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Abstract. One of the basic endeavors in Pattern Recognition and par-
ticularly in Data Mining is the process of determining which unlabeled
objects in a set do share interesting properties. This implies a singu-
lar process of classification usually denoted as "clustering", where the
objects are grouped into k subsets (clusters) in accordance with an ap-
propriate measure of likelihood. Clustering can be considered the most
important unsupervised learning problem. The more traditional cluster-
ing methods are based on the minimization of a similarity criteria based
on a metric or distance. This fact imposes important constraints on the
geometry of the clusters found. Since each element in a cluster lies within
a radial distance relative to a given center, the shape of the covering or
hull of a cluster is hyper-spherical (convex) which sometimes does not
encompass adequately the elements that belong to it. For this reason
we propose to solve the clustering problem through the optimization
of Shannon’s Entropy. The optimization of this criterion represents a
hard combinatorial problem which disallows the use of traditional opti-
mization techniques, and thus, the use of a very efficient optimization
technique is necessary. We consider that Genetic Algorithms are a good
alternative. We show that our method allows to obtain successfull results
for problems where the clusters have complex spatial arrangements. Such
method obtains clusters with non-convex hulls that adequately encom-
pass its elements. We statistically show that our method displays the
best performance that can be achieved under the assumption of normal
distribution of the elements of the clusters. We also show that this is a
good alternative when this assumption is not met.

Keywords: Clustering, Genetic Algorithms, Shannon’s Entropy,
Bayesian Classifier.

1 Introduction

Pattern recognition is a scientific discipline whose purpose is to describe and
classify objects. The descriptive process involves a symbolic representation of
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these objects called patterns. In this sense, the most common representation is
through a numerical vector x:

x = [x1, x2, . . . xn] ∈ �n (1)

where the n components represent the value of the properties or attributes of an
object. Given a pattern set X , there are two ways to attempt the classification:
a) Supervised Approach and b) Unsupervised Approach.

In the supervised approach, ∀x ∈ X there is a class label y ∈ {1, 2, 3, ..., k}.
Given a set of class labels Y corresponding to some observed patterns x (“train-
ing” patterns), we may postulate a hypothesis about the structure of X that is
usually called the model. The model is a mathematical generalization that allows
us to divide the space of X into k decision regions called classes. Given a model
M , the class label y of an unobserved (unclassified) pattern x′ is given by:

y = M(x′) (2)

On the other hand, the unsupervised approach consists in finding a hypothesis
about the structure of X based only on the similarity relationships among its
elements. The unsupervised approach does not use prior class information. The
similarity relationships allow to divide the space of X into k subsets called
clusters. A cluster is a collection of elements of X which are “similar” between
them and “dissimilar” to the elements belonging to other clusters. Usually the
similarity is defined by a metric or distance function d : X ×X → �.

In this work we discuss a clustering method which does not depend explic-
itly on minimizing a distance metric and thus, the shape of the clusters is not
constrained by hyper-spherical hulls. Clustering is a search process on the space
of X that allows us to find the k clusters that satisfy an optimization criteria.
Mathematically, any criterion involves an objective function f which must be
optimized. Depending on the type of f , there are several methods to find it.
Since our clustering method involves an objective function f where its feasible
space is, in general, non-convex and very large, a good optimization algorithm
is compulsory. With this in mind, we made a comprehensive study [13] which
dealt with the relative performance of a set of structurally different GAs and a
non-evolutionary algorithm over a wide set of problems. These results allowed
us to select the statistically “best” algorithm: the EGA [20]. By using EGA we
may be sure that our method will displays high effectiveness for complex
arrangements of X .

