
3 Real Time Architecture∗

This chapter presents a brief summary of the texplore algorithm before fully
describing and presenting the real time RL architecture. First, I present a typi-
cal example of a sequential model-based RL architecture. Then I present details
on using Monte Carlo Tree Search for planning, including a description of the
modified version of the uct algorithm (Kocsis and Szepesvári, 2006) that we
use for planning. In Section 3.2, I present the parallel architecture for real time
action, which puts model learning, planning, and acting on three parallel threads,
such that actions can be taken as fast as required without being constrained by
how long model updates or planning take. Finally, I summarize the chapter in
Section 3.3.

In this book, I introduce texplore, a sample-efficient model-based real time
RL algorithm. When learning on robots, agents typically have very few samples
to learn since the samples may be expensive, dangerous, or time-consuming.
Therefore, learning algorithms for robots must be greedier than typical meth-
ods to exploit their knowledge in the limited time they are given. Since these
algorithms must perform limited exploration, their exploration must be efficient
and target state-actions that may be promising for the final policy. texplore
achieves high sample efficiency by 1) utilizing the generalization properties of
decision trees in building its model of the MDP, and 2) using random forests of
those tree models to limit exploration to states that are promising for learning
a good (but not necessarily optimal) policy quickly, instead of exploring more
exhaustively to guarantee optimality. These two components constitute the key
insights of the algorithm, and are explained in Chapter 4. Modifications to the
basic decision tree model enable texplore to operate in domains with contin-
uous state spaces as well as domains with action or observation delays.

The other key feature of the algorithm is that it can act in real time, at the
frequencies required by robots (typically 5 - 20 Hz). For example, an RL agent
controlling an autonomous vehicle must provide control signals to the gas and
brake pedals immediately when a car in front of it slams on its brakes; it cannot
stop to “think” about what to do. An alternative approach for acting in real time
would be to learn off-line and then follow the learned policy in real time after the
fact. However, it is desirable for the agent to be capable of learning on-line in-situ
for the lifetime of the robot, adapting to new states and situations without pauses
for computation. texplore combines a multi-threaded architecture with Monte

* This chapter contains material from two publications: (Hester et al., 2012; Hester
and Stone, 2012b).

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 25

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_3, c© Springer International Publishing Switzerland 2013

26 3 Real Time Architecture

Algorithm 3.1. Sequential Model-Based Architecture

1: Input: S,A � S: state space, A: action space
2: Initialize M to empty model
3: Initialize policy π randomly
4: Initialize s to a starting state in the MDP
5: loop
6: Choose a← π(s)
7: Take action a, observe r, s′

8: M⇒update-model(〈s, a, s′, r〉) � Update model M with experience
9: π ← plan-policy(M) � Exact planning on updated model
10: s← s′

11: end loop

Carlo Tree Search (mcts) to provide actions in real time, by performing the
model learning and planning in background threads while actions are returned
in real time.

In this chapter, I introduce texplore’s parallel architecture, enabling it to
return actions in real time, addressing Challenge 4 of the RL for Robotics Chal-
lenges. Most current model-based RL methods use a sequential architecture such
as the one shown in Figure 2.3 in Chapter 2. Pseudo-code for the sequential ar-
chitecture is shown in Algorithm 3.1. In this sequential architecture, the agent
receives a new state and reward; updates its model with the new transition
〈s, a, s′, r〉 (i.e. by updating a tabular model or adding a new training exam-
ple to a supervised learner); plans exactly on the updated model (i.e. by com-
puting the optimal policy with a method such as value iteration (Sutton and
Barto, 1998) or prioritized sweeping (Moore and Atkeson, 1993)); and returns
an action from its policy. Since both the model learning and planning can take
significant time, this algorithm is not real time. Alternatively, the agent may
operate in batch mode (updating its model and planning on batches of experi-
ences at a time), but this approach requires long pauses for the batch updates to
be performed. Making the algorithm real time requires two modifications to the
standard sequential architecture: 1) utilizing sample-based approximate plan-
ning (presented in Section 3.1) and 2) developing a novel parallel architecture
(presented in Section 3.2). I later evaluate this planning method and parallel
architecture in comparison with other approaches in Section 5.4.

