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    Abstract 

 Lipopolysaccharide (LPS, endotoxin) is a 
major component of the outer membrane of 
gram negative bacteria. It is an activator of 
humoral and cellular responses in humans 
with potential use as adjuvant in vaccine 
technology. Importantly, LPS has a large 
capacity to induce Th1-type responses and 
stimulate cytotoxic T lymphocytes, which 
are poorly obtained by standard adjuvants but 
required for specifi c immune stimulatory 
therapies. In contrast, LPS possess an 
extreme toxicity that limit its clinical use in 
humans. Alteration of its chemical structure 
led the generation of LPS-based derivatives 
with reduced toxicity but retaining adjuvant 
properties. Monophosphoryl lipid A (MPLA) 
has been the most successful LPS-based 
adjuvant, currently incorporated in approved 
vaccine preparations and extensively used in 
vaccine trials and preclinical studies. Novel 
designed structures, analogous to LPS and 
generated by chemical synthesis, can offer 
lower production cost and lesser heterogenic 
formulations than MPLA and, in addition, be 
even most suitable for specifi c immune thera-
pies. Thus, LPS-based structures are valuable 
contributions as adjuvants in human vaccin-
ology and open new possibilities to existing 
demands for specifi c therapies.     
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  The development of subunit vaccines has 
improved the safety of human vaccine prophy-
laxis but requires strong adjuvants. Alum (diverse 
aluminum salts) is the most used adjuvant with 
an acceptable profi le of side effects and induction 
of optimal protection against many human patho-
gens. However, alum is not suitable against 
 certain pathogens or for new vaccine therapies 
like cancer or allergy. Lipopolysaccharide is a 
component of the outer membrane of gram- 
negative bacteria largely studied as adjuvants by 
their inherent ability to stimulate immune 
responses. In contrast, LPS induces inacceptable 
toxic effects in humans. 

 The generation of new detoxifi ed LPS species 
with higher adjuvant characteristics than alum 
and acceptable toxicity has opened new perspec-
tives to the vaccination. In this book chapter, the 
basic aspects of LPS structure, toxicity, and acti-
vation of the immune system are fi rst introduced. 
Next, adjuvant characteristics of alum and corre-
sponding drawbacks are briefl y cited. Followed, 
the most promising detoxifi ed LPS molecules 
and adjuvant characteristics are further discussed 
with special emphasis in current advances. A 
fi nal overview section summarized the most 
 relevant points. 

33.1    LPS Structure 
and Biological Activity 

 Lipopolysaccharide is a component of the exter-
nal leafl et of the outer membrane of gram-nega-
tive bacteria. It is a complex glycolipid formed 
by three domains, a fatty acid- rich domain (lipid 
A), an oligosaccharide domain (core), and a 
repeating oligosaccharide domain (O-antigen) 
[ 1 ]. Figure  33.1  represents the typical LPS 
organization.

   The lipid A domain is a β-1, 6-linked  d  - 
glucosamine disaccharide linked to variable num-
ber of ester- and amide-linked 3-hydroxy fatty 
acids and phosphate groups (Fig.  33.1 ). Its archi-
tecture is highly conserved, but different microor-
ganisms may present variations in the number and 
length of the fatty acid side chains, the presence of 
terminal phosphate residues, and associated 

 modifi cations. The core domain is a branched oli-
gosaccharide region formed by nine or ten sugars, 
and its composition is more variable between spe-
cies than lipid A. Finally, the O-antigen, if pres-
ent, is the most variable of the tree domains and 
consists of up to 50 repeating oligosaccharide 
units formed of 2–8  monosaccharide moieties. 
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  Fig. 33.1    General chemical structure of LPS of gram- 
negative bacteria. The LPS structure of  Escherichia coli  
is depicted. LPS consists of three regions: lipid A, core, 
and O-antigen. The chemical structure of the lipid A of 
 E. coli  that displays the maximal immunostimulatory or 
endotoxic activities in humans (the topic of this work) 
is further detailed ( black colored ). Additionally, those 
 substituents that possess the lipid A of  Salmonella minne-
sota  used to obtain MPL are blue colored. Residues of core 
and O-antigen region are schematized and abbreviated 
as  KDO  2-keto-3-deoxyoctonoic acid,  Hep   d -glycero- 
d    -manno-heptose,  Glu   d -glucose,  Gal   d -galactose, 
 GluNAc  N-acetyl-glucosamine, and  GalNAc  N-acetyl-
galactosamine. The length of the O-antigen depends on 
the number of repeating units. Additional substituents 
or modifi cations can be found in nature, but they are not 
shown for clarity       
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In addition, certain modifying enzymes can alter 
the composition of LPS contributing to increase 
the LPS heterogeneity [ 2 – 5 ]. 

