0 (or K) and n ¼ K=2, where r takes the maximum ðr ¼ r0Þ and the minimum
ðr ¼ r0 � drÞ values, respectively.

We are now ready to evaluate the TLL exponent using a theory based on the
confining-potential approach. Consider the Coulombic interactions between spin-
less electrons. The interactions make the electron–hole pairs share the ground state
of the noninteracting electron system, wherein the most strongly affected states are
those lying in the vicinity of EF . As a consequence, the single-particle density of
states nðxÞ near EF exhibits a power-law singularity of the following form (Voit
(1994)):

nðxÞ / j�hx� EFja; a ¼ bþ b�1

2
� 1: ð6Þ

The explicit form of b is derived by using the bosonization procedure (Voit
(1994)) as follows:

b ¼ lim
q!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hvF þ g4ðqÞ � g2ðqÞ
2p�hvF þ g4ðqÞ þ g2ðqÞ

s
: ð7Þ

Here, vF ¼ �h�1dE=dkjk¼kF
is the Fermi velocity, and g4ðqÞ ¼ Vðq;mÞ and

g2ðqÞ ¼ Vðq;mÞ � Vð2kF;mÞ are q-dependent coupling constants. Vðq;mÞ is the
Fourier transform of the screened interaction,

VðrÞ ¼ � e2

4pejrj e
�jjrj; ð8Þ

where e is the dielectric constant and j is the screening length. To derive the
exponent a, therefore, we need to calculate vF , g4, and g2 under given geometric
conditions; see Ref. Shima et al. (2009) for the detailed mathematical
manipulation.

Figure 6 shows the dr dependencies of b and a for different kF values. The
interaction-energy scale e2=ð4peaÞ is set to be 1:1 in units of �h2=ð2m�a2Þ to mimic
those of C60-related materials (Hebard et al. (1991); Oshiyama et al. (1992)). The
salient features of Fig. 6 are the significant decrease in b and increase in a with an
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increase in dr for dr=a [ 2:5. Such dr-driven shifts in b and a are attributed to the
effects of geometric curvature on the nature of TLL states. In fact, an increase in dr
amplifies the curvature-induced effective potential UnðnÞ (see Fig. 5), thus yield-
ing a monotonic decrease in vF at dr=a [ 2:5. The decrease in vF plays a dominant

Fig. 5 Profiles of the curvature-induced effective potential UnðnÞ for one period ½0;K�.
Geometric parameters r0 ¼ 4:0 and k ¼ 8:0 in units of a are fixed. Integers n represent the
angular momentum of eigenstates in the circumferential direction of a hollow tube. After Ref.
Shima et al. (2009)

(a) (b)

Fig. 6 dr dependencies of b and a defined by Eqs. (6) and (7), respectively. The screening
parameter j is set to be ja ¼ 1:0� 10�3. Insets nonmonotonic behaviours of b and a as a
function of kF at dr=a ¼ 2:0. After Ref. Shima et al. (2009)
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role in the numerator of the expression in Eq. (7), and eventually it leads to
systematic shifts in b and a.2

The aforementioned theory gives a prediction that spatial variation in the sur-
face curvature of C60 polymers causes a significant increase in the power-law
exponent of the single-particle density of states; the increase in the exponent is
thought to originate from a curvature-induced potential that attracts low-energy
electrons to regions that have large curvature (Shima et al. (2010)). Eventually, the
prediction was verified in a photoemission experiment (Onoe et al. (2012)) three
years after the theory was proposed. Figure 7 shows the photoemission spectra
qðx; TÞ of the peanut-shaped C60 polymers in the vicinity of the Fermi level EF .
They exhibit power-law dependencies with respect to both the binding energy (x)
and temperature (T). The TLL exponent, evaluated from the data within the energy
range of 18–70 meV in Fig. 7, was found to be a ¼ 0:65� 0:08. In contrast, the
power-law dependence of qðTÞ on T in the temperature range of 30–350 K led us
to the result of a ¼ 0:59� 0:04. Hence, it is reasonable to conclude that the TLL
exponent a for the one-dimensional, uneven peanut-shaped C60 polymer is
a	 0.6, which is significantly larger than a ¼ 0:5 for metallic single-walled
carbon nanotubes (Ishii et al. (2003)).

It should be emphasized that the curvature-induced shift in the TLL exponent,
reported in Ref. Onoe et al. (2012), is the first experimental realization of the
curvature–property relation in low-dimensional quantum systems. Furthermore,
the remarkable consistency between theory and experiment tells us that the con-
fining-potential approach is effective for exploring the curvature–property
relations in C60 polymers and possibly other curved nanomaterials.

Fig. 7 Photoemission spectra of a peanut-shaped C60 polymer in the vicinity of the Fermi level.
Power-law dependencies on the binding energy (left) and temperature (right) are observed. After
Ref. Onoe et al. (2012)

2 It is noted that Eq. (5) can formally deal with an uncurved one-dimensional system subject to a
periodically electrostatic potential. In a similar manner to the present curved system, therefore, a
and b are expected to be shifted even for an uncurved quantum wire by electric-field
modulation (Shima et al. (2010)).
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4 Electron–Phonon Interaction in C60 Polymers

In addition to the shift in the TLL exponent, C60 polymers exhibit distinct features
that differ greatly from those of conventional nanocarbons. In the case of phononic
excitations, infrared spectral measurements evidenced a rapid growth of specific
eigenmode peaks with an increase in electron-beam irradiation time (Takashima
et al. (2010)). This peak growth is attributed to an anomaly in the phonon density
of states peculiar to quasi-one-dimensional systems (Ono and Shima (2011b)).

A more interesting subject is the artificial manipulation of electron–phonon-
coupling-induced metal–semiconductor transition (i.e., the Peierls transition) in
the C60 polymers. Pump–probe spectroscopy measurement has unveiled an energy
gap formation in the conduction band of C60 polymers below 60 K (Toda et al.
(2008)). This energy gap formation suggested the Peierls transition, driven by
electron–phonon coupling, though the physical mechanism has not been clarified.
For device application, tuning the transition temperature Tc by imposing external
conditions can be quite advantageous, because it would enable artificial control of
low-temperature conductivity of the C60 polymers.

The possibility of such conductivity control has been theoretically proven in
Ref. Ono and Shima (2011a). The theory describes the relationship between the
electron–phonon coupling strength and the Fermi energy shift resulting from
carrier doping. By doping an additional carrier to the pristine C60 polymer, the
Fermi level is shifted from l0 to l � l0 þ Dl, with Dl representing the deviation
from the initial value l0 by doping. For the pristine system, l0 is set such that 60
electrons per C60 molecule occupy single-particle states from the bottom of the
electronic band. The theory states that tuning Dl via carrier doping gives rise to a
significant change in the transition temperature Tc of the C60 polymers, allowing
for conductivity control at low temperature.

Figure 8 shows the l dependence of Tc, showing that Tc decreases monotoni-
cally as l increases. This decrease results from a reduction in the commensurate
effect (Grüner (1994)) that maximizes Tc at the half-filling state (i.e., Dl	 � 50

Fig. 8 Transition temperature Tc as a function of the Fermi level shift Dl because of carrier
doping. Without doping, we have Tc	 130 K, as indicated by a vertical line. Inset: Schematic of
the commensurate effect, illustrating the electron band structure and relevant electron–phonon
couplings via the phonon wave number q. After Ref. Ono and Shima (2011a)
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meV in the present condition; see inset of Fig. 8). The rapid decrease in Tc with the
increase in l is significant in light of controlling the low-temperature electronic
conductivity of the C60 polymers. For example, an increment Dl ¼ 0:3 eV causes
a drastic reduction in Tc from 130 to 1 K; this value of Dl coincides with the
upwards shift in the Fermi level that is observed when one additional alkali atom
per C60 molecule is inserted into the hollow cavity of the C60 polymer. As a result,
the metallic nature of the C60 polymers can survive even below 60 K, unlike the
case of the pristine (undoped) system. This phenomenon provides a new avenue
for controlling the low-temperature conductivity of C60 polymers by doping,
which is highly advantageous in actual device applications.

5 Cross-Sectional Buckling of Carbon Nanotubes

In the remainder of this chapter, we turn to the issue of carbon nanotube buckling
observed under hydrostatic pressure. By ‘‘buckling’’ we mean a deformation
through which a pressurized material undergoes a sudden failure, exhibiting large
displacement in a direction transverse to the load. A typical example of buckling
occurs when pressing opposite edges of a long, thin elastic beam towards one
another. For small loads, the beam is compressed in the axial direction while
keeping its linear shape, and the strain energy is proportional to the square of the
axial displacement. Beyond a certain critical load, however, it suddenly bends
archwise and the relation between the strain energy and displacements deviates far
from the square law. Besides axial compression, bending and torsion give rise to
buckling of elastic beams and cylindrical objects, in which the buckled patterns
strongly depend on geometric and material parameters.

An interesting class of elastic buckling can be observed in structural pipe-
in-pipe cross sections under hydrostatic pressure. Pipe-in-pipe i.e., a pipe inserted
inside another pipe) applications are promising for offshore oil and gas production
systems in civil engineering. In subsea pipelines in deep water, for instance,
buckling resistance to huge external hydrostatic pressure is a key structural design
requirement. Pipe-in-pipe systems are a possible efficient design solution to this
problem, because their peculiar concentric structures prevent collapse of their
cross sections even when the pipes are subjected to high pressure.

The above argument on macroscopic objects raises question as to what buckling
sort of behaviour is obtained in nanometric counterparts, i.e., multiwall carbon
nanotubes (MWNTs). Because of their nanometric scales, the similarities and
differences in buckled patterns compared with their macroscopic counterparts are
not at all trivial. This complexity has motivated tremendous efforts towards the
buckling analysis of carbon nanotubes under diverse loading conditions: axial
compression (Yakobson et al. (1996); Ru (2000b, 2001b); Ni et al. (2002); Waters
et al. (2004, 2005); Sears and Batra (2006)), bending (Falvo et al. (1997);
Poncharal et al. (1999); Duan et al. (2007); Kutana and Giapis (2006); Wang and
Yang (2006); Wang et al. (2007)), torsion (Jeong et al. (2007); Wang (2008,
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2009)), and their certain combinations (Wang et al. (2006); Zhang et al. (2007);
Jeong et al. (2008)).

It is emphasized that, by applying mechanical deformation, carbon nanotubes
show significant changes in their physical and chemical properties. Precise
knowledge of their deformation mechanism and available geometry is, therefore,
crucial for understanding their structure–property relations and for developing
carbon-nanotube-based applications towards the next generation.

6 Uniaxial Collapse of Single-Wall Carbon Nanotubes
(SWNTs)

Radial pressure can yield a distinct class of buckling, reflecting the high flexibility
of graphene sheets in the normal direction. In fact, the radial stiffness of an isolated
carbon nanotube is much less than its axial stiffness (Palaci et al. (2005)), which
results in an elastic deformation of the cross section upon application of hydro-
static pressure (Venkateswaran et al. (1999); Tang et al. (2000); Peters et al.
(2000); Sharma et al. (2001); Rols et al. (2001); Reich et al. (2002); Sun et al.
(2004); Elliott et al. (2004); Tangney et al. (2005); Gadagkar et al. (2006); Zhang
et al. (2006); Hasegawa and Nishidate (2006); Yang et al. (2006); Christofilos
et al. (2007)) or indentation (Majid and Yu (2008); Barboza et al. (2009); Yang
and Li (2011)). Experimental and theoretical studies, focussed on SWNTs and
their bundles, revealed flattening and polygonalization in their cross section under
pressures on the order of a few gigapascals (Venkateswaran et al. (1999); Sharma
et al. (2001)).

The overall scenario of SWNT deformation under hydrostatic pressure is
summarized in Fig. 9 (Sun et al. (2004)). With increasing pressure, the cross
sections of SWNTs deform continuously from circular to elliptical and finally to
peanut-like configurations (Sun et al. (2004); Zhang et al. (2006); Lu et al.

Fig. 9 Long and short
diameters of a (10,10) SWNT
as a function of applied
hydrostatic pressure. The
shape of the cross section at
some selected pressures is
plotted at the bottom of the
figure. After Ref. Sun et al.
(2004)
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(2011)).3 The radial deformation of carbon nanotubes strongly affects their
physical and structural properties. For instance, it may cause a semiconductor–
metal transition (Barboza et al. (2008); Giusca et al. (2008)), an optical response
change (Thirunavukkuarasu et al. (2010)), or magnetic moment quenching (Diniz
et al. (2010)) in the nanotubes. From a structural perspective, the radial collapse
can give rise to interwall sp3 bonding between adjacent concentric walls (Fonseca
et al. (2010); Sakurai and Saito (2011)), which may increase nanotube stiffness and
therefore be effective for high-strength reinforced composites (Xia et al. (2007);
Byrne et al. (2009); Filleter et al. (2011); Zhang et al. (2011)).

A bundle of nanotubes (i.e., an ensemble of many nanotubes arranged parallel
to each other) can exhibit radial collapse patterns similar to those of an isolated
nanotube under hydrostatic pressure. Figure 10 shows (Yang and Wu (2008)) the
volume change of a bundle of (7,7) SWNTs and a bundle of (12,12) SWNTs as a
function of the applied hydrostatic pressure; the data for a bundle of (7,7)@(12,12)
double-walled nanotubes (DWNTs) are also shown on the same plot. The (12,12)
SWNT bundle, for instance, collapses spontaneously at a critical pressure of 2.4
GPa, across which the cross section transforms into a peanut-like shape. Two other
bundles provide higher critical pressures, as follows from the plot. An interesting
observation is that the transition pressure of the (7,7) tube, which is nearly 7.0 GPa
when the tube is isolated, becomes higher than 10.5 GPa when it is surrounded by
the (12,12) tube. This means that the outer tube acts as a ‘‘protection shield’’ and
the inner tube supports the outer one and increases its structural stability; this

Fig. 10 Change in the relative volume of the (7,7)@(12,12) DWNT bundle and the
corresponding SWNT bundles as a function of hydrostatic pressure. After Ref. Yang and Wu
(2008)

3 For larger radius SWNTs, the peanut-like deformed structure can be transformed to dumbbell-
like configurations by van der Waals (vdW) attractions between the opposite walls of the
nanotubes. The latter structure is energetically stable even when the applied force is unloaded.
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interpretation is consistent with prior optical spectroscopic measurements
(Arvanitidis et al. (2005)). This effect, however, is weakened as the tube radius
increases owing to the decreasing radial stiffness of SWNTs.

7 Radial Corrugation of MWNTs

In contrast to the intensive studies on SWNTs (and DWNTs), radial deformation of
MWNTs has remained largely unexplored till recently. Intuitively, the multilay-
ered structure of MWNTs is expected to enhance the radial stiffness relative to its
single-walled counterpart. However, when the number of concentric walls is much
greater than unity, the outside walls have to have large diameters, so external
pressure may lead to a mechanical instability in the outer walls. This local
instability triggers a novel cross-sectional deformation, called radial corrugation
(Shima and Sato (2008)), of MWNTs under hydrostatic pressure.

Figure 11a and b illustrate MWNT cross-sectional views of two typical
deformation modes: (a) elliptic ðn ¼ 2Þ and (b) corrugation ðn ¼ 5Þ modes. In the
elliptic mode, all constituent walls are radially deformed. In contrast, in the cor-
rugation mode, outside walls exhibit significant deformation, whereas the inner-
most wall maintains its circular shape. Which mode will be obtained under
pressure depends on the number of walls, N; and the core tube diameter D of the
MWNT considered. In principle, larger N and smaller D favour a corrugation
mode with larger n.

Figure 11c shows the critical buckling pressure pc as a function of N for various
values of D, which were derived from the thin-shell theory approach described in
Sect. 9. An initial increase in pc at small N (except for D = 1.0 nm) is attributed to
the enhancement of radial stiffness of the entire MWNT by encapsulation. This
stiffening effect disappears with further increase in N, resulting in decay or con-
vergence of pcðNÞ. A decay in pc implies that a relatively low pressure becomes
sufficient to produce radial deformation, thus indicating an effective ‘‘softening’’ of
the MWNT. The two contrasting types of behaviour, stiffening and softening, are
different manifestations of the encapsulation effect of MWNTs. It is noteworthy
that practically synthesized MWNTs often show D larger than those presented in
Fig. 11c. Hence, pcðNÞ of an actual MWNT lies at several hundred megapascals,
as estimated from Fig. 11c. Such a degree of pressure applied to MWNTs is easily
accessible in high-pressure experiments,4 supporting the feasibility of our theo-
retical predictions.

Figure 11d shows the stepwise increases in the corrugation mode index n. For
all D, the deformation mode observed just above pc abruptly increases from n ¼ 2
to n
 4 at a certain value of N, followed by the successive emergence of higher

4 A radial pressure large enough to cause corrugation can be achieved by electron-beam
irradiation (Krasheninnikov and Nordlund (2010)), the self-healing nature of eroded carbon walls
gives rise to a spontaneous contraction that exerts a high pressure on the inner walls to yield their
radial corrugation (Shima et al. (2010)).

190 H. Shima



corrugation modes with larger n. These successive transitions in n at N � 1
originate from the mismatch in the radial stiffness of the innermost and outermost
walls. A large discrepancy in the radial stiffness of the inner and outer walls results
in a maldistribution of the deformation amplitudes of concentric walls interacting
via vdW forces, which consequently produces an abrupt change in the observed
deformation mode at a certain value of N.

8 Molecular Dynamics Simulation of Radial Corrugation

The validity of the thin-shell theory prediction has been verified by molecular
dynamics (MD) simulations. MD simulations of MWNTs under hydrostatic
pressure enable us to deduce the postcorrugated cross-sectional patterns of
MWNTs at an atomistic level, as well as to evaluate the critical pressure above

(a) (b)

(c) (d)

Fig. 11 Cross-sectional views of a elliptic ðn ¼ 2Þ and b corrugated ðn ¼ 5Þ deformation modes.
The mode index n indicates the wave number of the deformation mode along the circumference.
c Wall-number dependence of critical pressure pc. Immediately above pc, the original circular
cross section of MWNTs gets radially corrugated. d Stepwise increase in the corrugation mode
index n. After Refs. Shima and Sato (2008), Shima et al. (2012)
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which the corrugation arises. The predicted morphological variation in the
corrugated patterns at the energetically relaxed states, therefore, will facilitate
understanding of structure–property relations for MWNTs and the available
geometry for developing MWNT-based applications.

The atomistic model simulation performed in Ref. Shima et al. (2013) deals
with MWNTs consisting of concentric zigzag nanotubes with chiral vectors of
ðn; 0Þ. The size of the simulation cells along the tube axis (z axis) is 12.78 Å and a
periodic boundary condition is imposed only for the z axis to mimic an isolated
(free-standing) MWNT with infinite length. The simulations were based on an
in-house code named ‘‘MDSPASS2’’, which carries out classical molecular
dynamics calculations using empirical interatomic potentials. The time step was
set to 1.0 fs. The pressure exerted on a multiwalled nanotube was mimicked by
applying constant forces on the atoms of the outermost wall along the direction
perpendicular to the wall. The tangential plane was determined by taking triangles
of atoms, each of which consists of an atom and its two nearest-neighbour atoms
(i.e., the triangles are isosceles having a 120� angle at initial configuration). The
interaction between atoms is calculated by using the Brenner interatomic potential
for hydrocarbons (Brenner (1990, 1992)), which has been widely used for defor-
mation of carbon nanotubes.

Figure 12 depicts the cross-sectional view of the radially corrugated MWNTs
with isochiral zigzag tubes. The panels correspond to (a) a thin 4-walled nanotube
indexed by ð6; 0Þ=ð12; 0Þ=ð18; 0Þ=ð24; 0Þ, (b) a 7-walled nanotube with ð8; 0Þ=
ð14; 0Þ= � � � =ð44; 0Þ, and (c) a thick 4-walled nanotube with ð38; 0Þ=ð44; 0Þ= � � � =
ð56; 0Þ. All the relaxed configurations presented here fall into a hexagonal pattern.
although we confirmed that other types of polygonal patterns (pentagonal,
octagonal, etc.) can be observed depending on the tube chirality, the number of
concentric tubes, N, and the innermost tube diameter D.

For a thin 4-walled nanotube (as shown in Fig. 12a), we obtain a hexagonal
prism with six well-defined facets at a critical hydrostatic pressure pc of 297.5
MPa. The graphitic layer at the lateral side of the prism is almost flat, but along the

Fig. 12 Cross-sectional view of the radially corrugated MWNTs consisting of concentric zigzag
tubes represented by ðn; 0Þ: a a 4-walled nanotube with n ¼ 6þ 6ðq� 1Þ [1 q 4]; b a
7-walled nanotube with n ¼ 8þ 6ðq� 1Þ [1 q 7]; c a 4-walled nanotube with
n ¼ 38þ 6ðq� 1Þ [1 q 4]. After Ref. Shima et al. (2013)
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ridge lines, it suffers from significant penalty in bending energy increase. Whereas
this deformation mode involved corrugation in all the nanotube walls but the
innermost shell, this multiwalled nanotube exhibited a more ‘‘modest‘‘ deforma-
tion at a much lower pressure, pc = 78.0 MPa, where only the outermost shell made
its cross section hexagonal, keeping the other three nanotube walls round. With
increasing N or D, the well-defined prism loses stability and the relaxed patterns
shift to those having more rounded corners, as illustrated in Fig. 12b and c. The
critical pressure pc for the latter two patterns is 10.5 and 7.5 MPa, respectively; it
is surprising that pc for the 7-walled nanotube is much smaller than pc for the thin
4-walled one, despite the slight difference in N and D between them. Such mor-
phological evolution in radially corrugated patterns is attributed to the competition
of the three relevant energies: in-plane strain energy, vdW interaction energy
between adjacent tubes, and out-of-plane bending energy (Shima and Sato (2008);
Huang et al. (2011)).

9 Thin-Shell Theory for Radial Corrugation

Although atomistic simulations may provide precise estimations of physical
quantities in general, they often demand huge computational resources in systems
of interest. Against this background, the thin-shell-theory-based analysis for car-
bon nanotube mechanics has long been developed (Yakobson et al. (1996); Ru
(2000a, 2000b, 2001a, 2001b); Kudin et al. (2011); Pantano et al. (2004); Huang
et al. (2006); Chandraseker and Mukherjee (2007)). In the continuum thin-shell
method, an MWNT is mapped onto a set of N continuum elastic hollow tubes of
radii ri (1 iN). A point on the circle corresponding to the cross section of the
ith tube is described by in terms of polar coordinates, where h is the circumfer-
ential angle around the tube axis. Under pressure p, the point moves to

ðx�; y�Þ ¼ ri þ uiðh; pÞ½ � cos h� viðh; pÞ sin h;ð ð9Þ

ri þ uiðh; pÞ½ � sin hþ viðh; pÞ cos h Þ: ð10Þ

If the deformation amplitudes, ui and vi, are sufficiently small, the mechanical
energy of the ith tube per unit axial length is given by

UðiÞD ¼
ri

2

~C

1� m2

Z 2p

0
�2

i dhþ ~D

Z 2p

0
j2

i dh

� �
: ð11Þ

Here, �i and ji are, respectively, the in-plane and bending strains of the ith wall,
both depending on ui, vi and their derivatives with respect to h (Sanders (1963)).
The constant ~C denotes the in-plane stiffness, ~D the flexural rigidity, and m the
Poisson ratio of each wall.
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For quantitative discussions, the values of ~C and ~D must be carefully deter-
mined. In the conventional thin-shell theory for macroscopic objects, ~C and ~D are
related to the Young’s modulus E of the wall and its thickness ~h as

~C ¼ E~h; ~D ¼ E~h3

12ð1� m2Þ for macroscopic shells.

However, for carbon nanotubes, the wall is made out of a monoatomic graphitic
layer and consequently the notion of wall thickness becomes elusive. Hence, the
macroscopic relations for ~C and ~D noted above fail since there is no unique way of
defining the thickness of the graphene wall (Gupta et al. (2010)). Thus the values
of ~C and ~D should be evaluated ab initio from direct measurements or computa-
tions of carbon sheets, without reference to the macroscopic relations. In actual
calculations, we substitute

~C ¼ 345 nN=nm; ~D ¼ 0:238 nN � nm forcarbonnanotubes

and m ¼ 0:149 along with the prior work (Kudin et al. (2011)) based on density
functional theory. It should be noted that the values of ~C and ~D are essentially
tube-diameter dependent. Nevertheless, such dependencies become negligible
when the tube diameter exceeds 1 nm, above which the elastic constants of carbon
nanotubes converge to those of a planar graphene sheet (Kudin et al. (2011)).
Against this background, we will take into account only the nanotubes whose
diameters are larger than 1 nm, which allows us to fix the values of ~C and ~D as
noted above.

The stable cross sections of MWNTs under p minimize the mechanical energy
U of the whole system that is described by (Shima and Sato (2008))

U ¼
XN

i¼1

UðiÞD þ
X

i;j¼i�1

Uði;jÞI þ X: ð12Þ

Here, Uði;jÞI accounts for the vdW interaction energy of adjacent pairs of walls,
whose precise definition will be given in Sect. 10. The term X is the negative of
the work done by p during cross-sectional deformation, given by

X ¼ p

Z 2p

0
rNuN þ

u2
N þ v2

N � uN
0vN þ uNvN

0

2

� �
dh; ð13Þ

with u0 � du=dh. Note that U is a function of ui and vi; therefore, the variational
method allows us to obtain the optimal solutions of ui and vi that minimize U
under a given p.

For N � 1, the outside walls have large diameters, and consequently they are
very flexible and susceptible to mechanical instabilities under radial pressure. The
contrast in the radial rigidity between the outermost walls and the innermost ones
triggers the nontrivial cross-sectional deformation observed in radially pressurized
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MWNTs. In fact, a linearized buckling analysis leads to the conclusion that,
immediately above a critical pressure pc, the circular cross section of MWNTs
becomes radially deformed as described by (Shima and Sato (2008))

uiðhÞ ¼ uð0Þi ðpcÞ þ dliðnÞ cos nh; viðhÞ ¼ dmiðnÞ sin nh: ð14Þ

The solution (14) represents a wavy structure of an MWNT’s cross section, called
radial corrugation with mode index n. The integer n indicates the wave number of
the corrugated walls; it is uniquely determined by the one-to-one relation between
n and pc (Shima and Sato (2008)). As seen from Fig. 11, n depends systematically
on N and the innermost tube diameter.

10 Wall–Wall Interaction Coefficient

In the radial corrugation of MWNTs, the critical pressure pc is thought to depend
on the strength of vdW interactions; this is the reason why the rigorous formulation
of adjacent wall–wall interaction should be addressed.

There exist several continuum models for vdW interactions (He et al. (2005); Lu
et al. (2009); Girifalco et al. (2000)). In Ref. He et al. (2005), expressions for the
pressure and the vdW interaction coefficients were obtained by integrating the
continuum vdW force and its derivative on a curved wall surface, while disregarding
the vectorial nature of the force. The significance of the vectorial nature of the force
was addressed in Ref. Lu et al. (2009), where analytical expressions for the vdW
pressure were obtained by considering only the component of the vdW force normal
to the wall. It was emphasized in Ref. Lu et al. (2009) that, for a two-walled carbon
nanotube, the pressure exerted on the inner wall is different from the pressure on the
outer wall. The pressures on the inner and outer walls for a concentric two-walled
tube with radii rinn and rout are (with positive signs for compression)

pinn ¼ a
rout

rinn
f� and pout ¼ a

rinn

rout
fþ; ð15Þ

where a ¼ 3perqc
2=32 with qc ¼ 38:18 nm�2 being the area density of carbon

atoms, and

f� ¼ 231b11 c E13 � E11ð Þ � 160b5 c E7 � E5ð Þ; ð16Þ

where b ¼ r=ðrout þ rinnÞ, c ¼ h=ðrout þ rinnÞ, h ¼ rout � rinn,

Em ¼
R p=2

0 ð1� k2sin2hÞ�m=2dh, and k ¼ 4rinnrout=ðrinn þ routÞ2.
In the following, we derive analytical expressions for ci;j by linearizing the

formula (15) for the pressure. The formula takes into account correctly the normal-
to-wall component of vdW forces, and it avoids common assumptions such as
pinn ¼ pout (Pantano et al. (2004)) and pinnrinn ¼ poutrout (Ru (2001b)); therefore,
the resulting ci;j coefficients will also be free from unnecessary assumptions.
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As far as infinitesimal deformation is considered, the linearized pressure is
needed for the vdW energy calculation. Note that the vdW energy depends qua-
dratically on the change in spacing between two adjacent walls. Consider two
consecutive walls with radii ri and riþ1, where the subscripts i and iþ 1 correspond
to inn and out, respectively. The vdW energy stored by the symmetric perturbation
along the positive direction of pressure is given by

Uði;iþ1Þ
I � rm

2

Z 2p

0
�pi;iþ1

Dh

2
� pi;iþ1

Dh

2

� �
dh; ð17Þ

where rm ¼ ðri þ riþ1Þ=2 is the mean radius and pi;iþ1 is the vdW pressure on the
ith wall. The corresponding linearized pressure is given by opi;iþ1=oh

��
rm

. In

Eq. (17), rmdh describes the length of the infinitesimal element on which the
pressure is acting. Using the linearized pressure and comparing with Eq. (11), we
get the following expressions for the vdW coefficients:

ci;iþ1 ¼ �
1
4

opi;iþ1

oh
þ opiþ1;i

oh

� �
; ð18Þ

where

opi;iþ1

oh

����
rm

¼ 2 a rm

rm � h=2ð Þ2
f� þ a

rm þ h=2
rm � h=2

� �
of�
oh

;

opiþ1;i

oh

����
rm

¼ � 2 a rm

rm þ h=2ð Þ2
fþ þ a

rm � h=2
rm þ h=2

� �
ofþ
oh

:

ð19Þ

Note that the ci;j matrix is symmetric. See Ref. Shima et al. (2012) for the deriv-

atives of of�=oh. As a result, the vdW interaction energy Uði;jÞI that contributes to
the total deformation energy U given in Eq. (12) is defined by Eqs. (17)–(19).