3.1 Monte Carlo Tree Search (MCTS) Planning

The first component for providing actions in real time is to use an anytime al-
gorithm for approximate planning, rather than performing exact planning using
a method such as value iteration or prioritized sweeping. This section describes
texplore’s use of uct for approximate planning as well as the modifications
we have made to the algorithm. The standard uct algorithm was presented
in Section 2.2.4, but here we have modified uct to use λ-returns, generalize

3.1 Monte Carlo Tree Search (MCTS) Planning 27

values across depths in the search tree, maintain value functions between selected
actions, and work in continuous domains. All of these changes are described in
detail below.

texplore follows the approach of Silver et al. (2008) and Walsh et al. (2010)
(among others) in using a sample-based planning algorithm from the mcts fam-
ily (such as Sparse Sampling (Kearns et al., 1999) or uct (Kocsis and Szepesvári,
2006)) to plan approximately. These sample-based planners use a generative
model to sample ahead from the agent’s current state, updating the values of
the sampled actions. These methods can be more efficient than dynamic pro-
gramming approaches such as value iteration or policy iteration in large domains
because they focus their updates on states the agent is likely to visit soon rather
than iterating over the entire state space. While prioritized sweeping (Moore and
Atkeson, 1993) improves upon the efficiency of value iteration by propagating
value backups backwards through the state space, it still iterates over much of
the state space rather than focusing computation on the states the agent is likely
to visit soon.

The particular mcts method that texplore uses is a variant of uct (Kocsis
and Szepesvári, 2006), which was presented in Algorithm 2.3 in Chapter 2. Our
variation of uct, called uct(λ), is shown in Algorithm 3.2 and uses λ-returns,
similar to the td-search algorithm (Silver et al., 2012). uct maintains visit
counts for each state to calculate confidence bounds on the action-values. uct
differs from other mcts methods by sampling actions more greedily by using the
ucb1 algorithm (Auer et al., 2002), shown on Line 29. uct selects the action with
the highest upper confidence bound (with ties broken uniformly randomly). The
upper confidence bound is calculated using the visit counts, c, to the state and
each action, as well as the range of possible discounted returns in the domain,
rmax−rmin

1−γ . Selecting actions this way drives the agent to concentrate its sampling
on states with the best values, while still exploring enough to find the optimal
policy.

uct samples a possible trajectory from the agent’s current state. On Line 30
of Algorithm 2.3, the model is queried for a prediction of the next state and
reward given the state and selected action (query-model is described in detail
later in Chapter 4 and shown in Algorithm 4.1). uct continues sampling forward
from the given next state. This process continues until the sampling has reached
a terminal state or the maximum search depth, maxDepth. Then the algorithm
updates the values of all the state-actions encountered along the trajectory. In
normal uct, the return of a sampled trajectory is the discounted sum of rewards
received on that trajectory. The value of the initial state-action is updated to-
wards this return, completing one rollout. The algorithm does many rollouts to
obtain an accurate estimate of the values of the actions at the agent’s current
state. uct is proven to converge to an optimal value function with respect to
the model at a polynomial rate as the number of rollouts goes to infinity (Kocsis
and Szepesvári, 2006).

We have modified uct to update the state-actions using λ-returns, which
average rewards received on the simulated trajectory with updates towards the

28 3 Real Time Architecture

estimated values of the states that the trajectory reached (Sutton and Barto,
1998). Informal experiments showed that using intermediate values of λ (0 <
λ < 1) provided better results than using the default uct without λ-returns.

In addition to using λ-returns, we have also modified uct to generalize values
across depths in the tree, since the value of a state-action in an infinite horizon
discounted MDP is the same no matter when in the search it is encountered
(due to the Markov property). One possible concern with this approach is that
states at the bottom of the search tree may have poor value estimates because
the search does not continue for many steps after reaching them. However, these
states are not severely affected, since the λ-returns update them towards the
values of the next states.

Most importantly, uct is an anytime method, and will return better poli-
cies when given more time. By replacing the plan-policy call on Line 9 of
Algorithm 3.1, which performs exact planning, with plan-policy from Algo-
rithm 2.3, which performs approximate planning, the sequential architecture
could be made faster. texplore’s real time architecture, which is presented
later in Algorithm 3.4, also uses uct(λ) for planning.

uct(λ) maintains visit counts for each state and state-action to determine
confidence bounds on its action-values. When the model that uct(λ) is plan-
ning on changes, its value function is likely to be incorrect for the updated model.
Rather than re-planning entirely from scratch, the value function uct(λ) has
already learned can be used to speed up the learning of the value function for
the new model. texplore’s approach to re-using the previously learned value
function is similar to the way Gelly and Silver (2007) incorporate off-line knowl-
edge of the value function by providing an estimate of the value function and a
visit count that represents the confidence in this value function. When uct(λ)’s
model is updated, the visit counts for all states are reset to a lower value that
encourages uct(λ) to explore again, but still enables uct(λ) to take advantage
of the value function learned for the previous model. The uct-reset proce-
dure does so by resetting the visit counts for all state-actions to resetCount,
which will be a small non-zero value. If the exact effect the change of the model
would have on the value function is known, resetCount could be set based on
this change, with higher values for smaller effects. However, texplore does not
track the changes in the model, and even a small change in the model can have
a drastic effect on the value function.