 Toll-like receptors (TLR)s belong to a family 
of receptors that recognize a broad diversity of 
specifi c but conserved structures of pathogen 
microorganisms [ 6 ]. Immediately after stimula-
tion, TLRs initiated the activation of immune 
defense mechanisms. Toll-like receptor 4 (TLR4), 
in complex with the glycoprotein MD-2, 
 constitutes the LPS receptor [ 7 ,  8 ]. TLR4 is a 
membrane- spanning protein present on antigen- 
presenting cells (APC) (macrophages and den-
dritic cells) and epithelial cells of humans. Its 
stimulation requires the cooperation of associ-
ated molecules, like the LPS-binding protein and 
CD14 that facilitate LPS transfer to the receptor. 
TLR4 stimulation induces the formation of intra-
cellular protein complexes that leads to the acti-
vation of intracellular signaling cascades [ 9 ,  10 ]. 
These reactions trigger the biosynthesis and 
secretion of diverse proinfl ammatory cytokines 
(IL-1, IL-8, IL-12, TNFα, and IFNγ) and the pro-
duction of co-stimulatory molecules [ 11 ] that 
fi nally activates humoral and cellular responses 
including activation of the complement system 
[ 12 ,  13 ], activation of macrophages [ 14 ,  15 ] B 
and T cells, and enhancement of cellular cooper-
ation [ 11 ]. Consequently, this response is benefi -
cial for the control of local infections. In contrast, 
high LPS dose, specially released to the blood 
system during sepsis, leads to large secretion of 
cytokines and infl ammatory mediators with 

severe [ 16 ,  17 ] and/or fatal consequences 
[ 18 ,  19 ]. Table  33.1  summarizes the benefi cial 
and harmful effects of LPS in humans, but for 
further details see revision [ 20 ,  21 ]. In summary, 
LPS is a strong activator of the immune system 
(adjuvant) but also a highly toxic substance 
(endotoxin).

   The lipid A region is the major responsible of 
the TLR4 stimulation. Variations in its structure, 
mainly regarding the number and length of acyl 
acid chains, and the charge are crucial in this 
regard [ 22 ]. The hexa-acylated  E. coli  lipid A 
(canonical LPS structure and depicted in 
Fig.  33.1 ) with fatty acids of 12–14 carbons and 
two phosphate residues is the maximal stimulator 
of human TLR4 (hTLR4) [ 23 ,  24 ]. In contrast, 
the tetra-acylated lipid IVa with fatty acids of 
18–16 carbons and a phosphate residue, an inter-
mediate in the biosynthetic pathway of lipid A, 
does not stimulate hTLR4 (canonical hTLR4 
antagonist) [ 25 ].  

33.2    Lipid A Analogous Structures 
and Its Role as Adjuvants 

 Vaccine based on infectious attenuated or inacti-
vated whole pathogens contains a large variety of 
target structures for TLRs and, subsequently, pro-
motes strong and long protection. However, they 
generate a large variety of side effects even with 
fatal consequences [ 26 ,  27 ]. Vaccines based on 
one or certain purifi ed components (subunit 

   Table 33.1    Relevant effects of LPS in humans   

 Benefi cial  Harmful 

 Effect  Mechanism  Effect  Mechanism 
 Antimicrobial 
immunity 

 Activation of DC, priming B and 
T cells, opsonization, stimulation 
of natural killer cells, activation 
of macrophages 