11 Remarks on Radial Deformation

Before closing this chapter, three additional topics warrant remarks. First is the
possibility of nanotubes having radial corrugation free from external pressure.
Interestingly, cross sections of MWNTs synthesized in the presence of nitrogen
have been found to form polygonal shapes rather than circular shapes (Ducati et al.
(2006)). It was argued that the polygonization may result from interlayer thermal
contraction upon cooling or interwall adhesion energy owing to the increased
interwall commensuration (Ducati et al. (2006)). This conjecture implies pressure-
free radial corrugation and/or another class of radial deformation that arises when
the interwall spacings of MWNTs deviate from the vdW equilibrium distance
(	 0.34 nm). These facts motivated the MD-based structural optimization per-
formed in Ref. Huang et al. (2011). In the simulations, the initial cross sections of
all the MWNTs are set to be of circular shape and the interwall spacing is 0.359
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nm, which is 0.19 nm larger than the equilibrium spacing of two graphene sheets
(= 0.34 nm). Figure 13 depicts the cross-sectional configurations of relaxed
MWNTs obtained by the simulations. The results showed that the cross sections
stabilized at polygonal or water-drop-like shapes, depending on the artificially
expanded interwall spacings. It is seen that the 15-walled tube is stabilized at a
polygonal cross-sectional configuration with six rounded corners. For the 20- and
25-walled ones, the configuration becomes asymmetric, featuring a water-
drop-like morphology. Special localization of surface curvature along the ridge
line in the water-drop patterns may be utilized for carbon nanotube functionali-
zation, because large distortion of the bonding angle of three carbon atoms at the
severely curved region provides chemical activity high enough to make chemical
bonding to other guest atoms or molecules at the outmost graphene layer.

The second topic concerns the nanoengineering perspective associated with the
cross-sectional deformation. We insist that the selectivity of the innermost wall
geometry by tuning the material parameters may be useful in developing nano-
tube-based nanofluidic (Majumder et al. (2005); Noy et al. (2007); Whitby and
Quirke (2007)) or nanoelectrochemical devices (Frackowiak and Beguin (2002)),
because both utilize the hollow cavity within the innermost tube. A very inter-
esting issue from an academic viewpoint is the effect of the core tube deformation
on the physical and chemical properties of intercalated molecules confined in the
hollow cavity. It has thus far been known that various types of intercalated mol-
ecules (diatomic gas, water, organic and transition metal molecules, etc.) can fill
the innermost hollow cavities of nanotubes (Noy et al. (2007)) and exhibit
intriguing behaviours that are distinct from those of the corresponding bulk sys-
tems. (Yang (2003); Maniwa et al. (2007)) These distinct behaviours originate
from the fact that the intermolecular spacings become comparable to the linear
dimension of the nanoscale confining space. Therefore, the core tube deformation
that breaks the cylindrical symmetry of the initial nanoscale compartment will
engender unique properties of intercalated molecules that are peculiar to the
constrained condition in a radially corrugated space.

The last interesting implication is a pressure-driven change in the quantum
transport of p electrons moving along the radially deformed nanotube. We have
learned in the previous sections that mobile electrons whose motion is confined to a
two-dimensional, curved, thin layer behave differently from those on a conventional
flat plane because of an effective electromagnetic field that can affect low-energy

Fig. 13 Cross-sectional views of relaxed MWNTs indexed by (2,8)/(4,16)/. . ./(2n,8n). The wall
numbers n are 5, 10, 15, 20, and 25 from left to right, and all the MWNTs are 20 nm long. After
Ref. Huang et al. (2011)
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excitations of the electrons. Associated variations in the electron–phonon coupling
(Ono and Shima (2011a)) and phononic transport (Ono and Shima (2011b)) through
the deformed nanocarbon materials are also interesting and relevant to the physics of
radially corrugated MWNTs.

12 Summary

In this chapter, we have had an overview of the progress achieved in the field of
‘‘geometry–property relations’’ that are realized in corrugated nanocarbon cylin-
ders. We focussed on two particular topics: quantum transport in the peanut-
shaped C60 polymers and radial corrugation of multiwall carbon nantoubes under
hydrostatic pressure. In the former materials, the Hamiltonian of a quantum par-
ticle involves a curvature-induced effective potential field, which results in the
sizable shift in the TLL exponent compared with its straight (noncorrugated)
counterpart. In the latter case, we have seen the wide variety of radial corrugation
patterns of pressurized nanotubes and theoretical models for them, which imply
the potential utility for designing nanotube-based devices. The discussion of the
geometry–property relations presented here will hopefully pave the way for the
prediction of novel, still uncovered phenomena, particularly those occurring in
nanocarbon materials.

References

Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos KS, Takenobu T, Iwasa Y, Kataura H,
Ves S, Kourouklis GA (2005) Phys Rev B 71:125404

Baek SK, Shima H, Kim BJ (2009) Phys Rev E 79:060106
Barboza APM, Gomes AP, Archanjo BS, Araujo PT, Jorio A, Ferlauto AS, Mazzoni MSC,

Chacham H, Neves BRA (2008) Phys Rev Lett 100:256804
Barboza APM, Chacham H, Neves BRA (2009) Phys Rev Lett 102:025501
Beu TA, Onoe J, Hida A (2005) Phys Rev B 72:155416
Brenner DW (1990) Phys Rev B 42:9458
Brenner DW (1992) Phys Rev B 46:1948 (Erratum)
Byrne EM, McCarthy MA, Xia Z, Curtin WA (2009) Phys Rev Lett 103:045502
Chandraseker K, Mukherjee S (2007) Comp Mater Sci 40:147
Charlier JC, Eklund PC, Zhu J, Ferrari AC (2008) Electron and phonon properties of graphene:

Their relationship with carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds)
Carbon nanotubes. Advanced topics in the synthesis, structure, properties and applications,
vol 111. Springer, Berlin, pp 673–709

Christofilos D, Arvanitidis J, Kourouklis GA, Ves S, Takenobu T, Iwasa Y, Kataura H (2007)
Phys Rev B 76:113402

da Costa RCT (1981) Phys Rev A 23:1982
Cuoghi G, Ferrari G, Bertoni A (2009) Phys Rev B 79:073410
De Witt B (1952) Phys Rev 85:635
De Witt B (1957) Rev Mod Phys 29:377
Diniz EM, Nunes RW, Chacham H, Mazzoni MSC (2010) Phys Rev B 81:153413
Duan XJ, Tang C, Zhang J, Guo WL, Liu ZF (2007) Nano Lett 7:143

198 H. Shima



Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Small
2:774

Elliott JA, Sandler LKW, Windle AH, Young RJ, Shaffer MSP (2004) Phys Rev Lett 92:095501
Falvo MR, Clary GJ, Taylor RM II, Chi V, Brooks FP Jr, Washburn S, Superfine R (1997) Nature

389:582
Filleter T, Bernal R, Li S, Espinosa HD (2011) Adv Mater 23:2855
Fonseca AF, Borders T, Baughman RH, Cho K (2010) Phys Rev B 81:045429
Frackowiak E, Beguin F (2002) Carbon 40:1775
Gadagkar V, Maiti PK, Lansac Y, Jagota A, Sood AK (2006) Phys Rev B 73:085402
Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104
Giusca CE, Tison Y, Silva SRP (2008) Nano Lett 8:3350
Grüner G (1994) Density waves in solids. Addison-Wesley, Reading
Gupta SS, Bosc FG, Batra RC (2010) Comp Mater Sci 47:1049
Gupta S, Saxena A (2012) J Appl Phys 112:114316
Hasegawa M, Nishidate K (2006) Phys Rev B 74:115401
He XQ, Kitipornchai S, Liew KM (2005) J Mech Phys Solids 53:303
Hebard AF, Haddon RC, Fleming RM, Kortan AR (1991) Appl Phys Lett 59:2109
Huang Y, Wu J, Hwang KC (2006) Phys Rev B 74:245413
Huang X, Liang W, Zhang S (2011) Nanoscale Res Lett 6:53
Ishii H, Kataura H, Shiozawa H, Yoshioka H, Otsubo H, Takayama Y, Miyahara T, Suzuki S,

Achiba Y, Nakatake M, Narimura T, Higashiguchi M, Shimada K, Namatame H, Taniguchi
M (2003) Nature 426:540

Jensen H, Koppe H (1971) Ann Phys 63:586
Jeong BW, Lim JK, Sinnott SB (2007) Appl Phys Lett 91:093102
Jeong BW, Lim JK, Sinnott SB (2008) Appl Phys Lett 92:253114
Krasheninnikov AV, Nordlund K (2010) J Appl Phys 107:071301
Kudin KN, Scuseria GE, Yakobson BI (2001) Phys Rev B 64:235406
Kutana A, Giapis KP (2006) Phys Rev Lett 97:245501
Lu WB, Liu B, Wu J, Xiao J, Hwang KC, Fu SY, Huang Y (2009) Appl Phys Lett 94:101917
Lu W (2011) Tsu-Wei Chou, T.W.; Byung-Sun Kim, B.S. Phys Rev B 83:134113
Majid MJ, Yu MFJ (2008) J Appl Phys 103:073516
Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nature 438:438
Maniwa Y, Matsuda K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y,

Kataura H (2007) Nat Mater 6:135
Mao Y, Wang WL, Wei D, Kaxiras E, Sodroski JG (2011) ACS Nano 5:1395
Marchi A, Reggiani S, Rudan M, Bertoni A (2005) Phys Rev B 72:035403
Nakayama H, Ono T, Goto H, Hirose K (2007) Sci Tech Adv Mater 8:196
Ni B, Sinnott SB, Mikulski PT, Harrison JA (2002) Phys Rev Lett 88:205505
Noy A, Park HG, Fornasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Nano Today 2:22
Ono S, Shima H (2011a) Europhys Lett 96:27011.
Ono S, Shima H (2011b) J Phys Soc Jpn 80:064704
Onoe J, Nakayama T, Aono M, Hara T (2003) Appl Phys Lett 82:595
Onoe J, Ito T, Kimura S, Ohno K, Noguchi Y, Ueda S (2007) Phys Rev B 75(23):233410
Onoe J, Ito T, Shima H, Yoshioka H, Kimura S (2012) EPL 98:27001
Ortix C, Kiravittaya S, Schmidt OG, van den Brink J (2011) Phys Rev B 84:045438
Oshiyama A, Saito S, Hamada N, Miyamoto Y (1992) J Phys Chem Solid 53:1457
Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E (2005) Phys Rev Lett 94:175502
Pantano A, Parks DM, Boyce MC (2004) J Mech Phys Solid 52:789
Peters MJ, McNeil LE, Lu JP, Kahn D (2000) Phys Rev B 61:5939
Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Science 283:1513
Reich S, Thomsen C, Ordejón P (2003) Phys Rev B 65:153407
Rols S, Gontcharenko IN, Almairac R, Sauvajol JL, Mirebeau I (2001) Phys Rev B 64:153401
Ru CQ (2000a) J Appl Phys 87:7227
Ru CQ (2001a) J Appl Phys 89:3426

Geometry–Property Relation in Corrugated Nanocarbon Cylinders 199



Ru CQ (2000b) Phys Rev B 62:16962
Ru CQ (2001b) J Mech Phys Solids 49:1265
Sakurai M, Saito S (2011) Physica E 43:673
Sanders JL Jr (1963) Quart Appl Math 21:21
Sears A, Batra RC (2006) Phys Rev B 73:085410
Sharma SM, Karmakar S, Sikka SK, Teredesai PV, Sood AK, Govindaraj A, Rao CNR (2001)

Phys Rev B 63:205417
Shima H, Sakaniwa Y (2006) J Phys A: Math Gen 39:4921
Shima H, Sato M (2008) Nanotechnology 19:495705
Shima H, Sato M, Iiboshi K, Ghosh S, Arroyo M (2010) Phys Rev B 82:085401
Shima H, Ono S, Yoshioka H (2010) Eur Phys J B 71:481
Shima H, Yoshioka H (2011) Chem Phys Lett 513:224
Shima H, Ghosh S, Arroyo M, Iiboshi K, Sato M (2012) Comp Mater Sci 52:90
Shima H (2012) Materials 5:47
Shima H, Sato M (2013) Elastic and plastic buckling of carbon nanotubes, 1st edn. Pan Stanford

Publishing, Singapore
Shima H, Nakayama T (2009) Higher mathematics for physics and engineering. Springer,

London
Shima H, Umeno Y, Sato M (2013) Mech Adv Mater Str (in press)
Shima H, Yoshioka H, Onoe J (2009) Phys Rev B 79:201401(R)
Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501
Sun DY, Shu DJ, Ji M, Liu F, Wang M, Gong XG (2004) Phys Rev B 70:165417
Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tunnermann A, Longhi S (2010) Phys Rev

Lett 104:150403
Taira H, Shima H (2007) Surf Sci 601:5270
Takashima A, Onoe J, Nishii T (2010) J Appl Phys 108:033514
Tang J, Qin JC, Sasaki T, Yudasaka M, Matsushita A, Iijima S (2000) Phys Rev Lett 85:1887
Tangney P, Capaz RB, Spataru CD, Cohen ML, Louie SG (2005) Nano Lett 5:2268
Terrones H, Terrones M (2003) New J Phys 5:126
Thirunavukkuarasu K, Hennrich F, Kamarás K, Kuntscher CA (2010) Phys Rev B 81:045424
Toda Y, Ryuzaki S, Onoe J (2008) Appl Phys Lett 92:094102
Venkateswaran UD, Rao AM, Richter E, Menon M, Rinzler A, Smalley RE, Eklund PC (1999)

Phys Rev B 59:10928
Voit J (1994) Rep Prog Phys 57:977
Wang Q (2008) Carbon 46:1172
Wang Q (2009) Carbon 47:1870
Wang X, Yang HK (2006) Phys Rev B 73:085409
Wang X, Sun B, Yang HK (2006) Nanotechnology 17:815
Wang Q, Liew KM, He XQ, Xiang Y (2007) Appl Phys Lett 73:093128
Waters JF, Guduru PR, Jouzi M, Xu JM, Hanlon T, Suresh S (2005) Appl Phys Lett 87:103109
Waters JF, Riester L, Jouzi M, Guduru PR, Xu JM (2004) Appl Phys Lett 85:1787
Whitby M, Quirke N (2007) Nature Nanotechnol. 2:87
Xia ZH, Guduru PR, Curtin WA (2007) Phys Rev Lett 98:245501
Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511
Yang CK, Zhao J, Lu JP (2003) Phys Rev Lett 90:257203
Yang X, Wu G, Dong J (2006) Appl Phys Lett 89:113101
Yang X, Wu G (2008) EPL 81:47003
Yang YH, Li WZ (2011) Appl Phys Lett 98:041901
Zhang S, Khare R, Belytschko T, Hsia KJ, Mielke SL, Schatz GC (2006) Phys Rev B 73:075423
Zhang E, Zhang S, Wang Q (2007) Phys Rev B 75:085308
Zhang CL, Shen HS (2007) Phys Rev B 75:045408
Zhang YY, Wang CM, Xiang YJ (2011) J Appl Phys 109:083516

200 H. Shima



Prediction of Mechanical Properties
of CNT Based Composites Using Multi-
Scale Modeling and Stochastic Analysis

Roham Rafiee and Mahmood M. Shokrieh

Abstract The main goal of this chapter is to predict Young’s modulus and
Poisson’s ratio of carbon nanotube reinforced polymer (CNTRP). Since carbon
nanotubes (CNTs) appear at the scale of nano and the mechanical properties of
CNTRP are needed to be extracted at the scale of macro, a full-range multi-scale
modeling technique covering all scales of nano, micro, meso and macro is
developed. The developed technique consists of two phases as top-down scanning
and bottom-up modeling. At the first stage, the material region will be scanned
from the macro level downward to the nano scale and effective parameters of each
and every scale are identified accordingly. In the second stage, a hierarchical
multi-scale modeling is developed. This modeling strategy will analyze the
material at each scale and obtained results are fed to the upper scale as input
information. Due to uncertainties arisen from processing of CNTRP, the full
stochastic implementation of modeling is employed treating length, orientation,
agglomeration, waviness and volume fraction of CNTs as random parameters. It is
revealed that the developed modeling procedure provides a clear insight to the
properties of CNTRP.
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1 Introduction

Exceptional and supreme mechanical, electrical and thermal properties of carbon
nanotubes (CNTs) (Dai 2002; Kang et al. 2006; Salvetat-Delmotte and Rubio
2002; Lau and Gu 2006) as well as their low density and high aspect ratio
(Thostenson et al. 2001, 2005) rendered them as a good reinforcing agent candi-
date for polymer matrix composites. Incorporating CNT into the polymer, new
generation of composite materials is evolving and has received extreme attention
in recent years. There are some evidences demonstrating significant enhancement
in the mechanical properties of polymeric resin by exploiting small portion of
CNTs (Qian et al. 2000; Schadler et al. 1998; Zhu et al. 2004). Consequently, an
accurate prediction of the mechanical properties of CNTRP plays an important
role in understanding their behavior and it is a vital issue to pave the road toward
their prospective industrial applications.

While experimental study of CNTRP is a challenging task due to different
imposed limitations and obstacles (Spitalsky et al. 2009), theoretical modeling and
simulation techniques can provide insight into their properties. Tremendous
researches have been carried out to determine mechanical properties of CNTRP
both experimentally (Spitalsky et al. 2009) and theoretically (Thostenson et al.
2005; Shokrieh and Rafiee 2010; Gibson 2007; Odegard et al. 2003). It can be
inferred from a literature survey on conducted theoretical investigations for pre-
dicting Young’s/bulk modulus of CNTRP that they are suffering from different
drawbacks and/or invalid assumptions (Shokrieh and Rafiee 2010).

Micromechanics rules cannot be directly used to extract mechanical properties
of CNTRP, since they have been basically developed for continuum reinforcement
phase (Gibson 2007) which is not pertinent to the lattice structure of CNT. It has
been shown that direct application of micromechanics equations will result in
improper results (Odegard et al. 2003; Ashrafi and Hubert 2006; Han and Elliott
2007; Villoria and Miravete 2007; Tserpes et al. 2008; Frankland et al. 2003;
Mokashi et al. 2007; Shokrieh and Rafiee 2009; Selmi et al. 2007; Seidel and
Lagoudas 2006; Liu et al. 2005) and they are not able to capture the scale dif-
ference between the micro and nano levels. In other word, micromechanics
equations cannot take into account the scale of nano, since the first scale of
modeling process in those equations is micro.

Direct application of micromechanics equations for CNTRP will simply neglect
the lattice structure of CNT and consider CNT as a solid fiber. Moreover, mi-
cromechanics equations assume perfect bonding between reinforcing agents and
the surrounding polymer (Gibson 2007), which is not pertinent to the interphase
between CNT and surrounding polymer interacting naturally through non-bonded
van der Waals (vdW) interactions (Lordi and Yao 2000).

Although researches tried to disperse CNT in polymer using sonication tech-
niques to some extent (Mukhopadhyay et al. 2002; Coleman et al. 2006; Tjong 2006;
Esawi and Farag 2007), it is extremely difficult to achieve a homogenous medium.
Consequently, it is not recommended to use homogenization methods for modeling.
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Moreover, the lack of control of their dispersion diminishes the effectiveness
of CNT reinforcements in composites due to formation of local aggregates in the
form of bundled CNTs. Thus, dispersion of CNTs in different points of the material
region does not follow a uniform pattern as a result of agglomeration of CNTs.
Therefore, localized homogenous regions should be distinguished at lower scales
prior to application of these techniques and they should be employed at those
specific regions.

Thanks to the very large aspect ratio and low bending stiffness of CNTs, they are
highly experiencing a non-straight shape in the matrix. This also stems from induced
uncertainties during the processing of CNTRP. The non-straight shapes of CNTs
play a key role in weakening capability of CNT as reinforcement in comparison with
straight CNTs. Consequently, neglecting non-straight shapes of CNTs is an
important factor resulting in a difference between mechanical properties determined
by theoretical models and corresponding experimentally measured ones.

The existence of abovementioned uncertainties consisting of a non-uniform
dispersion, agglomeration and non-straight shapes of CNTs necessitates imple-
mentation of a stochastic modeling, while deterministic approaches simply over-
look them. The main reason of reported discrepancies between experimental
observations and theoretical modeling (Lau and Gu 2006) can be routed to the
ignorance of uncertainties using deterministic approaches.

Performing a review on the literature (Shokrieh and Rafiee 2010), it can be
observed that theoretical investigations on the mechanical properties prediction of
CNT reinforced polymers can be divided into three groups as atomistic modeling,
continuum modeling (analytical and numerical) and multi-scale methods.

Utilizing the atomistic modeling for composites in order to study their local
behavior at nonoscale is inevitable. However, molecular dynamic simulation is
limited to small length and short time scales. For instance, all results of molecular
simulations for CNT composites are limited to those models comprising one CNT
in the polymer matrix. Characterization of a CNT composite requires only the
knowledge of its global responses, such as the displacement and stress fields at the
boundaries of an RVE. Thus the continuum mechanics approaches may be ade-
quate and sufficient in modeling CNT composites in this regard. Along these
methods, the preferred approach for the simulations of CNT composites should be
a multi-scale one where the molecular dynamics (MD) and continuum mechanics
are integrated in a computing environment that is detailed enough to account for
the physics at nanoscale while efficient enough to handle CNT composites at larger
length scales (Gates et al. 2005).

2 Framework of the Developed Modeling Technique

In addition to the importance of stochastic modeling to address aforementioned
process induced uncertainties in the material region of CNTRP, the wide range of
involved scales requires a full-range multi-scale modeling approach covering all
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scales of nano, micro, meso and macro. Subsequently, stochastic multi-scale
approach is intended to be developed in this chapter to predict Young’s modulus
and Poisson’s ratio of CNTRP.

In contrast to conventional composite materials wherein reinforcing agent
appears at the scale of micro, the starting scale in the modeling of CNT-based
composites is shifted to the scale of nano. Young’s modulus and Poisson’s ratio of
a specimen made of CNTRP is characterized at the scale of macro. Different
involved length scales are schematically depicted in Fig. 1.

The modeling procedure comprises of three different stages: (i) top-down
scanning, (ii) bottom-up modeling and (iii) stochastic implementation.

Different introduced levels associated with the material region of CNTRP
demand identification of effective parameters at each and every scale. A top-down
scanning is performed to distinguish effective parameters of different involved
scales. Namely, involved parameters of modeling and their associated effective
scale are required to be recognized via top-down scanning of material region.

As a subsequent, an isolated separate representative volume element (RVE)
should be defined for each scale separately to capture corresponding effective
parameters, accordingly. The involved parameters categorized by effective scales
are presented in Table 1.

It should be noted that a non-uniform dispersion of CNT at meso-scale is
different from a non-uniform distribution of inclusions at macro-scale. Distribution

Fig. 1 Involved scales in simulation of CNT-based composites

Table 1 Effective parameters for each scale of simulation

Effective
scale

Effective
length

Parameters

Nano nm Molecular interactions, bond configurations, CNT diameter,
CNT chirality

Micro nm/lm Interaction between CNT and polymer, Stress transfer in interphase,
CNT length

Meso lm Volume fraction, orientation of CNT, Agglomeration, Dispersion,
CNT curvature

Macro mm Non-uniform distribution of inclusions, mechanical properties
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of CNT at micro-scale addresses the degree to which material region experiences
inhomogeneity, however, dispersion of CNT at meso-scale accounts for agglom-
eration of CNT.

3 N3M Multi-scale Modeling

A hierarchical multi-scale modeling will be developed to predict the mechanical
properties of CNTRP. Since the developed technique will cover all scales of nano,
micro, meso and macro, it will be referred to hereinafter as ‘‘N3M’’ multi-scale
modeling. The N3M modeling starts from nano-scale and will last in macro scale
passing the in-between scales of micro and meso. The output of each scale will be
fed as input data to the very proceeding scale of study. Different stages of proposed
modeling procedure at each scale which will be constructed on the basis of bot-
tom-up modeling approach will be outlined in proceeding sections.

3.1 Nanoscale Modeling

As it is reflected in Table 1, a proper RVE at the nano scale should be able to
capture molecular interactions of carbon–carbon (C–C) bonds, bond configuration,
CNT diameter and its chirality.

Atomistic modeling, continuum modeling and nano-scale continuum modeling
are three main approaches to simulate the CNT. Generally, the main drawbacks of
atomistic modeling can be summarized as:

1. Limitation of short/small time/length scale on the order of pico-second/nano-
meter

2. Not being applicable to models including large number of atoms
3. Huge amount of computational efforts
4. Complex formulations.

On the other hand, it is not permissible to treat CNT as a solid/hollow cylinder
as mentioned parameters will be neglected and it is vital to keep the lattice
structure of CNT in the modeling procedure in order to address the effective
parameters of nanoscale. Therefore, those continuum techniques penetrating into
smaller length scales with a successful establishment of a linkage between
molecular configuration and solid mechanics are known as nano-scale continuum
methods and are preferable methods to simulate nanostructure materials (Odegard
et al. 2002; Zhang et al. 2002; Gao and Li 2003; Wang 2004). In contrast to
continuum modeling of CNTs wherein the whole nano-structure is replaced with a
continuum medium, nano-scale continuum modeling provides a rationally
acceptable compromise in the modeling process by replacing C–C bond with a
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continuum element. In other word, the molecular interactions between C–C bonds
are captured using structural members whose properties are adjusted to simulate
governing interatomic potentials.

Li and Chou (Li and Chou 2003) developed a molecular structural mechanics
approach by establishing an equivalence between the interatomic potential ener-
gies of molecular structure and the strain energies of an equivalent beam element
representing each C–C bond. Schematic representation of established analogy is
demonstrated in Fig. 2.

The illustrated correlation is accomplished by linking the molecular mechanics
constants of force fields to frame sectional stiffness parameters using below
equations:

EA=L ¼ kr; EI=L ¼ kh; GJ=L ¼ ks ð1Þ

where kr, kh and ks are the bond stretching force constant, bond angle bending
force constant, and torsional resistance. E, A, I, G and J represent Young’s
modulus, cross section area, moment of inertia, shear modulus and polar moment
of inertial of the beam, respectively.

Following the developed analogy by Li and Chou (Li and Chou 2003) stated in
Eq. (1) and assuming a circular cross section with diameter d, geometrical
parameters and mechanical properties of a load bearing beam element representing
C–C bonds can be obtained as below (Tserpes and Papanikos 2005):

d ¼ 4

ffiffiffiffiffi
kh

kr

r
; A ¼ pd2

4
; J ¼ 2I ¼ pd4

32
; E ¼ k2

r L

4pkh
; G ¼ k2

r ksL

8pk2
h

ð2Þ

where L is length of the C–C bond and is chosen as 0.142 nm. The following
parameters are utilized using AMBER force filed parameters (Cornell et al. 1991):

Fig. 2 Energy equivalence
between molecular
mechanics (left) and
structural mechanics (right)
(Kalamkarov et al. 2006)
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kr ¼ 6:52� 10�7 N

nm

� �
; kh ¼ 8:76� 10�10 N:nm

rad2

� �
; ks ¼ 2:78� 10�10 N:nm

rad2

� �

ð3Þ

Each C–C bond was replaced with beam element and lattice molecular structure
was substituted with equivalent discrete frame structure. The Cartesian coordinates
of carbon atoms in a carbon nanotube is produced using developed code in
Mathematica platform (Wolfarm 1999) and fed into ANSYS as nodal coordinates
of finite element model. Each node is connected to other three adjacent nodes using
built-in BEAM4 element (Theory Manual 2003) of ANSYS via developed macro.
Different finite element models of single-walled carbon nanotubes (SWCNTS)
with various diameters and chiralities are constructed. For instance, the FE model
of Armchair CNT with chiral index of (10, 10) is shown in Fig. 3. The models are
subjected to uniform tensile axial displacement at one end, while the other end is
restricted from the movement in axial direction and it is free to move in radial
direction. The length of the CNT along its longitudinal axis is 10 times larger than
its radius to prohibit any edge effects.

Two different load cases as axial tension and torsional tension are investigated
to extract the longitudinal and shear moduli of the CNT. In order to obtain the
longitudinal Young’s modulus of SWCNT, the resultant forces on constraint will
be read as the output of FEA and below equation is used:

E ¼ FLCNT

DL A
ð4Þ

where, F is resultant force on constraint, LCNT is the length of CNT, DLis applied
displacement and A is the cross section of CNT. The cross section of CNT is
obtained using below equations:

Fig. 3 Finite element model
of (10, 10) CNT subjected to
axial displacement
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A ¼ pdt; ð5Þ

d ¼
ffiffiffi
3
p

L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ nmð Þ

p
ð6Þ

where L represents C–C bond length which is taken as 0.142 nm and (n, m)
resembles of CNT chiral index. Denoted by t, thickness of CNT is a challenging
value. There is not a consistent value for the thickness of CNT thickness in
literature (Robertson et al. 1992; Lu 1997; Yao and Lordi 1998; Hernandez et al.
1999; Jin and Yuan 2003; Yakobson et al. 1996; Arroyo and Belytschko 2004)
which is a virtual value. Some researchers employed interlayer spacing between
adjacent graphene sheets in graphite (0.34 nm) as the equivalent thickness of
graphene sheet (Robertson et al. 1992; Lu 1997; Yao and Lordi 1998; Hernandez
et al. 1999; Jin and Yuan 2003), while others obtained different results as 0.066 nm
(Yakobson et al. 1996) or 0.68 and 0.57 (Odegard et al. 2002) for this parameter.
Chang and Gao (2003) and Arroyo and Belytschko (2004) introduced a new
definition of Young’s modulus entitled as surface Young’s modulus which is a
conventional Young’s modulus multiplied by the thickness. This definition coin-
cides with the in-plane stiffness of plates and shells in solid mechanics. The widely
accepted value of 0.34 nm is employed here in order to be able to compare the
results with the published data in the literature.

The calculated mechanical properties of the CNT is summarized in Table 2 and
compared with either the published data or experimental observations.

It is worth mentioning that all theoretical results illustrated in Table 2 employed
the same magnitude of force fields as mentioned in Eq. (3). The very good
agreement between obtained result and published data verifies the proper modeling
of isolated CNT.

The present results are lower than predicted results utilizing spring element.
The reason is placed behind the different behavior of spring and beam elements.
The beam elements can bend while the spring elements cannot bend and stay

Table 2 Comparison between reported results for mechanical properties of SWCNT

Researchers Employed technique Young’s modulus
(TPa)

Shear modulus
(TPa)

Li and Chou (2003) FEM
(Beam element)

1.010 0.475

Tserpes and Papakinos
(2005)

FEM (Beam element) 1.028 0.410

Giannopoulos et al. (2008) FEM (Spring element) 1.327 0.416
Shokrieh and Rafiee (2009) Closed form solution

(Beam element)
1.033–1.042 –

Present worka FEM (Beam element) 1.046 0.424
Krishnan et al. (1998) Thermal vibrations 0.9–1.7 –
Salvetat-Delmotte et al.

(1999)
Atomic force

microscope
0.8 ± 0.41 –

a for the chiral index of (10, 10)
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straight. Therefore, the whole applied load will stretch the spring elements while a
portion of load will be devoted to the bending of beam elements. Consequently,
the obtained global axial deformation of spring-based models is slightly higher
than beam-based models.

The results of Young’s modulus of CNT show a monotonic increasing trend
versus tube diameter and approached to the Young’s modulus of a graphene sheet
for higher values of tube diameters. This trend was also reported by developed
analytical solution (Shokrieh and Rafiee 2009).

