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Abstract. Here we address the problem of computing the set of approx-
imate solutions of a given multi-objective optimization problem (MOP).
This set is of potential interest for the decision maker since it might
give him/her additional solutions to the optimal ones for the realiza-
tion of the project related to the MOP. In this study, we make a first
attempt to adapt well-known cell mapping techniques for the global anal-
ysis of dynamical systems to the problem at hand. Due to their global
approach, these methods are well-suited for the thorough investigation
of small problems, including the computation of the set of approximate
solutions. We conclude this work with the presentation of three academic
bi-objective optimization problems including a comparison to a related
evolutionary approach.

Keywords: multi-objective optimization, approximate solutions, cell
mapping techniques, global optimization.

1 Introduction

In many real-world engineering problems one is faced with the problem that
several objectives have to be optimized concurrently leading to a multi-objective
optimization problem (MOP). Such problems can be stated as

min
x

F : Q ⊂ �n → �
k. (1)

The solution set of a MOP, the Pareto set PQ, typically forms a (k − 1)-
dimensional entity, where k is the number of objectives involved in the problem.
Hence, the approximation of PQ already represents a challenge for many search
procedures, in particular if the objectives are nonlinear. However, in some ap-
plications it might be interesting to know in addition to the optimal solutions
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also nearly optimal ones. The reason is that if for two vectors x, y ∈ Q the ob-
jective values F (x) and F (y) are close, this does not have to hold for x and y.
Hence, if the decision maker (DM) is willing to accept a certain small deterio-
ration ε in the performance (which is measured by F ), he/she might be given
several backup alternatives to realize the project. The approximation of the set
of nearly optimal solutions PQ,ε has caught little attention in literature so far.
The main reason for this lack might be that this set is n-dimensional, where n
is the dimension of the decision space.

In this work, we propose to use cell mapping techniques ([20]) for the approx-
imation of PQ,ε. Methods of that kind divide the domain Q into a set of small
n-dimensional cells and perform a cell-to-cell mapping of the given dynamical
system g (here we will use a particular system derived from a Pareto descent
method). In this way, a global view on the dynamics of g as well as the fitness
landscape of F on Q are obtained, and is thus well-suited for the problem at
hand. The result of the algorithm is ideally a tight covering of PQ,ε, but also the
discretization of this set is straightforward (e.g., one representative of each cell
can be chosen) which is required for the presentation of the result to the DM.
Due to its approach, the method is restricted to small dimensions of the param-
eter space. However, there exist small dimensional problems where a thorough
investigation is desirable. Such models e.g. arise in preliminary space mission
design (e.g., [12,36,35]) or in the design of electrical circuits (e.g., [3,2]).

In literature, there exists a huge variety of methods for the approximation
of the Pareto set PQ (respectively its image, the Pareto front). There exist, for
instance, point-wise iterative mathematical programming techniques that lead to
single solutions of a MOP. An approximation of PQ can be obtained by choosing
a clever sequence of these problems (e.g., [8,23,15,14]). Further, there exist set
oriented methods such as multi-objective evolutionary algorithms (MOEAs, see
e.g., [9,5]) or subdivision techniques ([13,22,37]) that aim for the approximation
of PQ in one run of the algorithm. None of them, however, are designed for the
computation of PQ,ε. The only studies in that direction seem to be the works
[32,35], where stochastic search techniques such as MOEAs are investigated.

The remainder of this paper is organized as follows: In Section 2, we present
the background required for the understanding of the sequel. In Section 3, we
propose a cell mapping technique for the computation of the set of approximate
solutions. In Section 4, we present some numerical results, and the final Section
states the conclusions and future work.

2 Background

Here we will shortly recall the required background: The concept of multi-
objective optimization including our definition of nearly optimality and a brief
review of cell mapping techniques.

A multi-objective optimization problem (MOP) can be expressed as follows:

min
x∈Q

{F (x)}, (MOP)
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where F is the map that consists of the objective functions fi : Q → � under
consideration, i.e.,

F : Q → �
k, F (x) = (f1(x), . . . , fk(x)).