 High fever  IL-1 release 

 Antiviral 
immunity 

 Stimulating CD8(+) T-cell immunity  Strong infl ammatory 
responses 

 Large secretion of various 
infl ammatory mediators 

 Antitumor 
immunity 

 Stimulating CD8(+) T-cell immunity  Disseminated intravascular 
coagulation 

 Reduction of elements 
involved in blood 
coagulation 

 Mitigation of 
Th2 response 
to Th1 

 Enhancing Th1 phenotype  Shock, hypotension, 
lymphopenia 

 Reduced blood fl ow 
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 vaccines) show acceptable safely but a poor 
immunogenicity and require additional immune 
stimulators (adjuvants). Alum refers to several 
aluminum salts and is the most used adjuvant. It 
is safe and elicits predominantly a Th2-type anti-
body response that shows to be effective in a 
large variety of vaccines [ 28 ]. However, alum 
hardly promotes Th1-type antibody responses 
[ 29 ]. Adjuvants that favor Th1 or more balanced 
Th1/Th2 responses are required to induce opti-
mal immune protection against certain pathogens 
[ 30 ] or diseases as cancer [ 31 ] or allergy [ 32 ]. 
Apart from that, alum poorly stimulates mucosal 
immunity. Mucosa tissues are the fi rst line of 
defense against many pathogens and the ecologi-
cal niche of commensal and opportunistic micro-
organisms, for example,  Neisseria meningitidis . 

 Therefore, mucosal immunity is considered 
the gold therapy to evade pathogen colonization 
and confer herd immunity against certain particu-
lar pathogens. Vaccine adjuvants that target 
mucosal immunization must promote a large 
series of biological and complex activities as 
Th17 cell development, APC proliferation, and 
IgA production [ 33 ,  34 ]. In this regard, several 
substances have been extensively studied as bac-
terial toxins or CpG, among others [ 34 ], but, till 
date, no available approved adjuvant exists (with 
the exception of MPL, to be discussed next). 
Alternatively to alum, three additional adjuvants 
were licensed: MF59, AS03, and RC-529. MF59 
is an oil in water emulsion with low oil content, 
and it is included in an approved infl uenza 
 vaccine [ 35 ]. Although MF59 induces a more 
balanced Th1/Th2 response than alum, it shows 
partial effi cacy, often requiring the coadministra-
tion of Th1 enhancers. ASO3 and RC-529 con-
tain LPS-based substances to be discussed later. 

 LPS has attracted large attention as adjuvant 
by its high capacity to induce Th1-type responses 
against coadministrated antigens. One of the 
most relevant factors involved in the develop-
ment of this response is IL-12. Note that LPS is a 
stimulator of this interleukin. Interestingly, TLR4 
receptors are tactically present at mucosa sur-
faces; therefore, it would be expected that TLR4 
agonists can promote immune responses at local 
and distal mucosal sites. In the past decades, 

 several strategies were followed to reduce its 
extreme toxicity without altering this inherent 
capacity; variation of the LPS composition, in 
particular lipid A, by chemical treatments and 
chemical synthesis of lipid A analogues is a good 
example (see detailed revision [ 36 ]). As a result, 
a diverse lipid A species was generated, although 
only few exhibited the desirable properties. Next, 
the most relevant substances and clinical applica-
tions are further discussed. 

 The chemical hydrolysis of the LPS of  S. min-
nesota,  which contains a lipid A with seven acyl 
chains and three phosphate groups as depicted in 
Fig.  33.1  (with blue-colored substituent), gener-
ated one of the most successful LPS-based adju-
vants, the monophosphoryl lipid A (MPL). This 
derivate structure is a six-acyl side chain lipid A 
with one phosphoryl group [ 37 ] (see Fig.  33.2 ). 
MPL demonstrated to be less toxic than the par-
ent (0.1% of toxicity) [ 38 ] with a toxic side effect 
profi le comparable to alum [ 39 ,  40 ] while retain-
ing the stimulatory properties of LPS. At present, 
MPL is adjuvant of approved vaccine prepara-
tions for humans in Europe (human papillomavi-
rus (Cervarix) [ 33 ,  34 ] and pollen allergy 
(Pollinex Quattro) [ 41 ,  42 ]) and Australia (hepa-
titis B virus (Fendrix) [ 43 ]), and it has been used 
extensively in human vaccine trials for several 
infectious diseases like malaria [ 44 ], tuberculosis, 
[ 45 ,  46 ] or tumor growth [ 47 ].