3.2 Microscale Modeling

At this level, interaction between the CNT and its surrounding polymer has to be
studied accounting for load transferring from the matrix to the CNT. Besides the
mechanical properties of isolated CNT, the efficiency of a CNT can be attributed to
the load transferring mechanism from the matrix to CNT at nano/micro-scale
which accomplishes through interphase region between CNT and surrounding
polymer. The RVE of this scale encompasses of an embedded CNT, surrounding
polymer and interphase region between the CNT and matrix. The appropriate
RVEs of this scale are depicted in Fig. 4.

3.2.1 Finite Element Modeling of RVE at Microscale

The same modeling procedure explained at nanoscale is employed for modeling
CNT. An armchair SWCNT with chiral index of (10, 10) is selected for this study.
Since the length of the CNT is less than length of surrounding polymer, a capped
CNT with a hemispherical section of C240 molecules is used. Due to symmetry, the
half length of the RVE is constructed as depicted in Fig. 5.

Solid element is used to simulate the surrounding polymer as a continuum
medium. The size of each element is selected as small as the length of hexagon
rings on the lattice structure of the CNT.

Fig. 4 The RVE at
microscale consisting of
CNT, interphase and matrix
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Since the volume fraction of CNTs is about 0.1–2 % in composites, subsequently,
the volume of polymer matrix is much higher than that of CNTs at molecular scale.
It means that simulating the chains of polymer using an atomistic modeling needs a
huge amount of atoms and computations at nano scale. Generally, atomistic
modeling techniques are limited to model small length scale systems and they are
suffering from simulating systems including large number of atoms. On the other
hand, the molecular chains of surrounding polymer are considerably tight and
provide a high density space in comparison with CNTs. Therefore, as a reasonable
compromise, surrounding polymer is taken into account as a continuum medium and
solid elements are used to construct the 3D-FEM of the thick resin at the microscale.
In other word, a concurrent multi-scale finite element modeling approach is
employed wherein CNT is treated at the nano-scale while the resin is modeled at the
micro-scale. SOLID95 element was employed for this purpose (Theory Manual
2003) which is a 3-D element with 20 nodes. The element has three degrees of
freedom per each node which are translations in x, y and z directions. This brick
element has compatible displacement shape and is well suited to model a curved
boundary (Theory Manual 2003). Knowing this fact that molecular chain of polymer
matrix cannot penetrate into the CNT, the size of this brick element is selected as
small as the length of hexagonal rings of CNTs in axial. As a subsequent; it is
expected that developed model will address the upper band of estimation for
expected results in presence of vdW interactions. The depth of the matrix region is
calculated in a manner to reflect the 5 % volume fraction for an embedded CNT. The
simulated resin was treated as an isotropic material and corresponding mechanical
properties (Young’s modulus and Poisson’s ratio) are selected in a manner to sim-
ulate a typical Epoxy matrix available in the market.

CNTs naturally interact with polymer chains of the matrix through weakly non-
bonded van der Waals (vdW) and electrostatic interactions (Lordi and Yao 2000).
Mechanical interlocking which is useful to improve the adhesion between fiber and
matrix in fibrous composites is not pertinent to carbon nanotube reinforced
polymer due to the smooth surface of the CNTs (Hull 1996). Although func-
tionalization can improve load transferring issue from matrix to CNT by providing
cross covalent links between carbon atoms of CNTs and molecules of polymer
(Sinnott 2002; Bahr and Tour 2002; Frankland et al. 2002; Shofner et al. 2006;
Buffa et al. 2007; Cooper et al. 2002; Barber et al. 2003), this procedure has a main
drawback in providing defects in the nano-structure of CNTs due to formation of
sp3 hybridized sites. It can significantly reduce the supreme properties of CNTs

Fig. 5 The FE model of the
RVE at microscale (Shokrieh
and Rafiee 2009). a Cut
section of RVE. b Side view
of RVE with short CNT
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(Lordi and Yao 2000; Kuang and He 2008). Electrostatic interactions can be
neglected in comparison with vdW interactions, since vdW contributes more
considerably in three higher orders of magnitude than the electrostatic energy (Gou
et al. 2004). Therefore, interphase region is treated as non-bonded vdW interac-
tions in absence of chemical functionalization.

The vdW forces are most often modeled using famous Lennard-Jones ‘‘6–12’’
potential (Li and Chou 2003). The vdW force is a non-linear force and it can be
neglected when the interatomic distance is equal or greater than 0.85 nm as it is
shown in Fig. 6. The vdW force in term of interatomic distance is presented by
Eq. (7) on the basis of Lennard-Jones ‘‘6–12’’ (Li and Chou 2003):

FvdW ¼ 4
e
r
�12

r
r

� �12
þ6

r
r

� �6
� �

ð7Þ

where e and r are the Lennard-Jones parameters and 0.0566 kcal/mol and
0.34 nm, respectively (Chang and Gao 2003). The vdW force is a non-linear force
consisting of two distinct regions of repulsion and attraction. Furthermore, the
vdW interaction can be neglected when the inter-atomic distance is equal or
greater than 0.85 nm.

The vdW interaction between the carbon atoms of CNT and the nodes of resin
inner surface is modeled using three dimensional non-linear spring elements.
Corresponding data of the non-linear curve of vdW force obtained from Lennard-
Jones ‘‘6–12’’ potential is fed into the software to capture the non-linear behavior
of vdW interactions. COMBIN39 element is used for this purpose and the
parameters are adjusted to obtain translational spring (Theory Manual 2003).
A macro is written in APDL of ANSYS to create elements between those nodes
whose distance is lower than 0.85 nm.

The thickness of CNT is selected as 0.34 nm and center of the carbon atoms in
the CNT are placed at the midsection of the tube thickness. The innermost layer of
the resin is assumed to be located at the same position of the outer surface of the
CNT. For the sake of better understanding, a schematic top view of the model
specifying location of vdW links with respect to carbon atoms of CNT and sur-
rounding polymer is presented in Fig. 7.
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Fig. 6 Variation of vdW
force versus interatomic
distance
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The model is subjected to three different loadings to obtain longitudinal,
transverse and shear moduli.

3.2.2 Longitudinal Young’s Modulus of Microscale RVE

A non-linear analysis is performed using full Newton-Raphson iterative method
due to the inherently non-linear behavior of the vdW interactions. A progressive
analysis entitled as adaptive vdW interactions (AVI) was developed to take into
account instantaneous situation of the model in each and every sub-step (Shokrieh
and Rafiee 2009). Executing developed AVI technique, the vdW interactions are
rearranged and updated based on the new corresponding status of the model. In
other word, in each sub-step of the non-linear analysis, some previously active
vdW interactions will be deactivated as their distances exceed the cut-off length
and cannot transfer load anymore. In the meantime, some new vdW interactions
will be formed and activated in accordance with updated situation of the model.

The tensile stress–strain curve of Fig. 8 depicted up to 5 % strain in the present
analysis for the CNT length of 432 nm. Different results reported in literature for
the strain at failure point of armchair CNT either theoretically or experimentally. It
can be seen that all theoretical results are higher than the experimental results
which can be attributed to the occurrence of slippage at the attachments for the
high-strain cases (Belytschko et al. 2002). The reported theoretical failure strain of
armchair CNT varies from 17 % up to 22 % (Tserpes et al. 2006, 2008; Bely-
tschko et al. 2002; Meo and Rossi 2006; Xiao et al. 2005) while the experimental
value is reported between 10 and 13 % (Yu et al. 2006). On the other hand, the
failure strain of epoxy resin is reported to be about 7 % in literature. It is worth
mentioning that according to employed harmonic inter-atomic energies, the
present model for isolated CNT behaves linearly, while other authors, who
employed Morse potential, reported a non-linear behavior for isolated CNT. Their
models also show a linear behavior with a good approximation up to 5 % strain
(Tserpes et al. 2006, 2008; Meo and Rossi 2006; Xiao 2005).

Fig. 7 Schematic top view of
CNT, interphase and
surrounding polymer
(Shokrieh and Rafiee 2010)
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The predicted results of AVI model show a non-linear behavior for investigated
RVE. It should be pointed out that in this study because of linear interatomic
potential employment for C–C bonds which has been already explained in the
section of nanoscale modeling, the isolated CNT behaves linearly. Therefore, the
main source of non-linear behavior of investigated RVE stems from the non-
linearity of utilized vdW interactions in the interphase region. When the applied
axial strain is increased gradually, more vdW springs will be deactivated and
cannot transfer the applied load into the CNT. Frankland et al. (2003) was also
reported the same trend of non-linear behavior. In order to quantify the degree of
non-linearity, the Secant modulus of the RVE is illustrated in Fig. 8. It can be seen
that the RVE is behaving almost linearly up to 2.3 % strain and after that the
Secant modulus is decreasing considerably.

It was observed that the length of CNT has an important impact on load transfer
efficiency from matrix to CNT (Shokrieh and Rafiee 2009, 2010) due to the
dependency of the number of vdW links to the length of CNT. CNTs are com-
mercially available in different lengths ranging from 100 nm to approximately 30
microns in the market based on the employed process of growth (http://www.
carbonsolution.com, http://www.fibermax.eu/shop/, http://www.nanoamor.com,
www.thomas-swan.co.uk). As a consequent, a parametric study was carried out on
different lengths of CNT. The tensile stress–strain curves for different CNT lengths
are presented in Fig. 9.

Fig. 8 Tensile stress–strain curve for resin and embedded CNT in resin (left), Secant moduli of
resin and embedded CNT in resin (right)

Fig. 9 Tensile stress–strain
curves for different lengths of
embedded CNT in matrix
(Shokrieh 2010)
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When the length of CNTs increases, the efficiency of load transfer improves
dramatically. The larger the length of CNT, the higher effective longitudinal
modulus of the RVE is achieved. Investigating the effect of different lengths of
carbon nanotube on reinforcement shows that for the lengths smaller than 100 nm,
no tangible reinforcement takes place. Increasing the length of CNTs, the
enhancement in tensile modulus becomes more pronounced. It can be understood
that the rate of improvement in reinforcement increases very slowly for the lengths
larger than 10800 nm. As a case study, if the corresponding instantaneous moduli
of the unit cell are drawn in term of nanotube length (Fig. 10), for the strain of
2 %, the obtained trend shows that degree of reinforcement increases rapidly up to
CNT with length of 5616 nm and above this length the slope of the curve
diminishes dramatically and above 10800 nm (at the order of ten microns) neg-
ligible improvement in reinforcement can be seen. It can be seen that for lengths
larger than 10800 nm (10.8 lm) the reinforcement in comparison with the very
preceding length is not tangible and the stiffness is not influenced considerably.

We have observed that the efficient length of CNT for reinforcement is
9072 nm for the case of (10, 10) by developed method. For efficient and strong
load transfer, the required length of the fiber must have a certain value estimated
by following equation (MacMillan et al. 1986):

LEFF ¼
rf d

2sc
ð8Þ

Fig. 10 Modulus of the RVE versus length of CNT (Shokrieh 2010)
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where rf is tensile strength of the fiber, d is the fiber diameter and scis the fiber-
matrix bond strength. Frankland et al. (2002) obtained 2.7 MPa as the interfacial
shear strength of SWCNT in the form of (10, 10) in polymer matrix with non-
bonded interphase region using molecular dynamics simulation. They also
reported that in presence of non-bonded interactions between CNT and polymer
matrix, a required length for efficient load transferring issue is about 10 to 100
microns, while this length will be reduced to 1 micron for the case of bonded
interphase. Yu et al. (2006) have reported the strength of SWCNT as 11–63 GPa,
experimentally. Considering the diameter of SWCNT in the form of (10, 10) as
1.35 nm and aforementioned tensile strength of CNT and interfacial shear strength
of SWCNT/polymer, 9250 nm will be obtained as the efficient length using Eq. 8.
The results of developed FEM estimate the efficient length as 9072 nm according
to the inserted data in Table 3; which is in a very good agreement with obtained
value by Eq. 3.

Table 3 Initial stiffness of
the unit-cell at microscale and
improvement trend

Length of
embedded
CNT (nm)

Initial
stiffness (GPa)

Improvement in
stiffness with respect to
previous lower length (%)

108 14.8 –
216 18.63 26
432 24.78 33
864 32.03 29.2
1296 38.54 20.3
1728 42.4 10
2160 45.78 8
3024 49.08 7.2
3888 52.08 6.1
4752 54.82 5.3
5616 55.91 2
6480 56.47 1
7344 56.92 0.8
8208 57.21 0.5
9072 57.26 0.1
9936 57.32 0.1
10800 57.38 0.1
11664 57.44 0.1
12528 57.5 0.1
13392 57.55 0.1
14256 57.61 0.1
15120 57.67 0.1
15984 57.72 0.1
28512 57.78 0.1
31968 57.84 0.1
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In order to quantify the degree of non-linearity the Secant modulus of the RVE
is drawn in Fig. 11. Figures 10 and 11 are providing data for some selected
samples of the lengths to avoid messy figures.

3.2.3 Transverse and Shear Moduli of Microscale RVE

It should be pointed out that length of CNT will not affect the transverse and shear
modulus of the RVE and it influences the longitudinal modulus.

A uniform angular displacement is applied to one end of the model while the
other end is fully constrained. Similar to the preceding section, a non-linear
analysis is necessary to obtain the equivalent shear modulus of the RVE. Figure 12
illustrates the obtained results of FEA in comparison with results of the rule of
mixture and pure resin. The shear stress–strain curve of adaptive vdW bonded
model shows nearly linear trend, since it is expected that a few vdW springs
deactivated progressively by increasing torsional displacement.

The FE model is subjected to a uniform internal pressure acting on each node of
CNT in radial direction. The results in comparison with predicted values by rule of
mixture and pure resin data are shown in Fig. 13. It is worth mentioning that
existence of radial stress has to be taken into account carefully, when transverse
modulus of AVI model is intended to be extracted. This behavior can be justified
using following equation (Sadd 2005):

rhh ¼ Eh ehh þ mrRR=ERð Þ ð9Þ

Fig. 11 Secant modulus of the unit cell for different aspect ratios of CNTs
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where, Eh and ER are circumferential and radial modulus. The corresponding
amount of radial modulus is obtained from longitudinal tensile analysis carried out
in Sect. 3.2.1.

The radial moduli at trigonometry locations of 0 and 1808 are equivalent to the
Young’s modulus along ‘‘x’’ axis; while circumferential moduli at the same
locations are equivalent to the Young’s modulus along ‘‘y’’ axis. On the other
hand, the radial moduli at trigonometry location of 90 and 2708 are equivalent to
the Young’s modulus along ‘‘y’’ axis and corresponding values of circumferential
moduli at the same location are equivalent to the Young’s modulus along ‘‘x’’ axis.
Since Young’s moduli along ‘‘x’’ and ‘‘y’’ axes are the same, as the ‘‘z’’ axis
denotes longitudinal axis of the tube, the tangential strain, tangential stress and
radial stress components are extracted from the output of FE analysis and sub-
stitute into Eq. (9) in one of the trigonometry locations of 08, 908, 1808 or 2708 and
then transverse modulus (the Young’s modulus along ‘‘x’’ or ‘‘y’’ axis at men-
tioned locations) will be computed.

Fig. 12 Shear stress–strain curve for the RVE at miscorscale (Shokrieh and Rafiee 2010)

Fig. 13 Stress-strain curves for transverse modulus of the microscale RVE (Shokrieh and Rafiee
2010)
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3.2.4 Development of Equivalent Fiber

As the output of the microscale analysis, CNT and its inter-phase are converted
into the continuum equivalent fiber. The equivalent fiber is a continuum medium
which is perfectly bonded to the matrix. The developing strategy is depicted in
Fig. 14.

As it was previously stated, direct application of micromechanics rule for
predicting mechanical properties of CNTRP is not allowed because it simply
neglects the nanoscale by starting simulation from the scale of micro. Developing
equivalent fiber, it would be permissible to use micromechanics equations indi-
rectly in upper scales of the study, since the basic assumption of micromechanics
rules are valid for the developed equivalent fiber. In other word, instead of
developing appropriate equations which can be applied to the case of lattice
structure of CNT and its interphase region at nanoscale, CNT and its interphase is
converted to equivalent fiber at microscale which can be assumed as a virtual fiber
for very well developed micromechanics rules. Moreover, the influence of non-
bonded interphase region will be indirectly taken into account in the property of
equivalent fiber.

The mechanical properties of the developed equivalent fiber are obtained using
developed AVI method. The rule of mixture is utilized inversely for this purpose
(Tsai et al. 2003):

ELEF ¼
ELRVE

VEF
� EMVM

VEF
ð10Þ

GEF ¼
GRVE

VEF
� GMVM

VEF
ð11Þ

ETEF ¼
ETRVE

VEF
� EMVM

VEF
ð12Þ

Fig. 14 Illustration of conversion strategy for development of equivalent fiber (Shokrieh and
Rafiee 2010)
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where ELEF, ETEF and GEF, are longitudinal modulus, transverse modulus and
shear modulus of equivalent fiber, respectively. ELRVE, ETRVE and GRVE are
representative of longitudinal modulus, transverse modulus and shear modulus of
investigated microscale RVE obtained through developed AVI method. EM, GM,
VEF and VM stands for Young’s modulus modulus of matrix, shear modulus of
matrix, volume fraction of the equivalent long fiber and volume fraction of the
matrix.

Since the model is subjected to axial strain, the major longitudinal Poisson’s
ratio can be calculated using following equation:

ehh ¼ �
m

EZ
rZZ ð13Þ

where circumferential strain (ehh) is calculated by dividing the radial displacement by
the radius of equivalent long fiber and EZ is the obtained longitudinal Young’s mod-
ulus ofequivalent long fiber. Following the above mentioned procedure, the Poisson’s
ratio of the developed equivalent fiber isobtained as 0.284, while the Poisson’s ratio of
isolated CNT has been reported to be between 0.2 and 0.3 in the literature.

Mechanical properties of developed equivalent fiber are inserted in Tables 4
and 5. Wang et al. (2006) reported that the length of CNTs varies from 50 to
1700 nm when SWCNTs are dispersed in the resin. Since the reinforcement
efficiency of CNT highly depends on the length of CNT, longitudinal modulus of
developed equivalent fiber is obtained for different lengths of CNTs on mentioned
range. As was previously stated, other properties than longitudinal modulus of
equivalent fiber are independent of CNT length. It can be seen from Tables 4 and 5
that developed equivalent fiber shows a transversely-isotropic behavior.

Table 4 Effective properties of developed equivalent fiber

EL (GPa) ET (GPa) ES (GPa) m

58–600a 11.27 5.13 0.284
a See Table 5

Table 5 Longitudinal effective modulus of developed equivalent fiber for different lengths

CNT length (nm) EL (GPa) CNT length (nm) EL (GPa)s CNT length (nm)s EL (GPa)

50 58 500 348 1000 504
100 129 550 366 1050 516
150 164 600 384 1100 528
200 203 650 400 1150 540
250 232 700 416 1250 561
300 261 750 432 1300 570
350 287 800 448 1350 578
400 310 850 462 1450 591
450 330 950 490 1550 600
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3.3 Mesoscale Modeling

The key factors defining the capability of CNTs in reinforcing of polymers at
meso-scale are indicated in Table 1. A schematic presentation of suitable RVE at
meso-scale is shown in Fig. 15.

Following to the developed method of simulation at the very lower scale of
micro, the RVE at meso-scale consists of developed equivalent fiber instead of
CNT. As it is illustrated in Fig. 15, embedded equivalent fibers are oriented in
random directions and they can exist in both straight and curved forms. They can
be either concentrated in local aggregates or dispersed in some other areas. It is
assumed that aggregates will be appeared in the form of spherical regions. All
other equivalent fibers located out of the spherical regions are considered to be
fully dispersed.

Therefore, a suitable RVE at this scale should account for orientation,
agglomeration, non-straight shapes and volume fraction of CNTs.

3.3.1 Agglomeration

It is permissible to utilize micromechanics equations at meso-scale. Using
equivalent fiber technique, micromechanics equations will be applied to CNTRP
indirectly. Namely, effective stiffness of equivalent fiber not only will be fed into
micromechanics equations instead of effective stiffness of CNT, but also mi-
cromechanics theories are used at proper scale of meso instead of nano.

Exhibiting isotropic behavior due to random orientations of CNT, Young’s
modulus and Poisson’s ratio of the RVE at meso scale can be calculated using
improved Mori-Tanaka model presented by Shi et al. (2004). The improved Mori-
Tanaka model considers reinforcement in the form of cylindrical inclusion and it is
able to address the random orientations of inclusion and also interaction between
them. It can be expanded to consider multiple inclusions. So, it is appropriate for
the case of the developed equivalent fiber with different properties. Each and every
length of CNT which leads to a different effective stiffness of developed equivalent
fiber will be considered as a new phase in multiple-phase Mori-Tanaka equations.

 

Fig. 15 The RVE of
mesoscale containing
equivalent fibers

220 R. Rafiee and M. M. Shokrieh



The improved Mori-Tanaka model developed by Shi et al. (2004) evaluates the
bulk modulus (K) and shear modulus (G) of mentioned block in Fig. 15 using
below equations:

K ¼ Kout 1þ
l Kin

Kout
� 1

� �

1þ a 1� lð Þ Kin
Kout
� 1

� �
2
4

3
5 ð14Þ

G ¼ Gout 1þ
l Gin

Gout
� 1

� �

1þ b 1� lð Þ Gin
Gout
� 1

� �
2
4

3
5 ð15Þ

where l accounts for volume fraction of aggregates with respect to the total
volume of the block and and j denotes volume fraction of CNTs inside the
aggregates. Therefore, the improved Mori–Tanaka model is a two-parameter
model taking into account agglomeration (Shi et al. 2004). When these two
parameters are equal, no agglomeration will take place. Other parameters in
equations (14) and (15) are calculated using below formulations (Shi et al. 2004):

a ¼ 1þ mout

3 1� moutð Þ ð16Þ

b ¼ 2 4� 5moutð Þ
15 1� moutð Þ ð17Þ

Kin ¼ Km þ
frj dr � 3Kmarð Þ

3 l� frjþ frjar½ � ð18Þ

Kout ¼ Km þ
fr 1� jð Þ dr � 3Kmarð Þ

3 1� l� fr 1� jð Þ þ fr 1� jð Þar½ � ð19Þ

Gin ¼ Gm þ
frj gr � 2Gmbrð Þ

2 l� frjþ frjbrð Þ ð20Þ

Gout ¼ Gm þ
fr 1� jð Þ gr � 2Gmbrð Þ

2 1� l� fr 1� jð Þ þ fr 1� jð Þbr½ � ð21Þ

mout ¼
3Kout � 2Gout

6Kout þ 2Gout
ð22Þ

where Km, Gm and fr are the bulk modulus of matrix, shear modulus of matrix and
CNT volume fraction, respectively. ar and br are Hill constants for cylindrical
inclusion (Shi et al. 2004).
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3.3.2 Waviness

A phenomenological technique is used to consider the non-straight shape of carbon
nanotubes. In this approach each arbitrary wavy shape of carbon nanotube will be
replaced by a straight equivalent fiber developed with reduced stiffness repre-
senting the non-straight shape of CNT.

The stiffness of a unit-cell containing an embedded non-straight fiber in poly-
mer can be bounded between two extreme values dictated by longitudinal and
transverse stiffness of the unit-cell. As a subsequent, the effective stiffness of a
non-straight fiber is placed between bounding values of longitudinal and transverse
effective stiffness of a straight fiber, when it is categorized under the transversely-
isotropic material. This phenomenon is shown in Fig. 16.

A mathematical description of this bounding technique is presented in Eqs. (23)
and (24) for longitudinal and transverse directions, respectively.

EStraight
T �EWavy

L �EStraight
L ð23Þ

EStraight
T �EWavy

T �EStraight
L ð24Þ

Depending on the length of CNT/equivalent fiber, the corresponding values of

EStraight
L are reflected in Table 5; while EStraight

T is 11.27 GPa for all lengths.
Therefore, a non-straight equivalent fiber will be replaced by a straight equivalent
fiber with reduced effective stiffness. As a result of the developed strategy

EWavy
L and EWavy

T will be chosen independently. Each case is a representative of an
arbitrary non-straight shape and is not limited to any predefined pattern of
waviness.

The longitudinal and transverse properties of developed equivalent fiber will be
chosen randomly in order to simulate random patterns of waviness.

3.4 Macroscale Modeling

The RVE of the final scale of macro is the investigated material region. As it was
reflected in Fig. 1, the material region at macro scale is partitioned into smaller
constitutive blocks with different local volume fraction in order to address the
material inhomogeneity originated from non-uniform dispersion of CNTs. The
mechanical properties (Young’s modulus and Poisson’s ratio) of each and every
constitutive block are evaluated at the lower scale of meso as explained in (3.3)

Fig. 16 Illustration of
bounding technique for wavy
CNT (Rafiee 2013)
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section. In order to obtain the overall properties of investigated material region, the
average of properties associated with each constitutive block are obtained using
Voigt model (Jones 1999):

X ¼

P
i

Xipi

P
i

pi
ð25Þ

where pi and Xi stands for portion of constitutive block and mechanical property o
associated with i-th block at mescoscale. X represents the corresponding
mechanical property of the material region at macroscale. Due to the random
orientations of CNT in matrix, the material region can be assumed as an isotropic
material and two properties out of Elastic modulus, shear modulus and Poisson’s
ratio can fully describe the material properties.

4 Stochastic Implementation of N3M

Developed ‘‘N3M’’ multi-scale modeling is implemented stochastically to address
intrinsically uncertainties in CNTRP. Prior to establishment of stochastic analysis,
governing random parameters are identified. Recalling from previous sections,
most important parameters behaving randomly are summarized in Table 6.

4.1 Model Preparation

Firstly, the investigated material region at macro-scale is partitioned into smaller
constitutive blocks as schematically shown in Fig. 1. Random volume fraction is
assigned to each and every single constructive block in order to capture the
material inhomogeneity originated from non-uniform dispersion of CNTs. The
average of volume fractions in each block is consistent with the overall volume
fraction of CNT in investigated material region.

The overall flowchart of stochastic N3M modeling is presented in Fig. 17. As it
can be seen from Fig. 17, the model preparation takes place at the scale of macro

Table 6 Random parameters associated with CNTRP

Parameter Effective scale Effective length

Length of CNT/Equivalent fiber Nano/Micro nm
CNT orientation Micro/Meso lm
CNT agglomeration Meso lm
CNT curvature Meso lm
CNT dispersion Macro mm
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and then the N3M modeling starts from nano-scale and it continues to the scales of
micro, meso and macro, sequentially. Monte Carlo method (Kleiber and Hien
1992) is employed to perform stochastic modeling.

A convergence study is performed to obtain appropriate mesh density for tes-
sellated region and also required number of realizations. For convergence study,
Young’s modulus of resin is selected as 10 GPa, Poisson’s ratio of 0.3 and 3 %
CNT volume fraction. Coefficient of variation for mean value of overall Young’s
modulus of investigated material region is considered less than 0.1 % as a con-
vergence criterion. Therefore, convergence study reveals that the convergence
criterion is fulfilled when 500 realizations of stochastic modeling is accomplished
on a region with 80 9 80 blocks at macro-scale. For instance, the generated
partitioned material region with random volume fraction and 40 9 40 mesh
density during convergence study is depicted in Fig. 18. The black color implies
on a maximum CNT volume fraction while the white color denoted zero CNT
volume fraction. The gray spectrum shows the intermediate values of CNT volume
fraction between zero and maximum. The convergence trend is also shown in
Fig. 18.

Fig. 17 Flowchart of developed stochastic N3M modeling (Jones 1999)
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4.2 Model Execution

All introduced parameters are considered as random parameters; hence, full
stochastic ‘‘N3M’’ modeling is developed. The flowchart of this modeling procedure
is presented in Fig. 17. A computer code was established in this research on the
platform of Mathematica (Wolfarm 1999). The simulation at nano- and micro-scales
has been performed in commercial FE package of ANSYS (Theory Manual 2003) as
already explained in Sects. 3.1 and 3.2. It is noteworthy to mention that outcomes of
FEA at nano- and micro-scales have been used as a database in developed stochastic
analysis.

It is assumed that all CNTs are single-walled CNT (SWCNT) with the same
diameter. Due to the very high aspect ratio of CNTs, the length of CNT has a more
tangible effect on load transferring than its diameter. A consistent length of CNT
cannot be obtained during the processing CNT. Additionally, CNTs are cut into
different lengths when CNTRP is exposed to sonication process for better dis-
persion of CNTs. Wang et al. (2006) statistically characterized the length distri-
bution of SWCNT through an experimental observation. This distribution is used
here as a probability density function of CNT lengths. Each and every length of
CNT will lead to unique effective stiffness of corresponding equivalent fiber as it is
explained in Sect. 3.2.4 and Table 5.

Due to the very small size of CNT, it is almost impossible to align them in one
direction and they are oriented in different directions. This phenomenon is taken
into account using improved version of Mori–Tanaka equation as it is already
explained in Sect. 3.3.

Agglomeration of CNT experiences a non-deterministic pattern in each con-
stitutive block. Therefore, two-parameter model of agglomerations (See Sect. 3.3.)
is employed here randomly. Namely, the value of mentioned two parameters in
Eqs. (14) and (15), i.e. l and jare chosen randomly. If these two parameters are

Fig. 18 Sample of partitioned material region for convergence study (left) and convergence
trend (right) (Shokrieh and Rafiee 2012)
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accidentally equal, no agglomerations will occur in that block. Consequently,
agglomerations of CNTs are considered as random phenomena not only in its
occurrence but also in its degree to which it happens, quantitatively.

Following the bounding technique explained in Sect. 3.3.2, EWavy
L and EWavy

T will
be selected randomly between bounding limits. If it exactly coincides with one of
the uppermost values, it will reflect the straight CNT; otherwise it will be a
representative of any arbitrary non-straight shape. So, it can be concluded that
developed stochastic model treats both occurrence of waviness and its shape as
random parameters. It is assumed that CNTs with lengths lower than 100 nm will
remain straight in polymer, while other larger lengths will experience non-straight
shape randomly.

Gaussian distribution is selected for the volume fractions with mean value of
overall volume fraction and different standard deviations are utilized.

4.3 Model Validation

In order to check the accuracy of developed model, developed N3M modeling is
evaluated using available experimental results in published data for CNTRP. The
comparison of results is inserted in Table 7 wherein the column entitled as
chemical treatment refers to functionalization of CNT.

As it was explained in ‘‘Sect. 3.2’’, the interaction between CNT and sur-
rounding polymer is treated as weakly non-bonded vdW interaction. Thus, those
experimental observations wherein CNTs have not been chemically treated are
selected for comparison purpose, since the developed modeling cannot consider
functionalized CNTs.