The domain Q ⊂ �n of F can in general be expressed by inequality and equality
constraints:

Q = {x ∈ �n | gi(x) ≤ 0, i = 1, . . . , l, and hj(x) = 0, j = 1, . . . ,m}.
In this work we will merely consider inequality constraints.

Next, we have to define optimal solutions of a given MOP. This can e.g. be
done using the concept of dominance ([27]).

Definition 1. (a) Let v, w ∈ �k. Then the vector v is less than w (in short:
v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analo-
gously.

(b) A vector y ∈ Q is called dominated by a vector x ∈ Q (x ≺ y) with respect
to (MOP) if F (x) ≤p F (y) and F (x) �= F (y), else y is called non-dominated
by x.

If a vector x dominates a vector y, then x can be considered to be ‘better’ ac-
cording to the given MOP. The definition of optimality (i.e., of a ‘best’ solution)
of a given MOP is now straightforward.

Definition 2. (a) A point x ∈ Q is called (Pareto) optimal or a Pareto point
of (MOP) if there is no y ∈ Q that dominates x.

(b) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

P := {x ∈ Q : x is a Pareto point of (MOP )}. (2)

(c) The image F (P) of P is called the Pareto front.

Pareto set and Pareto front typically form (k − 1)-dimensional objects under
certain mild assumptions on the MOP, see [17] for a thorough discussion.

We now define another notion of dominance which we use to define approxi-
mate solutions.

Definition 3 ([31]). Let ε = (ε1, . . . , εk) ∈ �k
+ and x, y ∈ Q.

(a) x is said to ε-dominate y (x ≺ε y) with respect to (MOP) if F (x)−ε ≤p F (y)
and F (x) − ε �= F (y).

(b) x is said to −ε-dominate y (x ≺−ε y) with respect to (MOP) if F (x) + ε ≤p

F (y) and F (x) + ε �= F (y).

The notion of −ε-dominance is of course analogous to the ‘classical’ ε-dominance
relation [24] but with a value ε̃ ∈ �k−. However, we highlight it here since we use
it to define our set of interest:

Definition 4. Denote by PQ,ε the set of points in Q ⊂ �
n that are not −ε-

dominated by any other point in Q, i.e.,

PQ,ε := {x ∈ Q| � ∃y ∈ Q : y ≺−ε x}. (3)
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Fig. 1. Two different examples for sets PQ,ε. At the left, we show the case for k = 1
and in parameter space with PQ,ε = [a, b]∪ [c, d]. Note that the image solutions f([a, b])
are nearly optimal (measured in objective space), but that the entire interval [a, b] is
not ‘near’ to the optimal solution which is located within [c, d]. At the right, we show
an example for k = 2 in image space, F (PQ,ε) is the approximate Pareto front (taken
from [31]).

The set PQ,ε contains all ε-efficient solutions, i.e., solutions which are optimal
up to a given (small) value of ε. Figure 1 gives two examples.

To compare our results we will measure the distance of the outcome sets to
the set of interest. A natural choice would be the Hausdorff distance dH (e.g.,
[16]). Since dH punishes single outliers that can occur when using stochastic
search algorithms (as we will do in our comparison) we will use the averaged
Hausdorff distance1 instead.

Definition 5 ([34]). Let p ∈ �, A = {a1, . . . , ar} and B = {a1, . . . , am} be two
finite sets. Then it is

Δp(A,B) = max

⎛
⎝
(
1

r

r∑
i=1

dist(ai, B)p

)1/p

,

(
1

m

m∑
i=1

dist(bi, A)
p

)1/p
⎞
⎠ , (4)

where dist(x,B) := minb∈B ‖x − b‖ denotes the distance between a point x and
a set B.

Note that for p = ∞, we have Δ∞ = dH , and for finite values of p the distances
in Δp are averaged. In [34], Δp is discussed as a performance indicator in the
context of Pareto front approximations. In that case, the indicator can be viewed
as a combination of slight variations of the well-known indicators Generational
Distance (see [38]) and the Inverted Generational Distance (see [6]).