Some modifications must be made to use uct(λ) on domains with continuous
state spaces. One advantage of using uct(λ) is that rather than planning ahead
of time over a discretized state space, uct(λ) can perform rollouts through
the exact real-valued states the agent is visiting, and query the model for the
real-valued state predictions. However, it cannot expect to ever visit the same
real-valued state twice, nor can it maintain a table of values for an infinite
number of states. Instead, it discretizes the state on Line 28 by discretizing each
state feature into nBinsi possible values. Since the algorithm is only using the
discretization for the value function update, and not for the modeling or planning
rollouts, it works well even on fine discretizations in high-dimensional domains.

3.1 Monte Carlo Tree Search (MCTS) Planning 29

Algorithm 3.2. plan: uct(λ)

1: procedure uct-init(S,A,maxDepth, resetCount, rmax, nBins,minV als,maxV als)
2: Initialize Q(s, a) with zeros for all s ∈ S, a ∈ A
3: Initialize c(s, a) with ones for all s ∈ S, a ∈ A � To avoid divide-by-zero
4: Initialize c(s) with zeros for all s ∈ S � Visit Counts
5: end procedure

6: procedure plan-policy(M, s) � Approx. planning from state s using model M
7: uct-reset()
8: while time available do
9: uct-search(M,s, 0)
10: end while
11: end procedure

12: procedure uct-reset() � Lower confidence in v.f. since model changed
13: for all sdisc ∈ Sdisc do � For all discretized states
14: if c(sdisc) > resetCount · |A| then
15: c(sdisc)← resetCount · |A| � resetCount per action
16: end if
17: for all a ∈ A do
18: if c(sdisc, a) > resetCount then

19: c(sdisc, a)← resetCount
20: end if
21: end for
22: end for
23: end procedure

24: procedure uct-search(M, s, d) � Rollout from state s at depth d using model M
25: if terminal or d = maxDepth then
26: return 0
27: end if
28: sdisc ← discretize(s, nBins,minV als,maxV als) � Discretize state s

29: a← argmaxa′
(
Q(sdisc, a

′) + 2 · rmax−rmin
1−γ

·
√

log c(sdisc)
c(sdisc,a

′)

)
� Ties broken randomly

30: (s′, r)←M⇒query-model(s, a) � Algorithm 4.1
31: sampleReturn← r + γuct-search(M, s′, d+ 1) � Continue rollout from state s′
32: c(sdisc)← c(sdisc) + 1 � Update counts
33: c(sdisc, a)← c(sdisc, a) + 1
34: Q(sdisc, a

′)← α · sampleReturn+ (1− α) ·Q(sdisc, a
′)

35: return λ · sampleReturn+ (1− λ) ·maxa′ Q(sdisc, a
′) � Use λ-returns

36: end procedure

Then the algorithm updates the value and visit counts for the discretized state
on Lines 32 to 34.

3.1.1 Domains with Delay

We are particularly interested in applying texplore to robots and other phys-
ical devices, but one common problem with these devices is that their sensors
and actuators have delays. For example, a robot’s motors may be slow to start
moving, and thus the robot may still be executing (or yet to execute) the last

30 3 Real Time Architecture

Algorithm 3.3. uct(λ) with delays

1: procedure search(M, s, history, d) � Rollout from state s with history
2: if terminal or d = maxDepth then
3: return 0
4: end if
5: sdisc ← discretize(s, nBins,minV als,maxV als)

6: a← argmaxa′
(
Q(sdisc, history, a

′) + 2 · rmax
1−γ

·
√

log c(sdisc,history)
c(sdisc,history,a

′)

)

7: augState← 〈s, history〉
8: (s′, r)←M⇒query-model(augState, a)
9: push(history, a) � Keep last k actions
10: if length(history) > k then
11: pop(history)
12: end if
13: sampleReturn← r + γsearch(M, s′, history, d+ 1)
14: c(sdisc, history)← c(sdisc, history) + 1 � Update counts
15: c(sdisc, history, a)← c(sdisc, history, a) + 1
16: Q(sdisc, history, a

′)← α · sampleReturn+ (1− α) ·Q(sdisc, history, a
′)

17: return λ · sampleReturn+ (1− λ) ·maxa′ Q(sdisc, history, a
′)

18: end procedure

action given to it when the algorithm selects the next action. This delay is im-
portant, as the algorithm must take into account what the state of the robot will
be when the action actually gets executed, rather than the state of the robot
when the algorithm makes the action selection. texplore should model these
delays and handle them efficiently.

