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Abstract. Combinatorial landscape analysis (CLA) is an essential tool
for understanding problem difficulty in combinatorial optimization and
to get a more fundamental understanding for the behavior of search
heuristics. Within CLA, Barrier trees are an efficient tool to visualize
essential topographical features of a landscape. They capture the fit-
ness of local optima and how they are separated by fitness barriers from
other local optima. The contribution of this study is two-fold: Firstly,
the Barrier tree will be extended by a visualization of the size of fit-
ness basins (valleys below saddle points) using expandable node sizes
for saddle points and a graded dual-color scheme will be used to distin-
guish between penalized infeasible and non-penalized feasible solutions
of different fitness. Secondly, fitness landscapes of two important NP
hard problems with practical relevance will be studied: These are the
NK landscapes and Vehicle Routing Problems (with time window con-
straints). Here the goal is to use EBT to study the influence of problem
parameters on the landscape structure: for NK landscapes the number
of interacting genes K and for Vehicle Routing Problems the influence
of the number of vehicles, the capacity and time window constraints.

1 Introduction

Much research has been done to combinatorial optimization problems, though
we might not even have reached the top of the iceberg yet. Before designing al-
gorithms for a problem, an important task is to understand the properties of the
search landscape. Classical calculus has focused mainly on the characterization
of continuous search landscapes, whereas landscape analysis tools for discrete
search spaces are only discussed more recently also because their application
requires fast computing machinery. Our aim is to improve tools for landscape
analysis and to study two discrete landscapes with relevance for science and
technology, namely the NK landscape problems and the Vehicle Routing prob-
lem with time windows (VRPTW). These problems have in common that for
a given problem size their difficulty can be scaled by problem parameters, for
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instance the level of gene interaction K in NK landscapes and the number of
vehicles and capacity in VRPTW.

To understand the difficulty of a landscape for local search procedures, the
number of local optima is an important characteristic. Beyond this, one may also
ask how the attractor basins of local optima are connected with each other. Local
Optima Network Analysis [8] and Barrier Tree Analysis [11] provide interesting
tools for doing so. In this work we focus on the latter. The idea in Barrier Tree
Analysis is to compute a tree that characterizes the topographical structure of a
combinatorial landscape. Essentially it provides for each pair of local optima the
information on the height of the barrier that separates them from each other. The
turning point on an optimal path across this ‘fitness barrier’ is called a saddle
point. For a given landscape this information can be condensed in a hierarchical
structure – a barrier tree of the landscape – for which the leaf nodes are local
optima and the branching nodes are saddle points.

In Section 2 we provide definition of classical barrier trees and related concepts
and refer to some related work. In Section 3 we introduce a new type of barrier
trees, we will term expanded barrier trees (EBT) and outline an algorithm to
compute these. Then, we use the EBT to analyse two problem spaces: Section
4 deals with NK landscapes that are models of evolution of genotypes with
interacting genes. Section 5 applies EBT to Vehicle Routing Problems (with
Time Windows). Section 6 concludes with a summarizing discussion.

2 Barrier Trees and Related Work

Abstractly, a combinatorial landscape [11] can be defined as a triple (X, f,N ),
where X denotes a finite, but possibly large, search space, f : X → R denotes
a fitness function (or height function) that assigns a fitness value to each point
in the landscape, and N : X → ℘(X) denotes a neighborhood function which
declares a neighborhood on X by assigning the set of direct neighbors to points
in X . Note, that ℘(X) denotes the set of all subsets (or power set) of X . The
neighborhood function is often related to the search heuristic that is used to find
an optimal solution. For instance, the set of neighbors can be given by the set
of solutions that can be reached from a given point in X by a single mutation
or step.

A few formal definitions are required to precisely define barrier trees:

Definition 1 (Path). Let N : X → ℘(X) be a neighborhood function. A se-
quence p1, . . . , p� for some � ∈ N and p1, . . . , p� ∈ X is called a path connecting
x1 and x2, iff p1 = x1, pi+1 ∈ N(pi), for i = 1, . . . , � − 1, and p� = x2. We say
that � is the length of the path.

Definition 2. Let Px1,x2 denote the set of all paths between x1 and x2.
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Definition 3 (Saddle point). Let f̂(x1, x2) = minp∈Px1,x2
(maxx3∈p f(x3)). A

point s on some path p ∈ Px1,x2 for which f(s) = f̂(x1, x2) is called a saddle
point between x1 and x2.

