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Abstract A Brain-Computer Interface (BCI) is an alternative/augmentative
communication device that can provide users (for example, individuals lacking vol-
untary muscle control) with an interaction path, based on the interpretation of his/her
brain activity. In this paper, the design and implementation of a flexible, low-cost
BCI development platform is presented; this platform could serve as a workbench to
develop compact, standalone BCI embedded modules, specifically targeted to (even
if not limited to)AALcontrol purposes. First, a low-cost, custom, bio-potential acqui-
sition unit was realized; then, a Matlab-based environment was developed for EEG
(ElectroEncephaloGram) signal analysis and processing. An application example
involving a 4-class SSVEP-based BCI is presented, along with a novel classification
algorithm which achieved 94.7% classification accuracy.
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1 Introduction

Ambient Assisted Living Technologies (AAL) aim at making the home environ-
ment more cooperative and intelligent, providing help to accomplish daily living
tasks; AAL solutions have been successfully applied for supporting and promoting
independent life of elderly people. However, individuals affected by severe impair-
ments could be potential beneficiaries of AAL services too (such as those aimed at
environmental safety and control): the main issue is to provide these users with an
effective interaction path to the AAL system.

A possible approach to this problem involves Brain-Computer Interface (BCI)
technologies. BCI are alternative/augmentative communication means [1] that aim
at providing the user (for instance lacking voluntary muscle control) with an inter-
action path, based on the interpretation of her/his brain activity. In this paper, the
development of an EEG (ElectroEncephaloGram)-based BCI communication unit is
introduced, explicitly conceived for (even if not limited to) AAL control purposes.
Therefore, with respect to most common BCI approaches, the proposed strategy
focuses at relatively simpler tasks, leaving room for lowering costs, user’s effort and
invasiveness.

In our view, the BCI device must be seamlessly integrated into CARDEA [2], the
flexible, LAN-based, AAL system developed by the University of Parma. CARDEA,
likemost commonhome automation systems, offers environmental control and safety
services, but, in addition, it provides more advanced functionalities, related to Assis-
tiveTechnologies (AT): examples are fall detection, vital signmonitoring [3] and indi-
rect wellness monitoring [4]. Thus, CARDEA integrates both AT and AAL aspects
under a unique, convergent vision.

In order to provide such services, CARDEA currently supports many user inter-
action paradigms, including button switches, touchscreen, vocal, remote internet
control; in [5] the interaction scheme between CARDEA and a simple BCI is dis-
cussed. Other examples of AAL-focused BCI can be found in [6–9]. With respect to
most literature works, the present approach aims at developing tools and methods for
low-cost, standalone embedded BCI modules, making high-performance acquisition
hardware or large computing powers unnecessary.

In this paper we describe the development of a platform conceived for prototyp-
ing of BCI embedded system; it includes three main units (Fig. 1): (i) an Analog
Front End (AFE) for the acquisition EEG signal, (ii) a digital signal processing unit,
implementing feature extraction and classification and, (iii), an output/feedback unit
for display and implementation of active controls. We started from developing and
testing a novel hardware AFE unit, aiming at a compact and inexpensive circuit. Sig-
nal processing and feedback units are currently implemented on a PC architecture,
allowing for more flexibly testing and for better tuning performance. Nevertheless,
the algorithms are specifically targeted for implementation on low-cost, portable
devices, paying attention in devising computationally efficient methods.



Brain.me: A Low-Cost Brain Computer Interface for AAL Applications 225

Fig. 1 Functional blocks of a BCI

Such environment enabled testing of different configurations, algorithms and
methods: among them, a novel Steady State Visual Evoked Potentials (SSVEP) clas-
sification algorithm was devised, yielding good performance and requiring no initial
user training. This allows for simplifying the overall design and also fosters its porta-
bility to different configurations. Eventually, all these functional units will be inte-
grated in a compact, standalone embedded module, capable of local and autonomous
signal processing, which will interface to the AAL system as a simple controller.

In Sect. 2 an overview of the proposed module is presented, demonstrating its
capabilities and flexibility; Sect. 3 presents an application example of theBCImodule
using theSteadyStateVisual EvokedPotentials (SSVEP); finally, in Sect. 4 the results
obtained in the previous section are presented and discussed, as well as the future
work.

2 Overview of the Proposed BCI Module

Although many different methods can be used to extract information on the user’s
brain activity, such as the ones based on functional Magnetic Resonance Imaging
(fMRI) [10], Near InfraRed Spectrography (NIRS) [11] or Positron Emission Tech-
nology (PET) [12], EEG is the most popular technique for practical BCI devices.
In fact, EEG signals can be non-invasively acquired from the scalp, by sensing the
electrical signal with (dry or wet) skin-surface electrodes. Moreover, given our pur-
poses, EEG offers a satisfactory tradeoff between spatial and temporal resolution, as
well as reasonable costs and compactness when compared to other methods.

