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Abstract. In many applications one is faced with the problem that mul-
tiple objectives have to be optimized at the same time. Since typically
the solution set of such multi-objective optimization problems forms a
manifold which cannot be computed analytically, one is in many cases
interested in a suitable finite size approximation of this set. One widely
used approach is to find a representative set that maximizes the domi-
nated hypervolume that is defined by the images in objective space of
these solutions and a given reference point.

In this paper, we propose a new point-wise iterative search proce-
dure, Hypervolume Directed Search (HVDS), that aims to increase the
hypervolume of a given point in an archive for bi-objective unconstrained
optimization problems. We present the HVDS both as a standalone algo-
rithm and as a local searcher within a specialized evolutionary algorithm.
Numerical results confirm the strength of the novel approach.

Keywords: multi-objective optimization, evolutionary computation,
dominated hypervolume, local search, directed search.

1 Introduction

In many real-world applications the problem arises that several objectives have
to be optimized concurrently leading to a multi-objective optimization problem
(MOP). The solution set of a MOP, the so-called Pareto set, typically forms a
(k − 1)-dimensional manifold, where k is the number of objectives involved in
the problem [7]. For the treatment of MOPs specialized evolutionary algorithms,
multi-objective evolutionary algorithms (EMOAs), have caught the interest of
many researchers (see, e.g., [4] and references therein). Reasons for this include
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that EMOAs are applicable to a wide range of problems, are of global nature
and hence in principle not dependent on the initial candidate set, and allow
to compute a finite size representation of the Pareto set in a single run of the
algorithm. On the other hand, it is known that EMOAs tend to converge slowly
resulting in a relatively high number of function evaluations needed to obtain a
suitable representation of the set of interest. As a possible remedy, researchers
have proposed memetic strategies in the recent past (e.g., [8]). Algorithms of
that type hybridize local search strategies mainly coming from mathematical
programming with EMOAs in order to obtain fast and reliable global search
procedures.

In this paper, we derive an algorithm that fits into the last category. To be
more precise, we present a local search mechanism, HVDS, that aims to im-
prove the dominated hypervolume [21] of a point or set for a given MOP. The
new search procedure is based on the Directed Search Method [15,9] that is
able to steer the search into any direction given in objective space O and which
is hence well-suited for the problem at hand since the hypervolume is defined
in O. We present the HVDS both as standalone algorithm and as local search
engine within SMS-EMOA [2] which is a state-of-the-art EMOA for approxima-
tions w.r.t. maximum dominated hypervolume. Numerical experiments show the
benefit of the new approach.

The remainder of this paper is organized as follows: In Section 2, we state the
background required for the understanding of the sequel. In Section 3, we present
the algorithm HVDS which aims to improve the hypervolume as standalone
algorithm and propose a possible integration of it into an EMOA in Section
4. In Section 5, we present some numerical results, and finally, we conclude in
Section 6.

2 Background

A general multi-objective optimization problem (MOP) can be stated as follows:

min
x∈Q
{F (x)}, (1)

where F is defined as the vector of the objective functions F : Q→ IRk, F (x) =
(f1(x), . . . , fk(x)), and where each objective is given by fi : Q → IR. In this
study we will focus on unconstrained bi-objective problems, i.e., problems of
form (1) with k = 2 and Q = IRn. The optimality of a MOP is defined by the
concept of dominance.

Definition 1

(a) Let v, w ∈ IRk. Then the vector v is less than w (v <p w), if vi < wi for all
i ∈ {1, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Q is dominated by a vector x ∈ Q (x ≺ y) with respect to (1)
if F (x) ≤p F (y) and F (x) �= F (y), else y is called non-dominated by x.
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(c) A point x ∈ Q is called (Pareto) optimal or a Pareto point if there is no
y ∈ Q which dominates x.

(d) The set of all Pareto optimal solutions is called the Pareto set and its image
the Pareto front.

