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Abstract. In this paper, an ensemble classifier, namely RotaSVM, is
proposed that uses recently developed rotational feature selection ap-
proach and Support Vector Machine classifier cohesively. The RotaSVM
generates the number of predefined outputs of Support Vector Machines.
For each Support Vector Machine, the training data is generated by
splitting the feature set randomly into S subsets. Subsequently, prin-
cipal component analysis is used for each subset to create new feature
sets and all the principal components are retained to preserve the vari-
ability information in the training data. Thereafter, such features are
used to train a Support Vector Machine. During the testing phase of Ro-
taSVM, first the rotation specific Support Vector Machines are used to
test and then average posterior probability is computed to classify sample
data. The effectiveness of the RotaSVM is demonstrated quantitatively
by comparing it with other widely used ensemble based classifiers such
as Bagging, AdaBoost, MultiBoost and Rotation Forest for 10 real-life
data sets. Finally, a statistical test has been conducted to establish the
superiority of the result produced by proposed RotaSVM.

Keywords: Principal component analysis, rotational feature selection,
statistical test, support vector machine.

1 Introduction

Integration of classifiers nowadays is drawing much attention of the machine
learning and pattern recognition communities and growing rapidly [1–10]. In
integrated classification techniques, an ensemble of classifiers is generated by
giving similar or different permutated training data sets. Thereafter, class label
of the test sample is assigned by either majority voting or averaging the output
probabilities of the ensemble. Recent research shows that ensemble based classi-
fiers, such as Bagging [11], AdaBoost [12, 13], Random Forest [14] and Rotation
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Forest [15], are used more often to increase the prediction accuracy of learning
systems [9, 16–20].

Among these ensemble classifiers, Rotation Forest [15] performs much bet-
ter than other ensemble methods. It uses rotational feature sets for decision
tree classifiers. In Rotation Forest, rotational feature sets subsequently undergo
Principal Component Analysis (PCA) to preserve the variability information
of the training data. Here the main idea is to simultaneously increase diver-
sity and individual accuracy within the decision tree classifiers. Diversity is
achieved by using PCA, which is used to extract the principal components of ro-
tational features for each classifier and accuracy is sought by keeping all principal
components [15, 21].

The Support Vector Machine (SVM) is a state-of-the-art classification method
introduced in 1992 by Boser et al. [22]. The basic idea of SVM is to find a hyper-
plane which separates the d-dimensional data perfectly into two classes. However,
since classification data is often not linearly separable, SVM introduced the no-
tion of a “kernel induced feature space” which embed the data into a higher
dimensional feature space where the data is linearly separable. For this purpose,
first the hyperplane is found, which separates the largest possible fraction of
points such that points on the same side belong to the same class, while the
distance of each class from the hyperplane is maximized.

As both Rotation forest and Support Vector Machine are successfully used
in classification, thus their integration may achieve even higher prediction accu-
racy than either of them. Hence, in this paper, an ensemble classifier, named as
RotaSVM, is proposed by integrating rotational feature selection scheme with
SVM. The RotaSVM produces the number of predefine outputs of SVMs. For
each SVM, the training data is generated by splitting the feature set randomly
into S subsets. Subsequently, principal component analysis is used for each sub-
set to create new feature sets and all the principal components are retained to
preserve the variability information of the training data. Thereafter, such fea-
tures are used to train a Support Vector Machine. During the testing phase of
RotaSVM, the sample data are the input to the rotation specific Support Vector
Machines. Subsequently, it is classified by computing average posterior proba-
bility. The experimental studies were conducted with available 10 real-life data
sets1. The results show that RotaSVM can produce significantly lower prediction
error more often than Rotation Forest and other ensemble based classifiers such
as Bagging, AdaBoost and MultiBoost for all the data sets. Finally, t-test [24]
has been conducted to establish the statistical significance of the result produced
by RotaSVM.

The rest of this paper is organized as follows: Section 2 briefly describes the
Support Vector Machine classifier. The proposed RotaSVM is discussed in Sec-
tion 3. Section 4 shows the empirical results. Finally, Section 5 concludes this
paper with an additional note of future work.