Definition 4 (Basin). The basin B(s) of a point s is defined as

B(s) = {x ∈ X |∃p ∈ Ps,x : max
z∈p

f(z) ≤ f(s)}.

Theorem 1 ([3]). Suppose for two points x1 and x2 that f(x1) ≤ f(x2). Then,
either B(x1) ⊆ B(x2) or B(x1) ∩B(x2) = Ø.

Theorem 1 implies that the barrier structure of the landscape can be represented
as a tree [10] where the saddle points are branching points and the local optima
are the leaves.

Example 1. An example of a barrier tree for the search space of a 3-D binary
cube is provided in Fig. 1. The search space X is given by the binary numbers
of length 3. The hamming neighborhood is applied. Height values are indicated
by numbers in the upper part of the nodes.

Fig. 1. A binary landscape (left) and its barrier tree (right)

3 Expanded Barrier Trees

The barrier trees describe the notions of saddle points, barriers and basins which
give us a vivid landscape visualization of different problems. However, the infor-
mation of the basin size is not presented yet in barrier trees. Here, we extend
the barrier trees to expanded barrier trees, which consist of more details of the
landscapes. The addition of basin sizes are attached to each node in the barrier
tree. The size of the basin will be represented by the size of the node, which
is the logarithm of the number of configurations that belong to the basin. The
edge length represents distance in fitness values. After the modification of barrier
trees, the expanded barrier trees can be defined as follows:
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(a) c = 3, v = 3 (b) c = 3, v = 4

Fig. 2. Example of Landscapes of VRPTW

Definition 5 (Expanded Barrier Trees). An expanded barrier tree is a bar-
rier tree with labeled nodes and edges. To each saddle point s in the barrier tree
is assigned a natural number size(s) = |B(s)|. And to each edge is given a value
length(e) = distance(x1, x2), which denotes the distance in height between the
saddle points or local optimum x1 and x2.

The expanded barrier tree can be graphically represented: Saddle points are
represented by means of disks. The radius of the disk shows the size of the
basin and the distance of the nodes is expressed as the length of the edge. For
better readability of the graphs we also use a coloring of the nodes. Depending
on the fitness value we depict the node in a darker or brighter color. The best
fitness value (so the global optimum) will be black, while the worst fitness value
(the root) will be white. In constrained optimization (e.g. in VRP) a two color
scheme is applied: red nodes to describe the infeasible solutions and the green
ones indicate that the solution are feasible. Again, the brightness indicates the
height of the function value at the node. See Figure 2, for two examples.

In order to generate a barrier tree the flooding algorithm (see Algorithm 1)
is commonly used [3]. It constructs a barrier tree in discrete landscapes with
finite search space X and linearly ordered search points (e.g. by means of the
objective function values). The flooding algorithm builds up the barrier tree in
the following way. First, the elements of the search space are sorted in ascending
order and send to a queue. Then, the search points are removed one by one
from the queue in ascending order and for each point x the following cases are
processed:

1. if xi has no neighbor, it is a local minimum.
2. if xi has neighbors in only one basin say B(xi1), it also belongs to B(xi1 )
3. if xi has neighbors in n > 1 basins B(xi1 , xi2 , ...xin), it is a saddle point.

These basins are combined to one B(xi) and B(xi1 , xi2 , ...xin) are removed.

After this process, the barrier tree is generated. Note, that if the height function
is not injective the flooding algorithm can still be used but the barrier tree
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may not be uniquely defined. A detailed description of the flooding algorithm is
provided with Fig. 1. We indicated with blue color font the parts of the algorithm
that have been added to the canonical flooding algorithm, in order to compute
expanded barrier trees.

Algorithm 1. Flooding algorithm

1: Let x(1), . . . , x(N) denote the elements of the search space sorted in ascending order.

2: Let size(1)← 1, ...., size(n)← 1.
3: i→ 1;B = ∅
4: while i ≤ N do
5: if N(xi) ∩ {x(1), . . . , x(i−1)} = ∅ [i. e., x(i) has no neighbor that has been pro-

cessed.] then
6: {x(i) is local minimum}
7: Draw x(i) as a new leaf representing basin B(x(i)) located at the height of f

in the 2-D diagram
8: B ← B ∪ {B(x(i))} {Update set of basins}
9: else
10: Let T (x(i)) = {B(x(i1)), . . . , B(x(iN ))} be the set of basins B ∈ B with

N(x(i)) ∩B 	= ∅.
11: if |T (x(i))| = 1 then
12: Let size(i1)← size(i1) + 1.
13: B(x(i1))← B(x(i1)) ∪ {x(i)}
14: else
15: {x(i) is a saddle point}
16: Let size(i)← size(i1) + ...+ size(iN ) + 1.
17: Draw x(i) as a new branching point with edges to the nodes

B(x(i1)), . . . , B(x(iN )). The length of the edges is given by length((i, i1)) =
f(x(i))− f(xi1), . . . , length((i, iN )) = f(x(i))− f(xiN ), respectively.