The percentage of error for estimated results by N3M simulation method is
lower than 7 % for the functionalized SWCNT and it is lower than 1.6 % for
normal CNTs. This stems from the fact that the developed N3M method treats
interphase region between SWCNT and surrounding polymer as non-bonded vdW
interactions which is suitable for non-functionalized SWCNT. In addition to the
proper percentage of the error, the results of prediction using N3M technique are
lower than experimental observations in all cases implying on conservative sim-
ulation except on special case reported by Lopez Manchado et al. (2005). In their
experimental observation, when the volume fraction of CNT increases from 0.563
to 0.75 the Young’s modulus of CNTRP exceptionally decreases from 1.18 to
1.087 GPa. This has led us to -14 % errors in predicting results using developed
stochastic N3M. They have justified that this behavior stems from the increased
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local aggregates due to higher level of CNT agglomeration as the higher CNT
volume fraction will be resulted in more probability of agglomeration occurrence.
The developed N3M modeling treats agglomeration as a random issue and it may
not be exactly matches with the realistic situation of investigated CNTRP. In order
to investigate this special case in more detail, different random patterns are gen-
erated for agglomeration phenomenon. The results are presented in Fig. 20 and it
can be observed that the experimentally reported result by Lopez Manchado et al.
(2005) can be obtained after modeling when the agglomeration occurrence
increases addressing higher level of CNT local concentration. In other word, in all
cases depicted in Fig. 19 when the material inhomogeneity becomes more pro-
nounced by formation of more local CNT aggregates, the experimental observa-
tion can be met.

Finally, it can be inferred that developed modeling is a reliable modeling
procedure, since a very good agreement between experimentally measured data
and obtained values by modeling is seen.

Table 7 Comparison between predicted results by N3M method with experimental published
data

Researchers Constituents’ properties Young’s modulus (GPa)

EResin

(GPa)
VF

(%)
Chemical
treatment

Experimental
observation

Mode value
(Error [%])

Mean value
(Error [%])

Odegard et al.
(2003)

0.85 0.1 0.875 0.848–(3) 0.847–(3.2)
0.5 1.2 1.54–(3.8) 1.152–(4)
1 1.4 1.33–(5) 1.32–(5.7)
0.21 1.2 1.2–(0) 1.19–(0.84)

Zhu et al. (2004) 2.026 0.882 2.65 ± 0.125 2.516–(5) 2.514–(5.1)
3.306 3.44 ± 2.53 3.225–(6.2) 3.223–(6.3)

Paiva et al. (2004) 4 2.28 5.6 ± 0.4 5.28–(5.7) 5.26–(6)
4.58 6.2 ± 0.1 5.78–(6.7) 5.77–(6.8)

Lopez Manchado
et al. (2005)

0.855 0.187 1.02 1.015–(0.5) 1.013–(0.6)
0.37 1.1 1.1–(0) 1.09–(0.9)
0.563 1.18 1.17-(0.84) 1.163-(1.4)
0.75 1.087 1.25–(-15) 1.24–(-14)

Villoria and
Miravete
(2007)

2.875 0.12 2.909 2.9–(0.3) 2.897–(0.4)
2.587 0.47 2.659 2.65–(0.3) 2.6s4–(0.7)
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5 Results and Discussion

For the case study, Young’s modulus and Poisson’s ratio of the matrix are selected
as 10 GPa and 0.3, respectively. The simulated resin treated as an elastic and
isotropic material. The overall volume fraction of the CNT is selected as 5 %.
Different patterns of volume fraction are generated with the same mean values of
5 % and different standard deviations as 0.5, 1.0, 1.5, 2.0 and 2.5 %. Obtained
results for Young’s modulus and Poisson’s ratio are demonstrated in Fig. 20.

The mean values for Poisson’s ratio show a negligible fluctuation and it can be
considered as 0.293 for all cases with a very good level of accuracy. It can be also
figured out from Fig. 20 that the mean values of overall Young’s modulus change
insignificantly for different patterns of volume fraction.

Mean and mode values for Young’s modulus are presented in Table 8 with
supplementary information. The range of mean values for overall Young’s mod-
ulus is also presented in Table 8 on the basis of 95 % confidence level. It can be
comprehended from the results that one can simply replace random volume
fraction with its deterministic mean value with an acceptable accuracy.

The possibility of replacing random lengths of CNT by its corresponding mean
value is also examined. For this case, the mean value of CNT length is obtained

Fig. 19 Parametric study of local CNT aggregate formation and increased level of
inhomogeneity
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using probability density function presented by Wang et al. (2006) and then
effective stiffness of equivalent fiber with the mean length is obtained using
developed AVI technique at micro-scale. It was observed that the results of two
different approaches (random lengths versus mean length) are very close. The

Fig. 20 Overall Young’s modulus and Poisson’s ratio of investigated material region (Shokrieh
and Rafiee 2010

Table 8 Statistical results for Young’s modulus of CNTRP

VCNT (%) Mode value (GPa) Mean value (GPa) STDa

(%)
COV
(%)

Limits of mean value (GPa)
(Confidence level = 95 %)

5 12.47 12.47 0.12 0.01 12.468–12.471
5 ± 0.5 12.47 12.47 0.25 0.02 12.470–12.474
5 ± 1.0 12.47 12.47 0.50 0.04 12.469–12.472
5 ± 1.5 12.47 12.47 0.74 0.06 12.473–12.477
5 ± 2.0 12.49 12.48 0.87 0.07 12.479–12.483
5 ± 2.5 12.49 12.48 1.12 0.09 12.484–12.489

Note STD Standard Deviation
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maximum difference between these two approaches is about 0.07 %, while the
runtime of the modeling process decreases significantly. As a consequent, the
length parameter can also be taken into account as a deterministic value using its
average value. Therefore, two variables of CNT length and volume fraction out of
five introduced parameters in Table 6 can be considered as deterministic values.

Comparing simulation results considering mean values for volume fraction and
length of CNT with the case of maximum length of CNT, shows that the former
reports Young’s modulus 21 % lower than the later. It implies on the important
role of CNT length and its subsequent effect on the load transferring efficiency.

The Young’s modulus variation of the investigated material region can be
described by probability distribution function. It can be seen from Table 4 that for
small deviations of volume fraction (0.5, 1.0 and 1.5 %), both mode and mean
values of Young’s modulus coincide; while for large deviations of volume fraction
(2.0 and 2.5 %), mode values are slightly higher than the mean values. Conse-
quently, Gaussian distribution is a proper candidate for the small deviations of
volume fraction; while for large deviations Weibull distribution is nominated in
order to justify unequal values of mode and mean overall Young’s moduli. A
comparison between these two probability distribution functions is exemplified in
Fig. 21 for the two samples of volume fraction.

In order to study the sensitivity of N3M modeling to the introduced random
parameters, the provided code is equipped with a feature that each random
parameter can be activated individually; while others are treated deterministically.

It was understood that both CNT length and volume fraction can be treated as
deterministic values using their average amounts. On the other side, the random
orientation of CNTs renders the CNTRP as an isotropic material. Therefore, the
parametric study will concentrate on agglomeration and non-straight shape of
CNTs.

Firstly, it is assumed that the investigated material region consists of straight
CNTs and the waviness will not be experienced in order to merely concentrate on
the influence of agglomeration. A comparison has been done between the results of
agglomerated CNTs and fully dispersed CNTs in the matrix and it was shown in
Fig. 22. The results show a considerable difference between these two cases for the
Young’s modulus (about 5 %) implying on importance of agglomeration in stiff-
ness reduction of CNTRP composites. On the other hand, Poisson’s ratio can be
considered 0.28 for all cases when the accuracy is considered as two orders of
magnitude.

Taking into account the waviness of CNT, the model is executed once again.
For this purpose, the generated random pattern for all CNT agglomeration and
volume fraction in former analysis is exactly used for the current modeling.
Reported results in Fig. 23 shows that the overall Young’s modulus of the material
region reduces 18 % comparing with the results of embedded straight CNTs in
matrix. It is interesting to observe that the Poisson’s ratio has been increased
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Fig. 21 Discrete distribution versus continuous probability density functions (Shokrieh and
Rafiee 2010)
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slightly in comparison with straight CNTs. It stems from this fact that transverse
characteristics of CNTRP is improved due to existence of wavy CNT, therefore the
experienced contradiction along transverse direction will be a little bit lower than
that of straight CNTs. In other word, the material region resists a little higher
against transverse contraction leading to the higher overall Poisson’s ratio.

Comparing the results of mentioned parameter study on CNT curvature and
agglomeration which are reflected in Figs. 20, 21 and 23, it is realized that the
waviness of CNTs reduces Young’s modulus of CNTRP more considerably than
formation of aggregates. Thus, the developed N3M modeling is severely sensitive
to the curvatures of the CNTs. Contributions of agglomerations and orientations of
CNTs are moderate with respect to their curvature.

Focusing on the waviness of CNTs, it would be also interesting to study the
influence of resin modulus on the properties of CNTRP. For this purpose, the
Young’s modulus of resin is chosen as 5 GPa; while the Poisson’s ratio is kept as
0.3 like pervious sets of analysis. The volume fraction is considered as 2 % for this
analysis. The obtained results are presented in Fig. 24. Emphasizing only on the

Fig. 22 Comparison between the Young’s modulus and Poisson’s ratio of agglomerated and
fully dispersed CNTs in the matrix (Shokrieh and Rafiee 2012)
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waviness effect, the same generated random patterns for CNT curvature and
agglomeration are used for all cases reflected in Fig. 24.

It can be seen that non-straight shapes of CNT reduces overall Young’s mod-
ulus of CNTRP for selected resin, 25 % up to 50 % in comparison with than that
of straight CNTs. This reduction becomes more tangible when the CNT volume
fraction increases. Furthermore, comparing the results of the current analysis with
the obtained results for the matrix with Young’s modulus of 10 GPa, it can be
comprehended that more stiff matrices will decrease the reduction in the Young’s
modulus of CNTRP by weakening the level of CNT curvature.
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6 Conclusions

Young’s modulus and Poisson’s ratio of CNTRP are predicted using hierarchical
multi-scale simulation approach. Developed multi-scale technique covers the full
range of nano, micro, meso and macro scales. The simulation procedure consists of
two phases as top-down scanning and bottom-up modeling. Effective parameters
of each scale are identified and suitable RVE is defined for each level of
simulation.

At nano-scale, each C–C bond of carbon nanotube is replaced with equivalent
beam element by a correlation between molecular space and structural mechanics.
The lattice structure of CNT is kept by simulating CNT as an equivalent discrete
structure.

At micro-scale, a multi-scale FEM is employed which treats CNT as a lattice
structure at nano-scale and surrounding resin is simulated as a continuum medium.

Having a crucial influence on load transferring issue, the interphase region was
investigated as the non-bonded vdW interactions. Due to non-linear nature of vdW
interactions, non-linear FEA has been performed adaptively. In each step of the
solution the current status of the model is carefully updated. CNT and its inter-
phase region were replaced with an equivalent fiber. The effective stiffness of the
equivalent fibers is fully characterized. Developed equivalent fiber is an appro-
priate tool for the meso-scale instead of direct application of micromechanics rules
to CNTRP.

Fig. 24 Comparison of Young’s modulus for CNTRP with different CNT volume fraction
(Rafiee 2013)
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At meso-scale, appropriate micromechanics model is selected to take into
consideration agglomeration and orientation of CNTs. At this scale, existence of
non-straight CNT and its effect on reduction of constitutive blocks properties are
investigated using phenomenological bounding technique. Overall properties of
the investigated material region are obtained using averaging method as Voigt
model. Namely, each property of constitutive blocks is averaged at micro-scale as
an appropriate alternative approach instead of FEM.

Non-uniform dispersion of CNT leading to an inhomogeneous material region
was investigated at a micro-scale. For this purpose, investigated material region
was partitioned into different constitutive blocks with different properties.

All four sub-steps of modeling at nano to macro scales are integrated in a
unitized modeling procedure. Full stochastic modeling technique is developed to
simulate inherent uncertainties associated with manufacturing of CNTRP. Five
different parameters as the length, orientation, agglomeration, curvature and dis-
persion of CNT are treated as random parameters. A case study is performed to
verify the developed modeling procedure. It was revealed that length and volume
fraction of CNT can be simulated as deterministic parameters using their corre-
sponding mean values. A parametric study is performed and it was understood that
CNT curvature affects the result seriously, while CNT agglomeration and orien-
tation have moderate impact on prediction. To validate the developed stochastic
modeling procedure, results demonstrate a high level of consistency with experi-
mental observations available in the literature.
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Molecular Dynamics Simulation
and Continuum Shell Model for Buckling
Analysis of Carbon Nanotubes

C. M. Wang, A. N. Roy Chowdhury, S. J. A. Koh and Y. Y. Zhang

Abstract Carbon nanotubes (CNTs) have potential applications in various fields
of science and engineering due to their extremely high elasticity, strength, and
thermal and electrical conductivity. Owing to their hollow and slender nature,
these tubes are susceptible to buckling under a compressive axial load. As CNTs
can undergo large, reversible post-buckling deformation, one may utilize this post-
buckling response of CNT to manufacture mechanical energy storage devices at
the nano-scale, or use it as a nano-knife or nano-pump. It is therefore important to
understand the buckling behavior of CNTs under a compressive axial load.
Experimental investigations on CNT buckling are very expensive and difficult to
perform. As such, researchers often rely on molecular dynamics (MD) simulations,
or continuum mechanics modeling to study their mechanical behaviors. In order to
develop a good continuum mechanics model for buckling analysis of CNTs, one
needs to possess adequate experimental or MD simulation data for its calibration.
For ‘‘short’’ CNTs with small aspect ratios (B10), researchers have reported dif-
ferent critical buckling loads/strains for the same CNTs based on MD simulations.
Moreover, existing MD simulation data are not sufficiently comprehensive to
allow rigorous benchmarking of continuum-based models. This chapter presents
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extensive sets of MD critical buckling loads/strains for armchair single-walled
CNT (SWCNTs) and double-walled CNTs (DWCNTs), with various aspect ratios
less than 10. These results serve to address the discrepancies found in the existing
MD simulations, as well as to offer a comprehensive database for the critical
buckling loads/strains for various armchair SWCNTs and DWCNTs. The Adaptive
Intermolecular Reactive Bond Order (AIREBO) potential was adopted for MD
simulations. Based on the MD results, the Young’s modulus, Poisson’s ratio and
thickness for an equivalent continuum cylindrical shell model of CNTs are cali-
brated. The equivalent continuum shell model may be used to calculate the
buckling loads of CNTs, in-lieu of MD simulations.

Keywords Carbon nanotubes � Buckling loads � Molecular dynamics
simulations � Thick shell model

1 Introduction

First discovered by Iijima (1991), carbon nanotubes (CNTs) have triggered intense
research activities due to their superior properties such as high mechanical
strength, excellent thermal and electrical conductivity. CNTs are long and slender
cylindrical nanostructures, with diameters of the order of few nanometers, and
lengths ranging from several nanometers to several millimeters. CNTs are broadly
classified into single-walled carbon nanotubes (SWCNTs) and multi-walled carbon
nanotubes (MWCNTs). The ends of the nanotubes may either be open or covered
by a surface of similar crystal structure. In pristine SWCNTs, the ends are typically
covered with hemispherical fullerene molecule whereas in the case of MWCNTs,
the end covers are polyhedral (Saito et al. 1992).

The geometry of a pristine SWCNT may be visualized by wrapping graphene
sheet around a cylindrical surface. The direction of wrapping with respect to the
crystal structure is known as the chiral vector C, which is represented by a pair of
integers as shown in Fig. 1a. Based on the wrapping direction, there exist three
types of SWCNTs, i.e. armchair, chiral and zigzag (see Fig. 1b). The length of a
unit cell of CNT is equal to the magnitude of translational vector T as shown in
Fig. 1a. Vector T is orthogonal to the chiral vector C and its magnitude depends on
chirality of CNT. MWCNTs consist of multiple nested SWCNTs separated radi-
ally by 0.34 nm, which is the equilibrium distance between two parallel graphene
sheets. Mechanical strength of MWCNTs can be increased by reducing the inter-
tube spacing below 0.34 nm using neutron irradiation (Xia et al. 2007). These
MWCNTs are known as condensed MWCNTs and they have a higher mechanical
strength when compared to the normal ones (Zhang et al. 2009).
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1.1 Special Properties of CNT and Their Applications

CNTs with a very high aspect ratio (length-to-diameter ratio *1000) can be used
as a substitute to conventional fiber materials such as electro-spun (E=S) glass,
Kevlar, and polyacrylonitrile (PAN) based carbon fiber. A comparison of
mechanical and transport properties between CNTs and conventional fiber mate-
rials are given in Tables 1 and 2. The tables show mechanical properties (breaking
strain, tensile strength, Young’s modulus) of CNTs are not only superior compared
to those of conventional fiber materials but these fibers are also lighter and their
transport properties (thermal and electrical conductivity) are also comparable to
very highly conductive fibers. Although the thermal conductivity of CNT is much
less compared to PAN carbon fibers but overall properties of CNT are much
superior to PAN carbon fibers.

Owing to their high quality mechanical, electrical, and, thermal properties,
CNTs have diverse applications in different fields of engineering and science listed
as follows:

Fig. 1 a Translational vector T and chiral vector C b Three types of carbon nanotubes

Table 1 Mechanical properties of various fiber materials

Fiber
material

Specific
density

Young’s
modulus
(TPa)

Tensile
strength
(GPa)

Breaking
strain
(%)

CNT (Koziol et al. 2007) 1.3–2 0.2–5 10–60 *10.0
HS Steel 7.8 0.2 4.1 \10.0
Carbon fiber–PAN (Liu et al.

2008)
1.7–2 0.2–0.6 1.7–5 0.3–2.4

Carbon fiber–Pitch 2–2.2 0.4–0.96 2.2–3.3 0.27–0.6
E/S–glass 2.5 0.07–0.08 2.4–4.5 *4.8
Kevlar 1.4 0.13 3.6–4.1 2.8

Note http://www.nanocyl.com/CNT-Expertise-Centre/Carbon-Nanotubes (Huang 2009)
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(a) Mechanical, materials and structural systems

(i) Polymer composites (Harris 2004)
(ii) Nano-gears (Endo et al. 2006)
(iii) Artificial muscles (Aliev et al. 2009)
(iv) CNT cement composites (Aliev et al. 2009; Gdoutos et al. 2010; Makar

et al. 2005; Zhu et al. 2004)
(v) Atomic force microscopy (AFM) probes (Stevens et al. 2000)
(vi) Nano-cutting tool (Duan et al. 2010)
(vii) Mechanical energy storage devices (Cao et al. 2005; Kozinda et al.

2012)
(viii) High performance composites (De Volder et al. 2013).

(b) Electro-magneto-mechanical systems

(i) Buckypaper (Wang et al. 2008)
(ii) Stretchable and flexible electronic circuits (Sun et al. 2011)
(iii) Electronic motor brushes (Endo et al. 2006)
(iv) Electro-mechanical transducers (Cohen-Karni et al. 2006; Hall et al.

2007).

(c) Green technologies and hydrogen storage

(i) Solar cells (Guangyong and Liming 2011; Klinger et al. 2012)
(ii) Membrane filters (Tanaka 2010)
(iii) Hydrogen storage (Cheng et al. 2001).

1.2 Buckling of CNTs and its Significance

CNTs possess a hollow cylindrical geometry made of one atomic layer of carbon
atoms. As such, CNTs are prone to buckle under mechanical loads. Under a com-
pressive axial load, mechanical torque or a bending moment, a CNT experiences
localized or global compressive stresses. Compressive stress may result in localized
shell-like buckling within the atomic layer of a short CNT, or globalized beam-like
buckling for a long and slender CNT. This is usually accompanied by an abrupt
change in its transport properties, and a drastic decrease in its mechanical stiffness.

Table 2 Transport properties of CNTs and various fiber materials

Material Thermal
conductivity (mK)
at 298 K

Electrical
conductivity (S/m)
at 298 K

CNT (Kim et al. 2001; Li et al. 2007) 25–3000 106–107

Copper 400 6 9 107

Pitch carbon fiber 1000 2 x 106–8.5 9 106

PAN carbon fiber 8 9 105 6.5 9 106–1.4 9 107

Note http://www.nanocyl.com/CNT-Expertise-Centre/Carbon-Nanotubes
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In nano-scale applications such as electro-mechanical transducers, artificial
muscles, and AFM probes, buckling often leads to instability and failure of the
system. Hence, an optimal design of such CNT-based nano-devices requires a clear
knowledge of when and how buckling will occur. That said, buckling of CNT is not
always detrimental to the function of nano-devices. One may harness the large
deformation, as a result of CNT buckling, to construct a super-compressible spring
or structural system (Cao et al. 2005). Such a system of super-compressible CNTs
can be squeezed and constrained to store mechanical energy. It is also observed that
in bent CNT, localized buckling induces extra curvature at the buckled regions
thereby increasing the total strain energy stored in the CNT (Duan et al. 2010).
When the bent CNT is released, the stored strain energy are converted into kinetic
energy and results in a huge impact load that can be used to cut nano-sized
materials.

Therefore the buckling phenomenon of CNT gives CNT intrinsic mechanical
properties (e.g. super-compressibility due to elastic buckling under axial load).
Hence, an in-depth understanding on the buckling behavior of CNTs allows one to
design a CNT-based system that works more effectively and efficiently. This
chapter is devoted to the study of buckling behavior of short CNTs under a
compressive axial load.

1.3 Atomistic-Based Methods for CNT Buckling Analysis

Buckling analysis of CNT are experimentally conducted using nano-indenters
(Waters et al. 2006) which require high precision instruments to measure the
buckling load because the buckling loads are usually in the range of 1 nN� 1 lN.
These experiments also require expensive instruments like Atomic Force Micro-
scope (Tombler et al. 2000) or optical tweezers etc. (Xu et al. 2009) for picking
and aligning the CNTs, and high resolution microscopes such as scanning electron
microscope (Tombler et al. 2000) for imaging the CNT. So far, due to difficulty of
building an experimental set up at small scale, unavailability of very small nano-
indenters and high precision measuring instruments, experimental analysis of CNT
buckling has only been possible for MWCNTs longer than 50 nm. The challenge
in experiments is evidenced from the fact that relatively few experimental works
have been published in the literature. Hence, researchers rely on computational
simulations, in particular, atomistic-based or continuum-based methods for the
buckling analysis of CNTs.

Atomistic methods are more computationally intensive when compared to
continuum-based methods, as it seeks to model the interactions between individual
atoms. Consequently, atomistic methods are able to model the physical system
accurately as inter-atomic interactions are usually rather well-defined and are
grounded upon comparison with first-principle calculations (Sun 1998) or based
on experimental results like bond energy and atomization energy (Brenner
et al. 2002). We begin by describing three broad classes of atomistic-based
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methods, followed by several continuum-based methods, targeted to analyze CNTs
under compressive loading.

1.3.1 Molecular Mechanics (MM) and Molecular Dynamics (MD)

In MD/MM, the atomic structure is first defined in accordance to the crystal
structure of the CNT. Interactions of carbon atoms in CNT are defined by inter-
atomic potential energy function which is either obtained from quantum
mechanical calculations (Sun 1998), or from experimental results (Stuart
et al. 2000). In general, the inter-atomic potential energy is a function of the
position of atoms in the CNT. Force on each atom in the system is derived from
the gradient of the total potential energy in CNT.

In MM, thermodynamic equilibrium is achieved by minimizing the total
potential energy of the system by changing the atomic coordinates. The governing
equation for MM is given by

oU rð Þ
or
¼ 0 ð1Þ

where U is the total potential energy of the system and r is the position vector of
atom.

MM does not consider time dependent quantities like velocity, acceleration, and
inertia force. Unlike MM, MD is performed by solving Newton’s equation of
motion for each atom in the system. The governing equations for MD are given by

mi
d2ri

dt2
¼ Fi ð2Þ

and

Fi ¼ �
oU r1 ;r2; . . .; ri; . . .; rN

� �
ori

ð3Þ

where ri is the position vector of atom i, N is the total number of atoms, and Fi is
the force vector acting on atom i, mi is the mass of ith atom and, t is the time.

Temperature is a continuum parameter, which is related to the total kinetic
energy of the system (Frenkel and Smith 2002). Since MM does not consider
transient, dynamic quantities, it cannot account for the thermal effect during
geometry optimization, unless one introduces a parameter into the inter-atomic
potential energy function for thermal change. To do this, MM may adopt a tem-
perature-dependent inter-atomic potential energy function. This type of MM is
termed as engineering molecular mechanics (EMM) which was developed by
Subramaniyan and Sun (2008). For MD, the temperature is usually controlled
using thermostats (Hünenberger 2005).
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To perform buckling analysis of CNT using MM/MD method, the CNT is
incrementally deformed or loaded. After deforming the CNT, MM/MD is used to
compute a state of thermodynamic equilibrium. These steps are repeated until
termination. Termination may either be prescribed by the user, or when a state of
thermodynamic equilibrium cannot be obtained.

1.3.2 Dissipative Particle Dynamics (DPD)

DPD is commenced by hypothetically dividing the atomic system into small cells
that contains more than one atom in each cell (Flekkøy et al. 2000; Fuchslin et al.
2009). Atoms in each of these cells are lumped into a single node which acts as a
representative particle during DPD simulations. A collection of these particles are
termed dissipative particles. This approximation of a group of atoms as a single
representative atom is called coarse-graining. For CNTs, researchers usually take
24 atoms for the coarse-graining procedure (Liba et al. 2008). One may also
consider more carbon atoms for coarse-graining but that may induce more
approximation errors. By coarse-graining, DPD can simulate much larger atomic
systems than MM or MD. However, also due to coarse-graining, DPD is less
accurate than MM or MD. Like MD, DPD is also a dynamic method where
Newton’s equations of motion have to be solved. For each dissipative particle,
Newton’s equations of motion are collectively given by

mi
d2ri

dt2
¼ Fext

i þ
X
i 6¼j

FC
ij þ FD

ij þ FR
ij

� �
ð4Þ

where ri is the position vector of atom i. Fext
i is the external force vector acting on

atom i, FC
ij is a conservative force, FD

ij is a dissipative force, FS
ij is a stochastic

force. Equation (4) is solved to obtain the response of the system.
In DPD, FC

ij is calculated from a potential energy function and it considers the

interaction between dissipative particles. FD
ij represents a viscous resistance which

controls the temperature of the system. The force FS
ij takes care of the lost degrees

of freedom due to coarse-graining.

1.4 Continuum-Based Methods for CNT Buckling Analysis

Since atomistic methods capture the response at the atomic level, these methods
are computationally intensive. Hence, researchers resort to continuum-based
approaches for buckling analysis of CNT. Continuum-based approaches are less
accurate when compared to atomistic methods, but they are far more computa-
tionally efficient. There are different continuum-based approximations for estab-
lishing a computational model for CNT. After establishing the computational
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model using continuum-based methods, buckling analysis can be performed by
conventional eigenvalue analysis or nonlinear buckling analysis. There are dif-
ferent types of continuum-based approaches for buckling analysis of CNTs which
are briefly described below.

1.4.1 Continuum Shell Models

The geometry of CNT resembles that of a cylindrical shell. Hence, (Yakobson
et al. 1996) proposed to homogenize one atomic layer thick cylindrical CNT
geometry as a cylindrical shell. There are two types of continuum shell theories
used to model CNTs (Wu et al. 2009). In Type I continuum model, conventional
shell theories e.g. Donnell shell and Sanders shell with an assumed elastic con-
stitutive relation are used to analyze the CNTs (Batra and Sears 2007; He et al.
2005, 2010; Pantano et al. 2003, 2004a, b Sears and Batra 2006; Wang et al. 2006,
2011; Zhang et al. 2009). Type I continuum shell model requires parameters such
as Young’s modulus E, Poisson’s ratio m, and shell thickness h; which are usually
calibrated from MD simulation results. In Type II shell model, the equilibrium
equations are derived by minimizing the total potential energy of the CNT (Ansari
and Rouhi 2010; Belytschko et al. 2002; Cheng et al. 2009; Hu et al. 2007; Li and
Chou 2003; Lu et al. 2010).

To include the effect of temperature in the buckling analysis of CNT using Type
I shell model, one need to calibrate material parameters of CNT at that temper-
ature. In Type II shell model, the effect of temperature can be explicitly incor-
porated by deriving the equilibrium equations of CNT from the total Helmholtz
free energy (Jiang et al. 2005).

Researchers also incorporate a non-local effect in Type I continuum shell
models for CNTs. The non-local parameters for CNT are calibrated from MD
simulation results (Zhang et al. 2009; Khademolhosseini et al. 2009; Shen 2004).
In Type II continuum shell model, the non-local effect is implicitly considered in
the formulation. Although Type II shell theory for CNT is more realistic, accurate
and general as compared to Type I shell theory, Type I is mostly preferred among
researchers because of its ease of implementation.

1.4.2 3D Frame Model

Owing to the resemblance of CNT geometry to a cylindrical frame structure, a 3D
frame model is also used among researchers to analyze CNT (Li and Chou 2003;
Chen and Cao 2006). In a 3D model, the axial and angular springs are used to
model multi-body inter-atomic interactions in CNT. The stiffness of different
spring elements is calculated from an inter-atomic potential energy function.
Owing to its discrete nature, the grillage model can directly account for chirality in
CNT.
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1.4.3 Atomic-Scale Finite Element Method

Atomic-scale finite element method (AFEM) resembles the mesh-free finite
element method. In AFEM, the atoms of the CNT are treated as finite element
nodes and the finite element equations are derived in the same fashion as it is done
in Type II continuum shell theory (Liu et al. 2004). Detailed derivation of stiffness
and force matrices for AFEM for different inter-atomic potentials can be obtained
from the paper by Wackerfuß (2009). Like Type II shell model, AFEM can also
consider the nonlinear nature of inter-atomic potential. However, AFEM is more
versatile than Type II shell model because AFEM can easily consider the effect of
defects and chirality in CNT.

1.4.4 Beam Model for Very Long CNTs

Long CNTs with aspect ratios more than 20 exhibit beam-like buckling mode, with
little or no localized shell buckling within the atomic layer. Hence, researchers use
conventional beam theories to study the buckling behavior of long CNTs (Hu et al.
2009; Wang et al. 2006; Wong et al. 1997). For the beam model of CNT, the
material properties (E, G) and geometrical properties such as h are obtained from
MD simulations. The disadvantages of a beam model are that it cannot capture the
chirality effect, the effect of defects, and the local deformation mode in CNT.
Non-local effect can also be considered in the beam model for CNTs by using a
non-local parameter calibrated from MD simulations (Zhang et al. 2009).

1.5 Discrepancies in Existing MD Simulation Data
for Buckling Analysis of CNTs

There is a significant number of atomistic-based simulations done to estimate the
critical buckling loads (Pcr)/strains (ecr) of CNTs. In our literature survey, we
observed that the buckling results for armchair CNTs (chirality index: m ¼ n) are
not comprehensive enough for use in calibrating continuum mechanics models.
Moreover, the buckling results of armchair CNTs from MD simulations reported
by different researchers have discrepancies. For example

• From Fig. 2 it is observed that for the same SWCNT (5,5), with different
interatomic potentials, researchers obtained different critical buckling strain (ecr)
versus aspect ratio (L/D) curves. It is thus unclear which inter-atomic potential
predicts the correct buckling behavior of CNTs.