1 UCI repository [23].
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2 Brief Description of Support Vector Machine

In this section, we briefly discuss Support Vector Machine classifier which is in-
spired by statistical learning theory. It performs structural risk minimization on
a nested set structure of separating hyperplanes [25]. Viewing the input data as
two sets of vectors in a d-dimensional space, an SVM constructs a separating hy-
perplane in that space, one which maximizes the margin between the two classes
of points. To compute the margin, two parallel hyperplanes are constructed on
each side of the separating one. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the neighboring data points
of both classes. The larger margins or distances between these parallel hyper-
planes indicate better generalization error of the classifier. Fundamentally, the
SVM classifier is designed for two-class problems. It can be extended to handle
multiclass problems by designing a number of one-against-all or one-against-one
twoclass SVMs [26]. For example, a K-class problem is handled with K two-class
SVMs [27]. For linearly nonseparable problems, SVM transforms the input data
into a very high-dimensional feature space and then employs a linear hyperplane
for classification. Introduction of a feature space creates a computationally in-
tractable problem. SVM handles this by defining appropriate kernels so that
the problem can be solved in the input space itself. The problem of maximizing
the margin can be reduced to the solution of a convex quadratic optimization
problem, which has a unique global minimum.

For a binary classification training data problem, suppose a data set consists
of N feature vectors (xi, yi), where yi ∈ {+1,−1}, denotes the class label for the
data point xi. The problem of finding the weight vector ν can be formulated as
minimizing the following function:

L(ν) =
1

2
‖ν‖2 (1)

subject to

yi[ν · φ(xi) + b] ≥ 1, i = 1, . . . , N (2)

Here, b is the bias and the function φ(x) maps the input vector to the feature
vector. The SVM classifier for the case on linearly inseparable data is given by

f(x) =

N∑

i=1

yiβiK(xi, x) + b (3)

where K is the kernel matrix, and N is the number of input patterns having
nonzero values of the Langrangian multipliers βi. These N input patterns are
called support vectors, and hence the name SVMs. The Langrangian multipliers
βi can be obtained by maximizing the following:

Q(β) =
N∑

i=1

βi − 1

2

N∑

i=1

N∑

j=1

yiyjβiβjK(xi, xj) (4)
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subject to
N∑

i=1

yiβi = 0 0 ≤ βi ≥ C, i = 1, ...., N (5)

where C is the cost parameter, which controls the number of non separable
points. Increasing C will increase the number of support vectors thus allowing
fewer errors, but making the boundary separating the two classes more complex.
On the other hand, a low value of C allows more non separable points, and
therefore, has a simpler boundary. Only a small fraction of the βi coefficients
are nonzero. The corresponding pairs of xi entries are known as support vectors
and they fully define the decision function. Geometrically, the support vectors
are the points lying near the separating hyperplane. K(xi, xj) = φ(xi).φ(xj) is
called the kernel function. The kernel function may be linear or nonlinear, like
polynomial, sigmoidal, radial basis functions (RBF), etc. RBF kernels are of the
following form:

K(xi, xj) = e−γ|xi−xj|2 (6)

where xi denotes the ith data point and γ is the weight. In this paper, the above
mentioned RBF kernel is used. In addition, the extended version of the two-class
SVM that deals with multiclass classification problem by designing a number of
one against all two-class SVMs, is used here.

3 Proposed RotaSVM

Consider a training set £ = {(xi, yi)}Ni=1 consisting of N independent instances,
in which each (xi, yi) is described by an input attribute vector xi = (xi1, xi2,
. . . , xid) ∈ R

d and a class label yi. In a classification task, the goal is to use
the information only from £ to construct a classifier which performs well on
unseen data. For simplicity of the notations, let X be a N × d data matrix
composed with the values of d input attributes for each training instance and Y
be a column vector of size N , containing the outputs of each training instance
in £. Moreover, £ can also be expressed by concatenating X and Y vertically,
that is, £ = [XY ]. Also let F = {X1, X2, . . . , Xd}T be the attribute or feature
set composed of d input attributes or features and ω be the set of class labels
{ω1, ω2, . . . , ωc}, from which Y takes values.