The paper is organized as follows: In Section 2, we briefly show the results that
led us to select the EGA. Then we present the different sets of patterns X that
will serve as a the core for our experiments. We use a Bayesian Classifier[2,4,8]
as a method of reference because there is theoretical proof that its is optimal
given data stemming from normal distributions. In this section we discuss the
issues which support our choice. In Section 3 we discuss the main characteristics
of our method and the experiments which show that it is the best alternative.
In Section 4 we present our general conclusions.
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2 Preliminaries

As pointed out above, a “good” optimization algorithm must be selected. We
rest on the conclusions of our previous analysis regarding the performance of
a set of GAs[13] . Having selected the best GA, we prove the effectiveness of
our clustering method by classifying different pattern sets. To this effect, we
generated pattern sets where, for each pattern, the class of the objects is known.
Hence, the class found by our clustering method may be compared to the true
ones. To make the problems non-trivial we selected a non-linearly separable
problems. We discuss the process followed to generate these sets. Finally, we
resort to a Bayesian Classifier [4] in order to show that the results obtained by
our method are similar to those obtained with it.

2.1 Choosing the Best Optimization Algorithm

This section is a very brief summary of the most important results found in [13].
A set A of 4 structurally different GAs and a non-evolutionary algorithm (NEA)
was selected in order to solve, in principle, an unlimited supply of systematically
generated functions in � × �(called unbiased functions). An extended set of
such functions in �×�2 and �×�3 was generated and solved. Similar behavior
of all the GAs inA (within statistical limits) was found. This fact allowed us
to hypothesize that the expected behavior of A for functions in � × �n will be
similar. As supplement, we tackled a suite of problems (approximately 50) which
includes hard unconstrained problems (which traditionally have been used for
benchmarking purposes) [19,3] and constrained problems [11]. Lastly, atypical
GA-hard functions were analyzed [18,16].

Set of Algorithms. The set A included the following GAs: a)An elitist canoni-
cal GA (in what follows referred to as TGA [eliTist GA]) [21], b) A Cross genera-
tional elitist selection, Heterogeneous recombination, and Cataclysmic mutation
algorithm (CHC algorithm) [5], c) An Eclectic Genetic Algorithm (EGA) [20],
d) A Statistical GA (SGA) [23,12] and e) A non-evolutionary algorithm called
RMH [17].

Table 1 shows the relative global performance of all algorithms for the func-
tions mentioned. The best algorithm in the table is EGA.

Table 1. Global Performance

Ai Unbiased Suite Atypical Global Performance Relative
EGA 9.64 8.00 4.48 7.37 100.00%
RMH 6.24 0.012 2.04 2.76 37.49%
TGA 1.35 1.16 4.77 2.43 32.91%
SGA 1.33 0.036 3.33 1.57 21.23%
CHC 2.12 0.08 2.10 1.43 19.44%
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2.2 The Pattern Set

Given a set of patterns to be classified, the goal of any classification technique
is to determine the decision boundary between classes. When these classes are
unequivocally separated from each other the problem is separable; otherwise,
the problem is non-separable. If the problem is linarly separable, the decision
consists of a hyperplane. In Figure 1 we illustrate ths situation.

(a) Linearly Separable patterns (b) Non-linearly separable
patterns

Fig. 1. Decision boundary

When there is overlap between classes some classification techniques (e.g.
Linear classifiers, Single-Layer Perceptrons [8]) may display unwanted behavior
because decision boundaries may be highly irregular . To avoid this problem
many techniques has been tried (e.g. Support Vector Machine [9], Multilayer
Perceptrons [22]). However, there is no guarantee that any of this methods will
perform adequately. Nevertheless, there is a case which allows us to test the
appropriateness of our method. Since it has been proven that if the classes are
normally distributed, a Bayesian Classifier yields the best possible result (in
Section 2.3 we discuss this fact) and the error ratio will be minimized. Thus,
the Bayesian Classifier becomes a good method with which to compare any
alternative clustering algorithm.