Recently, the Directed Search (DS) Method has been proposed that allows to
steer the search from a given point into a desired direction d ∈ IRk in objective
space [15]. To be more precise, given a point x ∈ IRn, a search direction ν ∈ IRn

is sought such that

lim
t↘0

fi(x0 + tν)− fi(x0)

t
= di, i = 1, . . . , k. (2)

Such a direction vector ν solves the following system of linear equations:

J(x0)ν = d, (3)

where J(x) denotes the Jacobian of F at x. Since typically k � n, we can
assume that the system in Equation (3) is (highly) underdetermined. Among
the solutions of Equation (3), the one with the least 2-norm can be viewed as
the greedy direction for the given context. This solution is given by

ν+ := J(x)+d, (4)

where J(x)+ denotes the pseudo inverse of J(x). Since there is no restriction on
d the search can be steered in any direction, e.g., toward and along the Pareto
set. See [15,14] for a Pareto descent method and a continuation method based on
DS. In [9] a modification of the DS is presented that does not require gradient
information.

A commonly accepted measure [20] for assessing the quality of an approxima-
tion is the so-called dominated hypervolume of a population.

Definition 2. Let v(1), v(2), . . . v(μ) ∈ IRk be a nondominated set and R ∈ IRk

such that v(i) ≺ R for all i = 1, . . . , μ. The value

H(v(1), . . . , v(μ);R) = Λd

(
μ⋃

i=1

[v(i), R]

)
(5)

is termed the dominated hypervolume with respect to reference point R, where
Λd(·) denotes the Lebesgue measure in IRk.

This measure has a number of appealing properties but determining its value is
getting the more tedious the larger the number of objectives is considered [1]. In
case of two objectives (k = 2) and lexicographically ordered nondominated set
v(1), v(2), . . . v(μ) the calculation of (5) reduces to

H(v(1), . . . , v(μ);R) =
[
r1 − v

(1)
1

]
·
[
r2 − v

(1)
2

]
+

μ∑
i=2

[
r1 − v

(i)
1

]
·
[
v
(i−1)
2 − v

(i)
2

]
.
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3 The Algorithm

Here we describe the adaption of the DS to the context of hypervolume approx-
imations. For this, we will first consider the simplest case that the archive only
consists of one element that has to be improved. In a next step we consider
archives of general size. The reason for this is that we will reduce the general
case to the one element problem.

3.1 One Element Archives

We assume that we are given the archive A = {x}, i.e., we are given one point
x ∈ Q that is assigned for local search. Further, we are given a reference point
R = (r1, r2)

T ∈ IR2 for the hypervolume calculations.
In the following, we divide the objective space into three different regions,

and will propose a different movement in each of these regions (compare to
Figure 1):

– Region I. The objective vector F (x) is ‘far away’ from the Pareto front
(denoted by ‘F (x) ∈ I’). In that case, a greedy search toward the rough
location of the Pareto front is desired.

– Region II. F (x) is ‘in between’, i.e., not far away nor near the Pareto front.
In that case, a descent direction has to be selected such that a movement in
that direction maximizes the hypervolume.

– Region III. F (x) is ‘near’ to the Pareto front. In that case, a movement
toward the Pareto front will lead to non-significant improvements of the domi-
nated hypervolume. Instead, a search along the Pareto front will be performed.

To assign the objective vector F (x) into one of these regions, we can utilize some
properties of the descent cone of a MOP: If x is ‘far away from the Pareto set,
then the objectives gradients nearly point into the same direction, and if x is
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Fig. 1. Division of the objective space into distance regions
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‘close’ then they point in opposite directions [3]. Hence, we can decide if F (x) is
in Region I, II or III by considering the angle between the gradients. Let

gi := ∇fi(x), i = 1, 2, (6)

then the angle between g1 and g2 is defined by

cosα =
gT1 g2

||g1|| ||g2|| ∈ [−1, 1]. (7)

