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Foreword

It is a great pleasure and honor to be able to write the foreward for this book,
representing the culmination of Todd Hester’s Ph.D. thesis research at The Uni-
versity of Texas at Austin. It was my good fortune to be Todd’s advisor during
his years as a Computer Science graduate student. I therefore was able to par-
ticipate in and enjoy the adventure of starting with the kernel of an idea and
fully developing it into a full-blown dissertation.

Todd’s research is in the area of Reinforcement learning (RL), a machine
learning paradigm that focuses on enabling computers and robots to learn to
perform sequential tasks. Though grounded in some very theoretically elegant
results, and showing great promise for enabling learning-based robots that could
be deployed in the real world, most RL algorithms to date require either too
much data (training experience) or too much computation to be practical on
real-world problems.

This book introduces texplore, one of the first RL algorithms to be both
data-efficient and computation-efficient enough to work on real robots in the
real world. The core idea of texplore is the realization that scaling up to large
domains in real time requires actively reasoning about which states not to ex-
plore. Most RL algorithms to date still insist on exhaustive exploration: visiting
every state, or in continuous settings, every region of the state space. Doing so
is necessary if the goal is finding the optimal policy because in principle, any
unvisited state could be a “gold mine.” However when accepting that perfection
can sometimes be the enemy of the good, it becomes clear that exploration must
be more focused.

The distinguishing characteristic of texplore is that it learns in real-time,
while continuing to act. As this book documents fully, it has been demonstrated
to learn a speed-control task on a real autonomous vehicle during the course of
two minutes of continual driving. In addition to this driving task, the algorithms
introduced in this book have been validated on real humanoid robots, and in
carefully controlled, simulation environments.

This book also includes an investigation into the application of texplore

to the idea of intrinsically motivated RL. Analogous to curiosity on the part
of human learners, intrinsically motivated RL requires guiding exploration by
properties of the environment, rather than based on external reward.

This book is important for the field for these novel algorithms themselves, and
also for the fact that it opens up several exciting directions for future research.
By releasing the associated source code as an RL package within the Robot



VIII Foreword

Operating System (ROS) development environment, Todd has made it easy for
future researchers to build upon his contributions.

Overall, for both newcomers to the field, and for practitioners looking for
nuanced detail, this book has plenty to offer. Whichever your perspective, I
trust you will enjoy reading it!

Austin, Texas Peter Stone
June, 2013



Preface

This book presents the main results of the research I conducted for my Ph.D.
thesis at the University of Texas at Austin. The main focus of the research is
on developing new reinforcement learning methods that enable fast and robust
learning on robots in real-time.

Robots have the potential to solve many problems in society, because of their
ability to work in dangerous places doing necessary jobs that no one wants
or is able to do. One barrier to their widespread deployment is that they are
mainly limited to tasks where it is possible to hand-program behaviors for every
situation that may be encountered. For robots to meet their potential, they need
methods that enable them to learn and adapt to novel situations that they were
not programmed for. Reinforcement learning (RL) is a paradigm for learning
sequential decision making processes and could solve the problems of learning
and adaptation on robots. This book identifies four key challenges that must be
addressed for an RL algorithm to be practical for robotic control tasks. These
RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must
learn in domains with continuous state features; 3) it must handle sensor and/or
actuator delays; and 4) it should continually select actions in real time. This
book focuses on addressing all four of these challenges. In particular, this book
is focused on time-constrained domains where the first challenge is critically
important. In these domains, the agent’s lifetime is not long enough for it to
explore the domain thoroughly, and it must learn in very few samples.

Although existing RL algorithms successfully address one or more of the RL
for Robotics Challenges, no prior algorithm addresses all four of them. To fill
this gap, this book introduces texplore, the first algorithm to address all four
challenges. texplore is a model-based RL method that learns a random forest
model of the domain which generalizes dynamics to unseen states. Each tree in
the random forest model represents a hypothesis of the domain’s true dynamics,
and the agent uses these hypotheses to explores states that are promising for the
final policy, while ignoring states that do not appear promising. With sample-
based planning and a novel parallel architecture, texplore can select actions
continually in real time whenever necessary.

We empirically evaluate each component of texplore in comparison with
other state-of-the-art approaches. In addition, we present modifications of tex-
plore’s exploration mechanism for different types of domains. The key result of
this book is a demonstration of texplore learning to control the velocity of an
autonomous vehicle on-line, in real time, while running on-board the robot. After
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controlling the vehicle for only two minutes, texplore is able to learn to move
the pedals of the vehicle to drive at the desired velocities. The work presented
in this book represents an important step towards applying RL to robotics and
enabling robots to perform more tasks in society. By enabling robots to learn
in few actions while acting on-line in real time on robots with continuous state
and actuator delays, texplore significantly broadens the applicability of RL to
robots.

This book would not have been possible without help from a great number
of people. First and foremost, I want to thank my advisor Peter Stone, whose
guidance, advice, and support has been invaluable. There are also many other
graduate students who helped and collaborated with me on this research. In par-
ticular, Nick Jong let me assist on an AAMAS paper on reinforcement learning
in my first year as a graduate student and gave me a great start on RL.

Austin, Texas Todd Hester
April, 2013
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1 Introduction

This chapter presents the motivation and objectives for this book, and an overview
of the work presented in the book. I begin by presenting the motivation for apply-
ing reinforcement learning (RL) to robots. Next, I present four specific challenges
for applying RL to robotics problems. Then I describe a particular challenge of
learning in few enough samples to be effective on domains with limited, expensive
samples such as robots. I then provide a brief overview of the texplore algo-
rithm introduced in this book and how it addresses these issues. Finally I present
the contributions of this book and preview of each chapter of the book.

Robots have the potential to solve many problems in society, because of their
ability to work in dangerous places doing necessary jobs that no one wants or is
able to do. Robots could be used for space exploration, mining, underwater tasks,
caring for the elderly, construction, and so on. One barrier to their widespread
deployment is that they are mainly limited to tasks where it is possible to hand-
program behaviors for every situation that may be encountered. For robots to
meet their potential, they need methods that enable them to learn and adapt to
novel situations that they were not programmed for.

Reinforcement learning (RL) (Sutton and Barto, 1998) is a paradigm for learn-
ing in sequential decision making processes that could solve the problems of
learning and adaptation on robots. In RL, an agent is seeking to maximize
long-term rewards through experience in its environment. The decision making
tasks in these environments are usually formulated as Markov Decision Processes
(MDPs).

My motivation for this work is to develop a new RL algorithm that applies
to real-world problems such as controlling robots. The number of robots being
used in society is continually growing. However, most of these robots require
someone to pre-program them for their specific task (e.g. vacuum cleaning robots,
gutter cleaning robots), or require a user to tele-operate them (e.g. rescue robots,
bomb detection robots). Developing an RL algorithm that applies naturally and
practically to robots, and then applying it to them would make robots more
useful in three ways: 1) robots would learn to improve their performance on
their task on-line, while performing the task; 2) robots would generalize their
knowledge to new situations and environments for which they were not pre-
programmed; and 3) robots would require less hand-coding, as more of their
skills could be left for them to learn.

However, learning on robots presents a number of challenges for existing RL
algorithms, because a successful method must learn in few actions while running

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 1
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2 1 Introduction

on the robot. In addition, the method must handle continuous state as well as
noisy and/or delayed sensors and actuators. RL algorithms have been applied to
a few carefully chosen robotic tasks that are achievable with limited training and
infrequent action selections (e.g. (Kohl and Stone, 2004)), or allow for an off-line
learning phase (e.g. (Ng et al., 2003)). However, to the best of our knowledge,
none of these methods allow for continual learning on the robot running in its
environment. In this book, we identify four properties of an RL algorithm that
would make it generally applicable to a broad range of robot control tasks, which
we will henceforth call the RL for Robotics Challenges :

1. The algorithm must learn from very few samples (which may be expensive
or time-consuming).

2. It must learn tasks with continuous state representations.
3. It must learn good policies even with unknown sensor or actuator delays (i.e.

selecting an action may not affect the environment instantaneously).
4. It must be computationally efficient enough to select actions continually in

real time.

In addition to these four properties, it would be desirable for the algorithm to
require minimal user input. Addressing these challenges would not only make
an RL algorithm applicable to more robotic control tasks, but it would also
make such an algorithm applicable to many other real-world tasks. We note
that robots also typically have continuous action spaces. We leave addressing
continuous actions for future work as we have found that using a discretized
action space works well in many domains.

While algorithms exist that address various subsets of these challenges, we are
not aware of any that are easily adapted to address all four issues. In Table 1.1, we
provide a listing of related work, each of which addresses some of these challenges,
but not all four of them. We say that an algorithm addresses a challenge if it
is explicitly focused on that challenge or if its approach to that challenge is
applicable to robotics problems. However, even some of the methods that address
a particular challenge may not do so in a way that is effective for all domains.
I describe these algorithms in further detail in Chapter 7, but as an example,
pilco (Deisenroth and Rasmussen, 2011) uses a Gaussian Process regression
model to achieve very high sample efficiency on continuous tasks. However, it is
computationally intensive and requires 10 minutes of computation for every 2.5
seconds of interaction while learning to control a physical Cart-Pole device. It is
also not trivial to accommodate delays in actuation or state observations into this
method. Bayesian RL methods, such as boss (Asmuth et al., 2009) and Bayesian
DP (Strens, 2000), maintain a distribution over likely MDP models and can
utilize information from this distribution to explore efficiently and learn optimal
policies. However, these methods are also computationally expensive, cannot
easily handle delays, and require the user to provide a model parameterization
that will be useful for generalization. While Table 1.1 only shows methods that
learn from scratch, there are also related works for robot learning that start with
experience from an expert user (Ng et al., 2003; Bagnell and Schneider, 2001)
or from robot simulation (Kolter et al., 2010).
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Table 1.1. This table shows state-of-the-art learning algorithms that address some of
the RL for Robotics Challenges required for performing reinforcement learning on-line
on robots. None of the methods prior to this book address all four challenges and even
the challenges that are addressed by these methods may not be addressed in a way
sufficient for the robotic domains we are interested in.

Algorithm Citation Sample Real Contin- Delay
Efficient Time uous

r-max (Brafman and Tennenholtz, 2001) Yes No No No
q-learning (Watkins, 1989) No Yes No No
with F.A. (Sutton and Barto, 1998) No Yes Yes No
sarsa (Rummery and Niranjan, 1994) No Yes No No
pilco (Deisenroth and Rasmussen, 2011) Yes No Yes No
nac (Peters and Schaal, 2008) Yes No Yes No
boss (Asmuth et al., 2009) Yes No No No
Bayesian DP (Strens, 2000) Yes No No No
mbbe (Dearden et al., 1999) Yes No No No
spiti (Degris et al., 2006) Yes No No No
mbs (Walsh et al., 2009a) Yes No No Yes
u-tree (McCallum, 1996) Yes No No Yes
dyna (Sutton, 1990) No Yes No No
dyna-2 (Silver et al., 2008) No Yes Yes No
kwik-lr (Strehl and Littman, 2007) Yes No Partial No
fitted r-max (Jong and Stone, 2007) Yes No Yes No
dre (Nouri and Littman, 2010) Yes No Yes No

TEXPLORE This book Yes Yes Yes Yes

Our objective with this work is to develop a reinforcement learning algo-
rithm that can run on-board a robot and learn to control it in real time without
pauses for off-line computation. Such an algorithm would be useful for perform-
ing long-term in-situ learning on the robot. For an algorithm to be capable of
this objective, it must meet all four RL for Robotics Challenges.

1.1 Time-Constrained Domains

While we desire the algorithm to solve all four challenges, the first challenge,
learning in very few samples, is a particular focus of this book. On many prob-
lems, each action the agent takes can be very expensive in terms of money, time,
and labor. For example, robots are expensive and suffer from wear and tear,
short battery life, and potentially overheating. In addition, performing learning
on them often requires human supervision, and perhaps even particular envi-
ronmental conditions (e.g. good lighting for vision, good weather for driving,
etc.). Along with expensive samples, such problems are often very large, with
high-dimensional continuous state and action spaces. The combination of large
state-action spaces and expensive samples means that learning in few enough
samples to be useful can be very difficult.



4 1 Introduction

Addressing Challenge 1 of learning in few samples is applicable not just to
robots, but to many other RL problems. Many real-world problems also have very
expensive samples and large state-action spaces (a sample of these problems can
be found in Section 7.5). Users will not apply RL algorithms to these problems
unless the algorithms can learn in a very small number of actions. In this section,
we formally characterize the class of domains where addressing Challenge 1 is
critical as time-constrained domains. The texplore algorithm that we present
in this book is meant to address this challenge in these domains. In this class
of domains, the agent has a short lifetime relative to the size of the domain,
and does not have enough actions in its lifetime to guarantee that it can find
an optimal policy. Thus in this class of domains, it is important for the agent
to find a good policy quickly, in contrast to spending more time learning and
exploring to find an optimal policy.

An important criterion for algorithm performance is the sample complexity
of the algorithm, or the number of actions it must take to find a near-optimal
policy. The sample complexity of exploration is the number of sub-optimal ex-
ploratory actions the agent must take. Kakade (2003) proves the lower bound for
this sample complexity is O( NA

ε(1−γ) log
1
δ ) for stochastic domains, where N is the

number of states, A is the number of actions, γ is the discount factor, and the
algorithm finds an ε-optimal policy with probability 1− δ. There are many cases
where this lower bound is already an unacceptable number of actions. For ex-
ample, if the problem has billions of states or actions, then the NA factor above
is already too big. Alternatively, on a robotic task, actions may take minutes to
complete, such that even requiring a few thousand actions to solve the problem
is unacceptable. What can we do in these cases where we do not have enough
actions to guarantee convergence to an optimal policy? This book focuses on
this problem by addressing the following question:

How should an on-line reinforcement learning agent act in time-constrained
domains?

In this book, we seek to address the problem of acting in time-constrained
domains, which we define as domains where the agent is limited to two orders of
magnitude fewer actions than the lower bound presented above (time-constrained
domains are formally defined and examined in Chapter 2). In addition, the agent
should act in real time, at whatever action frequency the problem requires. In
time-constrained domains, texplore will find a better policy and accrue more
cumulative reward in its lifetime than other methods. When given a longer life-
time (such that the problem is not a time-constrained one), other methods may
find the optimal policy while texplore will not.

Essentially, we are focused on problems where we cannot guarantee that the
agent will learn an optimal policy. Instead, the algorithm must limit its explo-
ration of the domain and start exploiting its knowledge earlier. Since it is only
exploring a limited part of the domain, it must make some assumptions about
the other parts of the domain. In particular, instead of assuming that the tran-
sition and reward dynamics of each state may be arbitrarily different than the
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others, texplore generalizes these dynamics between states. It then performs
limited, targeted exploration to improve its model and quickly starts exploiting
this model to accrue high rewards within its limited lifetime.

1.2 Algorithm Overview

This book introduces the texplore algorithm, which addresses the question pre-
sented in the previous section. In addition, it addresses all four
RL for Robotics Challenges. Importantly, not only does texplore solve each
of the four challenges, it does so while ensuring that each solution meshes well
with the others, to form a complete algorithm for performing RL on robots.
The texplore algorithm has been released publicly as a ROS package at:
http://www.ros.org/wiki/rl-texplore-ros-pkg. With the code released as
a ROS package, texplore can be easily downloaded and applied to a learning
task on any robot running ROS with minimal effort. This section presents a brief
overview of the algorithm, which is presented in detail in Chapters 3 and 4.

For Challenge 1 of being sample efficient, particularly in domains where the
agent has a limited lifetime, the agent must learn a high-rewarding (but not nec-
essarily optimal) policy in as few actions as possible, so it can use its remaining
lifetime to exploit what it has learned. This lifetime constraint means the agent
must be relatively greedy compared to many other RL methods (i.e. it must
switch from exploring to exploiting quickly). This approach gives up guarantees
of optimality (and thus the need to explore every state-action) in order to find a
high-rewarding policy in a very small number of actions. Since it only performs
limited exploration, its exploration must be efficient and targeted so that it can
learn a model very quickly.

The texplore algorithm learns a model of its domain through its experience,
and then uses this model to plan a policy to follow in the domain. Following
such a model-based approach enables texplore to plan multi-step exploration
trajectories as well as update its value function through internal simulations
using its model. Since texplore has a limited number of time steps for ex-
ploration, it must make some assumptions about the parts of the domain it is
not exploring. Therefore, instead of a typical tabular model, which learns a sep-
arate model for each state-action, texplore incorporates generalization into
the model learning, such that the transition and reward effects of actions are
generalized across states. This generalization speeds up learning by providing
the agent with an estimate of the model for unseen states. Unlike the typical
use of function approximation in RL, where the value function is approximated,
texplore uses generalization in the model, while maintaining an accurate value
function based on this model. Others have developed algorithms with model gen-
eralization before, e.g. using instance-based models (Jong and Stone, 2007) or
decision trees (Degris et al., 2006) (detailed further in Section 7.1.4).

The particular method that texplore uses for model learning is decision
trees (Quinlan, 1986). Decision trees perform well in many domains by splitting
the state space into regions with similar transition dynamics. In addition, they

http://www.ros.org/wiki/rl-texplore-ros-pkg
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provide natural solutions to Challenge 2 of acting in domains with continuous
state and Challenge 3 of acting in domains with actuator or sensor delays. For
domains with continuous state representations, texplore’s decision trees can
be replaced with regression trees (Quinlan, 1992), which learn a regression model
in each leaf of the tree. These regression tree models can then make predictions
about continuous state. For domains with actuator or sensor delays, texplore
adds its previous k actions as inputs to the tree model, allowing it to model and
predict the delay in the system.

Finally, texplore should apply to realistic tasks where actions must be taken
frequently, addressing Challenge 4. The agent must be ready to select an action
when required and cannot be slow to respond because it is performing batch
processing or updates to its model. For example, if an agent is driving a car, it
cannot wait for a few seconds to think about what to do when a car in front of
it slams on its brakes. It must respond immediately when an action is requested.
In Chapter 3 of this book, I present a real time architecture for model-based
reinforcement learning. This architecture enables real time action by performing
model updates, planning, and action selection in parallel threads, such that
acting is not constrained by the time required for model updates or planning.

After presenting the algorithm, in Chapter 5 I present evaluations of it on
time-constrained tasks, including both discrete and continuous domains. In ad-
dition, I present texplore learning a decision-making task on a physical robot
while running in real time on-board the robot. We compare the cumulative re-
ward and average reward that the algorithm achieves during a limited lifetime
with the reward accrued by other state of the art approaches. Since texplore

is not guaranteed to find an optimal policy, its final policies in the limit may be
worse than other approaches, but we show that its accrued rewards and learned
policies are better than those of other methods when working with a constrained
lifetime.

In Chapter 6, I provide a deeper examination of exploration. The best ex-
ploration strategy for an RL algorithm varies depending on the task at hand.
In this chapter, I examine exploration strategies for two opposite types of do-
mains. First, I present an approach for domains where transitions and rewards
are located arbitrarily and the best the agent can do is to explore each state-
action. Next, I present an approach for domains where there are richer, more
complex state features that the agent can use to explore more intelligently. Then
I present an approach that can learn to use the best of a set of exploration strate-
gies on-line. Finally, I present some empirical comparisons of these exploration
approaches with texplore’s approach on a few domains.

In summary, in this book I present a model-based RL algorithm called tex-

plore that performs limited, targeted exploration to learn a good policy quickly.
It generalizes the effects of actions across states, allowing it to limit its explo-
ration more than approaches that do not make such assumptions. The algorithm
forgoes guarantees of optimality, instead targeting its exploration on particular
state-actions that may be most useful to the model learning to accrue rewards
as quickly as possible. texplore is capable of modeling actuator and sensor
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delays and continuous states. In addition, it utilizes a novel real time parallel
architecture that enables it to act in real time.

1.3 Contributions

This book provides the following six major contributions to the field:

1. texplore: The texplore algorithm, which is the first algorithm to address
all four of the RL for Robotics Challenges together simultaneously in the
same algorithm. In addition, texplore is effective at learning good policies
and accruing high rewards on time-constrained domains. The texplore

algorithm is not only presented in this book, but has been publicly released
as an open-source ROS package at:
http://www.ros.org/wiki/rl-texplore-ros-pkg.

2. Generalized Models: Methods for learning MDP models that: 1) generalize
transition and reward dynamics across state-actions; 2) provide a measure
of uncertainty in their predictions; 3) can model continuous domains; 4) can
model domains with sensor or actuator delays; and 5) can learn accurate
models of dependent feature transitions in factored domains.

3. Targeted Exploration: An examination of exploration methods for RL agents
with models that generalize across state-actions. This examination includes
methods to drive the agent to perform limited, targeted exploration, methods
to explore uncertain or novel states, and intrinsically motivated exploration
for domains with little or no external rewards.

4. Real Time Architecture: A parallel real time model-based RL agent archi-
tecture that enables model-based RL agents to act in real time, without
being constrained by the time required for model updates or planning. In
addition, this architecture is capable of planning in both continuous domains
and domains with sensor or actuator delays.

5. ROS RL Interface: We developed a RL interface for ROS (Robot Operating
System) to make it easy to integrate RL with existing robots already using
ROS. The interface defines messages for the agent to send and receive from
the environment to perform learning. This interface is available as part of
our ROS package at: http://www.ros.org/wiki/rl_msgs.

6. Evaluation: Empirical evaluation of texplore learning in a variety of time-
constrained domains, and in particular, evaluation of texplore learning to
control a physical robot while running in real time on-board the robot.

Each of these contributions is described in detail in the remainder of this book.

1.4 Overview

The rest of this book is organized as follows.

Chapter 1: I present background on Markov Decision Processes and reinforce-
ment learning. I present some typical model-based and model-free RL algorithms.

http://www.ros.org/wiki/rl-texplore-ros-pkg
http://www.ros.org/wiki/rl_msgs
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I continue into more detail about model-based methods and present a sample-
based planning algorithm. Finally, we define the set of time-constrained problems
that this book is focused on.

Chapter 2: I present the real time model based architecture (rtmba) that
texplore utilizes. This architecture separates the model learning, planning,
and acting into three parallel threads such that the agent can act as fast as
necessary without being constrained by the time required for model learning or
planning. The architectures uses sample-based planning methods such as Monte
Carlo tree search to perform anytime planning.

Chapter 4: This chapter presents the texplore algorithm, in particular its
approach to model learning and exploration. texplore uses decision trees to
learn models of the transition and reward dynamics of the domain. For explo-
ration, texplore utilizes random forests of these tree models, where each tree
represents a different hypothesis of the true dynamics of the domain.

Chapter 5: In this chapter, we empirically evaluate texplore’s solution to
each of the RL for Robotics Challenges. For each challenge, we compare tex-

plore’s solution with other possible approaches, both on a simulated robotics
task and a second example task. Finally, we present experiments demonstrating
texplore’s ability to learn to control a real robot while running on-board the
robot.

Chapter 6: I further examine possible approaches to exploration in this chapter.
I present texplore with explicit exploration (texplore-ee) for domains that
require exploration of each state-action to find arbitrarily located transitions
or rewards. Then I present the texplore with variance and novelty intrinsic
rewards (texplore-vanir) algorithm that performs more intelligent, targeted
exploration in domains with richer, more informative state features. I also present
the leo algorithm for learning the best exploration strategy on-line. Finally, I
evaluate these various exploration approaches on a handful of tasks.

Chapter 7: I present work related to the various aspects of texplore in this
chapter. For each of the RL for Robotics Challenges, I present related work and
other potential solutions to the challenge. I also present work that does not
address any individual challenge, but is focused on robotics or other real-world
learning problems.

Chapter 8: In this chapter, I summarize the contributions of this book. Then,
I discuss various interesting issues that the book raises and indicate directions
for future work.

Appendix A: This appendix presents comprehensive pseudo-code for the com-
plete texplore algorithm.

Appendix B: This appendix lists all the evaluation domains used in the book,
along with their properties.
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Each chapter is dependent on the background chapter (Chapter 2). In addition,
for Chapter 5, which presents empirical evaluations of the algorithm, it would
be useful to read Chapters 3 and 4 on the texplore algorithm. For Chapter 6,
which examines exploration further, it would be useful to already be familiar with
the exploration of the texplore algorithm, which is presented in Chapter 4.
The other chapters are largely self-contained and an interested reader can read
them without first reading the previous chapters.



2 Background and Problem Specification∗

This chapter presents background on sequential decision making and reinforce-
ment learning as well as the specification of the problems that this book is ad-
dressing. I begin by presenting a formal description of sequential decision making
problems as Markov Decision Processes. Then I describe the reinforcement learn-
ing problem. Next, I explain the difference between model-free and model-based
approaches and present example algorithms of each class. I present details on
using model-based RL in factored domains. In Section 2.2.4, I present an impor-
tant aspect of model-based RL, planning, along with the uct planning algorithm.
In the next section, I formally define the class of domains this book is focused on:
time-constrained domains where learning in very few samples is critical. Finally,
I present a specific example of a domain from this class and demonstrate how
each of the RL for Robotics Challenges are present in this domain.

Many tasks that we would desire a robot or agent to perform can be defined
as sequential decision making problems. There is an agent interacting in some
environment. The agent is making a series of decisions that possibly affect the
environment, and is evaluated based on these decisions through a scalar reward
signal. In reinforcement learning, as the agent interacts with the environment,
it is learning to improve its decision making, with the goal of maximizing the
reward it receives. Typically, the agent begins with no or very little prior in-
formation about the environment or the task. The sequential decision making
problem is defined formally below.

2.1 Markov Decision Problems

We adopt the standard Markov Decision Process (MDP) formalism for this
work (Sutton and Barto, 1998). An MDP is defined by a tuple 〈S,A,R, T 〉,
which consists of a set of states S, a set of actions A, a reward function R(s, a),
and a transition function T (s, a, s′) = P (s′|s, a). We define the number of states
N = |S|. In each state s ∈ S, the agent takes an action a ∈ A. As shown in
Figure 2.1, upon taking this action, the agent receives a reward R(s, a) and tran-
sitions to a new state s′, determined from the probability distribution P (s′|s, a).
Many domains utilize a factored state representation, where the state s is repre-
sented by a vector of n state variables: s = 〈s1, s2, ..., sn〉. A policy π = P (a|s)
specifies, for each state, a distribution over actions that the agent will take.

* This chapter contains material from two publications: (Hester and Stone, 2011,
2012b).

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 11

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_2, c© Springer International Publishing Switzerland 2013



12 2 Background and Problem Specification

Fig. 2.1. How the reinforcement learning agent interacts with the environment

The goal of the agent is to find the policy π mapping states to actions that
maximizes the expected discounted total reward over the agent’s lifetime:

J =
∑

t

γtrt, (1)

where 0 < γ < 1 is the discount factor and rt is the reward obtained at time
step t. One set of approaches to this problem, called policy search methods,
search in the space of policies directly for policies that accumulate high rewards.
Alternatively, value function methods learn to predict the value of discounted
reward that will be received from any state-action and use this value function to
calculate a policy. Since value function methods make more use of information
through the calculation of the value function, they are typically more sample
efficient than policy search methods when the MDP is discrete, finite, and fully
observable. In addition, they have a string of theoretical results proving their
convergence (Watkins, 1989; Brafman and Tennenholtz, 2001). In this work, one
of our goals is to apply RL to domains such as robots where samples are very
expensive. Therefore, we require methods with low sample complexity, and we
follow the value function approach in this work.

The value Qπ(s, a) of a given state-action pair (s, a) is an estimate of the
expected future reward that can be obtained from (s, a) when following policy
π. The optimal value function Q∗(s, a) provides maximal values in all states and
is determined by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′
P (s′|s, a)max

a′
Q∗(s′, a′). (2)

The optimal policy π∗ is then as follows:

π∗(s) = argmaxaQ
∗(s, a). (3)

We have stated that the goal of the agent is to maximize its expected total
discounted reward. There are a number of ways an agent’s performance can be
evaluated. First, we can look at how many actions it takes the agent to learn
an ε-optimal policy (a policy whose expected return is within ε of that of the
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optimal policy π∗). Second, we can measure the total discounted reward accrued
over the agent’s lifetime, including while it is learning. Third, we can look at
the final performance achieved by the agent. In this work, we evaluate all three
criteria.

2.2 Value Function Reinforcement Learning

Value function based RL methods fall into two general classes: model-free (di-
rect) and model-based (indirect) methods. Model-free methods update their
value function directly from experience in the environment.Model-based methods
however, perform their updates from a model of the domain, rather than from
experience in the domain itself. Both of these classes of methods are explained
in more detail in the following sections.

2.2.1 Model-Free Methods

Model-free RL methods learn by updating their value function directly from
experience in the environment. Two commonly used model-free RL methods
are sarsa (Rummery and Niranjan, 1994) and q-learning (Watkins, 1989).

Pseudo-code for q-learning is shown in Algorithm 2.1. The x
α←− y operator

is shorthand for x ← α(y − x) + (1 − α)x, which is the incremental stochastic
approximation update of x towards the sample y. q-learning makes incremen-
tal updates to the value function based on its experiences through use of the
Bellman equation. q-learning is proven to converge to the optimal value func-
tion (and thus optimal policy) when visiting each state-action infinitely often
and with an appropriate annealing of the learning rate. q-learning is a rep-
resentative model-free algorithm and is used for comparison in our experiments
in Chapter 5. It was chosen because it is one of the most straightforward and
theoretically grounded model-free RL algorithms. However, it is important to
note that it is not the most practical approach for the types of problems we wish
to address, as model-free methods are not particularly sample efficient.

Algorithm 2.1. q-learning

1: Input: S,A,α � S: state space, A: action space, α: learning rate
2: Initialize Q arbitrarily for all S,A
3: Initialize policy π randomly
4: Initialize s to a starting state in the MDP
5: loop
6: Choose a← π(s)
7: Take action a, observe r, s′

8: Q(s, a)
α←− r + γmaxa∈A Q(s′, a)

9: π(s)← argmaxa∈AQ(s, a)
10: s← s′

11: end loop
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Fig. 2.2. Model-based RL agents use their experiences to first learn a model of the
domain, and then use this model to compute their policy

2.2.2 Model-Based Methods

In contrast to model-free methods, Model-based RL methods perform their up-
dates from a model of the domain, rather than from experience in the domain
itself. Instead, the model is learned from experience in the domain, and then the
value function is updated by planning over the learned model. This sequence is
shown in Figure 2.2. This planning can take the form of simply running a model-
free method on the model, or it can be a method such as value iteration (Sutton
and Barto, 1998) or Monte Carlo Tree Search (Kocsis and Szepesvári, 2006).

The models learned by these methods can vary widely. Models can be learned
entirely from scratch, the structure of the model can be given so that only pa-
rameters need to be learned, or a nearly complete model can be provided. A
common approach is to use a tabular model where the agent learns a separate
model for each state-action based on the frequencies of different outcomes at
each state. The agent could also learn the model using any supervised learn-
ing technique, such as decision trees (Degris et al., 2006) or Gaussian Process
regression (Deisenroth and Rasmussen, 2009).

If the algorithm can learn an accurate model quickly enough, model-based
reinforcement learning can be more sample efficient than model-free methods.
Once an accurate model is learned, an optimal policy can be planned without
requiring any additional experiences in the world. For example, when an agent
first discovers a goal state, the values of its policy can be updated at once through
planning over its new model that represents that goal. Conversely, a model-free
method would have to follow a trajectory to the goal many times for the values
to propagate all the way back to the start state. The better sample efficiency
of model-based methods typically comes at the cost of more computation for
learning the model and planning a policy and more space to represent the model.

Another advantage of models is that they provide an opportunity for the agent
to perform targeted exploration. The agent can plan a policy using its model to
drive the agent to explore particular states; these states can be states it has not
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Fig. 2.3. Typically, model-based agents interleave model learning and planning se-
quentially, first completing an update to the model, and then planning on the updated
model to compute a policy

visited or is uncertain about. Methods such as r-max (Brafman and Tennenholtz,
2001) modify the agent’s model of the domain with artificial rewards to encourage
it to explore. A key to learning a model quickly is acquiring the right experiences
needed to learn the model (similar to active learning). Variousmethods for explor-
ing in this way exist, leading to fast learning of accurate models, and thus good
sample efficiency.

There are a number of ways to combinemodel learning and planning in amodel-
based RL agent. Typically, as the agent interacts with the environment, its model
gets updated at every time stepwith the latest transition,< s, a, r, s′ >. Each time
the model is updated, the algorithm re-plans on it with its planner (as shown in
Figure 2.3). This approach is taken by many algorithms (Brafman and Tennen-
holtz, 2001; Degris et al., 2006). However, due to the computational complexity of
learning the model and planning on it, it is not always feasible. Another approach
is to do model updates and planning in batch mode, only performing updates af-
ter every episode or every k actions. Due to the high action frequency required to
control robots, this approach is used by many algorithms that perform learning on
robots (Deisenroth and Rasmussen, 2011; Kober and Peters, 2011). However, this
approach means that the agent must stop acting for long pauses while it performs
batch updates, which may not be acceptable in some problems.

r-max is a representative model-based approach that uses a tabular model
and explores thoroughly by driving the agent to visit each state-action m
times (Brafman and Tennenholtz, 2001). Pseudo-code for r-max is shown in
Algorithm 2.2. r-max uses a tabular maximum-likelihood model, keeping counts
of the number of times each action was taken and which outcomes were seen.
All state-actions with fewer than m visits are considered unknown and are given
a reward of Rmax (the maximum reward in the domain) to encourage the agent
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Algorithm 2.2. r-max

1: Input: S,A,m,Rmax

2: Initialize sr as absorbing state with reward Rmax

3: Initialize all counts C to 0
4: Initialize s to a starting state in the MDP
5: loop
6: Choose a = π(s)
7: Take action a, observe r, s′

8: Increment C(s, a, s′), C(s, a) � Update model
9: Rsum(s, a)← Rsum(s, a) + r
10: if C(s, a) ≥ m then � Known state
11: R(s, a)← Rsum(s, a)/C(s, a)
12: for all s′ ∈ C(s, a, ·) do
13: T (s, a, s′)← C(s, a, s′)/C(s, a)
14: end for
15: else � Unknown state
16: R(s, a)← Rmax

17: T (s, a, sr)← 1
18: end if
19: Call value-iteration � Plan updated policy
20: s← s′

21: end loop

to explore them. After each update to the model, r-max re-plans on its model
using a method such as value iteration to calculate a new policy. r-max is guar-
anteed to find the optimal policy in time polynomial in the number of states
and actions, but it may still result in an inordinate amount of time spent ex-
ploring the domain. We use r-max for comparison with our algorithms in our
experiments in Chapter 5, because it is a straightforward, theoretically grounded
representative of the class of model-based RL algorithms. However, in the real
world problems we are focused on, r-max can be too computationally expensive
and can explore too much to accrue good rewards on domains with a limited
number of samples.

As a comparison of the sample efficiency of model-free versus model-based
RL methods, we present some results here comparing q-learning and r-max

as representative algorithms from each class. r-max was run with m = 1 and
q-learning was run with α = 0.3 and with Q-values initialized optimistically
to 0. We ran the algorithms on a 10×5 grid world domain with two rooms. The
agent received a reward of −1 each step until it reached the goal state, when
the episode terminated with a reward of 0. All the transitions were deterministic
and the discount factor was 0.98. Experiments were run on a Dell XPS laptop
with a 2.8 GHz Intel Core i7-2640M processor and 8 GB of RAM.

We compared both the number of episodes and amount of wall clock time each
algorithm took to learn a 0.2-optimal policy. We ran each algorithm for 2000
episodes on the domain, and averaged our results over 30 trials. On average, it
took q-learning 592.27 episodes to learn a 0.2-optimal policy, while it took
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r-max only 12.10 episodes (48.9 times faster). In contrast, it took q-learning

an average of 0.0039 seconds to learn a 0.2-optimal policy, while r-max took
0.7962 seconds (204.1 times slower). These results show that model-based RL
methods can be much more sample efficient than model-free methods, but at
the cost of more computation time. For the real-world domains we are interested
in, we require methods that are both sample and computationally efficient. In
addition, there is progress to be made to make model-based methods such as r-
max work efficiently on more complex, stochastic domains with limited samples.

2.2.3 Factored Models

As specified earlier in Section 2.1, in many tasks, the agent’s state can be
represented by a set of state features that describe the world. Many RL algo-
rithms (Guestrin et al., 2002; Degris et al., 2006; Strehl et al., 2007; Chakraborty
and Stone, 2011) take advantage of these factored representations to accelerate
model learning by learning Dynamic Bayes Network (DBN) or decision tree mod-
els of the domain. A key assumption that helps these approaches learn models
faster is that they predict each feature independently based on the agent’s pre-
vious state and action. This simplifies the model learning problem and reduces
the number of experiences required for the agent to learn an accurate model.
This assumption that features can be predicted independently is made by all of
these factored methods.