In RotaSVM, SVM runs T number of times with different rotational feature
set. During the training of each SVM, the feature set F is randomly split into S
(S is an input parameter of RotaSVM) subsets, which may be disjoint or inter-
secting. To maximize the chance of high diversity, disjoint subsets are chosen.
Subsequently, a submatrix Xt,s, where t is the timestamp of the SVM classifier
runs and s is the subset number, is created with the attributes in Ft,s. From this
submatrix, Xt,s, a new bootstrap sample X ′

t,s of size 75% is selected. Thereafter,
PCA technique is applied to each subset to obtain a matrix Dt,s where all prin-
cipal components are retained in order to preserve the variability information in
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the data. Thus, S axis rotations take place to form the new attributes for SVM
classifier. Subsequently, the matrix Dt,s is arranged into a block diagonal matrix
Rt. To construct the training set for classifier SVM t the rows of Rt are rear-
ranged, so that they correspond to the original attributes in F . The rearranged
rotation matrix is Ra

t and training set for classifier SVM t is [XRa
t , Y ]. Note

that the reason behind selecting 75% is to avoid getting identical coefficients
of the principal components if the same attribute subset is chosen for different
classifiers and to increase the diversity among the ensemble classifiers. Details
of RotaSVM are mentioned in Algorithm 1.

In the testing phase, given a test sample I, let SVM t,i(IRa
t ) be the posterior

probability produced by the classifier SVMt on the hypothesis that I belongs to
class ωi. Then the confidence for a class is calculated by the average posterior
probability of combination SVMs:

ψi(I) = 1

T

T∑

t=1

SVM t,i(IRa
t ), (i = 1, 2, . . . , c) (7)

Thereafter, I is assigned to the class with the largest confidence. Note that while
running the RotaSVM algorithm to solve a classification task, some parameters
like T and S are needed to be specified in advance.

Algorithm 1. RotaSVM
Require: For Training

X, Data Set
Y , Class Label
T , Number of time SVM runs
S, Number of Feature Sets

Require: For Testing
I, A data object to classify

Ensure:
Class lable of I
Prediction Error of RotaSVM

1: for (t = 1, 2, . . . , T ) do
2: Randomly split the attribute set F into S subsets, Ft,s where (s = 1, 2, . . . ,S).
3: for (s = 1, 2, . . . ,S) do
4: Create submatrix Xt,s using X and Ft,s.
5: Create a new bootstrap sample X′

t,s of size 75% form Xt,s.

6: Apply PCA on X′
t,s to obtain the coefficient matrix Dt,s.

7: end for
8: Arrange the matrices Dt,s(s = 1, 2, . . . ,S) into a block diagonal matrix Rt.
9: Construct the rotation matrix Ra

t by rearranging the rows of Rt.
10: Train the classifier SVM t using [XRa

t Y ] as the training set.
11: end for
12: Test the sample I using different SVM t and compute average posterior probability to

assign class label.
13: return Class label of I and Prediction Error of RotaSVM.
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4 Empirical Results

The effectiveness of the RotaSVM is quantitatively measured by comparing it
with Bagging, AdaBoost, MultiBoost and Rotation Forest for 10 real-life data
sets. In this section, details of data sets, performance metrics and results are
discussed.

4.1 Data Sets

Table 1 gives the information about data sets, where their different characteris-
tics and variety of fields are described in first three columns by giving the name,
sample size and number of classes of each data set, respectively. The last column
summarize the information of total number of input attributes in the data sets.
All the data sets taken in this experiment, have only numerical attributes. Dur-
ing the pre-processing of data, instances that contain missing values are deleted
from the data sets.

Table 1. Summery of the data sets

Data Set Size Classes Total number of
input attributes

Balance 625 3 4
BCW 691 2 9
Dermatology 366 6 34
Ecoli 366 8 7
Glass 214 6 10
Ionosphere 351 2 34
Iris 150 3 4
Sonar 208 2 60
Vehicle 94 4 18
Wine 178 3 13