If cos α = 1, both gradients point into the same direction (↓↓) which happens,
roughly speaking, if x is infinitely far from the Pareto set. If cos α = 0, the
gradients are orthogonal to each other (←↓). Finally, when cos α = −1, the
grandients point into opposite directions (↓↑) which happens if x is on the Pareto
set (i.e., zero distance). In order to divide the search space into three distance
regions that can be numerically detected, we choose two values a, b ∈ (−1, 1)
with b < a and define:

F (x) ∈ I : ⇔ cos α ≥ a,
F (x) ∈ II : ⇔ cos α ∈ (b, a),
F (x) ∈ III : ⇔ cos α ≤ b,

For the computations made in Section 5 we tested our approach using different
values for a and b due to the problems behavior, finally the values taken to
perform the experiments were a = 0.8 and b = −0.8, since they were the values
that achieved better results. In a general case these values depend on how the
cone (built by the gradient) behaves when is near the Pareto front. Now we
describe the local search within each region.

Local Search in Region I. As shown in [14], large improvements in objective
space can only be obtained when choosing

dI =

(−1
−|λ|

)
, (8)

where ‖∇f2(x)‖2 = |λ|‖∇f1(x)‖2, which defines a movement toward the rough
location of the Pareto front. Hence, dI can be chosen together with the DS
approach. Alternatively, one can use Pareto descent methods since they define
similar movements in Region I. For our computations we have used the method
proposed in [10], namely the descent direction

ν =
1

2

(
g1
||g1|| +

g2
||g2||

)
(9)

coupled with an Armijo-like step size control as used in [10].
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Local Search in Region II. Given x such that F (x) ∈ II, the task is to find
a search direction dII <p 0 such that a movement in that direction maximizes
the hypervolume. Using DS, we can write the image of the new iteration xnew

as
ynew = F (x) + tdII , (10)

where t ∈ IRR is a given (fixed) step size and dII is to be chosen such that it
solves the two-dimensional problem

max
d∈IR2

ν(d) = (r1 − f1(x)− td1)× (r2 − f2(x)− td2), (11)

s.t.||d||22 = 1

If one replaces the 2-norm by the infinity norm in the constraint of Equation
(11) (which drops the assumption that the movement is done with an equal step
in objective space) a straightforward computation shows that

dII,∞ = F (x) −R. (12)

solves the modified problem. We have used this direction for our implementations
since it is easier to calculate and yields no difference in the performance of the
algorithm.
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Fig. 2. Local search in Region II

Local Search in Region III. Finally, in the case F (x) is in Region III, a
movement along the Pareto front is desired to increase the dominated hyper-
volume. Here, we propose to linearize the Pareto front at y = F (x) and to
compute the optimal step size along direction dIII that describes the lineariza-
tion (compare to Figure 3). Direction dIII can be computed as follows: Let x be
a Karush-Kuhn Tucker (KKT) point. It is known that the corresponding weight

vector α s.t.
∑2

i=1 αi∇fi(x) = 0 is orthogonal to the linearized Pareto front at
F (x), and α solves the following quadratic optimization problem (see [12]):

min
α∈IR2

{
‖α1∇f1(x) + α2∇f2(x)‖22 : αi ≥ 0, i = 1, 2, α1 + α2 = 1

}
(13)



The Directed Search Method for Hypervolume Approximations 195

Hence, one can compute a solution α̃ of (13) and set

dIII =

(−α̃1

α̃2

)
(14)

The maximization of the hypervolume leads thus to the one-dimensional problem

max
t∈IR

ν̃(t) = (r1 − f1(x) − td1)× (r2 − f2(x) − td2), (15)

where dIII = (d1, d2)
T , which has an analytic solution in case the weight vector

α has no entries equal to zero.
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Fig. 3. Movement along linearized Pareto front in order to improve the hypervolume
in Region III

Proposition 1. Let α >p 0, then the global maximizer of Problem 15 is given
by

t∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (16)

Proof. If αp >p 0, then it follows by (14) that d1, d2 �= 0. The first derivative of
ν̃ is given by

ṽ ′(t) = 2td1d2 + d2f1(x) − r1d2 + d1f2(x)− d1r2 (17)