Modeling and planning on domains with delay can be done by taking advan-
tage of the k-Markov property (Katsikopoulos and Engelbrecht, 2003). While
the next state and reward in these domains is not Markov with respect to the
current state, it is Markov with respect to the previous k states. texplore takes
advantage of the k-Markov property for planning by slightly modifying uct(λ).
Algorithm 3.3 shows the modified uct(λ)-search algorithm. In addition to the
agent’s state, it also takes the history of k actions. While performing the rollout,
it updates the history at each step (Lines 9 to 12), and uses the augmented state
including history when querying the model (Line 8). States may have different
optimal actions when reached with a different history, as different actions will
be applied before the currently selected action takes place. This problem can be
remedied by planning over an augmented state space that incorporates the k-
action histories, shown in the visit count and value function updates in Lines 14
to 16. Katsikopoulos and Engelbrecht (2003) have shown that solving this aug-
mented MDP provides the optimal solution to the delayed MDP. However, the
state space increases by a factor of |A|k. While this increase would greatly in-
crease the computation required by a planning method such as value iteration
that iterates over all the states, uct(λ) focuses its updates on the states (or aug-
mented state-histories) the agent is likely to visit soon, and thus its computation
time is not greatly affected (demonstrated empirically in Section 5.3). Note that

3.2 Parallel Architecture 31

with k = 0, the history is ∅ and the action thread and uct(λ) search meth-
ods presented here exactly match the ones presented in Algorithms 3.4 and 2.3,
respectively. Later, in Section 5.3, we evaluate the performance of texplore’s
approach for handling delays in comparison with other approaches.

This version of uct(λ) planning on the augmented state space is similar to the
approach taken for planning inside the mc-aixi algorithm (Veness et al., 2011).
The difference is that their algorithm performs rollouts over a history of previous
state-action-reward sequences, while texplore uses the current state along with
only the previous k actions. One thing to note is that while texplore’s approach
is intended to address delays, it can also be used to address partial observability,
if a sufficient k is chosen such that the domain is k-Markov.

Not only does this k-Markov approach to handling delay work well with uct

planning, it also works with our model learning approach. Later, in Section 4.1.2,
we will describe how this approach applies to model learning.

3.2 Parallel Architecture

In addition to using mcts for planning, we have developed a multi-threaded
architecture, called the Real Time Model Based Architecture (rtmba), for the
agent to learn while acting in real time. Since update-model and plan-policy

can take significant computation (and thus also wall-clock time), they are placed
in parallel threads in the background, as shown in Figure 3.1. A third thread
selects actions as quickly as dictated by the robot control loop, while still being
based on the most recent models and plans available. Pseudo-code for all three
threads is shown in Algorithm 3.4. This architecture is general, allowing for any
type of model learning method, and only requiring any method from the mcts

family for planning. In addition to enabling real time actions, this architecture
enables the agent to take full advantage of multi-core processors by running each
thread on a separate core. Similar approaches have been taken to parallelize
mcts planning and acting (Gelly et al., 2008; Chaslot et al., 2008; Méhat and
Cazenave, 2011) by performing multiple rollouts in parallel, but they have not
incorporated parallel model learning as well.

For the three threads to operate properly, they must share information while
avoiding race conditions and data inconsistencies. The model learning thread
must know which new transitions to add to its model, the planning thread must
access the model being learned and know what state the agent is currently at,
and the action thread must access the policy being planned. rtmba uses mutex
locks to control access to these variables, as summarized in Table 3.1.

The action thread (Lines 26 to 35) receives the agent’s new state and reward,
and adds the new transition experience, 〈s, a, s′, r〉, to the updateList to be
updated into the model. It then saves the agent’s current state in agentState
for use by the planner and returns the action determined by the agent’s value
function, Q. Since updateList, agentState, and Q are protected by mutex locks,
it is possible that the action thread could have to wait for a mutex lock before it
could proceed. However, updateList is only used by the model learning thread

32 3 Real Time Architecture

Fig. 3.1. A diagram of the parallel real time architecture for model-based RL

between model updates, agentState is only accessed by the planning thread
between each rollout, and Q is under individual locks for each state. Thus, any
given state is freely accessible most of the time. When the planner does happen
to be using the same state the action thread wants, it releases it immediately
after updating the values for that state. Therefore, there is never a long wait for
mutex locks, and the action thread can return actions quickly when required.