Learning such a factored model can reduce the amount of data required to
learn an accurate model of the domain. In the DBN model, each feature of
the next state may only be dependent on some subset of features from the
previous state and action. The features that a given state feature are dependent
on are called its parents. If the features have fewer parents than the total number
of features, then the DBN model can be learned faster than a tabular model.
When using a DBN transition model, it is assumed that each feature transitions
independently of the others. The probability of a particular next state is the
product of the probabilities of each of its features:

P (s′|s, a) = Πn
i=0P (s′i|s, a). (4)

Learning the structure of this DBN transition model is known as the structure
learning problem. Once the structure of the DBN is learned, the conditional
probabilities for each edge must be learned.

Figure 2.2.3 shows an example DBN for the Taxi domain (Dietterich, 1998), a
popular toy domain in the RL community. In the Taxi domain, the agent’s state
is made up of four features: its x and y location, the passenger’s location, and
the passenger’s destination. The destination is one of four colored landmarks
(i.e. r, g, b, y), and the location is one of these landmarks or in the taxi. The
agent’s goal is to navigate the taxi to the passenger, pick up the passenger,
navigate to her destination, and drop off the passenger. The y location of the
taxi is only dependent on its previous y location, and not its x location or the
location or destination of the passenger. Because of the vertical walls in
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(a) Taxi Domain. (b) DBN Transition Structure.

Fig. 2.4. 2.4(a) shows the Taxi domain, where the agent must navigate the taxi to
the passenger, pick her up, and then navigate to her destination and drop her off.
2.4(b) shows the DBN transition model for this domain. Here the x feature in state
s′ is only dependent on the x and y features in state s and the y feature is only
dependent on the previous y. The passenger’s destination is only dependent on her
previous destination, and her location is dependent on her previous location and
the taxi’s previous (x,y) coordinates.

the domain, the x location of the taxi is dependent on both x and y. The
location of the passenger only changes if the pickup action is performed, and
is dependent on the taxi’s (x,y) location and the passenger’s location. If this
structure is known, it makes the model learning problem much easier, as the
same model for the transition of the x and y variables can be used for any
possible value of the passenger’s location and destination.

2.2.4 Planning

One of the most computationally expensive steps for model-based methods is to
plan on their updated model to compute a new policy. Typical model-based meth-
ods use exact planning methods such as value iteration to plan a new policy every
time the model changes. Value iteration iterates over all the states in the domain,
updating their values using the Bellman equations. In anything but the smallest
domains, this process can be quite slow. Formodel-basedmethods to work in these
large domains, we need a faster planning method. uct (Kocsis and Szepesvári,
2006) is one such method. uct is a Monte Carlo planning method that works by
sampling trajectories from the agent’s current state using the agent’s model, thus
focusing its updates on states the agent is likely to visit soon.

uct searches from the start state to a maximum depth or terminal state, se-
lecting actions based on upper confidence bounds using the UCB1 algorithm
(Auer et al., 2002). Algorithm 2.3 shows pseudo-code for the uct algorithm. This
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Algorithm 2.3. uct (s, d)

1: Inputs: α, rrange

2: if terminal or d == maxdepth then
3: return 0
4: end if
5: a← argmaxa′(Qd(s, a′) + 2 · rmax−rmin

1−γ
·√log (c(s, d))/c(s, a′, d))

6: (s′, r)← sampleNextState(s, a) � Sample from model
7: update← r + uct(s′, d+ 1, α)
8: Increment c(s, d)
9: Increment c(s, a, d)
10: Qd(s, a′) α←− update
11: return update

function is called from the agent’s current state with a depth of 0. The algorithm
maintains a count, C(s, d), of visits to each state at a given depth in the search,
d, as well as a count, C(s, a, d), of the number of times action a was taken from
that state at that depth. These counts are used to calculate the upper confidence
bound to select the action. The action selected at each step is calculated using the
upper tail of the confidence interval on line 5. By selecting actions using the upper
tail of the confidence interval, the algorithm mainly samples good actions, while
still exploring when other actions have a higher upper confidence bound.

After sampling a trajectory out to a maximum depth or a terminal state, the
algorithm updates the values of all the state-actions encountered along the tra-
jectory. This process constitutes one rollout. The algorithm does many rollouts
to obtain an accurate estimate of the values of the actions at the agent’s current
state. uct is proven to converge to an optimal value function with respect to
the model at a polynomial rate as the number of rollouts goes to infinity (Koc-
sis and Szepesvári, 2006). Modified versions of uct have had great success in
the world of Go algorithms as a planner with the model of the game already
provided (Wang and Gelly, 2007). uct is also used as the planner inside several
model-based reinforcement learning algorithms (Silver et al., 2008, 2012). We
make use of uct in this book as the planning method used in the real time
architecture presented in Chapter 3.

2.3 Time-Constrained Domains

Now that background on reinforcement learning has been presented, we can
define the time-constrained domains that this book addresses. Time-constrained
domains were introduced briefly in Chapter 1, but we will formally define them
in this section. Time-constrained domains are a class of domains where the agent
has a very small number of actions relative to the size of the domain, requiring
the agent to learn a good policy very quickly.

We will define time-constrained domains using the sample complexity of ex-
ploration. The sample complexity of exploration is the number of sub-optimal
exploratory actions an agent must take. For a given domain, Kakade (2003)
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proved that the sample complexity of exploration is at least O( NA
ε(1−γ) log

1
δ ) ac-

tions. This bound means that at best, an algorithm must take at least that many
actions before it can be guaranteed to start acting optimally in a worst-case en-
vironment. Even in deterministic domains, the agent must take at least O( NA

1−γ )
exploratory actions, which can be an unacceptable number of actions in many
large domains.

For continuous domains, it has been proven that under certain assumptions,
q-learning with function approximation will converge to the optimal policy
when the Markov chain is uniformly ergodic, π(s, a) > 0 for all a ∈ A and μx-
almost all x ∈ X , which essentially says that the agent must visit all state-action
pairs infinitely often (Melo et al., 2008).

A few algorithms such as r-max (Brafman and Tennenholtz, 2001) or met-
rmax (Diuk et al., 2009) are considered efficient RL algorithms because they
require a number of actions polynomial in N , A, 1

ε ,
1
δ , and

1
1−γ . Our work is

focused on domains where these algorithms take too many actions to be useful.
In fact, our focus is on domains where even an algorithm that takes only the
provable minimum required number of actions to find an optimal policy is taking
too long. For our problems, we will consider an agent lifetime, L, or the number
of actions we expect the agent to have, in addition to its MDP definition. For
example, in a robotic task where actions take many minutes, the agent may
only get a few dozen actions. On the other hand, in a domain simulated on a
computer, the agent may get millions of actions. We will define time-constrained
domains to be ones where the lifetime L < 2NA. This lifetime is two orders of
magnitude less than the lower bound for deterministic domains with γ = 0.99,
which is NA

1−γ , and even less than the lower bound for stochastic domains. This
book seeks to provide algorithms that will provide reasonable solutions in these
time-constrained domains.

In continuous domains, there are an infinite number of states, and the con-
straint on lifetime would be infinite. In order to put a practical bound on the
lifetime in these domains, we estimate the number of states needed to represent
the optimal policy in the domain. If we knew the Lipschitz constant, K, defining
the smoothness of the domain, we could calculate the error in the value function
for a given discretization of the state space (Chow and Tsitsiklis, 1991). Since
we do not know the value of K for any domain a priori, we find the number of
states required to represent an optimal policy empirically. To do so, we discretize
the continuous domain and run q-learning on the discretized version. Then we
find the number of states required for q-learning to learn an ε-optimal policy,
with ε = 0.9. Table 2.1 shows the number of states required for a number of
typical continuous RL domains using this method.

For a few common RL domains, Table 2.2 shows the minimum number of
actions required to learn an optimal policy and the maximum lifetime that will
make them time-constrained. The minimum bound numbers assume γ = 0.99,
ε = 0.2, and δ = 0.2.

An agent acting in a time-constrained domain is quite limited because it
does not have enough actions to guarantee that it can learn an optimal policy.
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Table 2.1. This table shows the number of states required for q-learning to learn
an ε-optimal policy, with ε = 0.9

Domain No. States

Mountain Car 10, 000
Puddle World 400
Cart-Pole Balancing 160, 000

Table 2.2. This table shows the maximum value of L for which these domains would
classify as time-constrained domains

Domain States Actions State- Min Bound Min Bound Maximum L
Actions Deterministic Stochastic

Taxi 500 6 3, 000 300, 000 1, 050, 000 6, 000
Four Rooms 100 4 400 40, 000 140, 000 800
Two Rooms 51 4 204 20, 400 72, 400 408
Fuel World 39, 711 8 317, 688 31, 768, 800 111, 190, 800 635, 376
Mountain Car 10, 000 3 30, 000 300, 000 10, 500, 000 60, 000
Puddle World 400 4 1, 600 160, 000 560, 000 3, 200
Cart-Pole Balancing 160, 000 2 320, 000 32, 000, 000 11, 200, 000 640, 000

In addition, it most likely does not have a long enough lifetime to visit every
state-action in the domain and any unvisited state-action may turn out to be
arbitrarily rewarding. For an algorithm to learn effectively in these domains,
it must make some assumptions about the domain. In this book, we assume
that the effects of actions are similar across nearby states, enabling the agent to
generalize predictions to unvisited state-actions rather than requiring the agent
to visit each one.

2.4 A Specific Problem

Now that we have formally defined the set of domains we are interested in, we
will present a specific example of one of these domains: controlling the velocity of
an autonomous vehicle (the Vehicle Velocity Control task) (Beeson et al., 2008).
This task requires an algorithm to address all of the RL for Robotics Challenges :
it has a continuous state space and delayed action effects, and it requires learning
that is both sample efficient (to learn quickly) and computationally efficient (to
learn on-line while controlling the car).

The experimental vehicle is an Isuzu VehiCross, shown in Figure 2.5, that
has been upgraded to run autonomously by adding shift-by-wire, steering, and
braking actuators to the vehicle. The brake is actuated with a motor physically
moving the pedal, which has a significant delay. ROS (Quigley et al., 2009) is
used as the underlying middleware. Actions must be taken in real time, as the
car cannot wait for an action when a car stops in front of it or it approaches a
turn in the road. To the best of our knowledge, no prior RL algorithm is able to
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Fig. 2.5. The autonomous vehicle operated by Austin Robot Technology and The
University of Texas at Austin

learn in this domain in real time: with no prior data-gathering phase for training
a model or pauses for batch computation.

The task is to learn to drive the vehicle at a desired velocity by controlling
the pedals. For learning this task, the RL agent’s 4-dimensional state is the
desired velocity of the vehicle (des-vel), the current velocity (curr-vel), and
the current position of the brake and accelerator pedals. The agent’s reward
at each step is −10.0 times the error in velocity in m/s. The agent receives new
sensor information at 10 Hz, and thus should provide actions at 10 Hz as well.
The agent has 5 actions: one does nothing (no-op), two increase or decrease the
desired brake position by 0.1 while setting the desired accelerator position to 0,
and two increase or decrease the desired accelerator position by 0.1 while setting
the desired brake position to 0. While these actions change the desired positions
of the pedals immediately, there is some delay before the brake and accelerator
reach their target positions. Table 2.3 formally defines the states, actions, and
rewards for the domain. We utilize this task for some of our empirical evaluations
later in Chapter 5.

Using the methodology from Section 2.3, we calculated an estimate of the num-
ber of discrete states required to learn in a simulated version of this domain with-
out any brake or accelerator delays. We found the broadest discretization where
q-learning could learn an ε-optimal policy, which was 43, 615 discrete states.
As shown in Table 2.3, the number of state-actions is then 218, 075, and thus the
maximum lifetime for this domain to be a time-constrained one is 436, 150.

Applying RL to this task requires solving all four of the RL for Robotics Chal-
lenges presented in Chapter 1. Samples on the car are very expensive, as they
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Table 2.3. Properties of the Vehicle Velocity Control task. Note that each episode is
100 actions long, as it is 10 seconds of control of the car with actions taken at 10 Hz.

State des-vel, curr-vel, brake, accelerator

Actions no-op, acc-up, acc-down, brake-up, brake-down

Reward −10.0 ∗ |des-vel - curr-vel|
# State-Actions 218, 075

Time-Constrained Lifetime 436, 150 actions, 4, 361 episodes

require human supervision for safety, as well as good road conditions. In addition,
each action takes real world time, and the car may break down, overheat, or run
out of gas. Therefore, it is very important for the agent to learn in very few
samples, addressing Challenge 1. The task has a continuous state space, so the
agent must also address Challenge 2. Unlike many simulated RL tasks where
actions taken by the agent have instantaneous effects, on this task, there is
significant delay before the brake pedal gets to the position requested by the
agent. Thus, the agent must learn good policies even with unknown sensor and
actuator delays, addressing Challenge 3. Finally, the car requires the agent to
take actions continually in real time, addressing Challenge 4. If the agent does
not provide new actions to the car at the required rate, its pedals will remain
in their current positions, which can be very bad. For example, if the car is
approaching a red light with its throttle pushed down, it is necessary for the
agent to send a new action to the car immediately.

2.5 Chapter Summary

In this chapter, I have presented background material on Markov Decision
Processes and Reinforcement Learning. I presented the two main classes of
value function RL methods: model-free and model-based. This chapter included
pseudo-code for a representative algorithm from each class as well as a compari-
son between them. I presented more details on model-based learning approaches,
including learning factored models and planning methods. I have formally de-
fined the set of domains that this book is focused on, where sample efficiency is
critical. Finally, I presented an example domain from this class and demonstrated
how each of the four RL for Robotics Challenges is present in this domain. This
material will serve as the foundation for the research presented in the rest of
this book. In the next chapter, I will begin presenting the texplore algorithm,
which addresses all of these challenges.
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This chapter presents a brief summary of the texplore algorithm before fully
describing and presenting the real time RL architecture. First, I present a typi-
cal example of a sequential model-based RL architecture. Then I present details
on using Monte Carlo Tree Search for planning, including a description of the
modified version of the uct algorithm (Kocsis and Szepesvári, 2006) that we
use for planning. In Section 3.2, I present the parallel architecture for real time
action, which puts model learning, planning, and acting on three parallel threads,
such that actions can be taken as fast as required without being constrained by
how long model updates or planning take. Finally, I summarize the chapter in
Section 3.3.

In this book, I introduce texplore, a sample-efficient model-based real time
RL algorithm. When learning on robots, agents typically have very few samples
to learn since the samples may be expensive, dangerous, or time-consuming.
Therefore, learning algorithms for robots must be greedier than typical meth-
ods to exploit their knowledge in the limited time they are given. Since these
algorithms must perform limited exploration, their exploration must be efficient
and target state-actions that may be promising for the final policy. texplore
achieves high sample efficiency by 1) utilizing the generalization properties of
decision trees in building its model of the MDP, and 2) using random forests of
those tree models to limit exploration to states that are promising for learning
a good (but not necessarily optimal) policy quickly, instead of exploring more
exhaustively to guarantee optimality. These two components constitute the key
insights of the algorithm, and are explained in Chapter 4. Modifications to the
basic decision tree model enable texplore to operate in domains with contin-
uous state spaces as well as domains with action or observation delays.

The other key feature of the algorithm is that it can act in real time, at the
frequencies required by robots (typically 5 - 20 Hz). For example, an RL agent
controlling an autonomous vehicle must provide control signals to the gas and
brake pedals immediately when a car in front of it slams on its brakes; it cannot
stop to “think” about what to do. An alternative approach for acting in real time
would be to learn off-line and then follow the learned policy in real time after the
fact. However, it is desirable for the agent to be capable of learning on-line in-situ
for the lifetime of the robot, adapting to new states and situations without pauses
for computation. texplore combines a multi-threaded architecture with Monte

* This chapter contains material from two publications: (Hester et al., 2012; Hester
and Stone, 2012b).

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 25

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_3, c© Springer International Publishing Switzerland 2013
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Algorithm 3.1. Sequential Model-Based Architecture

1: Input: S,A � S: state space, A: action space
2: Initialize M to empty model
3: Initialize policy π randomly
4: Initialize s to a starting state in the MDP
5: loop
6: Choose a← π(s)
7: Take action a, observe r, s′

8: M⇒update-model(〈s, a, s′, r〉) � Update model M with experience
9: π ← plan-policy(M) � Exact planning on updated model
10: s← s′

11: end loop

Carlo Tree Search (mcts) to provide actions in real time, by performing the
model learning and planning in background threads while actions are returned
in real time.

In this chapter, I introduce texplore’s parallel architecture, enabling it to
return actions in real time, addressing Challenge 4 of the RL for Robotics Chal-
lenges. Most current model-based RL methods use a sequential architecture such
as the one shown in Figure 2.3 in Chapter 2. Pseudo-code for the sequential ar-
chitecture is shown in Algorithm 3.1. In this sequential architecture, the agent
receives a new state and reward; updates its model with the new transition
〈s, a, s′, r〉 (i.e. by updating a tabular model or adding a new training exam-
ple to a supervised learner); plans exactly on the updated model (i.e. by com-
puting the optimal policy with a method such as value iteration (Sutton and
Barto, 1998) or prioritized sweeping (Moore and Atkeson, 1993)); and returns
an action from its policy. Since both the model learning and planning can take
significant time, this algorithm is not real time. Alternatively, the agent may
operate in batch mode (updating its model and planning on batches of experi-
ences at a time), but this approach requires long pauses for the batch updates to
be performed. Making the algorithm real time requires two modifications to the
standard sequential architecture: 1) utilizing sample-based approximate plan-
ning (presented in Section 3.1) and 2) developing a novel parallel architecture
(presented in Section 3.2). I later evaluate this planning method and parallel
architecture in comparison with other approaches in Section 5.4.

3.1 Monte Carlo Tree Search (MCTS) Planning

The first component for providing actions in real time is to use an anytime al-
gorithm for approximate planning, rather than performing exact planning using
a method such as value iteration or prioritized sweeping. This section describes
texplore’s use of uct for approximate planning as well as the modifications
we have made to the algorithm. The standard uct algorithm was presented
in Section 2.2.4, but here we have modified uct to use λ-returns, generalize
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values across depths in the search tree, maintain value functions between selected
actions, and work in continuous domains. All of these changes are described in
detail below.

texplore follows the approach of Silver et al. (2008) and Walsh et al. (2010)
(among others) in using a sample-based planning algorithm from the mcts fam-
ily (such as Sparse Sampling (Kearns et al., 1999) or uct (Kocsis and Szepesvári,
2006)) to plan approximately. These sample-based planners use a generative
model to sample ahead from the agent’s current state, updating the values of
the sampled actions. These methods can be more efficient than dynamic pro-
gramming approaches such as value iteration or policy iteration in large domains
because they focus their updates on states the agent is likely to visit soon rather
than iterating over the entire state space. While prioritized sweeping (Moore and
Atkeson, 1993) improves upon the efficiency of value iteration by propagating
value backups backwards through the state space, it still iterates over much of
the state space rather than focusing computation on the states the agent is likely
to visit soon.

The particular mcts method that texplore uses is a variant of uct (Kocsis
and Szepesvári, 2006), which was presented in Algorithm 2.3 in Chapter 2. Our
variation of uct, called uct(λ), is shown in Algorithm 3.2 and uses λ-returns,
similar to the td-search algorithm (Silver et al., 2012). uct maintains visit
counts for each state to calculate confidence bounds on the action-values. uct
differs from other mcts methods by sampling actions more greedily by using the
ucb1 algorithm (Auer et al., 2002), shown on Line 29. uct selects the action with
the highest upper confidence bound (with ties broken uniformly randomly). The
upper confidence bound is calculated using the visit counts, c, to the state and
each action, as well as the range of possible discounted returns in the domain,
rmax−rmin

1−γ . Selecting actions this way drives the agent to concentrate its sampling
on states with the best values, while still exploring enough to find the optimal
policy.

uct samples a possible trajectory from the agent’s current state. On Line 30
of Algorithm 2.3, the model is queried for a prediction of the next state and
reward given the state and selected action (query-model is described in detail
later in Chapter 4 and shown in Algorithm 4.1). uct continues sampling forward
from the given next state. This process continues until the sampling has reached
a terminal state or the maximum search depth, maxDepth. Then the algorithm
updates the values of all the state-actions encountered along the trajectory. In
normal uct, the return of a sampled trajectory is the discounted sum of rewards
received on that trajectory. The value of the initial state-action is updated to-
wards this return, completing one rollout. The algorithm does many rollouts to
obtain an accurate estimate of the values of the actions at the agent’s current
state. uct is proven to converge to an optimal value function with respect to
the model at a polynomial rate as the number of rollouts goes to infinity (Kocsis
and Szepesvári, 2006).

We have modified uct to update the state-actions using λ-returns, which
average rewards received on the simulated trajectory with updates towards the
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estimated values of the states that the trajectory reached (Sutton and Barto,
1998). Informal experiments showed that using intermediate values of λ (0 <
λ < 1) provided better results than using the default uct without λ-returns.

In addition to using λ-returns, we have also modified uct to generalize values
across depths in the tree, since the value of a state-action in an infinite horizon
discounted MDP is the same no matter when in the search it is encountered
(due to the Markov property). One possible concern with this approach is that
states at the bottom of the search tree may have poor value estimates because
the search does not continue for many steps after reaching them. However, these
states are not severely affected, since the λ-returns update them towards the
values of the next states.

Most importantly, uct is an anytime method, and will return better poli-
cies when given more time. By replacing the plan-policy call on Line 9 of
Algorithm 3.1, which performs exact planning, with plan-policy from Algo-
rithm 2.3, which performs approximate planning, the sequential architecture
could be made faster. texplore’s real time architecture, which is presented
later in Algorithm 3.4, also uses uct(λ) for planning.

uct(λ) maintains visit counts for each state and state-action to determine
confidence bounds on its action-values. When the model that uct(λ) is plan-
ning on changes, its value function is likely to be incorrect for the updated model.
Rather than re-planning entirely from scratch, the value function uct(λ) has
already learned can be used to speed up the learning of the value function for
the new model. texplore’s approach to re-using the previously learned value
function is similar to the way Gelly and Silver (2007) incorporate off-line knowl-
edge of the value function by providing an estimate of the value function and a
visit count that represents the confidence in this value function. When uct(λ)’s
model is updated, the visit counts for all states are reset to a lower value that
encourages uct(λ) to explore again, but still enables uct(λ) to take advantage
of the value function learned for the previous model. The uct-reset proce-
dure does so by resetting the visit counts for all state-actions to resetCount,
which will be a small non-zero value. If the exact effect the change of the model
would have on the value function is known, resetCount could be set based on
this change, with higher values for smaller effects. However, texplore does not
track the changes in the model, and even a small change in the model can have
a drastic effect on the value function.

Some modifications must be made to use uct(λ) on domains with continuous
state spaces. One advantage of using uct(λ) is that rather than planning ahead
of time over a discretized state space, uct(λ) can perform rollouts through
the exact real-valued states the agent is visiting, and query the model for the
real-valued state predictions. However, it cannot expect to ever visit the same
real-valued state twice, nor can it maintain a table of values for an infinite
number of states. Instead, it discretizes the state on Line 28 by discretizing each
state feature into nBinsi possible values. Since the algorithm is only using the
discretization for the value function update, and not for the modeling or planning
rollouts, it works well even on fine discretizations in high-dimensional domains.
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Algorithm 3.2. plan: uct(λ)

1: procedure uct-init(S,A,maxDepth, resetCount, rmax, nBins,minV als,maxV als)
2: Initialize Q(s, a) with zeros for all s ∈ S, a ∈ A
3: Initialize c(s, a) with ones for all s ∈ S, a ∈ A � To avoid divide-by-zero
4: Initialize c(s) with zeros for all s ∈ S � Visit Counts
5: end procedure

6: procedure plan-policy(M, s) � Approx. planning from state s using model M
7: uct-reset()
8: while time available do
9: uct-search(M,s, 0)
10: end while
11: end procedure

12: procedure uct-reset() � Lower confidence in v.f. since model changed
13: for all sdisc ∈ Sdisc do � For all discretized states
14: if c(sdisc) > resetCount · |A| then
15: c(sdisc)← resetCount · |A| � resetCount per action
16: end if
17: for all a ∈ A do
18: if c(sdisc, a) > resetCount then

19: c(sdisc, a)← resetCount
20: end if
21: end for
22: end for
23: end procedure

24: procedure uct-search(M, s, d) � Rollout from state s at depth d using model M
25: if terminal or d = maxDepth then
26: return 0
27: end if
28: sdisc ← discretize(s, nBins,minV als,maxV als) � Discretize state s

29: a← argmaxa′
(
Q(sdisc, a

′) + 2 · rmax−rmin
1−γ

·
√

log c(sdisc)
c(sdisc,a

′)

)
� Ties broken randomly

30: (s′, r)←M⇒query-model(s, a) � Algorithm 4.1
31: sampleReturn← r + γuct-search(M, s′, d+ 1) � Continue rollout from state s′
32: c(sdisc)← c(sdisc) + 1 � Update counts
33: c(sdisc, a)← c(sdisc, a) + 1
34: Q(sdisc, a

′)← α · sampleReturn+ (1− α) ·Q(sdisc, a
′)

35: return λ · sampleReturn+ (1− λ) ·maxa′ Q(sdisc, a
′) � Use λ-returns

36: end procedure

Then the algorithm updates the value and visit counts for the discretized state
on Lines 32 to 34.

3.1.1 Domains with Delay

We are particularly interested in applying texplore to robots and other phys-
ical devices, but one common problem with these devices is that their sensors
and actuators have delays. For example, a robot’s motors may be slow to start
moving, and thus the robot may still be executing (or yet to execute) the last
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Algorithm 3.3. uct(λ) with delays

1: procedure search(M, s, history, d) � Rollout from state s with history
2: if terminal or d = maxDepth then
3: return 0
4: end if
5: sdisc ← discretize(s, nBins,minV als,maxV als)

6: a← argmaxa′
(
Q(sdisc, history, a

′) + 2 · rmax
1−γ

·
√

log c(sdisc,history)
c(sdisc,history,a

′)

)

7: augState← 〈s, history〉
8: (s′, r)←M⇒query-model(augState, a)
9: push(history, a) � Keep last k actions
10: if length(history) > k then
11: pop(history)
12: end if
13: sampleReturn← r + γsearch(M, s′, history, d+ 1)
14: c(sdisc, history)← c(sdisc, history) + 1 � Update counts
15: c(sdisc, history, a)← c(sdisc, history, a) + 1
16: Q(sdisc, history, a

′)← α · sampleReturn+ (1− α) ·Q(sdisc, history, a
′)

17: return λ · sampleReturn+ (1− λ) ·maxa′ Q(sdisc, history, a
′)

18: end procedure

action given to it when the algorithm selects the next action. This delay is im-
portant, as the algorithm must take into account what the state of the robot will
be when the action actually gets executed, rather than the state of the robot
when the algorithm makes the action selection. texplore should model these
delays and handle them efficiently.

Modeling and planning on domains with delay can be done by taking advan-
tage of the k-Markov property (Katsikopoulos and Engelbrecht, 2003). While
the next state and reward in these domains is not Markov with respect to the
current state, it is Markov with respect to the previous k states. texplore takes
advantage of the k-Markov property for planning by slightly modifying uct(λ).
Algorithm 3.3 shows the modified uct(λ)-search algorithm. In addition to the
agent’s state, it also takes the history of k actions. While performing the rollout,
it updates the history at each step (Lines 9 to 12), and uses the augmented state
including history when querying the model (Line 8). States may have different
optimal actions when reached with a different history, as different actions will
be applied before the currently selected action takes place. This problem can be
remedied by planning over an augmented state space that incorporates the k-
action histories, shown in the visit count and value function updates in Lines 14
to 16. Katsikopoulos and Engelbrecht (2003) have shown that solving this aug-
mented MDP provides the optimal solution to the delayed MDP. However, the
state space increases by a factor of |A|k. While this increase would greatly in-
crease the computation required by a planning method such as value iteration
that iterates over all the states, uct(λ) focuses its updates on the states (or aug-
mented state-histories) the agent is likely to visit soon, and thus its computation
time is not greatly affected (demonstrated empirically in Section 5.3). Note that
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with k = 0, the history is ∅ and the action thread and uct(λ) search meth-
ods presented here exactly match the ones presented in Algorithms 3.4 and 2.3,
respectively. Later, in Section 5.3, we evaluate the performance of texplore’s
approach for handling delays in comparison with other approaches.

This version of uct(λ) planning on the augmented state space is similar to the
approach taken for planning inside the mc-aixi algorithm (Veness et al., 2011).
The difference is that their algorithm performs rollouts over a history of previous
state-action-reward sequences, while texplore uses the current state along with
only the previous k actions. One thing to note is that while texplore’s approach
is intended to address delays, it can also be used to address partial observability,
if a sufficient k is chosen such that the domain is k-Markov.

Not only does this k-Markov approach to handling delay work well with uct

planning, it also works with our model learning approach. Later, in Section 4.1.2,
we will describe how this approach applies to model learning.

3.2 Parallel Architecture

In addition to using mcts for planning, we have developed a multi-threaded
architecture, called the Real Time Model Based Architecture (rtmba), for the
agent to learn while acting in real time. Since update-model and plan-policy

can take significant computation (and thus also wall-clock time), they are placed
in parallel threads in the background, as shown in Figure 3.1. A third thread
selects actions as quickly as dictated by the robot control loop, while still being
based on the most recent models and plans available. Pseudo-code for all three
threads is shown in Algorithm 3.4. This architecture is general, allowing for any
type of model learning method, and only requiring any method from the mcts

family for planning. In addition to enabling real time actions, this architecture
enables the agent to take full advantage of multi-core processors by running each
thread on a separate core. Similar approaches have been taken to parallelize
mcts planning and acting (Gelly et al., 2008; Chaslot et al., 2008; Méhat and
Cazenave, 2011) by performing multiple rollouts in parallel, but they have not
incorporated parallel model learning as well.

For the three threads to operate properly, they must share information while
avoiding race conditions and data inconsistencies. The model learning thread
must know which new transitions to add to its model, the planning thread must
access the model being learned and know what state the agent is currently at,
and the action thread must access the policy being planned. rtmba uses mutex
locks to control access to these variables, as summarized in Table 3.1.

The action thread (Lines 26 to 35) receives the agent’s new state and reward,
and adds the new transition experience, 〈s, a, s′, r〉, to the updateList to be
updated into the model. It then saves the agent’s current state in agentState
for use by the planner and returns the action determined by the agent’s value
function, Q. Since updateList, agentState, and Q are protected by mutex locks,
it is possible that the action thread could have to wait for a mutex lock before it
could proceed. However, updateList is only used by the model learning thread
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Fig. 3.1. A diagram of the parallel real time architecture for model-based RL

between model updates, agentState is only accessed by the planning thread
between each rollout, and Q is under individual locks for each state. Thus, any
given state is freely accessible most of the time. When the planner does happen
to be using the same state the action thread wants, it releases it immediately
after updating the values for that state. Therefore, there is never a long wait for
mutex locks, and the action thread can return actions quickly when required.

The model learning thread (Lines 9 to 20) checks if there are any experiences
in updateList to be added to its model. If there are, it makes a copy of its
model to tmpModel, updates tmpModel with the new experiences, and clears
updateList. Then it resets the planning visit counts to resetCount to lower the
planner’s confidence in the out-dated value function, which was calculated on an
old model. Finally, on Line 18, it replaces the original model with the updated
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Algorithm 3.4. Real Time Model-Based Architecture (rtmba)

1: procedure Init � Initialize variables
2: Input: S,A, nBins,minV als,maxV als � nBins is the # of discrete values

for each feature
3: Initialize s to a starting state in the MDP
4: agentState← s
5: updateList← ∅
6: Initialize M to empty model
7: uct-init() � Initialize Planner
8: end procedure

9: procedure ModelLearningThread � Model Learning Thread
10: loop � Loop, adding experiences to model
11: while updateList = ∅ do
12: Wait for experiences to be added to list
13: end while
14: tmpModel←M⇒copy � Make temporary copy of model
15: tmpModel⇒update-model(updateList) � Update model tmpModel

(Alg 4.1)
16: updateList← ∅ � Clear the update list
17: uct-reset() � Less confidence in current values
18: M ← tmpModel � Swap model pointers
19: end loop
20: end procedure

21: procedure PlanningThread � Planning Thread
22: loop � Loop forever, performing rollouts
23: uct-search(M,agentState,0) � Algorithm 2.3
24: end loop
25: end procedure

26: procedure ActionThread � Action Selection Thread
27: loop
28: sdisc ← discretize(s, nBins,minV als,maxV als) � Discretize state s
29: Choose a← argmaxaQ(sdisc, a)
30: Take action a, Observe r, s′

31: updateList← updateList ∪ 〈s, a, s′, r〉 � Add experience to update list
32: s← s′

33: agentState← s � Set agent’s state for planning rollouts
34: end loop
35: end procedure

copy. The other threads can continue accessing the original model while the
copy is being updated, since only the swapping of the models requires locking
the model mutex. After updating the model, the model learning thread repeats,
checking for new experiences to add to the model.

The model learning thread can call any type of model on Line 15, such as a
tabular model (Brafman and Tennenholtz, 2001), a Gaussian Process regression
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Table 3.1. This table shows all the variables that are protected under mutex locks in
the real time architecture, along with their purpose and which threads use them

Variable Threads Use

updateList Action, Store experiences to
Model Learning be updated into model

agentState Action, Set current state
Planning to plan from

Q(s, a) Action, Update policy used
Planning to select actions

M Planning, Latest model
Model Learning to plan on

model (Deisenroth and Rasmussen, 2011), or the random forest model used by
texplore, which is described in Chapter 4. Depending on how long the model
update takes and how fast the agent is acting, the agent can add tens or hundreds
of new experiences to its model at a time, or it can wait for long periods for a
new experience. When adding many experiences at a time, full model updates
are not performed between each individual action. In this case, the algorithm’s
sample efficiency is likely to suffer compared to that of sequential methods, but
in exchange, it continues to act in real time.

Though texplore uses a variant of uct, the planning thread can use
any MCTS planning algorithm. The thread retrieves the agent’s current state
(agentState) and its planner performs a rollout from that state. The rollout
queries the latest model, M , to update the agent’s value function. The thread
repeats, continually performing rollouts from the agent’s current state. With
more rollouts, the algorithm’s estimates of action-values improve, resulting in
more accurate policies. Even if very few rollouts are performed from the current
state before the algorithm returns an action, many of the rollouts performed from
the previous state should have gone through the current state (if the model is
accurate), giving the algorithm a good estimate of the state’s true action-values.

3.3 Chapter Summary

In this chapter, I have presented texplore’s parallel real time architecture for
model-based RL. This architecture parallelizes model learning, planning, and
acting into three separate threads so that action selection can happen in real
time, even if model learning or planning take more computation time. The ar-
chitecture utilizes a sample-based anytime planning method, which improves as
it is given time for more planning rollouts. In the next chapter, I will present the
model learning method that is used within this architecture in the texplore

algorithm.
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This chapter presents the texplore algorithm, which uses the architecture pre-
sented in the previous chapter. First, texplore’s model learning approach is
presented in Section 4.1. texplore utilizes a factored model, making a separate
prediction about the next value of each state feature and reward. It builds decision
trees to model each feature, enabling it to generalize the effects of actions across
states. In Section 4.1.1, I describe how texplore’s decision tree models can
be extended to regression tree models to model domains with continuous state.
Next, in Section 4.1.2 I describe how texplore’s trees can model domains with
sensor or actuator delays by providing them with the agent’s previous k actions
as additional inputs. I describe how to modify texplore’s model for domains
with dependent feature transitions in Section 4.1.3.

Section 4.2 presents texplore’s approach to performing limited, targeted ex-
ploration. In texplore’s approach, the agent acts greedily with respect to a
random forest model, which aggregates multiple decision tree models together.
This approach enables the agent to balance each of its hypotheses of the true
dynamics of the domain in a natural way. Then, I describe how the various
components presented in this chapter along with the architecture from Chapter 3
can be combined into the full texplore algorithm. Finally, I summarize the
chapter in Section 6.5.

While the parallel architecture presented in the previous chapter enables tex-
plore to operate in real time, the algorithm must learn the task with high sam-
ple efficiency. This objective requires the agent to learn a model of the transition
and reward functions in the domain very quickly, and explore intelligently to im-
prove that model. I present texplore’s model learning in the next section, and
its exploration in Section 4.2.

4.1 Model Learning

To learn a high quality behavior in few samples, texploremust learn an accurate
model of the domain quickly. Although tabular models are a common approach,
they require the agent to take every action from each state once (or multiple times
in stochastic domains), since they learn a prediction for each state-action sepa-
rately. Instead, texplore uses supervised learning techniques to generalize the

* This chapter contains material from two publications: (Hester and Stone, 2010,
2012b).