18: {Update set of basins}
19: B(x(i)) = B(x(i1)) ∪ · · · ∪B(x(iN )) ∪ {x(i)}
20: Remove B(x(i1)), . . . , B(x(iN )) from B
21: B ← B ∪ {B(x(i))}
22: end if
23: end if
24: end while

4 Studies on NK Landscapes

NK Landscapes were introduced by [6] as abstract models for fitness functions
based on interacting genes. In NK Landscapes N genes are represented by vari-
ables from a finite alphabet, typically of size two. The degree of epistasis (gene
interaction) is given by the parameterK. With increasing values ofK the rugged-
ness of an adaptive landscape grows. Besides theoretical biology, NK landscapes
have been used as test problem generators for Genetic Algorithms (GAs)[7].

The standard NK Landscapes are fitness functions F : {0, 1}N → R
+ that

are generated by an stochastic algorithm. Gene interaction data is stored in a
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randomly generated epistasis matrix E, and used to generate a fitness function
[1]. The genotype’s fitness F is the average of N fitness components Fi, i =
1, . . . , N . Each gene’s fitness component Fi is determined by the allele xi, and
also by K alleles at K epistatic genes distinct from i:

F (x) =
1

N

N∑

i=1

Fi(xi;xi1 , . . . , xik ), x ∈ {0, 1}N (1)

where {i1, . . . , ik} ⊂ {1, . . . , N}− {i}. There are two ways for choosing K other
genes: ‘adjacent neighborhoods’, where the K genes nearest to position i on
the vector are chosen; and ‘random neighborhoods’, where these positions
are chosen randomly on the vector. The components Fi : {0, 1}K → [0, 1),
i = 1, . . . , N are computed based on the fitness matrix F . For any i and for
each of the 2K+1 bit combinations a random number is drawn independently
from a uniform distribution over [0, 1). The algorithm also creates an epistasis
matrix E which for each gene i contains references to its K epistatic genes.

Expanded barrier trees of NK landscapes were computed and displayed for
N = 10 and varying K, in Figure 5 for adjacent neighborhoods and in Figure 6
for random neighborhoods.

In order to describe our results we will use terminology of axial trees[12,9].
For these trees, that are used as data structures to describe ’natural’ trees in
geomorphology and biology, branches of different degree are defined. The main
branch has degree zero and branches of degree one are side branches of the main
branch, and and so on. In the context of EBT we will call ’thick’ branches con-
sisting of chains of big nodes to have a higher degree than branches consisting
of smaller nodes. However, we will use this definition in a rather informal, de-
scriptive way based on visual appearance. The following observations were found
interesting:

1. As expected, the complexity of the NK landscape and thus of the barrier trees
grow with K.

2. Landscapes with adjacent neighborhood look slightly more complex than
those with random neighborhood.

3. All expanded barrier trees have a relatively large basin for the highest saddle
point (white disk). This tendency is getting less, however, as K grows.

4. For each expanded barrier tree, there exists one ’main’ branch with small
lateral branches which have only one or two local optima. This means a ran-
domized local research cannot be trapped easily, since the basins of these local
optima are relatively small and the barriers are not too high.

Figure 3 displays the numbers of leaves, average basin size and average edge
length of the NK landscape expanded barrier trees with adjacent neighborhoods
and random neighborhoods. The numbers of the leaves linearly increase with the
number of neighborhoods(K), which means the number of the local optima will
grow with K. The average basin size drops dramatically and the average edge
length increases exponentially. We can attain that the algorithms are much more
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(a) Adjacent Neighborhoods (b) Random Neighborhoods

(c) Adjacent Neighborhoods (d) Random Neighborhoods

(e) Adjacent Neighborhoods (f) Random Neighborhoods

Fig. 3. The number of leaves , average basin size and average edge length of NK
landscape with adjacent neighborhoods and random neighborhoods

easily to trap in the local optima and the energy needed to escape from the local
optima increase rapidly. Comparing NK landscape with adjacent neighborhoods
and those with random neighborhoods, for the latter the number of leaves of
NK landscape with random neighborhoods are lower and the average basin size
is smaller and edge lengths are shorter. This means the NK landscape with
adjacent neighborhoods present more traps to local search heuristics than those
with random neighborhoods.

