Expert System for Wearable Fall Detector

Gabriele Rescio, Alessandro Leone and Pietro Siciliano

Abstract Falling down can cause moderate to severe injuries, increasing the risk of
death among elderly. For this reason there is a substantial growth of Ambient Assisted
Living technologies, including smart environments, in order to support elderly and
fragile people in potentially dangerous situations. The paper describes an expert
system based on a wireless wearable low-cost accelerometer able to automatically
detect falls, generalizing the detection of critical events in several practical condi-
tions. The algorithmic scheme appears invariant to age, weight, height of people and
relative positioning area (even in the upper part of the waist), resulting compliant with
many commercial wearable devices. Experimental results show high generalization
properties and better performances than well-known threshold-based approaches.

1 Introduction

The main reason for the development of the presented system is to allow partially self-
sufficient people to live safely in their own homes as long as possible. The problem of
falls in the elderly has become a health care priority due to the related high social and
economic costs [9]. Many solutions have been proposed in detection and prevention
of falls and some excellent reviews have been presented [9, 10, 13]. The availability
of miniaturized low-cost MEMS accelerometers on the market and the new reliable
wireless communication technologies allow the realization of affordable wearable
systems useful for daily activities monitoring [4]. However, this kind of technology
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presents some drawbacks: they are prone to be forgotten, worn in a wrong body
position or accidentally damaged. Regarding fall detection, an accelerometer-based
solution presents some advantages respect to vision or acoustic sensors: just one sen-
sor needs to be used, re-design of the environments is not required and ethical issues
(such as privacy) are always satisfied. On the other hand, camera-based or acoustic-
based approaches are non-invasive [6] since contactless solutions. In this paper a fall
detector through a wearable tri-axial MEMS accelerometer is presented. The pro-
posed solution overcomes the limitation of well-known threshold-based approaches
[1] in which several parameters need to be manually estimated according to the
specific features of the end-user. In particular, a machine learning scheme has been
used and high generalization capabilities in the fall detection discrimination process
have been recovered. The expert system uses robust features extracted taking into
account important constraints and/or requirements of mobile solutions (workload).
The extracted features are (quasi-) invariant both to specific characteristics of the
mounting setup (device on chest, on waist, on abdomen) and specific characteristics
of the end users in terms of age, weight, height and gender.

2 Framework Overview and Materials

The main computational steps of the software architecture are data acquisition, noise
filtering, data pre-processing, system calibration, feature extraction and classifica-
tion. Each step is described in the following sections. The capability of the system to
detects a fall is evaluated by using a state-of-the art supervised classifier, according
to the procedure described in [5]. The algorithmic framework has been developed
by using the wearable device [12] composed by commercial discrete circuits.

The system integrates a ST LIS3LVO2DL tri-axial MEMS accelerometer with dig-
ital output, an FPGA for computing functionalities and a Zigbee module for wireless
communication up to 30 m, suitable for indoor contexts. The power consumption is
about 190 mW in streaming mode and 9 mW in idle. The wearable device can operate
in streaming mode (raw data are sent via ZigBee to an external computing platform
for data analysis with a 10 Hz frequency) or in standalone mode. In the last release of
the device a threshold-based fall detector has been integrated on the on-board FPGA
and the implementation has been used as comparison item for the evaluation of the
proposed scheme. Raw data are in hexadecimal 16-bit and represent the acceleration
values with full scale in the range £2 g for higher sensitivity. The accelerometer is
DC coupled (it responds up 0Hz) and it measures both static and dynamic acceler-
ation along the 3 axes, describing the 3D spatial relative position of the person who
wears it. Generally speaking, the accelerometer measures the projection of the grav-
ity vector on each sensing axis. Assuming a particular axis, the component of the
acceleration (amplitude A, Eq. 1) is defined according to the value of the sin of the
angle o between the considered axis and the horizontal plane, which is perpendicular
to the Earth’s gravity component (g):

A = gsin (&) ()
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In this way, if the accelerometer relative orientation is known, the resulting data can
be used to determinate angle of the user posture respect to the vertical direction.