• For the same CNT, reported ecr values estimated using same REBO2nd ? LJ
potential are different (see Fig. 3) which varies between 0.06 and 0.047. These
differences may be attributed to different MD simulation parameters such as
time step size and incremental displacement adopted for the MD simulations.
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Hence, it is important to know the effect of simulation parameters on buckling
strain/load of CNT. It is also necessary to determine a set of simulation
parameters suitable to conduct quasi-static buckling analysis of CNT.

• Korayem et al. (2012) using COMPASS potential showed that critical buckling
strain of DWCNT((5,5),(10,10)) decreases with increasing aspect ratio and this
trend is also supported by conventional cylindrical shell buckling results (Wang
et al. 2011). However, by comparing buckling strain results reported by

Fig. 2 Comparison of buckling strains for SWCNT(5,5) reported by different researchers

Fig. 3 Comparison of buckling strains for DWCNT((5,5),(10,10)) reported by different
researchers
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Korayem et al. (2012) and Kulathunga et al. (2009), it is observed that for a
DWCNT((5,5),(10,10)) with an aspect ratio of 12.0 the critical buckling strain is
0.0475, which is higher than 0.0432 for DWCNT((5,5),(10,10)) with smaller
aspect ratio of 8.9. These buckling results are contradictory.

1.6 Objectives

The objectives of this chapter are:

• To furnish a comprehensive set of MD buckling results for armchair SWCNTs
and DWCNTs which serve as reference to develop continuum based model for
CNTs.

• To establish a Type I equivalent cylindrical shell model for buckling analysis of
SWCNTs and DWCNTs based on the reference MD buckling results.

2 MD Simulation Results for Buckling of CNTs

MD simulations are carried out using the software package LAMMPS (Plimpton
1995) in a 64-bit machine. For MD simulations, we have selected armchair CNTs
with small aspect ratios (i.e. L=Di� 10) in order to study shell like deformation
behavior of stocky CNTs. The MD simulation results reported in this chapter will
be used to develop a robust continuum model for compressive buckling analysis of
armchair CNTs with small aspect ratio which will also be applicable for com-
pressive buckling analysis of CNTs with large aspect ratio. A total 49 SWCNTs
and 23 DWCNTs are considered. Adaptive Intermolecular Reactive Empirical
Bond Order (AIREBO) potential suitable for hydrocarbons (Stuart et al. 2000) is
used for all the MD simulations. MD simulation setup and key steps for buckling
analysis of CNT are described in the next section.

2.1 MD Simulation Setup and Key Simulation Steps

Geometry of CNT is constructed by mapping a 2-dimensional graphene sheet onto
a 3-dimensional circular cylindrical surface. Due to finite curvature on the
cylindrical surface, C–C bonds are stretched, resulting in a stressed initial con-
figuration of the CNT. Hence, prior to the MD simulations, the conjugate gradient
algorithm is used to minimize the potential energy of the CNT to relax the stresses.

After the minimization process, the CNT achieves a stress-free state and serves
as a reference, undeformed configuration for MD simulations. The CNT is heated
to 1 K by the velocity rescaling method. Thereafter, MD simulation is carried out
by moving one end of the tube with a small incremental displacement Dd ¼ 0:01 Å
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as shown in Fig. 4. The equations of motion are integrated using the velocity-
Verlet algorithm for a total period of Ts (termed as relaxation period) = 10.0 ps
(11�11s) with a time step size Dt ¼ 1 fs (10�15s). During the MD simulations, a
Nosé-Hoover thermostat (Hünenberger 2005) is used to maintain the system
temperature at 1 K. Thermodynamic quantities (temperature, force, and potential
energy) are recorded after averaging these quantities for 5000 time steps. The key
parameters in MD buckling analysis of CNT are the inter-atomic potential, the
incremental displacement Dd, the relaxation period Ts, the time step Dt and the
thermostat. In the following sections, we first present the definition of buckling of
CNT under compressive load, followed by detailed discussions on the effect of key
simulation parameters on MD buckling analysis of CNT.

2.2 Definition of Buckling Load and Buckled Mode Shape

From MD simulation the axial load P versus end shortening D plot is obtained as
shown in Fig. 5a. The critical buckling state is detected by a sudden drop in the
axial load in the plot. As it can be see from Fig. 5a there are two values of axial
load at the critical buckling state. The upper value of P at the critical buckling state

Fig. 4 MD simulation setup
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is defined as the critical buckling load Pcr and the corresponding end-shortening is
defined as critical end shortening Dcr. The critical buckling strain ecr is calculated
by dividing Dcr with the original length L of CNT (please refer to Fig. 4 for the
definition of L).

At the critical buckling state, there are two distinct deformed shapes of the CNT.
One deformed shape, associated with the Pcr (at Point A in Fig. 5a), has slight
ripples with the nanotubes section remaining almost circular. The other deformed
shape, associated with the lower value of the load (i.e. Point B in Fig. 5a), has
flattened portions (sometimes referred to as fins). This observation is similar to the
bifurcation buckling of beams and cylindrical shells under axial load where the two
equilibrium states are that of an undeformed structural member and that of a grossly
deformed shape of the structural member. The buckled mode shape of CNT
associated with critical buckling load Pcr is defined by the grossly deformed shape
at Point B (see Fig. 5a) in the axial load versus end shortening curve.

2.3 Simulation Parameters

For MD analysis of CNT buckling the key parameters are discussed as follows.

2.3.1 Interatomic Potential and Energy Minimization

Xu and Buehler (2010) showed that the AIREBO potential developed by Stuart
et al. (2000) can predict wrinkling patterns in graphene sheets that come close to
experimental observations. Zheng et al. (2012) also used the AIREBO potential to

Fig. 5 (a) Typical axial load P versus end shortening D plot for CNT (b) Deformed shape of
CNT prior to buckling (c) Definition of buckled mode shape of CNT
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study the mechanical strength of graphene and observed that the tensile strength of
graphene calculated from their MD simulation agrees well with experimental
results. As graphene and CNT possess similar type of sp2 hybridized C–C covalent
bonds, we therefore opine that AIREBO potential should model the interatomic
interactions of CNTs rather well. Moreover, deformation induced curvature in
CNT changes the hybridization state (Yakobson and Avouris 2001) which can also
be captured by the AIREBO potential (Zheng et al. 2012). So, the AIREBO
potential is adopted for MD simulations in this study. This potential comprises
three terms.

UAIREBO ¼ U2nd�REBO þ ULJ þ UTors ð5Þ

where U2nd�REBO is the second generation REBO potential (Brenner et al. 2002)
which accounts for the covalent bond interaction, ULJ is the 12-6 Lennard-Jones’
potential (Girifalco and Lad 1956) that accounts for the non-bonded interaction
among atoms beyond a distance of 2 Å and, UTors is the torsional potential term.
This potential is discussed in detail in Appendix.

Prior to MD simulations, the minimization of the total potential energy of CNT
is necessary to remove excess forces in the initial geometry of the system.
A proper energy minimization ensures that there is no resultant force on any atom
in the system. To achieve this initial minimum energy state, the absolute maximum
force on an atom in the system after energy minimization should be sufficiently
small (say B0.001 eV/Å). Note that this minimization process consumes only a
very small percentage (*2 %) of the total simulation time.

Figure 6 shows the effect of improper energy minimization on axial load
P versus end shortening D behavior of CNT obtained from MD simulation with
different convergence tolerances on absolute maximum force on an atom. For
example the line with square symbol represents axial load versus end shortening
curve obtained by setting maximum force convergence tolerance 0.001 eV/Å.
It can be seen from Fig. 6 that, if the maximum force on an atom in the system
after energy minimization is not less than or equal to 0.001 eV/Å, then a non-zero
axial load at zero end shortening will be obtained.

2.3.2 Integration Time-Step (Dt)

The time-step Dt is dependent on the numerical integration algorithm; Dt has to be
smaller than the lowest period of bond vibration occurring in the CNT (van
Gunsteren and Berendsen 1990). In the present MD simulations, the velocity
Verlet algorithm (Rapaport 2004) is adopted. A suitable value of the time-step size
for all the MD simulations is ascertained by performing a set of MD simulations
with different time steps. It is observed that Dt ¼ 10�15s (1 fs) is appropriate and
this time-step has also been used by many researchers to perform MD simulations
for buckling analysis of CNTs (Wang et al. 2011; Zhang et al. 2009; Liew et al.
2004).
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2.3.3 Relaxation Time (Ts)

In displacement-controlled buckling analysis, one end of CNT is perturbed by
small displacement, and during MD simulations, the effect of this perturbation
travels through the tube. If the rate of change of displacement is sufficiently slow,
such that each displacement perturbation homogeneously affects the entire tube,
the simulation is quasi-static. On the other hand, if the displacement rate is too
rapid, the effect of each displacement perturbation on the tube may depend on the
previous perturbation; the simulation is non-quasi-static. In our simulations,
we only consider quasi-static deformation. Hence, for a given perturbation, we
compute the total time required for the entire CNT to achieve thermodynamic
equilibrium, known as the relaxation time Ts. It is hence obvious that longer Ts are
needed for longer tubes. To establish the relaxation period required for quasi-static
MD simulation, we have selected the 136Å long DWCNT ((10,10),(15,15)) which
is the longest CNT with L=Di� 10:0 (Di is inner diameter). MD analyses were
carried out on this DWCNT with different Ts, while keeping the incremental
displacement constant at Dd ¼ 0:01Å. We observe that Ts ¼ 10 ps is sufficient to
ensure quasi-static deformation. Thus, we adopt this Ts for all MD simulations.
Clearly, for shorter CNTs, the adopted relaxation period is also sufficient to ensure
quasi-static deformation. We study a 271Å long SWCNT (10,10) as a special case.
This tube requires a Ts ¼ 50 ps. As a general remark, for tubes longer than those
used in the present MD simulations, a longer relaxation period is required.

2.3.4 Incremental Displacement (Dd)

Here we have performed displacement-controlled quasi-static buckling analysis of
CNTs. In a displacement-controlled MD scheme, one needs to ascertain Dd based
on solution accuracy and computational cost. To determine a suitable Dd value, we
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have performed buckling analysis of DWCNT ((5,5),(10,10)) with a length of 60 Å
by using three incremental steps 0.1 Å, 0.01 Å, and 0.005 Å but keeping the same
relaxation time of 10 ps. The force deformation plots for these three cases are
shown in Fig. 7.

Except for the MD simulation with Dd ¼ 0:1Å, the other two force deforma-
tion plots are almost the same. From Fig. 7a, it can be observed that the critical
buckling load and critical buckling strain are underestimated using an incremental
displacement of 0.1 Å. For the 0.01 Å and 0.005 Å cases, the estimated critical
buckling loads are within a tolerance of 0.1 %, and the critical buckling strains are
almost the same. MD simulation with Dd ¼ 0:005 Å is very computationally
intensive and therefore, we have adopted Dd ¼ 0:01 Å for all our MD simulations.

In theory, one may freely choose Dd of any magnitude. Physically, if the
prescribed Dd is too large, it will rupture the CNT in just one step. This effect may
be understood as an impulsive force impacting on the CNT. This force will cause
rupture in the atomic bonds within its vicinity, which is captured by our simula-
tions in LAMMPS. In such a simulation, LAMMPS will terminate with an error, as
no thermodynamic equilibrium may be obtained. Nevertheless, the evolution of
bond rupture may be observed by varying Ts. As shown in Fig. 7b, for Ts ¼ 10 ps,
a few bonds at the tip of DWCNT ruptures, whereas for Ts ¼ 100 ps, the entire
circumference of the CNT has ruptured bonds. To enable quasi-static deformation
of a CNT under compression to be analyzed, we need to choose a Dd such that
impulsive rupture does not occur. In our simulations, we observed that for Dd
close to the C–C bond length of 1.42 Å, impulsive rupture occurs during the first
displacement increment. Hence, we conclude that Dd value must be significantly
smaller than the smallest bond length in the system.

Fig. 7 Effect of large incremental displacement on load deformation plot
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2.3.5 Thermostat

Berendsen thermostat, Nosé-Hoover thermostat and velocity rescaling thermostat
are the most commonly used thermostats in MD simulations of CNTs (Wang et al.
2010). Researchers observed that the Nosé-Hoover and velocity rescaling ther-
mostat results in reasonable mechanical deformation modes regardless of the
percentage of thermostat atoms (Wang et al. 2010; Heo and Sinnott 2007). In
Fig. 8, a comparison of the MD simulation results obtained using the Nosé-Hoover
thermostat, velocity rescaling thermostat and Berendsen thermostat are made. For
the case studies, 60 Å long DWCNT ((5,5),(10,10)) is chosen.

The axial load versus end shortening plots and the variations of temperature
during simulation are shown in Fig. 8a, b respectively. It is observed that the axial
load versus end shortening curves obtained by using different thermostats are
almost indistinguishable and also the critical buckling load of 60 Å long DWCNT
((5, 5), (10,10)) obtained using different thermostats are close. For example, the
MD simulation with Velocity rescale thermostat gives a critical buckling load of
136.6 nN which is very close to 136.5 nN obtained from MD simulations with the
Nosé-Hoover thermostat. However, unlike the other thermostats, the Nosé-Hoover
thermostat can maintain the simulation temperature much closer to 1 K (which is
the system temperature for our simulations). Therefore, we have adopted the
Nosé-Hoover thermostat for all simulations herein.
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In summary, the input parameters recommended for quasi-static MD simula-
tions of buckling of SWCNT and DWCNT with aspect ratios B10 and L� 136:0Å

using LAMMPS are:

• Inter-atomic potential: AIREBO
• Thermostat: Nosé-Hoover thermostat
• Integration scheme: velocity-Verlet algorithm
• Relaxation time: 10 ps (10�11 s)
• Incremental displacement: 0.01 Å
• Time step size: 1 fs (10�15 s)

For the 272Å long SWCNT(10,10), the value of relaxation period Ts ¼ 50 ps.

2.4 MD Simulation Results and Discussions

Tables 3 and 4 present MD buckling results for armchair SWCNT and DWCNT,
respectively. They serve as test results to develop equivalent continuum models.
The critical buckling load/strain gradually decreases with respect to increasing
tube length. It is observed that DWCNT has a greater buckling load than the sum
of the buckling loads of constituent SWCNT due to the strengthening action of van
der Waals interaction between the outer and inner tubes of the DWCNT. The
critical buckling strain of SWCNT decreases with increasing diameter because the
critical buckling strain of a cylindrical shell is inversely proportional to its radius
as predicted by Donnell type shell theory (Xiao et al. 2004).

In the case of DWCNT, the outer tube is prone to buckle before the inner tube
due to its larger radius. Therefore, the critical buckling strain of a DWCNT is
governed more by the outer tube size. For example, the critical buckling strains of
40 Å long SWCNT(5,5), SWCNT(10,10), and, DWCNT((5,5),(10,10)) are 0.0579,
0.0430, and, 0.0508 respectively, which shows that DWCNT((5,5),(10,10)) has a
smaller critical buckling strain when compared to that of SWCNT(5,5) but a
greater critical buckling strain than that of SWCNT(10,10). The aforementioned
CNTs are shaded in Tables 3 and 4.

Figure 9a and b show a comparison of critical buckling strains of SWCNT(5,5)
and DWCNT((5,5),(10,10)) predicted by using the AIREBO potential with those
reported by other researchers.

Referring to Fig. 9, it can be seen that the use of AIREBO potential furnishes a
lower critical buckling strain than that furnished by the (REBO2nd þ LJ) potential.
When the torsional potential term is switched off in the AIREBO potential, the critical
buckling strain of CNTs becomes closer to that obtained using REBO2nd þ LJ
potential. For instance, the critical buckling strain of a 60 Å DWCNT((5,5),(10,10))
obtained using AIREBO potential without the torsional potential term is 0.0543
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which agrees well with 0.0553 obtained by Zhang et al. (2008) who used the
REBO2nd þ LJ potential. Thus, it is clear that the inclusion of the torsion term in the
interatomic potential leads to a significant reduction in the critical buckling strain.
Liew et al. (2004) obtained a comparatively higher critical buckling strain of 0.0600

Table 3 MD buckling results for armchair SWCNTs

SWCNT (5,5)
D = 0.678 nm

SWCNT (10,10)
D = 1.356 nm

SWCNT (15,15)
D = 2.034 nm

SWCNT (20,20)
D = 2.713 nm

L/D Pcr

(nN)
ecr L/D Pcr

(nN)
ecr L/D Pcr

(nN)
ecr L/D Pcr

(nN)
ecr

2.0 76.9 0.0734 1.0 86.8 0.0482 1.0 83.3 0.0336 1.5 79.2 0.0255
3.1 65.1 0.0643 1.5 79.8 0.0450 1.4 77.7 0.0316 1.8 78.1 0.0249
4.2 61.5 0.0614 2.1 79.5 0.0443 1.6 77.6 0.0315 2.0 78.1 0.0249
4.9 59.1 0.0595 2.4 77.2 0.0432 2.0 77.6 0.0314 2.2 78.1 0.0248
6.0 57.1 0.0579 3.0 76.9 0.0430 2.4 76.7 0.0310 2.6 77.9 0.0248
7.0 55.6 0.0567 3.5 74.8 0.0421 2.7 75.7 0.0306 3.0 77.9 0.0248
8.1 55.1 0.0562 4.1 73.5 0.0402 3.0 75.7 0.0306 3.5 77.8 0.0248
8.9 48.9 0.0520 4.4 70.0 0.0400 3.3 74.5 0.0303 3.8 77.7 0.0247
9.9 41.1 0.0454 5.0 67.8 0.0389 4.0 74.5 0.0302 4.0 76.9 0.0245

6.1 65.2 0.0376 4.6 74.5 0.0302 4.5 76.2 0.0242
7.0 62.9 0.0366 5.0 73.9 0.0300
7.5 62.1 0.0363 5.4 73.5 0.0298
8.0 61.6 0.0359 6.0 73.0 0.0297
9.0 60.6 0.0355 6.7 70.6 0.0288
10.0 59.8 0.0351
20.0 18.6 0.0131

Note The correspond numbers in bold to CNT with length 40 Å

Table 4 MD buckling results for armchair DWCNTs with L=Di� 10

DWCNT (5,5),(10,10)
Di = 0.678 nm

DWCNT (10,10),(15,15)
Di = 1.356 nm

DWCNT (15,15),(20,20)
Di = 2.034 nm

L/Di Pcr

(nN)
ecr L/Di Pcr

(nN)
ecr L/Di Pcr

(nN)
ecr

2.0 164.6 0.0571 2.1 161.2 0.0369 2.0 166.3 0.0287
3.1 155.4 0.0533 3.0 156.8 0.0361 3.0 161.0 0.0279
4.2 149.9 0.0525 4.1 155.7 0.0359 4.0 159.4 0.0278
4.9 146.1 0.0512 4.9 154.8 0.0358 5.0 156.7 0.0274
6.0 142.8 0.0508 6.1 154.5 0.0357 6.0 153.9 0.0270
7.0 139.2 0.0489 7.0 152.8 0.0354
8.1 137.3 0.0487 8.0 149.3 0.0348
8.9 136.5 0.0485 8.9 145.8 0.0339
9.9 135.0 0.0482 10.0 142.8 0.0335

Note The correspond numbers in bold to CNT with length 40 Å
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because they used a much larger displacement rate of 0:1 Å
�

ps which is 100 times

higher than 0:001Å
�

ps used in the present MD simulations.
Figure 9a and b show that the use of COMPASS potential leads to a lower

buckling strain as compared to the strain computed using AIREBO potential.
AIREBO and COMPASS potentials follow different approaches in calibrating the
parameters in individual potential energy term. For the AIREBO potential, the
parameters are calibrated based on experimental data such as bond energy and
vacancy formation energy (Stuart et al. 2000). On the other hand, the parameters in
the COMPASS potential were initially estimated from ab initio calculations and
then they were optimized against experimental data, e.g. heat of vaporization (Sun
1998). So far, no experimental results exist for buckling of CNT with small aspect
ratios, and therefore it is difficult to judge which one of these two potentials is
better for determining the buckling strain of CNTs. However, Xu and Buehler
(2010) have shown that the observed wrinkling patterns in free standing graphene
sheets under thermal environment can be predicted well by using the AIREBO
potential. This discovery adds credibility to the AIREBO potential for employment
in buckling analysis of CNT since CNTs and graphene sheets have similar type of
C–C bonds. In computing the buckling strain of DWCNT using an atomic scale
finite element method (AFEM), Guo et al. (2007) neglected the van der Waals
(vdW) interaction among carbon atoms of the same tube. As a result, Guo et al.
(2007) obtained a critical buckling strain that is about 5 % lower than the strain
value calculated in present work.

Buckling mode shapes of SWCNT(5,5) with various lengths are shown in
Fig. 10 while the modes shapes for DWCNT((5,5),(10,10)) are given in Fig. 11.
From Fig. 10, it can be observed that SWCNT(5,5) with an aspect ratio greater
than 6 exhibits beam-shell buckling mode (Wang et al. 2010). Apart from these
SWCNTs, all other CNTs studied herein show shell buckling modes.

Fig. 9 Comparison of critical buckling strains for (a) SWCNT(5,5) and
(b) DWCNT((5,5),(10,10)) obtained using AIREBO potential with existing results
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3 Shell Model for Buckling of CNTs

Owing to similarity of CNT geometry and a cylinderical shell, CNT can be
modeled as a cylindrical shell. So instead of performing expensive MD simula-
tions, one may use the shell theory for buckling analysis of CNTs. A Type I
equivalent shell model for CNT requires the input of the equivalent Young’s
modulus E, Poisson’s ratio m, and the wall thickness h for the CNT. The critical
buckling loads Pcr and critical buckling strains ecr estimated using MD simulations
are reported in Tables 3 and 4 and these values are used to calibrate the Young’s
modulus for the proposed equivalent shell model. Based on the proposed equiv-
alent shell model, the buckling loads are estimated for CNTs and compared with
MD simulation results in Tables 3 and 4.

Fig. 10 Buckling mode shapes of SWCNT(5,5) at three different perspectives

Fig. 11 Buckling mode shapes of DWCNT((5, 5), (10,10)) at three different perspectives
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3.1 Calibration of Young’s Modulus of SWCNTs

For small deformation shell theory (Reddy 2007), the axial stress rx may be
assumed to be related to the axial strain ex in a cylindrical shell as

rx ¼ Eex )
Px

Aeff
¼ Eex )

Px
pDh
1�m2

¼ Eex ) Px

pD
¼ Eh

1� m2
ex ð6Þ

where x is the direction along the axis of the tube, D the diameter of tube, h the
thickness of shell, Px is the axial load in cylinder shell.

At the onset of buckling (Point A in Fig. 5a), Eq. (7) is valid for the CNT, as all
deformations prior to this is linearly elastic. By substituting Px with Pcr and ex with
ecr in Eq. (7), we write:

k ¼ Pcr

pDecr
¼ Eh

1� m2
ð7Þ

where k is the slope of Pcr= pDð Þ versus ecr curve.
By plotting Pcr= pDð Þ versus ecr curve obtained from MD simulations, it is

observed that the slope k of the curve is almost constant and it does not vary with
the length of CNT as shown in Fig. 12 (in this figure for a given SWCNT different
data points represent different lengths).

By plotting Pcr= pDð Þ versus ecr for various dimensions of SWCNTs, it is found
that the slope k varies with respect to the diameter D of the SWCNT whereas it is
almost unaffected by the length L. Following Yakobson et al. (1996), we assume
m ¼ 0:19 and h ¼ 0:066 nm and we seek to determine E from Eq. (7). So far,
researchers are able to synthesize SWCNT that has a diameter that varies from
0.4 nm (Hayashi et al. 2003) to 10 nm (Ma et al. 2009). In order to accommodate
the full range of SWCNT diameter for developing an empirical relationship

Fig. 12 Pcr= pDð Þ versus ecr for SWCNT(10,10)
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between Young’s modulus and diameter D, we have also performed MD simu-
lations on SWCNT(4,4), SWCNT(30,30), SWCNT(40,40), SWCNT(80,80) and
SWCNT(100, 100) to supplement the results report in Table 3. The k values
obtained for these SWCNTs are summarized in Table 5.

A power series is fitted with the values reported in Table 5 as shown in Fig. 13.
Based on the fitting process an empirical equation relating diameter D (in nm) of
armchair SWCNT and its Young’s modulus E (in TPa) is given by

E ¼ 3:19þ 3:15D�0:37 for 0:4 nm�D� 14 nm ð8Þ

Equation (8) furnishes a Young’s modulus of 7.6 TPa for SWCNT(3,3), and 4.4
TPa for SWCNT(100,100). A decreasing trend of Young’s modulus of CNT with
respect to its diameter was also experimentally observed by Lee et al. (2005). This
finding validates the credibility of the present MD simulation results to be used as
reference results for developing continuum mechanics models. It should be noted
that the proposed Young’s modulus is a secant modulus evaluated at critical

Table 5 Summary of k values for calibration of E

SWCNT Diameter (nm) k
(TPa-nm)

SWCNT Diameter (nm) k (TPa-nm)

(3, 3) 0.407 602.5 (30, 30) 4.069 345.4
(5, 5) 0.678 465.9 (40, 40) 5.425 333.2
(10, 10) 1.356 414.2 (80, 80) 10.850 308.9
(15, 15) 2.034 385.9 (100,100) 13.563 302.8
(20,20) 2.713 368.2

Fig. 13 Variation of E with D for armchair SWCNTs
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buckling point and only applicable to buckling of CNT under axial load. More-
over, the Young’s modulus of CNT given by Eq. (8) is larger (*10–40 %) than
the tangent Young’s modulus of CNT estimated at zero strain.

3.2 Finite Element Model for Buckling Analysis of CNTs

Using the diameter-dependent Young’s modulus for SWCNTs as given by Eq. (8),
Poisson’s ratio of 0.19 and wall thickness of 0.066 nm, we perform the buckling
analysis of cylindrical shells (that model armchair SWCNTs) using the commercial
finite element software package ABAQUS/Standard and the thick shell element
S8R6 (Hibbit and Pawtucket 2005). The finite element model is shown in Fig. 14a.
The thick shell element is preferred to the thin shell element since the effect of
transverse shear deformation is significant for stocky shells/CNTs (Harik 2002).

The above-mentioned equivalent shell properties are also used to calculate the
critical buckling loads for DWCNTs. The Young’s moduli of the outer and inner
tubes of DWCNTs are calculated from Eq. (7) depending on the diameter of the
tube. Here, we use different Young’s moduli for both tubes in a DWCNT, a
departure from the conventional use of a single Young’s modulus for both tubes in
a DWCNT. We use a single value for Poisson’s ratio and shell thickness of the

Ao = πDo /n*L/k

Ai = πDi /n*L/k

Ks = 0.5* (Ao + Ai)*cvdw

Do = diameter of outer tube
Di = diameter of inner tube
L = Length of the tube
n = number of radial subdivisions
k = number of longitudinal subdivisions
cvdw = van der Waals coefficient
Ks = van der Waals spring stiffness

(b)

P

Load

Bottom 
edges

Top
edges

(a)

Van der Waals 
spring

Fig. 14 (a) Typical finite element mesh for DWCNT (b) Calculation of vdW spring stiffness
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outer and inner tubes: 0.19 and 0.066 nm, respectively. In DWCNT, there is van
der Waals (vdW) interaction between the outer and inner tubes. The inter-tube
vdW interaction is modeled by using linear spring elements SPRINGA in
ABAQUS/Standard. The spring stiffness of the linear spring elements is calculated
from an assumption of vdW coefficient of cvdw ¼ 9:919� 1019 N

�
m3 (Wang et al.

2006; Kulathunga et al. 2009). The van der Waals spring stiffness Ks is the product
of cvdw and influence area of spring as shown in Fig. 14b. One may refer to (Wang
et al. 2006) for the procedure in calculating the linear spring stiffness.

During the finite element simulations, the bottom edges of DWCNT are kept
fixed (i.e. no rotations and displacements). At the top end of the tube, a node (point
P in Fig. 14a) is created to connect with the top edges of the tube by using rigid
body constraint. This serves the purpose of a rigid indenter for buckling simula-
tion. All the degrees of freedom (DOF) except for the DOF along the axis of tube
at node P are restrained. Bifurcation analysis is performed after applying a unit
load at point P. In the case of SWCNT, the finite element model is similar that of
DWCNT. The only difference is that the vdW spring elements are absent for the
SWCNT element model.

3.3 Comparison of Buckling Loads: Equivalent Shell Model
and MD Results

Figures 15 and 16 compares the critical buckling loads obtained using the shell
finite element S8R6 of ABAQUS/Standard and buckling loads estimated from MD
simulations. It is found that critical buckling loads estimated using the finite
element shell model are within 10 % difference from those given by MD simu-
lations, except for the cases of few SWCNT (5,5) as shown in Fig. 15.

The critical buckling loads calculated for DWCNTs using the shell finite ele-
ment model are also compared with those estimated using MD simulations in
Fig. 16. The shell model results are in very good agreement with those of MD
simulation results (within ± 5 % difference).

The equivalent shell model can also be used to accurately estimate critical
buckling load of CNTs with aspect ratios larger than 10. To substantiate this
statement, a SWCNT(10,10) with aspect ratio 20 is selected. The critical buckling
load of this SWCNT obtained using the equivalent shell model is 19.8 nN, which is
only 6.0 % higher than that obtained by MD simulation. Thus, it can be concluded
that the continuum shell model with the proposed E (given by Eq. (8)), m (0.19),
and, h (0.066 nm) can be adopted to furnish good prediction of the critical
buckling loads for armchair SWCNTs and armchair DWCNTs.
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4 Conclusions

Presented in this chapter are comprehensive sets of MD buckling strains/loads for
armchair SWCNTs and DWCNTs with aspect ratios less than 10. The MD sim-
ulations were performed using the software LAMMPS with the AIREBO potential
for interatomic forces.

Based on the MD results, an equivalent cylindrical shell model (based on the
thick shell theory) is established for the buckling analysis of CNTs. By assuming
the Poisson ratio of m ¼ 0:19 and the shell wall thickness of h ¼ 0:066 nm, it was
found that the Young’s modulus E (in TPa) decreases nonlinearly with respect to
diameter D (in nm) of the tube as given by Eq. (8). This implies that the Young’s
modulus for each tube in an equivalent nested cylindrical shell model for multi-
walled CNTs should vary according to the tube diameter. For DWCNT, the inter-
wall vdW interaction is modeled using a linear spring element and its stiffness is
calculated based on vdW coefficient of 9:919� 1019 N

�
m3. Using the cylindrical

shell model (S8R6 thick shell element of ABAQUS/Standard) with diameter-
dependent E given by Eq. (8), m ¼ 0:19 and h ¼ 0:066 nm, we show that the
continuum shell model is able to predict critical buckling loads for armchair
SWCNTs within 10 % of the MD results, and within 5 % for DWCNTs. The
equivalent shell model with diameter-dependent Young’s modulus may also be
applied to CNTs with larger aspect ratios.Work is underway to refine the con-
tinuum model for chiral CNTs as studies have shown that the buckling results are
affected by chiral angles Zhang et al. (2006)

Appendix: AIREBO potential

Adaptive Intermolecular Reactive Bond Order Potential (AIREBO) is one of the
various interatomic potential available in LAMMPS. AIREBO potential developed
by Stuart et al. (2000) is used in the present MD simulations. AIREBO potential
comprises the second generation REBO potential U2nd�REBO, the torsion potential
UTors and the Lennard-Jones potential ULJ .