4.2 Experimental Setup

The experimental settings are kept same as used in [11–15] for other ensemble
based classifiers such as Bagging, AdaBoost, MultiBoost and Rotation Forest.
The classification tree for all these algorithms is created by the “Treefit” al-
gorithm in Matlab. The implementations of these methods are done in Matlab
software with version 7.1. For RotaSVM and Rotaion Forest, we have fixed the
ensemble size or the number of times SVM and Decision Tree runs arbitrarily
at T = 6. The value of S is not fixed for each data set, thus we have adjusted
it manually. Here, each method run 20 times and their prediction errors are
summarized by computing mean, standard deviation as well as the kappa index
[28]. Finally, statistical test has been conducted to show the superiority of the
results produced by RotaSVM. Note that RBF (Radial Basis Function) kernel
is used for SVM in our experiment. Here the parameters of SVM such as γ for
kernel function and the soft margin C (cost parameter), are set to be 0.5 and
2.0, respectively.
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Table 2. Mean and standard deviation of prediction errors (expressed in %) for 20
runs of each method on real-life data sets

Data Set RotaSVM Bagging AdaBoost MultiBoost Rotation Forest

Balance 8.32 ±0.91 15.03 ±0.93• 21.62 ±0.75• 18.03 ±0.83• 9.62 ±0.72•
BCW 3.47 ±0.29 3.45 ±0.34 3.15 ±0.35 3.13 ±0.30 2.89 ±0.33◦
Dermatology 2.33 ±0.78 3.6 ±0.78• 3.14 ±0.80• 3.02 ±0.79• 2.62 ±0.68
Ecoli 15.80 ±2.11 17.23 ±1.36• 15.7 ±1.16 14.99 ±1.16◦ 16.37 ±1.33•
Glass 1.25 ±0.71 24.53 ±0.92• 24.56 ±0.88• 24.37 ±0.83• 24.39 ±0.56•
Ionosphere 1.33 ±0.59 8.46 ±0.74• 6.3 ±0.77• 6.27 ±0.80• 5.53 ±0.72•
Iris 2.67 ±0.94 4.7 ±1.23• 5.33 ±1.08• 5.8 ±1.15• 4.37 ±1.00•
Sonar 12.98 ±0.68 23.08 ±1.82• 17.98 ±2.14• 18.63 ±2.23• 17.26 ±2.24•
Vehicle 11.71 ±1.51 25.79 ±0.97• 23.68 ±1.06• 23.65 ±0.89• 21.82 ±1.00•
Wine 1.49 ±0.38 4.55 ±1.77• 3.31 ±0.81• 3.23 ±1.01• 5.11 ±1.77•

“•” indicates that RotaSVM is significantly better and “◦” denotes that RotaSVM is significantly worse
at the significance level α = 0.05.

Table 3. One-tailed paired t-test results of RotaSVM in comparison with other meth-
ods for real-life data sets

Algorithm Bagging AdaBoost MultiBoost Rotation Forest

t-test Result

Win 9 8 8 8
RotaSVM Tie 1 2 1 1

Loss 0 0 1 1

  1   2   3   4   5   6

  1   112   0   0   0   0   0

  2   0   61   0   0   0   0

  3   0   0   72   0   0   0

  4   0   1   0   48   0   0

  5   0   0   0   0   52   0

  6   0   0   0   0   0   20

Actual
Classes

Predicted
Classes

22 0 0 0

7 13 1 0

0 1 25 0

0 0 1 24

1 2 3 4

1

2

3

4

Actual 
Classes

Predicted 
Classes

(a) (b)

  1   2   3   4   5   6   7   8

  1   136   6   1   0   0   0   0   0

  2   28   34   2   8   4   1   0   0

  3   3   1   47   1   0   0   0   0

  4   0   11   1   22   1   0   0   0

  5   0   1   2   0   17   0   0   0

  6   0   0   0   0   0   5   0   0

  7   0   0   0   0   0   0   2   0

  8   0   1   0   1   0   0   0   0

Actual
Classes

Predicted
Classes

  1   2   3   4   5   6

  1   70   0   0   0   0   0

  2   1   74   1   0   0   0

  3   0   0   17   0   0   0

  4   0   0   0   13   0   0

  5   0   0   0   1   8   0

  6   0   0   0   0   0   29

Actual
Classes

Predicted
Classes

(c) (d)

Fig. 1. Best Confusion matrix out of 20 runs for (a) Dermatology (b) Vehicle (c) Ecoli
and (d) Glass data sets