As far as communication paradigms are involved, focusing on EEG-based BCI,
many brain features can be exploited. Among the most popular ones we can cite:
Slow Cortical Potentials (SCP) [13], Event Related De-synchronization (ERD) [14]
and the related motor imagery paradigm, P300 [15, 16], Steady State Visual Evoked
Potentials (SSVEP) [17]. The latter paradigm, in particular, exploits brainwave fea-
tures elicited by the involuntary response to a continuous, repetitive stimulus, such as
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a blinking LED: within a given low-frequency range, the blinking frequency reflects
on the onset of a isofrequency component in the brain power spectrum. With respect
to other paradigms, the SSVEP paradigm makes synchronization issues less critical,
and possibly lends itself for simpler acquisition architectures.

High-end, clinical EEG equipment with a large number of electrodes are scarcely
suitable for the design of low-costs, small-size devices. In [5], an inexpensive EEG
Analog Front End (AFE) module for extracting basic information on brain activity
was presented; this module was realized using low-cost, standard electronic compo-
nents to foster product interoperability.

In order to cope with such extremely small signals (whose amplitudes are as
low as a few µV) low-noise design techniques were applied. In particular, signals
had to be amplified before digitization, in order to prevent the ADC’s (Analog to
Digital Converter) noise floor from corrupting the informative content in the EEG
waveforms. Obviously, the amplification chain should contribute as low noise as
possible on the desired signal. This calls for AC-coupling and high gain applied
to the input waveforms (intrinsic DC offset between the electrodes prevents from
applying a high DC gain). Moreover, EEG signals generally exhibit poor Signal to
Noise Ratio (SNR) due to, for example, electrical and power line interference. The
use of active electrodes helps in mitigating those issues, having better performance
than their passive counterparts, but this comes at the price of increased costs and
complexity. Given the purpose of our work, focused more on cost effectiveness and
versatility, we adopted passive electrode technology; this choice, however, does not
preclude future deployment of different types of sensing elements.

Given the requirements discussed above, a multi-channel AFE for EEG signals
was designed and realized on a standard 4 layer PCB. The module, which can be
operated both in single supply or in split supply mode, features up to 6 differen-
tial/common reference EEG-specific channels, plus 2 spare, fully-differential chan-
nels. These additional channels can be used, for example, for simultaneous recording
of other biopotentials, such as ElectroOculoGram (EOG), ElectroMyoGram (EMG),
ElectroCardioGram(ECG); in thisway, new types of analysis canbe carried out, relat-
ing different biopotentials. Examples could be the correlation between the recorded
EMG at the onset of a movement and the correspondent ERD in the sensorimotor
cortex, or the detection of ocular artifacts by means of EOG signals.

Figure2 shows the schematic of an EEG acquisition channel along with a Driven
Right Leg circuit, introduced to improve commonmode noise rejection. Each channel
features a differential, passive AC-coupling stage, whose components do not affect
the overall Common Mode Rejection Ratio (CMRR), nor their contributed noise
impact significantly on the overall performance [18]. A differential, AC-coupled
amplification stage applies a gain of 800 to the input EEG waveforms, and a second
order, Bessel-response low-pass filter with a cutoff frequency of 250Hz follows to
limit the signal bandwidth: this value was chosen in order to allow easy recordings
of other biopotentials, such as ECG. A high resolution 24 bit �−�ADC completes
the signal chain.

Noise performance of the AFE was tested with input terminals shorted and the
input referred noise was less than 1.8µVpp, more than sufficient, in principle, to
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Fig. 2 Schematic of the proposed AFE

Fig. 3 Example of an 18Hz
SSVEP response. Electrode
locations are reported in the
legend
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extract basic information of brain activity. As an example of functional validation, a
Power Spectral Density (PSD) plot of an 18Hz SSVEP response, acquired with the
proposed AFE, is shown in Fig. 3; spectral peaks at the corresponding stimulation
frequency are clearly visible.

At this stage of research, a Matlab-based platform for paradigm testing and algo-
rithmprototypingwas designed. From such environment, we can control several AFE
parameters, such as ADC gain and data rate, as well as interact with the controllers
of the stimulation units, such as flashing lights or arrays. Matlab-ADC interfacing is
achieved by means of an Arduino Board, communicating via serial protocol. TCP/IP
support is currently being developed.
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Fig. 4 The proposed lightweight, calibration-less SSVEP classification algorithm

3 Application Example: 4 Class SSVEP BCI

As an application example, a 4-class SSVEPBCI is presented, based on a novel, light-
weight classification algorithm suitable for implementation on low-power embedded
processors.