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 35

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_4, c© Springer International Publishing Switzerland 2013
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effects of actions across states, as has been done by some previous algorithms (De-
gris et al., 2006; Jong and Stone, 2007). Since the relative transition effects of ac-
tions are similar across states in many domains, texplore follows the approach
of Leffler et al. (2007) and Jong and Stone (2007) in predicting relative transitions
rather than absolute outcomes. In this way, model learning becomes a supervised
learning problem with (s, a) as the input and s′ − s and r as the outputs to be
predicted. Model learning is sped up by the ability of the supervised learner to
make predictions for unseen or infrequently visited states.

Like Dynamic Bayesian Network (dbn) based RL algorithms (Guestrin et al.,
2002; Strehl et al., 2007; Chakraborty and Stone, 2011), the algorithm learns a
model of the factored domain by learning a separate prediction for each of the
n state features and the reward, as shown in Algorithm 4.1. The MDP model
is made up of n models to predict each feature (featModel1 to featModeln)
and a model to predict reward (rewardModel). Each model can be queried
for a prediction for a particular state-action (featModel⇒ query(〈s, a〉)) or
updated with a new training experience (featModel⇒update(〈s, a, out〉)). In
texplore, each of these models is a random forest, shown later in Algorithm 4.3.

Algorithm 4.1 shows texplore’s model learning algorithm. It starts by cal-
culating the relative change in the state (srel) on Line 12, then it updates the
model for each feature with the new transition on Line 14 and updates the reward
model on Line 16. Like dbn-based algorithms, texplore assumes that each of
the state variables transitions independently (however, I present an extension
for dependent feature transitions in Section 4.1.3). Therefore, the separate fea-
ture predictions can be combined to create a prediction of the complete state
vector. The agent samples a prediction of the value of the change in each feature
on Line 23 and adds this vector, srel, to s to get a prediction of s′. The agent
then samples a prediction of reward (Line 27) and these sampled predictions are
returned for planning with mcts.

We tested the applicability of several different supervised learning methods to
the task of learning an MDP model in previous work (Hester and Stone, 2009a).
Decision trees, committees of trees, random forests, support vectormachines, neu-
ral networks, nearest neighbor, and tabular models were compared on their ability
to predict the transition and reward models across three toy domains after being
given a random sample of experiences in the domain. Decision tree based models
(single decision trees, committees of trees, and random forests) consistently pro-
vided the best results. Decision trees generalize broadly and refine their predic-
tions to smaller regions as they learn. Starting with a broad representation and
refining it over time has been shown to be effective in other areas such as value
function approximation (Munos and Moore, 2002). Another reason decision trees
performwell is that in many domains, the state space can be split into regions with
similar dynamics. For example, on a vehicle, the dynamics can be split into differ-
ent regions corresponding to which gear the car is in. Another advantage of using
decision trees is that they can learn context-specific feature independence, meaning
that they can learn that a prediction is independent of some features given that
other features have specific values (Boutilier et al., 2000).
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Algorithm 4.1. model

1: procedure init-model(n) � n is the number of state variables
2: for i = 1→ n do
3: featModeli⇒init() � Init model to predict feature i
4: end for
5: rewardModel⇒init() � Init model to predict reward
6: end procedure

7: procedure update-model(list) � Update model with list of experiences
8: for all 〈s, a, s′, r〉 ∈ list do
9: srel ← s′ − s � Calculate relative effect
10: for all sreli ∈ srel do
11: featModeli⇒update(〈s, a〉 , sreli ) � Train a model for each feature
12: end for
13: rewardModel⇒update(〈s, a〉 , r) � Train a model to predict reward
14: end for
15: end procedure

16: procedure query-model(s, a) � Get prediction of 〈s′, r〉 for s, a
17: for i = 1→ length(s) do
18: sreli ← featModeli⇒query(〈s, a〉) � Sample a prediction for feature i
19: end for
20: s′ ← s+

〈
srel1 , ..., sreln

〉
� Get absolute next state

21: r ← rewardModel⇒query(〈s, a〉) � Sample r from distribution
22: return 〈s′, r〉 � Return sampled next state and reward
23: end procedure

Based on these results, texplore uses decision trees to learn models of the
transition and reward functions. The decision trees are learned using an imple-
mentation of the C4.5 algorithm (Quinlan, 1986). The inputs to the decision
trees are treated both as numerical and categorical inputs, meaning both splits
of the type if x = 3 and if x > 3 are allowed. The C4.5 algorithm chooses
the split at each node of the tree based on information gain. While the C4.5
algorithm builds entire trees in batch updates, texplore’s implementation in-
cludes a modification to make the algorithm incremental. Each tree is updated
incrementally by checking at each node whether the new experience changes the
optimal split in the tree. If it does, the tree is re-built from that node down. If
the new experience would not change the tree, then the tree remains unchanged.

The decision trees are the supervised learner that is called on Lines 14, 16,
23, and 27 of Algorithm 4.1 to predict each feature and reward. Each tree makes
predictions for the particular feature or reward it is given based on a vector
containing the n features of the state s along with the action a: 〈s1, s2, ..., sn, a〉.
This same vector is used when querying the trees for the change in each feature
on Line 23 and for reward on Line 27.

Figure 4.1 shows an example decision tree predicting the relative change in
the x variable of the agent in the given gridworld domain. The decision tree can
split on both the actions and the state of the agent, allowing it to split the state
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space up into regions where the transition dynamics are the same. Each leaf of
the tree can make probabilistic predictions based on the ratio of experienced
outcomes in that leaf. The grid is shaded to match the leaves on the left side of
the tree, making predictions for when the agent takes the east action. The tree
is updated on-line while the agent is acting in the MDP. At the start, the tree
will be empty, and then it will generalize broadly, making predictions about large
parts of the state space, such as what the east orwest actions do. For unvisited
state-actions, the tree will predict that the outcome is the same as that of similar
state-actions (ones in the same leaf of the tree). It will continue to refine itself
until it has leaves for individual states where the transition dynamics differ from
the global dynamics.

4.1.1 Models of Continuous Domains

While decision trees work well for discrete domains, texplore needs to be capa-
ble of modeling continuous domains to meet Challenge 2 of the RL for Robotics
Challenges. Discretizing the domain is one option, but important information
is lost in the discretization. Not only is noise added by discretizing the contin-
uous state, but the discrete model does not model the function underlying the
dynamics and thus cannot generalize predictions to unseen states very well.

To extend the discrete decision trees to the continuous case, texplore uses
linear regression trees, learned using the M5 algorithm (Quinlan, 1992). The M5
algorithm builds these decision trees in a similar manner to the C4.5 algorithm,
greedily choosing each split to reduce the variance on each side. Once the tree is
fully built, it is pruned by replacing some tree splits with linear regressionmodels.
Going up the tree from the leaves, a sub-tree is replaced by a linear regression
model if the regressionmodel has smaller prediction error on the training set than
the sub-tree. The result is a smaller tree with regressionmodels in each leaf, rather
than each leaf making a discrete class prediction. The linear regression trees will fit
a piecewise linear model to the dynamics of the domain. Similar trees have been
used to approximate the value function (Munos and Moore, 2002; Ernst et al.,
2005), but not for approximating the transition and reward model of a domain.

Figure 4.2 shows an example of how the regression trees can result in simpler
models that are faster to build and make more accurate predictions than discrete
decision trees. Figure 4.2(a) shows the predictions of the discrete tree approxi-
mating the underlying function. The model requires examples of the output at
each discrete level to make an accurate prediction and cannot generalize beyond
these seen examples. In contrast, the regression trees make a piecewise linear
prediction, with each leaf predicting a linear function. This type of model can
fit the data more closely and makes predictions for unseen parts of the space by
extrapolating the linear function from nearby regions.

4.1.2 Domains with Delays

As described in Section 3.1.1, one of texplore’s objectives is to address Chal-
lenge 3 of working well in domains with sensor or actuator delays. Addressing
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(a) Two room gridworld domain.

(b) Decision tree model predicting the change in the
x feature (Δx) based on the current state and action.

Fig. 4.1. This figure shows the decision tree model learned to predict the change in
the x feature (or Δx). The two room gridworld is shaded to match the corresponding
leaves of the left side of the tree where the agent has taken the east action. Each
rectangle represents a split in the tree and each rounded rectangle represents a leaf of
the tree, showing the probabilities of a given value for Δx. For example, if the action
is east and x = 14, the agent is hitting the right wall. This input falls into the leaf on
the top left, where the probability of Δx = 0 is 1.
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(a) Discrete Trees. (b) Regression Trees.

Fig. 4.2. An example of a function (the thick green line) estimated by 4.2(a): discrete
trees and 4.2(b): regression trees. Note that the regression tree is able to fit the function
better than the discrete tree.

this challenge is important to make texplore applicable to many physical sys-
tems such as robots. Similar to the approach taken in Section 3.1.1 to perform
uct planning with delays, we will take a k-Markov approach to handling delay
in the model learning as well.

Modeling and planning on domains with delay can be done by taking advan-
tage of the k-Markov property (Katsikopoulos and Engelbrecht, 2003). While
the next state and reward in these domains is not Markov with respect to the
current state, it is Markov with respect to the previous k states. texplore’s
approach to addressing delays is inspired by the u-tree algorithm (McCallum,
1996), using data from the last k experiences. The key insight of u-tree is to
allow its decision trees to split on previous states and actions in addition to the
current state and action, enabling it to work in partially observable domains
where the state alone is not enough to make an accurate prediction.

texplore adopts the same approach for delayed domains. The action thread
is modified to keep a history of the last k actions (shown in Algorithm 4.2), which
is sufficient to make the domain Markov. In addition to the current state and ac-
tion, the thread appends the past k actions as inputs for each decision tree to use
for its predictions. Any of these inputs can be used for splits in the decision tree.
One of the advantages of decision trees over other models is that they can choose
relevant inputs whenmaking splits in the tree. Thus, even if the value of k input to
the algorithm is higher than the true delay in the domain, the tree can ignore the
extra inputs and still build an accurate model. This benefit is demonstrated em-
pirically in Section 5.3. Model learning approaches based on prediction suffix trees
are similar, but require splits to be made in order on the most recent observations
and actions first (Willems et al., 1995; Veness et al., 2011).

Addressing action delays by utilizing k-action histories integrates well with
texplore’s approaches for model learning and planning. texplore’s decision
tree models select which delayed action inputs provide the most information gain
while making splits in the tree, and can ignore the delayed actions that are not
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Algorithm 4.2. Action Thread with Delays

1: procedure ActionThread � Action Selection Thread
2: history ← ∅
3: loop
4: sdisc ← discretize(s, nBins,minV als,maxV als)
5: Choose a← argmaxaQ(sdisc, history, a) � Values of state-history-actions
6: Take action a, Observe r, s′

7: augState← 〈s, history〉 � Augment state with history
8: updateList← updateList ∪ 〈augState, a, s′, r〉
9: push(history, a) � Keep last k actions
10: if length(history) > k then
11: pop(history)
12: end if
13: s← s′

14: agentState← s � Set agent’s state for planning rollouts
15: end loop
16: end procedure

relevant for the task at hand. In addition, as shown in Section 3.1.1, planning
with uct(λ) is easily modified to track histories while performing rollouts; plan-
ning with a method such as value iteration would require the agent to plan over
a state space that is |A|k times bigger. Thus, using k-action histories for delays
is one example of how the various components of texplore are synergistic.

4.1.3 Dependent Feature Transitions

Thus far, texplore’s model learning approach has assumed that it can predict
each state feature independently of the others, based on the agent’s previous state
and action. This assumption simplifies the model learning problem and reduces
the number of experiences required for the agent to learn an accurate model
and is a common assumption made by all factored RL methods (Guestrin et al.,
2002; Degris et al., 2006; Strehl et al., 2007; Chakraborty and Stone, 2011).While
this independence assumption proves useful in speeding up learning, it may not
always be valid. In some domains, subsets of features may transition dependently
with each other and thus cannot be accurately predicted independently. In these
cases, the models learned by methods that assume feature independence will be
wrong and consequently could lead to low-value policies.

As described in Section 2.2.3, typically, the DBN learned by a factored model
predicts each feature independently, as shown in Figure 2.4(b). To model de-
pendent transitions, we add synchronic arcs between the predicted features, as
illustrated in Figure 4.3. Now the value of each feature is dependent on its par-
ents in the previous time step as well as the predicted value of some of the other
features. Since the features are correlated in their changes, there is no order on
them, and the synchronic arcs can be placed in any order. We arbitrarily order
the synchronic arcs in the same order the features are given from the domain.
Later, in Section 5.5, we empirically demonstrate that the ordering does not
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Fig. 4.3. DBN model with added synchronic arcs

matter. This solution applies not only to texplore, but also to other methods
for factored domains that make this independence assumption (Guestrin et al.,
2002; Degris et al., 2006; Strehl et al., 2007; Chakraborty and Stone, 2011).

Adding these synchronic arcs to the structure of the DBN model changes
what inputs each model is given. For example, texplore’s decision tree models
are typically given the features of the previous state and the action as inputs
and can make splits and decisions based on any of these features. In this new
model, they are also given the values/predictions for the lower-ordered features
of the current state, and can split on these features as well. However, if these
features are not required, the tree model does not have to split on them. So while
texplore’s models are being given additional inputs, they may not be used and
thus the new model does not necessarily require the agent to explore more or
use more samples than it would otherwise (shown empirically in Section 5.5).

For factored methods using DBN models, applying the DBN with synchronic
arcs is a simple change. When training a model to predict feature s′i, the original
DBN model trains on the following input (the previous state and k actions):

〈s1, ..., sn, at, ..., at−k〉 . (5)

For clarity, we will assume k = 0 in the following equations and only consider at,
but these models all extend to the case where k > 0 and instead of a dependence
on at they are dependent on at, ..., at−k. The input for the DBN model with
synchronic arcs additionally includes the values of current features with index
< i:

〈
s1, ..., sn, at, s

′
1, ..., s

′
i−1

〉
. (6)
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When these models are making predictions, the values of the current features, s′1
to s′i−1, are replaced by their predicted values. When using the DBN with added
synchronic arcs, the probability of each feature s′i is dependent on the predicted
values of the lower indexed features in addition to the previous state and action:

P (s′i|s, at, s′1, ..., s′i−1). (7)

The probability of the vector s′ being 〈s′1, ..., s′n〉 given 〈s, at〉 is:
P (s′1|s, at) · P (s′2|s, at, s′1) · ... · P (s′n|s, at, s′1, ..., s′n−1). (8)

The prediction for the original DBN model without synchronic arcs would be:

P (s′1|s, at) · P (s′2|s, at) · ... · P (s′n|s, at). (9)

Thus when using the DBN with added synchronic arcs, the prediction of each
feature is dependent on the predicted values of all the lower indexed features,
while the basic DBN model predicts each feature completely independently.

4.2 Exploration

Our goal is to perform learning on robots, where taking hundreds or thousands
of actions is impractical. Therefore, our learning algorithm needs to limit the
amount of exploration it performs so that it can exploit its knowledge within
this limited time frame. On such domains with a constrained number of actions,
it is better for the agent to quickly converge to a good policy than to explore more
exhaustively to learn the optimal policy. With this idea in mind, our algorithm
performs limited exploration, which is targeted toward state-actions that appear
promising for the final policy, while avoiding state-actions that are unlikely to
be useful for the final policy.

Using decision trees to learn the model of the MDP provides texplore with
a model that can be learned quickly with few samples. However, each tree repre-
sents just one possible hypothesis of the true model of the domain, which may be
generalized incorrectly. Rather than planning with respect to this single model,
our algorithm plans over a distribution of possible tree models (in the form of a
random forest) to drive exploration. A random forest is a collection of decision
trees, each of which differ because they are trained on a random subset of expe-
riences and have some randomness when choosing splits at the decision nodes.
Random forests have been proven to converge with less generalization error than
individual tree models (Breiman, 2001). Another advantage of random forests
is that their convergence rate is only affected by the number of relevant input
features and not on the number of extraneous noise features (Biau, 2012). When
providing the model the previous k actions to handle delayed domains, or ex-
tra features to handle dependent transitions, this property enables the model to
ignore any unnecessary features without a drop in performance.

Algorithm 4.3 presents pseudo-code for the random forest model. Each of
the m decision trees (tree1 to treem) in the forest can be updated with a new
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Algorithm 4.3. model: Random Forest

1: procedure init(m) � Init forest of m trees
2: for i = 1→ m do
3: treei⇒init() � Init tree i
4: end for
5: end procedure

6: procedure update(in, out) � Update forest with (in, out) example
7: for i = 1→ m do � For m trees in the random forest
8: if rand() ≤ w then � Update each tree with prob. w
9: treei⇒update(in, out)
10: end if
11: end for
12: end procedure

13: procedure query(in) � Get prediction for in
14: i = rand(1,m) � Select a random tree from forest
15: x← treei⇒query(in) � Get prediction from tree i
16: return x � Return prediction
17: end procedure

input-output pair (tree ⇒ update(in, out)) or queried for a prediction for a
given input (tree⇒ query(in)). This algorithm implements the model that
is called on Lines 14, 16, 23, and 27 of Algorithm 4.1. Each tree is trained on
only a subset of the agent’s experiences (〈s, a, s′, r〉 tuples), as it is updated with
each new experience with probability w (Line 8). To increase stochasticity in the
models, at each split in the tree, the best input is chosen from a random subset
of the inputs, with each one removed from this set with probability f . When
uct(λ) requests a prediction from the random forest model for a rollout, it only
needs to return the prediction of a single randomly selected tree in the forest,
which saves some computation.

There are a number of options regarding how to use the m hypotheses of the
domain model to drive exploration. boss (Asmuth et al., 2009) is a Bayesian
method that provides one possible example. boss samples m model hypotheses
from a distribution over possible models. The algorithm plans over actions from
any of the models, enabling the agent to use the most optimistic model for each
state-action. With m models, the value function is calculated as follows, with
the subscripts on Qi, Ri, and Pi representing that they are from model i:

Q(s, a) = max
i

Qi(s, a) (10)

Qi(s, a) = Ri(s, a) + γ
∑

s′
Pi(s

′|s, a)max
a′

Q(s′, a′), (11)

The policy of the agent is then:

π(s) = argmaxaQ(s, a). (12)
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The agent plans over the most optimistic model for each state-action. Since one
of the models is likely to be optimistic with respect to the true environment in
each state, the agent is guaranteed to explore enough to find the optimal policy
in a polynomial number of steps.

Model Based Bayesian Exploration (mbbe) (Dearden et al., 1999) is another
Bayesian method that uses model samples for exploration. It samples and solves
m models to get a distribution over action-values. The action-values for each
model i are:

Qi(s, a) = Ri(s, a) + γ
∑

s′
Pi(s

′|s, a)max
a′

Qi(s
′, a′). (13)

Note that this equation differs from boss in that the next state values are using
the same model i, rather than a value from an optimistic merged model. The
expected value, E[Q(s, a)], for a particular state-action is then the average of
its value for each model. Using the expected action-values, at any given state
the agent has a best action a1 and a second best action a2. mbbe uses the
distribution over action-values to calculate how much the agent’s policy will
improve if it learns that a particular model i is correct:

Gaini(s, a) =

⎧
⎪⎨

⎪⎩

E[Q(s, a2)]−Qi(s, a), if a = a1 and Qi(s, a) < E[Q(s, a2)],

Qi(s, a)− E[Q(s, a1)], if a 	= a1 and Qi(s, a) > E[Q(s, a1)],

0, otherwise.

(14)
The first case is if model i predicts that the value of the best action, a1, is not
as good as expected and is less than the expected value of action a2. The second
case is if model i predicts that another action would have a better value than
a1. In either case the gain is the improvement in the value function for the given
state action pair. This value of perfect information (VPI) for a state-action is
then the average of the gains for that state-action for each model. This value is
added to the expected action-values to calculate the action-values that the agent
maximizes for its policy:

Q(s, a) =
1

m

m∑

i=1

Qi(s, a) +Gaini(s, a). (15)

When the sampled models are optimistic or pessimistic compared to the true
MDP, the agent is encouraged to explore. With an optimistic model, the agent’s
policy would be improved if the model is correct and this improvement is reflected
in the VPI for this model. With a pessimistic model, the agent would be driven
to explore the state-action because it would gain the knowledge that its policy is
poor and should not be followed. Thus, this approach drives the agent to explore
state-actions thoroughly to find the optimal policy.

For the goal of learning on robots, learning in polynomial time is not fast
enough. Both boss and mbbe explore thoroughly; on problems with very large
(or continuous) state-action spaces, they could take many hundreds or thou-
sands of time-consuming, expensive, and possibly dangerous actions to learn a
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policy. The distinguishing characteristic of our approach is that it is greedier
than these methods in order to learn in fewer actions. texplore performs less
exploration than these approaches and thus exploits more of what it has learned.
Since texplore is doing less exploration, the exploration it does perform must
be targeted on state-actions that appear promising. In other words, with such
limited exploration, texplore cannot afford to explore state-actions that may
lead to low-valued outcomes (it decides not to explore such state-actions).

Rather than using exploration bonuses or optimistic models like boss and
mbbe, texplore plans greedily with respect to a distribution of m model hy-
potheses. texplore’s action-values are then:

Q(s, a) =
1

m

m∑

i=1

Ri(s, a) + γ
1

m

m∑

i=1

∑

s′
Pi(s

′|s, a)max
a′

Q(s′, a′). (16)

Each decision tree in the random forest generalizes transitions differently, result-
ing in different hypotheses of the true MDP. As each tree model’s predictions
differ more, the predictions from the aggregate model become more stochastic.
For example, if each of five trees predict a different next state, then the aggre-
gate model will have a uniform distribution over these five possible next states.
The aggregate model includes some probability of transitioning to the states and
rewards predicted by the optimistic models as well as those predicted by the pes-
simistic ones. Thus, planning on the aggregate model makes the agent balance
the likelihood that the transitions predicted by the optimistic and pessimistic
model will occur. The agent will explore towards state-actions that some models
predict to have higher values while avoiding those that are predicted to have low
values.

Another benefit of planning on this aggregate model is that it enables tex-

plore to explore multiple possible generalizations of the domain, as it can ex-
plore state-actions that are promising in any one of the hypotheses in the ag-
gregate model. In contrast, if texplore acted using a single hypothesis of the
task model, then it would not know about state-actions that are only promising
in other possible generalizations of its past experience. Figure 4.4 shows a dia-
gram of how the entire model learning system works. In Section 5.1, we evaluate
texplore’s exploration in comparison with other approaches.

Using an aggregate model provides a few other advantages compared to prior
approaches. The aggregate random forest model provides less generalization er-
ror than simply sampling a single decision tree model and using it (Breiman,
2001). Another advantage of texplore over boss and mbbe is that both of
these methods require more planning, which can take more computation time.
boss must plan over a state space with m times more actions than the true en-
vironment, while mbbe must plan for each of its m different models. In contrast,
texplore plans on a single model with the original |S||A| state-actions.

As an example, imagine texplore with m = 5 models is learning to control
a humanoid robot to kick a ball by shifting its weight and swinging its leg. If it
shifts its weight more than 5 cm to one side, the robot will fall over, resulting
in a negative reward of −1000. If the robot kicks successfully, it gets a reward
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Fig. 4.4. Model Learning. This diagram shows how texplore learns a model of the
domain. The agent calculates the difference between s′ and s as the transition effect
srel. Then it splits up the state vector and learns a random forest to predict each state
feature. Each random forest is made up of stochastic decision trees, which get each new
experience with probability w. The random forest’s predictions are made by averaging
each tree’s predictions, and then the predictions for each feature are combined into
a complete model of the domain. Averaging the predictions makes the agent balance
exploring the optimistic models with avoiding the pessimistic ones.

of 20. Until texplore has experienced the robot falling over, it will not predict
it is possible. If texplore finds a successful kicking policy without ever falling
over during its exploration, then it will have avoided falling over entirely. If it
does experience falling over during exploration, then each of its tree models may
generalize what causes the robot to fall over differently. For example, one tree
model may predict that the robot falls with a 2 cm shift, another with a 5 cm
shift, etc. For a state with a 4 cm shift, perhaps three of the models predict
the robot will fall over and receive −1000 reward, and two predict a successful
kick with reward 20. Thus, the aggregate model predicts a reward of −592. This
large negative reward will cause the agent to avoid exploring this and similar
state-actions, and instead focus exploration on state-actions where some models
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predict successful kicks but none predict falling over. Avoiding these state-actions
may lead the agent to learn a sub-optimal policy if the best kick requires the
robot to shift its weight 4 cm, but it will also save the robot from many costly
and possibly damaging exploration steps.

In contrast, boss would explore enough to guarantee optimality, which means
it will explore many weight shifts that cause the robot to fall over. Since boss

plans over the most optimistic model in each state (ignoring the others), at the
4 cm shift state, it will plan over the optimistic model that predicts a successful
kick and reward 20, ignoring the fact that 3 of its 5 models predict the robot
will fall over. As long as at least one model predicts high rewards, the agent
will continue exploring these potentially damaging state-actions. In contrast,
texplore performs limited exploration and thus would focus its exploration on
other more promising state-actions while avoiding this one. mbbe would give a
VPI bonus to state-actions which one of its models suggests has a higher value.
These exploration bonuses are added to the expected value of the action, so the
exploration should be less aggressive than boss’s. Still, mbbe will explore many
costly state-actions that may cause the robot to fall over.

It is important to note that the best exploration-exploitation trade off will
depend highly on the domain. In the time-constrained domains we are focused
on, the agent has a limited number of time steps for learning, and thus must limit
its exploration and start exploiting more quickly. In addition, when learning on
robots, exploring certain state-actions can be dangerous for the robot, providing
another impetus to avoid exploring too much. However, in other domains such
as simulated tasks where more time steps are available and actions are not
damaging, it may be better to explore more (like boss and mbbe) to find a
better final policy.

We have thus discussed the advantages of texplore over other methods such
as boss and mbbe. It is useful to also note that similar to the prior that is created
for Bayesian RL algorithms, texplore can be given some basic knowledge of the
structure of the domain. texplore can be seeded with a few sample transitions
from the domain, which it uses to initialize its models. Smart and Kaelbling
(2002) argue that for RL to be effective on robots, the agent must be given prior
information about the task. They suggest providing the agent with experiences
from a human or human-programmed controller running the robot. Here, we
are more conservative, only providing the agent with a few example transitions
from the domain. The agent’s performance is sensitive to these transition seeds
since they bias the agent’s expectations of the domain. texplore could be used
as an apprenticeship learning algorithm if the seed experiences come from user-
generated trajectories in the domain. In many domains, we do not provide any
seed transitions and let texplore learn from scratch.

4.3 The Complete TEXPLORE Algorithm

Having presented each of the components of texplore, we now combine them
together into one complete algorithm. Since each component of texplore
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was presented separately, for clarity we have placed all of the pseudo-code
for texplore in Appendix A. This appendix contains a comprehensive set of
the code for texplore, incorporating the solutions for handling sensor and
actuator delays, dependent feature transitions, and continuous states. tex-

plore is constituted by the rtmba architecture shown in Algorithm A.1, which
uses the uct(λ) planning method shown in Algorithm A.2. texplore learns
random forest models of each state feature and reward, as shown in Algo-
rithms A.3 and A.4. Two separate versions of texplore can be run for dis-
crete or continuous domains: Discrete texplore uses discrete decision trees in
its random forest, while Continuous texplore uses linear regression trees to
model continuous dynamics. For continuous domains, Discrete texplore re-
quires the domain be discretized entirely, while Continuous texplore requires
discrete states to maintain the value function, but learns models of the con-
tinuous dynamics. texplore also takes a parameter, k, that specifies the his-
tory length to use to handle delayed domains. When k is not defined, it is
assumed to be 0 (the setting for non-delayed domains). All of the versions of
the texplore algorithm are freely available in our open-source ROS package at:
http://www.ros.org/wiki/rl-texplore-ros-pkg.

4.4 Chapter Summary

In this chapter, I have presented the texplore algorithm, including its ap-
proaches to both model learning and exploration. First, I presented the model
learning approach employed by texplore. texplore assumes a factored do-
main, where the state is represented by a set of state features. texplore makes
predictions about the next value of each feature using decision trees. These trees
enable texplore to generalize the effects of actions across states. This model
can be extended for domains with continuous state, sensor or actuator delays,
or dependent feature transitions. For continuous domains, the decision trees can
be modified to be regression trees, which have regression models in each leaf of
the tree to make predictions about continuous values. For domains with delay,
texplore’s model is given the agent’s previous k actions, so that the tree can
predict based on the action actually affecting the observation on the current time
step. Finally, for domains with dependent features, the decision tree predicting
each feature can be given the other predicted features as input, so it can predict
each feature dependently on the lower-ordered ones.

After presenting texplore’s model learning, I presented texplore’s ap-
proach to exploration in Section 4.2. texplore acts greedily with respect to
a model that aggregates multiple predictions about the true dynamics of the
domain in the form of a random forest. This approach enables texplore to
naturally balance the trade-off between exploring the state-actions that are pre-
dicted to be good by the optimistic models while avoiding potentially costly
state-actions as predicted by the more pessimistic models. In the next chapter,
we will empirically evaluate the texplore algorithm and the choices we made
for each component of it in comparison to other state of the art approaches.

http://www.ros.org/wiki/rl-texplore-ros-pkg
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In this chapter, I empirically evaluate texplore in comparison with other state-
of-the-art methods. First, I analyze texplore’s sample efficiency and explo-
ration on two tasks. Then, I examine how its models perform in three different
continuous domains. In the third section, I look at how texplore’s k-Markov
approach to handling delays performs in two domains. In Section 5.4, I evaluate
rtmba in comparison with other approaches to act in real time and examine
the trade-off between computation time and sample efficiency. Next, I look at
texplore’s solution for domains with dependent feature transitions and what
its impact is in domains where dependent feature transitions are not an issue. In
Section 5.6, I demonstrate texplore learning to control the velocity of the phys-
ical autonomous vehicle in real time, while running on-board the robot. Finally,
I summarize the chapter in Section 5.7.

This chapter presents experiments that examine texplore’s solution to each
of the RL for Robotics Challenges in isolation from the other parts. It examines
a variety of options for each challenge while keeping the other components of
the texplore algorithm fixed. Each component is demonstrated on a task that
exemplifies that challenge. In addition, each component is also evaluated on a
simulation of the Vehicle Velocity Control task presented earlier in Section 2.4.
All significance results are calculated using a Student’s t-test. All of the domains
used in this chapter are listed in Appendix B and are freely available in our open-
source ROS package: http://www.ros.org/wiki/rl_env.

First, Section 5.1 examines texplore’s approach to Challenge 1: sample ef-
ficiency and exploration. Section 5.2 examines how texplore’s models address
Challenge 2 by modeling continuous domains. The use of k action histories to
handle delays (Challenge 3) is explored in Section 5.3 and Section 5.4 examines
the effects of using the real time architecture, addressing Challenge 4. Section 5.5
analyzes our approach to handling domains where state features transition de-
pendently. Finally, Section 5.6 shows the complete algorithm learning to control
the physical autonomous vehicle, rather than the simulation.

Each component of the algorithm is examined on a simulation of the robot task
presented in Section 2.4: controlling the velocity of an autonomous vehicle (Bee-
son et al., 2008). The properties of this task, including the time-constrained
lifetime as defined in Section 2.3, are listed in Table 2.3. This task requires an
algorithm to address all of the RL for Robotics Challenges. The task is to learn

* This chapter contains material from three publications: (Hester and Stone, 2010;
Hester et al., 2012; Hester and Stone, 2012b).

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 51

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_5, c© Springer International Publishing Switzerland 2013
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to drive the vehicle at a desired velocity by controlling the pedals. The agent’s
state is made up of the pedal positions and the desired and current velocity
of the car, and it has actions to move the brake or throttle up or down. The
experiments are run with a discount factor of 0.95. None of the algorithms are
given prior inputs or seed transitions before starting learning; the algorithms all
start learning with no prior knowledge of this task.

Since the autonomous vehicle was already running ROS (Quigley et al., 2009)
as its middleware, we created a ROS package for interfacing with RL algorithms
similar to the message system used by RL-Glue (Tanner and White, 2009). We
created an RL Interface node that wraps sensor values into states, translates ac-
tions into actuator commands, and generates reward. This node uses a standard
set of ROS messages to communicate with the learning algorithm. At each time
step, the RL Interface node computes the current state and reward and pub-
lishes them as a ROS message to the RL agent. The RL agent can then process
this information and publish an action message, which the interface will convert
into actuator commands. The actuators of the car remain in the same positions
until it receives an actuator command from the RL agent. The ROS messages
we defined for communicating with an RL algorithm are publicly available in
our ROS package: http://www.ros.org/wiki/rl_msgs.

Instead of reinforcement learning, another approach to this problem would be
to use classical control methods such as Proportional-Integral-Derivative (PID)
control. However, PID controllers are notoriously difficult to tune and existing
tuning methods such as the Ziegler-Nichols method only work for devices with
a single actuator (Ziegler and Nichols, 1942). This problem has many properties
that make it difficult for PID control (Sung and Lee, 1996; Atherton and Majhi,
1999), as it is non-symmetric and non-linear, and the vehicle acts differently at
different desired velocities. In addition, PID control does not handle the brake
delay very well. If the controller has a non-zero integrative term to account
for possible control errors, it also causes the controller to brake excessively and
overshoot target velocities when decelerating.

As presented in Table 2.3, the time-constrained lifetime for this task is 436, 150
actions, which with exactly 100 actions per episode equals 4, 361 episodes. Note
that all of the experiments on the simulation of this domain were run for 1, 000
episodes, well within the time-constrained lifetime of 4, 361 episodes.

5.1 Challenge 1: Sample Efficiency and Exploration

First, texplore’s exploration and sample efficiency are compared against other
possible approaches. We compare both with other exploration approaches uti-
lized within texplore and with other existing algorithms such as boss and
Gaussian Process RL. To fully examine the exploration of texplore, experi-
ments are performed on both the simulated car control task and a gridworld
domain designed to illustrate differences in exploration.

http://www.ros.org/wiki/rl_msgs
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5.1.1 Simulated Vehicle Velocity Control

We examine texplore’s exploration while keeping texplore’s model learning,
planning, and architecture constant. Its exploration is compared with a number
of other approaches, including some that are inspired by Bayesian RL methods.
By treating each of the regression tree models in the random forest as a sampled
model from a distribution, we can examine the exploration approaches taken by
some Bayesian RL methods, without requiring the computational overhead of
maintaining a posterior distribution over models or the need to design a good
model parameterization.

Bayesian DP (Strens, 2000) will be described in further detail in Section 7.1.3.
It samples a single model from the distribution over models, plans a policy on
it, and uses it for a number of steps. We create a similar method for comparison
by replacing the query procedure in Algorithm 4.3 with the one shown in Algo-
rithm 5.1. At the start of each episode, curr is set to a random number between
1 and m. The procedure returns the predictions of treecurr until a new model is
chosen on the next episode.

Algorithm 5.1. Bayesian DP-like Approach

1: procedure query(in) � Get prediction for input in
2: return treecurr⇒query(in) � Prediction from model curr
3: end procedure

Best of Sampled Set (boss) (Asmuth et al., 2009) will also be described in
detail in Section 7.1.3. It samples m models from the distribution and creates
an augmented model with mA actions—a set of actions for each sampled model.
boss then plans over this augmented model, enabling it to use the most opti-
mistic model in each part of the state space. By replacing query in Algorithm 4.3
with Algorithm 5.2, we create a comparison method that takes a similar ap-
proach. The action that is passed in as part of in is used to determine which
model to query.

Algorithm 5.2. boss-like Approach

1: procedure query(in) � Get prediction for input in
2: 〈s, a〉 ← in
3: model← round(a/m) � Action a defines which model
4: act← a mod m � And which action on that model
5: input← 〈s, act〉
6: return treemodel⇒query(input) � Prediction from tree model for action act
7: end procedure

In addition to the Bayesian-inspired approaches, we compare with the approach
taken in the pilco algorithm (Deisenroth and Rasmussen, 2011), which adds a
bonus reward into the model for state-actions where the predictions have the
highest variance. This bonus reward encourages the agent to explore state-actions
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where its models disagree, and therefore where they need more experiences to
learn a more accurate model. Each tree in the random forest model makes its own
(possibly different) prediction of the next value of each feature and reward. The
variances in the predictions made by the different trees are calculated, and the
reward sample r returned by the query-model method for a given (s, a) of Al-
gorithm 4.1 is modified by a value proportional to the average variance:

r = r + v
1

n+ 1
[σ2R(s, a) +

n∑

i=1

σ2P (sreli |s, a)]. (17)

Here, v is a coefficient that determines the bonus amount, σ2R(s, a) is the vari-
ance in the reward predicted by each model, and σ2P (sreli |s, a) is the variance
in the prediction of the change in each state feature. This variance-bonus

approach takes an exploration parameter, v, which adds or subtracts intrinsic
rewards based on a measure of the variance in the model’s predictions for each
feature and reward. By setting v < 0, the agent will avoid states that the model
is uncertain about; setting v > 0 will result in the agent being driven to explore
these uncertain states. If v = 0, the agent will act greedily with respect to its
model. Changing the parameter v affects how aggressive the agent is in trying
to resolve uncertainties in its model.