5 Studies on Vehicle Routing Problems

In this section we will apply expanded barrier tree analysis to a constrained real
world optimization problem from logistics. The Vehicle Routing Problem
(VRP) is a generalization of the Traveling Salesperson Problem (TSP).
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The goal is to generate a schedule for a fleet of vehicles that delivers goods from a
depot to customers. Each vehicle has a maximum capacity Q and each customer
vi has a demand for a certain amount, qi, that needs to be delivered. Each VRP
problem instance has a special node v0, called the depot, which is the start and
end of each tour. In order to represent solutions with multiple tours as a single
sequence, it is assumed that when the depot is visited mid-tour this is equivalent
to starting with a new vehicle. The objective in VRP is to minimize the traveling
distance and the number of vehicles. In this paper treat the number of vehicles as
an equality constraint. The vehicle routing problem is NP hard and several local
search heuristics have been proposed for its approximate solution; cf. [4].

In the Vehicle Routing Problem with Time Windows (VRPTW) cus-
tomer nodes vi have a corresponding time window [ei, li] describing the earliest
beginning of service ei and the latest beginning of service li, and a service time si.
The distance matrix now resembles the traveling time between each two nodes.
The depot has a wide time window that starts at e0 = 0 so that all nodes can be
serviced before returning to the depot before l0. Also it has service time s0 = 0.
In case a vehicle arrives at node vi before time ei it will wait until time ei. A
solution is only valid if for each node vi, including the depot, the service can be
started before time li.

To analyze this problem we used a problem instance from the original paper
by Dantzig [2] with a sufficient low dimensionality. We did not take one of the
Solomon instances which are used in many papers, because we need very small
problem instances due too the complexity. The problem instance we took has
size seven and we can vary the capacity and the number of vehicles. For small
capacity there are many infeasible solutions. For every constraint that is not met,
we add a penalty to the overall fitness value. The penalty should be high enough
to make the best infeasible solution worse than the worst feasible solution.

As indicated before, a configuration of such a VRP problem is a string of the
customers and several times the central depot. Each time the central depot is
in the string means that we use the next vehicle. We define a neighbor of such
a configuration, a configuration where two cities are swapped (i.e. two configu-
rations with Cayley distance of 1). Swapping seems a elementary operation to
modify traveling salesman like problems such as this VRP problem.

The problem, that was taken, has six customers and a central depot. For
simplicity we number the depot and the customers where the depot is defined
as number one. Each customer has a distance to each other customer and to the
central depot. The distance matrix T is given below:

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7
1 −1 10 20 25 12 20 2
2 10 −1 25 20 20 10 11
3 20 25 −1 10 25 11 25
4 25 20 10 −1 30 22 10
5 12 20 25 30 −1 30 20
6 20 10 11 22 30 −1 12
7 2 11 25 10 20 12 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)
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Extra constraints will now be added to our problem by using Time Windows [5].
We took the instance above and added the following time window constraints:
e1 = 0, l1 = 999, e2 = 0, l2 = 20, e3 = 15, l3 = 40, e4 = 10, l4 = 30, e5 = 8,
l5 = 20, e6 = 20, l6 = 40, e7 = 0, l7 = 5. These time windows are chosen keeping
in mind that there should still exist some feasible solutions.

Four galleries of expanded barrier trees have been computed. Figure 7 shows
the results of expanded barrier trees on VRP. And those in Figure 8 shows results
of VRPTW. The capacity c and the number of vehicles v are changed from 1 to 4
and from 1 to 5, respectively. Recall that green colors indicate feasible solutions
and red colors infeasible ones. Note, that the edge length is not displayed to
make the graphics more readable.

The results look very different to the trees of the NK landscape problem.
Some interesting findings are:

– As expected, the number of feasible solutions grows with c and v. More sur-
prisingly, for the VRP a single increment of a parameter can cause a transition
from a completely feasible search space to a completely infeasible search space
or vice versa. This can be observed in the transition from (c = 2, v = 3) to
(c = 2, v = 4) in Figure 7 or in the transition from (c = 2, v = 2) to (c = 3,
v = 2).