The cell mapping method was originally proposed by Hsu [18,20] for global
analysis of nonlinear dynamical systems in the state space. Two cell mapping
methods have been extensively studied, namely, the simple cell mapping and the
generalized cell mapping. The cell mapping methods have been applied to opti-
mal control problems of deterministic and stochastic dynamic systems [19,4,7].

1 The averaged Hausdorff is in general not a distance.
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The cell mapping methods transform the point-to-point dynamics into a cell-
to-cell mapping by discretizing both phase space and the integration time. The
simple cell mapping (SCM) offers an effective approach to investigate global
response properties of the system. The cell mapping with a finite number of cells
in the computational domain will eventually lead to closed groups of cells of the
period equal to the number of cells in the group. The periodic cells represent
approximate invariant sets, which can be periodic motion and stable attractors of
the system. The rest of the cells form the domains of attraction of the invariant
sets. For more discussions on the cell mapping methods, their properties and
computational algorithms, the reader is referred to the book by Hsu [20].

3 A Cell Mapping Method for the Approximation of PQ,ε

In this section, we review the SCM method [20] together with our adaptions to
the context of multi-objective optimization, and present the post-processing to
get an approximation of PQ,ε.

In the following, we assume the problem is bounded by box constraints, which
constitutes our domain Q

lbi ≤ xi ≤ ubi, i = 1, · · · , N.

Now, we can divide each interval in Ni sections of size

hi =
lbi − ubi

Ni
.

By doing this, we get a finite subdivision of the domain, where each of these
elements are called regular cells. The number of regular cells is noted by Nc and
we label the set of regular cells with positive integers, 1, 2, · · · , Nc. Everything
that is outside the domain is called the sink cell. With the introduction of the
sink cell the total number of cells is Nc + 1. The sink cell is also labeled as the
regular cells using the value 0.

At this point the evolution of the system is given cell-to-cell instead of point-
to-point. The dynamics of a cell z is represented by its center and the cell-to-cell
mapping is denoted by C. Now the mapping can be described by

z(n+ 1) = C(z(n)), z(n), z(n+ 1) ∈ {0, · · · , Nc},
C(0) = 0.

A cell z∗ that is mapped onto itself,

z∗ = C(z∗),

is called an equilibrium cell.

Definition 6. A periodic motion of period k for C is a sequence of k cells
z∗(l), l = 1, · · · , k, such that

z∗(m+ 1) = Cm(z∗(1)), m = 1, · · · , k − 1,

z∗(1) = Ck(z∗(1)).
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Every element z∗(l) is called a periodic cell of period k or P − k group.

Definition 7. We say a cell z has distance r from a periodic motion if r is the
minimum positive integer such that

Cr(z) = z∗(l),

where z∗(l) is one of the P − k cells of the motion. The set of such cells is called
the r-step basin of attraction of the motion. If r goes to infinity we obtain the
basin of attraction.

The evolution of the system starting with any regular cell z can lead only to
one of the following three possible outcomes:

– The cell belongs to a P -Group: z is itself a periodic cell of a periodic motion.
The evolution of the system simply leads to a periodic motion.

– The cell maps to the sink cell in r steps: Cell z is mapped into the sink cell in
r steps. Then the cell belongs to the r-step domain of attraction of the sink
cell.

– The cell maps to a P -group in r steps: Cell z is mapped into a periodic cell of
a certain periodic motion in r steps. In this case the cell belongs to the r-step
domain of attraction of that periodic motion.

To capture the global properties of a cell, the SCM algorithm uses the following
sets:

– Group motion number (Gr): The group number uniquely identifies a periodic
motion; it is assigned to every periodic cell of that periodic motion and also to
every cell in the domain of attraction. The group numbers, positive integers,
can be assigned sequentially.

– Period (Pe): Defines the period of each periodic motion.
– Number of steps to a P -group (St): Used to indicate how many steps it takes

to map this cell into a periodic cell.