The experiment was devised as follows: participants were asked to stare at one of
the four simultaneous flickering LED while resting on an armchair at approximately
1m from the visual stimulus. Each trial lasted for 6 s, and each LED presented a
different stimulation frequency (16, 18, 20, 22Hz); EEG was acquired at 250 SPS
from 6 scalp locations (namely O1, O2, T5, T6, P3, P4), using standard 10mm
Ag/AgCl disk electrodes with conductive paste.

In order to classify the SSVEP response, a novel algorithm was developed and
tested, illustrated in Fig. 4.

First, the input EEGwaveforms are low-pass filtered (fcut = 40Hz) for out-of-band
noise reduction. Optionally, further pre-processing steps may include spatial filter-
ing, such as a re-referencing of electrodes according to Common Average Reference
(CAR) filter topology, or the creation of bipolar leads. Then, the Power Spectral Den-
sity (PSD) is estimated using Welch’s method. At this point, given a pre-determined
band of interest, the channel powers are equalized over this band.

The classification algorithm exploits the a priori knowledge of the actual set
of stimulation frequencies, checking the conditions only on such set: the channel
powers are summed at each target frequency. Candidate targets are selectedwhenever
a given fraction (e.g., at least 50%) of the channels exhibit a local maximum in the
PSD at the target frequency. Then, candidates are compared; a two-step procedure
has been devised: if a single candidate exists, the power of which exceeds all the
remainingones by agiven threshold, the decision ismade.Otherwise, amore selective
comparison is made, considering all the target frequencies as candidates and raising
the threshold.

Since the test involves only relative comparisons, the algorithm virtually requires
no calibration at all. Fine tuningof the algorithm is obtainedbyadjusting theclassifier’s
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Table 1 Performance of the proposed algorithm as a function of the window length in terms of
correct classification percent and, between brackets, ITR (bit/min)

Window length
Subject 3 s 4 s 5 s 6 s

1 90.0 (27.45) 83.3 (16.27) 86.7 (14.66) 90.0 (13.73)
2 91.7 (29.08) 91.7 (21.81) 100 (24.00) 100 (20.00)
3 87.5 (25.17) 95.0 (24.52) 92.5 (17.96) 97.5 (17.92)
4 94.1 (31.68) 94.1 (23.76) 94.1 (19.01) 91.2 (14.31)
Average 90.8 (28.35) 91.0 (21.59) 93.3 (18.91) 94.7 (16.49)

parameters, such as the fraction of channels required to pick a candidate frequency
or the relative thresholds for comparing candidates as discussed above.

Moreover, signal processing involves operations particularly suitable for imple-
mentation on embedded devices, allowing to take full advantage of specialized digital
signal processing hardware.

4 Results and Discussion

To evaluate performance of the aforementioned classification algorithm, experiments
were conducted on four healthy volunteers (age 23–26, with normal or corrected to
normal vision, five of them without any prior BCI experience); examples of acquired
SSVEP responses are shown in Fig. 3. The algorithm was then tested on different
window lengths in order to assess and optimize its performance. Twomain indicators
are usually considered in evaluating BCI setups:

• Accuracy, defined as the number of correctly classified trials over the total number
of attempts

• Information Transfer Rate (ITR), defined in [1] as:

ITR = M

[
log2 N + P · log2 P + (1− P) · log2

(
1− P

N − 1

)]
(1)

where M is the number of trials per minute, N the number of possible choices, and
P the classification accuracy.

Table1 summarizes the performance of the proposed algorithm in terms of accu-
racy and ITR, assuming a decision is made every Window Length seconds.

Even though the approach is intentionally simple, experiments showed that a
maximum average accuracy of 94.7% was achieved, making it practical for aimed
AAL control purposes. Such accuracies are in line with state of the art multi-class
SSVEP-based BCI. Higher classification speed (i.e. ITR) can be obtained at the
price of more computationally intensive signal processing, such as in [19]. However,
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with respect to most works in literature, focuses on the development of compact,
low-cost tools for researching and experimenting novel BCI algorithms, with a par-
ticular effort in producing computation-efficient methods, suitable for implemen-
tation on low-cost embedded systems. Furthermore, it is worth emphasizing how,
focusing on AAL system control purpose, the accuracy of the selection process is
actually more important than the selection speed.

The introduction of band-power normalization is shown to slightly improve the
classification performance, especially in case of a strong inter-channel imbalance,
due to, for example, different electrode impedance; the normalization improves the
classification robustness by somehow self-adapting to variable scenarios.

In addition, the proposed algorithm is relatively simple and suitable for imple-
mentation on low-power, mobile digital processors, such as DSP or ARM micro-
processors. Finally, it does not require synchronization between the stimulation and
the acquisition unit, thus simplifying the overall design of an embedded BCI system.
Further optimizationswill lead to a compact, embedded system capable of processing
the signals locally, and handling all the communication in a unique module.

Basic, cue-based online operation is supported, while online, self-paced operation
is currently being investigated to provide the user with more flexibility and classifi-
cation speed.
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