Setting this to zero leads to

t∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (18)

Further, the second derivative at t∗ is given by

ṽ ′′(t∗) = 2d1d2 < 0. (19)

The negativity holds since α >p 0 and by construction of dIII , and the claim
follows. ��
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We stress that the above solution holds for the linearized problem which is of
course a simplification of the problem at hand. We have observed that the step
size t∗ leads to satisfying results in particular if (i) the Pareto front is almost
linear, and (ii) if the reference point R and the current objective vector F (x) are
not too far away from each other. For practical implementations, it is advisable to
define a maximal step size tmax to bound the search. Also note that the step size
t∗ is defined for a search in objective space while the new iterate xnew = x+txν is
obtained via a line search in parameter space. For this, we follow the suggestion
made in [11] to make the match tx = t∗ that works particularly well for small
values of t∗. Finally, we note that the above consideration is made for KKT
points. However, these computations work also well if the candidate solution x
is near to the Pareto set. In particular, dIII points along the Pareto front.

Algorithm 1 summarizes the above discussion and presents the HVDS as stan-
dalone algorithm.

Algorithm 1. HVDS as standalone algorithm for one element archives

Require: x0: starting point, a, b: values for region assignment; R: reference point
i := 0
repeat

compute the angle θ of ∇fj(xi), j = 1, 2 as in Eq. (7)
if θ > a then � F (xi) ∈ I

Compute νI as in Eq. (9)
Compute tI ∈ IR+

xi+1 = xi + tIνI
else if θ ∈ (b, a) then � F (xi) ∈ II

dII = F (xi)−R
νII = J(xi)

+dII
Compute tII ∈ IR+

xi+1 = xi + tIIνII
else � F (xi) ∈ III

get the convex weight α according to Eq. (13)
dIII = (−α[2], α[1])T

νIII = J(xi)
+dIII

Compute tIII as in Eq. (16)
xi+1 = xi + tIII ∗ νIII

end if
i := i+ 1

until tIII = 0 or a maximum number of iterations is reached

3.2 General Archives

We now consider the general case where the archive contains l elements, i.e.,
A = {x1, . . . , xl}. As we will see (and which fits our intuition) the ‘optimal’
search direction for a given point x ∈ A depends in some cases on the location
of the other elements of A. However, we can reduce all cases to the one element
case with appropriate adjustments to the reference point.

In the following we consider the local search in all three distance regions.
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Local Search in Region I. If a point x ∈ A that is chosen for local search is far
away from the Pareto front, a movement into its direction is desired regardless
of the location of the other elements of A. Hence, we propose to proceed as for
the one element case.

Local Search in Region II. Since we consider two-objective problems, the
images in objective space of A can be sorted by one of the objective values
which we assume in the following. Let xi ∈ A be given that is assigned for
local search. Figure 4 that shows such a scenario suggests that the hypervolume
contribution of xnew that is obtained via a modification of xi is restricted to the
region between F (xi−1) and F (xi−1). Hence, for i ∈ {2, . . . , l − 1} we propose
to choose the new reference point

RF (xi) =

(
f1(xi+1)
f1(xi−1)

)
(20)

and to proceed analog to the one element case using the direction

dII,xi = F (xi)−RF (xi). (21)

For the extreme points (i.e., i ∈ {1, l}) we proceed again with RF (xi) = F (xi)−R.
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Fig. 4. Local search in Region II for multiple archive entries

Local Search in Region III. Analog to the above discussion we can proceed
with points in the third distance region. To be more precise, we propose to use
the reference point RF (xi) for intermediate points (i.e., i ∈ {2, . . . , l − 1}) and
the original point R for the extreme archive entries.

4 Integrating HVDS into SMS-EMOA

Here we make a first attempt to integrate the local search mechanism HVDS into
an EMOA in order to obtain a fast and reliable algorithm to obtain hypervolume
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approximations of a given MOP. We have chosen to take the state-of-the-art
algorithm SMS-EMOA ([2]), however, we stress that HVDS can in principle be
hybridized with any other hypervolume based EMOA.