3 Self-Calibration System

The acceleration data on three axes (Ax, Ay, A;) were read out from the device worn
by auser during the data collection. Data were stored and converted from hexadecimal
to decimal format to be compliant the implemented software. A normalization step
has been used in order to represent acceleration data in the range £2 g. The samples
coming from the device are filtered out by a low pass 8-order, 8 Hz cut-off FIR
(Finite Impulse Response) filter to reduce the noise due to electronic components,
environment and human tremor. In order to handle correctly pre-processed data,
a calibration procedure has been accomplished by recovering the initial conditions
after the device mounting. During the step, the correct placing of hardware is verified
by checking if two acceleration axes are orthogonal to Earth’s gravity g (Fig. 1): the
acceleration values measured on the two orthogonal components must be close to
zero. The calibration procedure is achieved by the following steps:

1. The user wears the device in a still standing position for 10s, as shown in Fig. 1.

2. The calibration routine calculates the average of the acceleration (Axo, Ayo, Az0)
on each axis over this period.

3. If (Axo, Ayo, Ayp) are close to those expected (—1, 0, 0 according to Eq. 1), the
calibration routine finished and (Axo, Ayo, Az0) is the reference in the features
extraction.

The calibration procedure is concluded if the initial measured values do not differ
more than 30 % from the expected ones and the values Ay, Ayo and A,y will be
recorded and used as references in the feature extraction phase. Otherwise, a routine to
compensate the sensed misplacement is enabled and the angles displacements of the
sensor axes (aAxp, @Ayo and aA,) are calculated using the following trigonometric
Eq.2:

A A
aAxo = arctan 2x0 , OoAyg =arctan . | ,
(Ay0)” + (A0)? (Ax0)* + (A;0)?
A
aAyo = arctan il =
(Ax0)* + (Ay0)
(2)

These values are stored and will be used for the correction of the misplacement
during the feature extraction phase.
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4 Robust Feature Extraction

Robust features are extracted in the time domain by considering both quick and
relevant acceleration changing along each axis (due to the fall) in a 5 s sliding window
and the posture changing registered after the shock. The aim is to produce robust
features, taking all the information able to discriminate falls from other events. It
is also important that such features have a low dependence on both the position of
the sensor (whether it is placed on the waist, on the chest or on the abdomen) and
the human body characteristics of the user. For the features extraction process, both
critical and post fall phases are of interest and corresponding two kind of features are
extracted. In the former, the shock is measured due to the impact toward the floor plane
and a dynamic acceleration changing is registered. In the latter (the body is already
lying) the static acceleration value records a great change due to the new position of
the individual with respect to the calibration phase. The posture changing with respect
to the initial condition (Ao, Ayo, Azo) can be realized through the static information
of acceleration which varies with the inclination of the accelerometer sensing axis.
Hence the difference between the value of the 3D-static acceleration after the fall
and the one stored in the calibration phase will result in an offset, called Changing
Position Offset (CPO), which is proportional to the user displacement. In this way,
a study of posture was not made: only the relative varying posture analysis was
considered, causing a computational cost reduction and mounting setup invariance.

If the device is not worn correctly, the routine to compensate the device mis-
placement is enabled (see Self-calibration system section). In this case, for the CPO
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Fig. 2 Extracted features for simulated falls and ADLs (the device is on the waist)

calculation, the axes angles of the sensor in the initial condition (Axp, @A and
aA,p) need to be taken into account. The CPO value for x-axis is obtained as:

CPO = |sin (¢Ax — aAxo)], 3)

where oA, is the X-axis angle of the sensor during the post-fall phase; it is calculated
considering the static averaged acceleration A and the same trigonometric equation
used in (2):

_ A,
dAy =arctan | —————, 4)

()" + (4)°

The same procedure must be done for the two other axes. Thanks to this routine the
problems of device positioning are strongly reduced at the expense of an increase in
the computational costs.