Hence, we generated Gaussian pattern sets considering singular arrangements
in which determining the decision boundaries imply non-zero error ratios. With-
out loss generality we focus on patterns defined in �2. We wish to show that the
results obtained with our method are close to those obtained with a Bayesian
Classifier; in Section 3, the reader will find the generalization of our method
for �n.
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Gaussian Patterns in �2 . Let Xj be a pattern set defined in �2 and Ci ⊂ Xj

a pattern class. A pattern x = [x1, x2] ∈ Ci is drawn from a Gaussian distribution
if its joint probability density function (pdf) is given by:

f(x1, x2) =
1

2πσx1σx2

√
1− ρ2

e

(
− 1

2(1−ρ2)

[(
x1−μx1

σx1

)2
−2ρ

(x1−μx1 )(x2−μx2 )

σx1σx2
+

(
x2−μx2

σx2

)2])

(3)

where −1 < ρ < 1, −∞ < μx1 < ∞, −∞ < μx2 < ∞, σx1 > 0, σx2 > 0. The
value ρ is called the correlation coefficient.

To generate a Gaussian pattern x = [x1, x2], we use the acceptance-rejection
method [1,10] which allows us to generate random observations (x1, x2) that
are drawn from f(x1, x2). In this method, a uniformly distributed random point
(x1, x2, y) is generated and accepted iff y < f(x1, x2). In Figure 2.1 we show
different pattern sets obtained by applying this method with distinct statistical
arguments in (3)

Fig. 2. Different Gaussian pattern sets with μx1 = μx2 = 0.5,σx1 = σx2 = 0.09. Each
set was generated with different correlation coefficient: a. ρ = 0.0, b. ρ = −0.8, c.
ρ = 0.8.

The degrees of freedom in (3) allow us to generate Gaussian pattern sets
with varied spatial arrangements. In principle, we analyze pattern sets with the
following configurations:

– Sets with disjoint pattern classes.
– Sets with pattern classes that share some elements (partial overlap between

classes)
– Sets with pattern classes whose members may share most elements (total

overlap).

We proposed these configurations in order to increase gradually the complexity
of the clustering problem and analyze systematically the performance of our
method. In the following subsections, we make a detailed discussion regarding
the generation of sets with these configurations.
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Gaussian Pattern Set with Disjoint Classes

Definition: Let X1 be a pattern set with classes Ci⊂ X1∀i = 1, 2...k which
are drawn from a Gaussian distribution. X1 is a set with disjoint classes if
∀Ci, Cj ⊂ X1, Ci ∩Cj = φ.

Based on the above definition, we generate two different sets where x ∈ [0, 1]2

(in every set there are three classes and |X | = 1000). In Figure 3 we illustrate
the spatial arrangement of these sets.

(a) Pattern set with ρ = 0 (b) Pattern set with ρ = 0.4,ρ =
−0.7, ρ = 0.7

Fig. 3. Gaussian pattern sets with disjoint classes

Gaussian Pattern Set with Partial Overlap

Definition: Let X2 be a pattern set with classes Ci⊂ X2∀i = 1, 2...k which
are drawn from a Gaussian distribution. X2 is a set with partial overlap if
∃Ci, Cj ⊂ X2 such that Ci ∩Cj 
= φ and Ci � Cj .

Based on the above definition, we generate two different sets where x ∈ [0, 1]2

(in every set there are three classes and |X | = 1000). In Figure 4 we illustrate
the spatial arrangement of these sets.

Gaussian Pattern Set with Total Overlap

Definition: Let X3 be a pattern set with classes Ci⊂ X3∀i = 1, 2...k which
are drawn from a Gaussian distribution. X3 is a set with total overlap if
∃Ci, Cj ⊂ X3 such that Ci ⊆ Cj .

Based on the above definition, we generate two different sets where x ∈ [0, 1]2

(in every set there are three classes and |X | = 1000). In Figure 5 we illustrate
the spatial arrangement of these sets.
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(a) Pattern set with ρ = 0 (b) Pattern set ρ = 0.8, ρ = −0.8,
ρ = −0.8

Fig. 4. Pattern sets with overlap classes

(a) Pattern set withρ = 0 (b) Pattern set with ρ = −0.9

Fig. 5. Pattern sets with total overlap classes

2.3 Bayesian Classifier

If the objects in the classes to be clustered are drawn from normally distributed
data, the best alternative to determine the decision boundary is using a Bayesian
Classifier. The reader can find a extended discussion in [4,8].