Second Generation REBO Potential

The second generation REBO potential U2nd�REBO accounts for covalent bond
interaction and its function form is given by

U2nd�REBO ¼
X

i

X
jð[ iÞ

VRðrijÞ � bijV
AðrijÞ

� �
ðA1Þ
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where, VR is the repulsive term, VA is the attractive term and bij is bond order term.
The repulsive term is given by

VRðrijÞ ¼ wijðrijÞAijð1þ Qij=rijÞe�aijrij ðA2Þ

The function form of the attractive term is given by

VAðrijÞ ¼ wijðrijÞ B1e�b1rij þ B2e�b2rij þ B3e�b3rij
� �

ðA3Þ

In Eqs. (A1)–(A3), wij rij

� �
is a switching function which automatically dictates

whether covalent interaction needs to be considered between any two atoms. The
switching function wij rij

� �
is given by

wijðrijÞ ¼ Hð�tÞ þHðtÞHð1� tÞ 1þ cos pt½ �=2; t ¼
rij � rmin

ij

rmax
ij � rmin

ij

ðA4Þ

where HðtÞis the Heaviside step function.
Values of the parameters for carbon–carbon (C–C) bond in Eqs. (A1)–(A4) are

summarized in Table A.1.
In the 2nd generation REBO potential, the influence of neighboring atoms on the

considered atom is incorporated by using bond order function bij in Eq. (A1). The
term bij adjusts attraction force between atoms based on the position of other
neighboring atoms and thus considers multi-body interactions.

The bond order term bij for a bond i-j, depends on the neighborhood bond
angles h and dihedral angles u. Function form of the bond order term is given by

bij �
1
2

prp
ij þ ppr

ij

h i
þPDH

ij þPRC
ij ðA5Þ

where

prp
ij ¼ 1þ

X
a6¼i;j

wiaðriaÞgCðcosðhjiaÞÞ þ PCCðNC
i ;N

H
i Þ

" #�1=2

ðA6Þ

and prp
ji is similar to Eq. (A6) except the indices i and j are interchanged. The pair-

angle cross interaction is incorporated by function gc cos hjia
� �� �

which depends on
the angle between bond i-j and neighboring atom a. In a pristine CNT,
gc cos hjia

� �� �
is a function of two angleshjia, where a ¼ k, m (see Fig. A.1a).

Table A.1 Parameters in AIREBO potential for C–C bond

B1 = 12,388.792 eV b1 = 4.720 Å-1 Qij = 0.313 Å
B2 = 17.567 eV b2 = 1.433 Å-1 Aij = 10953.544 eV
B3 = 30.715 eV b3 = 1.383 Å-1 aij = 4.747 Å-1

rmax
ij ¼ 2:0Å rmin

ij ¼ 1:7Å
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The function gc cos hjia
� �� �

in Eq. (A6) is fitted to a quintic spline. The coefficients
of the quintic spline function are evaluated by LAMMPS using the values given in
Table A.2.

In each interval of cos(h), six values of interpolation points are reported in
Table A.2. These six values are used to derive the coefficients of the quintic spline.
For pristine CNT PCCðNC

i ;N
H
i Þ in Eq. (A6) is -0.027603.

The function PDH
ij in Eq. (A5) represents the cross interaction between pair

i-j and dihedral angle uaijb. In a pristine CNT, a bond pair i-j is affected by four
dihedral angles. These four dihedral angles can be represented as uaijb where

a ¼ k; m and b ¼ l; n (please refer to Fig. A.1a). Function PDH
ij is equal to the

expression given by Eq. (A7).

TijðNt
i ;N

t
j ;N

conj
ij Þ

X
a 6¼i;j

X
b 6¼i;j

1� cos2 uð Þ
� �

wiawjbHðsinðhjia � sminÞÞHðsinðhijb � sminÞÞ

ðA7Þ

where wab is the switching function to be calculated as per Eq. (A4). In a pristine

CNT, TijðNij;Nji;N
conj
ij Þ¼ �0:004048. The radical term PRC

ij in Equation (A5) does
not contribute to force on an atom in CNT.

Fig. A.1 (a) Typical C–C bond in a CNT and its neighborhood (b) Definition of dihedral angle

Table A.2 Interpolation points for quintic spline yðxÞ ¼
P5
m¼0

Cmðx� xkÞm Stuart et al. (2000)

Function cos h giðcos hÞ dgi

d cos h
d2gi

d cos hð Þ2

gCðcosðhjiaÞÞ -1 -0.010 0.104 0.000
-2/3 0.028 0.131 0.140
-1/2 0.053 0.170 0.370
-1/3 0.097 0.400 1.980
1 1.000 2.835 10.265
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Torsion Term

The torsion term UTors in AIREBO potential is a valence term which adds stiffness
to the dihedral rotation about a bond pair i-j as shown in Fig. A.2a.

The torsion potential UTors is given by

Utors
aijb ¼ waiðraiÞwijðrijÞwjbðrjbÞVtorsðxaijbÞ ðA8Þ

Vtors ¼ 256
405

eaijb cos10ðxaijb=2Þ � 1
10

eaijb ðA9Þ

The value of eaijb for CNT is 0.3079. The number of dihedral angles in CNT
which contribute to the forces on an atom i depends on the neighborhood of that
atom. There are 25 dihedral angles in a pristine CNT, which contribute to the
forces on atom 1 shown in Fig. A.2b. The switching functions w(r) in Eq. (A8) is
used by the MD code to determine all the dihedral angles contributing to force on
an atom. Switching function w(r) in Eq. (A8) are calculated by using Eq. (A4).

Non-bonded Potential

The non-bonded potential ULJ given by Eq. (A10), takes into account a pair type
interaction between atoms which have interatomic distances C2 Å. In LAMMPS,
one needs to specify a cutoff distance beyond which the non-bonded potential does
not contribute to interatomic forces. In the case of C–C bond, this cutoff is taken as
10.2 Å but the user may set a longer cutoff distance at an expense of more
computational time. The non-bonded potential is given by

Fig. A.2 (a) Dihedral bond rotation, (b) Typical neighborhood of an atom with id 1 in pristine
carbon nanotube
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ULJ
ij ¼ SðtrðrijÞÞSðtbðb�ijÞÞCijV

LJðrijÞ þ 1� SðtrðrijÞÞ
� �

CijV
LJðrijÞ

wijðrijÞ ¼ S
0 ðtcðrijÞÞ; tcðrijÞ ¼

rij � rLJmin
ij

rLJmax
ij � rLJmin

ij

ðA10Þ

where S
0 ðtÞ ¼ Hð�tÞ þHðtÞHð1� tÞ 1

2
1þ cos pt½ �

tbðb�ijÞ ¼
b�ij � bmin

ij

bmax
ij � bmin

ij

In Eq. (A10), b�ij is a hypothetical bond-order term which is evaluated at rmin
ij .

To understand the previous statement, let us consider the non-bonded interaction
between atom i and j. Since the distance between these two atoms typically
exceeds the covalent bonding distance rmax

ij (for C–C bond rmax
ij ¼ 2:0 Å), there is

no actual bond-order term bij (Eq. A5). Consequently a hypothetical bond order
term b�ij is evaluated by assuming the distance between atoms i and j to be 1.7 Å. In

Eq. (A10), VLJ is a 12-6 Lennard-Jones potential which is given by Eq. (A11).

VLJ
ij ¼ 4eij

r
rij

	 
12

� r
rij

	 
6
" #

ðA11Þ

The parameters required to evaluate the non-bonded interaction in CNT are
r ¼ 3:4Å, eij¼ 0:00284 eV, rLJmax

ij ¼r, rLJmin
ij ¼ 21=6 r, bmax

ij ¼ 0:81 and bmin
ij ¼ 0:77.
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Influence of Bond Kinematics
on the Rupture of Non-Chiral CNTs
under Stretching–Twisting

Bruno Faria, Nuno Silvestre and José N. Canongia Lopes

Abstract This chapter focuses on the role played by bond kinematics in the
collapse behaviour of armchair and zig-zag CNTs under combined stretching-
twisting. The analyses are performed through MD simulations, using LAMMPS
code with the built-in potential AIREBO for C–C bonds. Incremental combina-
tions of stretching displacements and twisting rotations are imposed to the CNT
end atoms. The results are first analyzed in the form of diagrams of energy at
rupture versus the twisting-to-stretching rate and diagrams of interaction between
the axial stretching displacement at rupture and the angle of twist at rupture.
A detailed study on the variation of bond length and angle amplitude with the
imposed stretching and twisting deformations is shown. The case of pure
stretching is first described, as a reference case. Two combined twisting-stretching
cases and the pure twisting case are dealt with separately for zig-zag and armchair
CNTs. It is concluded that two kinematic mechanisms influence the rupture of
CNTs: one is the bond elongation for low twisting-to-stretching rate and other is
the hexagonal cell distortion for moderate to high twisting-to-stretching rate.
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1 Introduction

Carbon nanotubes (CNTs) are known for their unique mechanical, thermal and
electrical properties. In the past two decades these properties were extensively
studied with promising results (Wang and Liew 2008; Wang et al. 2010; Wernik
and Meguid 2010; Byrne et al. 2010; Zhao and Luo 2011). The potential appli-
cation of CNTs as basic elements in nano-devices such as nano-drive systems,
nano-actuators or nano-oscillators, for instance as spring elements in torsional
paddle oscillators or twisting bearings in nano-electric motors, prompted research
on CNT mechanical behaviour under different directional loads (Williams et al.
2002; Fennimore et al. 2003; Hall et al. 2012). The research on the stiffness and
strength of CNTs under different loading can be accomplished with either
experiments or molecular dynamics (MD) simulations. Owing to the complexity in
setting up rigorous test arrangements to make measurements at the nanoscale,
experimental investigations are scarce (Hall et al. 2006, 2010; Xu et al. 2009; Sun
et al. 2012). On the other hand, MD simulations have been widely used to study
the mechanical behaviour of CNTs. Both the pure axial (tensile and compressive)
and the pure twisting mechanical behaviours of armchair, zigzag and chiral CNTs
were investigated (Yakobson et al. 1996; Sears and Batra 2004; Bao et al. 2004;
Tserpes et al. 2006; Batra and Sears 2007; Chang 2007; Agrawal et al. 2008;
Georgantzinos and Anifantis 2009; Arash and Wang 2012; Shima 2012). However,
pure loading actions are difficult to occur at nanoscale level due to support
imperfections, load eccentricities and geometrical inaccuracies of fixing CNTs in
nano-devices. Thus, combinations of individual (pure) loadings are expected to
occur. Understanding the CNTs mechanical response to combined loading is
crucial to the design and optimization of CNT-based devices.

Regarding the use of MD to simulate CNTs under combined twisting-stretch-
ing, few works have been published (Jeong et al. 2007a, b; Talukdar and Mitra
2010). Jeong et al. (2007a) concluded that armchair and zig-zag CNTs under
combined tension-twisting have decreasing tensile strength with linearly increas-
ing twist. Talukdar and Mitra (2010) concluded that the defects change signifi-
cantly the mechanical properties of armchair CNTs as well as their failure stresses
and failure strains. Jeong et al. (2007b) developed failure criteria for the strength
of armchair CNTs under tension-twisting and indicated that yielding or fracture
behaviour of CNTs ‘‘should be described by detailed atomistic observations
involving chemical bond breaking, and therefore cannot be described with only
macroscopic or continuum modeling that lack these atomistic details’’. This is the
main reason for using MD simulations in the present study, instead of either
molecular mechanics or continuum models. In recent papers, Faria et al. (2013a, b)
studied the twist-induced elastic anisotropic behaviour of chiral CNTs under pure
twisting and moderate-to-high twist-to-stretching rates, as well as their stifness,
strength and fracture toughness. We showed that the addition of axial tension
(stretching) plays a key role in the chiral CNT linear and post-buckling stiffness.
We also studied the continuous evolution of (i) chiral CNTs strength and fracture
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toughness and (ii) the type of failure mechanism, under different twist-tension rate
regimes (either low, moderate or high).

In this chapter, a study on the influence of bond kinematics and hexagonal
lattice deformation on the CNTs mechanical behaviour is performed, in particular
their rupture (1st failure). With this purpose, zig-zag and armchair CNTs are
selected since the bond kinematics of chiral CNTs have already been investigated
by Faria et al. (2013a, b). The CNT is subjected to tensile and torsional loads by
imposing specific combinations of stretching and twisting displacements to the
CNT boundary atoms. Using LAMMPS classical molecular dynamics simulator
(Plimpton 1995), the carbon–carbon interaction parameters are modelled by the
latest version of the AIREBO potential proposed by Stuart et al. (2000) and based
on the well-known Brenner’s second generation bond order potential. Bond
lengths and angle amplitudes were measured after each simulation using the tools
built-in VMD visualization software.

2 Molecular Dynamics Simulation

Molecular dynamics (MD) simulations were performed using the Large Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton 1995). The
Adaptive Intermolecular Reactive Empirical Bond Order Potential (AIREBO),
included in the LAMMPS software package, was used to model the inter-atomic
forces present in the covalent binding of carbon in the CNT structure. The AIR-
EBO potential is an improved version of Brenner’s well-known second generation
Reactive Empirical Bond Order Potential (REBO) that includes a Lenhard-Jones
potential form to describe the Van-der-Waals long-range interactions and a tor-
sional term for the r-bond torsion. The general form of the AIREBO potential is

E ¼ 1
2

X
i

X
j 6¼i

EREBO
ij þ

X
k 6¼i;j

X
l6¼i;j;k

ETors
k;i;j;l þ ELJ

i;j

h i
ð1Þ

More detailed expressions can be found in Stuart et al. (2000). For a given CNT
with radius R and length L, both end sections are located at x = ±L/2 (x is the tube
axis). For pure tensile loads, incremental axial displacements are imposed in
opposite directions, u = -0.025 Å for atoms located at x = -L/2 and
u = +0.025 Å for atoms at located x = +L/2. These imposed displacements stretch
the CNT by 0.050 Å in each increment. For pure torsional loads, a twisting
deformation is imposed to the atoms located in both ends of the CNT. The end
sections rotate an angle / about the x axis in opposite directions. The rotation angle
per simulation is / = +0.5� = +p/360� rad for the atoms at located x = -L/2 and
/ = -0.5�= -p/360� rad for the atoms located at x = +L/2. With these rotations
imposed to the CNT boundary atoms, the CNT twists by D/0 = 1.0� = p/180� rad.
During the simulation the CNT is allowed to relax, reaching a new equilibrium state
while maintaining the prescribed displacement and rotation. The ‘‘0’’ subscripts
mean either ‘‘pure stretching’’ (no twisting) or ‘‘pure twisting’’ (no stretching). In
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order to impose combinations between tensile and twisting deformations, the fol-
lowing relationship is adopted between the combined Du and D/,

Du

Du0

� �2

þ D/
D/0

� �2

¼ 1 ð2Þ

Du ¼ Du0 cos b; D/ ¼ D/0 sin b ð3Þ

where the parameter b varies from 0 to 90�, as depicted in Fig. 1a. For b = 08, it is
obtained Du = Du0 and D/ = 0, i.e., pure stretching behaviour (no twisting). For
b = 90�, it is obtained D/ = D/0 and Du = 0, i.e., pure twisting behaviour (no
stretching). Table 1 shows the correspondence between the angle b and the
twisting-to-stretching rate //u.

All simulations were performed at a temperature of 300 K using the canonical
NVT ensemble and Nose–Hoover thermostat. The newtonian equations of motion
were integrated using the velocity-Verlet algorithm. A timestep of 0.8 fs was used
and all simulations comprised 10,000 time-steps. The configurational (or strain)
energy V of the CNT calculated in the end of each simulation corresponds to the
average value of the energy within the last 4,000 time-steps. Four-hundred sim-
ulations were performed for each b, in the case of pure stretching (b = 0�),
combined stretching-twisting and pure twisting (b = 90�). In order to study the
mechanical behaviour of CNTs under pure and combined tensile and torsional
loads, we have considered the following zig-zag and armchair CNT structures1:

Fig. 1 a Stretching-twisting combinations, b zig-zag (8, 0) CNT, c armchair (5, 5) CNT

1 The chiral vector (n, m) represents the way grapheme sheet is wrapped. The pair of indices
n and m denote the number of unit vectors along two directions in the honeycomb crystal lattice
of graphene. If m = 0, the CNTs are called zig-zag. If n = m, the CNTs are called armchair. If
m = 0 and m = n, the CNTs are called chiral.
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zig-zag (8, 0) with L = 46.3 Å and R = 3.1 Å, having an aspect ratio L/D = 7.4
and 352 atoms; armchair (5, 5) with L = 47.3 Å and R = 3.4 Å, having an aspect
ratio L/D = 7.0 and 380 atoms. These are depicted in Fig. 1b, c. A similar study
was performed by the authors for the case of chiral CNTs. The interested reader is
referred to Faria et al. (2013a, b). The MD simulation results concerning the zig-
zag and armchair CNTS are presented and discussed in the following sections.

3 Interaction Diagrams

MD simulations were performed on the CNTs (5, 5) and (8, 0), for pure stretching,
combined stretching-twisting and pure twisting. This was achieved by adopting the
relation defined in Eq. (2). Results were obtained for b from 0 (pure stretching) to
90� (pure twisting) using a stepwise increase of 5�. The results shown in Fig. 2
depict the variation of the deformation energy per atom, V, as a function of the
angle of twist per length, a = //L, for both CNTs.

Figure 2 shows clear differences between both CNTs in terms of energy of
deformation achieved at rupture—here, ‘‘rupture’’ means the equilibrium state of
the CNT at which the first failure of a C–C bond is reached. For pure stretching
(b = 0�), the armchair tube reaches a higher energy of deformation (more than
twice) of that of the zig-zag tube. This difference persists even in combined
behaviour, as the twisting increases from b = 5 to 15�. For b = 20� (twisting-to-
stretching rate of 0.12 rad/Å) the deformation energy sharply drops to almost half,
indicating the beginning of the twisting effects over the stretching ones. From then
on, the deformation energy steadily decreases for increasing b and it seems to be
more or less stabilized for b C 50�. It is also clear from Fig. 2a that the V(a)
curves become less steep with increasing b, clearly showing that the deformation
energy derives mainly from stretching the CNT rather than twisting it. Figure 2b
differs significantly from Fig. 2a. In fact, the structural rupture takes place at a
lower deformation energy for the zig-zag CNT when pure stretching (b = 0�) is
involved, comparing to the armchair tube. However, as the twisting-to-stretching
rate increases we see that the rupture deformation energy does not change much,
implying that twisting does not affect the CNT rupture, which seems to be only
affected by stretching. For b = 45� (twisting-to-stretching rate of 0.35 rad/Å—
Table 1), we see a small drop in the deformation energy. From b = 45 to 90�,
previous trend is resumed and a steady slight increase in the rupture deformation
energy occurs.

Note that, for the armchair CNT, the rupture points do not always correspond to
the maximum energy achieved (remind that rupture is defined as the breaking of
the first bond). This means that even when bonds break and 7–5 Stone-Waals
defects start to appear the structure does not immediately break apart, but the CNT
continues to stretch, reaching higher deformation energies and showing some
resilience. This is seen mainly after b[ 30�. On the other hand, zig-zag shows the
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opposite behaviour. As soon as the first bond breaks, energy starts to sharply
decrease, meaning that the structure collapsed or that it triggered a wide rupture.

Diagrams of interaction between the axial stretching u and the angle of twist /
at rupture are shown in Fig. 3a, b for the zig-zag and armchair CNTs, respectively.
The (8, 0) zig-zag tube (Fig. 3a) has a maximum stretching displacement of
roughly 10.0 Å if no twisting is applied. This CNT is able to augment its length
from L = 46.3 to 56.3 Å without breaking. Furthermore, it is capable of main-
taining the critical length of nearly 55–56 Å for low twisting-to-stretching rates
(up to 0.29 rad/Å, i.e. b = 40�—see Table 1), denoting a clear non dependence on
the twisting-to-stretching rate. A significant drop in u occurs for b = 45�, from 10
to 6.62 Å, which seems to indicate a clear interference of twist on the rupture

Fig. 2 Variation of the
deformation energy, V, with
angle of twist per length, a,
for different values of b
(rupture points are denoted by
circles): a CNT (5, 5), b CNT
(8, 0)
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process. Increasing twisting-to-stretching rates (from b = 45 to 80�), denoted in
Fig. 3a by the red dots and lines, imply a steady (almost linear) reduction of the
maximum axial stretching, which is reduced to 2.88 Å for b = 80�. This means
more or less 0.1 Å reduction per 5� increase in b. Pure twisting (b = 90�) induces
rupture at an angle of twist of 6.5 rad (slightly more than a full 2p turn). Com-
paring Figs. 2b and 3a it can be concluded that although the deformation energy is
derived mainly from bond stretching, the fact that the decrease in axial stretching
from b = 45 to 80� is opposing a slight increase in deformation energy suggests
that twisted CNTs can also increase their potential energy due to bond angle
variation.

The armchair (5, 5) interaction diagram is shown in Fig. 3b. In pure stretching,
the armchair CNT extends 17.5 Å without rupture. This means that the armchair
CNT length increases from L = 47.3 to 64.8 Å without breaking. But when
combined torsional-tensile displacements are applied, the armchair CNT can keep

Fig. 3 Interaction diagrams
between the axial stretching
u (Å) and angle of twist /
(rad) for a zig-zag (8, 0) CNT
and b armchair (5, 5) CNT
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this length only to a twisting-to-stretching rate of 0.10 rad/Å (b = 15�—see
Table 1). If a twisting-to-stretching rate of 0.12 rad/Å is applied, the maximum
stretching length is reduced 32 %, indicating that this twisting-to-stretching rate
forces the CNT to break apart sooner than expected. After this major drop, the axial
stretching at rupture continues to drop in an almost linear trend. This stage steeply
descendent branch of the interaction curve is shown in Fig. 3b. For b C 65�, there
is no clear trend besides a clear drop in axial stretching maximum length.

For pure loading, some differences between the two CNTs deserve to be
mentioned, namely that:

• the armchair CNT reaches almost twice the maximum elongation achieved by
the zig-zag CNT: u = 17.5 Å for the armchair CNT and u = 10.0 Å for the zig-
zag CNT. The armchair CNT resists much better (without bond break) to pure
stretching than the zig-zag CNT.

• the zig-zag CNT reaches almost twice the maximum twist achieved by the
armchair CNT: / = 6.5 rad for the zig-zag CNT and / = 3.36 rad for the
armchair CNT. The zig-zag CNT resist much better (without bond break) to
pure twisting than the armchair CNT.

For combined stretching-twisting loading, it is concluded that interaction dia-
grams involve two different branches:

• For low twisting-to-stretching rate, a horizontal branch exists in which the axial
stretching does not vary much with the low amount of twist. The width of this
branch is distinct for armchair and zig-zag CNTs. The zig-zag CNT withstands
combined stretching-twisting to a higher extent than the armchair CNT: this
corresponds to b = 408 for zig-zag CNT and b = 158 for the armchair CNT.

• For moderate to high twisting-to-stretching rate, an almost (with some scatter)
linear descending branch exists in both interaction u-/ diagrams. This ‘‘linear’’
branch is much steepest for the armchair CNT than for the zig-zag CNT, which
means that the strength of the armchair CNT is much more affected by the
twisting-to-stretching rate than the zig-zag one.

4 Bond Kinematics

The interaction diagrams corresponding to CNT rupture (1st bond failure) pre-
sented in the previous section state that both (5, 5) and (8, 0) CNTs break apart for
distinct maximum stretching displacements and strains. Furthermore, if twisting
deformations are imposed in combination with stretching deformations, both
CNTs behave differently in order to accommodate these deformations. As a
consequence, their rupture behaviour follows dissimilar trends. Albeit rupture can
be seen as a global phenomenon, it may depend on CNT diameter and length. In
the cases studied herein, these two variables are made very similar. Thus, the
major factor contributing to that dissimilar behaviour is chirality. In order to
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understand why CNT rupture occurs at different stretching displacements and
different twisting angles, it is mandatory to assess how the hexagonal lattice of
armchair and zig-zag configurations accommodates the imposed deformations. To
achieve this goal, the kinematics of the hexagonal lattice is analyzed, which
comprises the assessment of bond length variations and angle amplitude variations
with the prescribed displacements. For both CNTs the hexagonal cell in which
rupture first occurs is selected and the bond length and angle variations are
measured against the initial equilibrium values, i.e. before any displacements are
imposed. Figure 4a presents a scheme with (i) the bond labels x, y and z and (ii)
the angle labels a, b and c. Figure 4b depicts both CNTs in initial equilibrium state
and fully tensioned state.

In the following sections, results regarding bond length variations and angle
amplitude variations are presented. Firstly, pure stretching is established as the
reference case. The results for combined stretching-twisting deformations
(including pure twisting) are then presented and compared with the reference case,
i.e. pure stretching deformations.

4.1 Pure Tensile Behaviour

Figure 5a gives clear evidence that bonds y and z are responsible for the high
stretching displacement (17.5 Å) and high strain (e = 17.5/47.3 = 37 %)
achieved by (5, 5) CNT before rupture is attained. As the stretching deformation is
imposed to the (5, 5) CNT, bonds y and z increase their length simultaneously and
with equal variation (*23 %), meaning that they give equivalent response to the
deformation imposed.

Fig. 4 a Scheme representing the adopted nomenclature. In this scheme, the hexagon cells are
aligned with the tube axis, for which the tensile loads, Ftu and Ftd, are applied. x, y and z represent
bonds while a, b and c represent angles. b Representation of the two CNTs, each one with two
representations, the initial equilibrium state (left) and the pre-rupture state for pure stretching
(right)
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Bond x, positioned transversally to the tube axis (see Fig. 4a), also presents
some positive length variation (increase of *10 %) but to a lesser extent than the
other two bonds. The axial stretching imposed to the (5, 5) CNT also implies a
*28 % increase of amplitude of angle b, forcing angles a and c to close (see
Fig. 4b). For a stretching displacement up to 13.0 Å, there is a linear trend
between the bond variation and the imposed axial stretching u (Fig. 4a). Similar
linear trend also exists for between the angle variation and imposed axial
stretching u (Fig. 4b). For stretching displacement greater than 13.0 Å, there is a
clear change of the curves’ slopes. The data suggests that around u = 13.0 Å both
bonds y and z reach their maximum length. In order to accommodate further
stretching without rupture, the hexagonal lattice starts to open angle b at a faster
rate: it rapidly increases from 15 % variation at u = 13.0 Å to 28 % variation at
u = 17.5 Å. Consequently, bond x has to increase faster also. If these changes are
uniform throughout the CNT structure, it is expected that a diameter reduction
occurs because bond x increase of 10 % variation cannot compensate a 28 %
variation of angle b.

Fig. 5 CNT (5, 5):
Variation, with the axial
stretching u (Å), of a bond
length variation and b angle
amplitude variation
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Figure 7 depicts the variation of diameter reduction with u, for the (5, 5) CNT.
The red curve shown in Fig. 7 proves that assumption. It is clear that a 2 %
reduction of CNT diameter is achieved for u \ 13.0 Å. But for u [ 13.0 Å, the
curve slope increases and the diameter reduction rapidly achieves 7 %, which is a
rather significant value since the CNT diameter decreases about 0.5 Å.

The (8, 0) CNT behaves very differently because it has a bond that is perfectly
aligned with the direction in which the stretching is imposed. That is bond y. As
we can see in Fig. 6a, bond y increases its length up to 21 % of its initial value and
then breaks, inducing the CNT global failure. Bonds x and z show minor variations
of about 6 % and are not so affected as bond y, mostly because their initial
directions are far from the axial direction, although their are not fully orthogonal
either. Angle a decreases its amplitude as a consequence of being pulled, forcing a
small increase in the amplitudes of angles b and c. Notice that the same phe-
nomenon found in (5, 5) CNT is also present to a lesser extent in (8, 0) CNT. From
u = 7.0 to 9.75 Å, there is a sudden decrease of the amplitude of angle a (the slope

Fig. 6 CNT (8, 0):
Variation, with the axial
stretching u (Å), of a bond
length variation and b angle
amplitude variation
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of angle a is the steepest in Fig. 6b. This enforces some increase in the amplitudes
of angles c and b, but not very prominent variations of length of bonds x and
z. Thus, some diameter reduction would be expected. However, the opposite
scenario is obtained, as depicted in Fig. 7, in which there is a slight increase of
CNT diameter.

In fact, a decrease of (8, 0) CNT diameter really happens, as we can see from
Fig. 8. However, this diameter decrease is purely local and is localized in the CNT

Fig. 7 Variation, with the
axial stretching u (Å), of
diameter variation

Fig. 8 Localised diameter
reduction in the region where
the CNT (8, 0) rupture occurs
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section where rupture will then occur. This diameter reduction is not reflected in
the blue curve of Fig. 7 because the diameter variation depicted in this figure is the
average value measured in several cross-sections of the CNT, in a given instant.
The reason why the diameter reduction has a global nature in armchair CNTs and
local nature in zig-zag CNTs is not clear. Yet, we suggest that it is a consequence
of the process of axial load transfer throughout the whole CNT. If we notice
Fig. 4b, the (5, 5) CNT lattice orientation is such that only bonds y and z have
projection in the axial direction (x is orthogonal to it) but are not fully aligned to it.
The y and z bonds form a ‘‘zig-zag’’ chain along the axial direction that behaves
like an elastic spring and enhances the axial load transfer. This is the reason behind
the very high failure strain of (5, 5) CNT, reaching 37 %! In case of (8, 0) CNT,
x and z bonds are almost perpendicular to the axial direction and bond y is the one
that is mostly responsible for the CNT elongation. The ‘‘armchair’’ chain formed
by y and x (or z) bonds is less flexible and the load transfer between bonds y and
x (or z) is harder to achieve, giving rise to local necking phenomena.

4.2 Twisting and Combined Stretching-Twisting Behaviour

In this section, it is considered the behaviour of the CNTs under combined
stretching-twisting and pure twisting. Three b values are considered (see Fig. 1a):

• b = 45� corresponding to a twisting-to-stretching rate //u = 0.35 rad/Å
(Table 1). It means that the CNT is twisted 0.35 radians for each angstrom that it
is stretched.

• b = 60� corresponding to a twisting-to-stretching rate //u = 0.60 rad/Å
(Table 1). This means that, for each angstrom of stretching displacement, the
CNT is twisted 0.60 rad.