In total, we compare 7 different exploration approaches listed below:

1. Greedy w.r.t. aggregate model (texplore default)
2. ε-greedy exploration (ε = 0.1)
3. Boltzmann exploration (τ = 0.2)
4. variance-bonus Approach v = 1 (Eq. 17)
5. variance-bonus Approach v = 10 (Eq. 17)
6. Bayesian DP-like Approach (Alg. 5.1)
7. boss-like Approach (Alg. 5.2).

We do not run a version of mbbe because planning on m different models is too
computationally inefficient to run at the frequency required by the car. Based
on informal testing, all experiments with texplore are run with λ = 0.05, the
probability that each experience is given to each model, w, set to 0.6, and the
probability a feature is randomly removed from the set used for each split in
the tree, f , set to 0.2. The values of ε and τ were also found through informal
testing. All of these experiments are run with texplore’s architecture and
random forest model with the length of action histories, k, set to 2 and the
number of trees in each forest, m, set to 5.

Figure 6.10 shows the average reward per episode for each of these exploration
approaches. texplore’s greedy approach, ε-greedy exploration, Boltzmann ex-
ploration, and the Bayesian DP-like approach are not significantly different. They
all receive significantly more average rewards than the other three approaches
after episode 24 (p < 0.001). Note that adding ε-greedy exploration, Boltzmann
exploration, or Bayesian DP-like exploration on top of texplore’s aggregate
model does not significantly improve the rewards that it receives. Since the agent
has a fairly limited number of steps in this task, the methods that explore more
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Fig. 5.1. Average reward over 1000 episodes on Simulated Vehicle Velocity Control.
Results are averaged over 50 trials using a 5 episode sliding window and plotted with
95% confidence intervals. Note that texplore’s exploration accrues the most reward.

(the variance-bonus approaches and the boss-like approach) do not start
exploiting in time to accrue much reward on this task. In contrast, texplore
performs limited exploration using its aggregate random forest model and ac-
crues equal or more reward than all the other methods.

In addition to comparing with methods using texplore’s model, we compare
with methods using different models that are state of the art for exploration,
particularly Bayesian methods. Here texplore is compared against the full ver-
sions of these methods, where sparse Dirichlet priors over models are maintained
and sampled from. The parallel architecture is used to select actions in real time.
texplore is compared with the following 5 algorithms:

1. boss (Asmuth et al., 2009)
2. Bayesian DP (Strens, 2000))
3. pilco (Deisenroth and Rasmussen, 2011)
4. r-max (Brafman and Tennenholtz, 2001)
5. q-learning using tile-coding (Watkins, 1989; Albus, 1975).

Both boss and Bayesian DP utilize a sparse Dirichlet prior over the discretized
version of the domain as their model distribution (Strens, 2000), while pilco

uses a Gaussian Process regression model and r-max uses a tabular model.
Results for these comparisons are shown in Figure 5.2. Here, texplore ac-

crues significantly more rewards than all the other methods after episode 24
(p < 0.01). In addition, texplore learns well within the time-constrained life-
time for this domain of 436, 150 steps (or 4, 361 episodes). In fact, the Bayesian
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Fig. 5.2. Average reward over 1000 episodes on Simulated Vehicle Velocity Control.
Results are averaged over 50 trials using a 5 episode sliding window and plotted with
95% confidence intervals. Note that texplore accrues the most reward.

methods all fail to improve during this time scale (however, they would even-
tually learn an optimal policy). Thus, the combination of model learning and
exploration approach used by texplore is the best for this particular domain.

5.1.2 Fuel World

Next, we created a novel domain called Fuel World to further examine explo-
ration, shown in Figure 5.3. In it, the agent starts in the middle left of the
domain and is trying to reach a terminal state in the middle right of the domain
that has a reward of 0. The agent has a fuel level that ranges from 0 to 60. The
agent’s state vector, s, is made up of three features: its row, col, and fuel.
Each step the agent takes reduces its fuel level by 1. If the fuel level reaches
0, the episode terminates with reward −400. There are fuel stations along the
top and bottom row of the domain that increase the agent’s fuel level by 20.
The agent can move in eight directions: north, east, south, west, north-
east, southeast, southwest, and northwest. The first four actions each
move the agent one cell in that direction and have a reward of −1. The last four
actions move the agent to the cell in that diagonal direction and have reward
−1.4. An action moves the agent in the desired direction with probability 0.8
and in the two neighboring directions each with probability 0.1. For example,
the north action will move the agent north with probability 0.8, northeast with
probability 0.1 and northwest with probability 0.1. The domain has 21×31 cells,
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Table 5.1. Properties of the Fuel World task

State row, col, fuel

Actions north, east, south, west, northeast,
southeast,southwest, northwest

Reward Ranges from −400.0 to +20.0

# State-Actions 317, 688

Time-Constrained Lifetime 635, 376 actions

�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������

�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������

�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Fig. 5.3. The Fuel World domain. Starting states have blue hexagons, fuel stations
have green brick patterns, and the goal state is shown in red with vertical lines. The
possible actions the agent can take are shown in the middle. Here, the fuel stations
are the most interesting states to explore, as they vary in cost, while the center white
states are easily predictable.

each with 61 possible energy levels, and 8 possible actions, for a total of 317, 688
state-actions. The agent starts with a random amount of fuel between 14 and
18, which is not enough to reach the goal, and must learn to go to one of the
fuel stations on the top or bottom row before heading towards the goal state.
The properties of this domain are shown in Table 5.1.

Actions from a fuel station have an additional cost, which is defined by:

R(x) = base− (x mod 5)a, (18)

where R(x) is the reward of a fuel station in Column x, base is a baseline reward
for that row, and a controls how much the costs vary across columns. There are
two versions of the domain that differ in how much the costs of the fuel stations
vary. The parameters for both the Low Variation and High Variation Fuel World
are shown in Table 5.2.
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Table 5.2. Parameters for Equation 18 for the two versions of the Fuel World task

Domain Bottom Row Top Row
base a base a

Low Variation Fuel World -18 1 -21 1
High Variation Fuel World -10 5 -13 5

The Fuel World domain was designed such that the center states have easily
modeled dynamics and should be un-interesting to explore. The fuel stations all
have varying costs and are more interesting, but still only the fuel stations that
may be useful in the final policy (i.e. the ones on a short path to the goal) should
be explored. In addition, there is a clear cost to exploring, as some of the fuel
stations are quite expensive.

The following 8 methods are compared:

1. Greedy w.r.t. aggregate model (texplore default)
2. ε-greedy exploration (ε = 0.1)
3. Boltzmann exploration (τ = 0.2)
4. variance-bonus Approach v = 10 (Eq. 17)
5. Bayesian DP-like Approach (Alg. 5.1)
6. boss-like Approach (Alg. 5.2)
7. Bayesian DP with sparse Dirichlet prior (Strens, 2000)
8. boss with sparse Dirichlet prior (Asmuth et al., 2009).

The first six methods are the ones shown in the previous section that use the
texplore model with various forms of exploration. The last two algorithms are
Bayesian methods that are using models drawn from a sparse Dirichlet distri-
bution. We did not run pilco because this domain is discrete (note that other
Gaussian Process based methods can be run in discrete domains). We do not
present results for q-learning and r-max because they performed so poorly
on this task. All of these methods are run in real time with actions taken at a
rate of 10 Hz.

All of the algorithms are given seeding experiences from the domain. They
are given two experiences from the goal state, two transitions from each row
of fuel stations, and two experiences of running out of fuel for a total of eight
seeding experiences. Since the sparse Dirichlet prior used by boss and Bayesian

DP does not generalize, the sample experiences are only useful to them in the
exact states they occurred in. In contrast, texplore’s random forest models
can generalize these experiences across state-actions.

Figure 5.4 shows the average reward per episode over 50 trials for the methods
in the Low Variation Fuel World (Results are similar in the High Variation Fuel
World). texplore learns the fastest and accrues the most cumulative reward of
any of the methods. texplore receives significantly more average rewards than
all the other methods on episodes 20-32, 36-45, 68-91, and 96-110 (p < 0.05).
texplore is not significantly worse than any other methods on any episode.
texplore learns the task within the time-constrained lifetime of 635, 376 steps.
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Fig. 5.4. Average reward over the first 300 episodes in Low Variation Fuel World.
Results are averaged over 50 trials using a 5 episode sliding window and plotted with
95% confidence intervals. texplore learns the policy faster than the other algorithms.

All of the methods using texplore’s model are able to learn the task to some
degree, while the two Bayesian methods are unable to learn it within 300 episodes
and their agents run out of fuel every episode.

To further examine how the agents are exploring, we kept track of every
state the agents visited while learning in a deterministic version of the Fuel
World domain. We used a deterministic version so that it is clear that the
agent is exploring to visit particular states, rather than being driven there by
stochasticity. Figure 5.5 shows heat maps of which states the agents visited
during their first 50 episodes in the domain and Figure 5.6 shows their visits
during the final 50 episodes. The shading (color) represents the number of times
the agent visited each cell in the domain (averaged over 50 trials and all fuel
levels), with lighter shading (brighter color) meaning more visits.

Figures 5.5(a) and 5.5(b) show the heat maps over the first 50 episodes for
texplore in the Low and High Variation Fuel World domains. First, the figures
show that the algorithm is mainly exploring states near the fuel stations and the
path to the goal, ignoring the space in the middle and right of the domain.
Looking at the cells in the top and bottom rows between columns 5 and 10,
Figure 5.5(a) shows that the agent in the Low Variation Fuel World explores
more of these fuel stations, while in the High Variation world in Figure 5.5(b),
the higher exploration costs cause it to quickly settle on the stations in Column
5, 10, or 15. The effects of the agent’s different exploration in these two domains
can be seen in its final policy in each domain, shown in Figures 5.6(a) and 5.6(b).
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(a) texplore on Low Variation Fuel
World over first 50 episodes.
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(b) texplore on High Variation Fuel
World over first 50 episodes.
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World over first 50 episodes.
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(d) boss on Low Variation Fuel World
over first 50 episodes.

Fig. 5.5. Heat maps displaying the average number of visits to each state over the first
50 episodes in the deterministic Fuel World domain, averaged over 50 trials and all fuel
levels. With the higher fuel station costs in the High Variation Fuel World, texplore
explores less there (Fig. 5.5(b)) than in the Low Variation domain (Fig. 5.5(a)). In
either case, it explores less thoroughly than the boss-like algorithm (Fig. 5.5(c)) or the
complete boss algorithm (Fig. 5.5(d)).

Since the agents in the Low Variation Fuel World explore more thoroughly than
in the High Variation world, they settle on better (and fewer) final policies than
the agents in the High Variation domain. In the High Variation task, the agent
explores less after finding a cheap station and thus the various trials settle on a
number of different policies, with more policies going through the fuel stations in
Column 5. Since the reward within one fuel row can vary up to 20.0 in the High
Variation domain, it is not worthwhile for the agent to receive this additional
cost while exploring, only to find a fuel station that is minimally better than
one it already knows about.

The reason that texplore out-performs the other methods is that they ex-
plore too thoroughly and are unable to start exploiting a good policy within
the given number of episodes. In contrast, texplore explores much less and
starts exploiting earlier. Since texplore explores in a limited fashion, it uses
these limited exploratory steps wisely, focusing its exploration on fuel stations
rather than the other states. In contrast, the variance-bonus, bayesian DP-
like, and boss-like approaches explore all of the state space. As an example,
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(a) texplore on Low Variation Fuel
World over final 50 episodes.
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(b) texplore on High Variation Fuel
World over final 50 episodes.
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(c) boss-like on Low Variation Fuel
World over final 50 episodes.
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(d) boss on Low Variation Fuel World
over final 50 episodes.

Fig. 5.6. Heat maps displaying the average number of visits to each state over the
final 50 episodes in the deterministic Fuel World domain, averaged over 50 trials and
all fuel levels. These figures show which states the agents visited while following their
final learned policies. In the High Variation domain (Fig. 5.6(b)), texplore explores
less and converges to a larger number of final policies across the 30 trials than it does
in the Low Variation version (Fig. 5.6(a)). In contrast, the boss-like method in the
Low Variation domain (Fig. 5.6(c)) explores more and settles on fewer policies, while
the actual boss algorithm (Fig. 5.6(d)) has only learned to go to the top fuel stations
to survive by the end of the 300 episodes.

Figure 5.5(c) shows the exploration of the boss-like method on the Low Varia-
tion Fuel World. This approach is very optimistic and explores most of the cells
near the start and near the fuel stations. Although the boss-like agent learns
similar final policies to texplore (shown in Figure 5.6(c)), the extra costs it
accrues while exploring result in it receiving less cumulative rewards.

The two complete Bayesian algorithms perform poorly because their sparse
Dirichlet distribution over models does not generalize across states. Therefore,
they explore each state-action separately and are only able to explore the starting
states in the first 50 episodes, as shown in Figure 5.5(d). By the end of the 300
episodes, the boss algorithm has discovered how to reach the top fuel stations
to survive, but not how to reach the goal (shown in Figure 5.6(d)).

When acting in such a limited time frame, it is better to perform little ex-
ploration and target this exploration on useful state-actions. When given more
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time, it would be better to explore more thoroughly, as the other exploration
methods like boss will converge to the optimal policy if given enough time.

5.2 Challenge 2: Modeling Continuous Domains

Next, we examine the ability of texplore’s continuous state model learning
method, presented in Section 4.1.1, to accurately predict state transitions and
rewards on continuous tasks. First, we examine the accuracy of the learned
models on the Simulated Vehicle Velocity Control task. To separate the issues
of planning and exploration from the model learning, we train the model on a
random sampling of experiences from the domain and then measure its accuracy
on predicting the next state and reward for a randomly sampled 10,000 experi-
ences in the domain. Then in Section 5.2.2, we examine the performance of the
continuous models when used inside the full algorithm on two continuous RL
domains from the literature: Mountain Car and Cart-Pole Balancing.

5.2.1 Simulated Vehicle Velocity Control

In this section, we measure the accuracy of texplore’s approach to learning
models of continuous domains in comparison with six other approaches. Each
model is trained on a random sample of experiences from the Simulated Vehicle
Velocity Control task. Then, the Euclidean distance between the next state the
model predicted most likely and the true most likely next state is calculated to
measure the accuracy of the models. For reward, the average error between the
expected reward predicted by the model and the true expected reward in the
simulation is calculated. Seven different model types are compared:

1. Regression Tree Forest (texplore Default)
2. Single Regression Tree
3. Decision Tree Forest
4. Single Decision Tree
5. Tabular Model
6. KWIK Linear Regression (Strehl and Littman, 2007)
7. Gaussian Process Regression (pilco model) (Deisenroth and Rasmussen,

2011).

The first four are variants of texplore’s regression tree forest model, the tabular
model is a typical benchmark approach, and the last two are state-of-the-art
approaches for continuous domains.

Figure 5.7 shows the average next state prediction error for each model. The
regression tree forest and single regression tree have significantly less error than
all the other models in predicting the next state (p < 0.001). The single re-
gression tree and the forest are not significantly different. Figure 5.8 shows the
average reward prediction error for each model. For this prediction, Gaussian
process regression is significantly better than the other models (p < 0.001). The
regression tree forest has the next lowest error and is significantly better than
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Fig. 5.7. Average error in the prediction of the next state for each model on the
Simulated Vehicle Velocity Control task, averaged over 50 trials and plotted with 95%
confidence intervals. Each model is trained on random experiences from the domain
and tested on its ability to predict 10,000 random experiences from the domain. The
state error is the average Euclidean distance between the most likely predicted state
and the true most likely next state. Note that texplore’s model, a random forest of
regression trees, is the most accurate for next state predictions.

all other models (including the single regression tree) after training on 205 state-
actions (p < 0.001). While Gaussian process regression has the lowest error on
reward prediction, its prediction of the next state is very poor, likely due to dis-
continuities in the function mapping the current state to the next state. These
results demonstrate that texplore’s model is well-suited to the robot learning
domain: it makes accurate predictions, generalizes well, and has significantly less
error in predicting states than the other models.

5.2.2 Continuous Task Performance

While we showed in the previous section that texplore’s M5 linear regression
models learn accurate predictions of next state and reward from random samples
of experience, it is important that this model works well within the RL algorithm.
Thus, we examine the advantages of using the M5 linear regression model within
the texplore algorithm. We test the algorithm on two benchmark continuous
domains from the literature: Mountain Car and Cart-Pole Balancing. On both
tasks, we compare six algorithms:
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Fig. 5.8. Average error in the prediction of the reward for each model on the Simulated
Vehicle Velocity Control task, averaged over 50 trials and plotted with 95% confidence
intervals. Each model is trained on random experiences from the domain and tested
on its ability to predict 10,000 random experiences from the domain. The reward error
is the error in expected reward. Note that texplore’s model, a random forest of
regression trees, is the second best at reward prediction.

1. Discrete texplore (using C4.5 trees on a discretized state space)
2. Continuous texplore (using M5 trees)
3. r-max

4. fitted r-max (Jong and Stone, 2007)
5. Tabular q-learning
6. q-learning with tile coding.

We chose these methods to compare discrete and continuous versions of tex-

plore, r-max (a representative model-based method), and q-learning (a rep-
resentative model-free method).

Mountain Car. The first domain we tested the algorithms on is Mountain Car,
shown in Figure 5.9. Mountain Car is a commonly used testbed for learning con-
tinuous tasks (Moore, 1990; Sutton and Barto, 1998), where the agent controls
an under-powered car that does not have enough power to drive directly up the
hill to the goal. Instead, it must go up the left slope to gain momentum first.
The agent has three actions to accelerate the car in different directions: left,
right, none. The agent’s state is made up of two features: its position and its
velocity. The agent receives a reward of −1 each time step until it reaches the
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Table 5.3. Properties of the Mountain Car task

State position, velocity

Actions left, right, none

Reward −1 each step, 0 upon reaching goal

# State-Actions 30, 000

Time-Constrained Lifetime 60, 000 actions

Fig. 5.9. The Mountain Car domain. The under-powered car must be driven up the
left hill first to gain enough momentum to reach the goal at the top of the right hill.

goal, when the episode terminates with a reward of 0. For the methods requir-
ing discretization, we discretize both state features into 50 values each. Each
algorithm is initialized with one seed experience (〈s, a, s′, r〉 tuple) of the car
reaching the goal to jump-start learning. The properties of the domain are listed
in Table 5.3.

The average reward per episode of each algorithm on the Mountain Car task
is shown in Figure 5.10. For each method, the continuous version outperforms
the discrete version, as the discrete version cannot model the continuous tran-
sition dynamics as quickly as the continuous methods. Continuous texplore

learns the fastest, accruing significantly more reward on the first 8 episodes
(p < 0.0005) and learning the task well within the time-constrained lifetime. It
quickly learns an accurate model of the task, and has a near-optimal policy after
only 3 episodes.

Cart-Pole. Next, we performed experiments in the Cart-Pole Balancing do-
main, shown in Figure 5.11. Cart-Pole Balancing is another domain typically
used for testing continuous state RL agents (Sutton and Barto, 1998), where the
agent must learn to balance a pole on top of a cart by applying force to the cart.
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Fig. 5.10. Average reward per episode on the Mountain Car task, averaged over 30
trials. Note that Continuous texplore learns the fastest.

Table 5.4. Properties of the Cart-Pole Balancing task

State cart-pos, cart-vel, pole-pos, pole-vel

Actions left, right

Reward +1 each step until episode terminates

# State-Actions 320, 000

Time-Constrained Lifetime 640, 000 actions

The state is made up of four features: the cart’s position (cart-pos) and veloc-
ity (cart-vel) and the pole’s angle (pole-pos) and velocity (pole-vel). The
agent has two actions that apply force to the cart in either the left or right
direction. The episode ends when either: 1) the pole falls; 2) the cart goes off the
track; or 3) 1,000 time steps have passed. The agent receives a reward of +1 each
step until the end of the episode. In this simulated task, the pole is 1 meter long
and weighs 0.1 kg, the cart weighs 1.0 kg, the actions exert 10 N of force, and
the task is simulated at 50 Hz. For the methods requiring discretization, each
feature is discretized into 10 values. Since this task does not have a goal state,
no seed experiences are provided to the algorithms. Table 5.4 lists the properties
of this domain.

Figure 5.12 shows the average rewards per episode on the Cart-Pole Balanc-
ing task. Continuous texplore greatly outperforms the other algorithms and
approaches the limit of balancing the pole for 1,000 time steps very quickly. Dis-
crete texplore also learns quickly, but does not learn a model accurate enough
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Fig. 5.11. The Cart-Pole Balancing task. The agent must apply forces to the cart to
balance the pole while keeping the cart on the track.

to balance the pole for 1,000 steps. Meanwhile, the other methods take too long
exploring to learn within 100 episodes. Continuous texplore gains significantly
more rewards than the other methods from episode 30 onward (p < 0.0005). Con-
tinuous texplore learns the task within the time-constrained lifetime for the
task and in considerably fewer episodes than previous approaches, which took
200-750 episodes (Riedmiller, 2005; Lagoudakis and Parr, 2003). In addition,
whereas continuous texplore is controlling the cart-pole continually at 50 Hz,
these methods have off-line learning phases where they stop controlling the cart.

5.3 Challenge 3: Delayed Actions

Next, we examine the effects of texplore’s approach for dealing with delays,
presented in Section 4.1.2, on two different tasks. First, in Section 5.3.1, we
evaluate the algorithm on the Simulated Vehicle Velocity Control task. Then we
evaluate it on a simulated gridworld task with delayed actions in Section 5.3.2.
As described in Section 4.1.2, texplore takes a k-Markov approach, adding the
last k actions as extra inputs to its models and planning over states augmented
with k-action histories. The other components of texplore are particularly
suited to this approach, as uct(λ)’s rollouts can easily incorporate histories and
the random forest models can correctly identify which delayed inputs to use.

5.3.1 Simulated Vehicle Velocity Control

First, we evaluate texplore’s approach to actuator and sensor delays on the
Simulated Vehicle Velocity Control task. We evaluate texplore’s approach us-
ing values of k ranging from 0 to 3. In addition, we compare with Model Based
Simulation (mbs) (Walsh et al., 2009a), which represents the main alternative
to handling delays with a model-based method. mbs requires knowledge of the
exact value of k to uncover the true MDP for model learning. mbs then uses its
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Fig. 5.12. Average reward per episode on the Cart-Pole Balancing task, averaged over
30 trials. Note that Continuous texplore gains significantly more rewards than the
other methods from episode 30 onward (p < 0.0005).

model to simulate forward to the state where the action will take effect and uses
the policy at that state to select the action. mbs is combined with texplore’s
parallel architecture and models. In addition, to show the unique advantages of
using regression trees for modeling, we compare with an approach using tabu-
lar models. Since the tabular models do not generalize, the agent must learn a
correct model for every history-state-action tuple. The following variations are
compared:

1. texplore k = 0
2. texplore k = 1
3. texplore k = 2
4. texplore k = 3
5. mbs k = 1
6. mbs k = 2
7. mbs k = 3
8. Tabular model k = 2.

The delay in this task comes from the delay in physically actuating the brake
pedal (which is modeled in the simulation). The brake does not have a constant
delay; it is slow to start moving, then starts moving quickly before slowing as
it reaches the target position. mbs is not well suited to handle this type of
delay, as it expects a constant delay of exactly k. In contrast, texplore’s model
can potentially use the previous k actions to model the changes in the brake’s
position.
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Fig. 5.13. Average reward over 1000 episodes for each method on the Simulated Vehicle
Velocity Control task. Results are averaged over 50 trials using a 5 episode sliding
window and plotted with 95% confidence intervals. texplore with k = 2 performs the
best, but not significantly better than texplore with k = 1 or k = 3. These three
approaches all perform significantly better than than using no delay (k = 0) or using
another approach to handling delay (p < 0.005). Note that the curves for all three
MBS methods and the Tabular method are on top of each other.

The average reward for each method on the simulated car control task is shown
in Figure 5.13. The texploremethods using k = 1, 2, and 3 receive significantly
more average rewards than the other methods after episode 45 (p < 0.005).
The results with these three delay levels are not significantly different, however,
texplore with k = 1 learns faster, receiving more average rewards through
episode 80, but texplore with k = 2 learns a better policy and has the best
average rewards after that. texplore with k = 0 learns a poor policy, while the
methods using mbs and the tabular model do not learn at all.

5.3.2 Delayed Gridworld

Next, we examine the effects of texplore’s approach for dealing with delays in
a Delayed Gridworld domain, shown in Figure 5.14. In this domain, the agent
starts in a random state in the right room and has to navigate to the goal state
on the left. The agent is given 4 actions (north, south, east, and west), each
of which move the agent in the given direction with probability 0.8, and to either
side with probability 0.1. Actions are delayed two time steps before taking effect
(the agent does not move for the first two steps). All of the agents are initialized
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Table 5.5. Properties of the Delayed Gridworld task

State row, col

Actions north, east, south, west

Reward −1 each step, 0 upon reaching goal

# State-History-Actions 3, 264

Time-Constrained Lifetime 6, 528 actions

Fig. 5.14. The Delayed Gridworld domain. The agent starts at a random cell in the
right room and must reach the state marked with the star. Each action the agent selects
is delayed 2 steps before taking effect.

with two seed experiences: one of the agent entering the doorway and one of it
reaching the goal. The properties of this domain are shown in Table 5.5.

We ran experiments with sarsa(λ) with λ = 0.9 because the eligibility traces
give it some ability to credit reward over previous actions. In addition, we ran
mbs-r-max (Walsh et al., 2009a) given both the correct delay of k = 2 and an
incorrect delay of k = 3. As described in Section 5.3.1, mbs-r-max uses knowl-
edge of the amount of delay to uncover and solve the true underlying MDP.
We also ran texplore with history lengths of k = 0, 2, 3, 4, and 5. Figure 5.15
shows the results. Since the random forests used by texplore can select the
relevant features for predictions while ignoring the unnecessary ones, the algo-
rithm performs well even when given extra history features (when k > 2) that
are not relevant. As the delay input to texplore is increased, its performance
eventually degrades as it must plan over a larger augmented state space and
select from a larger set of features. However, it still learns the task even with
k = 4 and k = 5. In contrast, when mbs-r-max is given the wrong delay (k = 3),
the underlying MDP that is uncovered is incorrect and the agent is unable to
learn. This distinction is important, as on a robot where the delay may be
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Fig. 5.15. Average reward per episode on the Delayed Gridworld with 2 step delay,
averaged over 30 trials. Note that texplore receives significantly more reward than
mbs-r-max (p < 0.0005), even when given an incorrect delay of k = 2 or k = 3.

unknown, mbs-r-max requires the exact delay, while texplore only requires
that we provide an upper bound on the delay. However, if texplore is given
an input that is lower than the true delay (when k = 0), it fails as well. Even
when mbs-r-max is given the correct delay, texplore with k = 2 and k = 3
both gain significantly more reward per episode than it for the first 13 episodes
(p < 0.0005).

Another benefit of making model predictions based on a history of previous
actions is that they can be used to uncover hidden state in partially observable
domains. As an example of this ability, we created another gridworld domain
called Multi-Goal with a second possible goal, shown in Figure 5.16. In this
task, one of these two states is randomly selected as the goal before each episode.
The agent’s actions take affect instantly. Although which goal was active for a
particular episode is not observable by the agent, by keeping a history of whether
it had visited the other goal state, it could uncover the true goal state.

Average results for the algorithms in this task are shown in Figure 5.17. In
this domain, once the agent visited the incorrect goal, its model could predict
the reward for the other goal state based on the current state, action, and history
of actions. Thus, texplore with k = 2 and k = 3 performed well on this task.
In contrast, mbs-r-max learns a model for a fully observable MDP, and is not
able to uncover the hidden state of which goal is active.
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Fig. 5.16. The Multi-Goal domain. Each episode, the goal is randomly selected from
the two starred states. The agent starts at a random cell in the right room and must
reach the goal state.

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  5  10  15  20  25  30

A
ve

ra
ge

 R
ew

ar
d

Episode Number

Multi-Goal

TEXPLORE (k = 0)
TEXPLORE (k = 2)
TEXPLORE (k = 3)

Sarsa(0.9)
MBS-R-Max (k = 2)

R-Max

Fig. 5.17. Average reward per episode on the Multi-Goal domain, averaged over 30
trials. Note that texplore with k = 2 and k = 3 out-performs the other methods.
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5.4 Challenge 4: Real Time Action

In this section, we demonstrate the effectiveness of the rtmba architecture,
presented in Chapter 3, to enable the agent to act in real time. The goal is for
the agent to learn effectively on-line while running continuously on the robot
in real time, without requiring any pauses or breaks for learning. This scenario
conforms to the eventual goal of performing lifelong learning on a robot without
pauses or breaks. texplore’s rtmba architecture enables real time learning by
employing a multi-threaded approach along with uct(λ) planning.

To demonstrate the effectiveness of rtmba, we performed experiments on two
problems. Our first experiment measures the performance gains due to rtmba on
the simulation of the autonomous vehicle, where real time actions are absolutely
necessary. The second set of experiments measure the cost of parallelization in
terms of environmental reward compared to a traditional sequential architecture.
We use a simulated domain, which can wait as long as necessary for the agent
to return an action (or it can execute actions as fast as the algorithm returns
them).

5.4.1 Simulated Vehicle Velocity Control

Various approaches for real time action selection are evaluated on the simulated
vehicle velocity control task. We compare with three other approaches: one that
also does approximate planning in real time, one that does exact planning in real
time, and one that does not select actions in real time at all. All four approaches
use texplore’s model and exploration:

1. rtmba (texplore)
2. Real Time Dynamic Programming (rtdp) (Barto et al., 1995)
3. Parallel Value Iteration
4. Value Iteration.

rtdp is an alternative way to do approximate planning instead of using uct. In
contrast to uct, rtdp does full backups on each state of its rollout and performs
action selection differently. The implementation of rtdp still uses texplore’s
multi-threaded architecture to enable parallel model learning and planning, but
uses rtdp for planning instead of uct.

For a comparison with a method doing exact planning and still acting in real
time, we implemented a multi-threaded version of value iteration (Parallel Value
Iteration) that runs model updates and value iteration in a parallel thread while
continuing to act using the most recently calculated policy.

Finally, we compare with value iteration run sequentially, to show what hap-
pens when actions are not taken in real time. Since this architecture is sequential,
there could be long delays between action selections while the model is updated
and value iteration is performed. If the vehicle does not receive a new action, its
throttle and brake pedals remain in their current positions.
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window and plotted with 95% confidence intervals. Note that texplore performs the
best.

In addition to these four different architectures, we also compare with
dyna (Sutton, 1990) and q-learning with tile-coding (Watkins, 1989; Albus,
1975). dyna saves experiences and updates its value function by performing Bell-
man updates on randomly sampled experiences. The implementation of dyna

performs as many Bellman updates as it can between actions while running at
10 Hz. q-learning with tile-coding for function approximation could select ac-
tions faster than 10 Hz, but the environment only requests a new action from
it at 10 Hz. Both dyna and q-learning perform Boltzmann exploration with
τ = 0.2, which performed the best based on informal tests.

Figure 5.18 shows the average rewards for each of these approaches over 1000
episodes and averaged over 50 trials while controlling the simulated vehicle.
texplore’s architecture receives significantly more average rewards per episode
than the other methods after episode 29 (p < 0.01). While rtdp is out-performed
by texplore’s architecture here, recent papers have shown modified versions
of rtdp to be competitive with uct (Kolobov et al., 2012). Both texplore

and rtdp are run with k = 2. Since running value iteration on this augmented
state space would result in 25 times more state-actions to plan on, the value
iteration approaches are run with k = 0. Still, they perform significantly worse
than texplore with k = 0 (not shown) after episode 41 (p < 0.001). This issue
provides another demonstration that k-Markov histories work well with uct(λ)
planning but make methods such as value iteration impractical.
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5.4.2 Mountain Car

In this section, we demonstrate the effectiveness of the rtmba architecture on
the Mountain Car task, presented in Section 5.2.2. In this task, the simulated
environment can wait for the agent to return an action (or it can execute ac-
tions as fast as the algorithm returns them). Our experiments measure the cost
of parallelization in terms of environmental reward compared to a traditional
sequential architecture where model learning and planning can each take as long
as necessary.

We ran experiments comparing q-learning, dyna and texplore. All meth-
ods were run on a discretized version of the domain, with both state features
discretized into 100 values. Five algorithms were run with the texplore model
using the following architectures:

1. Sequential Architecture (Alg. 3.1) with Value Iteration planning
2. Sequential Architecture (Alg. 3.1) with uct planning
3. rtmba (Alg. 3.4) at 10Hz
4. rtmba (Alg. 3.4) at 25Hz
5. rtmba (Alg. 3.4) at 100Hz.

Note that the last three algorithms, since they are using rtmba, are the tex-

plore algorithm. We ran two versions of dyna: dyna performed updates on
1,000 saved experiences between each action; and rt-dyna performed as many
updates as it could while returning actions at 25 Hz. Between each action, the
two sequential methods performed a full model update, then planned on their
model by running value iteration to convergence or performing uct rollouts for
0.1 seconds. Each algorithm is initialized with one seed experience (〈s, a, s′, r〉
tuple) of the car reaching the goal to jump-start learning. We ran 30 trials of
each algorithm, with q-learning run for 2,000,000 episodes, dyna for 4,000
episodes, and the remaining methods run for 1,000 episodes. Each trial was run
on a single core of a machine with 2.4 - 2.66 GHz Intel Xeon processors and 4
GB of memory.

Our aim was to compare the real time algorithms with the sequential methods
when they are given the time needed to fully complete their computation between
each step. Thus we can examine the performance lost by the real time algorithms
due to acting quickly. In contrast, the model-free methods could act as fast as
they wanted, resulting in learning that took little wall clock time but many
more samples. To perform these experiments, the environment waited for each
algorithm to return its action, thus benefiting the sequential algorithms. Waiting
this way is only possible in simulation, whereas on a real robot, the action rate
is defined by the robot rather than the algorithm.

Figure 5.19 shows the average reward per episode for each algorithm over the
first 50 episodes in the domain and Figure 5.20 shows the reward plotted against
clock time in seconds (note the log scale on the x axis). The first plot shows that
the two sequential methods perform better than rtmba in sample efficiency, in
particular, receiving significantly more reward per episode than rtmba running
at 25 and 100 Hz over the first 5 episodes (p < 0.05). rtmba running at 10 Hz did
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Fig. 5.19. Average reward per episode on Mountain Car, averaged over 30 trials. Re-
sults are averaged over a 4 episode sliding window.

not perform significantly worse than the sequential method using uct. However,
Figure 5.20 shows that better performance of the sequential methods came at
the cost of more computation time. For the sequential methods, switching from
exact to approximate planning reduces the time to complete the first episode
from 1541 to 142 seconds, but the uct method is still restricted by the need to
perform complete model updates between actions. This restriction is removed
with rtmba, and all three versions using it complete the first episode within 20
seconds. In fact, all three rtmba methods start performing well after 90 seconds,
likely because they all took this much time to learn an accurate domain model.
Compared with the sequential methods, rtmba is only slightly worse in sample
efficiency, and acts much faster, meeting our requirement of continual real time
action selection.

The model-free approaches, q-learning and dyna, select actions extremely
quickly and converge to the optimal policy in less wall clock time than any version
of rtmba. However, Figure 5.19 shows that they are not as sample efficient.
While rtmba converges to the optimal policy within tens of episodes, dyna takes
approximately 650 episodes to converge, and q-learning takes approximately
22,000. Although rt-dyna performs more planning updates between actions
than dyna, it is still not as sample efficient as texplore, taking approximately
300 episodes to converge. These methods learn in less wall clock time simply
because they can take many more actions than rtmba in a given amount of
time. On an actual robot, it will not be possible to take actions faster than the
robot’s control frequency, and the poor sample efficiency of these methods will
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Fig. 5.20. Average reward versus clock time on Mountain Car, averaged over 30 trials.
q-learning was run for 2,000,000 episodes, dyna was run for 4,000 episodes, and the
other algorithms were run for 1000 episodes. The line for each algorithm starts when
the first episode was completed. Note that the x-axis is in log scale.

result in longer wall clock learning times as well. In comparison, rtmba learns in
fewer samples, meeting our requirement of sample efficiency even while running
at reasonable robot control rates between 10 and 100 Hz.