54 S.S. Bhowmick et al.

Table 4. Average values of Kappa Index for different data sets

Data Set RotaSVM Bagging AdaBoost MultiBoost Rotation Forest

Balance 0.87 0.65 0.59 0.62 0.71
BCW 0.91 0.91 0.92 0.92 0.93
Dermatology 0.93 0.90 0.91 0.92 0.93
Ecoli 0.64 0.62 0.64 0.65 0.63
Glass 0.95 0.55 0.55 0.56 0.56
Ionosphere 0.94 0.86 0.87 0.87 0.88
Iris 0.92 0.88 0.87 0.86 0.87
Sonar 0.78 0.55 0.61 0.60 0.61
Vehicle 0.80 0.53 0.55 0.55 0.57
Wine 0.93 0.89 0.90 0.91 0.89

4.3 Results

In Table 2, the mean and standard deviation of the prediction errors (expressed
in %) for each method on 10 date sets are reported, where the values of stan-
dard deviation are followed after “±”. RotaSVM gives consistent results for all
data sets. Moreover, the minimum error is achieved by RotaSVM for “Glass”
data set. In order to see whether RotaSVM is significantly better or worse than
other methods from the statistical viewpoint, a one-tailed paired t-test [24] is
performed at α = 0.05 significance level. The results for which a significant dif-
ference of RotaSVM with other methods are found and marked with a bullet or
an open circle next to the values of standard deviation in Table 2. A bullet indi-
cates that RotaSVM is significantly better than the other methods and an open
circle gives that RotaSVM performs significantly worse than the corresponding
method. As it can be seen from Table 3, the “Win-Tie-Loss” information is given,
where the “Win” value is the number of data sets on which RotaSVM performs
significantly better than the other methods, the “Tie” is the number of data
sets on which the differences between the performance of RotaSVM and that
of the compared methods are not significantly better, and the “Loss” denotes
the number of data sets on which RotaSVM behaves significantly worse than
the corresponding algorithm. While compared RotaSVM with Rotation forest,
the statistically significant difference is favourable in 8 cases, unfavourable in
1 cases and not significant in 1 cases. Similarly, RotaSVM has been found to
outperform Bagging, AdaBoost and MultiBoost in most of the cases.

Here, the confusion matrix is also computed to measure the performance of
RotaSVM. The confusion matrix [29] is the result of the classification phase
where each classified instance is mutual exclusively located in the matrix. For
every cell in the matrix, the column represents the original or actual classes
and the row represents the classes as the classification method predicted. The
diagonal of the matrix represents the ideal case in which the instances are cor-
rectly classified. All the off diagonal cells represent miss classified instances. An
important advantage of using the confusion matrix is the ability to consider the
performance of the classification method. Fig 1 shows the four best confusion
matrices produced by the RotaSVM for Dermatology, Vehicle, Ecoli and Glass
data sets, respectively. The accuracy assessment of different methods have also
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been justified by measuring kappa index, and reported in Table 4. The higher
value of kappa (close to 1) indicates better accuracy. For most of the cases, it is
found from the Table 4 that the kappa values are also better for RotaSVM.

5 Conclusions

In this paper, RotaSVM ensemble classifier is developed that uses rotational fea-
ture selection approach with the integration of Support Vector Machine classifier.
To generate the number of predefined outputs of Support Vector Machines, the
training data is prepared by splitting the feature set randomly into S number
of subsets. Subsequently, principal component analysis is used for each subset
to generate new feature sets, which are reassembled to preserve the variabil-
ity information in the data. Such features are later used to train Support Vector
Machines. Finally, the classification is done by computing average posterior prob-
ability. The results, demonstrate the superiority of the RotaSVM quantitatively
by comparing it with Bagging, AdaBoost and MultiBoost for 10 real-life data
sets taken from UCI Machine Learning Repository. Statistical test like one-tailed
paired t-test has been performed to show the superiority of the result produced
by RotaSVM.

There are still some interesting issues in RotaSVM that are needed to investi-
gate in future. In this regards, trade-off between the parameters like T and S can
be archived automatically using multiobjective optimization techniques [30, 31].
Moreover, RotaSVM can be applied for pixel classification of satellite imagery
[20, 32, 33], microarray classification [34, 35], protein translational modification
site prediction [36, 37], human leukocyte antigen class II binding peptide pre-
diction [38] ect. The authors are currently working in this direction.
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