So far the SCM for general dynamical systems. In order to apply it to the context
of multi-objective optimization, we have to define a suitable dynamical system.
For this, we have chosen to take models that are derived from descent directions.
A direction v ∈ �n is called a descent direction at a given point x0 ∈ Q if a search
in that direction leads to an improvement of all objectives. In other words, there
exists a t̄ ∈ �+ such that F (x0+ tv) <p F (x0) ∀t ≤ t̄. Descent directions are e.g.
proposed in [21,29,25,1]. Since we consider bi-objective optimization problems
in this work, we use descent direction from [1] which is given by

Theorem 1 ([1]). Let x ∈ R
n, and f1, f2 : R

n → R define a two-objective
MOP. if ∇fi(x) �= 0, for i = 1, 2, then the direction
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v(x0) := −
( ∇f1(x0)

||∇f1(x0)|| +
∇f2(x0)

||∇f2(x0)||
)
, (5)

is a descent direction at x0 of MOP. This descent direction yielded best results
in our tests but is restricted to problems with two objectives. Using (5), the
dynamical system

ẋ(t) = v(x(t)) (6)

can now be used since it defines a pressure toward the Pareto set/front of the
MOP at hand.

In order to be able to store those cells that are candidates to be Pareto optimal
(to be more precise, cells that potentially contain a part of the Pareto set), we
use a set called cPs. For these cells it holds St(cell) = 0 and Gr(cell) �= 1. It is
important to notice that because of the dynamical system periodic groups with
size greater than 1 should not appear, however, due to discretization errors and
too large step sizes periodic groups greater than 1 may be generated (i.e., an
oscillation around the Pareto set can occur). Thus, cells that are involved in the
current periodic group are also considered to be candidates.

Algorithm 1 shows the key elements of the SCM method for the treatment
of MOPs. According to the previous discussion, the algorithm works as follows,
until all cells are processed, the value of the group motion indicates the state of
the current cell and it also points out the corresponding actions to the cell.

A value of Gr(cell) = 0 means, the cell has not been processed, hence the
state of the cell changes to under process and then we follow the dynamical
system to the next cell.

A value of Gr(cell) = −1 means, the cell is under processed, which means we
have found a periodic group and we can compute the global properties of the
current periodic motion.

A value Gr(cell) > 0 means, the cell has already been processed, hence we
found a previous periodic motion along with its global properties, which can be
used to complete the information of the cells under process.

Figure 2 shows an example of a group motion with Nc = 10 × 10 and
Pe(z) = 12.

After one run of the SCM algorithm, we have gathered the information on
the global dynamics of the system and are hence able to approximate the set of
interest in a post-processing step. For the problem at hand, the approximation
of PQ,ε, we use the archiving technique ArchiveUpdateT ight2 proposed in [26]
as follows: Once the group number of the current periodic motion is discovered,
we use Algorithm 2 to compute the set PQ,ε. Algorithm 2 updates the archive
first with the periodic group of the current periodic motion and continues with
the rest of the periodic motion. Once it finds a cell which is not in PQ,ε it stops
the procedure. The reason for this can be easily seen. Since each periodic group
is a curve of dominated points, once a point xj �∈ PQ,ε the other points would
not be either, since by construction these points are dominated by xj .
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Algorithm 1. Simple Cell Mapping for MOPs.

Require: DynamicalSystem,F, ub, lb,N, h,Nc

Ensure: z, C,Gr, Pe, St, cPs
1: current group← 1
2: cPs = {}
3: Gr(i)← 0,∀i ∈ Nc

4: for all pcell ∈ Nc do
5: cell ← pcell
6: i← 0
7: while newcell = true do
8: xi ← center point of cell
9: if Gr(cell) = 0 then
10: Gr(cell)← −1
11: pi+1 ← DynamicalSystem(xi)
12: ncell ← cell where pi+1 is located
13: C(cell)← ncell
14: cell ← ncell
15: i← i+ 1
16: end if
17: if Gr(cell) > 0 then
18: Gr(Cj(pcell))← Gr(cell), j ← 0, · · · , i
19: Pe(Cj(pcell))← Pe(cell), j ← 0, · · · , i
20: St(Cj(pcell))← St(cell) + i− j, j ← 0, · · · , i
21: cell ← C(cell)
22: newcell ← false
23: end if
24: if Gr(cell) = −1 then
25: current group← current group+ 1
26: Gr(Ck(pcell))← current group, k ← 0, · · · , i
27: j ← ith value when period appears
28: Pe(Ck(pcell))← i− j, k← 0, · · · , i
29: St(Ck(pcell))← j − k, k ← 0, · · · , j − 1
30: St(Ck(pcell))← 0, k ← j, · · · , i
31: cPs← cPs ∪ {xk}, k ← j, · · · , i
32: cell ← C(cell)
33: newcell ← false
34: end if
35: end while
36: end for
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Fig. 2. Example of group motion