• b = 90� corresponding to a twisting-to-stretching rate //u = ? (Table 1) or a
stretching-to-twisting rate u// = 0. It means that the CNT is not stretched but
only twisted. This situation corresponds to pure twisting.

4.2.1 Armchair CNT

For the (5, 5) CNT, Figs. 9 and 10 depict the bond length variations and angle
amplitude variations with respect to the angle of twist /, respectively. Each curve
corresponds to a given b value and to a given //u rate. Thus, and given a / value,
it is always possible to obtain the u value using one of the adopted //u rates. From
Fig. 3b and for these b values (45 and 60�), it becomes understandable that the
rupture points are placed in the red region of the interaction diagram, for which
rupture is mostly influenced by twisting. Figures 9 and 10 are easier to interpret if
the CNT MD simulations are visualized while the //u rate is imposed to the CNT.
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Fig. 9 CNT (5, 5):
Variation, with the angle of
twist / (rad), of a bond
x length variation, b bond
y length variation, and c bond
z length variation
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Fig. 10 CNT (5, 5):
Variation, with the angle of
twist / (rad), of a angle
a variation, b angle
b variation, and c angle
c variation
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Three different events might occur. Firstly, at a certain instant, the CNT buckles
from a circular cylindrical shape into an oval helix shape, as depicted in Fig. 11a.
This shape appears to rotate but, in fact, it’s an illusion caused by the surface
waves. This movement induces atomic oscillations in the radial direction. This
helix shape configuration permits the CNT to relax local tensions arising from
twisting. However, because part of the oval section surface is strongly curved, it
also imposes local tensions in the mostly bent zones of CNT wall. As a result, bond
lengths and angle amplitudes measured in a fixed hexagonal cell oscillate and the
results show some scatter. The regions with oscillations due to the ‘‘rotating’’ helix
shape are denoted in Fig. 9b. Secondly, and for a given / value, the helix shape
stops oscillating because the angle of twist and stretching displacement are high
enough to stiffen the helix-shaped surfaces of the CNT. At this point, the CNT has
two accentuated surface curvatures due the high ovalization. This gives rise to
local tensions and impedes further oscillations. Beyond this stage, bond lengths
and angle amplitude change rapidly as the CNT continues to twist. Thirdly, two
regions of heavily distorted hexagonal cells are formed in the axial direction
(Fig. 11b). These regions are situated in the mid section of the CNT. These
hexagonal cells are forced to distort because of the torque. The twisting rotations
imposed in opposite directions to the CNT top and bottom ends, tend to concen-
trate strain in its mid section, especially in the curved surfaces of the helix-shaped
CNT. The increasing strains existing in hexagon cells require now the increase of
bond lengths beyond the breaking instant.

Fig. 11 CNT (5,5):
a Visualization of the helix
shaped configuration and
b Zoom-in of the distorted
hexagonal cells
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Bond length variation can naturally be separated in three stages, considering the
events just described. Bond x length variation depicted in Fig. 9a holds the same
trend for the three b values. The length of bond x increases marginally, below 4 %,
before reaching the stage in which the hexagonal cell is distorted. After that, it
shows a very high length increase. The length increase in the first and second
stages is small and almost inversely proportional to the twisting-to-stretching rate
//u. For instance, it is seen that length increase is higher for b = 45� (blue curve)
than for b = 90� (red curve). Although bond x does not show a variation
exceeding 20 %, it is expected that this bond is responsible for the CNT rupture.
We must be aware that a bond breaks for *23 % extension and that the bond
length variation corresponds to average values. Thus, it is possible to have some
bonds elongated by 23 % and still have average values below 20 %.

The length variation of bond y shows a higher increase than the other two bonds
(x and z), during the first two stages and for the three b values considered. It is
known that a continuum tube under torsion exhibits shear stresses in the contour
direction (arising from torque) but also in the axial direction (arising from equi-
librium). This shear stress state is characterized by principal stress directions
oriented at 45� with respect to the contour and axial directions. These principal
stresses correspond to tensile stresses in one direction but compressive stresses in
the other (orthogonal) direction. Similar behaviour exists in CNT under twisting
and the alignment of bond y is closer to the direction of tensile stresses. Therefore,
the bond y increases its length the most. When the oscillations stop, increasing
tensions stretch the bond even further, a fact that is visible for b = 60� and
b = 90�. The hexagonal cell distortions that follow relief this bond and decrease
its length by closing angle c and opening angles a and b (see Fig. 11b).

Bond z (Fig. 9c) presents a length variation very close to that of bond
x. Comparing the curves in Fig. 9c with the variations it showed when there was
no twisting (Figs. 5b,6b), it is clear that the twisting direction misaligns the bond
with the stretching direction. In fact, the bonds extend much less, even to b = 45�,
showing poor load transfer. Once again, when severe deformation occurs in the
hexagonal cell before rupture, the bond z (like bond x) increases its length.

Amplitude variations for angles a, b and c are shown in Fig. 10. Hexagonal cell
deformation explains fairly well the very high slopes of the last portion of the
curves. The hexagonal cell deformation consists mainly in the abrupt closing of
angle c. As a consequence angles b and a have to open. This phenomenon occurs
regardless of b value, and might indicate a possible cause for CNT rupture.

The amplitude variation of angles b and c is predictable. Angle b opens pro-
portionally to the imposed stretching and inversely to the imposed twisting.
Therefore, the curve slope is higher for lower b values. For b = 90� (red curve),
note that the variation of angle b is negligible while it is meaningful for b = 45�
(blue curve). On the other hand, angle c always closes: first because of stretching
and then, for high twisting-to-stretching rates, because the twisting forces the
amplitude to decrease. Angle a also exhibits these two opposed effects: stretching
make it close while twisting make it open. For b = 45�, it is visible that these two
effects cancelled each other prior to the CNT buckling into a helix shape tube.

292 B. Faria et al.



Thus, angle a amplitude showed null variation. For b = 60 and 90�, it is clear that
twisting component is predominant because the angle a opens. The oscillations of
the helix shaped tube tend to close angle a. In fact, Fig. 10 shows that angle
a closes in order to compensate an equal increase of angle b amplitude. Angle
a amplitude variation also shows one negative peak for b = 60� (green curve) and
a positive peak beside two negative peaks for b = 90� (red curve). These peaks are
correlated with the length variation of bond y (Fig. 9b). Before cell distortion takes
place, increasing local tensions tend to enlarge the length of bond y and force the
closing of angle a. From the comparison between Figs. 9b and 10a, we see that the
variations in these regions are complementary.

The rupture process can now be explained resorting to the observation of
Fig. 12, which depicts the rupture mechanism and its sequence of steps. The last
stage previously defined in curves shown in Figs. 9 and 10 was characterized by a
severe distortion of the hexagonal cells situated in curved surface regions. This
distortion was explained by the extreme closing of angle c and opening of angles
a and b, while bond lengths abruptly increased. Rupture occurred at the end of this
stage. Based on the visual representation of MD results, we suggest that rupture is
triggered by the formation of a new bond, as depicted in Fig. 12, involving sp3
hybridization of the two carbon atoms that were brought into bond length distance
by the closing of angle c. These two carbon atoms then return to sp2 hybridization
due to the break of bond z, because this new state is energetically more favour-
able—recall that tension is released, not only by breaking of a tensioned bond but
also by angular relaxation. This configuration originates a 7–5 Stone-Waals defect
that spreads as the imposed stretching-twisting combination continues. Figure 12
shows this process for b = 45�. This failure mechanism was equally observed for
all b[ 15�, showing that rupture occurs in twisted (5, 5) CNTs in an identical
process regardless of the twisting-to-stretching rate (b[ 15�).

Fig. 12 (5, 5) CNT: sequential views showing the beginning of the rupture process for b = 45�
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Figure 13 depicts the variation, with b, of bond length and angle amplitude at
rupture. These variables are scaled to their initial values and they correspond to the
average value of the last 100 steps before rupture.

Firstly, it is seen that the influence of twisting-to-stretching rate //u (or b) on
the kinematics of CNT rupture is relevant. The bond length increase remains
almost unchanged from b = 0 to 15�. In this case, bonds y and z reach their
maximum length (*23 %) and force bond x to stretch also. Angle b opens widely
and obliges the other angles to decrease their amplitude. The CNT reaches its
maximum length (*17.5 Å) for 0� B b B 15�, meaning twisting effects are
negligible in this range. CNT rupture is achieved by breaking of bonds y or
z. From b = 15 to 20�, the angle amplitudes at rupture change a lot. The angle
b amplitude drops but the angle still opens, while the amplitude of angle a is now
positive (angle opens). The amplitude of angle c decreases the most and closes. For
b = 20�, the amplitude of angles at rupture become characteristic of a distorted
cell. From b = 20 to 90�, the amplitudes of the angles show some scatter but small

Fig. 13 CNT (5, 5): a bond
length variation at rupture vs.
b and b angle amplitude
variation at rupture vs. b

294 B. Faria et al.



variation. In this range, the length of bond y shows a high decrease, bond z exhibits
a smaller drop in its length, and bond x increases its length. However, none of
these bonds achieve their maximum elongation (*23 %) in the range
20� B b B 90�. Thus, we conclude that the rupture mechanism involves the
deformation (distortion) of the hexagonal cell with abrupt closing of angle c. This
leads to the formation of a new bond through sp3 hybridization of two carbon
atoms, followed by breaking of a tensioned adjacent bond and new hybridization
to sp2.

4.2.2 Zig-Zag CNT

The first fact to notice when comparing the (8, 0) CNT with (5, 5) CNT is that the
former withstands much less axial stretching than the latter. Although it maintains
similar axial stretching at failure in spite of increasing twisting-to-stretching rate, it
also endures more twisting without rupture. The request is to explain the reason
why it can endure more twisting when compared with (5, 5) CNT. The explanation
clearly lies in the differences presented in the chiral matrix. Figures 14 and 15
depict the bond length variations and angle amplitude variations of (8, 0) CNT
with respect to the angle of twist /: recall the bond and angle nomenclature of (8,
0) CNT shown in Fig. 4a. The results shown in Fig. 6a (pure stretching) demon-
strated that bond y length variation was responsible for much of the CNT elon-
gation without rupture.

Firstly, let us discuss the b = 45� case (blue curves in Fig. 14). We see that all
bonds increase their length in a linear trend with the twist /: bond y is the most
elongated (achieving a maximum of 15.9 %) while the elongations of bonds x and
z are fair and marginal, respectively. However, this linear path is abruptly changed
for /[ 2.3 rad as the length of bonds x and z increase sharply and the length bond
y decreases steeply, indicating the occurrence of extreme deformation (distortion)
of the hexagonal cell. This fact is confirmed by angle amplitude analysis (Fig. 15).
Initially, there is a linear variation of all angles with the twist /: angle b increases
the most (achieving a maximum of 12.0 %) while the amplitudes of angles a and
c decrease to a lesser extent.

As mentioned before, this linear path changes suddenly for /[ 2.3 rad, and a
sudden rise is observed in the amplitudes of angles b and c (Figs. 15b, c) while an
abrupt decay of angle a occurs (Fig. 15a). This change of angle amplitudes is
associated with a distortion of the hexagonal cell that leads to rupture, similarly to
that observed for (5, 5) CNT—in this case, angle a closes instead. Notice that, for
b = 45�, oscillations of helix shape rotations were not observed. Visual MD data
confirms that a helix shape forms, similar to the one observed in Fig. 11a. From
Fig. 3, we are able to mention that hexagonal cell distortion occurs in (8, 0) CNT
for b C 45� (/ = 2.6 rad and u = 7.4 Å, Fig. 3a) while in (5, 5) CNT it takes
place for b C 20� (/ = 1.5 rad and u = 11.9 Å, Fig. 3b). Comparing both CNTs,
we see that (8, 0) CNT requires much larger twist / and lower stretch u to collapse
than the (5, 5) CNT.
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For b = 60�, the bond length and angle amplitude variation curves do not
exhibit a clear trend, but it is possible to discern four stages. Initially (/
\ 2.0 rad), there is a linear trend similar to that observed for b = 45�. For

Fig. 14 CNT (8, 0):
Variation, with the angle of
twist / (rad), of a bond
x length variation, b bond
y length variation, and c bond
z length variation
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2.0 \/\ 2.33 rad, the CNT buckles into a helix shape that oscillates about the
CNT axis. The bonds x and z increase their length, especially bond x because it is
oriented towards the stretching direction, while bond y maintains its length. Angles

Fig. 15 CNT (8, 0):
Variation, with the angle of
twist / (rad), of a angle
a variation, b angle
b variation, and c angle
c variation
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a and c decrease their amplitude while angle b opens. These fluctuations reflect the
consecutive reversible deformations of the lattice cell when the helix shape
oscillates. These oscillations tend to redistribute and homogenize the bond and
angle tensions throughout the CNT. This explains the huge increase of bond
x length. These oscillations enable the load transfer from cell to cell in the axial
directions. For 2.33 \ /\ 3.0 rad, the helix shape oscillations almost stop. As
twisting progresses beyond / = 3.0 rad, the helix shape is so twisted that the
hexagonal cell distorts and CNT fails by the process depicted in Fig. 16. Defor-
mation of the lattice cell consists mainly of the quick closing of angle a and
opening of angles b and c. Notice that angle c was closing in previous stages, but
this cell deformation increases the length of bond z, forcing angle c to open. The
lengths of bonds x and y do not show much change because they were already
stretched.

For b = 90� (pure twisting), torsional buckling occurs very soon (at /
= 0.94 rad) and, from then on, the helix shape oscillations alternate between high
and low rotations. This gives rise to the red curves depicted in Figs. 14 and 15, in
which the bond length and angle amplitude variations show a high scatter. For /
[ 4.0 rad, bond x increases its length almost 20 %, very close to the rupture
length (*23 %), proving very good alignment with the stretching direction (CNT
axis). The bonds y and z also increase length, as expected. A major difference to
the combined twisting-stretching behaviour (b = 45 and 60�) is that the distortion
of the hexagonal cell is not abrupt as it was for b = 45 and 60�. Angles show the
same trend variations as before (b = 60�), but now are more gradual. The
exception is that angle c no longer shows positive variation in this final stage
before rupture (see Fig. 15c). This is a direct consequence of the length increase of
bond y, which did not happen for b = 60�. This kinematic behaviour of bond

Fig. 16 (8, 0) CNT: views showing the formation of a new bond and beginning of the rupture
process for a b = 45�, b b = 60� and c b = 90�
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y could be the result of the slow deformation of the hexagon cell, contrasting with
the sudden deformation registered before (b = 60�).

For b = 45, 60 and 90�, Fig. 16 shows zoom-in views of new bond formation
that consequently leads to CNT rupture. The distortion of hexagonal cell is clearly
visible in Figs. 16a, b and c. It is also visible that cell deformation always occurs in
the mostly bent and strained region of the buckled CNT. For b = 45�, it is
interesting to notice that the closing of angle a is directly responsible for the
creation of a new bond. However, for b = 60 and 90�, it is the closing of its
symmetrical. Comparing Figs. 12 ((5, 5) CNT) and Fig. 16 ((8, 0) CNT), we
conclude that the deformed shape of the cell is very similar.

Figure 17 depicts the variation of bond length and angle amplitude at rupture
with b—recall that bond lengths and angle amplitudes are scaled to their initial
values and they are the average value of the last 100 steps before rupture. From
Fig. 17, it is seen that the influence of twisting-to-stretching rate //u (or b) on the
kinematics of CNT rupture is deemed relevant. The bond y achieves the maximum

Fig. 17 CNT (8, 0): a bond
length variation at rupture vs.
b and b angle amplitude
variation at rupture vs. b
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elongation (*23 %) from b = 0 to 40� and the breaking of this bond initiates the
CNT rupture. In this b range, bond x increases slightly its length because it
becomes more align with the CNT axis due to the amount of twist. Oppositely, the
bond z decreases its length. For the range 0� B b B 40�, the amplitudes of the
angles remain almost unchanged (Fig. 17b). For 45� B b B 90�, there is a com-
bination of angles typical of a distorted cell, with a sudden decline of angle a (even
more closed) and increase of angle b. The combination of bond lengths also
changes in this interval of b. From b = 40 to 50�, the lengths of bonds x and
z increase while there is a major decline of the length of bond y. Although bond
x achieves a maximum extension of 20 %, the rupture mechanism is not due to
direct bond breaking but rather due to cell distortion. It is similar to the one
described earlier for the (5, 5) CNT and b C 208.

5 Conclusion

This chapter presented a study on the kinematics of bonds and their influence on
the collapse behaviour of armchair and zig-zag CNTs under combined stretching-
twisting. MD simulations were used to achieve this goal and prescribed axial
displacements (stretching) and twisting rotations (torsion) were imposed to both
CNT ends (supports). The results were extensively analyzed, mainly in the form of
(i) diagrams of energy at rupture versus the twisting-to-stretching rate and (ii)
diagrams of interaction between the axial stretching displacement at rupture and
the angle of twist at rupture. Then, a detailed study on the variation of bond length
and angle amplitude with the imposed stretching and twisting deformations was
shown. Firstly, the case of pure stretching was described as a reference. After that,
the cases of combined twisting-stretching and pure twisting were dealt with sep-
arately for zig-zag (8, 0) CNT and armchair (5, 5) CNT.

From the remarks drawn before, we are now able to answer the question: why
can (8, 0) CNT undergo more twisting compared with the (5, 5) CNT? The
differences between the two CNTs (zig-zag and armchair) lie in the orientation of
hexagonal cells, i.e. their chirality. With a meaningless amount of twist, the
extension of the (5, 5) CNT is much higher (almost twice) than that of (8, 0) CNT
because this CNT has only one bond (y) aligned with the axial direction while the
armchair has two bonds (y and z) fairly aligned with the axial direction. For
moderate to high twisting, the CNT rupture follows a different mechanism.
Twisting deforms the matrix cells and brings carbon atoms into bond forming
distances in order to promote the formation of new bonds and breaking more
strained bonds. This mechanism relies on cell distortion. For the same twisting
angle, the hexagonal cell of (5, 5) CNT deforms much more than that of (8, 0)
CNT, meaning that rupture will occur sooner for the armchair CNT than for zig-
zag one. Other factors may attenuate or contribute to cell deformation and may
turn this dependence less clear, like load transfer, localized strain and rotational
oscillations.
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Finite Element Modeling of the Tensile
Behavior of Carbon Nanotubes, Graphene
and Their Composites

Konstantinos I. Tserpes and Paraskevas Papanikos

Abstract Due to their extraordinary mechanical properties, carbon nanotubes and
graphene serve as ideal reinforcements. However, the effectiveness of reinforce-
ment may be counterbalanced by the presence of defects, which degrades signif-
icantly the mechanical properties of nanomaterials, and the negative influence of
several material-related and geometrical factors on the effective elastic properties
of nano-reinforced composites. This chapter reviews the continuum models that
were developed by the authors in order to predict the elastic properties of isolated
defect-free carbon nanotubes, to simulate the tensile behavior of defected carbon
nanotubes and graphene and to evaluate parametrically the effective elastic
properties of nano-reinforced polymers.

Keywords Carbon nanotubes � Graphene � Nanocomposites � Finite element
analysis

1 Introduction

Graphene is not only the thinnest material ever but also the strongest. Recently,
Lee et al. (2008) have measured, by nanoidentation in an atomic force microscope,
the Young’s modulus and intrinsic strength of defect-free graphene monolayer to
be 1.0 TPa and 130 GPa, respectively. This finding gave strong support to the
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investigation currently being evolved for establishing carbon nanotubes (CNTs)
and graphene as reinforcements since it was the first time the suspected extraor-
dinary mechanical properties of these materials were experimentally verified. In
the past, similar values were also reported for the mechanical properties of CNTs
[e.g. Belytschko et al. 2002; Duan et al. 2007; Mielke et al. 2004] but only by
simulations; the mechanical properties of defect-free CNTs have not been mea-
sured yet. Contrary to simulations, experiments give a Young’s modulus of 0.45
TPa and a strength of 40 GPa for CNTs (Yu et al. 2002). The large deviation
between simulations and experiments is attributed to the presence of defects in the
nanotube structure. The deviation between predicted and measured mechanical
properties of CNTs as well as the need for predicting the mechanical properties of
defected graphene, given the difficulties in performing experiments at the nano-
scale, has enhanced the need for developing reliable models capable of predicting
the mechanical properties and simulating the mechanical behavior of isolated
CNTs and graphene.

Combining extraordinary mechanical properties and fiber-like structure, CNTs
offer unique potential for reinforcing polymers either as replacements of
conventional fibers or as fillers to enhance the properties of existing advanced
composites. After the recent achievement of obtaining graphene in a crystalline
form (Geim and Novolesov 2007; Hashimoto et al. 2004), research on the usage of
graphene as a reinforcement was also initiated. Graphene is more promising than
CNTs in this role since it offers reinforcement in two directions instead of one. The
first efforts to manufacture CNT- and graphene-reinforced composites revealed
several technological problems as well as the influence of several material-related
and geometrical factors on the reinforcement efficiency of the nano-reinforced
composites. To understand and to overcome the negative effect of the above
factors on the macroscopic properties of nano-reinforced composites an exhausting
experimental research is needed. However, the experimental effort can be
disburdened by using efficient models that perform virtual design and optimization
of the nano-reinforced composites.

Virtual design and optimization of nano-reinforced composites cannot be
performed by pure atomistic models since they are limited in both time and scale
and require large computational effort even for the analysis of an isolated CNT or
graphene. On the contrary, continuum methods are computationally efficient, can
be extended in different scales and also can incorporate data from the nano-scale
for the sake of accuracy.

This chapter reviews the continuum models developed by the authors in order
to predict the elastic properties of isolated defect-free CNTs (Tserpes and
Papanikos 2005), simulate the tensile behavior of defected CNTs (Tserpes et al.
2006; Tserpes and Papanikos 2007) and graphene (Tserpes 2012) and parametri-
cally evaluate the effective elastic properties of CNT-reinforced (Tserpes and
Chanteli 2013) and graphene-reinforced polymers. All models are based on the FE
method and wherever necessary they incorporate data from the nano-scale.
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2 FE Modeling of CNTs and Graphene

Carbon atoms in CNTs and graphene are bonded together with covalent bonds
forming a hexagonal 2D lattice. These bonds have a characteristic bond length and
bond angle. The displacement of the individual atoms under an external force is
constrained by the bonds. Therefore, the total deformation of CNTs and graphene
is the result of the interactions between the bonds. By considering the bonds as
connecting load-carrying elements, and atoms as joints of the connecting elements,
the hexagonal lattice may be simulated as a frame structure. By treating CNTs as a
space-frame structure and graphene as a plane-frame structure, their mechanical
behavior can be analyzed using classical structural mechanics methods such as the
FE method.

Based on the concept described above, 3D FE models representing the exact
atomic lattice of CNTs and graphene were developed in (Tserpes and Papanikos
2005) and (Tserpes 2012), respectively, using the ANSYS commercial FE code.
For the modeling of the carbon–carbon (C–C) bonds, the 3D elastic BEAM4
ANSYS element was used. Figure 1 depicts how the hexagon, which is the con-
stitutional element of CNTs and graphene, is simulated as structural element of a
frame. In the same way the entire lattice is simulated. The simulation leads to the
correspondence of bond length to the element length as well as the wall thickness
to the element thickness. By assuming a circular cross-sectional area for the ele-
ment, as in Fig. 1, wall thickness corresponds to element diameter. Typical FE
meshes of CNTs and graphene are illustrated in Fig. 2.

The FE models depicted in Fig. 2 were used for predicting the elastic properties
and simulating the tensile behavior of pristine and defected CNTs and graphene.
They predominate over atomistic models, such as the molecular mechanics and
molecular dynamics models, in the handling and required computational effort.

Fig. 1 Beam FE modeling of the hexagonal cell composed of C–C bonds
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Moreover, these FE models can incorporate data from atomistic methods, as it will
be described in a forthcoming section, for the sake of accuracy of the analysis.

3 Modeling of the Behavior of C–C Bonds

There are two options for modeling the behavior of C–C bonds: assume a linear
behavior or a non-linear behavior. Assuming a linear behavior for the C–C bonds
is the easiest approach to model the behavior of carbon-based nanomaterials.
However, the efficiency of this approach is limited to problems where very small
deformations take place such as the evaluation of the elastic moduli. In order to
model the behavior of CNTs and graphene under large deformation, the actual
non-linear behavior of the C–C bonds should be simulated through the use of an
interatomic potential. In this section, both modeling approaches will be described.

3.1 Linear behavior of C–C Bonds

In this case, the elastic moduli of beam elements, representing the C–C bonds, are
derived using a linkage between molecular and structural mechanics (Tserpes and
Papanikos 2005; Odegard et al. 2002). According to this linkage, the following
molecular mechanics expressions of stretching energy Ur, bending energy Uh and
combined torsion energy Us

Ur ¼
1
2

kr r � r0ð Þ2¼ 1
2

kr Drð Þ2; ð1Þ

Uh ¼
1
2

kh h� h0ð Þ2¼ 1
2

kr Dhð Þ2; ð2Þ

Fig. 2 Typical FE mesh of a the armchair (10,10) nanotube, b the zigzag (8,0) nanotube and
c the graphene
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Us ¼ U/ þ Ux ¼
1
2

ks D/ð Þ2; ð3Þ

where U/ is the energy due to dihedral angle torsion, kr, kh and ks are the force
constants and r, h and s the corresponding deflections, are combined with the
corresponding following classical mechanics expressions of tension UA, bending
UM and torsion UT

UA ¼
1
2

EbAb

Lb
DLbð Þ2; ð4Þ

UM ¼
1
2

EbIb

Lb
2að Þ2; ð5Þ

UT ¼
1
2

GbJb

Lb
Dbð Þ2; ð6Þ

where Eb and Gb are the bond’s Young’s modulus and shear modulus, respec-
tively, Ib and Ib are the secondary moment of inertia and polar moment of inertia,
respectively, DLb, 2a and Db are the corresponding macro-deflections and Ab and
Lb are the cross-sectional area and bond length, respectively, to get the following
relations between beam rigidities and force constants

EbAb

Lb
¼ kr; ð7Þ

EbIb

Lb
¼ kh; ð8Þ

GbJb

Lb
¼ ks: ð9Þ

By assuming a circular cross-section of diameter db for the beams, Eqs. (7)–(9)
give

db ¼ 4

ffiffiffiffiffi
kh

kr

r
; ð10Þ

Eb ¼
k2

r Lb

4pkh
; ð11Þ

Gb ¼
k2

r ksLb

8pk2
h

; ð12Þ

which fully define the beam element. Thus, given the length of the bond, which is
defined by the type of the bond and the values of force constants, one can derive
through Eqs. (10)–(12) the elastic moduli and diameter of the beam element
required by the FE method.
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3.2 Non-linear Behavior of C–C Bonds

The non-linear behavior of C–C bonds was simulated using the modified Morse
interatomic potential (Belytschko et al. 2002). This potential seems not appropriate
for describing the behavior of CNTs and graphene when bonds are broken, since it
does not allow for reconfiguration of bonds. However, as shown in (Belytschko
et al. 2002), the fracture strength of CNTs depends primarily on the inflection point
of the interatomic energy and is almost independent of dissociation energy.
Therefore, since the inflection strain occurs substantially before the strain asso-
ciated with bond breaking, where the formation of other bonds is expected, the
independence of fracture strength to the dissociation energy provides some con-
fidence that the modified Morse potential can give a correct picture of CNT and
graphene fracture in cases of moderate temperatures (0–500 K). Such were the
cases in (Tserpes et al. 2006; Tserpes and Papanikos 2007; Tserpes 2012) where
the specific potential was used to simulate the tensile behavior, including fracture,
of pristine and defected CNTs and graphene.

According to the modified Morse potential, the potential energy of the nanotube
system is expressed as

E ¼ Estretch þ Eangle; ð13Þ

Estretch ¼ De 1� e�bðr�r0Þ�2 � 1
n o

; ð14Þ

Eangle ¼
1
2

kh h� h0ð Þ2 1þ ksextic h� h0ð Þ4
h i

; ð15Þ

where Estretch is the bond energy due to bond stretching and Eangle the bond energy
due to bond angle-bending, r is the current bond length and h is the current angle
of the adjacent bond. The parameters of the potential are (Belytschko et al. 2002):

r0 ¼ 1:421 � 10�10 m, De ¼ 6:03105 � 10�19 Nm,
b ¼ 2:625 � 1010 m-1, h0 ¼ 2:094 rad, kh ¼ 0:9 � 10�18 Nm/rad-2,

ksextic ¼ 0:754 rad-4.
As bond stretching dominates tensile behavior of CNTs and graphene and the

effect of angle-bending potential is very small, only the bond stretching potential
was considered.

By differentiating Eq. (14), the stretching force of atomic bonds is obtained in
the molecular force-field as

F ¼ 2bDe 1� eb r�r0ð Þ
� �

e�b r�r0ð Þ ð16Þ

Figure 3 plots the relationship between force F and bond strain eb ¼ r � r0ð Þ=r0

for the C–C bonds. As may be seen, the force-strain relation is highly non-linear at
the attraction region especially at large strains. The inflection point (peak force)
occurs at 19 % strain.
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3.2.1 Algorithm

The non-linear behavior of the C–C bonds, as described by the interatomic
potential, was assigned to the beam elements using the stepwise procedure of
progressive fracture modeling, which is briefly described in the following lines.
Initially, the stiffness of the beam elements is evaluated from the initial slope of
the force-strain curve of the modified Morse potential (Fig. 3) using the element’s
cross sectional area Ab. The nanomaterial is loaded by an incremental displace-
ment at one end with the other end fixed. At each load step, the stiffness of each
element is set equal to F=Abeb, where eb is the axial strain of the element as
evaluated from the FE model and F is the interatomic force calculated using
Eq. (16) given the r. The next displacement increment is then applied to the
graphene and this iterative procedure goes on until catastrophic failure of the
nanomaterial takes place.

4 Elastic Moduli of Pristine CNTs

Using the linear modeling approach for the C–C bonds, the effect of diameter on
the elastic moduli of pristine CNTs was examined in (Tserpes and Papanikos
2005). Figure 4 shows the variation of Young’s modulus of armchair, zigzag and
chiral single-walled CNTs with nanotube diameter. The Young’s modulus was
derived by loading the nanotubes in axial tension as shown in Fig. 2a. Contrary to
chiral CNTs, there is an evident effect of diameter on the Young’s modulus of
armchair and zigzag CNTs, especially for small diameters. With increasing
nanotube diameter, the Young’s modulus of CNTs increases but not with the same
trend for all CNTs. The increase is due to the effect of nanotube curvature. A small
nanotube diameter results in high curvature of the nanotube which causes large
distortion of C–C bonds and therefore, large elongations. As diameter increases,
the effect of curvature diminishes. For a variation of nanotube diameter between
0.4 and 2.714 nm for the armchair SWCNTs, between 0.391 and 2.35 nm for the
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zigzag SWCNTs and between 0.5 and 2.57 nm for the chiral SWCNTs, the
Young’s moduli vary from 0.97 to 1.03 TPa, from 0.952 to 1.038 TPa and from
1.023 to 1.066 TPa, respectively.