Each iteration step in SMS-EMOA is divided into three sections: First, one
new element is generated through an evolutionary process that is inserted into
the current population. In the second section, the population is partitioned into h
separate groups (S1, . . . , Sh) with respect to the degree of nondominance. Finally,
the algorithm computes the contributions of the points according to hypervolume
and the element with the least hypervolume contribution is discarded from the
archive.

We propose to integrate the new local search mechanism as follows: After
the update of the archive in iteration step i, mi elements of the population
Pi are chosen for local improvement via HVDS, XLS will represents the set
of the elements taken. Since it is assumed that HVDS actually improves the
hypervolume value of a given element, no consideration of the hypervolume con-
tributions is nesessary (which is a time-consuming task), but the new iterates
replace the initial points. Algorithm 2 shows the pseudo-code of the new hybrid
SMS-EMOA-HVDS.

Algorithm 2. SMS-EMOA-HVDS

Initialize a population P ⊂ Q with μ elements at random
repeat

generate offspring x ∈ Q from P by variation
P := P ∪ {x}
build ranking S1, . . . , Sh from P
compute the hypervolume contribution for each x ∈ Sh

denote by x∗ the element with the least hypervolume contribution
P :=P \ {x∗}
choose the set XLS ⊂ P with |XLS | = m
for all i = 1, . . . ,m do

xi,0 = ith element of XLS

x̃i =HVDS(xi,0, a, b, R)
P := P ∪ {x̃i} \ {xi,0}

end for
until stopping criterion fulfilled
return P

5 Numerical Results

5.1 HVDS as Standalone Algorithm

First we test the ability of the HVDS as standalone algorithm. For this, we will
use the following two uni-modal problems:

F1 : IR10 → IR2 (22)
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f1(x) = ||x− a1||22, f2(x) = ||x− a2||22,
where a1 = (1, . . . , 1)T , a2 = (−1, . . . ,−1)T , and

F2 : IR2 → IR2 (23)

f1(x) =
1

2
(
√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)

2

f2(x) =
1

2
(
√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)

2

,

where λ = 0.85. MOP (22) ([16], denoted by ‘Convex‘) has a convex Pareto
front, and the front of MOP (23) ([18], ‘Dent’) is convex-concave (see Figure 5).
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Fig. 5. Pareto fronts of MOP (22) (left) and MOP (23) (right)

First we test the HVDS for one element archives. For the sake of a comparison,
we define a simple hill climber as follows: For a given point x, a further candidate
solution y is taken from a neighborhood of x. As next iterate, the solution with
the highest hypervolume value is taken and the search is continued in the same
manner. We have chosen this strategy since it relates to a stochastic local search
procedure within hypervolume-based MOEAs. Figures 6 and 7 show exemplary
runs for both methods on each problem. Figure 8 shows the hypervolume against
the number of function evaluations for both problems and methods. Here we
count five function evaluations for the cost of one gradient evaluation which
would be the case when using automatic differentiation [6]. In both cases, HVDS
is able to get higher hypervolume values in the early stage of the algorithm. For
Dent, the algorithm is even able to terminate after 130 function evaluations at
the optimal hypervolume value.

Next, we make a first attempt to investigate the ability of the HVDS within
set based search. For this, we have made the following adaption of the standalone
HVDS as presented in Algorithm 1: Instead of one starting point x0 we choose

an initial population X = {x(1)
0 , . . . , x

(5)
0 } consisting of five elements. The iter-

ation step is then performed individually for all elements (i.e., x
(j)
i+1 = x

(j)
i + tν

as described in Algorithm 1) using the choice of the reference point as proposed in
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Fig. 6. Result of the HVDS and the hypervolume hill climber on Convex
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The results are averaged over 20 test runs.
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Table 1. Comparison of the 5 element HVDS and the SMS-EMOA with μ = 5. The
results are averaged over 20 test runs.