   Because MPL is highly hydrophobic and gen-
erates aggregates in aqueous solution that may 
considerably affect the TLR4 activation, it is 
often formulated in combination with alum or 
other delivery systems [ 48 ]. These combinations, 
together with other factors (accompanying anti-
gen or administration route), can alter its adju-
vant action. For example, in aqueous formulations 
MPL promotes antibody production, while in oil 
in water emulsions, it better stimulates T-cell 
responses. In contrast, MPL combined with other 
delivery systems is a strong stimulator of cyto-
toxic T lymphocyte proliferation. Delivery sys-
tems can also modify their biological properties. 
Liposomes are spherical vesicles formed by 
phospholipid bilayers extensively used to deliver 
antigens in its native conformation. Incorporation 
of MPL into liposomes reduced the residual 
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 toxicity of MPL but retained intact its adjuvant 
potential [ 49 ]; this effect was also observed with 
other detoxifi ed LPS species [ 50 ]. Therefore, 

liposomal MPL formulations were extensively 
studied in human trials for different indications 
as malaria [ 49 ], pneumococcal disease, [ 51 ] or 
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genital herpes type 2 [ 52 ] and in experimental 
animals for  Streptococcus pyogenes  infections 
[ 53 ] or toxin neutralization of  E. coli  [ 54 ]. 
Finally, it is signifi cant to notice MPL’s success 
in providing mucosal immunity after mucosal 
[ 55 ] and intramuscular [ 56 ,  57 ] administration; 
MPL formulations for mucosal vaccines have 
been extensively explored for the treatment of 
different diseases; genital herpes [ 58 ] and muco-
sal leishmaniasis [ 59 ] are good examples. 

 One of the main drawbacks attributed to MPL 
is the heterogeneity of lipid A congeners gener-
ated during its production with subsequent purifi -
cation cost. A solution to this problem could be 
the generation of synthetic lipid A analogues. 
Chemical synthesis generates pure and defi ned 
structures that reduce production cost. Like natu-
ral LPS species, these structures interact with 
hTLR4. Therefore, numerous analogues with 
variation in acyl chain length and positions, phos-
phate groups, or the backbone unit were gener-
ated and their biological activity further analyzed. 
Till date, the most suitable molecules in vaccine 
development are RC-529, E6020, GLA, and 
ONO-4007 (see chemical structure in Fig.  33.2 ). 

 RC-529 is a synthetic analogue of MPL com-
posed by a monosaccharide backbone with six 
fatty acyl chains [ 38 ]. It is a very attractive adju-
vant. Like MPL, it is well tolerated and effective 
during clinical trials [ 38 ] but with a lower pro-
duction cost. In fact, its use was approved in 
Argentina in a hepatitis B vaccine. It is often in 
combination with different delivery systems to 
enhance its solubility or improve its delivery 
without affecting immune stimulatory capacities 
[ 60 ]. In addition, several studies performed in 
experimental animals indicate that RC-529 is an 
effi cient mucosal adjuvant against pathogens that 
lack effective vaccine therapy. For example, it 
elicited bactericidal antibodies after intranasal 
immunization with the  Streptococcus pneu-
moniae  protein PppA [ 61 ] and the meningogoc-
cal protein P2086, [ 60 ] and it promoted high 
antibody titers in macaques at the nasal and geni-
tal mucosa against an HIV peptide immunogen 
[ 62 ]. Similarly, it reduced nasal colonization of 
nontypable  Haemophilus infl uenzae  and 
 Moraxella catarrhalis  in mice that were immu-

nized via nasal with recombinant proteins, [ 63 ] 
and it conferred signifi cant protection against 
lethal infl uenza challenge [ 64 ]. 