Similar to Figs. 4, 5 displays the variation of shear modulus of armchair, zigzag
and chiral single-walled CNTs with nanotube diameter. The shear modulus was
derived by loading the nanotubes in torsion as shown in Fig. 2b. As may be seen,
the shear modulus is sensitive to both diameter and chirality, especially at small
diameters (less than 1.5 nm). As explained in the previous section, this sensitivity
is due to the effect of curvature, which is a function of nanotube diameter. With
increasing the diameter, the shear moduli of all CNTs increase with the same
trend. The effect diminishes for values of diameter larger than 1.1 nm. For a
diameter variation between 0.678 and 2.443 nm for the armchair CNTs, between
0.391 and 2.354 nm for the zigzag SWCNTs, between 0.489 and 2.57 nm for the
5-series chiral SWCNTs and 0.565 and 2.54 nm for the 6-series of chiral CNTs,
the shear moduli vary from 0.351 to 0.485 TPa, from 0.283 to 0.487 TPa, from
0.312 to 0.491 TPa and 0.242 to 0.504 TPa, respectively.
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5 Tensile Behavior of Pristine and Defected CNTs

Using the non-linear modeling approach for the C–C bonds, as applied through the
progressive fracture model developed in (Tserpes et al. 2006), the tensile behavior
of pristine and defected CNTs was simulated in (Tserpes et al. 2006; Tserpes and
Papanikos 2007). Three types of defects were considered: weakening of bonds,
vacancies (1 missing atom corresponding to three missing bonds) and Stone–
Wales (SW) defect. Vacancies and SW defects are very common in CNTs and
were found to significantly decrease the mechanical properties of the nanomate-
rials (Mielke et al. 2004; Khare et al. 2007; Zhang et al. 2005; Xiao et al. 2010).

5.1 Vacancy-defected CNTs

Figure 6 compares the stress–strain curves predicted by the progressive fracture
model for the (20,0) tube with those obtained by the molecular mechanics simu-
lations of (Belytschko et al. 2002) and the experiments of (Yu et al. 2002). In
(Yu et al. 2002) several tests were performed. The stress–strain curves of the tests
show very large dispersion. As comparison with the whole number of the curves
would be valueless, three of those, which show the best correlation between them,
were included in Fig. 6. In the analyses of the progressive fracture model and the
molecular mechanics model, two types of initial defects were considered: 10 %
weakening of a bond (type I) and 1 missing atom (type II). As may be seen in Fig. 6,
both theoretical models significantly overestimate the Young’s modulus and
strength of CNTs. The most possible cause for this deviation is the presence defects
in the nanotubes tested by Yu et al. (2002) and not considered by the two models.
Mielke et al. (2004) found that large approximately circular holes, which would be
consistent with damage resulting from harsh oxidative purification processes, may
substantially reduce the failure stresses and failure strains of CNTs providing a
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likely explanation for the discrepancy. Another possible cause, as stated in (Mielke
et al. 2004), is the slippage that possibly occurred at the attachments for the high
strain cases reported in (Yu et al. 2002) resulting in a decrease of the measured
values of nanotube Young’s modulus. This kind of slippage would also imply that
the failure strains are actually smaller than reported.

Concerning the comparison between the progressive fracture model (Tserpes
et al. 2006) and the molecular mechanics simulations of (Belytschko et al. 2002), a
very good agreement is achieved regarding the Young’s modulus and tensile
strength of the nanotubes. The curves obtained by the two methods for both types of
initial defects coincide up to 8 % strain giving the same Young’s modulus for the
nanotubes. From this strain and on, the progressive fracture model predicts higher
Young’s modulus than the molecular mechanics simulations. This difference is
much smaller in the case of type II defect, since the analyses of both models stop at
around 9.5–10 % strain. The tensile strength predicted by the model is 92.7 GPa for
the case of type I defect and 77 GPa for the case of type II. The corresponding
tensile strengths reported by Belytschko et al. (2002) were 93.5 and 75 GPa. It is
obvious that a very good agreement is achieved. Regarding failure strain, in the case
of type II defect, the fracture strain predicted by the model agree very well with the
one reported by Belytschko et al. (2002) (9.54 % against 10 %), while in the case of
type I defect, it shows a considerable difference (13.12 % against 16 %). Never-
theless, the fracture strain predicted by the model in this case (13.12 %) was equal
to the one obtained by two different experiments of Yu et al. (2002).

The evolution of fracture after the first bond fracture depends on the type of
initial defect considered. Figure 7 shows the evolution of fracture as function of
the nanotube elongation in the (20,0) tubes in which the type I initial defect was
modeled. In Fig. 7a, the state of first bond fracture in the (20,0) nanotube is
displayed. As expected, fracture initiated in the area close to the weakened bond.
The two longitudinal bonds, in which the additional load from the weakened bond
was transferred, were failed simultaneously. Increasing the load, fracture is
propagated circumferentially spreading at the same time in more than two rows of
bonds. In Fig. 7c, fracture has propagated to the other half of the nanotube. At this
stage, some bonds at the bottom nanotube end have also failed due to the stress
raising caused in this area by the application of boundary conditions. From this
point and on, the circumferential propagation of fracture in the middle of the
nanotube stopped and fracture of the bonds at the bottom end of the nanotube
started to progress. Figure 7d shows the final state of fracture in the nanotube in
which all bonds of the bottom end have failed.

5.2 SW-defected CNTs

Beyond a critical value of tension, a CNT releases its excess tension via formation
of topological defects. Such a defect is the SW defect. In the case of armchair
nanotubes under axial tension, where a transverse tension takes place (the applied
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load is perpendicular to the C–C bonds), the excess strain is released via the 90o

rotation of the perpendicular bond as schematically described in Fig. 8. On the
contrary, in the case of zigzag nanotubes under axial tension, the C–C bonds are
parallel to the applied load, which is already the minimum energy configuration for
the strained bonds. Therefore, the formation of SW defect in zigzag nanotubes is
limited to the rotation of the bonds oriented 120o with respect to the tube axis. In
zigzag nanotubes, two types of SW defects may be created as indicated in Fig. 9. It
was established from simulations that in armchair CNTs SW defects are formed at
around 5–6 % applied tensile strain and in zigzag SWCNTs at around 12 %. For
the chiral CNTs, no relative information was reported. In (Tserpes and Papanikos
2007), as a strain barrier for the formation of the SW defect the value of 5 % was
adopted for the armchair and chiral CNTs, and the value of 12 % for the zigzag
SWCNTs.

Fig. 7 Predicted fracture evolution in the (20,0) tube containing type II defect. Parts (a), (b) and
(c) of the figure show the evolution of fracture in the front half of the nanotube, while parts
(d) and (e), in the back half

Fig. 8 Schematic of the SW formation in the hexagonal lattice of CNTs: a pristine lattice, and
b SW-defected lattice
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The transformation of 4 hexagons to 2 pentagons and 2 heptagons leads to the
elongation of the structure along the axis connecting the pentagons and shrinkage
along the perpendicular direction. Thus, the rotation of a bond from a predomi-
nately circumferential to a predominately axial orientation lengthens the tube but
not to such a degree to change the load distribution between the bonds in the
nanotube. In the simulations conducted in (Tserpes and Papanikos 2007), for the
sake of simplicity, it was assumed that after the creation of SW defect the
dimensions of the nanotubes remained unchanged.

In Fig. 10, the predicted stress–strain curves of the SW-defected (12,12) and
(20,0) CNTs are depicted and compared with the curves of the pristine CNTs.
When the SW defect is formed, the bonds of the nanotube are already strained. To
account for this feature, a combination of the stress–strain curve of the pristine
nanotube with that of the defected nanotube was adopted. Up to the defect for-
mation strain (5 or 12 % according to nanotube chirality), the stress–strain curve
of the pristine nanotube was used. For strains greater than the defect formation
strain, the stress–strain curve of the defected nanotube was used. In the analysis of
the defected nanotube, the first applied strain was equal to the defect formation
strain. For the nanotubes included in Fig. 10, the stiffness remained unaffected by
the presence of the SW defect. A marginal decrease in the nanotube stiffness was
predicted only in cases where the fraction of defected area to the nanotube area
was high such as the (5,5) tube. This conclusion is supported from results of
analyses performed using aggregation of SW defects in the (5,5) tube. The results
showed that with increasing number of aggregated defects, the decrease in
nanotube stiffness enlarges. In any case, the decrease in stiffness remained
marginal.

Computed results show that CNTs containing SW defects exhibit a non-linear
(plastic) tensile behavior. The presence of SW defects decreases the nanotubes’

Fig. 9 FE meshes of the
SW-defected CNTs. The
areas enclosed to the
pentagons and heptagons of
the defects were colored dark
gray. (a) (10,10) nanotube,
(b) (20,0) nanotube: SW-type
I and (c) (20,0) nanotube:
SW-type II
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failure stress and failure strain but not the stiffness. Table 1 lists the predicted
failure stresses and strains for all defected nanotubes analyzed in (Tserpes et al.
2006). Failure stresses correspond to peak stresses in the stress–strain curves,
while failure strains to the applied strains at which the peak stresses occur. The
case of the SW-defected (12,12) tube was also considered in (Belytschko et al.
2002). Using molecular dynamic simulations they calculated the failure stress and
failure strain to be as high as 97.5 GPa and 14.3 %, respectively. These values are
in good agreement with the current predicted values of 100 GPa and 12 %,
respectively. By comparing the failure stresses and strains of pristine and defected
(12,12) (20,0) and (16,8) tubes, which are of the same size, it becomes evident that
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Fig. 10 Predicted stress–strain curves of the SW-defected CNTs. a (12,12) nanotube and
b (20,0) nanotube

Table 1 Predicted failure
stresses and strains of SW-
defected SWCNTs

Nanotube Failure
stress (GPa)

Failure strain
(%)

(12,12): pristine 121.86 19.61
(12,12): SW 100 11.96
(20,0): pristine 97.68 15.75
(20,0): SW-type I 97.68 15.75
(20,0): SW-type II 94.86 13.36
(16,8): pristine 114.18 17.9
(16,8): SW 96.85 12.1
(5,5): pristine 122.54 19.64
(5,5): SW 92.44 11.51
(18,18): pristine 120.63 18.96
(18,18): SW 100 12.2
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reduction of these quantities depends on nanotube chirality. There is a significant
reduction in the failure stress and failure strain of the armchair (12,12) and chiral
(16,8) tubes and an insignificant one in the zigzag (20,0) tube under the presence
of both types of SW defects. This alteration is attributed to the bond rearrangement
imposed by the SW defects as explained in detail in (Tserpes et al. 2006).

6 Tensile Strength of Defected Graphene

In (Tserpes 2012), tensile strength of graphene containing randomly dispersed
vacancies was predicted using the progressive fracture model developed in
(Tserpes et al. 2006) and described briefly in Sect. 3.2 of the present chapter.
Randomly dispersed vacancies (1 missing atom) were introduced into graphene
using a random numbers algorithm. Graphene was subjected to incremental uni-
axial tension. The effects of defect-density and defect-topology on the Young’s
modulus, strength and failure strain of graphene were examined.

Creation of random vacancies in graphene structure was done using a random
numbers algorithm. A set of random numbers equal to the number of defects were
created using a Random Integer Generator (http://www.random.org) in which
randomness comes from atmospheric noise, which for many purposes is better than
the pseudo-random number algorithms typically used in computer programs.
Random numbers correspond to carbon atoms or nodes in the FE model which are
removed from graphene together with the three adjacent bonds. The procedure is
illustrated in Fig. 11 for the creation of 10 defects at a graphene with 217 atoms.

The effect of defects is measured in terms of defect-density defined as

Dd ¼
Dn

An
ð17Þ

Fig. 11 Graphene with 10
missing atoms indicated by
arrows. Numbers of the
deleted nodes were given by
the random number
generator. Zigzag and
armchair directions are also
indicated

316 K. I. Tserpes and P. Papanikos

http://www.random.org


where Dnis the number of defects andAn is the total number of atoms in graphene.
Analyses of the 14.52 nm 9 12.20 nm graphene containing different number of

vacancies were performed. Figures 12 and 13 plot the predicted tensile stress–
strain curves of the defected zigzag and armchair graphene, respectively. It is
shown that the presence of defects dramatically degrade the mechanical perfor-
mance of graphenes by reducing their Young’s modulus, tensile strength and
failure strain

The variation of Young’s modulus and tensile strength of defected graphenes
are plotted against defect density in Fig. 14. A similar linear reduction is observed
for the Young’s modulus for both loading directions. The tensile strength reduces
in a bi-linear way: the reduction rate is larger in small defect densities. For a defect
density of 4.5 %, a 50 % reduction in Young’s modulus and tensile strength in
both types of graphenes occurs. This is a very important finding because it reveals
that vacancy defects, appearing in considerable densities in graphenes, may
counterbalance the extraordinary mechanical properties of the materials.

The obtained effect of vacancies on the strength of graphenes was more or less
expected since this type of defects act as holes, thus seriously degrading the load-
carrying capability of the material. However, the importance of the finding is the
extent of the effect as a function of defect-density. As defect-density increases, a
multi-site damage state is developed in graphene. Moreover, the possibility for the
creation of holes due to defect aggregation prior to loading and early defect
interaction during loading increases dramatically. Figure 15a shows the
14.52 nm 9 12.20 nm graphene containing defects of a 3.3 % density. As can be
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seen, the presence of this amount of defects has created several large holes (gray
areas) in the structure due to defect aggregation. These holes propagate very
quickly during loading to interact and form cracks perpendicular to the loading
direction which extends through the width of the structure leading to an early
failure, as can be seen in Fig. 15b.

7 Parametric Evaluation of the Effective Elastic Properties
of CNT-Reinforced Polymers

The effective elastic properties of CNT-reinforced polymers were evaluated as
functions of material and geometrical parameters using a multi-scale approach
based on a homogenized RVE presented in (Tserpes and Chanteli 2013). The RVE
was also used to predict the tensile modulus of a polystyrene specimen reinforced
by randomly aligned MWCNTs for which experimental data exist in the literature.

Fig. 14 Variation of a the Young’s modulus and b the tensile strength of defected graphenes as
functions of defect-density

Fig. 15 a Formation of holes (gray areas) due to defect aggregation prior to loading at the
14.52 nm 9 12.20 nm with a 3.3 % defect-density, b Early failure of graphene due to the
formation of a large crack (red area)
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In this Section, the methodology and basic findings of both applications will be
described.

7.1 The RVE

The RVE has a square cross-section. It consists of the polymer matrix, an
embedded MWCNT and the interface between them. MWCNT consists of seven
hollow single-walled CNTs all gathered to the outer diameter. The outer diameter
of the MWCNT is 9.5 nm and the thickness of each tube is 0.34 nm. For the
interface, a hollow capped configuration is used in order to consider the entire
actual interfacial area between the nanotube and the polymer. The outer dimen-
sions of the RVE are defined according to the desired nanotube volume fraction Vf

taken as the ratio of nanotube’s volume to RVE’s volume. Nanotube length Lcnt is
determined according to the desired Vf and nanotube aspect ratio taken as the ratio
of Lcnt to nanotube diameter Dcnt. The interface thickness, considered to be equal
between the cylindrical part and the capped part, varies within the range of 0 and
2.72 nm (Liu and Chen 2003; Chen and Liu 2004; Haque and Ramasetty 2005;
Bhuiyan et al. 2013; Hernández-Pérez and Avilés 2010; Bhuiyan et al. 2011;
Delale and Shen 2005; Peng et al. 2012). As an independent parameter considered
also is the ratio Lcnt=Lrve which from preliminary analyses conducted in (Papanikos
and Tserpes 2011) was found to affect the computed elastic properties of the RVE.

7.1.1 Materials

The polymer matrix considered in the study was the M21. This is a very tough
epoxy matrix that exhibits excellent damage tolerance especially at high energy
impact. M21 epoxy resin was extensively used in primary aircraft structures and
Formula 1 applications. An isotropic linear elastic behavior was considered for the
matrix since the load applied in the RVE is very small. The Young’s modulus and
Poisson’s ratio of the M21 epoxy are 3.5 GPa and 0.3, respectively. The nanotube/
polymer interface was found to play an important role in the load transfer between
the two constituents (Liu and Chen 2003; Peng et al. 2012; Frankland et al. 2002).
In (Tserpes and Chanteli 2013), isotropic material properties were assumed for the
interface. For the interface stiffnessEint, three cases were considered, name-
lyEint ¼ 0:25� Em,Eint ¼ 0:5� Em and Eint ¼ 10� Emto study the possible effect.

7.1.2 FEA of the RVE

The analyses were conducted by means of a 3D FE model of the RVE developed
using the ANSYS commercial FE code. All constituents were represented using
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the ANSYS 3D SOLID185 element. Different views of a typical FE mesh of the
RVE are shown in Fig. 16. The mesh adopted was selected from a parametric
study conducted on the effect of mesh density on the evaluated effective elastic
properties. The selected mesh is not very dense as the analyses conducted are
linear elastic and the geometry of the RVE has not any geometrical non-linearities.

To derive its elastic moduli, the RVE was loaded in axial tension in the three
directions by applying a small normal displacement at one side and fully
restraining the other side. Similarly, to derive the shear moduli, the three planes
were loaded in shear by applying a shear displacement at one face and fully
restraining the opposite face. The elastic moduli were simply derived by using the
Hooke’s law and the Poisson’s ratio using the negative ratio between longitudinal
and transverse strains. In order to obtain the homogenized engineering behavior of
the RVE, reflecting the macroscopic behavior of the material, periodic boundary
conditions were applied in the RVE using constraint equations in opposite faces.

7.2 Parametric Study

In this section, the numerical results from the parametric study conducted are
presented. The complete list of the parameters considered as well as the range of
variation of each parameter is given in Table 2.

Fig. 16 Views of a typical FE mesh of the RVE: a Iso-view of the RVE, b Close-view of the
cross-sectional area at the nanotube end, c Iso-view of half of the RVE and d Close-view of half
RVE at the nanotube end
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7.2.1 Effect of Interface Stiffness and Thickness

The effects of interface stiffness and thickness were studied first in order to decide
whether it is necessary to consider an interface in the model and with which
stiffness. Figures 17a, b show the variation of Ex and Ey, respectively, with regard
to Eint for Vf ¼ 20%. The first conclusion and most important is that Ex is not
affected by Eint for both values of Vf . Consequently, in the models aiming to
evaluate Ex the nanotube/polymer interface can be neglected for simplification
reasons. On the other hand, Eint affects Ey and all other matrix-dominated prop-
erties at large values of Vf . Another important conclusion, arising from Fig. 17, is
that the elastic moduli depend highly on the Lcnt=Lrve ratio. An explanation about
the effect of Lcnt=Lrve will be given in a forthcoming Section. Contrary to interface
stiffness Eint, interface thickness tint was found, as can be seen in Fig. 18, to mainly
affect Ex and secondarily the matrix-dominated elastic properties. The effect
increases with the Lcnt=Lrve.

7.2.2 Effect of Nanotube Aspect Ratio

Figure 19 plots the predicted Ex with respect to nanotube aspect ratio Lcnt=Dcnt for
different values ofVf . As can be seen, forLcnt=Dcnt\20 with increasingLcnt=Dcntthe
Exincreases for all cases ofVf . However, for values of Lcnt=Dcnt [ 20 the effect
almost diminishes for all cases ofVf . The same effect of Lcnt=Dcnt was found for all
effective elastic properties. Based on this finding, in order to exclude the effect
ofLcnt=Dcnt, hereafter, the value of 20 was considered in all subsequent analyses.
This choice is realistic since CNTs used in real applications have very large aspect
rations as they posses a length in the range of lm and a diameter in the range of nm.

7.2.3 Effect of Nanotube Volume Fraction

The nanotube volume fraction Vf is probably the parameter affecting most the
effective elastic properties of CNT-polymer composites. It is obvious that large
values of Vf leads to large values for the effective elastic moduli. However, it is not
always easy, from the practical viewpoint, to implement large values of Vf in

Table 2 List of parameters
and their range of variation

Parameter Range of variation

Nanotube length to RVE length
ratio, Lcnt=Lrve

0.4–0.8

Interface thickness, tint 0.17–2.72 nm
Interface stiffness, Eint 0.875–35 GPa
Nanotube volume fraction, Vf 5–20 %
Nanotube aspect ratio, Dcnt=Lcnt 6–70
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CNT-polymer composites due to problems associated with treatment and pro-
cessing of the composite material. In Fig. 20, Ex is plotted with respect to Lcnt=Lrve

for four different values of Vf , namely 5, 10, 15 and 20 %. In the graph, the
Young’s modulus of the M21 matrix is also depicted for comparison reasons. From
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Fig. 20, a clear enhancement in Ex is observed. The enhancement stands for all
elastic moduli, however, is greater for is larger for Ex; for Vf ¼ 5% the increase in
Ex is 77 % at Lcnt=Lrve ¼ 0:4 reaching 240 % at Lcnt=Lrve ¼ 0:8.

From Fig. 20, it is also obvious the dependence of computed Ex on the Lcnt=Lrve

ratio. This is because as Lcnt=Lrve increases the nanotube gets closer to the loaded
end of the RVE. Thus, a larger amount of the applied load is carried by the stiffer
nanotube causing an increase in Ex. At the extreme case of Lcnt=Lrve ¼ 1, the
nanotube spans through length of the RVE, thus being loaded directly. This is the
case with the maximum effective Ex. This phenomenon is illustrated in Fig. 21 in
which the contour of longitudinal stress in the RVE is shown for the cases of
Lcnt=Lrve ¼ 0:4 and Lcnt=Lrve ¼ 0:8 for an axial strain of 1 %. At Lcnt=Lrve ¼ 0:8,
the stress in the nanotube is 3.3 times the stress at Lcnt=Lrve ¼ 0:4. It is a fact that the
dependence of the model computations on the Lcnt=Lrve ratio limits the applicability
and predictability of the model. However, this is regular for RVEs containing stress
concentrations due to geometrical non-linearities or stiffness gradients. This
restriction can be overcome by adjusting the RVE’s dimensions using experimental
results. This is not an easy task for materials of complex and unknown architecture
incorporating constituents lying at the nano-scale. After adjustment, the predicted
RVE’s effective elastic properties belong to the properties of the CNT-polymer
composite and the RVE can be used to predict the elastic properties of any spec-
imen made from the specific CNT-polymer composite.

7.3 Modeling of a MWCNT-Polystyrene Specimen

By homogenizing the elastic properties of the RVE at the nano-level, an estimation
of the elastic properties of the CNT-polymer composite at the micro/meso-level
was achieved. In order to check the accuracy of this estimation and also demon-
strate the usage of the RVE in the modeling of CNT-polymer specimens lying at
the meso-level, a polystyrene specimen reinforced by randomly aligned
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MWCNTs, for which experimental results exist in (Thostenson and Chou 2003),
was modeled. In this section, the modeling procedure and the predicted tensile
moduli of the specimen are described.

First, the homogenized effective elastic properties of the MWCNT-polystyrene
composite were evaluated using the RVE analysis described in the previous sec-
tions. The nanotube diameter in the RVE was chosen based on experimental
observations made in (Thostenson and Chou 2003). Figure 22 shows the
Lorentzian and Gaussian probability distributions of nanotube diameter obtained
in (Thostenson and Chou 2003) from high resolution TEM micrographs and image
analysis. From Fig. 22 it is observed that the nanotube diameter with the greater
distribution is 18 nm; this value was used in the RVE. For the Lcnt=Lrve ratio, the
value of 0.4 was used. This choice will be explained later. The nanotube aspect
ration was taken equal to 20.

The second step is to model the polystyrene specimen containing MWCNTs by
5 % wt. This analysis lies from the meso- to the macro-scale. The specimen
dimensions are: 50 mm 9 10 mm 9 2 mm. A 2D FE model of the specimen was
developed using the ANSYS 2D SHELL63 element. Fundamental for this mod-
eling task is the efficient modeling of nanotube orientation with regard to loading
axis. Again, this was based on experimental observations from (Thostenson and

Fig. 21 Contour of longitudinal stress (MPa) in the RVE in the cases of a Lcnt=Lrve ¼ 0:4 and
b Lcnt=Lrve ¼ 0:8for an applied longitudinal strain of 1 %

Fig. 22 Diameter
distribution of CNTs in the
polystyrene specimen taken
from (Thostenson and Chou
2003)
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Chou 2003). Using image analysis of TEM micrographs taken from a 5 % wt
nanocomposite film with a large-scale dispersion Thostenson and Chou (2003)
derived the distribution of nanotube alignment described by the histogram shown
in Fig. 23.

Based on the histogram of Fig. 23, the nanotube orientation in the FE model of
the specimen was modeled using the following procedure:

1. All orientation-frequency pairs were recorded.
2. The range of orientation angle from -60 to 100� was divided into 32 intervals

of 5�. For each interval, the mean frequency was derived. The sum of all mean
frequencies is 100 %. The orientation interval-frequency pairs were stored.

3. Assuming uniform nanotube dispersion in the specimen, which means that
every element is an RVE, the number of elements having a specific orientation
was found by multiplying the frequency of this orientation by the total number
of elements in the model.

4. Assuming random nanotube alignment, the elements having a specific orien-
tation were selected randomly from the total set of the elements using a
pseudorandom function. Every time, the selected elements were removed from
the total sample to avoid duplications.

5. The different nanotube orientation h was implied at each element by trans-
forming the coordinate system of the element by an angle equals to the ori-
entation angle h. Figure 24 shows a part of the FE mesh of the specimen in
which the reoriented coordinate systems of the elements are also plotted.

The tensile modulus of the specimen was derived through the application of an
axial strain of 0.01 %. In the histogram of Fig. 25, the predicted tensile modulus is
compared with the experimental modulus of (Thostenson and Chou 2003). As can
be seen, a very good agreement between the two approaches is achieved. This
agreement leads to the conclusion that the capacity of the RVE to estimate the
effective elastic moduli of CNT-polymer composites and its usage in the modeling

Fig. 23 Distribution of
nanotube alignment taken
from (Thostenson and Chou
2003)
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of CNT-polymer specimens lying at the macro-scale are validated. Moreover, the
simple approach used to model the different nanotube orientation in the specimen
has proved effective. For the ratio Lcnt=Lrve, the value of 0.4 was chosen because it
gives the best prediction for the tensile modulus of the specimen with respect to
the experimental value. The values of 0.6 and 0.8 gave larger Lcnt=Lrve for the RVE
which led to larger predictions for the modulus of the specimen. This way of
selecting the Lcnt=Lrve ratio suggests an adjustment of the RVE’s dimensions from
experimental data. After the adjustment, the RVE with the specific Lcnt=Lrve ratio
can be used for the modeling of any structural part made from the same material
under the same manufacturing conditions.

Using the 2D FE model of the specimen, the effect of nanotube orientation on
the tensile modulus of the CNT-polymer was further studied. In the study, it was
assumed that all nanotubes have the same orientation. The orientation angles
considered are: 0, 15, 30 and 45�. The model predictions for these four cases as
well as the modulus of the neat polystyrene specimen are also included in Fig. 25.
As expected, the higher modulus is predicted for the case of perfect nanotube
alignment h ¼ 0�ð Þ. With increasing h, the modulus decreases dramatically and at
h ¼ 45�ð Þ almost no reinforcement is found at the longitudinal direction.

7.4 Modeling of a Graphene-Polystyrene Specimen

Using the methodology described in Sects. 5.1, 5.2 and 5.3, the tensile modulus of a
graphene-polystyrene specimen was derived. In this application, for comparison
reasons, the same volume fraction and alignment as in for the MWCNT-polystyrene
specimen were assumed. First, the homogenized effective elastic properties of the
graphene-polystyrene composite were evaluated using a RVE analysis and then,
the graphene-polystyrene specimen was modeled.

The computed effective tensile moduli of the graphene-polystyrene specimen
are compared in Fig. 26 with the ones of the MWCNT-polystyrene specimen for

Fig. 24 Part of the
specimen’s FE mesh. Plotted
also are the reoriented
coordinate specimens of the
elements
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all orientation cases considered in Fig. 25. As can be seen, for orientation angles,
the Young’s modulus of the graphene-polystyrene specimen is larger than the one
of the MWCNT-polystyrene specimen which is attributed to the fact that graphene
offers reinforcement in two directions.

8 Summary and Conclusions

This chapter reviews the continuum models that were developed by the authors
from 2005 until today to predict the elastic properties and simulate tensile
behavior of pristine and defected CNTs and graphene as well as CNT- and
graphene-reinforced polymers. The models are based on the FE method. Thus,
they incorporate all advantages of continuum modeling and FE modeling and they
predominate over atomistic models in the handling and required computational
effort. A quasi-static FE solution of CNTs and graphene, consisting of several
thousands of atoms, requires only a few minutes in a conventional computer
whereas the same solution using molecular dynamic simulations can be treated
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only by powerful workstations in a few hours. However, perhaps the most
important advantage of continuum modeling methods over atomistic simulation
methods is the capability of performing without limit in time and length scale,
thus enabling the modeling of materials with constituents in different scales and
allowing the study of the effect of parameters lying in the nano-scale on the
mechanical properties of the macro-scale.

The FE model of the single-walled CNTs developed in (Tserpes and Papanikos
2005) represents the first attempt to model CNTs using the FE method. In the
model, a linear behavior of the C–C bonds was assumed. By applying small
deformations in the nanotube, the effect of diameter on the nanotube’s elastic
moduli was evaluated and found considerable at small nanotube diameters.

Having as a basis the FE model of (Tserpes and Papanikos 2005), a progressive
fracture model capable of simulating the tensile behavior and predict fracture of
CNTs was developed in (Tserpes et al. 2006). The model was implemented to predict
the effect of defects on the tensile behavior of CNTs in (Tserpes and Papanikos 2007)
and graphene (Tserpes 2012). The simulations showed that both topological defects
and vacancies in large densities degrade significantly the mechanical properties of
the nanomaterials, thus counterbalancing their reinforcing effectiveness.

Moving one scale upwards, the effective elastic properties of CNT-polymers
and graphene-polymers were evaluated as functions of material-related and geo-
metrical parameters. The analysis was done using a FE model of a homogenized
RVE. The results from this study maybe proved useful in the design and manu-
facturing processes of nano-reinforced composites. Using the results from the
RVE, two polystyrene specimens reinforced by MWCNTs and graphene, respec-
tively, were modeled and their tensile modulus was evaluated as a function of
alignment of the nano-material.

Concluding this chapter, it can be stated that the methodologies and results
presented herein verify that continuum modeling was proved efficient and effective
in the modeling of nanomaterials and can be considered as a very strong alter-
native to atomistic simulation methods.
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