In addition to enabling real time learning, another benefit of rtmba is its
ability to take advantage of multi-core processors, because each parallel thread
can run on a separate core. We ran experiments comparing the performance
of rtmba when running on one versus multiple cores. These experiments were
performed on a machine with four 2.6 GHz AMD Opteron processors. Figure 5.21
shows the average reward per episode for these experiments, running at 25 Hz.
For comparison, we ran the sequential method using uct as a planner on the
multi-core machine. It had unlimited time for model updates and then planned
for 0.04 seconds (the same time given to rtmba for both computations). Since
the sequential architecture only has a single thread, it only used a single core
even on the multi-core machine. Meanwhile, rtmba utilized three processors
with each thread running on its own core. Using the extra processors allowed the
parallel version to perform more model updates and planning rollouts between
actions than the single core version. Due to these advantages, the multi-core
version performs better than the single core version, receiving significantly more
rewards on every episode (p < 0.005). In addition, it even performs better than
the sequential method on episodes 3 to 14 (p < 0.01), even though the sequential
method is given unlimited time for model updates.
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Fig. 5.21. Comparisons of the methods using a multiple core machine. Each method is
averaged over 30 trials on Mountain Car. Results are averaged over a 4 episode sliding
window.

These results demonstrate that rtmba enables algorithms to maintain sample
efficiency, even while acting in real time. In addition, we have demonstrated that
while using approximate planning reduces the time required by model-based
methods, they do not reach real time performance without rtmba.

5.5 Dependent Transitions

In this section, we evaluate texplore’s solution to handling domains with
dependent feature transitions, which was presented in Section 4.1.3. Since
texplore’s solution of adding synchronic arcs to the DBN works with other
factored algorithms, we also tested it with factored r-max (Guestrin et al.,
2002). factored-r-max is given the structure of the DBN and only has to
learn conditional probabilities, while texplore uses random forests to learn
both the structure and probabilities of the model. factored r-max was run
with m = 20. texplore was run with m = 5 trees per forest, f = 0.2, and
w = 0.55. All experiments were run with the discount factor γ = 0.998. For all
of these experiments, each algorithm was initialized with one seed experience
(〈s, a, s′, r〉 tuple) of the goal state to jump-start learning.

While the features in many domains often do transition dependently, it is
surprisingly difficult to find domains where the resulting modeling error from
assuming feature independence affects the learned policy. As an example where
having such an incorrect model affects the learned policy, we created a domain
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Table 5.6. Properties of the Trap Room task

State row, col

Actions north, east, south, west

Reward −1 each step, 0 on goal, −250 on trap

# State-Actions 252

Time-Constrained Lifetime 504 actions

called the Trap Room, shown in Figure 5.22. It is a typical gridworld domain:
the agent starts in the top left of the gridworld, and receives a reward of −1
each step until it reaches the goal state, where it terminates with a reward of
0. However, there are two “trap” states that provide large negative rewards
of −250 when the agent passes through them. The agent has four actions to
move it north, south, east, and west. The agent’s actions are stochastic:
they move the agent in the intended direction with probability 0.8 and in either
perpendicular direction with probability 0.1. The optimal policy for the domain
is for the agent to follow the white arrows shown in Figure 5.22. However, if the
agent assumes that its features transition independently, then its model predicts
that there is some chance of it moving diagonally into the trap above the goal on
its last step into the goal state. With this incorrect model, it will instead follow
the solid red arrows, navigating around the other trap to approach the goal from
the south. The properties of this domain are listed in Table 5.6.

Figure 5.23 shows the average rewards per episode for the algorithms aver-
aged over 30 trials in the Trap Room. The versions of texplore and factored

r-max using models that predict features independently perform poorly, with
factored r-max converging to a policy that receives an average of −32.7 re-
ward per episode and texplore converging to a policy averaging −26.5 reward.
Meanwhile, when their models are modified with synchronic arcs to model the de-
pendence between state features, the agents learn the optimal policy, converging
to policies that receive −9.0 reward per episode. Both methods with synchronic
arcs received significantly more rewards than both methods without synchronic
arcs after episode 70 (p < 0.0005). We applied the synchronic arcs between the x
and y feature in both directions, and the results show that the ordering of these
features does not result in a difference in the learned policy. Finally, for compar-
ison, we show results for r-max (Brafman and Tennenholtz, 2001), which does
not learn a factored model. It learns the optimal policy, but takes more episodes
to learn it than the factored approaches. Algorithms using the DBN with the
added synchronic arcs still achieve higher sample efficiency than using a tabular
model, even while removing the feature independence assumption.

Next, in Figure 5.24 we show results in a similar domain that has no traps,
called the No Trap Room. Although the features still transition dependently and
thus the independent feature models are incorrect, the policy calculated by them
is still the optimal one. Here we see that both the dependent and independent
model achieve the optimal policy. For factored r-max, there is some additional
exploration required for the added synchronic arcs, resulting in the agent taking
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Fig. 5.22. The Trap Room domain. The goal state is marked by the star, and the
negative rewarding “trap” states are marked by lightning bolts. The optimal policy is
represented by the white arrows, while the policy learned by models assuming feature
independence is shown by the solid red arrows.
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Fig. 5.23. Average rewards for each method over 300 episodes in the Trap Room do-
main. Results are averaged across 30 trials and using a 20 episode sliding window. Note
that texplore with dependent transitions performs the best, and is not affected by
the order of the dependencies.

approximately 28 extra episodes to learn the task. However, even with the extra
exploration required for the added synchronic arcs, factored r-max still learns
the task faster than r-max. Unlike factored r-max, which takes the DBN
structure as input, texplore is only taking possible parents for each feature
and learning the structure on its own. Thus, texplore learns the task in the
same number of episodes with or without the additional features as inputs to its
model, as the convergence rate of the random forest model is not affected by the
extra inputs (Biau, 2012).

Finally, we created a third domain called Independent Feature Trap Room
by modifying the transition dynamics of the Trap Room domain so that fea-
tures transition independently. The agent moves in the intended direction with
probability 0.8, and diagonally to either side with probability 0.1 each. Thus,
the features transition independently as one feature always transitions, and the
other transitions randomly. Figure 5.25 shows results for this domain. Again, all
the methods converge to the optimal policy. For factored r-max, the method
with the added synchronic arcs takes longer to learn than the one without syn-
chronic arcs, but still learns faster than r-max. texplore performs the same
with or without the added features, as it correctly learns a DBN structure that
ignores them.
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Fig. 5.24. Average rewards for each method over 300 episodes in the No Trap Room.
Results are averaged across 30 trials and using a 20 episode sliding window. Note that
the extra dependencies in texplore’s model do not affect it negatively.
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Fig. 5.25. Average rewards for each method over 300 episodes in the Independent
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Our results show that adding synchronic arcs to the DBNs used by many
factored models enables them to learn correct models in domains where features
transition dependently. We have also shown that these extra arcs do not slow
down texplore’s learning, as its random forest model is able to effectively select
the relevant features to split on.

5.6 TEXPLORE on a Physical Robot

After demonstrating each aspect of texplore on the simulated vehicle control
task, this section demonstrates the complete algorithm learning on the physical
autonomous vehicle. This domain is the main motivation for the RL for Robotics
Challenges that texplore addresses, and these experiments are the culminating
results of this book. Due to the time, costs, and dangers involved, only texplore

is tested on the physical vehicle. Five trials of texplore with k = 2 are run on
the physical vehicle learning to drive at 5 m/s from a start of 2 m/s. Figure 5.26
shows the average rewards over 20 episodes. In all five trials, the agent learns
the task within 11 episodes, which is less than 2 minutes of driving time. In 4
of the trials, the agent learns the task in only 7 episodes. Since there is only a
single target velocity for these experiments, the number of state-actions in the
domain is considerably less, and the time-constrained lifetime for this task is
33, 550 steps, or 335 episodes. Still, texplore easily learns the task within this
time frame.
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Fig. 5.26. Average rewards of texplore learning to control the physical vehicle from
2 to 5 m/s. Results are averaged over 5 trials and plotted with 95% confidence intervals.
In every trial, the agent successfully learns the task by episode 10.
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As I was physically present in the vehicle for the learning experiments, I
can report on the typical behavior of the agent while learning to drive the car.
Typically, on the first episode or two, the agent takes actions mostly randomly,
and the car’s velocity simply drifts from its starting velocity. Then on the next
few trials, the learning algorithm explores what happens when it pushes the
throttle or brake all the way down (by alternatively pushing the throttle or
brake to the floor for a few seconds). Next, the agent starts trying to accelerate
to the target velocity of 5 m/s. For the remaining episodes, the agent learns
how to track the target velocity once it is reached and makes improvements
in the smoothness of its acceleration and tracking. This experiment shows that
texplore can learn on a task requiring all the challenges presented in the
introduction.

5.7 Chapter Summary

In this chapter, I have thoroughly evaluated texplore and its approach to
solving each of the RL for Robotics Challenges. For Challenge 1 (sample effi-
ciency), I showed that its approach to model learning and exploration enable
it to learn two tasks in fewer samples than other state-of-the-art approaches.
For Challenge 2 of learning in continuous domains, I show that texplore’s re-
gression tree models learn more accurate predictions than other possible models
and that it performs better than other methods on both Mountain Car and
Cart-Pole. For the third challenge, handling sensor and actuator delays, I show
that texplore’s k-Markov solution works well on two different domains and
only requires the user to provide an upper bound on the amount of delay, k.
Next, I demonstrated that texplore’s real time architecture works better than
the alternatives and demonstrated that it does not cost texplore much in
sample efficiency to run at reasonable real time frame rates. In Section 5.5, I
evaluated texplore’s approach to learning in domains with dependent feature
transitions, and showed that the added synchronic arcs to not adversely affect
the number of samples required for texplore to learn. Finally, I demonstrated
texplore learning to control the velocity of a physical autonomous vehicle in
real time, while being run on-board the robot. For all of these domains, tex-
plore learns to perform well on the task within the time-constrained lifetime.
In the next chapter, I further explore other possibilities for exploration within
the texplore algorithm.
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In this chapter, I examine other approaches to exploration that could be combined
with texplore’s model. First, I introduce three domain classes that each suggest
a different type of exploration. Then, in Section 6.1, I look at how to perform
exploration in domains where a needle-in-a-haystack search is required to find an
arbitrarily located reward or transition. In the next section, I look at the opposite
case: can we explore better in a domain with a richer, more informative set of
state features? Finally, in Section 6.3, I present an algorithm that can learn
which of these exploration approaches to adopt on-line, while interacting with
the environment. Then I present some empirical comparisons of these approaches
against texplore in Section 6.4, before summarizing the chapter in Section 6.5.

This book is focused on applying RL to time-constrained domains, where the
agent is not given enough steps to guarantee that it can learn an optimal policy.
In such domains, exploring intelligently is critical. Since the agent cannot explore
exhaustively, it must target its exploration on the particular state-actions that
are most likely to give it the knowledge to perform well in its limited lifetime. In
this chapter, I examine various approaches to exploration and how they perform
in different types of domains.

The best exploration strategy for an agent to employ varies greatly depending
on the exact properties of the domain. To aid with our analysis of exploration in
such domains, we will define three different classes of domains: haystack domains,
prior information domains, and informative domains. Domains may belong to
multiple classes or none of the three classes.

Haystack domains are ones where the agent needs to find an arbitrarily lo-
cated state that has an unusual transition or reward. We define a state as having
an unusual transition or reward if the image of the transition or reward function
from that state is unusual in some way compared to the images of these func-
tions from other states in the domain. For example, the image of the transition
function may be unusual because the state is a terminal state, or because it
has a different form of distribution over next states than do the images from
other states. The image of the reward function may be unusual because of its
magnitude or sign relative to the images of the function from other states in the
domain. Henceforth, we refer to states with such unusual transition or reward
function images as being unusual states. Many domains have unusual states that
the agent must discover to perform well. In these domains, the best the agent can

* This chapter contains material from four publications: (Hester and Stone, 2009b;
Hester et al., 2010; Hester and Stone, 2012a; Hester et al., 2013).
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do is to perform a “needle-in-the-haystack” search, visiting every state-action in
the domain until it finds the desired state. Many toy domains in the RL liter-
ature such as the Taxi domain (Dietterich, 1998) and Puddle World (Sutton,
1996) are haystack domains.

Prior Information domains are ones where the agent is given some information
about the location of unusual states. An example is a tourist in a city looking
for a particular landmark. Rather than driving to every intersection to see if
the landmark is there, the tourist can use a map to locate the position of the
landmark on their own. For an RL agent, this is implemented by giving the agent
a partial model of the domain, or giving it a few example transitions to initialize
its model, as is done with texplore. In these domains, rather than exploring
each state-action for a particular transition or reward function, the agent knows
the positions of these interesting state-actions and instead needs to learn the
dynamics of the domain to find the best policy.

Informative domains are ones where the agent is given some informative state
features that predict the positions of unusual states. An example of this class
of domain is a robot with distance sensors. These sensors enable it to sense the
location of doorways in a wall without having to try moving through the wall
at each position. In these domains, the agent is given less information than in
the prior information domains, as it must learn what its sensors mean, what
they predict, and how to use them. Still, agents in these types of domains can
use their sensors to perform more specific, targeted exploration than agents in
haystack domains.

Domains can belong to more than one of these classes. For example, a grid-
world domain could have sensors that provide the agent with information about
the locations of walls and doorways, but have an arbitrarily located goal state.
In this case, the domain is both an informative and haystack domain. Domains
also may not belong to any of these classes. For example, domains may not have
individual states with unusual transition or reward function images. Instead,
some domains have transition or reward functions that vary smoothly with the
state features. For example, the transition function in the Cart-Pole Balancing
domain varies smoothly with the pole angle, rather than there being individual
states that have unusual transition function images.

Most of the domains that we looked at in Chapter 5 were prior informa-
tion domains. In this chapter, we present extensions to texplore to modify
its exploration for both haystack and informative domains. In Section 6.1 we
present an approach for haystack domains that explores each state-action in the
domain. Then, in Section 6.2 we look at how an agent can make use of the
state features in informative domains to explore more intelligently. Sometimes,
it may be difficult to determine which type a domain is and thus which explo-
ration strategy to select. For these domains, we present a method for learning
the best exploration strategy on-line while interacting with the domain in Sec-
tion 6.3. Finally, we compare these approaches against texplore on a couple
of domains and analyze when each should be adopted. All the domains pre-
sented in this chapter are listed in Appendix B and are available in our ROS
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package: http://www.ros.org/wiki/rl_env. Throughout the chapter, signifi-
cance results are calculated using a Student’s t-test.

6.1 Explicit Exploration

One of our goals in developing the texplore algorithm was to have a method
that would not have to visit every state-action in the domain. However in
haystack domains, where there are arbitrarily located states with unusual tran-
sition or reward function images, such exploration is required. For example, in
a typical grid world with an arbitrarily located goal state, the best the agent
can do is try each state-action until it finds the goal. Therefore, in this section
we present an exploration method that addresses haystack domains. While this
method is driving the agent to explore each state-action, we still desire it to make
use of texplore’s model generalization and learn faster than tabular methods
such as r-max (Brafman and Tennenholtz, 2001).

6.1.1 Methodology

In haystack domains, we desire the agent to use r-max-like exploration (visiting
every state-action) until it finds the arbitrarily located transition or reward,
and then switch to acting greedily with respect to its model. We extend the
texplore method into an algorithm called texplore with explicit exploration
(texplore-ee)1 to use an explicit exploration mode. The general approach is
to plan a policy on the model, calculate the expected value of this policy, and
use this value to decide whether to explore or exploit. texplore-ee differs from
texplore in two ways. First, rather than using a random forest of trees to
drive exploration, it explicitly chooses when to explore or exploit. Second, it
uses a model with a single decision tree for each feature rather than a random
forest, as the agent is not building or using multiple hypotheses of the domain.
Pseudo-code for the algorithm is shown in Algorithm 6.1.

In this approach, the user sets one parameter, Vmin, that specifies the min-
imum acceptable value for a learned policy. The agent learns a model of the
domain using a single decision tree for each feature. Whenever the agent up-
dates its model, it plans on the model and checks if its policy achieves the min-
imum value Vmin (Line 6). If the agent’s policy does not achieve the minimal
value, the agent goes into exploration mode, where it is driven to explore each
state-action. Otherwise, it remains in exploitation mode, where it takes what it
believes is the optimal action at each step. In this approach, the agent will start
out exploring each state-action until it has learned enough to plan a policy with
value V π ≥ Vmin. At this point, it will stop exploring and exploit its model to
receive these rewards.

In exploration mode, the agent follows a policy similar to r-max (Brafman and
Tennenholtz, 2001). When planning, the algorithm ignores the task reward and

1 Note that texplore-ee was called rl-dt in (Hester and Stone, 2009b; Hester et al.,
2010).

http://www.ros.org/wiki/rl_env
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Algorithm 6.1. texplore with explicit exploration (texplore-ee)

1: Input: S,A,Vmin � S: state space, A: action space, Vmin: threshold
2: Initialize M to empty model
3: Initialize s to a starting state in the MDP
4: loop
5: πexploit, Vexploit ← plan-policy(M) � Plan on model
6: if Vexploit(s) < Vmin(s) then � Go into exploration mode
7: πexplore, Vexplore ← plan-policy(Mexplore) � Use modified model
8: Choose a← πexplore(s)
9: else
10: Choose a← πexploit(s)
11: end if
12: Take action a, observe r, s′

13: M⇒update-model(〈s, a, s′, r〉) � Update model M
14: s← s′

15: end loop

gives all state-actions with the minimum number of visits a reward of 1.0. Unlike
r-max, which assumes these unknown transitions are terminal, this approach
can plan policies to go through a series of unvisited state-actions to achieve
the highest possible intrinsic rewards. In addition, this approach will visit all
unvisited state-actions first, then state-actions that have been visited only once,
and continue in order, rather than treating all state-actions with fewer than m
visits equally.

This approach has both benefits and drawbacks. It performs more limited
exploration than methods such as r-max by stopping exploration as soon as
it finds a sufficient policy. In addition, texplore-ee does take some advan-
tage of the generalization capabilities of the decision tree models, as it uses its
predictions of unvisited state-actions to plan trajectories through sequences of
unvisited state-action for the most efficient exploration. However, it is still not
targeting its exploration in any way: even if the agent has evidence that certain
state-actions are not useful or provide negative rewards, it will still explore them
if they have the fewest visits. In addition, texplore-ee requires the user to tune
a threshold of the minimum value policy that is acceptable, which will need to
be tuned separately for each domain.

6.1.2 Empirical Evaluation

We evaluate this exploration approach on two different domains. First we look
at at the Taxi domain, where are there are multiple arbitrarily located goals.
This task makes the benefits of exploring individual state-actions clear. We then
evaluate the algorithm on a robot control task, controlling a Nao robot learning
to score penalty kicks. This task is similar to Taxi, as the robot can only score
goals from a few specific states in the domain.
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Table 6.1. Properties of the Taxi task

State Features x, y, passenger, destination

Actions east, west, north, south, pick-up, drop-off

Reward −1 normally, +20 upon completion
−10 for bad pick-up or drop-off action

# State-Actions 3, 000

Time-Constrained Lifetime 6, 000 actions

Domain Class Haystack

Taxi. Our first set of experiments is on the Taxi domain (Dietterich, 1998),
which was first introduced in Section 2.2.3. In this domain, the agent must
navigate to the landmark where the passenger is located, pick her up, and then
navigate to her destination landmark and drop her off. These landmarks are
at one of four arbitrarily located cells in the grid world. Another aspect of this
domain is that calling the pick-up or drop-off action in the wrong state results
in a negative reward of −10, while the agent normally receives a reward of −1
each step. The properties of this domain are shown in Table 6.1.

On this domain, we compared four methods: texplore, texplore-ee, q-
learning, and r-max. texplore-ee was run with the threshold Vmin = −10.0.
q-learning was run with ε-greedy exploration with ε = 0.1 and r-max was run
with m = 10. None of the algorithms are given any seed experience transitions
to initialize their model.

The cumulative rewards received by each algorithm over 200 episodes are
shown in Figure 6.1. texplore-ee earns significantly more cumulative rewards
than the other three algorithms (p < 0.001). Importantly, it learns the task much
faster than r-max. Although exploration of each state-action is required for this
task, texplore-ee can still take advantage of its model generalization to learn
faster. Another important point to note is that texplore-ee’s choice between
exploration and exploitation modes is dependent on which landmark it is trying
to navigate to. In each episode, the passenger’s location and destination are
selected randomly from the four landmarks. On episodes where these landmarks
are new to texplore-ee, it will not find a good policy and choose to explore.
On other episodes where it has seen the landmarks before, it can exploit its
knowledge, even though it still may not know some landmark locations.

texplore performs very poorly on this domain. Not only are the landmarks
in arbitrary locations, but texplore’s tree models all quickly agree on the
fact that the pick-up and drop-off actions provide large negative rewards
and texplore stops trying them, selecting randomly from the four navigation
actions. Later, in Section 6.4, I will examine how texplore performs in this
domain when I modify it to be a prior information domain by giving the agent
information about the landmark locations. In addition, I will also look at a
different haystack domain where exploratory actions are not penalized.
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Fig. 6.1. Cumulative reward of the algorithms on the Taxi domain, averaged over 30
trials. Note that texplore-ee performs the best here, while texplore performs poorly
on this task because it requires the agent to explore every individual state-action.

PenaltyKicks. Our second evaluation task for texplore-ee is to train an Alde-
baran Nao humanoid robot to score penalty kick goals. This scenario takes place
in the domain of the RoboCup Standard Platform League (SPL). RoboCup is an
annual robot soccer competition with the goal of developing an autonomous hu-
manoid robot soccer team that can defeat the world champion human team by
2050. Games in the SPL use the Aldebaran Nao humanoid robot, which is 58 cen-
timeters tall and has 21 degrees of freedom. The robot has two cameras in its head
and computation is performed on the robot using its AMD Geode processor.

When an elimination game in the SPL ends in a tie score, the winner is
determined by best of five penalty kicks. In the penalty kick, the defending
robot starts in the middle of the goal on the goal line, while the offensive robot
starts at mid field. The ball is placed on a white cross located 1.8 meters from
the goal. The robot has one minute to walk up to the ball and score a goal.

Penalty kicks can be critical to success in the SPL as many of the teams are
evenly matched and historically many games end in a tie and are decided by
penalty kicks. At RoboCup 2009 in Graz, Austria, 28 of the 64 games (43.75%)
ended in a tie.2 The frequency of games ending in ties makes penalty kicks an
important aspect of the games.

Even though most teams employed a stationary goal keeper for the kicks in
2009, teams rarely scored on penalty kicks as lining up and aiming the ball past
the keeper proved to be particularly difficult. Out of the 9 games that were

2 http://www.tzi.de/spl/bin/view/Website/Results2009

http://www.tzi.de/spl/bin/view/Website/Results2009
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Fig. 6.2. The experimental setup of the Penalty Kick task in the Webots simulator,
with the robot learning to aim its kick past the keeper to score penalty kicks.

decided by penalty kicks (the rest were left as a draw), only 3 had goals scored
during the best of five penalty kicks. In total, there were only 7 goals scored in
90 penalty kick attempts, resulting in a low scoring percentage of 7.8%.

Our goal is to have the robot learn how to score penalty goals against a typical
stationary keeper. We set up the experiments with the ball on the penalty mark
1.8 meters from the goal as specified in the SPL penalty kick rules (Röfer et al.,
2009). The robot is placed facing the goal with the center of its feet 15 cm behind
the penalty mark. In an actual penalty kick, the robot starts at midfield, but
here we are strictly trying to learn to aim the kick and we assume the robot has
walked up to ball. The keeper is placed in a crouched position in the center of
the goal. Every episode begins with this exact setup, shown in Figure 6.2.

For each episode, the agent starts our normal kick engine (Hester et al., 2009),
standing on its right leg and looking down at the ball. The learning algorithm
then controls the free left leg with three available actions: move-out, move-in,
and kick. The robot’s state consists of two state features: the x coordinate of
the ball in the robot’s camera image and the distance the free foot is shifted out
from the robot’s hip in millimeters (foot-shift), demonstrated in Figure 6.3.
Each feature is discretized: the ball’s image coordinate is discretized into bins
of two pixels each, while the leg distance is discretized in 4 millimeter bins. The
move-out and move-in actions each moved the leg 4 mm in or out from the
robot’s body. The agent receives a reward of −1 for each action moving the leg
in or out and −20 if the action causes the robot to fall over (by shifting its leg
too far in either direction). When kicking, the agent receives a reward of +20 if
it scores a goal, and −2 if it does not. The agent’s goal is to learn exactly how
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Kick

Feature 1

Feature 2

In Out

Fig. 6.3. For the Penalty Kick task, the robot’s state consisted of the x coordinate of
the ball in the robot’s camera image and the distance the robot’s foot was shifted out
from its hip. The actions available to the robot were to move the leg in, out, or kick.
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Table 6.2. Properties of the Penalty Kick task

State Features x, foot-shift

Actions move-in, move-out, kick

Reward Ranges from −20 to +20

# State-Actions 3, 360

Time-Constrained Lifetime 6, 720 actions

Domain Class Haystack

far to shift its leg before kicking such that it will kick the ball at an angle past
the keeper. The properties of this Penalty Kick task are shown in Table 6.2.

Due to the difficulties and time involved in performing learning experiments
on the physical robot, we started by performing experiments in the Webots
simulator from Cyberbotics.3 Webots is a robotics simulator that uses the Open
Dynamics Engine (ODE) for physics simulation. It simulates all the joints and
sensors of the robot, including the camera. After running experiments in the
simulator, we ran experiments on the physical robot to validate our results.

On this task, we compared q-learning, r-max and texplore-ee.
texplore-ee was run with the threshold Vmin = 8.0. q-learning was run
with ε-greedy exploration with ε = 0.1 and r-max was run with m = 10.

On each trial, the ball is placed in a random location relative to the robot to
simulate the noisiness of the robot’s approach to the ball. We first determined
the range of ball locations where it was possible to score from and then randomly
placed the ball in this region, which was between 0 and 34 mm or between 74
and 130 mm left of the penalty mark. In this experiment, the robot could use
the state feature about the ball’s location in its camera image to determine how
far it needed to shift its leg to line up the ball properly to score a goal.

Plots of the average cumulative reward for the three algorithms over 30 trials
are shown in Figure 6.4. It is possible to score at many positions without shifting
the leg and q-learning performs well by quickly learning to score consistently
at these positions. While q-learning performs well early, its final policy is not
as good as that of the other two algorithms. Figure 6.5 shows the percentage
of tries that each algorithm scored at each ball position during the final 200
episodes. q-learning does very well on the positions where there was no leg
shift required, but is unable to learn to score on more difficult positions, such as
when the ball is offset between 74 and 84 mm. The two model-based methods
perform more exploration and learn to score from these positions. texplore-ee
explores fast enough that it is able to accumulate enough reward from its better
policy to surpass the cumulative reward of q-learning and it has a better
policy than r-max at the end of the 1500 episodes.

Following these experiments, we ran one trial of texplore-ee on the physical
robot. In this case, we manually reset the robot and ball to the correct positions
between each episode, and attempted to place the ball at a constant offset of

3 http://www.cyberbotics.com

http://www.cyberbotics.com
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Fig. 6.4. Cumulative reward of the learning agents on the Penalty Kick task with a
random ball location in the Webots simulator. While q-learning has success early,
texplore-ee surpasses it and has the highest cumulative reward after 1500 episodes.

30 mm from the penalty spot. The cumulative reward plot for the one physical
robot trial is shown in Figure 6.6 along with the cumulative reward averaged
over 30 trials of texplore-ee in the simulator for comparison. The results the
algorithm achieves on the real robot are very similar to its performance in the
simulator, validating that these experiments do cross over to the physical robot.

The results on both the Taxi and Penalty Kick domains demonstrate that
texplore-ee can successfully learn on haystack domains, which require explo-
ration of each state-action. Although texplore-ee is exploring each state-action
when necessary, it is still able to out-perform r-max on both domains.

6.2 Variance and Novelty Intrinsic Rewards

While using explicit exploration and exploitation modes is useful in haystack
domains, it does not make much sense in informative domains. Informative
domains have informative state features that provide some information and
guidance about where unusual states may be. For example, an agent in a grid
world could have a wall sensor that detects the distance to a wall, or sensors
that tell an agent if it is near an object or goal. Although the agent must
discover the meaning and use of these informative features, it could utilize
them to explore in a more targeted and intelligent way. In addition to en-
abling the agent to learn the task more efficiently, such a method could also
be useful for providing motivation for a developing curious agent in domains
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Fig. 6.5. This graph shows the percentage of tries that each algorithm scored at each
ball position in the last 200 episodes of the Penalty Kick task. Note that the ball’s initial
position was never between 34 and 74 mm because these locations were impossible to
score from.

with little or no external rewards. In this section, we present an extension to
texplore that provides intrinsic rewards to drive exploration in a more tar-
geted way in informative domains. This extension is called texplore with vari-
ance and novelty intrinsic rewards, or texplore-vanir. texplore-vanir has
also been publicly released in the same package as the texplore algorithm:
http://www.ros.org/wiki/rl-texplore-ros-pkg. After presenting the algo-
rithm in Section 6.2.1, we then present some experiments demonstrating the
efficacy of this approach in Section 6.2.2.

6.2.1 Methodology

One approach to driving exploration is to use intrinsic rewards to drive the
agent to particular states. For example, r-max uses intrinsic rewards to drive
the agent to state-actions with fewer than m visits. We hypothesize that the best
intrinsic rewards to use to improve the efficiency of model-learning are highly
dependent on the type of model being learned. With the random forest model
texplore uses, we hypothesize that the following two intrinsic motivations will
perform the best: 1) preferring to explore areas of the state space where there is
a large degree of uncertainty in the model, and 2) preferring regions of the state
space that have the most different state features from previously explored states
(regardless of how certain the model is).

http://www.ros.org/wiki/rl-texplore-ros-pkg
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Fig. 6.6. Cumulative reward of texplore-ee on one trial on the real robot and aver-
aged over 30 trials in the simulator with a standard ball location on the Penalty Kick
task.

The variance of the predictions of each of the trees in the forest can be used to
motivate the agent towards the state-actions where its models disagree, similar
to the query by committee approach from active learning (Seung et al., 1992).
Each tree in the random forest can be considered as a different hypothesis of
the true dynamics of the domain. Therefore, the state-actions where the trees’
predictions differ are the ones where there are still multiple hypotheses of the
true model of the domain. texplore-vanir calculates a measure of the variance
in the predictions of the change in each state feature for a given state-action:

D(s, a) =
n∑

i=1

m∑

j=1

m∑

k=1

DKL(Pj(x
rel
i |s, a)||Pk(x

rel
i |s, a)), (19)

where for every pair of models (j and k) in the forest, it sums the KL-divergences
between the predicted probability distributions for each feature i. D(s, a) mea-
sures how much the predictions of the different models disagree. This measure
is different than just measuring where the predictions are noisy, as D(s, a) will
be 0 if all the tree models predict the same stochastic outcome distribution. An
intrinsic reward proportional to this variance measure, the variance-reward,
is incorporated into the agent’s model for planning:

R(s, a) = vD(s, a), (20)

where v is a coefficient determining how big this reward should be. By setting
v < 0, the agent will avoid states that the model is uncertain about; setting v > 0
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will result in the agent being driven to explore these uncertain states. If v = 0,
the agent will act greedily with respect to its model. Changing the parameter
v affects how aggressive the agent is in trying to improve uncertainties in its
model. This reward can be combined with other rewards (intrinsic or extrinsic)
to drive the agent. This reward for variance in the agent’s models is similar to
the approach taken in the pilco algorithm (Deisenroth and Rasmussen, 2011)
(described in Section 7.1.1), which adds a bonus reward into the model for state-
actions where the predictions have the highest variance.

The variance-reward will drive the agent to the state-actions where its
models have not yet converged to a single hypothesis of the world’s true dy-
namics. However, there will still be cases where all of the agent’s models make
incorrect predictions. Therefore, texplore-vanir also needs a measure of how
likely it is for the model’s predictions to be incorrect. For the random forest
model that texplore-vanir uses, the model is more likely to be incorrect when
it has to generalize its predictions farther from the experiences it is trained on.
Therefore, texplore-vanir utilizes a second intrinsic reward based on the L1

distance in feature space from a given state-action and the nearest one that the
model has been trained on. This distance is calculated separately for each action.
For an action a, Xa is the set of all the states where this action was taken. Then,
δ(s, a) is the L1 distance from the given state s to the nearest state where action
a has been taken:

δ(s, a) = min
sx∈Xa

||s− sx||1, (21)

where each feature is normalized to range from 0 to 1. A reward proportional
to this distance, the novelty-reward, drives the agent to explore the state-
actions that are the most novel compared to the previously visited state-actions:

R(s, a) = nδ(s, a), (22)

where n is a coefficient determining how big this reward should be. One nice
property of this reward is that given enough time, it will drive the agent to
explore all the state-actions in the domain, as any unvisited state-action is dif-
ferent in some feature from the visited ones. However, it will start out driving
the agent to explore the state-actions that are the most different from ones it
has seen.

The texplore with Variance-And-Novelty-Intrinsic-Rewards algorithm
(texplore-vanir) is completed by combining these two intrinsic rewards. Al-
gorithm 6.2 shows texplore-vanir’s model learning approach, replacing Algo-
rithm 4.1 used by texplore. texplore-vanir’s intrinsic rewards can be com-
bined with different weightings of their coefficients (v and n) to drive the agent
to both explore novel state-actions where its model may have generalized incor-
rectly and state-actions where its model is uncertain. A combination of these
two intrinsic rewards should drive the agent to learn a model more efficiently,
as well as explore in a developing and curious way: seeking out novel and inter-
esting state-actions, while exploring increasingly complex parts of the domain.
The next section presents experiments comparing this exploration approach to
others on a domain with complex dynamics and rich features.
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Algorithm 6.2. texplore-vanir’s model learning

1: procedure init-model(n,A) � n: Num. state features, A: Num. actions
2: for i = 1→ n do
3: featModeli⇒init() � Init model to predict feature i
4: end for
5: rewardModel⇒init() � Init model to predict reward
6: for i = 1→ A do
7: Xi ← ∅ � Init visited state set for each action to ∅
8: end for
9: end procedure

10: procedure update-model(list) � Update model with list of experiences
11: for all 〈s, a, s′, r〉 ∈ list do
12: srel ← s′ − s � Calculate relative effect
13: for all sreli ∈ srel do
14: featModeli⇒update(〈s, a〉 , sreli ) � Train a model for each feature
15: end for
16: rewardModel⇒update(〈s, a〉 , r) � Train a model to predict reward
17: Xa ← Xa ∪ s � Add state s to visited set
18: end for
19: end procedure

20: procedure query-model(s, a) � Get prediction of 〈s′, r〉 for s, a
21: D← 0
22: for i = 1→ length(s) do
23: sreli ← featModeli⇒query(〈s, a〉) � Sample a prediction for feature i
24: D ← D + featModeli⇒calcD(〈s, a〉) � Sum D for each feature (Eq. 19)
25: end for
26: s′ ← s+

〈
srel1 , ..., sreln

〉
� Get absolute next state

27: r ← rewardModel⇒query(〈s, a〉) � Sample r from distribution
28: δ ← minsx∈Xa ||s− sx||1 � Calculate δ (Eq. 21)
29: r ← r + vD + nδ � Add intrinsic rewards
30: return 〈s′, r〉 � Return sampled next state and reward
31: end procedure

6.2.2 Empirical Evaluation

In this section, we evaluate texplore-vanir on an informative domain un-
der the usual RL framework. In addition, we analyze its benefits for driving a
developing curious agent in a domain without external rewards. Rather than at-
tempting to accrue reward on a given task, a curious agent’s goal is better stated
as preparing itself for any task. We therefore evaluate texplore-vanir in four
ways on a complex domain with no external rewards. First, we measure the accu-
racy of the agent’s learned model in predicting the domain’s transition dynamics.
Second, we test whether the learned model can be used to perform tasks in the
domain when given a reward function. Third, we examine the agent’s exploration
to see if it is exploring in a developing, curious way. Finally, we demonstrate
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Table 6.3. Properties of the Light World domain

State id, x, y, key, locked, red-e, red-w, red-n,
Features red-s, green-e, green-w, green-n,

green-s, blue-e, blue-w, blue-n, blue-s,

Actions east, west, north, south, press, pickup

Reward 0 each step, +10 when leaving room

# State-Actions 1, 464

Time-Constrained Lifetime 2, 928 actions

Domain Class Informative

that texplore-vanir can combine its intrinsic rewards with external rewards
to learn faster than if it was given only external rewards. These results demon-
strate that the intrinsic rewards and model learning approach texplore-vanir

uses are sufficient for the agent to explore in a developing curious way and to
efficiently learn a transition model that is useful for performing tasks in the
domain.

The agent is tested on the Light World domain (Konidaris and Barto, 2007),
shown in Figure 6.7. In this domain, the agent goes through a series of rooms.
Each room has a door, a lock, and possibly a key. The agent must go to the
lock and press it to open the door, at which point it can then leave the room. It
cannot go back through the door in the opposite direction. If a key is present, it
must pickup the key before pressing the lock. Open doors, locks, and keys each
emit a different color light that the agent can see. The agent has sensors that
detect each color light in each cardinal direction. The sensors have a maximal
value of 1 when the agent is at the light, and their values decrease linearly to
0 when the light is 20 steps away. The agent’s state is made up of 17 different
features: its x and y location in the room, the id of the room it is in, whether
it has the key, whether the door is locked, as well as the values of the 12
light sensors, which detect each of the three color lights in the four cardinal
directions. The agent can take six possible actions: it can move in each of the
four cardinal directions, press the lock, or pickup the key. The first four actions
are stochastic; they move the agent in the intended direction with probability
0.9 and to either side with probability 0.05 each. The press and pickup actions
are only effective when the agent is on top of the lock and the key, respectively,
and then only with probability 0.9. The agent starts in a random state in the
top left room in the domain, and can proceed through the rooms indefinitely.
The properties of the domain are presented in Table 6.3.