 E6020 is an hexa-acylated acyclic backbone 
[ 65 ,  66 ] with higher biological activities than 
alum [ 65 ,  66 ] or MPL [ 65 ] and with a reduced 
toxicity [ 67 ]. Its simple structure allows the pro-
duction of high-purity material than other syn-
thetic TLR4 agonists [ 65 ]. Various works showed 
its high capacity to shift immune responses 
towards a Th1 profi le when combined with con-
ventional vaccines [ 65 ,  67 ,  68 ]. Generation of 
this immune profi le is especially relevant in can-
cer vaccines. Indeed, E6020 in combination with 
a monoclonal antibody (trastuzumab) enhanced 
signifi cantly protection against tumor growth in 
animal models [ 69 ]. 

 GLA is a hexa-acyl synthetic lipid A deriva-
tive composed of a disaccharide backbone with a 
single phosphate group. Results show that it has 
even more powerful adjuvant abilities than MPL 
[ 70 ,  71 ], and it exhibited a good safety profi le in 
animals and in Phase I trials [ 72 ]. MPL has a 
strong but not overwhelming ability to promote 
Th1 responses. Interestingly, GLA exhibits a 
strong ability to shift antigen-specifi c immune 
responses towards Th1 type [ 73 ,  74 ]; hence, it is 
being proposed as a better alternative to MPL to 
confer adequate protection against certain patho-
gens. In fact, signifi cant protection in animals of 
experimentation was reported against  Toxoplasma 
gondii , [ 75 ]  Mycobacterium tuberculosis , [ 76 , 
 77 ] or infl uenza virus [ 72 ]. 

 ONO-4007 is a tri-acylated acyclic sulpho-
nated backbone. This molecule induced tumor 
and metastases regression in animal models [ 78 , 
 79 ]. This property was due to its strong ability to 
stimulate secretion of tumor necrosis factor 
(TNF-α) by macrophages [ 80 ,  81 ]. Studies in 
rodents showed remarkable but selective effi cacy 
against TNF-α-sensitive tumors, which improved 
in combination with other antitumor therapies 
[ 82 ]. Unfortunately, only a primed state induc-
tion of TNF-α was detected in human cells [ 83 ]. 
Phase I clinical studies revealed a limited capac-
ity and the antitumor studies were not continued 
[ 79 ]. In contrast, the molecule exhibits anti- 
leishmanial [ 84 ] and anti-allergy activities [ 85 ].  
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   Conclusions 

 Although LPS was long known as an immune 
stimulatory substance with potential adjuvant 
use, the large variety of unacceptable toxic 
effects drastically restricted its clinical use. 
However, the fi nding that MPL was safe and 
retained the desirable adjuvant properties of 
LPS opened new possibilities to treat patho-
gen diseases.    In contrast to previous adjuvants, 
LPS-based adjuvants offer new benefi ts from 
their ability to enhance Th1-type responses 
and stimulate cytotoxic T lymphocytes. 
   This activity is essential to confer protection 
against many pathogens and to develop pro-
phylaxis therapies against other diseases as 
cancer or allergy. Indeed, this is supported 
by the effi cacy of MPL in available vaccines 
whereas standard adjuvants failed to provide 
protection. Additionally, the high adjuvant 
capacity of LPS- based adjuvants has consid-
erable and obvious benefi ts in mucosa protec-
tion, faster activation of protection, reduction 
of booster doses, functional immunization in 
elderly, or preparation of polyvalent vaccine 
formulations. Certain drawbacks were attrib-
uted to MPL, e.g., elevate production cost and 
possible activation/enhancement of TLR4-
related autoimmune diseases. Synthetic lipid 
A analogues with similar biological activity 
like MPL have demonstrated considerable 
reduction of the production cost. In regard to 
the activation TLR4 autoimmune diseases, 
accumulated data till date from immunization 
in humans provides further  evidence of safety. 
In summary, LPS-based adjuvants improve 
the current vaccination therapies and open 
possibilities to solve their existing challenges.     
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