The model learning thread (Lines 9 to 20) checks if there are any experiences
in updateList to be added to its model. If there are, it makes a copy of its
model to tmpModel, updates tmpModel with the new experiences, and clears
updateList. Then it resets the planning visit counts to resetCount to lower the
planner’s confidence in the out-dated value function, which was calculated on an
old model. Finally, on Line 18, it replaces the original model with the updated

3.2 Parallel Architecture 33

Algorithm 3.4. Real Time Model-Based Architecture (rtmba)

1: procedure Init � Initialize variables
2: Input: S,A, nBins,minV als,maxV als � nBins is the # of discrete values

for each feature
3: Initialize s to a starting state in the MDP
4: agentState← s
5: updateList← ∅
6: Initialize M to empty model
7: uct-init() � Initialize Planner
8: end procedure

9: procedure ModelLearningThread � Model Learning Thread
10: loop � Loop, adding experiences to model
11: while updateList = ∅ do
12: Wait for experiences to be added to list
13: end while
14: tmpModel←M⇒copy � Make temporary copy of model
15: tmpModel⇒update-model(updateList) � Update model tmpModel

(Alg 4.1)
16: updateList← ∅ � Clear the update list
17: uct-reset() � Less confidence in current values
18: M ← tmpModel � Swap model pointers
19: end loop
20: end procedure

21: procedure PlanningThread � Planning Thread
22: loop � Loop forever, performing rollouts
23: uct-search(M,agentState,0) � Algorithm 2.3
24: end loop
25: end procedure

26: procedure ActionThread � Action Selection Thread
27: loop
28: sdisc ← discretize(s, nBins,minV als,maxV als) � Discretize state s
29: Choose a← argmaxaQ(sdisc, a)
30: Take action a, Observe r, s′

31: updateList← updateList ∪ 〈s, a, s′, r〉 � Add experience to update list
32: s← s′

33: agentState← s � Set agent’s state for planning rollouts
34: end loop
35: end procedure

copy. The other threads can continue accessing the original model while the
copy is being updated, since only the swapping of the models requires locking
the model mutex. After updating the model, the model learning thread repeats,
checking for new experiences to add to the model.

The model learning thread can call any type of model on Line 15, such as a
tabular model (Brafman and Tennenholtz, 2001), a Gaussian Process regression

34 3 Real Time Architecture

Table 3.1. This table shows all the variables that are protected under mutex locks in
the real time architecture, along with their purpose and which threads use them

Variable Threads Use

updateList Action, Store experiences to
Model Learning be updated into model

agentState Action, Set current state
Planning to plan from

Q(s, a) Action, Update policy used
Planning to select actions

M Planning, Latest model
Model Learning to plan on

model (Deisenroth and Rasmussen, 2011), or the random forest model used by
texplore, which is described in Chapter 4. Depending on how long the model
update takes and how fast the agent is acting, the agent can add tens or hundreds
of new experiences to its model at a time, or it can wait for long periods for a
new experience. When adding many experiences at a time, full model updates
are not performed between each individual action. In this case, the algorithm’s
sample efficiency is likely to suffer compared to that of sequential methods, but
in exchange, it continues to act in real time.

Though texplore uses a variant of uct, the planning thread can use
any MCTS planning algorithm. The thread retrieves the agent’s current state
(agentState) and its planner performs a rollout from that state. The rollout
queries the latest model, M , to update the agent’s value function. The thread
repeats, continually performing rollouts from the agent’s current state. With
more rollouts, the algorithm’s estimates of action-values improve, resulting in
more accurate policies. Even if very few rollouts are performed from the current
state before the algorithm returns an action, many of the rollouts performed from
the previous state should have gone through the current state (if the model is
accurate), giving the algorithm a good estimate of the state’s true action-values.

3.3 Chapter Summary

In this chapter, I have presented texplore’s parallel real time architecture for
model-based RL. This architecture parallelizes model learning, planning, and
acting into three separate threads so that action selection can happen in real
time, even if model learning or planning take more computation time. The ar-
chitecture utilizes a sample-based anytime planning method, which improves as
it is given time for more planning rollouts. In the next chapter, I will present the
model learning method that is used within this architecture in the texplore

algorithm.

	3 Real Time Architecture
	3.1 Monte Carlo Tree Search (MCTS) Planning
	3.1.1 Domains with Delay

	3.2 Parallel Architecture
	3.3 Chapter Summary