This domain is well-suited for this task because the domain is informative
and has complex dynamics. There are simple actions that move the agent, as
well as more complex actions (pickup and press) that interact with objects in
different ways. There is a progression of the complexity of the uses of these two
actions. Picking up the key is easier than pressing the lock, as the lock requires
the agent to have already picked up the key and not yet unlocked the door.
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Fig. 6.7. The Light World domain. In each room, the agent must navigate to the key,
pickup they key, navigate to the lock, press it, and then navigate to and exit through
the door to the next room.

Based on informal testing, we set texplore-vanir’s parameters to v = 1 and
n = 5. texplore-vanir is tested against the following agents:

1. Agent that selects actions randomly
2. Agent that is given an intrinsic motivation for regions with more competence

progress (based on r-iac (Baranes and Oudeyer, 2009))
3. Agent that is given an intrinsic motivation for regions with more prediction

errors
4. Agent that uses r-max style rewards (terminal reward of Rmax for state-

actions with fewer than m visits)
5. Agent that acts randomly with a tabular model
6. r-max algorithm (Brafman and Tennenholtz, 2001).

These six algorithms provide four different ways to explore using texplore-

vanir’s random forest model, as well two approaches using a tabular model.
The tabular model is initialized to predict self-transitions for state-actions that
have not been visited.

One of the more well-known intrinsic motivation algorithms is Robust Intel-
ligent Adaptive Curiosity (r-iac) (Baranes and Oudeyer, 2009). r-iac does not
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Fig. 6.8. Accuracy of each algorithm’s model of the Light World domain plotted versus
number of steps the agent has taken, averaged over 30 trials and 5000 randomly sampled
state-actions. texplore-vanir learns the most accurate models.

adopt the RL framework, but is similar in many respects. r-iac splits the state
space into regions and learns a model of the transition dynamics in each region.
It maintains an error curve for each region and uses the slope of this curve as
the intrinsic reward for the agent, driving the agent to explore the areas where
its model is improving the most (rewarding competence progress). This approach
is intended for very large multi-dimensional continuous domains where learning
may take many thousands of steps. We have created a method based on this idea
to compare with our approach (the Competence Progress method). This method
splits the state space into random regions at the start, maintains error curves in
each region, and provides intrinsic rewards based on competence progress within
a region. These intrinsic rewards are combined with the same texplore model
learning approach as the other methods. As another comparison, the Prediction
Error method uses the same regions, but rewards areas with high prediction
error.

All the algorithms are run in the Light World domain for 1000 steps without
any external reward. During this phase, the agent is free to play and explore in
the domain, all the while learning a model of the dynamics of this world. For
some of the experiments, a second phase of the experiment is run with external
rewards to see if the agent’s learned model is useful. All of the algorithms use
the rtmba parallel architecture and take 2.5 actions per second.

First, we examine the accuracy of the agent’s learned model. After every
25 steps, 5000 state-actions from the domain are randomly sampled and the
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variational distance between the model’s predicted next state probabilities are
compared with the true next state probabilities. Figure 6.8 shows the varia-
tional distance between these distributions, averaged over the 5000 sampled
state-actions. This figure shows that texplore-vanir learns significantly more
accurate models than the other methods (p < 0.025). The next best algorithm is
r-max. However, using r-max style reward with the texplore model strategy
is worse than acting randomly. This result illustrates our point that the best
intrinsic reward is dependent on the particular model learning approach that
is used. The method rewarding visiting regions with high prediction error per-
forms poorly, possibly because it is not visiting the right state-actions within
these regions.

While texplore-vanir and r-max appear to learn fairly accurate models, it
is more important for the algorithms to be accurate in the interesting and useful
parts of the domain than for them to be accurate about every state-action.
Therefore, we next test if the learned models are useful to perform a task. After
the algorithms learned models without rewards for 1000 steps, they are provided
with a reward function for a task. The task is for the agent to continue moving
through the rooms (requiring it to use the keys and locks). The reward function
is a reward of 10 for moving from one room to the next, and a reward of 0 for all
other actions. In this second phase, the agents act greedily with respect to their
previously learned transition models and the given external reward function with
no intrinsic rewards for 3000 steps.

Figure 6.9 shows the cumulative external reward received by each algorithm
over the 3000 steps of the task. Again, texplore-vanir performs the best,
slightly out-performing r-max and significantly out-performing the other meth-
ods (p < 0.001). Learning an accurate transition model appears to lead to good
performance on the task, as both texplore-vanir and r-max perform well on
the task.

Next, the exploration of the texplore-vanir agent is examined. In addi-
tion to learning an accurate and useful model, we desire the agent to exhibit a
developing curiosity. Precisely, the agent should progressively learn more com-
plex skills in the domain, rather than explore randomly or exhaustively. Fig-
ures 6.10(a) and 6.10(b) show the cumulative number of times that texplore-
vanir and the random agent select the press action in various states over 1000
steps in the task with no external rewards, averaged over 30 trials. Comparing
the two figures shows that texplore-vanir calls the press action many more
times than the random agent. Figure 6.10(a) also shows that texplore-vanir
tries press on objects more often than on random states in the domain. In
contrast, Figure 6.10(b) shows that the random agent tries press on arbitrary
states more often than it uses it correctly.

Analyzing the exploration of texplore-vanir further, Figure 6.10(a) shows
that it initially tries press on the key, which is the easiest object to access, then
tries it on the lock, and then on the door. The figure also shows that texplore-
vanir takes longer to learn the correct dynamics of the lock, as it continues
to press the lock incorrectly, either without the key or with the door already
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Fig. 6.9. Cumulative rewards received by each algorithm over 3000 steps in the Light
World domain, averaged over 30 trials. Agents act greedily with respect to their pre-
viously learned transition model and the given external reward function. texplore-
vanir receives the most reward.

unlocked. These plots show that texplore-vanir is acting in an intelligent,
curious way, trying actions on the objects in order from the easiest to hardest to
access, and going back to the lock repeatedly to learn its more complex dynamics.

Finally, not only should the agent’s intrinsic rewards be useful when learning
in tasks without external rewards, they should also make an agent in a domain
with external rewards learn more efficiently. For this experiment, the algorithms
are run for 3000 steps with their intrinsic rewards added to the previously used
external reward function that rewards moving between rooms. Instead of an
agent acting randomly, we instead have one agent acting using only the external
rewards, and one performing Boltzmann, or soft-max, exploration with tempera-
ture τ = 0.2. Figure 6.11 shows the cumulative external reward received by each
agent over the 3000 steps of the task. texplore-vanir receives significantly
more reward than the other algorithms (p < 0.001), followed by r-max. Now
that exploration and exploitation are no longer separated into separate phases,
the exploration of r-max is too aggressive and costs it external reward.

These results show that texplore-vanir’s intrinsic rewards out-perform
other exploration approaches and intrinsic motivations combined with the tex-

plore model. texplore-vanir performs similarly to r-max when exploration
and exploitation are split into separate phases, but out-performs r-max sig-
nificantly when combining intrinsic and external rewards together. texplore-
vanir explores the domain in a curious, developing manner progressing from
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Fig. 6.10. This plot shows the cumulative number of times that texplore-vanir and
a Random Agent select the press action in various states over 1000 steps in Light
World with no external rewards, averaged over 30 trials. Note that the random agent
attempts the press action much less than texplore-vanir does. texplore-vanir
starts out trying to press the key, which is the easiest object to find, and eventually
does learn to press the lock, but has difficulty learning when to press the lock (it must
be with the key but without the door already being open). The agent does not try
calling the press action on random states very often. In contrast, the random agent
calls press action on random states more often than it calls it correctly on the lock.
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state-actions with easier dynamics to those that are more difficult. Finally, in
a task with external rewards, texplore-vanir can use its intrinsic rewards to
speed up learning with respect to an algorithm using only external rewards.

It is important to note that the best intrinsic rewards are dependent on the
learning algorithm and the domain. For example, the competence progress re-
wards used by r-iac are intended to be used in complex high-dimensional do-
mains where learning is slow. It takes quite a few samples in one region to get an
reasonable estimate of the derivative of the error. In the Light World domain,
by the time the algorithm has determined error is improving in a region, the
agent has already learned a model of that region and no longer needs to explore
there. When using other model learning methods, the best intrinsic reward will
vary as well, for example, in these experiments, the r-max reward works well
for a tabular model, but not for a random forest model.

6.3 On-Line Learning of Exploration Parameters4

Both the texplore-ee algorithm for haystack domains and the texplore-

vanir algorithm for informative domains worked well on the desired domains.
However, requiring the user to determine the domain type, and to select and
tune different exploration parameters for each domain is not desirable. Instead,
it would be ideal if the RL agent could learn which exploration strategy is best
for a task on-line, while interacting with the task. In this section, we combine
the texplore algorithm with an approach for learning exploration strategies
on-line called leo (Learning Exploration On-line), forming the texplore-leo

algorithm. We present results showing that texplore-leo performs well across
a set of tasks where no single exploration strategy performs well across all the
tasks.

6.3.1 Methodology

In this section, we present our algorithm, leo, for learning the best exploration
strategies on-line. While it was designed to work with texplore, it is a general
approach that works with any model-based RL method. leo is given a set of
different exploration strategies and its goal is to choose the best exploration
strategy for each task while interacting with the environment on-line. Since we
are concerned with on-line performance of the algorithm, leo evaluates the
performance of each exploration strategy based on the rewards received by the
agent while following that strategy. Thus, leo chooses the exploration strategies
that find the rewards and goals the fastest, limiting the costs of exploration by
exploring efficiently.

leo treats each of these exploration strategies like one of the arms in a multi-
armed bandit problem (Auer et al., 2000). Pseudo-code for our approach is shown
in Algorithm 6.3. Briefly, the agent follows these steps: 1) it selects one of the

4 This section presents work done jointly with Manuel Lopes.
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strategies based on the past payouts received from following it; 2) it follows the
selected strategy while tracking the similarity of the other strategies to the one it
is following; and 3) at the end of the episode, it updates the expected payouts for
each strategy (even the ones not followed). Each step of this process is explained
in detail below.

The algorithm is given a set of strategies, E. Each strategy has a weight,
we, which is an estimate of the expected normalized return for an episode when
following that strategy. At the start of each episode, leo uses these weights to
compute a soft-max distribution over the set of strategies, similar to the exp4

bandit algorithm (Auer et al., 2000):

P (e)← eβ(we−min(w))

∑
j e

β(wj−min(w))
. (23)

After calculating this distribution, run-episode is called on Line 5. run-

episode runs the agent through one episode, sampling strategies from this dis-
tribution every 10 steps. 10 was chosen through informal experiments, as it
was important for the agent to follow a given exploration strategy for multiple
steps, but following a bad strategy for an entire episode could greatly impact
the agent’s performance. At the end of the episode, run-episode returns the
normalized discounted reward received on the episode and the similarity of each
strategy to the followed strategy. This similarity is calculated using importance
sampling (Precup et al., 2000; Sutton and Barto, 1998) and is the likelihood of
the followed trajectory under this strategy’s policy.

After an episode is completed, the estimate of the expected normalized dis-
counted return for each strategy is updated with the following equation on Line 6:

we ← we + η · sime∑
f simf

(Ĵ − we). (24)

The weight changes are divided between the strategies based on each strategy’s
proportion of the total similarity, sime∑

f simf
, so that the sum of the weight changes

for all strategies is η, the learning rate. Thus, strategies that were more similar
to the followed policy in an episode are moved closer to the return from that
episode than strategies that were not similar to the followed policy. These up-
dated weights then affect the new distribution over strategies calculated before
the next episode.

Algorithm 6.4 shows what leo does during an episode. Every 10 steps, the
algorithm selects a new strategy from the distribution over strategies (Line 7).
Typically, one of these strategies is to act greedily with respect to the learned
model of external reward in the task, and the other strategies’ policies maximize
other intrinsic rewards for exploration. Through informal testing, we found that
strictly following any one of these exploration strategies can lead to poor per-
formance in the task, as they are followed even if they contradict knowledge of
the external rewards in the task. Thus, the algorithm plans a separate execution
policy, πx, on Line 10. This execution policy combines exploration and exploita-
tion by maximizing both the intrinsic rewards of the selected strategy e as well
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Algorithm 6.3. Learning Exploration On-line (leo)

1: Input: E � Set of strategies E
2: we ← 1.0, ∀e ∈ E � Initialize strategy weights
3: loop � Loop over episodes

4: P (e)← eβ(we−min(w))

∑
j e

β(wj−min(w)) � Dist. over strategies

5: sim, Ĵ ←run-episode(P (e))
6: we ← we + η · sime∑

f simf
(Ĵ − we), ∀e ∈ E

7: end loop

Algorithm 6.4. leo: run-episode(P (e))

1: Input: S,A,E � S: state space, A: action space, E: set of strategies
2: i← 0.0
3: sime ← 1.0, ∀e ∈ E � Reset strategy weights
4: J ← 0.0 � Discounted return
5: while Episode Not Over do
6: if i mod 10 = 0 then
7: Sample strategy b from P (e ∈ E)
8: end if
9: πe ← plan-policy(e), ∀e ∈ E
10: πx ← plan-policy(b+ task) � Plan exec. pol.
11: Sample action a from πx(s, a ∈ A)
12: Take action a, observe r, s′

13: M ← update-model(M 〈s, a, s′, r〉)
14: sime ← sime ∗ πe(s, a), ∀e ∈ E � Update sim.
15: s← s′

16: J ← J + γi ∗ r
17: i← i+ 1
18: end while

19: Ĵ ← J− rmin
1−γ

rmax
1−γ

− rmin
1−γ

� Calculate normalized return

20: return sim, Ĵ

as the model of task rewards in the domain. The task reward is added in at this
phase rather than into each exploration strategy itself so that each exploration
strategy remains independent for similarity calculations.

While a particular strategy is being followed, the algorithm tracks the simi-
larity of all the strategies, so that their weights can be updated even if they were
not selected. Updating values of policies that are not being followed is called off-
policy learning, and leo uses a version of importance sampling to address this
problem (Sutton and Barto, 1998; Precup et al., 2000). To track the similarity of
the other strategies, at every step, a separate soft-max policy is planned for each
exploration strategy with the call to plan-policy on Line 9. When an action
is taken in the domain, each strategy’s similarity is updated by the probability
that it would have taken the selected action, πe(s, a):
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sime ← sime ∗ πe(s, a). (25)

Thus, at the end of the episode, the algorithm has a similarity of each strategy’s
policy to the policy that was actually followed by the agent.

Throughout the episode, leo tracks the discounted reward, J , that the agent
has received. At the end of the episode, it calculates a normalized return Ĵ , where
the minimum possible discounted return in the domain is 0 and the maximum
possible discounted return in the domain is 1:

Ĵ ← J − rmin

1−γ
rmax

1−γ − rmin

1−γ

. (26)

This normalized return is calculated so that the return has some meaning for
how well the agent performed across tasks. It is then returned to Algorithm 6.3
and used to update the weights of the strategies.

6.3.2 Empirical Evaluation

In this section, we evaluate leo in comparison with pre-defined exploration
strategies combined with the texplore algorithm across a set of domains. While
a hand-picked exploration strategy can perform well on one domain, the domains
were selected so that it would be difficult to find one exploration strategy that
was the best across all domains. In addition, finding the best strategy even for
a single domain can require a lot of hand-tuning, whereas leo self-tunes on-line
automatically.

Exploration Strategies. We evaluate the leo algorithm combined with tex-

plore’s model learning and planning approaches, forming the texplore-leo

algorithm. For our experiments, texplore-leo is given the following strategies:

1. Maximize model of task reward
2. Use variance intrinsic reward
3. Use novelty intrinsic reward
4. Reward exploring unvisited state-actions
5. Reward maximizing/minimizing individual state features.

The first strategy is to maximize the model of the task reward, which is a purely
exploitative policy. This strategy is what is employed by texplore, and was pre-
sented in Chapter 4. The inclusion of this strategy enables the agent to learn the
exploration-exploitation trade-off on-line, as it can choose to take an exploitative
strategy. The second and third strategies are the two from the texplore-vanir
algorithm presented in Section 6.2. The fourth strategy is similar to the explo-
ration performed in the explicit exploration mode of the algorithm presented in
Section 6.1. This strategy provides intrinsic rewards for any state-actions that
the agent has not visited yet. A parameter, u, defines how much reward is given
to unvisited state-actions. Finally, we give the agent strategies that reward or
punish particular state features. For example, the agent’s reward may be the



6.3 On-Line Learning of Exploration Parameters 109

value of the first state feature, encouraging the agent to maximize this feature,
or it could be the negative value of the first feature, encouraging the agent to
minimize this feature. For the number of state features in the domain, n, there
will be 2n + 4 strategies: n strategies that maximize the value of each feature,
n strategies that minimize the value of each feature, and the first 4 strategies
presented above.

We compared against texplore-vanir using six static parameterizations of
the variance, novelty, and unvisited exploration strategies:

1. Greedy (v = 0, n = 0, u = 0)
2. variance only (v = 5, n = 0, u = 0)
3. novelty only (v = 0, n = 5, u = 0)
4. unvisited only (v = 0, n = 0, u = 5)
5. low v-n (v = 5, n = 5, u = 0)
6. high v-n (v = 80, n = 80, u = 0) .

These six options give us a variety of exploration strategies that were shown
to work well in Sections 5.1, 6.1.2, and 6.2.2. There are three versions that are
only using a single exploration strategy (Num. 2-4), one using no exploration
(Num. 1), and two that combine the variance and novelty strategies with
different weights compared to the task reward (Num. 5 and 6).

Domains. We evaluated our algorithm over a set of four domains. We chose a
set of domains where no single exploration strategy should perform well across
all domains. Rather than hand-tuning the best exploration strategy for each
domain, our algorithm can learn the best strategy in each domain on-line without
any parameter tuning. We expect that while using the best strategy for one
domain will perform better than texplore-leo on that domain, none of the
individual strategies will perform well across all four domains.

The first task we tested is Fuel World, presented earlier in Section 5.1.2. Since
the agent is given example transitions of this task, it is a prior information
domain. This domain has fuel stations of varying costs on the top and bottom
rows of the grid world. As the agent explores some of the fuel stations, each
of its trees may make different hypotheses about this cost function. Therefore,
we hypothesize that the variance exploration will be the best, although its
unclear how the variance reward should be weighted relative to exploiting the
task reward.

The second domain is an example of an informative domain. It is a modi-
fication of the Light World domain (Konidaris and Barto, 2007) presented in
Section 6.2.2. We modified the domain to be episodic, with the episode termi-
nating as soon as the agent left the first room. We also slightly modified the
reward function for this task, providing the agent with a reward of −1 each step
until it successfully terminates the episode, at which point it receives a reward
of +10. Since each of the objects in this domain has a related sensor feature,
we hypothesize that a few different exploration strategies will work well on this
task. Strategies that reward higher sensor features may help drive the agent to
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Table 6.4. Properties of the Sensor Goal and Arbitrary Goal domains

State Features (Sensor Goal) x, y, sense-n, sense-e, sense-s, sense-w

State Features (Arbitrary Goal) x, y, goal-id

Actions east, west, north, south

Reward −1 each step, +2 upon reaching goal

# State-Actions 58, 564

Time-Constrained Lifetime 117, 128 actions

Domain Class (Sensor Goal) Informative

Domain Class (Arbitrary Goal) Haystack

the correct objects, and in Section 6.2.2, we showed that strategies that utilize
the novelty reward promote useful exploration.

The last two domains are similar in nature, but they represent two different
classes of domains and thus the best exploration for each of them varies. In
both domains, the agent is in a 11 by 12 grid world. It can navigate through
the grid with the usual actions: north, south, east, and west, each of which
move the agent in the desired direction with probability 0.8 and in either per-
pendicular direction with probability 0.1. In this task, there is a goal state that
is in a different random location each episode. Essentially, each new episode is
a new exploration problem for the agent. It can use what it has learned from
past episodes about which exploration strategies are the best, but none of its
knowledge about the locations of the goal in the previous episodes translate to
the current episode. The agent receives a reward of −1 each step until reaching
the goal state, when its episode terminates with a reward of +2.

The first version of the domain is an informative domain called Sensor Goal.
In this task, the agent’s state is made up of six state features: the agent’s x

and y location in the domain, and four sensor features telling it the distance to
the goal in each of the four cardinal directions. In this version of the task, both
the strategies that reward minimizing these sensor features and the strategy
rewarding novel states should be successful.

The second version of the domain is a haystack domain called Arbitrary Goal.
In this domain, the agent has no sensors of the goal’s location, but instead has
a state feature indicating the version of the domain it is in without providing
any information about the goal location. In this version of the domain, the best
exploration the agent can do is to visit every state in the domain until it finds the
randomly located goal. The properties of both the Arbitrary Goal and Sensor
Goal domains are shown in Table 6.4.

Results. In this section, we show the results for the algorithms across the four
domains. Figure 6.12 shows the cumulative rewards accrued by the algorithms
over 200 episodes on the Fuel World domain. As expected for this task, the best
strategy is the variance only strategy, which drives the agent to explore its var-
ious hypotheses about the costs of the fuel stations. The next best strategies are
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Fig. 6.12. This figure shows the cumulative rewards for the seven exploration strategies
on the Fuel World domain, averaged over 30 trials. texplore-leo performs second
best.

leo and Greedy. All three of these strategies accrue significantly more rewards
than the others (p < 0.001).

Figure 6.13 shows the weights texplore-leo learned for the different strate-
gies over the first 50 episodes. texplore-leo learns the highest weight for the
model of task reward, followed by the variance strategy, which makes sense as it
performed the best on the domain. The third highest weight is on maximizing
the fuel feature, as texplore-leo has learned to keep the fuel level high to
accrue rewards. It also puts positive weight on the strategy of maximizing the
col feature, which will lead it closer to the goal from its start state.

The cumulative rewards of the algorithms on the second domain, Light World,
are shown in Figure 6.14. On this task, the high v-n exploration strategy per-
formed the best, followed by novelty only and leo. While texplore-leo does
not perform the best on this task or Fuel World, comparing Figures 6.12 and 6.14
show that it is the only method to perform well on both domains. The two meth-
ods that performed similar to or better than texplore-leo on Fuel World
(texplore-vanir with variance only and Greedy) fail completely on Light
World, never learning to accomplish the task. Conversely, the two methods that
perform similar to or better than texplore-leo on Light World (texplore-
vanir with novelty only and high v-n) perform the worst on Fuel World.
The two domains require completely different exploration strategies, and only
texplore-leo is able to perform well on both tasks.
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Fig. 6.13. This figure shows the weights learned by the texplore-leo algorithm on
the Fuel World domain, averaged over 30 trials
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Fig. 6.14. This figure shows the cumulative rewards for the seven exploration strategies
on the Light World domain, averaged over 30 trials. texplore-leo performs reason-
ably well on this task, while the best algorithms on Fuel World fail completely on this
task.
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Fig. 6.15. This figure shows the cumulative rewards for the seven exploration strategies
on the Sensor Goal domain, averaged over 30 trials

Figure 6.15 shows the cumulative rewards on the Sensor Goal domain. On this
task, texplore-leo performs the best, accruing significantly more rewards than
the other algorithms (p < 0.005). Finally, cumulative rewards for the Arbitrary
Goal domain are shown in Figure 6.16. As expected, on this task, the best strat-
egy was to explore unvisited states to find the goal (the unvisited only strategy).
After the unvisited only strategy, the novelty only and low v-n strategies
did well, followed by leo. While texplore-leo is out-performed by these al-
gorithm on this task, none of them did significantly better than texplore-leo

on the other four tasks.
In addition to cumulative rewards, a successful algorithm should learn good

final policies. Table 6.5 shows the average rewards each exploration strategy re-
ceived on its final five episodes in each task, as well as how that average reward
ranked compared with the other six strategies for that task. texplore-leo has
an average rank of 2.5 on the four domains, as it was the best on the Sensor Goal
task and second on the Arbitrary Goal task. This rank is much better than the
ranks of the other algorithms, as the next best method, texplore-vanir with
the unvisited only strategy, has an average rank of 3.5, as it performed very
poorly on all the tasks but Arbitrary Goal. texplore-leo was only significantly
out-performed by other algorithms on one domain, Light World, where the meth-
ods with novelty rewards performed the best. These results demonstrate that
texplore-leo performs well across a set of different domains requiring various
exploration strategies, while none of the other methods perform well across all
four domains. Instead, performing well on these domains would require a user to
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Fig. 6.16. This figure shows the cumulative rewards for the seven exploration strategies
on the Arbitrary Goal domain, averaged over 30 trials

hand-tune the exploration parameters for each domain. In contrast, texplore-
leo is more robust, not requiring hand-tuning and capable of learning the best
exploration strategy for each domain. In addition, it can adapt its strategy pa-
rameters on-line as its model changes.

In this work, our goal was to maximize on-line rewards, and therefore we eval-
uated the quality of an exploration strategy based on the rewards received while
following it. The received rewards indicate how quickly the exploration led the
agent to find the rewarding transitions in the domain. While this approach works
well in practice, it would be ideal to evaluate an exploration strategy based on
the long-term rewards received after following it. One challenging possibility for
future work is to separate exploration and exploitation, and evaluate exploration

Table 6.5. This table shows the reward each exploration strategy achieved on the
final five episodes of each task, averaged over the 5 episodes and 30 trials. ∗ indicates
that texplore-leo received significantly more rewards than this method (p < 0.01)
and + indicates methods that received significantly more rewards than texplore-leo

(p < 0.01). The table also shows the rank of each average reward compared to the
other methods for each task.

Domain leo Greedy variance only novelty only unvisited only low v-n only high v-n only

Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank

Fuel World −127.4 3 −121.7 2 −86.1 1 −405.6∗ 6 −308.1∗ 4 −392.3∗ 5 −481.8∗ 7

Light World −10.2 4 −1735.6∗ 6 −1794.1∗ 7 −8.9+ 3 −22.9∗ 5 −8.1+ 2 −7.0+ 1
Sensor Goal −53.1 1 −53.8 2 −98.2∗ 3 −406.5∗ 6 −140.3∗ 4 −408.0∗ 7 −159.2∗ 5
Arbitrary Goal −313.5 2 −538.4 5 −548.1 6 −401.7 4 −308.5 1 −323.7 3 −975.7∗ 7

Average −126.1 2.5 −612.4 3.75 −631.6 4.25 −305.7 4.75 −195.0 3.5 −283.0 4.25 −405.9 5.0



6.4 Empirical Comparison 115

strategies by the agent’s performance on a later evaluation episode where it ex-
ploits the model it learned while exploring. Another alternative is to evaluate the
exploration strategies by how much they improve the agent’s model accuracy,
addressing the pure exploration problem. However, both of these alternatives
have an off-line phase; we believe that the approach taken by leo makes the
most sense when the goal is to maximize on-line rewards.

6.4 Empirical Comparison

The results in the previous three sections show that the best exploration strat-
egy depends on the task at hand. In this section we present a few empirical
evaluations to analyze when default texplore performs better or worse than
these other methods.

In Section 6.1.2, we showed that texplore performs poorly on the Taxi
domain, while texplore-ee performs well. We hypothesized that this perfor-
mance was because of the combination of two factors. First, the Taxi domain is
a haystack domain, for which one would ideally want the agent to explore every
state-action. Second, the important actions to discover the landmark locations
in Taxi have high penalties, causing texplore to stop attempting them. In this
section, we look at what happens when we remove either of these two factors.

First, we perform experiments in the exact same Taxi domain, but give each
algorithm one example transition of picking up a passenger from each of the four
landmarks, and one example transition of dropping off a passenger at each of
the four locations. These eight example transitions provide the algorithm with
information about the location of each landmark, changing it from a haystack
domain to a prior information domain.

We believe that the exploration required for good performance on prior in-
formation domains like this one is more useful that that needed for haystack
domains. In haystack domains, the best exploration strategy is simply to ex-
plore every state-action. This solution is not going to scale up to tasks such as
controlling robots, where the agent’s lifetime is too short to explore every state-
action. In contrast, in prior information or informative domains, the agent must
make decisions about what to generalize, what state-actions to explore, and how
to balance the risk and reward of exploration. The exploration required for these
types of tasks is more likely to scale up to larger, more complex domains. Since
exploring every state-action is often impossible on robotics tasks, Smart and
Kaelbling (2002) argue that for RL to be effective on robots, the agent must be
given prior information about the task. They suggest providing the agent with
experiences from a human or human-programmed controller running the robot.
Here, we are more conservative, only providing the agent with eight example
transitions from the domain.

For these experiments we compare the following seven methods:

1. no-exploration (Greedy w.r.t. a single tree model)
2. texplore (Greedy w.r.t. random forest model)
3. texplore-ee (Uses a single tree model)
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4. texplore-vanir (with v = 5, n = 5)
5. texplore-leo

6. q-learning

7. r-max.

These algorithms enable us to compare the three methods presented in this
chapter (texplore-ee, texplore-vanir, and texplore-leo) with texplore

and a method performing no-exploration. In addition, we compare against q-
learning and r-max as representatives of typical model-free and model-based
methods. As with the previous experiments on the Taxi domain, texplore-ee
is run with Vmin = −10.0, q-learning is run with ε-greedy exploration with
ε = 0.1 and r-max is run with m = 10.

The cumulative rewards for each algorithm on the Taxi domain when given
example transitions of each landmark are shown in Figure 6.17. All of the
texplore based methods significantly out-perform q-learning and r-max

(p < 0.001). In addition, now that texplore is given example transitions of the
landmarks, it receives significantly more cumulative rewards than texplore-ee

and no-exploration (p < 0.01).
Second, we performed experiments on the Two Room domain, which is exactly

the same as the Delayed Gridworld domain presented in Section 5.3.2, but the ac-
tions take effect immediately. No seed transitions were provided to the algorithms,
making it a haystack domain. Here, all the actions provide a reward of−1 so there
is no incentive for texplore to stop exploring particular actions. The cumulative
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Fig. 6.17. Cumulative reward of the algorithms on the Taxi domain when given ex-
ample transitions of each landmark, averaged over 30 trials. Note that texplore now
receives significantly more reward than texplore-ee (p < 0.01)
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Fig. 6.18. Cumulative reward of the algorithms on the Two Room domain, averaged
over 30 trials. texplore-ee performs the best and is closely followed by texplore-leo

and texplore.

rewards of each method over 200 episodes on this task are shown in Figure 6.18.
texplore-leo and texplore-ee both perform well on this domain, receiving
significantly more cumulative rewards than all the other algorithms (p < 0.01).
However,texplore also performswell on this task, out-performing the remaining
four algorithms.Although this domain requires an algorithm to explore each state-
action, texplorewill explore randomly until finding the doorway and goal and is
still able to take advantage of its random forest model. These results demonstrate
that texplore can perform well in haystack domains. Note that if this domain
is made into a prior information domain by giving the agent seed transitions of
the doorway and goal, texplore receives more cumulative rewards over the 200
episodes than any of the other algorithms.

Finally, we perform experiments on a completely different domain: the Stock
Trading domain (Strehl et al., 2007). Unlike Taxi and Two Room, this domain
is non-episodic and not a grid world. It fits none of the three domain classes as
there are not individual states with transition or reward function images that
are unusual compared to those of the other states. The Stock Trading domain
consists of e sectors of o stocks each. The values of the stocks are represented
by a vector of e×o boolean variables representing whether each stock is rising or
falling. The status of each stock is determined based on the stocks in its sector
on the last time step. For a stock in sector i, the probability that it is rising is:

P (rising) = 0.1 + 0.8
Number of sector i stocks rising

o
. (27)
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Table 6.6. Properties of the Stock Trading domain

State Features own-sec-1, own-sec-2, own-sec-3, stock-1-1
stock-1-2, stock-2-1, stock-2-2, stock-3-1, stock-3-2

Actions buy-sec-1, sell-sec-1, buy-sec-2
sell-sec-2, buy-sec-3, sell-sec-3

Reward Ranges from −6 to +6

# State-Actions 3, 072

Time-Constrained Lifetime 6, 144 actions

Domain Class None
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Fig. 6.19. Cumulative reward of the algorithms on the Stock Trading domain, averaged
over 30 trials. texplore and texplore-leo perform the best.

The agent’s reward is determined based on which sectors it owns. For stocks
in sectors that it owns, it receives +1 reward for stocks that are rising and −1
reward for stocks that are not. It receives no reward from sectors that it does
not own. On each time step, the agent can buy or sell a sector, or do nothing.
For our experiments, we used the same parameters as Strehl et al. (2007), with
e = 3 sectors and o = 2 stocks per sector. These parameters result in 9 boolean
state features and a total of 6 actions available to the agent. The properties of
this domain are shown in Table 6.6.

For this domain, the Vmin parameter for texpore-ee is set to 0. The cu-
mulative rewards of the algorithms on the Stock Trading domain are shown
in Figure 6.19. texplore and texplore-leo receive significantly more reward
than the other methods (p < 0.001) while not performing significantly differently
from each other.
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These results show that texplore works well across many types of domains,
and that texplore-leo may be the the best approach in general. However, in
certain domains, other exploration approaches may perform better. For exam-
ple, in haystack domains where the agent’s lifetime is not constrained, it may
be best for the agent to explore every individual state-action. Alternatively, in
informative domains, the agent can take advantage of these features to explore
more intelligently.

6.5 Chapter Summary

In this chapter, I examined various approaches to exploration, as good explo-
ration is critical for an agent to learn a task within a time-constrained lifetime.
I presented three domain classes: 1) haystack domains, where unusual states
are located arbitrarily; 2) prior information domains, where the agent has some
prior information about the locations of unusual states; and 3) informative do-
mains, where the agent has access to state features that predict the locations of
unusual states.

After extensively examining prior information domains in Chapters 4 and 5,
in this chapter I examined haystack and informative domains. I examined an
approach for haystack domains that explicitly chooses to explore until it has
found a sufficiently rewarding policy. However, this approach does not target its
exploration in any way, requires the user to specify what a sufficiently rewarding
policy is, and may not be effective with a limited agent lifetime. In Section 6.2,
I presented intrinsic rewards that could be used to drive the agent’s exploration
in a more targeted way when acting in informative domains. These rewards
drive the agent to explore state-actions where its various decision tree models
disagree with each other, and that have the most different state features from
the transitions its model was trained on. Finally, I presented an approach to
learning the best exploration methods on-line through the course of the agent’s
lifetime.

I then presented empirical comparisons of these approaches on a few domains.
These comparisons showed that texplore performs the best in many domains.
However, the best exploration for a given domain differs. Haystack domains re-
quire the agent to explore every state-action to find arbitrarily located states with
unusual transition or reward function images, while informative domains provide
richer state features that enable the agent to explore more intelligently. Rather
than require the user to select from among these strategies, the texplore-leo

algorithm for selecting exploration strategies on-line works well across the entire
set of domains. In the next chapter, I will present work related to each component
of texplore as well as work related to these exploration approaches.
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In this chapter, I present work related to this book, and particularly work related
to the texplore algorithm. texplore is the first algorithm to address all four
of the RL for Robotics Challenges challenges together in one algorithm. However,
for each individual challenge, there is ample related work. I present related work
on each challenge in turn. First, work on sample efficiency, then continuous
tasks, then domains with sensor and actuator delays, and finally architectures
for real time action selection. In addition, I examine other work on applying RL
methods to real-world problems such as robot control, clinical studies, and the
environment.

The texplore algorithm presented in this book is the first algorithm to ad-
dress all four of the RL for Robotics Challenges together. Since texplore is
addressing many different challenges, there is ample related work. However, to
the best of our knowledge, none of the related work simultaneously addresses
all four RL for Robotics Challenges or is easily adapted to do so. Section 7.1
examines the related work addressing Challenge 1 on sample efficiency and ex-
ploration. I look at work addressing Challenge 2 on continuous state spaces in
Section 7.2, Challenge 3 on delayed actions and observations in Section 7.3, and
Challenge 4 on real time actions in Section 7.4. In Section 7.5, I look at other
work on applying RL methods to real-world problems. Finally, I summarize the
related work and contrast it with texplore in Section 7.6.