HVDS SMS-EMOA

# Iterations Hypervolume # Iterations Hypervolume Best Value

Convex 1400 2100.1424 1400 1992.9788 2107.6523
Dent 885 16.6941 900 16.5721 16.8225

Table 2. HV results of SMS-EMOA with and without HVDS as local searcher after
2500 iterations of the algorithm (using the same number of function evaluations). The
values are obtained from 20 test runs.

SMS-EMOA SMS-EMOA-HVDS

Average Deviation Median Average Deviation Median

Convex 2003.867 68.956 2021.200 2161.668 18.039 2164.803
Dent 17.234 0.031 17.241 17.245 0.023 17.248
ZDT1 105.015 0.948 105.002 108.965 1.654 109.512
ZDT2 97.592 2.965 96.176 107.463 3.563 109.207
ZDT3 113.771 1.857 114.330 116.097 1.948 117.576
ZDT4 76.536 13.485 82.107 71.552 15.770 71.352
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Fig. 10. Boxplots of the HV at the final iteration of the SMS-EMOA and its hybrid
variant (DS) on the considered test problems. Statistically significant differences due
to the Wilcoxon-Rank-Sum Test with α = 0.05 are marked with (*).
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(a) MOP (22) (b) MOP (23)

(c) ZDT1 (d) ZDT2

(e) ZDT3 (f) ZDT4

Fig. 11. Numerical results of SMS-EMOA and its hybrid variant on some benchmark
models

Section 3.2. Figure 9 shows some numerical results and Table 1 a comparison
to SMS-EMOA with population size μ = 5. Also in this case, HVDS is able to
get better hypervolume approximations. However, it has to be noted that for
problem Dent none of the methods converge toward the optimal archive but
the values get stuck on the value shown in Table 1 even for a higher budget
of function evaluations. This might be due to the fact that only one point is
iterated at each step. A possible remedy would be to modify all points in each
iteration, however, to the sacrifice of a much higher computational burden.
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5.2 HVDS within SMS-EMOA

Finally, we investigate the potential of HVDS as local searcher within SMS-
EMOA. For the computations we have realized SMS-EMOA-HVDS as follows:
To pull the current archive to the Pareto set, we have chosen to run two HVDS
runs in the beginning of the search. Due to the relatively high cost of this search,
we have omitted further HVDS calls in subsequent iterations (i.e., we have taken
m1 = 2 together with a budget of 50 iterations and mi = 0 for i > 1).

Table 2 and Figure 11 show some numerical results on the above MOPs as
well as on ZDT1-4 from [19]. Boxplots of the respective HV values after the final
iteration are given in Figure 10. In 4 out of 6 cases the new hybrid is superior
to its base EMOA while the differences in location of the HV values are not
statistically significant for Dent and ZDT4. The latter is certainly due to the
choice of the local search since the two runs got stuck in local minima, and
hence, the effort was lost. Further variants of local search, e.g., the application
of more but shorter HVDS runs, have to be tested which we leave for future
research.

6 Conclusions and Future Work

In this paper, we have presented a new local search procedure for hypervol-
ume approximations of a given multi-objective optimization problem. The new
method, HVDS, is based on the Directed Search Method which is able to steer
the search into any direction given in objective space and has been adapted to
the given context. We have presented the HVDS both as standalone algorithm
and as local search engine within the state-of-the-art hypervolume based algo-
rithm SMS-EMOA. The benefit of the novel method has been shown on several
numerical experiments.

For future work, there are many aspects that have to be considered. For in-
stance, the current study was restricted to unconstrained bi-objective problems
which has to be generalized for sake of a broader applicability. Further, by the
same reason, it would be desirable to use the gradient free version of the Di-
rected Search Method in the hybrid which needs a careful consideration of the
neighborhood structure of the base EMOA [9]. Finally, it might be interesting to
adapt the method to other indicators, e.g., to obtain Hausdorff approximations
of the set of interest [5,13,17].
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