– This fast transition is not observed the problem with time windows. Rather,
in the problems with time windows feasible and infeasible solutions coexist
in the search space. An implication of this can be the isolation of feasible
components from each other in the landscape. This can be observed in Figure
8 for (c = 2 , v = 3). These isolated local optima can be potential traps for
optimization algorithms which do not accept moves to infeasible solutions.

– Again we can characterize the expanded barrier trees as axial trees with a wide
zero order branch. Branches of higher order occur typically only in deeper
regions of the landscape. This implies that it is relatively unlikely to get
trapped in local optima in early stages of a local search. However, as the
differences in depth between the small side branches and the main axis are
large, it is difficult to escape from these side branches, once they have been
entered, even if worsening of the function value would be accepted (as in
simulated annealing).

The trees were generated on a Intel Core i72675QM CPU, with two times 2.2
GHz. Only one core was used. The installed working memory is 4.00 GB and the
compiler is DEV C++. According to the results, there is no significant difference
between the time consumption of VRP trees and VRPTW trees, so we take
the VRPTW as an example here. Figure 4 illustrates the time consumption of
constructing the expanded barrier trees of VRPTW. From which we can discover
the following things:

– As we can see, the time consumption increases rapidly with the number of
vehicles (v). And based on this figure, we can easily predict that it will be
time-consuming to generating an expanded barrier tree when the number of
vehicle grows larger.
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– However, what surprises us most is that the time consumption hardly changes
when the capacity of the vehicle (c) changes from 1 to 6. This reveals that
(c) is not a sensitive parameter we suspected in the process of generating a
expanded barrier tree on VRPTW.

Fig. 4. The time consumption of constructing VRPTW trees

6 Summary and Outlook

Expanded barrier trees were proposed as a visualization tool for landscape anal-
ysis of combinatorial landscapes. As compared to standard barrier trees also the
size of the saddle points was defined and a color code for distinguishing infeasible
from feasible subspaces.

Expanded barrier trees were computed for two problem classes - NK land-
scapes and VRP/VRPTW) constraints. For both classes it was shown that the
problem difficulty depends crucially on the choice of some parameters.

For NK landscapes the main observation was that for a small value of K there
are fewer local optima and branches are only of low order and the highest saddle
point has a basin of significant size. For larger values of K the trees get more
highly branched and the differences in the size of the saddle points tend to align.

In case of VRP transitions between problems with many feasible solutions
and a high fraction of infeasible solutions in the search space were rapid. In case
of time window constraints also isolated regions of infeasible solutions occured
for parameter values in these critical transitions – a problem that needs to be
adressed by optimization algorithm design, e.g. by allowing to tunnel infeasible
subspaces or relax constraint penalties. The analysis captured some interesting
features of these landscapes, such as disconnected feasible regions.

So far, the studies were confined to small instances, and future work needs
to clarify whether or not the insights gained from small models generalize to
problems larger input sizes. An interesting observation is also that expanded
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(a) K = 2 (b) K = 2 (c) K = 2

(d) K = 3 (e) K = 3 (f) K = 3

(g) K = 4 (h) K = 4 (i) K = 4

(j) K = 7 (k) K = 8 (l) K = 9

Fig. 5. Landscapes of NK Adjacent Neighbours
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(a) K = 2 (b) K = 2 (c) K = 2

(d) K = 3 (e) K = 3 (f) K = 3

(g) K = 4 (h) K = 4 (i) K = 4

(j) K = 7 (k) K = 8 (l) K = 9

Fig. 6. Landscapes of NK Random Neighbours
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(a) c = 1, v = 1 (b) c = 1, v = 2

(c) c = 1, v = 3 (d) c = 1, v = 4

(e) c = 2, v = 2 (f) c = 2, v = 3

(g) c = 2, v = 4 (h) c = 2, v = 5

Fig. 7. Landscapes of VRP
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(a) c = 1, v = 1 (b) c = 1, v = 2

(c) c = 1, v = 3 (d) c = 1, v = 4

(e) c = 2, v = 2 (f) c = 2, v = 3

(g) c = 2, v = 4 (h) c = 2, v = 5

Fig. 8. Landscapes of VRPTW
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barrier trees can be characterized in the terminology of axial trees, an aspect
that could be elaborated further. Moreover, alternative visualization techniques
such as local optima network should be studied for the same landscapes (cf. [13])
in future work.
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