7.1 Sample Efficiency

In this book, we are focused on time-constrained domains (as defined formally in
Section 2.3), where the agent has a limited number of time steps in which to learn
the task. Learning on robots and other real-world problems are good examples of
time-constrained domains because on these problems taking millions of samples
to learn a task can take many real-world hours, days, or weeks. In addition, these
samples can be very expensive or dangerous. Thus, in these domains, it is critical
that the agent addresses Challenge 1 and is able to learn in very few samples
(i.e. it is sample efficient). For model-based methods, sample efficiency is mainly
limited by how long it takes the agent to learn an accurate model of the domain.
The speed of the model learning is affected by both the model learning approach
being used and the exploration of the agent to get the necessary samples to
improve its model. Therefore, I start by focusing on exploration methods in
Section 7.1.1. In Section 7.1.2, I look at intrinsic motivation for exploration, and
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then in Section 7.1.3, I examine Bayesian methods for exploration. Finally, I
look at other methods that incorporate generalization into their model learning
in Section 7.1.4.

7.1.1 Exploration

One of the benefits of model-based methods is that they are able to plan multi-
step exploration trajectories. Exploration is critically important in RL, as the
agent’s ability to learn a task is dependent on which states and transitions it
experiences. In addition, the agent must decide how to balance exploring to
improve its knowledge of the world with exploiting what it already knows about
the world. Exploring typically costs the agent immediate reward, while exploiting
may mean that the agent is not exploring some state that could provide the agent
with more reward in the future. In this section, I briefly describe some of the
common exploration approaches.

A very common and simple approach to exploration is to occasionally take
random actions. One benefit of this type of exploration is that it works with
model-free methods, not requiring a model or planning a multi-step trajectory.
Random exploration is guaranteed to explore the entire state space when given an
infinite number of samples, but does not attempt to explore in any targeted way.
The two most common random exploration approaches are ε-greedy exploration
and Boltzmann (or soft-max) exploration (Sutton and Barto, 1998). Agents using
ε-greedy exploration take what they think are the optimal actions most of the
time, but take a random action ε of the time. Boltzmann exploration improves
upon ε-greedy exploration by taking better exploratory actions. Instead of taking
a completely random action when exploring, the probability of selecting action
a is weighted by its value relative to the other action-values using the following
equation:

P (a) =
eQ(a)/τ

∑n
b=1 e

Q(b)/τ
(28)

where τ is a temperature parameter determining the amount of exploration.
While these approaches are simple and are guaranteed to visit every state-action
in the limit, they do not generally result in high enough sample efficiency to
address Challenge 1 as texplore does.

The most common approach to exploration for model-based methods is to
employ “optimism in the face of uncertainty.” The principle here is that the
agent assumes that any parts of the world it is unsure about are very good, and
therefore it should explore all parts of the world thoroughly so as to not miss
out on anything. One approach that applies this principle is r-max (Brafman
and Tennenholtz, 2001). It splits the state-actions into those that are known
(visited at least m times) or unknown (visited fewer than m times) and adds
intrinsic rewards of Rmax in the model to drive the agent to explore the unknown
state-actions. These reward bonuses encourage the agent to explore each state-
action until it finds a policy that can reach the maximal one-step reward. r-max
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is guaranteed to find the optimal policy in time polynomial in the number of
states and actions, but this exploration is typically infeasible within a time-
constrained lifetime for an agent. zeta-r-max extends r-max to classify states
as known based on the empirical measure of progress in model learning and
provides similar convergence guarantees (Lopes et al., 2012).

Another way to perform optimistic exploration is to follow the approach
of Model Based Interval Estimation (mbie) (Wiering and Schmidhuber, 1998;
Strehl and Littman, 2005), which maintains statistical confidence intervals over
the transition and reward probabilities in the model, such that transitions that
have been sampled more often have tighter distributions around the mean. When
selecting actions, the algorithm computes the value function according to the
transition probabilities that are both within the calculated confidence interval
and result in the highest policy values. Effectively, mbie solves for the maximum
over likely transition probabilities in addition to the maximum over individual
actions. This way, the agent is assuming the model is as optimistic as it finds
plausible. In contrast with the r-max approach, these distributions will converge
smoothly to a single likely model, rather than having either optimistic rewards
or true rewards. One drawback of these methods is that they can be too opti-
mistic, choosing to explore state-actions because they are unknown, even if they
are unlikely to have an effect on the final policy. Thus, these approaches can
cause the agent to explore too much to learn within a time-constrained lifetime.

With tabular models, the agent must explore each state-action in order to
learn an accurate model for each one. In larger domains, however, it will not be
feasible to visit every single state-action. In this case, it is better if the agent
generalizes its model to unvisited state-actions. When using these models, the
agent should efficiently explore where its model most needs improvement.

slf-r-max (Strehl et al., 2007), met-r-max (Diuk et al., 2009), and lse-r-

max (Chakraborty and Stone, 2011) perform directed exploration on factored
domains. They use a dbn to model the transition function where some features
are only dependent on some subset of the features at the previous state. The
methods use an r-max type exploration bonus to explore to determine the struc-
ture of the dbn transition model and to determine the conditional probabilities.
They can explore less than methods such as r-max since their dbn model should
determine that some features are not relevant for the predictions of certain fea-
tures. With fewer relevant features, the number of states with unique relevant
features can be much less than the total number of states.

ram-r-max is another approach that uses r-max-like exploration (Leffler
et al., 2007). In ram-r-max, each state is mapped to a particular type, c. For
a given type and action, the agent learns a model of the possible outcomes
(for example, the relative change in state features). Using the state and the
predicted outcome, the agent can predict the next state. Since the agent is given
information about the types of all the states, it can easily generalize action
effects across states with the same type. The authors demonstrate the ram-r-

max agent learning to navigate a robot across various terrains with different
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dynamics. While ram-r-max’s generalization gives it good sample efficiency, it
requires the user to provide classifications for each state in the domain.

Knows What It Knows (kwik) (Li et al., 2008) is a learning framework for
efficient model learning. A learning algorithm that fits the kwik framework must
always either make an accurate prediction, or reply “I don’t know” and request
a label for that example. kwik algorithms can be used as the model learning
methods in an RL setting, as the agent can be driven to explore the states
the model does not know to improve its model quickly. The drawback of kwik

algorithms is that they often require a large number of experiences to guarantee
an accurate prediction when not saying “I don’t know.”

Although all of these methods address the issue of sample efficiency through
exploration, most of them explore too much to learn a good policy within the
time-constrained lifetime of an agent. In addition, none of these methods address
the challenges of acting in real time, handling continuous state, or handling
actuator and sensor delays. In contrast, texplore addresses all four RL for
Robotics Challenges.

7.1.2 Intrinsic Motivation

Many model-based RL algorithms use “exploration bonus” rewards to drive the
agent to explore particular parts of the state space and learn more efficiently.
All of these algorithms can be considered as intrinsically motivated algorithms,
as they are providing artificial intrinsic rewards during planning to drive ex-
ploration. As one example, the reward that r-max (Brafman and Tennenholtz,
2001) provides for state-actions that have been visited less than m times is an
intrinsic reward. In this section, I review work that is focused on using intrinsic
motivation to guide exploration and speed learning.

Rather than driving the agent to where the model has the least information,
like r-max, Schmidhuber (1991) tries to drive the agent to where the model
has been improving the most. The author takes a traditional model-based RL
method, and adds a confidence module, which is trained to predict the absolute
value of the error of the model. This module could be used to create intrinsic
rewards encouraging the agent to explore high-error state-action pairs, but then
the agent would be attracted to noisy states in addition to poorly-modeled ones.
Instead the author adds another module that is trained to predict the changes in
the confidence module outputs. Using this module, the agent is driven to explore
the parts of the state space that most improve the model’s prediction error.

One of the more well-known intrinsic motivation algorithms is Robust Intel-
ligent Adaptive Curiosity (r-iac) (Oudeyer et al., 2007; Baranes and Oudeyer,
2009). r-iac does not adopt the RL framework, but is similar in many respects.
iac splits the state space into regions and learns a model of the transition dy-
namics in each region. It maintains an error curve for each region and uses the
slope of this curve as the intrinsic reward for the agent, driving the agent to
explore the areas where its model is improving the most (rewarding competence
progress). This approach is intended for very large multi-dimensional continuous
domains where learning may take many thousands of steps. One drawback of
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this approach is that the intrinsic reward signal may be too slow to be useful.
For example, by the time the model shows improvement in prediction errors, it
may already have learned to make accurate predictions.

Jonsson and Barto (2007) take a similar approach to texplore-vanir, in that
they also learn trees to model the domain. Their method learns conditional trees
using Bayesian Information Criterion to perform splits. Since having a uniform
distribution over input values will provide the best information for making splits
in the tree, their method provides intrinsic motivation for actions that would
increase the uniformity of the inputs to the tree. This reward only drives local
exploration, but does enable the agent to quickly learn accurate models of certain
tasks. This work was extended to perform more global exploration by adding
options to set each state feature to any possible value (Vigorito and Barto,
2010). The agent selected options to set features to values where it could then
take actions to better improve the uniformity of input features to its trees.
However, unlike texplore, this approach assumes that the agent can set each
feature of the domain independently and learn options to do so.

Singh et al. (2005) present an approach to learning a broad set of reusable
skills in a playroom domain. They learn option models for a variety of skills
and show that the agent progresses from learning easier to more difficult skills.
However, the skills the agent is to learn are pre-defined, rather than being entirely
intrinsically motivated.

Şimşek and Barto (2006) present an approach for the pure exploration prob-
lem, where there is no concern with receiving external rewards. They provide
a q-learning agent (Watkins, 1989) with intrinsic rewards for where its value
function is most improving. This reward speeds up the agent’s learning of the
true task. However, such a reward to make the agent perform more value backups
on its value function is not necessary for model-based algorithms like texplore,
which can perform all the necessary backups using their models without having
to re-visit each state-action. Stout and Barto (2010) extend this work to the
case where the agent is learning multiple tasks and must balance the intrinsic
rewards that promote the learning of each skill.

Singh et al. (2010) present an interesting perspective on intrinsically motivated
learning. They argue that in nature, intrinsic rewards come from evolution and
exist to help us perform any task. Agents using intrinsic rewards combined with
external rewards should be able to perform better on tasks than those using
solely external rewards. For two different algorithms and tasks, they search over
a broad set of possible task and agent specific intrinsic rewards and find rewards
that make the agent learn faster than if it solely used external rewards.

The Policy Gradient Reward Design algorithm (pgrd) learns the best intrinsic
rewards on-line for cases where the true reward function is given and the agent
is limited in some way (Sorg et al., 2011; Bratman et al., 2012). pgrd uses
its knowledge of the true reward function to calculate the gradient of intrinsic
rewards to agent return. Using this gradient, intrinsic rewards are found that
enable the best agent performance given its limitations. For example, if the agent
has a limited planning depth, then even with the true reward function, it cannot
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perform well. However, good intrinsic rewards can make up for this deficiency.
This work does not apply to agents without limitations, as providing the agent
with the reward function effectively solves the problem. Similarly, in tasks where
the reward function is not given, then the gradient cannot be calculated and
this method does not work. pgrd addresses a different problem from the leo

algorithm presented in Section 6.3 as it is given the true reward function and is
only useful when the agent is limited.

Reward shaping algorithms are another set of approaches that use intrinsic
rewards. These methods provide the agent with intrinsic rewards for improving
performance rather than only providing the agent external rewards when the goal
has been achieved. These shaping rewards are intended to improve the learning
speed of the agent. Shaping rewards have been used to enable RL agents to learn
to ride a bicycle (Randløv and Alstrøm, 1998) and speed up learning on gridworld
tasks (Ng et al., 1999). Typically, the shaping rewards are created heuristically
by the user based on their knowledge of the domain (Sam Devlin and Kudenko,
2011). These methods affect the agent’s exploration in the domain to speed up
learning, but they typically require the user to have specific knowledge about
what constitutes improvement in the task. In addition, if shaping rewards are
used that are not potential-based, they can cause the agent to learn sub-optimal
policies, diverging into cycles that receive lots of shaping reward without accruing
any external reward (Ng et al., 1999).

Fasel et al. (2010) examine the InfoMax agent, which ignores external re-
wards and just tries to gain as much information as possible. The agent uses
an intrinsic reward of the negative entropy of the agent’s beliefs. They show
that the agent can learn useful long-term policies, and learn to take multi-step
trajectories to maximize information gain. While they want the agent to gain
information to prepare it for future tasks, they do not use external rewards or
have any way of trading off between exploration and exploitation.

As we demonstrated empirically in Section 6.2.2, the correct intrinsic moti-
vation is dependent on the type of algorithm. For example, with a q-learning

agent (Watkins, 1989), it makes sense to give intrinsic rewards for where the
value backups will have the largest effect, as done in (Şimşek and Barto, 2006).
When learning with a tabular model, the agent must gain enough experiences
in each state-action to learn an accurate model of it. Thus it makes sense to use
intrinsic motivation to drive the agent to acquire these experiences, as done by r-

max (Brafman and Tennenholtz, 2001). When using a model learning approach
that generalizes as texplore’s does, the best intrinsic rewards are different
again.

7.1.3 Bayesian Methods

Model-based Bayesian RL methods seek to solve the exploration problem by
maintaining a posterior distribution over possible models. This approach is
promising for solving the exploration problem because it provides a principled
way to track the agent’s uncertainty in different parts of the model. In addition,
with this explicit uncertainty measure, Bayesian methods can plan to explore
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states that have the potential to provide future rewards, rather than simply ex-
ploring states to reduce uncertainty for its own sake. However, these methods
have a few drawbacks. They must maintain a belief distribution over models,
which can be computationally expensive. In order to generalize, the user must
design a model parameterization that ties the dynamics of different states to-
gether in the correct way. In addition, the user must provide a well-defined prior
for the model.

Duff (2003) presents an “optimal probe” that solves the exploration problem
optimally, using an augmented state space that includes both the agent’s state in
the world and its beliefs over its models (called a belief state MDP). The agent’s
model includes both how an action will affect its state in the world, and how
it will affect the agent’s beliefs over its models (and what model it will believe
is most likely). By planning over this larger augmented state space, the agent
can explore optimally. It knows which actions will change its model beliefs in
significant and potentially useful ways, and can ignore actions that only affect
parts of the model that will not be useful. While this method is quite sample
efficient, planning over this augmented state space can be very computationally
expensive. Wang et al. (2005) make this method more computationally feasible
by combining it with mcts-like planning. This approach can be much more
efficient than planning over the entire state space, as entire parts of the belief
space can be ignored after a few samples. beetle (Poupart et al., 2006) takes
a different approach to making this solution more computationally feasible by
parameterizing the model and tying model parameters together to reduce the
size of the model learning problem. However, this method is still impractical for
any problem with more than a handful of states.

Another approach to the exploration problem is Gaussian Process RL. Deisen-
roth and Rasmussen (2011) present one such approach called Probabilistic In-
ference for Learning Control (pilco), where the agent maintains a model of the
domain using Gaussian Process regression. This model generalizes experience
to unknown situations and represents uncertainty explicitly. This approach has
achieved great results on motor control problems such as the inverted pendu-
lum and cart-pole problems. However, while texplore can select actions in real
time, pilco requires ten minutes of computation time for every 2.5 seconds of
experience when learning the cart-pole task. Also, rather than learning from an
arbitrary reward function, the reward must encode a function of how far the
agent is from the target state.

Other Bayesian methods use the model distribution to drive exploration with-
out having to plan over a state space that is augmented with model beliefs. We
evaluated both Bayesian DP (Strens, 2000) and Best of Sampled Set (boss) (As-
muth et al., 2009) in Section 5.1. Both algorithms approach the exploration
problem by sampling from the distribution over world models and using these
samples in different ways.

Bayesian DP samples a single model from the distribution, plans a policy using
it, and follows that policy for a number of steps before sampling a new model.
In between sampling new models, the agent will follow a policy consistent with
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the sampled model, which may be more exploratory or exploitative depending
on the sampled model.

boss, as previously described in Section 4.2, samples m models from the
model posterior and merges them into a single model with the same state space,
but an augmented action space of mA actions. Planning over this model allows
the agent to select at each state an action from the most optimistic model. The
agent will explore states where the model is uncertain because at least one of the
sampled models is likely to be optimistic with respect to the true environment
in these states. One drawback to this approach is that the agent ignores any
possible costs to exploration, as the agent can always take the action from the
most optimistic model, even if the other models all predict a negative outcome.

Model Based Bayesian Exploration (Dearden et al., 1999) (mbbe) was also
described in Section 4.2. It maintains a distribution over model parameters and
samples and solves m models to get a distribution over action-values. This dis-
tribution is used to calculate the value of perfect information (VPI), which is
added as a bonus value to actions to drive exploration.

These three methods (Bayesian DP, boss, and mbbe) provide three different
approaches to sampling from a Bayesian distribution over models to solve the
exploration problem. While these methods provide efficient exploration, they
require the agent to maintain Bayesian distributions over models and sample
models from the distribution. They also require the user to create a well-defined
model prior. In addition, the user must come up with a way for the model’s
predictions to be generalized across states or the agent will have to visit every
state-action similar to the tabular approaches. In contrast, the random forest
model used by texplore avoids these problems, while still providing multiple
decision tree models that can be used similar to the Bayesian model samples for
driving exploration.

7.1.4 Models

One of the ways that texplore is able to learn models efficiently is by incorpo-
rating generalization into its model learning. There are some other examples of
algorithms that take the same approach. For example, a few of the methods from
Sections 7.1.1 and 7.1.3 incorporate generalization into their model learning.
met-r-max (Diuk et al., 2009) and lse-r-max (Chakraborty and Stone, 2011)
both take an r-max approach and apply it to factored models, enabling their
models to generalize over different state features. The pilco algorithm (Deisen-
roth and Rasmussen, 2011) learns a Gaussian Process regression model of the
domain.

The spiti algorithm (Degris et al., 2006) is similar to texplore as it also uses
decision trees to learn models of the domain. The spiti model differs in three
major ways. First, spiti models absolute rather than relative transitions which
often makes it more difficult to generalize the effects of actions across states.
Second, spiti explores using ε-greedy exploration on a single three model, while
texplore acts greedily with respect to a random forest model. Thus, tex-

plore can explore in a more targeted way by comparing the trees in its forest,
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while spiti is exploring randomly. Finally, spiti uses a traditional sequential
architecture, meaning it cannot act in real-time as texplore does.

While texplore uses random forests of decision trees to learn models that
represent multiple hypotheses of the domain, there are other ensemble methods
that could work as well. One particularly interesting approach is the deco-

rate algorithm (Melville and Mooney, 2003). This algorithm explicitly tries to
maximize the diversity of predictions in its ensemble of learners. Essentially,
additional training experiences are added to make at least one learner make a
different prediction from the rest of the ensemble for unseen instances. Building
such a model with more diverse predictions of the true dynamics of the world
might be useful to drive exploration more efficiently.

While texplore applies decision trees to approximate the transition and
reward functions, there are a few methods that apply similar techniques to
approximating the value function in a model-free algorithm. The g algorithm
(Chapman and Kaelbling, 1991) learns a value function using decision trees.
Munos and Moore (2002) use kd-trees to adaptively approximate the value func-
tion. Similarly, Whiteson et al. (2007) use adaptive tile coding to represent the
value function. Both of these methods are similar to decision trees, starting with
a broad generalization and refining it over time. However, unlike texplore,
they are approximating the value function rather than the model. By learning
a model, texplore is able to learn more efficiently and plan multi-step explo-
ration trajectories using its model.

All of the algorithms presented in this section address the issue of sample
efficiency, either through exploration, intrinsic motivation, Bayesian approaches,
or through model approximation. However, very few of these methods would be
able to learn a good policy within the time-constrained lifetime of an agent. In
addition, while texplore addresses all four RL for Robotics Challenges, very
few of these methods address any of the other three challenges. Only the model-
free methods are able to act in real-time, only a few of the algorithms such as
pilco handle continuous state, and none of the methods handle actuator and
sensor delays.

7.2 Continuous Domains

Most of the model-based methods presented above are intended for discrete
domains. This section looks at some of the related work on learning models
for domains with continuous state spaces, addressing Challenge 2. The pilco

method presented earlier (Deisenroth and Rasmussen, 2011) can handle contin-
uous dynamics by using Gaussian Process regression for both learning a model
and computing a policy.

Strehl and Littman (2007) introduce a linear regression model that provides
its confidence in its predictions, which is useful for driving exploration. However,
this model only works in domains that are linearly parameterized, whereas the
linear regression tree model used by texplore works on those domains by
learning a tree with a single leaf containing a linear function, and can also fit
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a piecewise linear function to any other domain that is not linear. In addition,
the authors do not solve the problem of planning over a continuous state space,
instead assuming they have a perfect planner. In later work (Walsh et al., 2009b),
they use the algorithm to predict a continuous reward function in a domain with
discrete states, again avoiding the continuous state problem.

For planning over continuous domains, a common method is fitted value iter-
ation (Gordon, 1995), which adapts value iteration to continuous state spaces.
It updates the values of a finite set of sampled states, and then fits a function
approximator to their values. Like value iteration, it must iterate over the en-
tire sampled state set which can be computationally expensive. In addition, this
method only plans over the finite state set, while texplore, by using mcts,
can plan from the agent’s real-valued state.

Jong and Stone (2007) present an extension of r-max to continuous domains
called fitted r-max. The authors use an instance based model and determine
if a state is known based on the density of nearby visited states. The agent is
driven to visit unknown states, like r-max. The policy is computed using fitted
value iteration. While this method is a good extension of r-max to continuous
domains, it suffers from the same over-exploration as r-max, while texplore

focuses its exploration on parts of the state space that appear promising.
Finally, model-free methods can be extended to work in continuous domains

by using function approximators to approximate the value function. For example,
using q-learning or sarsa with neural networks or tile coding as a function
approximator is a common approach for these problems. However, these model-
free methods do not have the sample efficiency required to meet the first challenge
of sample efficiency.

Munos and Moore (2002) use kd-trees to approximate the value function in
continuous domains. In their approach, they incrementally refine the trees to
improve their representation of the value function. They have specific value func-
tion based metrics to determine when is the best time to add new splits to the
tree. While this method takes advantage of trees similar to texplore, it does
it for value function approximation, instead of for approximating the transition
and reward models. Learning models of the domain enables texplore to plan
multi-step exploration trajectories and learn in a small number of samples.

7.3 Observation and Action Delays

On real devices such as robots, there are frequently delays in both sensor readings
and the execution of actions. This section presents some related work on handing
delays in both actions and state observations, which are equivalent (Katsikopou-
los and Engelbrecht, 2003). Handling these delays addresses Challenge 3.

Walsh et al. (2009a) develop a method called Model Based Simulation (mbs)
for delayed domains, which we evaluated empirically in Section 5.3. Given the
domain’s delay, k, as input, the algorithm can uncover the underlying MDP and
learn a model of it. When the agent is selecting an action, mbs uses its model
to simulate what state the selected action is likely to take effect in, and returns
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the action given by its policy for this state. The authors combine this approach
with r-max learning the underlying model, creating an algorithm called mbs-

r-max. The algorithm works well, but requires knowledge of the exact amount
of delay, k, while texplore only requires an upper bound on the delay. Also,
in stochastic domains, the agent may make poor predictions of the state where
the action will take effect.

Methods with eligibility traces such as sarsa(λ) can be useful for delayed
domains, because the eligibility traces spread credit for the current reward over
the previous state-actions that may be have been responsible for it. Schuitema
et al. (2010) take this approach a step further, updating action-values for the
effective action that was enacted at that state, rather than the action actually
selected by the agent at the given state. However, the agent still selects actions
based on its current state observation, so the values for which actions to select
may not be correct. In contrast, texplore’s model can learn the delay in the
domain and select actions accordingly.

The u-tree (McCallum, 1996) algorithm is the inspiration for texplore’s
approach of adding additional inputs to the decision trees used for learning the
domain model. While texplore uses decision trees strictly for learning a model,
u-tree builds trees to represent a value function of the domain, with each leaf
representing a set of states that have similar value. Value iteration is performed
using each tree leaf as a state. texplore separates the policy representation
from the model representation, as there are often cases where states have similar
values but different transition dynamics (or vice versa).

The mc-aixi algorithm (Veness et al., 2011) takes a very similar approach
to texplore, although it is intended for POMDPs rather than domains with
delay. mc-aixi uses uct to plan using a history of previous state-action-reward
sequences, while texplore uses the current state augmented with the previous
k actions. Both approaches take advantage of the ability of uct to easily incor-
porate histories into its rollouts and focus planning on the relevant parts of the
state space.

Outside of RL, there is some evidence that a mechanism similar to texplore’s
approach is used in the mammalian cerebellum to perform motor control under
delay. texplore provides its models with a history of previous actions, and lets
the model determine which delayed input is the correct one to use for predic-
tions. Similarly, in the cerebellum, different fibers provide signals that have been
delayed by different amounts. The cerebellum then uses these delayed inputs to
determine the correct control outputs (Ohyama et al., 2003).

7.4 Real-Time Architectures

Learning on a robot requires actions to be given at a specific control frequency,
while maintaining sample efficiency so that learning does not take too long.
Model-free methods typically return actions quickly enough, but are not very
sample efficient, while model-based methods are more sample efficient, but typi-
cally take too much time for model updates and planning. This section describes
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related work that makes model-free methods more sample efficient as well as
work making model-based methods run in less clock time.

Batch methods such as experience replay (Lin, 1992), fitted Q-iteration (Ernst
et al., 2003), and lspi (Lagoudakis and Parr, 2003) improve the sample effi-
ciency of model-free methods by saving experiences and re-using them in periodic
batch updates. However, these methods typically run one policy for a number
of episodes, stop to perform their batch update, and then repeat. While these
methods take breaks to perform computation, rtmba continues taking actions
in real-time even while model and policy updates are occurring.

The dyna framework (Sutton, 1990) incorporates some of the benefits of
model-based methods while still running in real-time. dyna saves its experi-
ences, and then performs l Bellman updates on randomly selected experiences
between each action. Thus, instead of performing full value iteration each time,
its planning is broken up into a few updates between each action. However, it
uses a simplistic model (saved experiences) and thus does not have very good
sample efficiency.

The dyna-2 framework (Silver et al., 2008) extends dyna to use uct as its
planning algorithm. In addition, it maintains separate value function approxi-
mators for updates from real experience and sample-based updates, such that
the sample-based planner can have a finer resolution in the region the agent is
in. These modifications improve the performance of the algorithm compared to
dyna. However, to be sample-efficient, dyna-2 must have a good model learning
method, which may require large amounts of computation time between action
selections.

Silver et al. (2012) present a method very similar to our modified version of
uct(λ) called td search. This approach combines uct with eligibility traces,
like our method, and additionally utilizes value function approximation. They
demonstrate their algorithm on the task of computer Go.

Real Time Dynamic Programming (rtdp) (Barto et al., 1995) is a method for
performing dynamic programming in real-time by performing rollouts, similar
to uct. It simulates trajectories from the start of the task using Boltzmann
exploration. For each state that it visits, it does a full backup on that state’s
values. It differs from texplore’s version of uct in that it is doing full one-step
backups rather than λ-returns, and it is using Boltzmann exploration rather
than upper confidence bounds. We demonstrated empirically in Section 5.3 that
rtdp is not as effective as the version of uct used by texplore.

Walsh et al. (2010) argue that with new compact representations for model-
learning, many algorithms have PAC-MDP sample efficiency guarantees. The
bottleneck is now that these methods require planning every step on a very
large domain. Therefore, they want to replace traditional flat MDP planners
with sample-based methods where computation time is invariant with the size
of the state space. In order to maintain their PAC-MDP guarantees, they create
a more conservative version of uct that guarantees ε-accurate policies and is
nearly as fast as the original uct. They show that this new algorithm is still
PAC-MDP efficient.
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These methods all have drawbacks; they either have long pauses in learning
to perform batch updates, or require complete model update or planning steps
between actions. None of these methods accomplish both goals of being sample
efficient and acting continually in real-time.

7.5 Real-World Problem Domains

One of the goals of this work is to develop an RL algorithm that is capable
of working on more real-world problems, where sample efficiency and real-time
actions are an issue. In particular, our focus is on the problem of controlling
robots. There have been other methods that addressed some robot control prob-
lems, but relatively few considering the seemingly natural match between RL
and robotics.

Ng et al. (2003) used a reinforcement learning approach to learn to control
a model helicopter. First, they collected data from the helicopter while it was
being controlled by an expert pilot and used this data to learn a model of the
dynamics. Then they used the pegasus policy search method (Ng and Jordan,
2000) to learn policies on this model. While this approach was a great success, it
did require a human expert to gather the right training experiences. In addition,
this approach does not meet Challenge 4 of acting continually in real-time, as
computation was performed off-line

Similar to pegasus, other policy search methods have proven to perform
well on robotics tasks such as maximizing the power output of a micro wind
turbine (Kolter et al., 2012) or having a robot arm perform a ball-in-a-cup
task (Kober and Peters, 2011). These methods utilize a parameterized policy.
After every episode, the gradient of reward with respect to the policy parameters
is calculated and new parameters are calculated. With a good parameterization,
a good policy can be learned in few samples. However, these methods require the
user to create the policy parameterization and also do not act continually in real-
time, as they can take considerable time between each episode for computation.

The Horde architecture (Sutton et al., 2011) takes a very different approach
to learning on robots. In parallel, it learns to predict the values of many different
sensors using general value functions. In addition, it learns policies to maximize
those sensor values. Horde can learn these predictions while running in real-time
on a robot that is following some other policy. While Horde adopts a parallel
real-time architecture like texplore to learn predictions about the world, it
cannot use these predictions as a model to plan more complicated policies. In
addition, it is not particularly sample efficient, as it takes 8.5 hours of experience
to learn a light-following policy. However, sample efficiency is less important in
this scenario as Horde can learn while the robot is doing other things.

Kolter et al. (2010) present an approach for learning to control an autonomous
vehicle in extreme situations. Their algorithm is given two models: one fairly
simple model that can be used for planning in normal situations, but may fail in
more extreme scenarios; and one trajectory of an expert controlling the vehicle
at the limits of its control. Their algorithm balances the benefits of the two
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models, using each in the appropriate part of the domain, to perform extreme
maneuvers on an autonomous car. Unlike our work, in this work the algorithm
is given these two models and computation is performed off-line.

In addition to robots, RL has been applied to computer games such as
backgammon (Tesauro, 1995) and Go (Silver et al., 2012). One advantage of
performing RL on games is that the rules of play are known, and the agent
can simulate many games against itself for planning purposes. Performing many
planning style rollouts combined with temporal difference updates and value
function approximation has proven to be successful in both backgammon and
Go.

Clinical studies are another area where RL has been applied. For example, RL
has been used to learn a controller for deep brain stimulation of patients with
epilepsy (Guez et al., 2008) and to optimize treatment policies in clinical decision
making (Shortreed et al., 2011). In both of these works, data was collected
ahead of time through experiments or clinical trials. fitted-q-iteration was
then applied to this data to learn new policies. Improvement is shown using the
collected data, but no real-world evaluations of these new policies are made.
Unlike our work, there is no opportunity for exploration here, as the data has
already been collected. There are also no computational constraints as the policy
calculations can be performed off-line.

RL has been applied to some environmental problems as well, such as decid-
ing which actions to take in maintaining a forest (Crowley and Poole, 2011),
or managing the populations of interacting endangered species (Chades et al.,
2007). In both of these works, the authors start out with a simulator of the
respective domain, given by domain experts. The simulator is then used by the
RL algorithm to learn a new policy. Similar to the clinical studies above, there
is no way to evaluate the new policy other than in the simulator. The time scale
of the actions in these domains is often many years, so the real-time aspect that
is present in our work is not an issue here.

There are a few general trends in these successful applications of RL to real-
world problems. First, nearly all of them are given expert trajectories, a model, or
a simulator ahead of time. They are not required to explore the domain on their
own or solve the exploration-exploitation trade-off. Secondly, they all perform
computation off-line, either once on the collected data or in batch mode. While
this approach works for learning specific tasks, to have robots be fully utilized in
society, they cannot be stopping every few seconds or minutes to perform batch
computations. They will need to learn new tasks and adapt to their environments
on-line, while acting in the environment, which is enabled by texplore.

7.6 Chapter Summary

While there is a large body of work relating to each challenge that texplore ad-
dresses, none of these approaches address all four RL for Robotics Challenges to-
gether. The pilco algorithm (Deisenroth and Rasmussen, 2011) probably comes
closest as it meets Challenges 1 and 2. pilco is extremely sample efficient, tar-
gets exploration where the model needs improvement, and works on robots with
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continuous state spaces. However, it cannot select actions in real-time or handle
delays (Challenges 3 and 4).

In contrast, texplore addresses all of the desired criteria: it is sample-
efficient, takes actions continually in real-time, works in domains with continuous
state spaces, and can handle sensor and actuator delays. It also does not require
much user input: a discretization size for continuous domains, an upper bound
on the delay in the domain, and possibly seed experiences to bias initial learning.
In addition, I have demonstrated that texplore works well on time-constrained
domains and robotic control tasks. In the next chapter, I summarize this book,
and look ahead to future work.



8 Discussion and Conclusion

This chapter concludes the book. First I summarize the texplore algorithm
presented in this book and the book itself. Next, I summarize the contributions
of this book. Then, in Section 8.3, I discuss the limitations and applicability of
the texplore algorithm and some aspects of the exploration problem. In the
following section, I present some directions for future work, before concluding
the book in Section 8.5.

Reinforcement learning (RL) is a method for learning sequential decision mak-
ing tasks from experience in the environment. RL could be used to make robots
more useful in society by enabling them to learn and adapt to their tasks as they
act. However, performing RL on robots raises four RL for Robotics Challenges :

1. The algorithm must learn from very few samples (which may be expensive
or time-consuming).

2. It must learn tasks with continuous state representations.
3. It must learn good policies even with unknown sensor or actuator delays (i.e.

selecting an action may not affect the environment instantaneously).

4. It must be computationally efficient enough to select actions continually in
real time.

In this book, I have presented texplore, the first RL algorithm to address all
four of these challenges together in one algorithm. In addition, I have presented
thorough empirical results demonstrating that texplore’s approach to each of
these challenges is at least as good as the alternatives, and that texplore’s
solutions to each challenge mesh together well.

In the next section, I summarize the texplore algorithm and the book it-
self. Then I summarize the contributions of this book in Section 8.2. I discuss
the limitations of the texplore algorithm, its applicability and general issues
with exploration in Section 8.3. Finally, I present directions for future work in
Section 8.4 and conclude in Section 8.5.

8.1 Summary

The main focus of this book was to present the texplore algorithm. texplore
is an RL algorithm intended for time-constrained domains where the agent has a
very limited lifetime compared to the size of the domain. In addition, texplore
addresses the four RL for Robotics Challenges : it is sample efficient, acts in

T. Hester, TEXPLORE: Temporal Difference Reinforcement Learning for Robots 137

and Time-Constrained Domains, Studies in Computational Intelligence 503,

DOI: 10.1007/978-3-319-01168-4_8, c© Springer International Publishing Switzerland 2013



138 8 Discussion and Conclusion

continuous domains, handles sensor and actuator delays, and takes actions in
real time.

texplore is a model-based RL method, meaning it learns a model of the
transition and reward dynamics of the domain and then plans a policy on this
learned model. In order to learn this model quickly, texplore uses decision trees
to predict the next state and reward given the current state and action. Learning
the model with these trees enables texplore to generalize the effects of actions
across states, eliminating the need to explore every individual state-action in the
domain.

However, in order to ensure that texplore learns an accurate enough model
of the domain to plan a good policy, it must explore the domain. texplore
explores by acting greedily with respect to a random forest model that is an
aggregate of many decision trees. Each tree within the forest represents a dif-
ferent hypothesis of the true dynamics of the domain. By acting with respect
to this aggregate model, texplore can naturally trade off between exploration
and exploitation, exploring state-actions that look good under some tree models
while avoiding others that look bad under other models.

While using a model-based method enables texplore to learn efficiently in
few actions, model-based methods typically take considerable computation time
to perform model learning and planning. With our desired goal of performing
learning on robots in the world, we require that the algorithm be capable of
selecting actions at a fast enough rate to control the robot. Therefore, we de-
veloped a real time model-based RL architecture (rtmba) that parallelizes the
model learning, planning, and acting such that the algorithm can select actions
at the desired frequency without being constrained by the time taken to perform
model updates or plan. In addition, rather than using a planning method such
as value iteration, we use Monte Carlo Tree Search, which is an anytime method
that focuses its value updates on the states the agent is likely to encounter next.

After presenting the texplore algorithm in Chapters 3 and 4, I evaluated
it empirically in Chapter 5. For each of the RL for Robotics Challenges, I com-
pared texplore’s solution with other possible approaches on both a simulated
vehicle velocity control task and a second task. In each case, I demonstrated
that texplore’s solution performs at least as well as alternative solutions. I
also presented experiments demonstrating that texplore can learn a task that
presents all four challenges: learning to control a physical robot in real time
while running on-board the robot. texplore learns to control the velocity of
an autonomous vehicle in just two minutes of driving time.