The feature vector is made up by three parameters, one for each acceleration
component. It makes sense to consider the acceleration signal on each axis singularly,
because a fall event leads to a change in the value of the static acceleration in at least
two of the three acceleration axes (due to the orientation change of sensing axes).
In Figs. 2 and 3 the features of a sequence of falls and daily events, when the device
is worn on the waist and on the chest, are shown. So it is evident that the features
obtained discriminate the falls from typical Activities of Daily Living (ADLs) also
when the device is placed in other area of the torso.

S Supervised Classification and Experimental Results

Once features are extracted, the fall events are detected by a One Class Support Vector
Machine (OC-SVM) which is less computationally intensive than other algorithms
like neural networks [7]. SVM is a robust classification tool (in presence of outliers
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Fig. 3 Extracted features for simulated falls and ADLs (the device is on the chest)

too) with a good generalization ability. OC-SVM divides all samples into objective
field and non-objective field and then non linearly maps those sample into high
dimensional features space with some efficient functions, called kernel function. The
commonly types of kernel found in literature have been tested. They were analyzed
using Matlab tool STPRtool [2], changing the values of key parameters as described
in [11]. For the extracted features, the optimal kernel are Gaussian Radial Basis
Function (GRBF) [14] and polynomial, as better detailed in the following.

The OC-SVM classifier has been trained by using about 40 falls and 50 ADLs
belonging to a large dataset in which more than 250 falls and 200 ADLs were per-
formed compliant the specifics proposed in [8]. The remaining 210 falls and 150
ADLSs have been used for testing. To validate the implemented algorithmic frame-
work, the previously described dataset has been considered. The performances of
the system have been evaluated considering two normally used metrics, sensitivity
and specificity [8], respectively. The algorithm is tested when the device is placed
on waist, abdomen or chest. GBRF and polynomial kernel functions give the best
results in terms of performance, even the polynomial kernel shows a lower com-
putational cost (relative number of support vectors and relative execution time are
considered). In particular, GRBF (with 0 = 3 and C=2) and the Polynomial (with
P=3 and C=2.8) provide similar values of specificity and sensitivity but the last
one works faster and its number of vectors is slightly lower. Misclassifications are for
falls presenting slow dynamics or falls with partial recovery. The implemented SVM
improves in the specificity and sensitivity respect to the threshold-based approaches
detailed in [1, 3], as reported in Table 1. As already discuss, the two fall detection sys-
tems have in common hardware, benchmark dataset and training/test sets. Of course,
the computational cost of threshold-based is lower than the implemented expert sys-
tems, but it suffers in detection rate due to high false positive and true negative.
Since the number of features is compact and the computational cost of the extracted
features is low, the overall system workload is compatible with an integration in
embedded low-power solutions (DSP, FPGA, microcontroller).
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Table 1 Comparison of the proposed OC-SVM method and threshold-based algorithm detailed
in [3]

Sensitivity (%) Specificity (%) Relative execution time

OC-SVM (Polynomial C=2.8,P=3) 97.7 94.8 1x
OC-SVM (GRBF C=32, y =3) 97.4 95.2 1.5x
Threshold-based 89.5 85.7 0.3x

6 Conclusions

The proposed supervised scheme overcomes the limitation of well-known threshold-
based approaches in which a heuristic choice of the parameters is accomplished. A
specific study on postures was not made in order to make a low computational power
system. A new inferred information has been computed (Changing Position Offset) in
order to intrinsically acquire relevant posture changing with possible affection on fall
events. The calibration step guarantees the generalization of the approach in terms of
invariance to physics characteristic of the end-users, during the fall detection process.
High performances in controlled conditions (simulated events) in terms of sensitivity
and specificity were obtained using only the 20 % of dataset for training purposes.
Performance metrics of different kernels in One Class SVM have been compared and
the best results are obtained with polynomial function and Gaussian Radial Basis
Function, even the polynomial kernel presents a limited workload. Future works are
addressed both to validate the solution in real conditions, to test the methodology
with a large set of different MEMS accelerometers and to port the framework on
embedded mobile solutions.
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