Algorithm 2. Post-processing to get PQ,ε

Require: PQ,ε, C, pcell, i
Ensure: PQ,ε

1: j ← i− 1
2: isPQ,ε ← true
3: while isPQ,ε do
4: xj ← center point of Cj(pcell)
5: PQ,ε ← ArchiveUpdateT ight2(PQ,ε, xj , F (xj), ε, h)
6: if xj �∈ PQ,ε then
7: isPQ,ε ← false
8: end if
9: j ← j − 1
10: end while

4 Numerical Results

Here we present some numerical results on three bi-objective benchmark models.
In order to compare the results of the cell mapping technique we couple MOEAs
with the archiving technique ArchiveUpdatePQ,ε ([32]) as suggested in [35]. For
the MOEAs we have chosen for the state-of-the-art algorithms NSGA-II ([10])
and MOEA/D ([39]).

4.1 Problem 1

First, we consider the MOP taken from [30] that is given by two objective func-
tions f1, f2 : �2 → �,
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f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4,

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2.
(7)

Here, we have chosen for the domain Q = [−3, 3] × [−3, 3]. The Pareto set
PQ forms a curve connecting the end points x1 = (−1,−1)T and x2 = (1, 1)T .
Figure 3 shows the numerical result obtained by the SCM algorithm and the two
evolutionary algorithms. Tables 1 and 2 show the Δp values of the candidate sets
(respectively their images) to PQ,ε (F (PQ,ε)) for this and all further examples.
Apparently, SCM is able to get the best approximation of the set of interest, in
particular in parameter space.

4.2 Problem 2

Next, we consider the problem F : �2 → �
2 proposed in [28]

F (x1, x2) =

(
(x1 − t1(c+ 2a) + a)2 + (x2 − t2b)

2 + δt
(x1 − t1(c+ 2a)− a)2 + (x2 − t2b)

2 + δt

)
, (8)

where

t1 = sgn(x1)min

(⌈ |x1| − a− c/2

2a+ c

⌉
, 1

)
, t2 = sgn(x2)min

(⌈ |x2| − b/2

b

⌉
, 1

)
,

and

δt =

{
0 for t1 = 0 and t2 = 0
0.1 else

.

Using a = 0.5, b = 5, c = 5 the Pareto set of MOP (8) is connected and
further there exist eight other connected components that are locally optimal.
For ε > 0.1, the set PQ,ε consists of nine sets that contain these components.
Figure 4 shows some numerical results. SCM computes a covering of the entire set
of interest, while the evolutionary strategies do not always detect all components
which is e.g. reflected by the averaged Δp values in Tables 1 and 2.

As a hypothetical decision making problem assume the DM is interested in the
performance Z = [0.2132, 0.2932] (measured in objective space) and is willing to
accept a deterioration of ε = [0.1, 0.1]. Then, e.g. the representatives of the cells
those images are within the target regions can be presented to the DM leading
here to the following 22 candidate solutions:

(−6.04,−5.00), (−0.04,−5.00), (5.96,−5.00), (−6.04,−0.04),
(−0.12,−0.04), (−0.04,−0.28), (−0.04,−0.20), (−0.04,−0.12),
(−0.04,−0.04), (−0.12, 0.04), (−0.04, 0.04), (−0.04, 0.12),
(−0.04, 0.20), (−0.04, 0.28), (0.04,−0.12), (0.04,−0.04),
(0.04, 0.04), (0.04, 0.12), (5.96,−0.04), (−6.04, 5.00),
(−0.04, 5.00), (5.96, 5.00).