Following these experiments on the texplore algorithm, I looked deeper into
the problem of exploration in Chapter 6. First, I presented three different classes
of RL domains. Then, I examined haystack domains where states with unusual
transition or reward function images are arbitrarily located. In these domains,
the best the agent can do is to explore every state-action. I present an extension
of texplore called texplore-ee for haystack domains and demonstrate its
efficacy on both Taxi and on learning to score penalty kicks using an Aldebaran
Nao robot.
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Next, I looked at informative domains that have state features that predict the
locations of unusual states. In these domains, the agent can utilize these more
informative state features to perform more intelligent, targeted exploration. I
present another extension of texplore, called texplore-vanir, which uses
two intrinsic motivations to drive exploration in such domains. In addition to
speeding up learning in domains with more complex state features, texplore-
vanir can also be used to motivate a developing, curious agent in domains
without external rewards.

As demonstrated by texplore-ee and texplore-vanir, the best explo-
ration strategy varies depending on the particular domain the agent is acting in.
In Chapter 6, I also presented a method called leo for learning the best explo-
ration strategy from a given set of strategies on-line, while acting in the domain.
I show that the combination of this method with texplore (the texplore-

leo algorithm) works well across a set of domains, while no single exploration
strategy performs well across all four domains. Finally, at the end of Chap-
ter 6, I empirically evaluate these three exploration extensions in comparison
with texplore on a set of domains, showing that texplore and its extension,
texplore-leo, are the best algorithms for many domains.

After presenting the texplore algorithm, empirical evaluations, and explo-
ration extensions, I discussed related work in Chapter 7. For each of the RL for
Robotics Challenges, I present related work addressing that particular challenge.
In addition, I looked at other RL algorithms focused on addressing robotics and
other real world problems.

8.2 Contributions

This book provides the following six major contributions to the field:

1. texplore: The texplore algorithm, which is the first algorithm to ad-
dress all four of the RL for Robotics Challenges together simultaneously
in the same algorithm. In addition, texplore is effective at learning good
policies and accruing high rewards on time-constrained domains. The tex-

plore algorithm is not only presented in this book, but has been pub-
licly released as an open-source ROS package at: http://www.ros.org/

wiki/rl-texplore-ros-pkg . This algorithm provides a resource for others
to use for their robotics problems, particularly if the problem presents the
RL for Robotics Challenges.

2. Generalized Models: Methods for learning MDP models that: 1) generalize
transition and reward dynamics across state-actions; 2) provide a measure
of uncertainty in their predictions; 3) can model continuous domains; 4) can
model domains with sensor or actuator delays; and 5) can learn accurate
models of dependent feature transitions in factored domains.

3. Targeted Exploration: An examination of exploration methods for RL agents
with models that generalize across state-actions. This examination includes
methods to drive the agent to perform limited, targeted exploration, methods

http://www.ros.org/wiki/rl-texplore-ros-pkg
http://www.ros.org/wiki/rl-texplore-ros-pkg
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to explore uncertain or novel states, and intrinsically motivated exploration
for domains with little or no external rewards.

4. Real Time Architecture: A parallel real time model-based RL agent archi-
tecture that enables model-based RL agents to act in real time, without
being constrained by the time required for model updates or planning. In
addition, this architecture is capable of planning in both continuous domains
and domains with sensor or actuator delays. This architecture is also part of
the ROS package and can be used with other model learning and planning
methods, making it useful to many RL researchers interested in combining
sample efficient learning with real time action selection.

5. ROS RL Interface: We developed a RL interface for ROS (Robot Operating
System) to make it easy to integrate RL with existing robots already using
ROS. The interface defines messages for the agent to send and receive from
the environment to perform learning. This interface is available as part of
our ROS package at: http://www.ros.org/wiki/rl_msgs.

6. Evaluation: Empirical evaluation of texplore learning in a variety of time-
constrained domains, and in particular, evaluation of texplore learning to
control a physical robot while running in real time on-board the robot.

Many of these contributions can have a lasting impact on the field of RL. If
later researchers find themselves working on robotics problems that present the
RL for Robotics Challenges, they can use texplore to address their problem.
If they do not want to use texplore completely, they can still take advantage
of its real time architecture to combine sample efficiency with real time actions
selection. If faced with only some of the RL for Robotics Challenges, the empirical
evaluations in Chapter 5 provide insights on what solutions may be practical.
Finally, even if using a completely different RL algorithm, our ROS RL interface
makes it easy to apply other RL algorithms to robots already running ROS.

8.3 Discussion

The empirical evaluations of texplore presented in Chapters 5 and 6 demon-
strated that texplore performs well across a wide range of tasks. However, it
would be too much to expect texplore to out-perform other algorithms on all
tasks. One aspect that can cause texplore to perform poorly is if its explo-
ration is not suited to the task. One example of such a task was presented in
Section 6.1.2: the Taxi domain. This task requires the agent to perform a “needle-
in-a-haystack” search for arbitrarily located landmark states and penalizes the
agent for trying to find these landmarks using the pick-up and drop-off ac-
tions. Later, in Section 6.4, I demonstrated that texplore does perform well on
the Taxi domain when given the landmark locations, and can perform well on
“needle-in-a-haystack” domains when there is no extra penalty for exploratory
actions. In general, such domains call for the agent to explore each individual
state-action, rather than try to generalize the effects of actions across states at
texplore does. While texplore’s exploration is not well suited to such do-
mains, it can still solve such tasks by exploring randomly until it finds some
useful transitions or rewards.

http://www.ros.org/wiki/rl_msgs
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Another way in which texplore could be poorly suited for a task is if its
model is not well suited to the domain. texplore uses decision and regression
trees to model the dynamics of the domain. These trees model many domains
well, as they can split the state space into various regions that each have different
dynamics. However, this model many not fit other domains as well, and could
cause texplore to perform poorly. For example, a domain where the dynamics
are different in each state-action allows for no generalization, and calls for an
algorithm with a tabular model. While a tabular model would be preferable for
such tasks, texplore’s tree models can split the state space very finely so that
each state is represented in its own leaf of the tree.

By addressing all four of the RL for Robotics Challenges, texplore is appli-
cable to many domains. It is particularly effective in domains with large state
spaces where the effects of actions are generalizable across states. In these do-
mains, texplore’s decision tree models work very well and its exploration en-
ables it to learn a good policy in many fewer actions than other algorithms
that would explore more thoroughly. As the opportunity for generalization in
the model goes up, texplore performance gains compared to tabular model-
based method increases as well. In addition, texplore is applicable to domains
that require real time action selection, such as robot control, where other sam-
ple efficient methods would take too long for computation between each action
selection.

texplore is focused particularly on time-constrained domains, where the
agent does not have a long enough lifetime to guarantee that it can learn an
optimal policy. Time-constrained domains are very common as many real-world
problems have very expensive samples and large state-action spaces. To ad-
dress these domains, texplore forgoes guarantees of optimality and instead
focuses on learning a high-rewarding policy in a very small number of actions.
Instead of exploring every state-action to guarantee it will learn an optimal pol-
icy, texplore must make some assumptions about the domain in order to learn
a high-rewarding policy quickly. texplore assumes that the effects of actions
will be similar across states with similar state features. This assumption enables
texplore to learn a useful model of all the states quickly and thus to learn
a high-rewarding policy within a short lifetime. We showed in Chapter 5 that
texplore performs better empirically on time-constrained domains than other
methods that guarantee they will eventually learn an optimal policy. We be-
lieve texplore’s approach is the correct one to scale up RL to more real-world
domains, since many of them are time-constrained domains.

One thing that our work on texplore brings to light is the comparison
between the best exploration strategies for different types of domains. I argue
that the typical gridworld goal-based domains used to test many RL algorithms
(haystack domains) are not well suited for testing exploration as the best explo-
ration for these tasks is simply to explore every state-action. While this is the
best exploration strategy for these tasks, it is not going to scale up to larger and
more complex tasks where it is impossible to explore every state-action. Rather
than testing exploration on haystack domains, we need to develop test domains
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that examine the ability of an RL agent to figure out the dynamics of its actions
in the world to achieve its goal more efficiently (such as informative domains).
Particularly on robots, these dynamics can be very complex, and exploring effi-
ciently while learning enough about the dynamics to perform the task well can
be very challenging.

Another aspect of RL that is very related to the performance of texplore
and other RL algorithms is the state representation, or what state features are
used. For tabular methods such as q-learning and r-max, there is no incen-
tive to add any additional features beyond those necessary for the representa-
tion to be Markov. For RL methods that approximate the value function, it is
useful to have features that provide information about state values and enable
better approximations of the value function. In contrast, texplore performs
function approximation on the model of the domain. Thus, for texplore, it
makes the most sense to have features that are useful for generalizing transi-
tions and rewards across states. In addition, in the texplore-vanir algorithm,
the state features are also used to drive exploration. Therefore, for texplore

and texplore-vanir it is beneficial to add more informative features to the
state representation, even if it is already Markov, to help guide exploration and
provide better features for approximating the transition and reward models.

8.4 Future Work

This book leads to multiple directions for future work. First, further work can
be done to make RL applicable to more real-world problems, including more
robotics tasks. Second, the work on exploration in this book could be extended
to work on larger, more complex problems. Third, this work could be extended
for modeling opponents when playing games. Fourth, work in this book could
lead to advancements towards the problem of lifelong learning, where robots act
and learn in their environments over their entire lifetime, continually improving
their performance. I examine each of these four avenues of future work in more
detail in this section.

8.4.1 Expanded Applicability of RL

While our development of texplore already makes RL more applicable to many
real-world and robotics problems, it is still not applicable to all real-world prob-
lems. Applying RL to real-world problems, such as the autonomous vehicle veloc-
ity control problem addressed in this book, leads to many significant challenges
that must be addressed and that bring the algorithm another step closer to be-
ing more broadly applicable. Working to apply RL to tasks such as video games,
robotics, and environmental tasks will lead to the discovery of new challenges
where new solutions need to be found to make RL applicable to such problems.

While I demonstrated texplore learning to drive an autonomous vehicle at
different velocities and learning to score penalty kick goals on a humanoid robot,
texplore could be extended to perform better on additional robotic tasks. One
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area where texplore’s performance on robots can be improved is handling con-
tinuous actions. While texplore selects from a set of discrete actions, robots
typically take a vector of continuous commands. For example, controlling the
Aldebaran Nao robot requires a continuous vector of either desired velocities
or positions for each of the robot’s 25 joints. texplore’s tree models should
already be able to handle multi-dimensional continuous actions as input in mak-
ing predictions about the next state and reward. Thus, extending texplore to
use multi-dimensional continuous actions mainly requires extensions to the uct

planning algorithm for sampling and selecting from a multi-dimensional contin-
uous action space. One possible approach to this problem is to utilize recent
work (Mansley et al., 2011; Weinstein and Littman, 2012) adapting the hoo al-
gorithm for continuous bandit problems (Bubeck et al., 2011) to action selection
at each level of the uct tree.

Another approach to improving performance on robots is to make better use
of data from simulation. Some of the trees in texplore’s random forest model
could be initialized with experiences from simulation. As texplore performs
the task on the real robot, it could update both these models and new models,
learning how to weight the real data with the simulated data appropriately to
improve sample efficiency.

Another interesting set of domains for RL are environmental applications, such
as the ones presented in Section 7.5. Example domains include deciding which
parts of a forest to cut or re-plant (Crowley and Poole, 2011), or how to manage
different animal populations (Chades et al., 2007). These domains present a
different challenge than robotics domains. In many of these domains, actions are
often taken every few years rather than seconds, so the ability to select actions
quickly is not critical. Instead, the challenges with these domains are that there
can be millions of state features and actions. Learning separate decision tree
models of each state feature from millions of possible inputs is likely to require
lots of samples. One solution to this problem would be to make texplore’s
model learning hierarchical, with it applying the same decision trees to predict
many different state features. This problem could be addressed from another
direction by making texploremassively parallel. To improve the computational
efficiency of running the algorithm on such a large state and action space, the
models predicting each feature could be learned on different cores and many
parallel instantiations of uct could be run at once.

In addition to robotics and environmental applications, video games present
a good testbed for RL research. They have very large state spaces, complex dy-
namics, and allow for model generalization. They are easily run on a computer,
not requiring real-world interactions as robots do. Importantly, since video games
were created for humans to play rather than computers or RL agents, they are
more realistic than many typical RL example domains. In particular, Atari games
have already been used as a benchmark task for some learning algorithms (Belle-
mare et al., 2012). An Atari Learning Environment (ale) framework (Naddaf,
2010) already exists, which could be connected with our ROS messages interface
to enable RL agents to interact with many Atari games.
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As a first step, one could connect ale and our ROS RL messages interfaces
together and test texplore on a few basic games. One of the most challenging
aspects of performing RL on video games will be developing a good representa-
tion for learning. As the number of objects on the screen varies from moment to
moment, there may not be a constant number of state features for the RL agent
to use. Instead, it may be useful to adapt texplore to use an object-oriented
approach (Diuk et al., 2008) to feature representation.

After a good state representation for texplore to learn these Atari games
is developed, Atari games will provide a great testbed for exploration. These
domains are large and complex, meaning that exploring every possible state-
action is not feasible. In addition, many of the games include “hidden” features
and paths that are difficult for even human players to discover. Therefore, such
games will require more intelligent exploration mechanisms.

8.4.2 Exploration

More intelligent and targeted exploration mechanisms are important not just
for video games, but any large and complex task. The texplore-vanir and
texplore-leo algorithms presented in Chapter 6 represent steps towards ex-
ploration that will work in such domains.

There are multiple directions for future work on designing exploration mech-
anisms for larger and more complex domains. First, applying texplore-vanir

and texplore-leo to domains like Atari games will demonstrate what as-
pects of the existing exploration methods work and do not work well in these
domains. Next, more exploration strategies based on other properties of tex-

plore’s model can be developed. For example, one could develop an exploration
strategy that rewards texplore for experiences that change its model. This
strategy would encourage texplore to take actions that lead to outcomes that
its model does not predict and cause model updates. Another approach is to
examine the potential next splits in the leaves of texplore’s tree models and
reward experiences that would provide more information about whether these
splits are useful or not. All of these strategies could be given to texplore-leo

and then it could select the best strategies from among this set.
Another issue with exploration in these domains is that external rewards are

often not received for a long time. For example, in many games, the agent may
not receive reward until it wins or loses a game after many time steps. In these
cases, evaluating exploration strategies based on the on-line rewards they receive,
as texplore-leo does, may perform poorly, as no rewards are received until
the end of the game. In such scenarios, it may be useful to develop alternative
criteria for evaluating the different exploration strategies. The goal in this case
would be to develop criteria that will reward strategies that lead the agent
to learn the most accurate models. Since the true model accuracy cannot be
evaluated without knowledge of the true dynamics of the domain, these criteria
must evaluate model accuracy indirectly. Two possible criteria are to evaluate
strategies on their ability to cause more updates to the model or to increase the
size of the tree models. The combination of these evaluation criteria with new
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exploration strategies might create a powerful learning algorithm that works in
large, complex domains with sparse external rewards.

Another approach to driving exploration in texplore would be to modify its
method of model learning. For example, texplore-vanir could use the dec-

orate algorithm (Melville and Mooney, 2003) instead of random forests for
its model. The decorate algorithm explicitly tries to maximize diversity in the
learners in its ensemble by creating artificial training examples that disagree with
the predictions of the committee. Using this model with the variance-reward
exploration presented in Section 6.2.1 might lead to better exploration. With
the current random forest method, it is possible for the model to over-generalize
and make bad predictions about unseen state-actions. The decorate algorithm
would predict that such state-actions may have different outcomes than what
the normal generalization would predict, resulting in disagreement in its models
and leading to a higher variance-reward. This approach may have benefits
over explicitly driving the agent to novel states using the novelty-reward.

8.4.3 Opponent Modeling

texplore could also be extended to perform opponent modeling in games. In
game playing, the rules of the game are known, and thus the challenge for the
agent to win the game is to model the opponent’s strategy quickly. texplore
is well suited for this task for two reasons: 1) its models can be initialized with
experience seeds; and 2) it explores to determine which of its models is correct.

In the application of texplore to typical RL domains, it learns a model
of the domain using random forests of decision trees. In this model, each tree
represents a possible hypothesis of the true dynamics of the domain. In addition,
texplore’s model can be pre-trained on a set of example transitions to initialize
the model. For playing games against opponents, texplore could be given
the rules of the game and only need to learn a model of the opponent. Each
of texplore’s tree models in each forest could be initialized with example
transitions from different opponents. These transitions could come from actual
opponents that the algorithm had played in the past or hypothetical possible
opponents. texplore could then be adapted to adjust the weights of each model
based on its accuracy in predicting the opponent’s moves. Then texplore would
plan on a weighted average of these possible opponent models.

Planning on this aggregate of possible opponent models would again lead
texplore to balance the optimistic models with the pessimistic ones. In this
case, that means that texplore would take moves that would be likely to be
good moves against most of the opponent models while avoiding moves that
might be bad against some of the opponents. As texplore learned to better
model the opponent, it would consider the other models less and better be able
to exploit its knowledge of the particular opponent it was facing.
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8.4.4 Lifelong Learning

Finally, a long-term goal that texplore can help address is the problem of
lifelong learning (Thrun and Mitchell, 1995). In lifelong learning, the objective
is for robots to be able to act and learn in their environments over their entire
lifetime, continually improving their performance while performing many differ-
ent tasks. For agents and robots to be really useful in society, lifelong learning is
important, as it will enable the agents to be persistent in the environment and
learn multiple tasks. Lifelong learning raises a number of challenges. Lifelong
learning agents face a set of challenges related to the RL for Robotics Chal-
lenges presented in this book. For lifelong learning, agents must 1) learn in an
enormously large and complex state space that is rich enough to represent all
the possible tasks the robot may learn; 2) handle an ever-growing collection of
experiences over their entire lifetime; 3) be persistent in their environment while
learning, and 4) generalize experience from other tasks to perform well on new
tasks.

In typical RL domains, the agent is given a state and action space suitable for
the task it is learning. In contrast, in lifelong learning, the goal is for the agent
to learn many tasks over its lifetime. Therefore, the state and action space for
lifelong learning must allow the agent to learn models and represent policies for
many tasks. This state-action space will be significantly larger than ones used
for agents learning a single task. texplore already makes significant progress
towards handling a large and complex state space. Learning in such a large
space will be a time-constrained domain, in that texplore is already capable
of learning reasonable policies. texplore incorporates generalization into its
model learning, which will enable it learn a useful model without attempting
to visit every state. The texplore-vanir and texplore-leo algorithms pre-
sented in Chapter 6 will enable a robot to perform intelligent exploration in such
a large domain, and enable it to perform more open-ended learning, not requiring
the user to provide an external reward function. Future work towards this chal-
lenge includes developing more exploration strategies specifically for this type of
task. Another avenue of work to address this challenge is to develop a massively
parallel version of texplore, as was also suggested for addressing more real-
world problems in Section 8.4.1. With this architecture, the model learning for
each state feature would be performed in parallel on separate computer cores. In
addition, uct planning (Kocsis and Szepesvári, 2006) can parallelized as well,
with many cores simulating trajectories in parallel (Gelly et al., 2008; Chaslot
et al., 2008; Méhat and Cazenave, 2011). Handling an ever-growing set of ex-
periences will require a different model learning method than texplore uses.
Important future work will be to identify other supervised learning methods that
do not grow with the size of the data set, but still have the desired generalization
properties similar to decision trees.

texplore already addresses part of the problem of being persistent in the
environment, as its real time architecture enables robots to learn while continuing
to act in their environment in real time. The second part of this challenge will
require work to enable the robot to charge itself. First, it must physically be
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able to charge itself. Second, the robot should not travel so far from a charger
or electrical outlet that it cannot re-charge. This aspect will require work on the
reward structure and exploration of the robot so that it does not explore past
its limits and is always able to return to an electrical outlet or charging station.

Generalizing knowledge from previous tasks to perform new tasks will also
require some future work. Following the approach of texplore, work can be
done on the state representation and the model approximation to best enable
generalization across tasks. For example, the right representations within the
agent’s factored model will enable the robot to re-use its model of its physi-
cal dynamics for various tasks. Another approach to addressing this challenge
could be to explicitly incorporate transfer learning (Taylor and Stone, 2009) into
texplore. A different approach to this challenge would be to utilize work on
multi-task learning (Wilson et al., 2007).

8.4.5 Summary

As this section shows, texplore presents plenty of opportunities for future
work. I have presented four possible directions for future work. First, research
can be done to continue making RL applicable to a broader range of tasks.
Second, new exploration methods for larger and more complex domains can be
researched. Third, texplore could be used to differentiate between different
possible opponent models when playing games. Fourth, texplore can be ex-
tended and improved in multiple ways to address the lifelong learning problem.

8.5 Conclusion

To conclude, in this book, I have presented the texplore algorithm, which is the
first algorithm to address all four RL for Robotics Challenges together. By ad-
dressing these four challenges, texplore is applicable to many real-world prob-
lems and especially many robot control problems. I demonstrated texplore’s
success in addressing each challenge on the problem of controlling the velocity
of an autonomous vehicle by manipulating the throttle and brake of the vehicle.
This work presents an important step towards making RL generally applicable
to a wide range of such challenging robotics problems.
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In this appendix, I present the full pseudo-code for the complete texplore al-
gorithm, including the extensions for handling dependent feature transitions,
actuator and sensor delays and continuous state. Versions of these algorithms
appeared earlier in Chapters 3 and 4, but this appendix represents a comprehen-
sive collection of the pseudo-code for texplore.

This appendix presents the pseudo-code for the complete texplore algo-
rithm with all the extensions and modifications for handling dependent fea-
ture transitions, actuator and sensor delays and continuous state. In addi-
tion to the pseudo-code presented in this appendix, the actual code for tex-

plore is available as an open-source ROS package at: http://www.ros.org/
wiki/rl-texplore-ros-pkg . This appendix is intended to present the full tex-
plore algorithm in a clear way, therefore the various extensions to texplore

for exploration in different types of domains presented in Chapter 6 are not
included here.

First, we present Algorithm A.1, which shows texplore’s rtmba architec-
ture, complete with delay handling. This architecture splits the model learning,
planning, and acting into three parallel threads so that the time required for
action selection is not constrained by the time taken for model learning or plan-
ning. This algorithm merges the default architecture presented in Algorithm 3.4
with the extension for domains with delays presented in Algorithm 4.2.

Next, we present the uct(λ) sample-based planning algorithm used within
this real time architecture in Algorithm A.2. This algorithm is called on Lines 8,
18, and 24 of Algorithm A.1 to plan a policy on the model within the real time
architecture. The uct(λ) algorithm presented in Algorithm A.2 is a combination
of the default uct(λ) presented in Algorithm 3.2 and its extension for sensor
and actuator delays presented in Algorithm 3.3.

http://www.ros.org/wiki/rl-texplore-ros-pkg
http://www.ros.org/wiki/rl-texplore-ros-pkg
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Algorithm A.1. Real Time Model-Based Architecture (rtmba)

1: procedure Init � Initialize variables
2: Input: S,A, nBins,minV als,maxV als � nBins is the # of discrete values

for each feature
3: Initialize s to a starting state in the MDP
4: agentState← s
5: h← ∅ � Start with empty history h
6: updateList← ∅
7: Initialize M to empty model
8: uct-init() � Initialize Planner (Alg A.2)
9: end procedure

10: procedure ModelLearningThread � Model Learning Thread
11: loop � Loop, adding experiences to model
12: while updateList = ∅ do
13: Wait for experiences to be added to list
14: end while
15: tmpModel←M⇒copy � Make temporary copy of model
16: tmpModel⇒update-model(updateList) � Update tmpModel (Alg A.3)
17: updateList← ∅ � Clear the update list
18: uct-reset() � Less confidence in current values (Alg A.2)
19: M ← tmpModel � Swap model pointers
20: end loop
21: end procedure

22: procedure PlanningThread � Planning Thread
23: loop � Loop forever, performing rollouts
24: uct-search(M,agentState,h, 0) � Algorithm A.2
25: end loop
26: end procedure

27: procedure ActionThread � Action Selection Thread
28: loop
29: sdisc ← discretize(s, nBins,minV als,maxV als)
30: Choose a← argmaxaQ(sdisc, h, a) � Values of state-history-actions
31: Take action a, Observe r, s′

32: augState← 〈s, h〉 � Augment state with history
33: updateList← updateList ∪ 〈augState, a, s′, r〉
34: push(h, a) � Keep last k actions
35: if length(h) > k then
36: pop(h)
37: end if
38: s← s′

39: agentState← s � Set agent’s state for planning rollouts
40: end loop
41: end procedure
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Algorithm A.2. plan: uct(λ)

1: procedure uct-init(S,A,maxDepth, resetCount, rmax, nBins,minV als,maxV als)

2: Initialize Q(s, h, a) with zeros for all s ∈ S, h ∈ Hs, a ∈ A

3: Initialize c(s, h, a) with ones for all s ∈ S, h ∈ Hs, a ∈ A � To avoid divide-by-zero

4: Initialize c(s, h) with zeros for all s ∈ S, h ∈ Hs � Visit Counts

5: end procedure

6: procedure plan-policy(M, s, h) � Approx. planning from state s and history h

7: uct-reset()

8: while time available do

9: uct-search(M,s, h, 0)

10: end while

11: end procedure

12: procedure uct-reset() � Lower confidence in v.f. since model changed

13: for all sdisc ∈ Sdisc, h ∈ Hsdisc do � For all state-histories

14: if c(sdisc, h) > resetCount · |A| then
15: c(sdisc, h)← resetCount · |A| � resetCount per action

16: end if

17: for all a ∈ A do

18: if c(sdisc, h, a) > resetCount then

19: c(sdisc, h, a)← resetCount

20: end if

21: end for

22: end for

23: end procedure

24: procedure uct-search(M, s, h, d) � Rollout from state s with h

25: if terminal or d = maxDepth then

26: return 0

27: end if

28: sdisc ← discretize(s, nBins,minV als,maxV als)

29: a← argmaxa′
(
Q(sdisc, h, a

′) + 2 · rmax
1−γ

·
√

log c(sdisc,h)
c(sdisc,h,a

′)

)

30: (s′, r)←M⇒query-model(〈s, h〉 , a) � Query model (Alg A.3)

31: push(h, a) � Keep last k actions

32: if length(h) > k then

33: pop(h)

34: end if

35: sampleReturn← r + γuct-search(M, s′, h, d+ 1)

36: c(sdisc, h)← c(sdisc, h) + 1 � Update counts

37: c(sdisc, h, a)← c(sdisc, h, a) + 1

38: Q(sdisc, h, a
′)← α · sampleReturn+ (1− α) ·Q(sdisc, h, a

′)
39: return λ · sampleReturn+ (1− λ) ·maxa′ Q(sdisc, h, a

′)
40: end procedure
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Next, we present texplore’s model learning method in Algorithm A.3. This
algorithm learns a separate prediction of each next state feature and reward
using a random forest. This algorithm is called by the architecture on Line 16 of
Algorithm A.1 to update the model with new experiences and is called by uct(λ)
on Line 30 of Algorithm A.2 to query the model for a prediction. This algorithm
is a modified version of Algorithm 4.1 to incorporate the added synchronic arcs
to make dependent feature predictions.

Algorithm A.3. model
1: procedure init-model(n) � n is the number of state variables

2: for i = 1→ n do

3: featModeli⇒init() � Init forest to predict feature i (Alg A.4)

4: end for

5: rewardModel⇒init() � Init forest to predict reward (Alg A.4)

6: end procedure

7: procedure update-model(list) � Update model with list of experiences

8: for all 〈s, a, s′, r〉 ∈ list do

9: srel ← s′ − s � Calculate relative effect

10: for all sreli ∈ srel do

11: depState←
〈
s, srel0 , ..., sreli−1

〉
� Add dependent feature inputs

12: featModeli⇒update(〈depState, a〉 , sreli ) � Train forest (Alg A.4)

13: end for

14: rewardModel⇒update(〈s, a〉 , r) � Train forest to predict reward (Alg A.4)

15: end for

16: end procedure

17: procedure query-model(s, a) � Get prediction of 〈s′, r〉 for s, a

18: for i = 1→ length(s) do

19: depState←
〈
s, srel0 , ..., sreli−1

〉
� Add dependent feature inputs

20: sreli ← featModeli⇒query(〈depState, a〉) � Sample prediction (Alg A.4)

21: end for

22: s′ ← s+
〈
srel1 , ..., sreln

〉
� Get absolute next state

23: r ← rewardModel⇒query(〈s, a〉) � Sample r from distribution (Alg A.4)

24: return 〈s′, r〉 � Return sampled next state and reward

25: end procedure

Finally, we present pseudo-code for the random forest models used to predict
each state feature and reward in Algorithm A.4 (originally presented as Algo-
rithm 4.3). This algorithm is used by texplore’s model learning approach to
learn separate random forest models of each feature and reward. It is called by
texplore’s model learning algorithm on Lines 12 and 14 of Algorithm A.3 to
update the forest models with new experiences is called on Lines 20 and 23 to
query the forest for predictions. This random forest model is made up of a set
of m decision trees. These trees are initialized on Line 3, updated on Line 9 and
queried on Line 15 of the Algorithm. For discrete domains, these calls are to
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Algorithm A.4. model: Random Forest

1: procedure init(m) � Init forest of m trees
2: for i = 1→ m do
3: treei⇒init() � Init tree i (either C4.5 or M5 tree)
4: end for
5: end procedure

6: procedure update(in, out) � Update forest with (in, out) example
7: for i = 1→ m do � For m trees in the random forest
8: if rand() ≤ w then � Update each tree with prob. w
9: treei⇒update(in, out) � Either C4.5 or M5 tree
10: end if
11: end for
12: end procedure

13: procedure query(in) � Get prediction for in
14: i = rand(1,m) � Select a random tree from forest
15: x← treei⇒query(in) � Get prediction from tree i (either C4.5 or M5 tree)
16: return x � Return prediction
17: end procedure

C4.5 decision trees (Quinlan, 1986), and for continuous domains, these calls are
to M5 regression trees (Quinlan, 1992).

These algorithms represent pseudo-code for the complete texplore algo-
rithm, which is sample efficient, acts in real time, works with sensor and actuator
delays, handles dependent feature transitions, and works in continuous domains.
In addition to this pseudo-code, the actual code for texplore is freely available
as a ROS package at: http://www.ros.org/wiki/rl-texplore-ros-pkg.

The goal of this appendix is to provide the complete texplore algorithm
without the exploration extensions from Chapter 6, however here we will present
some pointers to the pseudo-code for those extensions. The texplore-ee algo-
rithm for haystack domains uses a single tree instead of a random forest, so the
calls to the random forest model in Algorithm A.3 would be replaced with calls
to a single decision tree. In addition, for acting and planning, texplore-ee uses
Algorithm 6.1. texplore-vanir calculates some extra properties of its model
for use in driving exploration, which is accomplished by replacing the random
forest model in Algorithm A.4 with Algorithm 6.2. Finally, the texplore-leo

algorithm also uses Algorithm 6.2 for its model learning and then utilizes Algo-
rithms 6.3 and 6.4 for its planning and action selection.

http://www.ros.org/wiki/rl-texplore-ros-pkg
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In this appendix, I present a listing of each domain that was used in this book.
For each domain, the state variables, actions, reward structure, total number of
state-actions, time-constrained lifetime, and domain class are listed.

This appendix presents all of the domains that were used for empirical eval-
uations in this book. For each domain, I present the state variables, actions,
reward structure, and total number of state-actions of the domain. In addi-
tion, I list the time-constrained lifetime for each domain, which is defined as
L < 2NA in Section 2.3. I also state whether each domain is a haystack, prior
information, or informative domain, as defined in Chapter 6. In the caption
of each table, I state which section in the book presented this domain. All of
the domains in this book are available in our open-source ROS package at:
http://www.ros.org/wiki/rl-texplore-ros-pkg.

Table B.1. Properties of the Vehicle Velocity Control task, introduced in Section 2.4.
Note that each episode is 100 actions long, as it is 10 seconds of control of the car with
actions taken at 10 Hz.

Vehicle Velocity Control

State des-vel, curr-vel, brake, accelerator

Actions no-op, acc-up, acc-down, brake-up,
brake-down

Reward −10.0 ∗ |des-vel - curr-vel|
# State-Actions 218, 075

Time-Constrained Lifetime 436, 150 actions, 4, 361 episodes

Domain Class None

Table B.2. Properties of the Fuel World task, introduced in Section 5.1.2

Fuel World

State row, col, fuel

Actions north, east, south, west, northeast,
southeast,southwest, northwest

Reward Ranges from −400.0 to +20.0

# State-Actions 317, 688

Time-Constrained Lifetime 635, 376 actions

Domain Class Prior Information with example transitions

http://www.ros.org/wiki/rl-texplore-ros-pkg
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Table B.3. Properties of the Mountain Car task (Moore, 1990; Sutton and Barto,
1998), presented in Section 5.2.2

Mountain Car

State position, velocity

Actions left, right, none

Reward −1 each step, 0 upon reaching goal

# State-Actions 30, 000

Time-Constrained Lifetime 60, 000 actions

Domain Class Prior Information with example transitions

Table B.4. Properties of the Cart-Pole Balancing task (Sutton and Barto, 1998),
presented in Section 5.2.2

Cart-Pole Balancing

State cart-pos, cart-vel, pole-pos, pole-vel

Actions left, right

Reward +1 each step until episode terminates

# State-Actions 320, 000

Time-Constrained Lifetime 640, 000 actions

Domain Class None

Table B.5. Properties of the Delayed Gridworld task, introduced in Section 5.3.2

Delayed Gridworld

State row, col

Actions north, east, south, west

Reward −1 each step, 0 upon reaching goal

# State-History-Actions 3, 264

Time-Constrained Lifetime 6, 528 actions

Domain Class Prior Information with example transitions

Table B.6. Properties of the Trap Room task, introduced in Section 5.5

Trap Room

State row, col

Actions north, east, south, west

Reward −1 each step, 0 on goal, −250 on trap

# State-Actions 252

Time-Constrained Lifetime 504 actions

Domain Class Prior Information with example transitions
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Table B.7. Properties of the Vehicle Velocity Control task with a single target velocity,
introduced in Section 5.6. Note that each episode is 100 actions long, as it is 10 seconds
of control of the car with actions taken at 10 Hz.

Vehicle Velocity Control (single target velocity)

State des-vel, curr-vel, brake, accelerator

Actions no-op, acc-up, acc-down, brake-up,
brake-down

Reward −10.0 ∗ |des-vel - curr-vel|
# State-Actions 16, 775

Time-Constrained Lifetime 33, 550 actions, 335 episodes

Domain Class None

Table B.8. Properties of the Taxi task (Dietterich, 1998), presented in Section 6.1.2

Taxi

State Features x, y, passenger, destination

Actions east, west, north, south, pick-up, drop-off

Reward −1 normally, +20 upon completion
−10 for bad pick-up or drop-off action

# State-Actions 3, 000

Time-Constrained Lifetime 6, 000 actions

Domain Class Haystack normally, Prior Information with example
transitions

Table B.9. Properties of the Penalty Kick task, introduced in Section 6.1.2

Penalty Kick

State Features x, foot-shift

Actions move-in, move-out, kick

Reward Ranges from −20 to +20

# State-Actions 3, 360

Time-Constrained Lifetime 6, 720 actions

Domain Class Haystack
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Table B.10. Properties of the Light World domain (Konidaris and Barto, 2007),
presented in Section 6.2.2

Light World

State id, x, y, key, locked, red-e, red-w, red-n,
Features red-s, green-e, green-w, green-n, green-s,

blue-e, blue-w, blue-n, blue-s,

Actions east, west, north, south, press, pickup

Reward 0 each step, +10 when leaving room

# State-Actions 1, 464

Time-Constrained Lifetime 2, 928 actions

Domain Class Informative

Table B.11. Properties of the Sensor Goal domain, introduced in Section 6.3.2

Sensor Goal

State Features x, y, sense-n, sense-e, sense-s, sense-w

Actions east, west, north, south

Reward −1 each step, +2 upon reaching goal

# State-Actions 58, 564

Time-Constrained Lifetime 117, 128 actions

Domain Class Informative

Table B.12. Properties of the Arbitrary Goal domain, introduced in Section 6.3.2

Arbitrary Goal

State Features x, y, goal-id

Actions east, west, north, south

Reward −1 each step, +2 upon reaching goal

# State-Actions 58, 564

Time-Constrained Lifetime 117, 128 actions

Domain Class Haystack

Table B.13. Properties of the Stock Trading domain (Strehl et al., 2007), presented
in Section 6.4

Stock Trading

State Features own-sec-1, own-sec-2, own-sec-3, stock-1-1
stock-1-2, stock-2-1, stock-2-2, stock-3-1,
stock-3-2

Actions buy-sec-1, sell-sec-1, buy-sec-2
sell-sec-2, buy-sec-3, sell-sec-3

Reward Ranges from −6 to +6

# State-Actions 3, 072

Time-Constrained Lifetime 6, 144 actions

Domain Class None
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