Given a sample of labeled patterns x ∈ X , we can hypothesize a partitioning
of the space of X into k classes Ci. The classification problem can be reduced
to find the probability that given a pattern x, it belongs to Ci. From Bayes’s
theorem this probability is given by:

p(Ci|x) = p(x|Ci)p(Ci)

p(x)
(4)
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where p(Ci) is usually called the prior probability. The term p(x|Ci) represents
the likelihood that observing the class Ci we can find the pattern x. The prob-
ability to find a pattern x in X is denoted as p(x) which is given by:

p(x) =

k∑

i=0

p(x|Ci)p(Ci) (5)

The prior probability p(Ci) is determined by the training pattern set (through
the class labels of every pattern). From 4 we can note that the product
p(x|Ci)p(Ci) is the most important term to determine p(Ci|x) (the value
of p(x) is merely a scale factor). Therefore, given a pattern x to be clas-
sified into two classes Ci or Cj , our decision must focus on determining
max [p(x|Ci)p(Ci), p(x|Cj)p(Cj)]. In this sense, if we have a pattern x for which
p(x|Ci)p(Ci) ≥ p(x|Cj)p(Cj) we will decide that it belongs to Ci, otherwise, we
will decide that it belongs to Cj . This rule is called Bayes’s Rule.

Under gaussian assumption, the Bayesian classifier outperforms other clas-
sification techniques, such as those based on linear predictor functions [8]. We
discuss our method assuming normality so as to measure its performance rela-
tive to that of a Bayesian Classifier. Our claim is that, if the method performs
satisfactorily when faced with Gaussian patterns, it will also perform reasonably
well when faced with other possible distributions.

3 Clustering Based on Shannon’s Entropy (CBE)

We can visualize any clustering method as a search for k regions (in the space
of the pattern set X), where the dispersion between the elements that belong to
them is minimized. This dispersion can be optimized via a distance metric [15,7],
a quality criterion or a membership function [14]. In this section we discuss an al-
ternative based on Shannon’s Entropy [24] which appeals to an evaulation of the
information content of a random variable Y with possible values {y1, y2, ...yn}.
From a statistical viewpoint, the information of the event (Y = yi) is propor-
tional to its likelihood. Usually this information is denoted by I(yi) which can
be expressed as:

I(yi) = log

(
1

p(yi)

)
= −log (p(yi)) (6)

From information theory [24,6], the information content of Y is the expected
value of I. This value is called Shannon’s Entropy which is given by:

H(Y ) = −
n∑

i=1

p(yi)log (p(yi)) (7)

When p(yi) is uniformly distributed, the entropy value of Y is maximal. It means
that all events in the probability space of Y have the same ocurrence probability
and thus Y has the highest level of unpredictability. In other words, Y has the
maximal information content.
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In the context of the clustering problem, given an unlabeled pattern set X ,
we hypothesize that a cluster is a region of the space of X with a large infor-
mation content. In this sense, the clustering problem is reduced to a search for
k regions where the entropy is maximized. Tacitly, this implies finding k opti-
mal probability distributions (those that maximize the information content for
each regions). It is a hard combinatorial optimization problem that requires an
efficient optimization method. In what follows we discuss the way to solve such
problem through EGA. In principle, we show some evidences that allow us to
think that our method based on entropy is succesful. We statistically show this
method is the best.

3.1 Shannon’s Entropy in Clustering Problem

Given an unlabeled pattern set X , we want to find a division of the space of
the X into k regions denoted by Ci, where Shannon’s Entropy is maximized.
We consider that the entropy of Ci depends on the probability distribution of
all possible patterns x that belong to it. In this sense, the entropy of Ci can be
expressed as:

H(Ci) =
∑

x∈Ci

p(x|Ci)log(p(x|Ci) (8)

Since we want to find k regions Ci that maximize such entropy, the problem is
reduced to an optimization problem of the form:

Maximize:
k∑

i=1

∑
x∈Ci

p(x|Ci)log(p(x|Ci))

subject to:
p(x|Ci) > 0

(9)

To find the Ci’s that minimize (9) we resort to the EGA. We encoded an indi-
vidual as a random sequence of symbols L from the alphabet

∑
= {1, 2, 3...k}.