The solutions are well-spread and come in this case from all nine components of
PQ,ε. Since these components are located in different regions of the parameter
space, the DM is hence given a large variety for the realization of his/her project.
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Fig. 3. Numerical results for MOP (7). Black cells indicate Pareto optimal candidates
and yellow cells regions in PQ,ε that are not optimal.
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Fig. 4. Numerical results for MOP (8). Black cells indicate Pareto optimal candidates
and yellow cells regions in PQ,ε that are not optimal.
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Fig. 5. Numerical results for MOP (9). Black cells indicate Pareto optimal candidates
and yellow cells regions in PQ,ε that are not optimal.
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4.3 Problem 3

Finally, we consider the production model proposed in [29]:

f1, f2 : �3 → �

f1(x) =

3∑
j=1

xj , f2(x) = 1−
3∏

j=1

(1 − wj(xj)),
(9)

where

wj(z) =

{
0.01 · exp(−( z

20 )
2.5) for j = 1, 2

0.01 · exp(− z
15 ) for j = 3

Objective f1 is related to the cost of a given product and f2 to its failure rate. For
the domain Q = [0, 40]3 the Pareto set consists of four connected components.
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Fig. 6. Potential solutions for the hypothetical decision making problem related to
MOP (8)

Table 1. Δp values for the distances of the candidate solution set to PQ,ε, the best
solutions in boldface. For MOP (7) (Convex) a budget of 10, 000 function evaluations
was used, the grid for SCM was set to N = [40, 40]. For MOP (8) (Rudolph) and MOP
(9) (Schäffler), a budget of 60, 000 function evaluations was used, the grid for SCM in
Rudolph was N = [100, 100] and the grid for SCM in Schäffler was N = [20, 20, 20].
The results of the evolutionary computations are averaged over 20 independent runs.

MOEA/D NSGA-II SCM

Convex 0.5141 0.4628 0.0849
Rudolph 5.0507 7.4737 0.0632
Schäffler 10.8365 10.9384 0.8660



Computing Approximate Solutions Using Cell Mapping 185

Figure 5 shows a numerical result of the SCM and the evolutionary strategies.
Also in this case, SCM obtains the best result in particular measured in pa-
rameter space (compare also to Tables 1 and 2). Figure 6 shows the resulting
boxes of another hypothetical decision making problem where we have chosen
Z = [23, 0.02231] and ε = [2, 0.0004]. Also here, the DM is offered an entire
range of solutions with different parameter values.

Table 2. Δp values for the distances of the images of the candidate sets to F (PQ,ε),
see Table 1 for details

MOEA/D NSGA-II SCM

Convex 7.8902 8.0027 2.4250
Rudolph 0.4276 0.6317 0.0524
Schäffler 5.8152 2.6852 1.5000

5 Conclusion and Future Work

In this paper we have addressed the problem of computing the set of approximate
solutions of a given multi-objective optimization problem. This set is of interest
for the decision maker since it might enhance the set of options for him/her
when compared to the set of optimal solutions, the Pareto set. To compute the
set of approximate solutions we have adapted cell mapping techniques that were
originally designed for the global analysis of dynamical systems. Since methods
of that kind divide the search space into n-dimensional cells, where n is the
dimension of the decision space of the MOP, they are well-suited for the problem
at hand since they allow for an efficient approximation of the set of interest. We
have tested the novel method on three academic functions and have compared
it against two evolutionary methods. The results indicate that the cell mapping
technique is able to reliably compute the set of approximate solutions, and is
faster than the evolutionary approaches. The method, however, is restricted to
small dimensions of the decision space.

For future work, there are several points to be addressed. First of all, it would
be desirable to extend the applicability of the method to higher dimensional
problems. For this, it seems promising to couple the cell mapping techniques
with related set oriented methods such as subdivision techniques ([11,13]) or re-
covering algorithms ([13,33]). Next, the integration of constraint handling tech-
niques has to be addresses which has been left out in this study. Finally, we plan
to apply the new method to real-wold engineering problems.
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