Every element in L represents the class label of a pattern x in X such that the
length of L is |X |. Tacitly, this encoding divides the space of X into k regions
Ci as is illustrated in Figure 5.1.

Given this partititon, we can determine some descriptive parameters θi of the
probability distribution of Ci (e.g. the mean or the standard deviation). Having
determined θi and under the assumption that the probability distribution of Ci

is known, the entropy of Ci can be determined. Complementarily, in Subection
3.3.2 we discuss a generalization making this assumption unnecessary.

3.2 Effectiveness of the Entropic Clustering for Gaussian Patterns
in �2

Based on the above, given an encoding solution L of a clustering problem (where
X is a pattern set in �2) we can determine k regions Ci with parameter θi =
[μ(Ci), σ(Ci)]. Assuming that Ci is drawn from a Gaussian distribution, the
value of p(x|Ci) with x = [x1, x2] is given by:
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(a)

(b)

Fig. 6. Possible divisions of the space of a pattern set X in �2 based on the encoding
of an individual

ˆ

x1

ˆ

x2

f(x1, x2) (10)

where f(x1, x2) is the bivariate Gaussian density function (see Equation 3).
Given such probability the entropy for each Ci can be determined, the fitness

of every L is given by
k∑

i=1

H(Ci). The optimal solution will be the individual

with the best fitness value after G iterations. To measure the effectiveness of
our method, we ran 100 times the EGA (with 150 individuals and G = 300),
selecting randomly different Gaussian pattern sets (disjoint, partial overlap and
total overlap) in �2. In Table 2 we show the performance of CBE for these
problems. The “performance value” is defined as the success ratio based on the
class labels of the patterns known a priori. We also illustrate the performance
displayed by the Bayesian Classifier for the same set of problems.

Table 2. Performance of CBE and BC for different Gaussian pattern sets in �2

Algorithm Disjoint Partial Overlap Total Overlap Global Relative
CBE 99.0 70.8 57.6 75.8 99.7%
BC 99.9 71.7 56.5 76.0 100%
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We see that there is not an important difference between results of our method
and the results of a Bayesian Classifier. This result allows us to ascertain that
our method is as good as the BC. Recall that the BC displays the best possible
performance under Gaussian assumption. Furthermore, it is very important to
stress that our method is unsupervised and, hence, the pattern set X is unla-
beled. CBE allows us to find the optimal value of θi for all Ci that maximize the
objective function (see Equation 9). These results are promising but we want to
show that our method performs successfully, in general, as will be shown in the
sequel.

3.3 Comprehensive Effectiveness Analysis

In order to evaluate the general effectivennes of CBE, we generated systemat-
ically a set of 500 clustering problems in �n assuming normality. The number
of clusters for each problem and the dimensionality were randomly selected (the
number of clusters k ∼ U(2, 20) and the dimensionality n ∼ U(2, 10)). Thus, we
obtained an unbiased set of problems to solve through CBE and BC. Similarly,
we also propose a method to generate systematically a set of clustering problems
in �n without any assumption regarding the pdf of the patterns to be classified.

Effectiveness for Gaussian Patterns in �n. We wrote a computer program
that generates Gaussian patterns x = [x1, x2,...xn,] through the acceptance-
rejection method [1,10] given a value of n. Here, a uniformly distributed ran-
dom point (x1, x2, ...xn, y) is generated and accepted iff y < f(x1, x2, ..., xn)
where f(x1, x2, ..., xn) is the Gaussian density function with parameters μ and
σ. Our program determines randomly the values of μ = [μx1 , μx2 ..., μxn ] and
σ = [σx1 , σx2 ..., σxn ] such that μxi ∈ [0, 1] and σxi ∈ [0, 1]. In this way a cluster
is a set of Gaussian patterns with the same values of μ and σ. and a clustering
problem is a set of such clusters. The cardinality of a cluster is denoted by |Ci|
whose value was established as 200. It is important to note that the class label of
every generated pattern was recorded in order to determine the performance or
effectiveness of a classification process. We obtained a set of 500 different Gaus-
sian clustering problems. To evaluate the performance of any method (CBE or
BC) for such problems, we wrote a computer program that executes the following
steps:

1. A set of N = 36 clustering problems are randomly selected.
2. A effectiveness value yi is recorded for each problem.
3. For every N problems ȳi is calculated.
4. Steps 1-3 are repeated until the values ȳi are approximately normally dis-

tributed with parameter μ′ and σ′ (from the central limit theorem).
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Dividing the span of means ȳi in deciles, normality was considered to have been
reached when:

1. χ2 ≤ 4 and
2. The ratio of observations in the i-th decil Oi ≥ 0.5 ∀i.

From Chebyshev’s Inequality [25] the probability that the performance of an
method denoted by τ lies in the interval [μ′ − λσ′, μ′ + λσ′] is given by:

p(μ′ − λσ′ ≤ τ ≤ μ′ + λσ′) ≥ 1− 1

λ2
(11)

where λ denotes the number of standard deviations. By setting λ = 3.1623 we
ensure that the values of τ will lie in this interval with probability p ≈ 0.9. Hence,
the largest value of performance found (with p ≈ 0.95 if we assume a symmetric
distribution) by any method (CBE and BC) is μ+λσ. The results are shown in
Table 3. These results allow us to prove statistically (with significance level of
0.05) that in �nour method is as good as the BC under normality assumption.

Table 3. Comparative average success ratio for Gaussian Problems

Algorithm μ σ μ+ λσ Relative
CBE 75.53 3.22 85.71 99%
BC 76.01 3.35 86.60 100%

Effectiveness for Non-Gaussian Patterns �n. To generate a Non-Gaussian
patterns in �nwe resort to polynomial functions of the form:

f(x1, x2, ..., xn) = am1x
m
1 + ...+ amnx

m
n + ...+ a11x1 + a1nxn (12)

Given that such functions have larger degrees of freedom, we can generate many
points uniformly distributed in �n. As reported in the previous section, we wrote
a computer program that allows us to obtain a set of 500 different problems.
These problems were generated for random values of n and k with |Ci| = 200.
As before, a set of tests with N = 36 was performed. As before, the number
of samples of size N dependend on the distribution reaching normality. The
results of this set of experiments is shown in Table 4. These results show that
our method outperforms BC with a significant level of 0.05.

Table 4. Comparative average success ratio for non-Gaussian Problems

Algorithm μ σ μ+ kσ Relative
CBE 74.23 2.12 80.93 100%
BC 61.76 2.65 70.14 86%
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4 Conclusions

The previous analysis, based on the solution of an exhaustive sample set, allows
us to reach the following conclusions:

Entropic clustering (CBE) is reachable via an efficient optimization algorithm.
In this case, based on previous work by the authors, one is able to take advantage
of the proven efficiency of EGA. The particular optimization function (defined
in (9)) yields the best average success ratio. We found that CBE is able to
find highly irregular clusters in pattern sets with complex arrangements. When
compared to BC’s performance over Gaussian distributed data sets, CBE and
BC have, practically, indistinguishable success ratios. Thus proving that CBE
is comparable to the best theoretical option. Here we, again, stress that while
BC corresponds to supervised learning whereas CBE does not. The advantage
of this characteristic is evident. When compared to BC’s performance over non-
Gaussian sets CBE, as expected, displayed a much better success ratio. Based
on comprehensive analysis (subsection 3.3), the conclusions above have been
reached for statistical p values of O(0.5). In other words, the probability of such
results to persist on data sets outside our study is better than 0.95. Thus ensuring
the reliability of CBE. Clearly above older alternatives.
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